update main script
Browse files- SciGraph.py +33 -3
SciGraph.py
CHANGED
|
@@ -111,6 +111,16 @@ class SciGraph(datasets.GeneratorBasedBuilder):
|
|
| 111 |
"function": data_dir['function'],
|
| 112 |
"topic": data_dir['topic']
|
| 113 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
)
|
| 115 |
]
|
| 116 |
|
|
@@ -125,7 +135,10 @@ class SciGraph(datasets.GeneratorBasedBuilder):
|
|
| 125 |
data = data[['_id', 'abstract', 'label']]
|
| 126 |
|
| 127 |
|
| 128 |
-
train_data,
|
|
|
|
|
|
|
|
|
|
| 129 |
if split == 'train':
|
| 130 |
for idx, row in train_data.iterrows():
|
| 131 |
yield idx, {
|
|
@@ -133,19 +146,29 @@ class SciGraph(datasets.GeneratorBasedBuilder):
|
|
| 133 |
"abstract": row.abstract,
|
| 134 |
"label": row.label
|
| 135 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
elif split == 'test':
|
| 137 |
for idx, row in test_data.iterrows():
|
| 138 |
yield idx, {
|
| 139 |
"id": row._id,
|
| 140 |
"abstract": row.abstract,
|
| 141 |
-
"label":
|
| 142 |
}
|
|
|
|
|
|
|
| 143 |
|
| 144 |
if self.config.name == 'topic':
|
| 145 |
data = pd.read_json(topic)
|
| 146 |
data = data.replace(to_replace=r'^\s*$', value=np.nan, regex=True).dropna(subset=['keywords'], axis=0)
|
| 147 |
|
| 148 |
train_data, test_data = train_test_split(data, test_size=0.1, random_state=42)
|
|
|
|
| 149 |
if split == 'train':
|
| 150 |
for idx, row in train_data.iterrows():
|
| 151 |
yield idx, {
|
|
@@ -153,10 +176,17 @@ class SciGraph(datasets.GeneratorBasedBuilder):
|
|
| 153 |
"abstract": row.abstract,
|
| 154 |
"keywords": row.keywords.split('#%#')
|
| 155 |
}
|
| 156 |
-
elif split == '
|
| 157 |
for idx, row in test_data.iterrows():
|
| 158 |
yield idx, {
|
| 159 |
"id": row._id,
|
| 160 |
"abstract": row.abstract,
|
| 161 |
"keywords": row.keywords.split('#%#')
|
| 162 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
"function": data_dir['function'],
|
| 112 |
"topic": data_dir['topic']
|
| 113 |
},
|
| 114 |
+
),
|
| 115 |
+
datasets.SplitGenerator(
|
| 116 |
+
name=datasets.Split.VALIDATION,
|
| 117 |
+
# These kwargs will be passed to _generate_examples
|
| 118 |
+
gen_kwargs={
|
| 119 |
+
"split": "valid",
|
| 120 |
+
"classes": data_dir['classes'],
|
| 121 |
+
"function": data_dir['function'],
|
| 122 |
+
"topic": data_dir['topic']
|
| 123 |
+
},
|
| 124 |
)
|
| 125 |
]
|
| 126 |
|
|
|
|
| 135 |
data = data[['_id', 'abstract', 'label']]
|
| 136 |
|
| 137 |
|
| 138 |
+
train_data, valid_data = train_test_split(data, test_size=0.1, random_state=42)
|
| 139 |
+
|
| 140 |
+
test_data = pd.read_json(function)
|
| 141 |
+
test_data = test_data.loc[test_data[functions].sum(axis=1) == 0]
|
| 142 |
if split == 'train':
|
| 143 |
for idx, row in train_data.iterrows():
|
| 144 |
yield idx, {
|
|
|
|
| 146 |
"abstract": row.abstract,
|
| 147 |
"label": row.label
|
| 148 |
}
|
| 149 |
+
elif split == 'valid':
|
| 150 |
+
for idx, row in valid_data.iterrows():
|
| 151 |
+
yield idx, {
|
| 152 |
+
"id": row._id,
|
| 153 |
+
"abstract": row.abstract,
|
| 154 |
+
"label": row.label
|
| 155 |
+
}
|
| 156 |
elif split == 'test':
|
| 157 |
for idx, row in test_data.iterrows():
|
| 158 |
yield idx, {
|
| 159 |
"id": row._id,
|
| 160 |
"abstract": row.abstract,
|
| 161 |
+
"label": -1
|
| 162 |
}
|
| 163 |
+
|
| 164 |
+
|
| 165 |
|
| 166 |
if self.config.name == 'topic':
|
| 167 |
data = pd.read_json(topic)
|
| 168 |
data = data.replace(to_replace=r'^\s*$', value=np.nan, regex=True).dropna(subset=['keywords'], axis=0)
|
| 169 |
|
| 170 |
train_data, test_data = train_test_split(data, test_size=0.1, random_state=42)
|
| 171 |
+
|
| 172 |
if split == 'train':
|
| 173 |
for idx, row in train_data.iterrows():
|
| 174 |
yield idx, {
|
|
|
|
| 176 |
"abstract": row.abstract,
|
| 177 |
"keywords": row.keywords.split('#%#')
|
| 178 |
}
|
| 179 |
+
elif split == 'valid':
|
| 180 |
for idx, row in test_data.iterrows():
|
| 181 |
yield idx, {
|
| 182 |
"id": row._id,
|
| 183 |
"abstract": row.abstract,
|
| 184 |
"keywords": row.keywords.split('#%#')
|
| 185 |
}
|
| 186 |
+
elif split == 'test':
|
| 187 |
+
for idx, row in data.iterrows():
|
| 188 |
+
yield idx, {
|
| 189 |
+
"id": row._id,
|
| 190 |
+
"abstract": row.abstract,
|
| 191 |
+
"keywords": row.keywords.split('#%#')
|
| 192 |
+
}
|