|
import numpy as np |
|
import polars as pl |
|
|
|
from yambda.processing.timesplit import flat_split_train_val_test, sequential_split_train_val_test |
|
|
|
|
|
def create_dataframe(n: int = 1000) -> pl.DataFrame: |
|
uids = np.random.randint(1, int(n * 0.05), size=n) |
|
item_ids = np.random.randint(100, 200, size=n) |
|
|
|
timestamps = np.random.randint(0, 100_000, size=n) |
|
is_organic = np.random.choice([True, False], size=n) |
|
|
|
df = pl.DataFrame( |
|
{"uid": uids, "item_id": item_ids, "timestamp": timestamps, "is_organic": is_organic}, |
|
schema={"uid": pl.UInt32, "item_id": pl.UInt32, "timestamp": pl.UInt32, "is_organic": pl.UInt8}, |
|
) |
|
|
|
df = df.sort(["uid", "timestamp"]) |
|
|
|
return df |
|
|
|
|
|
def test_cross_check(): |
|
df = create_dataframe(10000) |
|
|
|
q75_timestamp = int(df["timestamp"].quantile(0.75)) |
|
|
|
print(q75_timestamp) |
|
|
|
flat_train, flat_val, flat_test = flat_split_train_val_test( |
|
df.lazy(), test_timestamp=q75_timestamp, gap_size=1000, val_size=1000 |
|
) |
|
|
|
assert flat_val is not None |
|
|
|
df.group_by("uid", maintain_order=True).agg(pl.all().exclude("uid")).lazy() |
|
|
|
seq_train, seq_val, seq_test = sequential_split_train_val_test( |
|
df.group_by("uid", maintain_order=True).agg(pl.all().exclude("uid")).lazy(), |
|
test_timestamp=q75_timestamp, |
|
gap_size=1000, |
|
val_size=1000, |
|
) |
|
|
|
assert seq_val is not None |
|
|
|
assert seq_train.explode(pl.all().exclude("uid")).collect().equals(flat_train.collect()) |
|
assert seq_val.explode(pl.all().exclude("uid")).collect().equals(flat_val.collect()) |
|
assert seq_test.explode(pl.all().exclude("uid")).collect().equals(flat_test.collect()) |
|
|