Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
ploshkin commited on
Commit
1be89f3
·
verified ·
1 Parent(s): 78669da

Add code for benchmarking

Browse files
benchmarks/.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ __pycache__/
benchmarks/Dockerfile ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # cuda11.8 due to implicit
2
+ FROM pytorch/pytorch:2.7.0-cuda11.8-cudnn9-devel@sha256:e567ea2642d4e25ef647e9872d09980613a7b1ecc8d2973e339c60a07343046f
3
+
4
+ WORKDIR /yambda
5
+
6
+ RUN apt-get update && \
7
+ apt-get install -y --no-install-recommends \
8
+ libsuitesparse-dev \
9
+ build-essential \
10
+ git
11
+
12
+
13
+ ENV CUDACXX=/usr/local/cuda/bin/nvcc \
14
+ SUITESPARSE_INCLUDE_DIR=/usr/include/suitesparse \
15
+ SUITESPARSE_LIBRARY_DIR=/usr/lib
16
+
17
+ RUN pip install implicit
18
+
19
+ RUN git clone https://github.com/glami/sansa.git && cd sansa && pip install . && cd ..
20
+
21
+ COPY . .
22
+ RUN pip install -e .
benchmarks/lint.sh ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ruff check --fix ./
2
+ ruff format ./
benchmarks/models/README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Reproducibility Guide
2
+
3
+ ## Overview
4
+
5
+ This part of repo contains the implementation and experiments. This guide will help you reproduce the results using Docker or manual installation.
6
+
7
+ ---
8
+
9
+ ## Docker Setup (Recommended)
10
+
11
+ ### 1. Build Docker Image
12
+
13
+ ```bash
14
+ docker build -t yambda-image .
15
+ ```
16
+
17
+ ### 2. Run Container with GPU Support
18
+
19
+ ```bash
20
+ docker run --gpus all \
21
+ --runtime=nvidia \
22
+ -it \
23
+ -v </absolute/path/to/local/data>:/yambda/data \
24
+ yambda-image
25
+ ```
26
+
27
+ ---
28
+
29
+ ## Data Organization
30
+
31
+ Create following structure in mounted data directory:
32
+
33
+ ```bash
34
+ data/
35
+ ├── flat/
36
+ │ └── 50m/
37
+ │ ├── likes.parquet
38
+ │ ├── listens.parquet
39
+ │ └── ...
40
+ └── sequential/
41
+ └── 50m/
42
+ ├── likes.parquet
43
+ ├── listens.parquet
44
+ └── ...
45
+ ```
46
+
47
+ Note:
48
+ Sequential data is only needed for sasrec. You can build it from flat using scripts/transform2sequential.py or download
49
+
50
+ ---
51
+
52
+ ## Running Experiments
53
+
54
+ ### General Usage
55
+
56
+ ```bash
57
+ # For example random_rec
58
+
59
+ cd models/random_rec/
60
+
61
+ # Show help for main script
62
+ python main.py --help
63
+
64
+ # Basic execution
65
+ python main.py
66
+ ```
67
+
68
+ ### Specific Methods
69
+
70
+ #### BPR/ALS
71
+
72
+ ```bash
73
+ cd models/bpr_als
74
+
75
+ python main.py --model bpr
76
+ python main.py --model als
77
+ ```
78
+
79
+ #### SASRec
80
+
81
+ ```bash
82
+ cd models/sasrec
83
+
84
+ # Training
85
+ python train.py --exp_name exp1
86
+
87
+ # Evaluation
88
+ python eval.py --exp_name exp1
89
+ ```
90
+ ---
91
+
92
+ ## Manual Installation (Not Recommedned)
93
+
94
+ ### 1. Install Core Dependencies
95
+
96
+ ```bash
97
+ pip install torch torchvision torchaudio
98
+ ```
99
+
100
+ ### 2. Install Implicit (CUDA 11.8 required)
101
+
102
+ Implicit works only with cuda<12. See reasons [here](https://github.com/NVIDIA/nvidia-docker/issues/700#issuecomment-381073278)
103
+
104
+ ```bash
105
+ CUDACXX=/usr/local/cuda-11.8/bin/nvcc \
106
+ pip install implicit
107
+ ```
108
+
109
+ ### 3. Install SANSA
110
+
111
+ ```bash
112
+ sudo apt-get install libsuitesparse-dev
113
+ git clone https://github.com/glami/sansa.git
114
+ cd sansa && \
115
+ SUITESPARSE_INCLUDE_DIR=/usr/include/suitesparse \
116
+ SUITESPARSE_LIBRARY_DIR=/usr/lib \
117
+ pip install .
118
+ ```
119
+
120
+ ### 4. Install Project Package
121
+
122
+ ```bash
123
+ pip install . # In root directory
124
+ ```
benchmarks/models/bpr_als/main.py ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from pathlib import Path
3
+ from typing import Any
4
+
5
+ import click
6
+ import numpy as np
7
+ import optuna
8
+ import polars as pl
9
+ import scipy.sparse as sp
10
+ import torch
11
+ from implicit.gpu.als import AlternatingLeastSquares
12
+ from implicit.gpu.bpr import BayesianPersonalizedRanking
13
+
14
+ from yambda.constants import Constants
15
+ from yambda.evaluation.metrics import calc_metrics
16
+ from yambda.evaluation.ranking import Embeddings, Targets, rank_items
17
+ from yambda.processing import timesplit
18
+ from yambda.utils import mean_dicts
19
+
20
+
21
+ @click.command()
22
+ @click.option(
23
+ '--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data"
24
+ )
25
+ @click.option(
26
+ '--size',
27
+ required=True,
28
+ type=click.Choice(['50m', '500m', "5b"]),
29
+ default=["50m"],
30
+ multiple=True,
31
+ show_default=True,
32
+ )
33
+ @click.option(
34
+ '--interaction',
35
+ required=True,
36
+ type=click.Choice(['likes', 'listens']),
37
+ default=["likes"],
38
+ multiple=True,
39
+ show_default=True,
40
+ )
41
+ @click.option(
42
+ "--model",
43
+ required=True,
44
+ type=click.Choice(['als', 'bpr']),
45
+ multiple=False,
46
+ show_default=True,
47
+ )
48
+ @click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True)
49
+ @click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True)
50
+ @click.option('--device', required=True, type=str, default="cuda:0", show_default=True)
51
+ def main(
52
+ data_dir: str,
53
+ size: list[str],
54
+ interaction: list[str],
55
+ model: str,
56
+ validation_metric: str,
57
+ report_metrics: list[str],
58
+ device: str,
59
+ ):
60
+ print(f"REPORT METRICS: {report_metrics}")
61
+
62
+ for s in size:
63
+ for i in interaction:
64
+ print(f"SIZE {s}, INTERACTION {i}")
65
+ result = bpr_als(
66
+ data_dir, s, i, device, model, validation_metric=validation_metric, report_metrics=report_metrics
67
+ )
68
+ print(json.dumps(result, indent=2))
69
+
70
+
71
+ def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame:
72
+ path: Path = Path(path) / dataset_size / dataset_name
73
+ df = pl.scan_parquet(path.with_suffix(".parquet"))
74
+ return df
75
+
76
+
77
+ def preprocess(
78
+ df: pl.LazyFrame, interaction: str, val_size: int
79
+ ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
80
+ if interaction == "listens":
81
+ df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD).select(
82
+ "uid", "item_id", "timestamp"
83
+ )
84
+
85
+ train, val, test = timesplit.flat_split_train_val_test(
86
+ df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP
87
+ )
88
+
89
+ return (
90
+ train,
91
+ val.collect(engine="streaming").lazy() if val is not None else None,
92
+ test.collect(engine="streaming").lazy(),
93
+ )
94
+
95
+
96
+ def process_train_data(df: pl.LazyFrame) -> tuple[pl.LazyFrame, list[int], list[int]]:
97
+ unique_pairs = df.select("uid", "item_id").unique()
98
+
99
+ unique_uids = df.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_list()
100
+ unique_item_ids = df.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_list()
101
+
102
+ return unique_pairs, unique_uids, unique_item_ids
103
+
104
+
105
+ def build_csr_matrix(pairs: pl.LazyFrame, unique_uids: list[int], unique_item_ids: list[int]) -> sp.csr_matrix:
106
+ uid_to_idx = {uid: i for i, uid in enumerate(unique_uids)}
107
+ item_id_to_idx = {item_id: i for i, item_id in enumerate(unique_item_ids)}
108
+
109
+ pairs = pairs.select(
110
+ pl.col("uid").replace_strict(uid_to_idx, return_dtype=pl.UInt32),
111
+ pl.col("item_id").replace_strict(item_id_to_idx, return_dtype=pl.UInt32),
112
+ ).collect(engine="streaming")
113
+
114
+ rows, cols = pairs["uid"].to_numpy(), pairs["item_id"].to_numpy()
115
+ values = np.ones_like(rows, dtype=np.int32)
116
+
117
+ return sp.coo_matrix(
118
+ (values, (rows, cols)), dtype=np.float32, shape=(len(unique_uids), len(unique_item_ids))
119
+ ).tocsr()
120
+
121
+
122
+ def train_embbedings_with_als(
123
+ user_item_interactions: sp.csr_matrix,
124
+ regularization: float = 0.01,
125
+ iterations: int = 100,
126
+ random_state: int = 42,
127
+ factors: int = 64,
128
+ ) -> tuple[np.ndarray, np.ndarray]:
129
+ als = AlternatingLeastSquares(
130
+ factors=factors,
131
+ regularization=regularization,
132
+ iterations=iterations,
133
+ random_state=random_state,
134
+ calculate_training_loss=False,
135
+ )
136
+ als.fit(user_item_interactions, show_progress=False)
137
+ return als.user_factors.to_numpy(), als.item_factors.to_numpy()
138
+
139
+
140
+ def train_embbedings_with_bpr(
141
+ user_item_interactions: sp.csr_matrix,
142
+ learning_rate: float = 0.01,
143
+ regularization: float = 0.01,
144
+ iterations: int = 100,
145
+ random_state: int = 42,
146
+ factors: int = 64,
147
+ ) -> tuple[np.ndarray, np.ndarray]:
148
+ bpr = BayesianPersonalizedRanking(
149
+ factors=factors,
150
+ learning_rate=learning_rate,
151
+ regularization=regularization,
152
+ iterations=iterations,
153
+ random_state=random_state,
154
+ verify_negative_samples=True,
155
+ )
156
+ bpr.fit(user_item_interactions, show_progress=False)
157
+ return bpr.user_factors.to_numpy(), bpr.item_factors.to_numpy()
158
+
159
+
160
+ def calc_embeddings_metrics(
161
+ user_emb: np.ndarray,
162
+ item_emb: np.ndarray,
163
+ uid_tensor: torch.Tensor,
164
+ item_id_tensor: torch.Tensor,
165
+ targets: Targets,
166
+ metrics: list[str],
167
+ device: str,
168
+ ) -> dict[str, dict[int, float]]:
169
+ num_ranked_items = max([int(x.split("@")[1]) for x in metrics])
170
+ user_emb = Embeddings(uid_tensor, torch.from_numpy(user_emb).to(device))
171
+ item_emb = Embeddings(item_id_tensor, torch.from_numpy(item_emb).to(device))
172
+
173
+ ranked_items = rank_items(user_emb, item_emb, num_ranked_items)
174
+ return calc_metrics(ranked_items, targets, metrics)
175
+
176
+
177
+ def hyperopt(
178
+ train: pl.LazyFrame,
179
+ val: pl.LazyFrame,
180
+ n_trials: int,
181
+ model: str,
182
+ validation_metric: str,
183
+ device: str,
184
+ ) -> dict[str, float | int]:
185
+ pairs, unique_uids, unique_item_ids = process_train_data(train)
186
+
187
+ user_item_interactions = build_csr_matrix(pairs, unique_uids, unique_item_ids)
188
+
189
+ targets = Targets.from_sequential(val.group_by("uid").agg("item_id").collect(engine="streaming"), device)
190
+
191
+ def objective(trial: optuna.Trial) -> float:
192
+ iterations = trial.suggest_int(name="iterations", low=10, high=300, log=True)
193
+ regularization = trial.suggest_float(name="regularization", low=1e-5, high=1, log=True)
194
+
195
+ if model == "als":
196
+ user_emb, item_emb = train_embbedings_with_als(user_item_interactions, regularization, iterations)
197
+ else:
198
+ learning_rate = trial.suggest_float(name="learning_rate", low=1e-5, high=0.1, log=True)
199
+ user_emb, item_emb = train_embbedings_with_bpr(
200
+ user_item_interactions, learning_rate, regularization, iterations
201
+ )
202
+
203
+ metrics = calc_embeddings_metrics(
204
+ user_emb,
205
+ item_emb,
206
+ torch.tensor(unique_uids, device=device),
207
+ torch.tensor(unique_item_ids, device=device),
208
+ targets,
209
+ [validation_metric],
210
+ device,
211
+ )
212
+
213
+ t, k = validation_metric.split('@')
214
+ return metrics[t][int(k)]
215
+
216
+ optuna.logging.set_verbosity(optuna.logging.WARNING)
217
+ study = optuna.create_study(direction="maximize")
218
+ study.optimize(objective, n_trials=n_trials)
219
+
220
+ return study.best_params
221
+
222
+
223
+ def evaluation(
224
+ train: pl.LazyFrame,
225
+ test: pl.LazyFrame,
226
+ model: str,
227
+ hp: dict[str, Any],
228
+ random_seeds: list[int],
229
+ report_metrics: list[str],
230
+ device: str,
231
+ ) -> dict[str, dict[int, float]]:
232
+ train, unique_uids, unique_item_ids = process_train_data(train)
233
+
234
+ user_item_interactions = build_csr_matrix(train, unique_uids, unique_item_ids)
235
+
236
+ targets = Targets.from_sequential(
237
+ test.group_by("uid").agg("item_id").collect(engine="streaming"),
238
+ device,
239
+ )
240
+
241
+ metrics_list = []
242
+
243
+ for seed in random_seeds:
244
+ if model == "als":
245
+ user_emb, item_emb = train_embbedings_with_als(
246
+ user_item_interactions, hp["regularization"], hp["iterations"], seed
247
+ )
248
+ else:
249
+ user_emb, item_emb = train_embbedings_with_bpr(
250
+ user_item_interactions, hp["learning_rate"], hp["regularization"], hp["iterations"], seed
251
+ )
252
+
253
+ metrics = calc_embeddings_metrics(
254
+ user_emb,
255
+ item_emb,
256
+ torch.tensor(unique_uids, device=device),
257
+ torch.tensor(unique_item_ids, device=device),
258
+ targets,
259
+ report_metrics,
260
+ device,
261
+ )
262
+ metrics_list.append(metrics)
263
+
264
+ return mean_dicts(metrics_list)
265
+
266
+
267
+ def bpr_als(
268
+ data_dir: str,
269
+ size: str,
270
+ interaction: str,
271
+ device: str,
272
+ model: str,
273
+ validation_metric: str,
274
+ report_metrics: list[str],
275
+ n_trials: dict[str, int] = {"50m": 10, "500m": 2, "5b": 2},
276
+ ):
277
+ df = scan(data_dir, size, interaction)
278
+
279
+ # hyperopt by validation
280
+ train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE)
281
+ hp = hyperopt(train, val, n_trials[size], model, validation_metric, device)
282
+
283
+ print("Best HP:")
284
+ print(json.dumps(hp, indent=2))
285
+
286
+ # final model
287
+ train, _, test = preprocess(df, interaction, val_size=0)
288
+
289
+ return evaluation(
290
+ train,
291
+ test,
292
+ model,
293
+ hp,
294
+ random_seeds=[41, 42, 43],
295
+ report_metrics=report_metrics,
296
+ device=device,
297
+ )
298
+
299
+
300
+ if __name__ == "__main__":
301
+ main()
benchmarks/models/itemknn/README.md ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## ItemKNN
2
+
3
+ We employ cosine similarity to measure the similarity between vectors. The item vectors are num_users-dimensional vectors derived from the user-item interaction matrix. In the simplest case, we generate top-k recommendations by retrieving the nearest vectors to the user’s most recent item (which corresponds to a decay parameter $\tau \rightarrow 0$). The more general formulation is as follows:
4
+
5
+ $score(user_i, item_j) = cos(V[i, :], U[:,j])$,
6
+
7
+ where $U$ is num_user x num_items interaction matrix,
8
+
9
+ $V$ is num_users x num_users matrix, $V[i, :] = \sum_{(t, k) \in A_i} \tau^{max_t(i) - t} \cdot U[:, k]^T$, where $A_i$ is set of $i$-th user's (interaction_timestamp, item_index) pairs, $max_t(i)$ is last $i$-th user's interaction timestamp, $\tau$ is the decay coefficient (per second).
10
+
11
+ The hyperparameter “hour” defines the time period (in hours) associated with a decay factor of 0.9.
12
+
13
+ For 5b datasets, the matrix multiplications [num_users × num_item] and [num_item × num_items] to obtain [num_user x num_user]  matrix of user embeddings exceed memory constraints. We also use cosine similarity to the mean embedding instead of pairwise similarities to avoid new dimension (x basket_size).
14
+
15
+
16
+
17
+
18
+
19
+
20
+
21
+
benchmarks/models/itemknn/main.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gc
2
+ import json
3
+ from pathlib import Path
4
+ from typing import Any
5
+
6
+ import click
7
+ import polars as pl
8
+ import torch
9
+
10
+ from yambda.constants import Constants
11
+ from yambda.evaluation.metrics import calc_metrics
12
+ from yambda.evaluation.ranking import Embeddings, Targets, rank_items
13
+ from yambda.processing import timesplit
14
+ from yambda.utils import argmax
15
+
16
+
17
+ DEFAULT_GRIDS = {
18
+ "50m": {
19
+ "likes": [0, 0.001, 0.25, 0.5, 1, 2, 3, 4, 6],
20
+ "listens": [0, 0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.5, 1.0, 2],
21
+ },
22
+ "500m": {
23
+ "likes": [0, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256, 0.5, 1.0],
24
+ "listens": [0, 0.001, 0.002, 0.004, 0.008],
25
+ },
26
+ }
27
+
28
+
29
+ @click.command()
30
+ @click.option(
31
+ '--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data"
32
+ )
33
+ @click.option(
34
+ '--size',
35
+ required=True,
36
+ type=click.Choice(['50m', '500m']), # 5b is not supported
37
+ default="50m",
38
+ multiple=False,
39
+ show_default=True,
40
+ help="5b is not supported due to (num_user, num_user) matrix",
41
+ )
42
+ @click.option(
43
+ '--interaction',
44
+ required=True,
45
+ type=click.Choice(['likes', 'listens']),
46
+ default="likes",
47
+ multiple=False,
48
+ show_default=True,
49
+ )
50
+ @click.option(
51
+ '--hours',
52
+ required=True,
53
+ type=float,
54
+ default=[-1],
55
+ multiple=True,
56
+ show_default=True,
57
+ help="Hyperparameter. If -1 default grid will be used",
58
+ )
59
+ @click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True)
60
+ @click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True)
61
+ @click.option('--device', required=True, type=str, default="cuda:0", show_default=True)
62
+ def main(
63
+ data_dir: str,
64
+ size: str,
65
+ interaction: str,
66
+ hours: list[float],
67
+ validation_metric: str,
68
+ report_metrics: list[str],
69
+ device: str,
70
+ ):
71
+ print(f"REPORT METRICS: {report_metrics}")
72
+ print(f"SIZE {size}, INTERACTION {interaction}")
73
+ result = item_knn(
74
+ data_dir,
75
+ size,
76
+ interaction,
77
+ device,
78
+ hours=hours if hours[0] != -1 else DEFAULT_GRIDS[size][interaction],
79
+ validation_metric=validation_metric,
80
+ report_metrics=report_metrics,
81
+ )
82
+ print(json.dumps(result, indent=2))
83
+
84
+
85
+ def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame:
86
+ path = Path(path) / dataset_size / dataset_name
87
+ df = pl.scan_parquet(path.with_suffix(".parquet"))
88
+ return df
89
+
90
+
91
+ def preprocess(
92
+ df: pl.LazyFrame, interaction: str, val_size: int
93
+ ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
94
+ if interaction == "listens":
95
+ df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD)
96
+
97
+ train, val, test = timesplit.flat_split_train_val_test(
98
+ df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP
99
+ )
100
+
101
+ return (
102
+ train,
103
+ val.collect(engine="streaming").lazy() if val is not None else None,
104
+ test.collect(engine="streaming").lazy(),
105
+ )
106
+
107
+
108
+ def eliminate_zeros(x: torch.Tensor, threshold: float = 1e-9) -> torch.Tensor:
109
+ mask = (x._values() > threshold).nonzero()
110
+ nv = x._values().index_select(0, mask.view(-1))
111
+ ni = x._indices().index_select(1, mask.view(-1))
112
+ return torch.sparse_coo_tensor(ni, nv, x.shape)
113
+
114
+
115
+ def create_weighted_sparse_tensor(train: pl.LazyFrame, tau: float) -> torch.Tensor:
116
+ uid_mapping = (
117
+ train.select("uid").unique().with_columns(pl.col("uid").rank(method="dense").alias("uid_idx") - 1).collect()
118
+ )
119
+
120
+ item_mapping = (
121
+ train.select("item_id")
122
+ .unique()
123
+ .with_columns(pl.col("item_id").rank(method="dense").alias("item_idx") - 1)
124
+ .collect()
125
+ )
126
+
127
+ processed = (
128
+ train.with_columns(pl.max("timestamp").over("uid").alias("max_timestamp"))
129
+ .with_columns((pl.col("max_timestamp") - pl.col("timestamp")).alias("delta"))
130
+ .with_columns((tau ** pl.col("delta")).alias("weight"))
131
+ .join(uid_mapping.lazy(), on="uid", how="inner")
132
+ .join(item_mapping.lazy(), on="item_id", how="inner")
133
+ )
134
+
135
+ coo_data = processed.group_by(["uid_idx", "item_idx"]).agg(pl.sum("weight").alias("total_weight")).collect()
136
+
137
+ indices = torch.concat([coo_data["uid_idx"].to_torch()[None, :], coo_data["item_idx"].to_torch()[None, :]], dim=0)
138
+ values = torch.tensor(coo_data["total_weight"].to_numpy(), dtype=torch.float)
139
+
140
+ return eliminate_zeros(
141
+ torch.sparse_coo_tensor(
142
+ indices=indices, values=values, size=(uid_mapping["uid_idx"].max() + 1, item_mapping["item_idx"].max() + 1)
143
+ )
144
+ )
145
+
146
+
147
+ def sparse_normalize(sparse_tensor: torch.Tensor, dim=0, eps=1e-12):
148
+ indices = sparse_tensor.coalesce().indices()
149
+ values = sparse_tensor.coalesce().values()
150
+
151
+ unique_dim_indices, inverse = torch.unique(indices[dim], return_inverse=True)
152
+ squared_values = values**2
153
+ sum_squared = torch.zeros_like(unique_dim_indices, dtype=torch.float32)
154
+ sum_squared.scatter_add_(0, inverse, squared_values)
155
+
156
+ norms = torch.sqrt(sum_squared + eps)
157
+ normalized_values = values / norms[inverse]
158
+
159
+ return torch.sparse_coo_tensor(indices, normalized_values, sparse_tensor.size())
160
+
161
+
162
+ def training(
163
+ train: pl.LazyFrame, hour: float, user_item: torch.Tensor, user_ids: torch.Tensor, device: str, decay: float = 0.9
164
+ ) -> Embeddings:
165
+ tau = 0.0 if hour == 0 else decay ** (1 / 24 / 60 / 60 / (hour / 24))
166
+
167
+ user_item_with_tau = create_weighted_sparse_tensor(train, tau)
168
+ user_embeddings = (user_item_with_tau @ user_item.T).to_dense()
169
+ user_embeddings = torch.nn.functional.normalize(user_embeddings, dim=-1)
170
+
171
+ return Embeddings(user_ids, user_embeddings.to(device))
172
+
173
+
174
+ def evaluation(
175
+ train: pl.LazyFrame, val: pl.LazyFrame, device: str, hours: list[float], metrics: list[str]
176
+ ) -> list[dict[str, Any]]:
177
+ num_ranked_items = max([int(x.split("@")[1]) for x in metrics])
178
+
179
+ unique_user_ids = train.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_torch().to(device)
180
+ unique_item_ids = (
181
+ train.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_torch().to(device)
182
+ )
183
+
184
+ user_item = create_weighted_sparse_tensor(train, 1.0)
185
+ item_embeddings = sparse_normalize(user_item.T.to(device), dim=-1)
186
+ item_embeddings = Embeddings(unique_item_ids, item_embeddings)
187
+
188
+ targets = Targets.from_sequential(
189
+ val.group_by('uid', maintain_order=True).agg(pl.all().exclude('uid')).select(['uid', 'item_id']),
190
+ device,
191
+ )
192
+
193
+ hour2metrics = []
194
+ for hour in hours:
195
+ user_embeddings = training(
196
+ train=train,
197
+ hour=hour,
198
+ user_item=user_item,
199
+ user_ids=unique_user_ids,
200
+ device=device,
201
+ )
202
+
203
+ ranked = rank_items(
204
+ users=user_embeddings,
205
+ items=item_embeddings,
206
+ num_items=num_ranked_items,
207
+ batch_size=128,
208
+ )
209
+
210
+ del user_embeddings
211
+ gc.collect()
212
+
213
+ hour2metrics.append(calc_metrics(ranked, targets, metrics))
214
+
215
+ del unique_user_ids
216
+ del unique_item_ids
217
+ del item_embeddings
218
+ del targets
219
+ gc.collect()
220
+
221
+ return hour2metrics
222
+
223
+
224
+ def item_knn(
225
+ data_dir: str,
226
+ size: str,
227
+ interaction: str,
228
+ device: str,
229
+ hours: list[float],
230
+ validation_metric: str,
231
+ report_metrics: list[str],
232
+ ) -> dict[str, Any]:
233
+ df = scan(data_dir, size, interaction)
234
+
235
+ # hyperopt by validation
236
+ train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE)
237
+
238
+ results = evaluation(train, val, device, hours, [validation_metric])
239
+
240
+ metric_name, k = validation_metric.split('@')
241
+
242
+ best_hour = hours[argmax(results, lambda x: x[metric_name][int(k)])]
243
+
244
+ print(f"FINAL HYPERPARAMS {best_hour=}")
245
+
246
+ # train final model
247
+ train, _, test = preprocess(df, interaction, val_size=0)
248
+
249
+ return evaluation(train, test, device, [best_hour], report_metrics)[0]
250
+
251
+
252
+ if __name__ == "__main__":
253
+ main()
benchmarks/models/popularity/main.py ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from pathlib import Path
3
+ from typing import Any
4
+
5
+ import click
6
+ import polars as pl
7
+ import torch
8
+
9
+ from yambda.constants import Constants
10
+ from yambda.evaluation.metrics import calc_metrics
11
+ from yambda.evaluation.ranking import Embeddings, Ranked, Targets
12
+ from yambda.processing import timesplit
13
+ from yambda.utils import argmax
14
+
15
+
16
+ @click.command()
17
+ @click.option(
18
+ '--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data"
19
+ )
20
+ @click.option(
21
+ '--size',
22
+ required=True,
23
+ type=click.Choice(['50m', '500m', "5b"]),
24
+ default=["50m"],
25
+ multiple=True,
26
+ show_default=True,
27
+ )
28
+ @click.option(
29
+ '--interaction',
30
+ required=True,
31
+ type=click.Choice(['likes', 'listens']),
32
+ default=["likes"],
33
+ multiple=True,
34
+ show_default=True,
35
+ )
36
+ @click.option(
37
+ '--hours',
38
+ required=True,
39
+ type=float,
40
+ default=[0.5, 1, 2, 3, 6, 12, 24],
41
+ multiple=True,
42
+ show_default=True,
43
+ help="Hyperparameter",
44
+ )
45
+ @click.option('--validation_metric', required=True, type=str, default="ndcg@100", show_default=True)
46
+ @click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True)
47
+ @click.option('--device', required=True, type=str, default="cuda:0", show_default=True)
48
+ def main(
49
+ data_dir: str,
50
+ size: list[str],
51
+ interaction: list[str],
52
+ hours: list[float],
53
+ validation_metric: str,
54
+ report_metrics: list[str],
55
+ device: str,
56
+ ):
57
+ print(f"REPORT METRICS: {report_metrics}")
58
+ for s in size:
59
+ for i in interaction:
60
+ print(f"SIZE {s}, INTERACTION {i}")
61
+ result = popularity(
62
+ data_dir,
63
+ s,
64
+ i,
65
+ device,
66
+ hours=hours,
67
+ validation_metric=validation_metric,
68
+ report_metrics=report_metrics,
69
+ )
70
+ print(json.dumps(result, indent=2))
71
+
72
+
73
+ def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame:
74
+ path: Path = Path(path) / dataset_size / dataset_name
75
+ df = pl.scan_parquet(path.with_suffix(".parquet"))
76
+ return df
77
+
78
+
79
+ def preprocess(
80
+ df: pl.LazyFrame, interaction: str, val_size: int
81
+ ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
82
+ if interaction == "listens":
83
+ df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD)
84
+
85
+ train, val, test = timesplit.flat_split_train_val_test(
86
+ df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP
87
+ )
88
+
89
+ return (
90
+ train,
91
+ val.collect(engine="streaming").lazy() if val is not None else None,
92
+ test.collect(engine="streaming").lazy(),
93
+ )
94
+
95
+
96
+ def training(hour: float, train: pl.LazyFrame, max_timestamp: float, device: str, decay: float = 0.9) -> Embeddings:
97
+ if hour == 0:
98
+ embeddings = train.group_by("item_id").agg(pl.count().alias("item_embedding")).collect(engine="streaming")
99
+ else:
100
+ tau = decay ** (1 / Constants.DAY_SECONDS / (hour / 24))
101
+
102
+ embeddings = (
103
+ train.select(
104
+ "item_id",
105
+ (tau ** (max_timestamp - pl.col("timestamp"))).alias("value"),
106
+ )
107
+ .group_by("item_id")
108
+ .agg(pl.col("value").sum().alias("item_embedding"))
109
+ .collect(engine="streaming")
110
+ )
111
+
112
+ item_ids = embeddings["item_id"].to_torch().to(device)
113
+
114
+ item_embeddings = embeddings["item_embedding"].to_torch().to(device)[:, None]
115
+
116
+ return Embeddings(item_ids, item_embeddings)
117
+
118
+
119
+ def evaluation(
120
+ train: pl.LazyFrame, val: pl.LazyFrame, device: str, hours: list[float], metrics: list[str]
121
+ ) -> list[dict[str, Any]]:
122
+ num_ranked_items = max([int(x.split("@")[1]) for x in metrics])
123
+
124
+ max_timestamp = train.select(pl.col("timestamp").max()).collect(engine="streaming").item()
125
+ user_ids = train.select("uid").unique().collect(engine="streaming")["uid"].to_torch().to(device)
126
+
127
+ targets = Targets.from_sequential(
128
+ val.group_by('uid', maintain_order=True).agg("item_id"),
129
+ device,
130
+ )
131
+
132
+ hour2metrics = []
133
+ for hour in hours:
134
+ item_embeddings = training(
135
+ hour=hour,
136
+ train=train,
137
+ max_timestamp=max_timestamp,
138
+ device=device,
139
+ )
140
+
141
+ ranked = Ranked(
142
+ user_ids=user_ids,
143
+ item_ids=item_embeddings.ids[torch.topk(item_embeddings.embeddings, num_ranked_items, dim=0).indices]
144
+ .ravel()
145
+ .expand((user_ids.shape[0], num_ranked_items)),
146
+ num_item_ids=item_embeddings.ids.shape[0],
147
+ )
148
+
149
+ hour2metrics.append(calc_metrics(ranked, targets, metrics))
150
+
151
+ return hour2metrics
152
+
153
+
154
+ def popularity(
155
+ data_dir: str,
156
+ size: str,
157
+ interaction: str,
158
+ device: str,
159
+ hours: list[float],
160
+ validation_metric: str,
161
+ report_metrics: list[str],
162
+ ) -> dict[str, Any]:
163
+ df = scan(data_dir, size, interaction)
164
+
165
+ # hyperopt by validation
166
+ train, val, _ = preprocess(df, interaction, val_size=Constants.VAL_SIZE)
167
+
168
+ results = evaluation(train, val, device, hours, [validation_metric])
169
+
170
+ metric_name, k = validation_metric.split('@')
171
+
172
+ best_hour = hours[argmax(results, lambda x: x[metric_name][int(k)])]
173
+
174
+ print(f"FINAL HYPERPARAMS {best_hour=}")
175
+
176
+ # train final model
177
+ train, _, test = preprocess(df, interaction, val_size=0)
178
+
179
+ return evaluation(train, test, device, [best_hour], report_metrics)[0]
180
+
181
+
182
+ if __name__ == "__main__":
183
+ main()
benchmarks/models/random_rec/main.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ from pathlib import Path
3
+
4
+ import click
5
+ import polars as pl
6
+ import torch
7
+
8
+ from yambda.constants import Constants
9
+ from yambda.evaluation.metrics import calc_metrics
10
+ from yambda.evaluation.ranking import Ranked, Targets
11
+ from yambda.processing import timesplit
12
+ from yambda.utils import mean_dicts
13
+
14
+
15
+ @click.command()
16
+ @click.option(
17
+ '--data_dir',
18
+ required=True,
19
+ type=str,
20
+ default="../../data/flat",
21
+ show_default=True,
22
+ help="Expects flat data",
23
+ )
24
+ @click.option(
25
+ '--size',
26
+ required=True,
27
+ type=click.Choice(['50m', '500m', "5b"]),
28
+ default=["50m"],
29
+ multiple=True,
30
+ show_default=True,
31
+ )
32
+ @click.option(
33
+ '--interaction',
34
+ required=True,
35
+ type=click.Choice(['likes', 'listens']),
36
+ default=["likes"],
37
+ multiple=True,
38
+ show_default=True,
39
+ )
40
+ @click.option('--device', required=True, type=str, default="cuda:0", show_default=True)
41
+ @click.option('--num_repeats', required=True, type=int, default=2, show_default=True)
42
+ def main(
43
+ data_dir: str,
44
+ size: list[str],
45
+ interaction: list[str],
46
+ device: str,
47
+ num_repeats: int,
48
+ ):
49
+ print(f"calc metrics: {Constants.METRICS}")
50
+ for s in size:
51
+ for i in interaction:
52
+ print(f"SIZE {s}, INTERACTION {i}")
53
+ result = random_rec(data_dir, s, i, num_repeats, device)
54
+ print(json.dumps(result, indent=2))
55
+
56
+
57
+ def scan(path: str, dataset_size: str, dataset_name: str) -> pl.LazyFrame:
58
+ path: Path = Path(path) / dataset_size / dataset_name
59
+ return pl.scan_parquet(path.with_suffix(".parquet"))
60
+
61
+
62
+ def preprocess(
63
+ df: pl.LazyFrame, interaction: str, val_size: int
64
+ ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
65
+ if interaction == "listens":
66
+ df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD)
67
+
68
+ train, val, test = timesplit.flat_split_train_val_test(
69
+ df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP
70
+ )
71
+
72
+ return (
73
+ train,
74
+ val.collect(engine="streaming").lazy() if val is not None else None,
75
+ test.collect(engine="streaming").lazy(),
76
+ )
77
+
78
+
79
+ def random_rec(
80
+ data_dir: str,
81
+ size: str,
82
+ interaction: str,
83
+ num_repeats: int,
84
+ device: str,
85
+ ) -> dict[str, dict[int, float]]:
86
+ df = scan(data_dir, size, interaction)
87
+
88
+ train, _, test = preprocess(df, interaction, val_size=0)
89
+
90
+ unique_user_ids = train.select("uid").unique().sort("uid").collect(engine="streaming")["uid"].to_torch().to(device)
91
+
92
+ unique_item_ids = (
93
+ train.select("item_id").unique().sort("item_id").collect(engine="streaming")["item_id"].to_torch().to(device)
94
+ )
95
+
96
+ print(f"NUM_USERS {unique_user_ids.shape[0]}, NUM_ITEMS {unique_item_ids.shape[0]}")
97
+
98
+ targets = Targets.from_sequential(
99
+ test.group_by('uid', maintain_order=True).agg("item_id"),
100
+ device,
101
+ )
102
+
103
+ metrics_list = []
104
+
105
+ for _ in range(num_repeats):
106
+ ranked = Ranked(
107
+ user_ids=unique_user_ids,
108
+ item_ids=unique_item_ids[
109
+ torch.randint(
110
+ 0, unique_item_ids.shape[0] - 1, size=(unique_user_ids.shape[0], Constants.NUM_RANKED_ITEMS)
111
+ )
112
+ ],
113
+ num_item_ids=unique_item_ids.shape[0],
114
+ )
115
+
116
+ metrics_list.append(
117
+ calc_metrics(
118
+ ranked,
119
+ targets,
120
+ metrics=Constants.METRICS,
121
+ )
122
+ )
123
+
124
+ return mean_dicts(metrics_list)
125
+
126
+
127
+ if __name__ == "__main__":
128
+ main()
benchmarks/models/sansa/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ## SANSA
2
+
3
+ Training SANSA on Yambda-500M with Listens, on Yambda-5B with Likes and on Yambda-5B with Listens is infeasible due to the memory explosion during sparse matrix multiplication.
4
+
5
+ For example, given the base weights density of $5e-5$, the sparse matrix multiplication for Yambda-500M with Listens requires $466512103 * (3004578 ^ 2 * 5e-5) = 2.1e17 $ operations.
6
+
7
+ One may observe that the good solution is to try to reduce the weights density. However given the results on Yambda-50M with Listens, further reducing density would collapse the model’s capacity, it becomes obvious that it is just practically futile.
8
+
9
+ Unfortunately the main SANSA repository is not optimized for large datasets, so even on the Yambda-50M with Listens at least 100GB of RAM is required.
benchmarks/models/sansa/main.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import heapq
2
+ import json
3
+ import os
4
+ import time
5
+ from typing import Any
6
+
7
+ import click
8
+ import numpy as np
9
+ import polars as pl
10
+ import scipy.sparse as sp
11
+ import torch
12
+ from sansa import SANSA, ICFGramianFactorizerConfig, SANSAConfig, UMRUnitLowerTriangleInverterConfig
13
+ from tqdm import tqdm
14
+
15
+ from yambda.constants import Constants
16
+ from yambda.evaluation import metrics, ranking
17
+ from yambda.processing import timesplit
18
+
19
+
20
+ RANDOM_SEED = 42
21
+
22
+
23
+ @click.command()
24
+ @click.option(
25
+ '--data_dir', required=True, type=str, default="../../data/flat", show_default=True, help="Expects flat data"
26
+ )
27
+ @click.option(
28
+ '--size',
29
+ required=True,
30
+ type=click.Choice(['50m', '500m']),
31
+ default="50m",
32
+ multiple=False,
33
+ show_default=True,
34
+ )
35
+ @click.option(
36
+ '--interaction',
37
+ required=True,
38
+ type=click.Choice(['likes', 'listens']),
39
+ default="likes",
40
+ multiple=False,
41
+ show_default=True,
42
+ )
43
+ @click.option('--report_metrics', required=True, type=str, default=Constants.METRICS, multiple=True, show_default=True)
44
+ @click.option('--device', required=True, type=str, default="cuda:0", show_default=True)
45
+ def main(
46
+ data_dir: str,
47
+ size: str,
48
+ interaction: str,
49
+ report_metrics: list[str],
50
+ device: str,
51
+ ):
52
+ print(f"REPORT METRICS: {report_metrics}")
53
+ print(f"SIZE {size}, INTERACTION {interaction}")
54
+ result = train_sansa_model(
55
+ data_dir,
56
+ size=size,
57
+ dataset_type=interaction,
58
+ device=device,
59
+ report_metrics=report_metrics,
60
+ )
61
+ print(json.dumps(result, indent=2))
62
+
63
+
64
+ def train_sansa_model(
65
+ data_path: str,
66
+ size: str,
67
+ dataset_type: str,
68
+ device: str,
69
+ report_metrics: list[str],
70
+ ) -> dict[str, Any]:
71
+ np.random.seed(RANDOM_SEED)
72
+
73
+ curr_time = time.time()
74
+ print()
75
+ print(curr_time)
76
+ print(f"Size: {size}, Dataset: {dataset_type}")
77
+ df, grouped_test, train, test = get_train_val_test_matrices(
78
+ data_path=data_path,
79
+ size=size,
80
+ dataset_type=dataset_type,
81
+ )
82
+ data_finished = time.time()
83
+ print(f"Data is loaded in {data_finished - curr_time} seconds")
84
+
85
+ model = get_sansa_model()
86
+ model.fit(train)
87
+ train_finished = time.time()
88
+
89
+ print(f"Model is trained in {train_finished - data_finished}")
90
+ print(model)
91
+
92
+ if report_metrics:
93
+ calculated_metrics = evaluate_sansa(
94
+ df=df,
95
+ model=model,
96
+ device=device,
97
+ report_metrics=report_metrics,
98
+ grouped_test=grouped_test,
99
+ sparse_train=train,
100
+ sparse_test=test,
101
+ )
102
+
103
+ print(f"Model is evaluated in {time.time() - train_finished}")
104
+
105
+ return calculated_metrics
106
+
107
+ return {}
108
+
109
+
110
+ def get_train_val_test_matrices(
111
+ data_path: str,
112
+ size: str = "50m",
113
+ dataset_type: str = "likes",
114
+ ) -> tuple[pl.LazyFrame, pl.LazyFrame, sp.csr_matrix, sp.csr_matrix]:
115
+ df = pl.scan_parquet(os.path.join(os.path.join(data_path, size, f"{dataset_type}.parquet")))
116
+
117
+ if dataset_type == "listens":
118
+ df = df.filter(pl.col("played_ratio_pct") >= Constants.TRACK_LISTEN_THRESHOLD)
119
+
120
+ flat_train, _, flat_test = timesplit.flat_split_train_val_test(
121
+ df, val_size=0, test_timestamp=Constants.TEST_TIMESTAMP
122
+ )
123
+
124
+ all_uids = set(flat_train.collect().get_column("uid").to_list())
125
+ all_items = set(flat_train.collect().get_column("item_id").to_list())
126
+
127
+ print(f"Dataset, users_num: {len(all_uids)}, items_num: {len(all_items)}")
128
+
129
+ # Create mapping to create sparse matrix
130
+ uid_to_idx = {uid: i for i, uid in enumerate(all_uids)}
131
+ item_id_to_idx = {item_id: i for i, item_id in enumerate(all_items)}
132
+
133
+ sparse_train, _ = get_sparse_data(flat_train, uid_to_idx, item_id_to_idx)
134
+ sparse_test, grouped_test = get_sparse_data(flat_test, uid_to_idx, item_id_to_idx)
135
+
136
+ print(f"Sparse train shape: {sparse_train.shape}, test shape: {sparse_test.shape}")
137
+
138
+ return df, grouped_test, sparse_train, sparse_test
139
+
140
+
141
+ def get_sparse_data(
142
+ df: pl.LazyFrame, uid_to_idx: dict[int, int], item_id_to_idx: dict[int, int]
143
+ ) -> tuple[sp.csr_matrix, pl.LazyFrame]:
144
+ df = df.with_columns(
145
+ pl.col("uid").replace_strict(uid_to_idx).alias("uid"),
146
+ pl.col("item_id").replace_strict(item_id_to_idx, default=len(item_id_to_idx)).alias("item_id"),
147
+ pl.lit(1).alias("action"),
148
+ )
149
+
150
+ grouped_df = df.group_by('uid', maintain_order=True).agg(
151
+ [pl.col('item_id').alias('item_id'), pl.col('action').alias('actions')]
152
+ )
153
+
154
+ rows = []
155
+ cols = []
156
+ values = []
157
+
158
+ for user_id, item_ids, actions in tqdm(grouped_df.select('uid', 'item_id', 'actions').collect().rows()):
159
+ rows.extend([user_id] * len(item_ids))
160
+ cols.extend(item_ids)
161
+ values.extend(actions)
162
+
163
+ user_item_data = sp.csr_matrix(
164
+ (values, (rows, cols)),
165
+ dtype=np.float32,
166
+ shape=(len(uid_to_idx), len(item_id_to_idx) + 1), # +1 for default unknown test items
167
+ )
168
+
169
+ return user_item_data, grouped_df
170
+
171
+
172
+ def get_sansa_model() -> SANSA:
173
+ factorizer_config = ICFGramianFactorizerConfig(
174
+ # reordering_use_long=True,
175
+ factorization_shift_step=1e-3, # initial diagonal shift if incomplete factorization fails
176
+ factorization_shift_multiplier=2.0, # multiplier for the shift for subsequent attempts
177
+ )
178
+
179
+ inverter_config = UMRUnitLowerTriangleInverterConfig(
180
+ scans=1, # number of scans through all columns of the matrix
181
+ finetune_steps=15, # number of finetuning steps, targeting worst columns
182
+ )
183
+
184
+ config = SANSAConfig(
185
+ l2=10.0, # regularization strength
186
+ weight_matrix_density=5e-5, # desired density of weights
187
+ gramian_factorizer_config=factorizer_config, # factorizer configuration
188
+ lower_triangle_inverter_config=inverter_config, # inverter configuration
189
+ )
190
+
191
+ print(config)
192
+
193
+ model = SANSA(config)
194
+
195
+ return model
196
+
197
+
198
+ def evaluate_sansa(
199
+ df: pl.LazyFrame,
200
+ model: SANSA,
201
+ device: str,
202
+ report_metrics: list[str],
203
+ grouped_test: pl.LazyFrame,
204
+ sparse_train: sp.csr_matrix,
205
+ sparse_test: sp.csr_matrix,
206
+ ) -> dict[str, Any]:
207
+ num_items_for_metrics = len(set(df.collect().get_column("item_id").to_list()))
208
+ print(num_items_for_metrics)
209
+
210
+ test_targets = ranking.Targets.from_sequential(grouped_test, device=device)
211
+ print(len(test_targets.user_ids))
212
+
213
+ # to free some RAM
214
+ del df, grouped_test
215
+
216
+ train_pred_sparse = model.forward(sparse_train)
217
+ print(f"Train prediction shape: {train_pred_sparse.shape}")
218
+
219
+ A = train_pred_sparse
220
+ num_users = A.shape[0]
221
+ num_items_k = 150
222
+
223
+ # 0 if there is no such item
224
+ top_items_idx = np.full((num_users, num_items_k), 0, dtype=int)
225
+
226
+ # -1 score if there is no such item
227
+ top_items_score = np.full((num_users, num_items_k), -1, dtype=A.data.dtype)
228
+
229
+ for row in tqdm(range(num_users)):
230
+ start, end = A.indptr[row], A.indptr[row + 1]
231
+ row_scores = A.data[start:end]
232
+ row_cols = A.indices[start:end]
233
+
234
+ if len(row_scores) == 0:
235
+ continue
236
+
237
+ k_here = min(num_items_k, len(row_scores))
238
+ top_k = heapq.nlargest(k_here, zip(row_scores, row_cols), key=lambda x: x[0])
239
+
240
+ # Fill in
241
+ for i, (score, idx) in enumerate(top_k):
242
+ top_items_idx[row, i] = idx
243
+ top_items_score[row, i] = score
244
+
245
+ user_ids = torch.arange(top_items_idx.shape[0], dtype=torch.int32, device="cpu")
246
+ print(user_ids.shape)
247
+
248
+ scores = torch.as_tensor(top_items_score, dtype=torch.float32, device="cpu")
249
+ print(scores.shape)
250
+
251
+ scores_indices = torch.as_tensor(top_items_idx, dtype=torch.long, device="cpu")
252
+ print(scores_indices.shape)
253
+
254
+ targets = torch.as_tensor(sparse_test.toarray(), dtype=torch.bool, device="cpu")
255
+ print(targets.shape)
256
+
257
+ targets = targets.to(dtype=torch.bool, device=device)
258
+ not_zero_user_indices = targets.any(dim=1)
259
+ print(torch.sum(not_zero_user_indices))
260
+
261
+ not_zero_user_indices = not_zero_user_indices.to(dtype=torch.bool, device="cpu")
262
+
263
+ user_ids = user_ids[not_zero_user_indices]
264
+ scores = scores[not_zero_user_indices]
265
+ print(f"After removing zero users scores shape: {scores.shape}, targets shape: {targets.shape}")
266
+
267
+ scores_indices = scores_indices[not_zero_user_indices]
268
+ print(scores_indices.shape)
269
+
270
+ test_ranked = ranking.Ranked(
271
+ user_ids=user_ids.to(device),
272
+ scores=scores.to(device),
273
+ item_ids=scores_indices.to(device),
274
+ num_item_ids=num_items_for_metrics,
275
+ )
276
+
277
+ calculated_metrics = metrics.calc_metrics(test_ranked, test_targets, report_metrics)
278
+ print(calculated_metrics)
279
+
280
+ return calculated_metrics
281
+
282
+
283
+ if __name__ == "__main__":
284
+ main()
benchmarks/models/sasrec/data.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from dataclasses import dataclass, field
3
+ from functools import cached_property
4
+ from typing import Dict, List
5
+
6
+ import numpy as np
7
+ import polars as pl
8
+ import torch
9
+
10
+ from yambda.constants import Constants
11
+ from yambda.processing import timesplit
12
+
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+
17
+ @dataclass
18
+ class Data:
19
+ train: pl.LazyFrame
20
+ validation: pl.LazyFrame | None
21
+ test: pl.LazyFrame
22
+ item_id_to_idx: dict[int, int]
23
+
24
+ _train_user_ids: torch.Tensor | None = field(init=False, default=None)
25
+
26
+ @property
27
+ def num_items(self):
28
+ return len(self.item_id_to_idx)
29
+
30
+ @cached_property
31
+ def num_train_users(self):
32
+ return self.train.select(pl.len()).collect(engine="streaming").item()
33
+
34
+ def train_user_ids(self, device):
35
+ if self._train_user_ids is None or self._train_user_ids.device != device:
36
+ self._train_user_ids = self.train.select('uid').collect(engine="streaming")['uid'].to_torch().to(device)
37
+ return self._train_user_ids
38
+
39
+
40
+ def preprocess(df: pl.LazyFrame, interaction: str, val_size=Constants.VAL_SIZE, max_seq_len: int = 200) -> Data:
41
+ """
42
+ Preprocesses raw interaction data for recommendation system modeling.
43
+
44
+ Args:
45
+ df (pl.LazyFrame): Raw input data containing user interaction sequences
46
+ interaction (str): Type of interaction to process. Must be either 'likes' or 'listens'.
47
+ val_size (float): Proportion of data to use for validation (default: from Constants)
48
+
49
+ Returns:
50
+ Data: Named tuple containing:
51
+ - train (pl.LazyFrame): Training data
52
+ - val (pl.LazyFrame): Validation data
53
+ - test (pl.LazyFrame): Test data
54
+ - item_id_to_idx (dict): Mapping from original item IDs to model indices
55
+
56
+ Note:
57
+ - For 'listens' interactions, uses strict engagement threshold
58
+ - Item indices start at 1 to reserve 0 for padding/masking
59
+ """
60
+ if interaction == 'listens':
61
+ df = df.select(
62
+ 'uid',
63
+ pl.col('item_id', 'timestamp').list.gather(
64
+ pl.col('played_ratio_pct').list.eval(pl.arg_where(pl.element() >= Constants.TRACK_LISTEN_THRESHOLD))
65
+ ),
66
+ ).filter(pl.col('item_id').list.len() > 0)
67
+
68
+ unique_item_ids = (
69
+ df.select(pl.col("item_id").explode().unique().sort()).collect(engine="streaming")["item_id"].to_list()
70
+ )
71
+
72
+ item_id_to_idx = {int(item_id): i + 1 for i, item_id in enumerate(unique_item_ids)}
73
+
74
+ train, val, test = timesplit.sequential_split_train_val_test(
75
+ df, val_size=val_size, test_timestamp=Constants.TEST_TIMESTAMP, drop_non_train_items=False
76
+ )
77
+
78
+ def replace_strict(df):
79
+ return (
80
+ df.select(
81
+ pl.col("item_id").list.eval(pl.element().replace_strict(item_id_to_idx)),
82
+ pl.all().exclude("item_id"),
83
+ )
84
+ .collect(engine="streaming")
85
+ .lazy()
86
+ )
87
+
88
+ # polars requires too much memory for replace strict if list is too big
89
+ train = train.select('uid', pl.all().exclude('uid').list.slice(-max_seq_len, max_seq_len))
90
+ train = replace_strict(train)
91
+
92
+ if val is not None:
93
+ val = replace_strict(val)
94
+
95
+ test = replace_strict(test)
96
+
97
+ return Data(train, val, test, item_id_to_idx)
98
+
99
+
100
+ class TrainDataset:
101
+ def __init__(self, dataset: pl.DataFrame, num_items: int, max_seq_len: int):
102
+ self._dataset = dataset
103
+ self._num_items = num_items
104
+ self._max_seq_len = max_seq_len
105
+
106
+ @property
107
+ def dataset(self) -> pl.DataFrame:
108
+ return self._dataset
109
+
110
+ def __len__(self) -> int:
111
+ return len(self._dataset)
112
+
113
+ def __getitem__(self, index: int) -> Dict[str, List[int] | int]:
114
+ sample = self._dataset.row(index, named=True)
115
+
116
+ item_sequence = sample['item_id'][:-1][-self._max_seq_len :]
117
+ positive_sequence = sample['item_id'][1:][-self._max_seq_len :]
118
+ negative_sequence = np.random.randint(1, self._num_items + 1, size=(len(item_sequence),)).tolist()
119
+
120
+ return {
121
+ 'user.ids': [sample['uid']],
122
+ 'user.length': 1,
123
+ 'item.ids': item_sequence,
124
+ 'item.length': len(item_sequence),
125
+ 'positive.ids': positive_sequence,
126
+ 'positive.length': len(positive_sequence),
127
+ 'negative.ids': negative_sequence,
128
+ 'negative.length': len(negative_sequence),
129
+ }
130
+
131
+
132
+ class EvalDataset:
133
+ def __init__(self, dataset: pl.DataFrame, max_seq_len: int):
134
+ self._dataset = dataset
135
+ self._max_seq_len = max_seq_len
136
+
137
+ @property
138
+ def dataset(self) -> pl.DataFrame:
139
+ return self._dataset
140
+
141
+ def __len__(self) -> int:
142
+ return len(self._dataset)
143
+
144
+ def __getitem__(self, index: int) -> Dict[str, List[int] | int]:
145
+ sample = self._dataset.row(index, named=True)
146
+
147
+ item_sequence = sample['item_id_train'][-self._max_seq_len :]
148
+ next_items = sample['item_id_valid']
149
+
150
+ return {
151
+ 'user.ids': [sample['uid']],
152
+ 'user.length': 1,
153
+ 'item.ids': item_sequence,
154
+ 'item.length': len(item_sequence),
155
+ 'labels.ids': next_items,
156
+ 'labels.length': len(next_items),
157
+ }
158
+
159
+
160
+ def collate_fn(batch: List[Dict]) -> Dict[str, torch.Tensor]:
161
+ """
162
+ Collates a batch of samples into batched tensors suitable for model input.
163
+
164
+ This function processes a list of dictionaries, each containing keys like '{prefix}.ids'
165
+ and '{prefix}.length' (the length of the sequence for that prefix). For each such prefix, it:
166
+ - Concatenates all '{prefix}.ids' lists from the batch into a single flat list.
167
+ - Collects all '{prefix}.length' values into a list.
168
+ - Converts the resulting lists into torch.LongTensor objects.
169
+
170
+ Args:
171
+ batch (List[Dict]): List of sample dictionaries. Each sample must contain keys of the form
172
+ '{prefix}.ids' (list of ints) and '{prefix}.length' (int).
173
+
174
+ Returns:
175
+ Dict[str, torch.Tensor]: Dictionary with keys '{prefix}.ids' and '{prefix}.length' for each prefix,
176
+ where values are 1D torch.LongTensor objects suitable for model input.
177
+ """
178
+ processed_batch = {}
179
+ for key in batch[0].keys():
180
+ if key.endswith('.ids'):
181
+ prefix = key.split('.')[0]
182
+ assert '{}.length'.format(prefix) in batch[0]
183
+
184
+ processed_batch[f'{prefix}.ids'] = []
185
+ processed_batch[f'{prefix}.length'] = []
186
+
187
+ for sample in batch:
188
+ processed_batch[f'{prefix}.ids'].extend(sample[f'{prefix}.ids'])
189
+ processed_batch[f'{prefix}.length'].append(sample[f'{prefix}.length'])
190
+
191
+ for part, values in processed_batch.items():
192
+ processed_batch[part] = torch.tensor(values, dtype=torch.long)
193
+
194
+ return processed_batch
benchmarks/models/sasrec/eval.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import pathlib as Path
3
+ import random
4
+
5
+ import click
6
+ import numpy as np
7
+ import polars as pl
8
+ import torch
9
+ from model import SASRecEncoder
10
+ from torch.utils.data import DataLoader
11
+
12
+ from data import Data, EvalDataset, collate_fn, preprocess
13
+ from yambda.evaluation.metrics import calc_metrics
14
+ from yambda.evaluation.ranking import Embeddings, Targets, rank_items
15
+
16
+
17
+ logging.basicConfig(
18
+ level=logging.DEBUG, format='[%(asctime)s] [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S'
19
+ )
20
+ logger = logging.getLogger(__name__)
21
+
22
+
23
+ def infer_users(eval_dataloader: DataLoader, model: torch.nn.Module, device: str):
24
+ user_ids = []
25
+ user_embeddings = []
26
+
27
+ model.eval()
28
+ for batch in eval_dataloader:
29
+ for key in batch.keys():
30
+ batch[key] = batch[key].to(device)
31
+
32
+ user_ids.append(batch['user.ids']) # (batch_size)
33
+ user_embeddings.append(model(batch)) # (batch_size, embedding_dim)
34
+
35
+ return torch.cat(user_ids, dim=0), torch.cat(user_embeddings, dim=0)
36
+
37
+
38
+ def infer_items(model: SASRecEncoder):
39
+ return model.item_embeddings.weight.data
40
+
41
+
42
+ @click.command()
43
+ @click.option('--exp_name', required=True, type=str)
44
+ @click.option('--data_dir', required=True, type=str, default='../../data/', show_default=True)
45
+ @click.option(
46
+ '--size',
47
+ required=True,
48
+ type=click.Choice(['50m', '500m', '5b']),
49
+ default='50m',
50
+ show_default=True,
51
+ )
52
+ @click.option(
53
+ '--interaction',
54
+ required=True,
55
+ type=click.Choice(['likes', 'listens']),
56
+ default='likes',
57
+ show_default=True,
58
+ )
59
+ @click.option('--batch_size', required=True, type=int, default=256, show_default=True)
60
+ @click.option('--max_seq_len', required=False, type=int, default=200, show_default=True)
61
+ @click.option('--seed', required=False, type=int, default=42, show_default=True)
62
+ @click.option('--device', required=True, type=str, default='cuda:0', show_default=True)
63
+ def main(
64
+ exp_name: str,
65
+ data_dir: str,
66
+ size: str,
67
+ interaction: str,
68
+ batch_size: int,
69
+ max_seq_len: int,
70
+ seed: int,
71
+ device: str,
72
+ ):
73
+ random.seed(seed)
74
+ np.random.seed(seed)
75
+ torch.manual_seed(seed)
76
+ torch.cuda.manual_seed_all(seed)
77
+ torch.set_float32_matmul_precision('high')
78
+
79
+ path = Path.Path(data_dir) / 'sequential' / size / interaction
80
+ df = pl.scan_parquet(path.with_suffix('.parquet'))
81
+
82
+ logger.debug('Preprocessing data...')
83
+ data: Data = preprocess(df, interaction, val_size=0, max_seq_len=max_seq_len)
84
+ train_df = data.train.collect(engine="streaming")
85
+ eval_df = data.test.collect(engine="streaming")
86
+ logger.debug('Preprocessing data has finished!')
87
+
88
+ eval_df = train_df.join(eval_df, on='uid', how='inner', suffix='_valid').select(
89
+ pl.col('uid'), pl.col('item_id').alias('item_id_train'), pl.col('item_id_valid')
90
+ )
91
+ eval_dataset = EvalDataset(dataset=eval_df, max_seq_len=max_seq_len)
92
+
93
+ eval_dataloader = DataLoader(
94
+ dataset=eval_dataset,
95
+ batch_size=batch_size,
96
+ collate_fn=collate_fn,
97
+ drop_last=False,
98
+ shuffle=True,
99
+ )
100
+
101
+ model = torch.load(f'./checkpoints/{exp_name}_best_state.pth', weights_only=False).to(device)
102
+ model.eval()
103
+ with torch.inference_mode():
104
+ user_ids, user_embeddings = infer_users(eval_dataloader=eval_dataloader, model=model, device=device)
105
+
106
+ item_embeddings = infer_items(model=model)
107
+
108
+ item_embeddings = Embeddings(
109
+ ids=torch.arange(start=0, end=item_embeddings.shape[0], device=device), embeddings=item_embeddings
110
+ )
111
+ user_embeddings = Embeddings(ids=user_ids, embeddings=user_embeddings)
112
+
113
+ df_user_ids = torch.tensor(eval_df['uid'].to_list(), dtype=torch.long, device=device)
114
+ df_target_ids = [
115
+ torch.tensor(item_ids, dtype=torch.long, device=device) for item_ids in eval_df['item_id_valid'].to_list()
116
+ ]
117
+ targets = Targets(user_ids=df_user_ids, item_ids=df_target_ids)
118
+ with torch.no_grad():
119
+ ranked = rank_items(users=user_embeddings, items=item_embeddings, num_items=100)
120
+
121
+ metric_names = [f'{name}@{k}' for name in ["recall", "ndcg", "coverage"] for k in [10, 50, 100]]
122
+ metrics = calc_metrics(ranked, targets, metrics=metric_names)
123
+ print(metrics)
124
+
125
+
126
+ if __name__ == '__main__':
127
+ main()
benchmarks/models/sasrec/model.py ADDED
@@ -0,0 +1,270 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, Tuple
2
+
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+
7
+ def create_masked_tensor(data: torch.Tensor, lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
8
+ """
9
+ Converts a batch of variable-length sequences into a padded tensor and corresponding mask.
10
+
11
+ Args:
12
+ data (torch.Tensor): Input tensor containing flattened sequences.
13
+ - For indices: shape (total_elements,) of dtype long
14
+ - For embeddings: shape (total_elements, embedding_dim)
15
+ lengths (torch.Tensor): 1D tensor of sequence lengths, shape (batch_size,)
16
+
17
+ Returns:
18
+ Tuple[torch.Tensor, torch.Tensor]:
19
+ - padded_tensor: Padded tensor of shape:
20
+ - (batch_size, max_seq_len) for indices
21
+ - (batch_size, max_seq_len, embedding_dim) for embeddings
22
+ - mask: Boolean mask of shape (batch_size, max_seq_len) where True indicates valid elements
23
+
24
+ Note:
25
+ - Zero-padding is added to the right of shorter sequences
26
+ """
27
+ batch_size = lengths.shape[0]
28
+ max_sequence_length = int(lengths.max().item())
29
+
30
+ if len(data.shape) == 1: # indices
31
+ padded_tensor = torch.zeros(
32
+ batch_size, max_sequence_length, dtype=data.dtype, device=data.device
33
+ ) # (batch_size, max_seq_len)
34
+ else:
35
+ assert len(data.shape) == 2 # embeddings
36
+ padded_tensor = torch.zeros(
37
+ batch_size, max_sequence_length, *data.shape[1:], dtype=data.dtype, device=data.device
38
+ ) # (batch_size, max_seq_len, embedding_dim)
39
+
40
+ mask = (
41
+ torch.arange(end=max_sequence_length, device=lengths.device)[None] < lengths[:, None]
42
+ ) # (batch_size, max_seq_len)
43
+
44
+ padded_tensor[mask] = data
45
+
46
+ return padded_tensor, mask
47
+
48
+
49
+ class SASRecEncoder(nn.Module):
50
+ def __init__(
51
+ self,
52
+ num_items: int,
53
+ max_sequence_length: int,
54
+ embedding_dim: int,
55
+ num_heads: int,
56
+ num_layers: int,
57
+ dim_feedforward: int | None = None,
58
+ dropout: float = 0.0,
59
+ activation: nn.Module = nn.GELU(),
60
+ layer_norm_eps: float = 1e-9,
61
+ initializer_range: float = 0.02,
62
+ ) -> None:
63
+ super().__init__()
64
+ self._num_items = num_items
65
+ self._num_heads = num_heads
66
+ self._embedding_dim = embedding_dim
67
+
68
+ self._item_embeddings = nn.Embedding(
69
+ num_embeddings=num_items + 1, # add zero id embedding
70
+ embedding_dim=embedding_dim,
71
+ )
72
+ self._position_embeddings = nn.Embedding(num_embeddings=max_sequence_length, embedding_dim=embedding_dim)
73
+
74
+ self._layernorm = nn.LayerNorm(embedding_dim, eps=layer_norm_eps)
75
+ self._dropout = nn.Dropout(dropout)
76
+
77
+ transformer_encoder_layer = nn.TransformerEncoderLayer(
78
+ d_model=embedding_dim,
79
+ nhead=num_heads,
80
+ dim_feedforward=dim_feedforward or 4 * embedding_dim,
81
+ dropout=dropout,
82
+ activation=activation,
83
+ layer_norm_eps=layer_norm_eps,
84
+ batch_first=True,
85
+ )
86
+ self._encoder = nn.TransformerEncoder(transformer_encoder_layer, num_layers)
87
+
88
+ self._init_weights(initializer_range)
89
+
90
+ @property
91
+ def item_embeddings(self) -> nn.Module:
92
+ return self._item_embeddings
93
+
94
+ @property
95
+ def num_items(self) -> int:
96
+ return self._num_items
97
+
98
+ def _apply_sequential_encoder(self, events: torch.Tensor, lengths: torch.Tensor):
99
+ """
100
+ Processes variable-length event sequences through a transformer encoder with positional embeddings.
101
+
102
+ Args:
103
+ events (torch.Tensor): Flattened tensor of event indices, shape (total_events,)
104
+ lengths (torch.Tensor): 1D tensor of sequence lengths, shape (batch_size,)
105
+
106
+ Returns:
107
+ Tuple[torch.Tensor, torch.Tensor]:
108
+ - embeddings: Processed sequence embeddings, shape (batch_size, seq_len, embedding_dim)
109
+ - mask: Boolean mask indicating valid elements, shape (batch_size, seq_len)
110
+
111
+ Processing Steps:
112
+ 1. Embedding Lookup:
113
+ - Converts event indices to dense embeddings
114
+ 2. Positional Encoding:
115
+ - Generates reverse-order positions (newest event first)
116
+ - Adds positional embeddings to item embeddings
117
+ 3. Transformer Processing:
118
+ - Applies layer norm and dropout
119
+ - Uses causal attention mask for autoregressive modeling
120
+ - Uses padding mask to ignore invalid positions
121
+
122
+ Note:
123
+ - Position indices are generated in reverse chronological order (newest event = position 0)
124
+ """
125
+ embeddings = self._item_embeddings(events) # (total_batch_events, embedding_dim)
126
+
127
+ embeddings, mask = create_masked_tensor(
128
+ data=embeddings, lengths=lengths
129
+ ) # (batch_size, seq_len, embedding_dim), (batch_size, seq_len)
130
+
131
+ batch_size = mask.shape[0]
132
+ seq_len = mask.shape[1]
133
+
134
+ positions = (
135
+ torch.arange(start=seq_len - 1, end=-1, step=-1, device=mask.device)[None].tile([batch_size, 1]).long()
136
+ ) # (batch_size, seq_len)
137
+ positions_mask = positions < lengths[:, None] # (batch_size, max_seq_len)
138
+
139
+ positions = positions[positions_mask] # (total_batch_events)
140
+ position_embeddings = self._position_embeddings(positions) # (total_batch_events, embedding_dim)
141
+ position_embeddings, _ = create_masked_tensor(
142
+ data=position_embeddings, lengths=lengths
143
+ ) # (batch_size, seq_len, embedding_dim)
144
+
145
+ embeddings = embeddings + position_embeddings # (batch_size, seq_len, embedding_dim)
146
+ embeddings = self._layernorm(embeddings) # (batch_size, seq_len, embedding_dim)
147
+ embeddings = self._dropout(embeddings) # (batch_size, seq_len, embedding_dim)
148
+ embeddings[~mask] = 0
149
+
150
+ causal_mask = torch.tril(torch.ones(seq_len, seq_len)).bool().to(mask.device) # (seq_len, seq_len)
151
+ embeddings = self._encoder(
152
+ src=embeddings, mask=~causal_mask, src_key_padding_mask=~mask
153
+ ) # (batch_size, seq_len, embedding_dim)
154
+
155
+ return embeddings, mask
156
+
157
+ @torch.no_grad()
158
+ def _init_weights(self, initializer_range: float) -> None:
159
+ """
160
+ Initialize all model parameters (weights and biases) in-place.
161
+
162
+ For each parameter in the model:
163
+ - If the parameter name contains 'weight':
164
+ - If it also contains 'norm' (e.g., for normalization layers), initialize with ones.
165
+ - Otherwise, initialize with a truncated normal distribution (mean=0, std=initializer_range)
166
+ and values clipped to the range [-2 * initializer_range, 2 * initializer_range].
167
+ - If the parameter name contains 'bias', initialize with zeros.
168
+ - If the parameter name does not match either case, raise a ValueError.
169
+
170
+ Args:
171
+ initializer_range (float): Standard deviation for the truncated normal distribution
172
+ used to initialize non-normalization weights.
173
+
174
+ Note:
175
+ This method should be called during model initialization to ensure all weights and biases
176
+ are properly set. It runs in a no-grad context and does not track gradients.
177
+ """
178
+ for key, value in self.named_parameters():
179
+ if 'weight' in key:
180
+ if 'norm' in key:
181
+ nn.init.ones_(value.data)
182
+ else:
183
+ nn.init.trunc_normal_(
184
+ value.data, std=initializer_range, a=-2 * initializer_range, b=2 * initializer_range
185
+ )
186
+ else:
187
+ assert 'bias' in key
188
+ nn.init.zeros_(value.data)
189
+
190
+ @staticmethod
191
+ def _get_last_embedding(embeddings: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
192
+ """
193
+ Extracts the embedding of the last valid (non-padded) element from each sequence in a batch.
194
+
195
+ Args:
196
+ embeddings (torch.Tensor): Tensor of shape (batch_size, seq_len, embedding_dim)
197
+ containing embeddings for each element in each sequence.
198
+ mask (torch.Tensor): Boolean tensor of shape (batch_size, seq_len) indicating
199
+ valid (True) and padded (False) positions in each sequence.
200
+
201
+ Returns:
202
+ torch.Tensor: Tensor of shape (batch_size, embedding_dim) containing the embedding
203
+ of the last valid element for each sequence in the batch.
204
+ """
205
+ flatten_embeddings = embeddings[mask] # (total_batch_events, embedding_dim)
206
+ lengths = torch.sum(mask, dim=-1) # (batch_size)
207
+ offsets = torch.cumsum(lengths, dim=0) # (batch_size)
208
+ last_embeddings = flatten_embeddings[offsets.long() - 1] # (batch_size, embedding_dim)
209
+ return last_embeddings
210
+
211
+ def forward(self, inputs: Dict) -> torch.Tensor:
212
+ """
213
+ Forward pass of the model, handling both training and evaluation modes.
214
+
215
+ Args:
216
+ inputs (Dict): Input dictionary containing:
217
+ - 'item.ids' (torch.LongTensor): Flattened tensor of item IDs for all sequences in the batch.
218
+ Shape: (total_batch_events,)
219
+ - 'item.length' (torch.LongTensor): Sequence lengths for each sample in the batch.
220
+ Shape: (batch_size,)
221
+ - 'positive.ids' (torch.LongTensor, training only): Positive sample IDs for contrastive learning.
222
+ Shape: (total_batch_events,)
223
+ - 'negative.ids' (torch.LongTensor, training only): Negative sample IDs for contrastive learning.
224
+ Shape: (total_batch_events,)
225
+
226
+ Returns:
227
+ torch.Tensor:
228
+ - During training: Binary cross-entropy loss between positive/negative sample scores.
229
+ Shape: (1,)
230
+ - During evaluation: Embeddings of the last valid item in each sequence.
231
+ Shape: (batch_size, embedding_dim)
232
+ """
233
+ all_sample_events = inputs['item.ids'] # (total_batch_events)
234
+ all_sample_lengths = inputs['item.length'] # (batch_size)
235
+
236
+ embeddings, mask = self._apply_sequential_encoder(
237
+ all_sample_events, all_sample_lengths
238
+ ) # (batch_size, seq_len, embedding_dim), (batch_size, seq_len)
239
+
240
+ if self.training: # training mode
241
+ # queries
242
+ in_batch_queries_embeddings = embeddings[mask] # (total_batch_events, embedding_dim)
243
+
244
+ # positives
245
+ in_batch_positive_events = inputs['positive.ids'] # (total_batch_events)
246
+ in_batch_positive_embeddings = self._item_embeddings(
247
+ in_batch_positive_events
248
+ ) # (total_batch_events, embedding_dim)
249
+ positive_scores = torch.einsum(
250
+ 'bd,bd->b', in_batch_queries_embeddings, in_batch_positive_embeddings
251
+ ) # (total_batch_events)
252
+
253
+ # negatives
254
+ in_batch_negative_events = inputs['negative.ids'] # (total_batch_events)
255
+ in_batch_negative_embeddings = self._item_embeddings(
256
+ in_batch_negative_events
257
+ ) # (total_batch_events, embedding_dim)
258
+ negative_scores = torch.einsum(
259
+ 'bd,bd->b', in_batch_queries_embeddings, in_batch_negative_embeddings
260
+ ) # (total_batch_events)
261
+
262
+ loss = nn.functional.binary_cross_entropy_with_logits(
263
+ torch.cat([positive_scores, negative_scores], dim=0),
264
+ torch.cat([torch.ones_like(positive_scores), torch.zeros_like(negative_scores)]),
265
+ ) # (1)
266
+
267
+ return loss
268
+ else: # eval mode
269
+ last_embeddings = self._get_last_embedding(embeddings, mask) # (batch_size, embedding_dim)
270
+ return last_embeddings
benchmarks/models/sasrec/train.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import pathlib as Path
4
+ import random
5
+
6
+ import click
7
+ import numpy as np
8
+ import polars as pl
9
+ import torch
10
+ from model import SASRecEncoder
11
+ from torch.utils.data import DataLoader
12
+
13
+ from data import Data, TrainDataset, collate_fn, preprocess
14
+
15
+
16
+ logging.basicConfig(
17
+ level=logging.DEBUG, format='[%(asctime)s] [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S'
18
+ )
19
+ logger = logging.getLogger(__name__)
20
+
21
+
22
+ def train(
23
+ train_dataloader: DataLoader,
24
+ model: SASRecEncoder,
25
+ optimizer: torch.optim.Optimizer,
26
+ device: str = 'cpu',
27
+ num_epochs: int = 100,
28
+ ):
29
+ logger.debug('Start training...')
30
+
31
+ model.train()
32
+
33
+ for epoch_num in range(num_epochs):
34
+ logger.debug(f'Start epoch {epoch_num + 1}')
35
+ for batch in train_dataloader:
36
+ for key in batch.keys():
37
+ batch[key] = batch[key].to(device)
38
+
39
+ loss = model(batch)
40
+
41
+ optimizer.zero_grad()
42
+ loss.backward()
43
+ optimizer.step()
44
+
45
+ logger.debug('Training procedure has been finished!')
46
+ return model.state_dict()
47
+
48
+
49
+ @click.command()
50
+ @click.option('--exp_name', required=True, type=str)
51
+ @click.option('--data_dir', required=True, type=str, default='../../data/', show_default=True)
52
+ @click.option('--checkpoint_dir', required=True, type=str, default='./checkpoints/', show_default=True)
53
+ @click.option(
54
+ '--size',
55
+ required=True,
56
+ type=click.Choice(['50m', '500m', '5b']),
57
+ default='50m',
58
+ show_default=True,
59
+ )
60
+ @click.option(
61
+ '--interaction',
62
+ required=True,
63
+ type=click.Choice(['likes', 'listens']),
64
+ default='likes',
65
+ show_default=True,
66
+ )
67
+ @click.option('--batch_size', required=True, type=int, default=256, show_default=True)
68
+ @click.option('--max_seq_len', required=False, type=int, default=200, show_default=True)
69
+ @click.option('--embedding_dim', required=False, type=int, default=64, show_default=True)
70
+ @click.option('--num_heads', required=False, type=int, default=2, show_default=True)
71
+ @click.option('--num_layers', required=False, type=int, default=2, show_default=True)
72
+ @click.option('--learning_rate', required=False, type=float, default=1e-3, show_default=True)
73
+ @click.option('--dropout', required=False, type=float, default=0.0, show_default=True)
74
+ @click.option('--seed', required=False, type=int, default=42, show_default=True)
75
+ @click.option('--device', required=True, type=str, default='cuda:0', show_default=True)
76
+ @click.option('--num_epochs', required=True, type=int, default=100, show_default=True)
77
+ def main(
78
+ exp_name: str,
79
+ data_dir: str,
80
+ checkpoint_dir: str,
81
+ size: str,
82
+ interaction: str,
83
+ batch_size: int,
84
+ max_seq_len: int,
85
+ embedding_dim: int,
86
+ num_heads: int,
87
+ num_layers: int,
88
+ learning_rate: float,
89
+ dropout: float,
90
+ seed: int,
91
+ device: str,
92
+ num_epochs: int,
93
+ ):
94
+ random.seed(seed)
95
+ np.random.seed(seed)
96
+ torch.manual_seed(seed)
97
+ torch.cuda.manual_seed_all(seed)
98
+ torch.set_float32_matmul_precision('high')
99
+
100
+ data_path = Path.Path(data_dir) / 'sequential' / size / interaction
101
+ df = pl.scan_parquet(data_path.with_suffix('.parquet'))
102
+
103
+ checkpoint_path = Path.Path(checkpoint_dir) / f'{exp_name}_best_state.pth'
104
+ os.makedirs(checkpoint_dir, exist_ok=True)
105
+
106
+ logger.debug('Preprocessing data...')
107
+ data: Data = preprocess(df, interaction, val_size=0, max_seq_len=max_seq_len)
108
+ train_df = data.train.collect(engine="streaming")
109
+ logger.debug('Preprocessing data has finished!')
110
+
111
+ train_dataset = TrainDataset(dataset=train_df, num_items=data.num_items, max_seq_len=max_seq_len)
112
+
113
+ train_dataloader = DataLoader(
114
+ dataset=train_dataset,
115
+ batch_size=batch_size,
116
+ collate_fn=collate_fn,
117
+ drop_last=True,
118
+ shuffle=True,
119
+ num_workers=3,
120
+ prefetch_factor=10,
121
+ pin_memory_device="cuda",
122
+ pin_memory=True,
123
+ )
124
+
125
+ model = SASRecEncoder(
126
+ num_items=data.num_items,
127
+ max_sequence_length=max_seq_len,
128
+ embedding_dim=embedding_dim,
129
+ num_heads=num_heads,
130
+ num_layers=num_layers,
131
+ dropout=dropout,
132
+ ).to(device)
133
+
134
+ optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
135
+
136
+ best_checkpoint = train(
137
+ train_dataloader=train_dataloader, model=model, optimizer=optimizer, device=device, num_epochs=num_epochs
138
+ )
139
+
140
+ logger.debug('Saving model...')
141
+
142
+ os.makedirs(checkpoint_dir, exist_ok=True)
143
+
144
+ model.load_state_dict(best_checkpoint)
145
+ torch.save(model, checkpoint_path)
146
+ logger.debug(f'Saved model as {checkpoint_path}')
147
+
148
+
149
+ if __name__ == '__main__':
150
+ main()
benchmarks/pyproject.toml ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [project]
2
+ name = "yambda"
3
+ version = "0.1.0"
4
+ description = ""
5
+ authors = [
6
+ {name = "Yandex"}
7
+ ]
8
+ readme = "README.md"
9
+ requires-python = ">=3.11"
10
+ dependencies = [
11
+ "torch",
12
+ "polars-u64-idx==1.28.1", # https://github.com/pola-rs/polars/issues/22741
13
+ "click",
14
+ "scipy",
15
+ "numpy",
16
+ "optuna",
17
+ "tqdm",
18
+ "matplotlib"
19
+ ]
20
+
21
+
22
+ [build-system]
23
+ requires = ["poetry-core>=2.0.0,<3.0.0"]
24
+ build-backend = "poetry.core.masonry.api"
25
+
26
+
27
+ [tool.ruff]
28
+ line-length = 120
29
+
30
+ [tool.ruff.lint]
31
+ # list of all codes - https://docs.astral.sh/ruff/rules/
32
+ select = [
33
+ "E", # pycodestyle errors
34
+ "F", # pyflakes
35
+ "W", # pycodestyle warnings
36
+ "I", # isort
37
+ ]
38
+
39
+ [tool.ruff.lint.isort]
40
+ lines-after-imports = 2
41
+ known-first-party = ["yambda"]
42
+
43
+ [tool.ruff.format]
44
+ quote-style = "preserve"
benchmarks/scripts/get_dataset_stats.py ADDED
@@ -0,0 +1,210 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import enum
2
+ import os
3
+ from pathlib import Path
4
+
5
+ import click
6
+ import matplotlib.pyplot as plt
7
+ import polars as pl
8
+
9
+
10
+ class ImageFormat(enum.Enum):
11
+ PNG = "png"
12
+ JPEG = "jpg"
13
+
14
+
15
+ @click.command()
16
+ @click.option(
17
+ "--src_dir",
18
+ type=click.Path(exists=True, file_okay=False),
19
+ required=True,
20
+ help="Path to the directory containing dataset, e.g., './data'.",
21
+ )
22
+ @click.option(
23
+ "--dst_dir",
24
+ type=click.Path(file_okay=False),
25
+ required=False,
26
+ help="Path to the directory where statisics will be saved. "
27
+ "If not specified, statistics is saved in '{src_dir}/stats'. e.g., './stats'.",
28
+ )
29
+ @click.option(
30
+ "--file_name",
31
+ type=str,
32
+ default="multi_event",
33
+ help="Base name for multi-event file. Default is 'multi_event'.",
34
+ )
35
+ def cli(src_dir: str, dst_dir: str, file_name: str):
36
+ if dst_dir is None:
37
+ dst_dir = f"{src_dir}/stats"
38
+ generate_dataset_stats(src_dir, dst_dir, file_name)
39
+
40
+
41
+ def generate_dataset_stats(src_dir: str, dst_dir: str, file_name: str):
42
+ src_dir, dst_dir = Path(src_dir), Path(dst_dir)
43
+ src_dir_flat, src_dir_seq = src_dir / "flat", src_dir / "sequential"
44
+
45
+ file_name = f"{file_name}.parquet"
46
+ sizes = sorted(path.name for path in src_dir_flat.iterdir())
47
+ for size in sizes:
48
+ path_flat, path_seq = src_dir_flat / size, src_dir_seq / size
49
+ assert path_seq.exists(), f"Cannot find sequential data in '{path_seq}'"
50
+ assert (path_flat / file_name).exists(), (
51
+ "Please, generate flat multi-event file using "
52
+ "'make_multievent.py' or specify correct name using --file_name"
53
+ )
54
+ assert (path_seq / file_name).exists(), (
55
+ "Please, generate sequential multi-event file "
56
+ "using 'transform2sequential.py' script or specify correct name "
57
+ "using --file_name"
58
+ )
59
+
60
+ print(f"Gathering stats for {size}...")
61
+ dst_dir_size = dst_dir / size
62
+ dst_dir_size.mkdir(parents=True, exist_ok=True)
63
+
64
+ df = pl.scan_parquet(path_seq / file_name)
65
+ generate_user_history_graph(df, dst_dir_size / "user_history_len.png")
66
+ generate_log_user_history_graph(df, dst_dir_size / "user_history_log_len.png")
67
+
68
+ df = pl.scan_parquet(path_flat / file_name)
69
+ generate_item_interactions_graph(df, dst_dir_size / "item_interactions.png")
70
+ get_recom_stats(df).write_csv(dst_dir_size / "recom_event_count.csv")
71
+ get_history_len_stats(df).write_csv(dst_dir_size / "event_history_len.csv")
72
+ get_dataset_stats(df).write_csv(dst_dir_size / "dataset_event_stats.csv")
73
+
74
+
75
+ def make_history_len_graph(
76
+ df: pl.DataFrame,
77
+ *,
78
+ qs: tuple[float] | None = None,
79
+ color: str = "lightskyblue",
80
+ num_bins: int = 100,
81
+ title: str | None = None,
82
+ xlabel: str | None = None,
83
+ ylabel: str | None = None,
84
+ ax: plt.Axes | None = None,
85
+ ) -> plt.Axes:
86
+ if ax is None:
87
+ _, ax = plt.subplots(figsize=(12, 5))
88
+
89
+ count, _, _ = ax.hist(df["value"], bins=num_bins, ec="k", lw=1.0, color=color)
90
+ ylim = count.max() * 1.05
91
+
92
+ xs = {"max": df["value"].max()}
93
+ if qs is not None:
94
+ xs.update((f"q{q * 100:.0f}", df["value"].quantile(q)) for q in qs)
95
+
96
+ dx = 0.01 * (xs["max"] - df["value"].min())
97
+ template = "{label}={x:.3f}" if xs["max"] <= 10 else "{label}={x:.0f}"
98
+ for label, x in xs.items():
99
+ ax.plot([x, x], [0, ylim], ls="--", c="k")
100
+ text = template.format(label=label, x=x)
101
+ ax.text(x + dx, ylim // 2, text, rotation=90, fontsize=16, bbox=dict(alpha=0.1, color="r"))
102
+
103
+ if title is not None:
104
+ ax.set_title(title, fontsize=24)
105
+ ax.set_xlabel(xlabel or "Value", fontsize=22)
106
+ ax.set_ylabel(ylabel or "Count", fontsize=22)
107
+
108
+ ax.set_ylim([0, ylim])
109
+
110
+ ax.tick_params(labelsize=16)
111
+ ax.ticklabel_format(style="sci", useMathText=True)
112
+
113
+
114
+ def save_graph(output_path: os.PathLike, fmt: ImageFormat = ImageFormat.PNG):
115
+ output_path = Path(output_path)
116
+ if not output_path.suffix:
117
+ output_path = output_path.with_suffix(f".{fmt.value}")
118
+
119
+ if output_path.exists():
120
+ print(f"Rewriting file '{output_path}'")
121
+ else:
122
+ print(f"Saving to '{output_path}'")
123
+
124
+ plt.savefig(output_path, dpi=300, format=fmt.value)
125
+
126
+
127
+ def generate_user_history_graph(df: pl.LazyFrame, out_path: os.PathLike):
128
+ _, ax = plt.subplots(figsize=(12, 5))
129
+
130
+ make_history_len_graph(
131
+ df.select(value=pl.col("item_id").list.len()).collect(),
132
+ num_bins=100,
133
+ qs=(0.5, 0.9, 0.95),
134
+ xlabel="Events",
135
+ ylabel="Users",
136
+ ax=ax,
137
+ )
138
+ plt.tight_layout()
139
+ save_graph(out_path)
140
+
141
+
142
+ def generate_log_user_history_graph(df: pl.LazyFrame, out_path: os.PathLike):
143
+ _, ax = plt.subplots(figsize=(12, 5))
144
+
145
+ make_history_len_graph(
146
+ df.select(value=pl.col("item_id").list.len().log10()).collect(),
147
+ num_bins=40,
148
+ xlabel="$Log_{10}$(Events)",
149
+ ylabel="Users",
150
+ color="lightgreen",
151
+ ax=ax,
152
+ )
153
+ plt.tight_layout()
154
+ save_graph(out_path)
155
+
156
+
157
+ def generate_item_interactions_graph(df: pl.LazyFrame, out_path: os.PathLike):
158
+ _, ax = plt.subplots(figsize=(12, 5))
159
+
160
+ make_history_len_graph(
161
+ df.group_by("item_id").len().select(value=pl.col("len").log10()).collect(),
162
+ num_bins=30,
163
+ qs=(0.5, 0.9, 0.95),
164
+ xlabel="$Log_{10}$(Events)",
165
+ ylabel="Items",
166
+ color="orange",
167
+ ax=ax,
168
+ )
169
+ plt.tight_layout()
170
+ save_graph(out_path)
171
+
172
+
173
+ def get_recom_stats(df: pl.LazyFrame) -> pl.DataFrame:
174
+ print("Computing recom stats")
175
+ df_cnt = df.group_by(("event_type", "is_organic")).len().collect()
176
+ df_recom = df_cnt.filter(pl.col("is_organic").eq(0)).select(pl.col("event_type"), pl.col("len").alias("recom"))
177
+ df_total = df_cnt.group_by("event_type").sum().select(pl.col("event_type"), pl.col("len").alias("total"))
178
+ return df_total.join(df_recom, on="event_type").with_columns(ratio=pl.col("recom") / pl.col("total"))
179
+
180
+
181
+ def get_history_len_stats(df: pl.LazyFrame) -> pl.DataFrame:
182
+ print("Computing event history length stats")
183
+ return (
184
+ df.group_by(("event_type", "uid"))
185
+ .len()
186
+ .group_by("event_type")
187
+ .agg(
188
+ median=pl.col("len").quantile(0.5).cast(pl.Int32),
189
+ q90=pl.col("len").quantile(0.9).cast(pl.Int32),
190
+ q95=pl.col("len").quantile(0.95).cast(pl.Int32),
191
+ )
192
+ .collect()
193
+ )
194
+
195
+
196
+ def get_dataset_stats(df: pl.LazyFrame) -> pl.DataFrame:
197
+ print("Computing dataset stats")
198
+ return df.select(
199
+ users=pl.col("uid").unique().len(),
200
+ items=pl.col("item_id").unique().len(),
201
+ listens=pl.col("event_type").filter(pl.col("event_type").eq("listen")).len(),
202
+ likes=pl.col("event_type").filter(pl.col("event_type").eq("like")).len(),
203
+ dislikes=pl.col("event_type").filter(pl.col("event_type").eq("dislike")).len(),
204
+ unlikes=pl.col("event_type").filter(pl.col("event_type").eq("unlike")).len(),
205
+ undislikes=pl.col("event_type").filter(pl.col("event_type").eq("undislike")).len(),
206
+ ).collect()
207
+
208
+
209
+ if __name__ == "__main__":
210
+ cli()
benchmarks/scripts/make_multievent.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import click
4
+ import polars as pl
5
+
6
+
7
+ @click.command()
8
+ @click.option(
9
+ "--src_dir",
10
+ type=click.Path(exists=True, file_okay=False),
11
+ required=True,
12
+ help="Path to the directory containing source parquet files, e.g., './50m'.",
13
+ )
14
+ @click.option(
15
+ "--dst_dir",
16
+ type=click.Path(file_okay=False),
17
+ required=False,
18
+ help="Path to the directory where Parquet files will be saved. "
19
+ "If not specified, Parquet files are saved in 'src_dir'. e.g., './out'.",
20
+ )
21
+ @click.option(
22
+ "--file_name",
23
+ type=str,
24
+ default="multi_event",
25
+ help="Base name for the output Parquet file. Default is 'multi_event'.",
26
+ )
27
+ def cli(src_dir: str, dst_dir: str, file_name: str):
28
+ if dst_dir is None:
29
+ dst_dir = src_dir
30
+
31
+ print(f"{src_dir=}, {dst_dir=}, {file_name=}")
32
+ make_multievent_dataset(src_dir, dst_dir, file_name)
33
+
34
+
35
+ def make_multievent_dataset(src_dir: str, dst_dir: str, file_name: str):
36
+ os.makedirs(dst_dir, exist_ok=True)
37
+
38
+ dislikes = pl.scan_parquet(os.path.join(src_dir, "dislikes.parquet"))
39
+ likes = pl.scan_parquet(os.path.join(src_dir, "likes.parquet"))
40
+ listens = pl.scan_parquet(os.path.join(src_dir, "listens.parquet"))
41
+ undislikes = pl.scan_parquet(os.path.join(src_dir, "undislikes.parquet"))
42
+ unlikes = pl.scan_parquet(os.path.join(src_dir, "unlikes.parquet"))
43
+
44
+ events = pl.Enum(["listen", "dislike", "like", "undislike", "unlike"])
45
+
46
+ combined_df = pl.concat(
47
+ [
48
+ listens.with_columns(
49
+ pl.lit("listen").cast(events).alias("event_type"),
50
+ ),
51
+ dislikes.with_columns(
52
+ pl.lit(None).alias("played_ratio_pct"),
53
+ pl.lit(None).alias("track_length_seconds"),
54
+ pl.lit("dislike").cast(events).alias("event_type"),
55
+ ),
56
+ likes.with_columns(
57
+ pl.lit(None).alias("played_ratio_pct"),
58
+ pl.lit(None).alias("track_length_seconds"),
59
+ pl.lit("like").cast(events).alias("event_type"),
60
+ ),
61
+ undislikes.with_columns(
62
+ pl.lit(None).alias("played_ratio_pct"),
63
+ pl.lit(None).alias("track_length_seconds"),
64
+ pl.lit("undislike").cast(events).alias("event_type"),
65
+ ),
66
+ unlikes.with_columns(
67
+ pl.lit(None).alias("played_ratio_pct"),
68
+ pl.lit(None).alias("track_length_seconds"),
69
+ pl.lit("unlike").cast(events).alias("event_type"),
70
+ ),
71
+ ]
72
+ ).sort(
73
+ by=[
74
+ "uid",
75
+ "timestamp",
76
+ ],
77
+ maintain_order=True,
78
+ )
79
+
80
+ combined_df.with_columns(pl.col("event_type").cast(events)).sink_parquet(
81
+ os.path.join(dst_dir, file_name + ".parquet"),
82
+ compression="lz4",
83
+ statistics=True,
84
+ )
85
+
86
+
87
+ if __name__ == "__main__":
88
+ cli()
benchmarks/scripts/transform2sequential.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import click
4
+ import polars as pl
5
+
6
+
7
+ @click.command()
8
+ @click.option(
9
+ "--src_dir",
10
+ type=click.Path(exists=True, file_okay=False),
11
+ required=True,
12
+ help="Path to the directory containing source Parquet files, e.g., './50m'.",
13
+ )
14
+ @click.option(
15
+ "--dst_dir",
16
+ type=click.Path(file_okay=False),
17
+ required=False,
18
+ help="Path to the directory where Parquet files will be saved. "
19
+ "If not specified, Parquet files are saved in 'src_dir' with prefix 'seq_'.",
20
+ )
21
+ @click.option(
22
+ "--files",
23
+ type=str,
24
+ multiple=True,
25
+ help="List of parquet filenames to convert. If not specified, all Parquet files in 'src_dir' will be converted. "
26
+ "For example, '--files dislike.parquet --files like.parquet'.",
27
+ )
28
+ @click.option(
29
+ "--aggregation",
30
+ type=click.Choice(["structs", "columns"]),
31
+ required=True,
32
+ help="Agg method: 'structs' for a sequence of structs per 'uid', 'columns' for individual column aggregation.",
33
+ )
34
+ def cli(src_dir: str, dst_dir: str, files: list[str], aggregation: str):
35
+ transform2sequential(src_dir, dst_dir, files, aggregation)
36
+
37
+
38
+ def transform2sequential(src_dir: str, dst_dir: str, files: list[str], aggregation: str):
39
+ for file in files:
40
+ print(f"Processing file: {file}")
41
+
42
+ src_path = os.path.join(src_dir, file)
43
+
44
+ parquet_path = os.path.join(dst_dir, file)
45
+
46
+ if os.path.exists(parquet_path):
47
+ parquet_path = os.path.join(dst_dir, f"{aggregation}_" + file)
48
+ assert not os.path.exists(parquet_path)
49
+
50
+ os.makedirs(dst_dir, exist_ok=True)
51
+
52
+ df = pl.scan_parquet(src_path)
53
+
54
+ if aggregation == "structs":
55
+ seq_df = (
56
+ df.select("uid", pl.struct(pl.all().exclude("uid")).alias("events"))
57
+ .group_by("uid", maintain_order=True)
58
+ .agg(pl.col("events"))
59
+ )
60
+ seq_df.sink_parquet(
61
+ parquet_path,
62
+ compression="lz4",
63
+ statistics=True,
64
+ )
65
+
66
+ elif aggregation == "columns":
67
+ col_agg_df = df.group_by("uid", maintain_order=True).agg(pl.all().exclude("uid"))
68
+ col_agg_df.sink_parquet(
69
+ parquet_path,
70
+ compression="lz4",
71
+ statistics=True,
72
+ )
73
+
74
+
75
+ if __name__ == "__main__":
76
+ cli()
benchmarks/tests/test_timesplit.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import polars as pl
3
+
4
+ from yambda.processing.timesplit import flat_split_train_val_test, sequential_split_train_val_test
5
+
6
+
7
+ def create_dataframe(n: int = 1000) -> pl.DataFrame:
8
+ uids = np.random.randint(1, int(n * 0.05), size=n)
9
+ item_ids = np.random.randint(100, 200, size=n)
10
+
11
+ timestamps = np.random.randint(0, 100_000, size=n)
12
+ is_organic = np.random.choice([True, False], size=n)
13
+
14
+ df = pl.DataFrame(
15
+ {"uid": uids, "item_id": item_ids, "timestamp": timestamps, "is_organic": is_organic},
16
+ schema={"uid": pl.UInt32, "item_id": pl.UInt32, "timestamp": pl.UInt32, "is_organic": pl.UInt8},
17
+ )
18
+
19
+ df = df.sort(["uid", "timestamp"])
20
+
21
+ return df
22
+
23
+
24
+ def test_cross_check():
25
+ df = create_dataframe(10000)
26
+
27
+ q75_timestamp = int(df["timestamp"].quantile(0.75))
28
+
29
+ print(q75_timestamp)
30
+
31
+ flat_train, flat_val, flat_test = flat_split_train_val_test(
32
+ df.lazy(), test_timestamp=q75_timestamp, gap_size=1000, val_size=1000
33
+ )
34
+
35
+ assert flat_val is not None
36
+
37
+ df.group_by("uid", maintain_order=True).agg(pl.all().exclude("uid")).lazy()
38
+
39
+ seq_train, seq_val, seq_test = sequential_split_train_val_test(
40
+ df.group_by("uid", maintain_order=True).agg(pl.all().exclude("uid")).lazy(),
41
+ test_timestamp=q75_timestamp,
42
+ gap_size=1000,
43
+ val_size=1000,
44
+ )
45
+
46
+ assert seq_val is not None
47
+
48
+ assert seq_train.explode(pl.all().exclude("uid")).collect().equals(flat_train.collect())
49
+ assert seq_val.explode(pl.all().exclude("uid")).collect().equals(flat_val.collect())
50
+ assert seq_test.explode(pl.all().exclude("uid")).collect().equals(flat_test.collect())
benchmarks/yambda/__init__.py ADDED
File without changes
benchmarks/yambda/constants.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Constants:
2
+ HOUR_SECONDS = 60 * 60
3
+ DAY_SECONDS = 24 * HOUR_SECONDS
4
+
5
+ GAP_SIZE = HOUR_SECONDS // 2
6
+ VAL_SIZE = 1 * DAY_SECONDS
7
+ TEST_SIZE = 1 * DAY_SECONDS
8
+
9
+ LAST_TIMESTAMP = 26000000
10
+ TEST_TIMESTAMP = LAST_TIMESTAMP - TEST_SIZE
11
+
12
+ TRACK_LISTEN_THRESHOLD = 50
13
+
14
+ NUM_RANKED_ITEMS = 100
15
+
16
+ METRICS = [
17
+ "ndcg@10",
18
+ "ndcg@50",
19
+ "ndcg@100",
20
+ "dcg@10",
21
+ "dcg@50",
22
+ "dcg@100",
23
+ "recall@10",
24
+ "recall@50",
25
+ "recall@100",
26
+ "coverage@10",
27
+ "coverage@50",
28
+ "coverage@100",
29
+ ]
benchmarks/yambda/evaluation/__init__.py ADDED
File without changes
benchmarks/yambda/evaluation/metrics.py ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from abc import ABC, abstractmethod
4
+ from collections import defaultdict
5
+ from typing import Any, Iterable
6
+
7
+ import torch
8
+ from tqdm import tqdm
9
+
10
+ from .ranking import Ranked, Targets
11
+
12
+
13
+ def cut_off_ranked(ranked: Ranked, targets: Targets) -> Ranked:
14
+ mask = torch.isin(ranked.user_ids, targets.user_ids)
15
+
16
+ assert ranked.scores is not None
17
+
18
+ ranked = Ranked(
19
+ user_ids=ranked.user_ids[mask],
20
+ scores=ranked.scores[mask, :],
21
+ item_ids=ranked.item_ids[mask, :],
22
+ num_item_ids=ranked.num_item_ids,
23
+ )
24
+
25
+ assert ranked.item_ids.shape[0] == len(targets), "Ranked doesn't contain all targets.user_ids"
26
+
27
+ return ranked
28
+
29
+
30
+ class Metric(ABC):
31
+ @abstractmethod
32
+ def __call__(
33
+ self, ranked: Ranked | None, targets: Targets | None, target_mask: torch.Tensor | None, ks: Iterable[int]
34
+ ) -> dict[int, float]:
35
+ pass
36
+
37
+
38
+ class Recall(Metric):
39
+ def __call__(
40
+ self, ranked: Ranked | None, targets: Targets, target_mask: torch.Tensor, ks: Iterable[int]
41
+ ) -> dict[int, float]:
42
+ assert all(0 < k <= target_mask.shape[1] for k in ks)
43
+
44
+ values = {}
45
+
46
+ for k in ks:
47
+ num_positives = targets.lengths.to(torch.float32)
48
+ num_positives[num_positives == 0] = torch.inf
49
+
50
+ values[k] = target_mask[:, :k].to(torch.float32).sum(dim=-1) / num_positives
51
+
52
+ values[k] = torch.mean(values[k]).item()
53
+
54
+ return values
55
+
56
+
57
+ class Precision(Metric):
58
+ def __call__(
59
+ self, ranked: Ranked | None, targets: Targets | None, target_mask: torch.Tensor, ks: Iterable[int]
60
+ ) -> dict[int, float]:
61
+ assert all(0 < k <= target_mask.shape[1] for k in ks)
62
+
63
+ values = {}
64
+
65
+ for k in ks:
66
+ values[k] = target_mask[:, :k].to(torch.float32).sum(dim=-1) / k
67
+ values[k] = torch.mean(values[k]).item()
68
+
69
+ return values
70
+
71
+
72
+ class Coverage(Metric):
73
+ def __init__(self, cut_off_ranked: bool = False):
74
+ self.cut_off_ranked = cut_off_ranked
75
+
76
+ def __call__(
77
+ self, ranked: Ranked, targets: Targets | None, target_mask: torch.Tensor | None, ks: Iterable[int]
78
+ ) -> dict[int, float]:
79
+ if self.cut_off_ranked:
80
+ assert targets is not None
81
+ ranked = cut_off_ranked(ranked, targets)
82
+
83
+ assert all(0 < k <= ranked.item_ids.shape[1] for k in ks)
84
+
85
+ assert ranked.num_item_ids is not None
86
+
87
+ values = {}
88
+ for k in ks:
89
+ values[k] = ranked.item_ids[:, :k].flatten().unique().shape[0] / ranked.num_item_ids
90
+
91
+ return values
92
+
93
+
94
+ class MRR(Metric):
95
+ def __call__(
96
+ self, ranked: Ranked | None, targets: Targets, target_mask: torch.Tensor, ks: Iterable[int]
97
+ ) -> dict[int, float]:
98
+ assert all(0 < k <= target_mask.shape[1] for k in ks)
99
+
100
+ values = {}
101
+ for k in ks:
102
+ num_positives = targets.lengths.to(torch.float32)
103
+
104
+ indexes = torch.argmax(target_mask[:, :k].to(torch.float32), dim=-1).to(torch.float32) + 1
105
+ indexes[num_positives == 0] = torch.inf
106
+
107
+ rr = 1 / indexes
108
+
109
+ values[k] = torch.mean(rr).item()
110
+
111
+ return values
112
+
113
+
114
+ class DCG(Metric):
115
+ def __call__(
116
+ self, ranked: Ranked | None, targets: Targets | None, target_mask: torch.Tensor, ks: Iterable[int]
117
+ ) -> dict[int, float]:
118
+ assert all(0 < k <= target_mask.shape[1] for k in ks)
119
+
120
+ values = {}
121
+
122
+ discounts = 1.0 / torch.log2(
123
+ torch.arange(2, target_mask.shape[1] + 2, device=target_mask.device, dtype=torch.float32)
124
+ )
125
+
126
+ for k in ks:
127
+ dcg_k = torch.sum(target_mask[:, :k] * discounts[:k], dim=1)
128
+ values[k] = torch.mean(dcg_k).item()
129
+
130
+ return values
131
+
132
+
133
+ class NDCG(Metric):
134
+ def __call__(
135
+ self, ranked: Ranked | None, targets: Targets, target_mask: torch.Tensor, ks: Iterable[int]
136
+ ) -> dict[int, float]:
137
+ actual_dcg = DCG()(ranked, targets, target_mask, ks)
138
+
139
+ ideal_target_mask = (
140
+ torch.arange(target_mask.shape[1], device=targets.device)[None, :] < targets.lengths[:, None]
141
+ ).to(torch.float32)
142
+ assert target_mask.shape == ideal_target_mask.shape
143
+
144
+ ideal_dcg = DCG()(ranked, targets, ideal_target_mask, ks)
145
+
146
+ ndcg_values = {k: (actual_dcg[k] / ideal_dcg[k] if ideal_dcg[k] != 0 else 0.0) for k in ks}
147
+
148
+ return ndcg_values
149
+
150
+
151
+ REGISTERED_METRIC_FN = {
152
+ "recall": Recall(),
153
+ "precision": Precision(),
154
+ "mrr": MRR(),
155
+ "dcg": DCG(),
156
+ "ndcg": NDCG(),
157
+ "coverage": Coverage(cut_off_ranked=False),
158
+ }
159
+
160
+
161
+ def _parse_metrics(metric_names: list[str]) -> dict[str, list[int]]:
162
+ parsed_metrics = []
163
+
164
+ for metric in metric_names:
165
+ parts = metric.split('@')
166
+ name = parts[0]
167
+
168
+ assert len(parts) > 1, f"Invalid metric: {metric}, specify @k"
169
+
170
+ value = int(parts[1])
171
+ parsed_metrics.append((name, value))
172
+
173
+ metrics = defaultdict(list)
174
+ for m in parsed_metrics:
175
+ metrics[m[0]].append(m[1])
176
+
177
+ return metrics
178
+
179
+
180
+ def create_target_mask(ranked: Ranked, targets: Targets) -> torch.Tensor:
181
+ ranked = cut_off_ranked(ranked, targets)
182
+
183
+ assert ranked.device == targets.device
184
+ assert ranked.item_ids.shape[0] == len(targets)
185
+
186
+ target_mask = ranked.item_ids.new_zeros(ranked.item_ids.shape, dtype=torch.float32)
187
+
188
+ for i, target in enumerate(tqdm(targets.item_ids, desc="Making target mask")):
189
+ target_mask[i, torch.isin(ranked.item_ids[i], target)] = 1.0
190
+
191
+ return target_mask
192
+
193
+
194
+ def calc_metrics(ranked: Ranked, targets: Targets, metrics: list[str]) -> dict[str, Any]:
195
+ grouped_metrics = _parse_metrics(metrics)
196
+
197
+ result = {}
198
+
199
+ target_mask = create_target_mask(ranked, targets)
200
+
201
+ for name, ks in grouped_metrics.items():
202
+ result[name] = REGISTERED_METRIC_FN[name](ranked, targets, target_mask, ks=ks)
203
+
204
+ return result
benchmarks/yambda/evaluation/ranking.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from functools import cached_property
3
+
4
+ import numpy as np
5
+ import polars as pl
6
+ import torch
7
+ from tqdm import tqdm
8
+
9
+
10
+ @dataclasses.dataclass
11
+ class Embeddings:
12
+ ids: torch.Tensor
13
+ embeddings: torch.Tensor
14
+
15
+ def __post_init__(self):
16
+ assert self.ids.dim() == 1
17
+ assert self.embeddings.dim() == 2
18
+ assert self.ids.shape[0] == self.embeddings.shape[0]
19
+
20
+ assert self.ids.device == self.embeddings.device
21
+
22
+ if not torch.all(self.ids[:-1] <= self.ids[1:]):
23
+ indexes = torch.argsort(self.ids, descending=False)
24
+ self.embeddings = self.embeddings[indexes, :]
25
+ self.ids = self.ids[indexes]
26
+
27
+ assert torch.all(self.ids[:-1] < self.ids[1:]), "ids should be unique"
28
+
29
+ @property
30
+ def device(self):
31
+ return self.ids.device
32
+
33
+ def save(self, file_path: str):
34
+ ids_np = self.ids.cpu().numpy()
35
+ embeddings_np = self.embeddings.cpu().numpy()
36
+ np.savez(file_path, ids=ids_np, embeddings=embeddings_np)
37
+
38
+ @classmethod
39
+ def load(cls, file_path: str, device: torch.device = torch.device('cpu')) -> 'Embeddings':
40
+ with np.load(file_path) as data:
41
+ ids_np = data['ids']
42
+ embeddings_np = data['embeddings']
43
+
44
+ ids = torch.from_numpy(ids_np).to(device)
45
+ embeddings = torch.from_numpy(embeddings_np).to(device)
46
+
47
+ return cls(ids=ids, embeddings=embeddings)
48
+
49
+
50
+ @dataclasses.dataclass
51
+ class Targets:
52
+ user_ids: torch.Tensor
53
+ item_ids: list[torch.Tensor]
54
+
55
+ def __post_init__(self):
56
+ assert len(self.item_ids) > 0
57
+ assert self.user_ids.dim() == 1
58
+ assert self.user_ids.shape[0] == len(self.item_ids)
59
+ assert all(x.dim() == 1 for x in self.item_ids), "all ids should be 1D"
60
+
61
+ assert all(x.device == self.item_ids[0].device for x in self.item_ids), "all ids should be on the same device"
62
+ assert self.user_ids.device == self.item_ids[0].device
63
+
64
+ if not torch.all(self.user_ids[:-1] <= self.user_ids[1:]):
65
+ indexes = torch.argsort(self.user_ids, descending=False)
66
+ self.item_ids = [self.item_ids[i] for i in indexes]
67
+ self.user_ids = self.user_ids[indexes]
68
+
69
+ assert torch.all(self.user_ids[:-1] < self.user_ids[1:]), "user_ids should be unique"
70
+
71
+ @cached_property
72
+ def lengths(self):
73
+ return torch.tensor([ids.shape[0] for ids in self.item_ids], device=self.item_ids[0].device)
74
+
75
+ def __len__(self):
76
+ return len(self.item_ids)
77
+
78
+ @property
79
+ def device(self):
80
+ return self.user_ids.device
81
+
82
+ @classmethod
83
+ def from_sequential(cls, df: pl.LazyFrame | pl.DataFrame, device: torch.device | str) -> 'Targets':
84
+ df = df.lazy()
85
+ return cls(
86
+ df.select("uid").collect()["uid"].to_torch().to(device),
87
+ [torch.tensor(x, device=device) for x in df.select("item_id").collect()["item_id"].to_list()],
88
+ )
89
+
90
+
91
+ @dataclasses.dataclass
92
+ class Ranked:
93
+ user_ids: torch.Tensor
94
+ item_ids: torch.Tensor
95
+ scores: torch.Tensor | None = None
96
+
97
+ num_item_ids: int | None = None # number of all items. Useful for coverage and etc.
98
+
99
+ def __post_init__(self):
100
+ if self.scores is None:
101
+ self.scores = torch.arange(
102
+ self.item_ids.shape[1], 0, -1, device=self.item_ids.device, dtype=torch.float32
103
+ ).expand((self.user_ids.shape[0], self.item_ids.shape[1]))
104
+
105
+ assert self.user_ids.dim() == 1
106
+ assert self.scores.dim() == 2
107
+ assert self.scores.shape == self.item_ids.shape
108
+ assert self.user_ids.shape[0] == self.scores.shape[0]
109
+
110
+ assert self.user_ids.device == self.scores.device == self.item_ids.device
111
+
112
+ assert torch.all(self.scores[:, :-1] >= self.scores[:, 1:]), "scores should be sorted"
113
+
114
+ if not torch.all(self.user_ids[:-1] <= self.user_ids[1:]):
115
+ indexes = torch.argsort(self.user_ids, descending=False)
116
+ self.item_ids = self.item_ids[indexes, :]
117
+ self.scores = self.scores[indexes, :]
118
+
119
+ @property
120
+ def device(self):
121
+ return self.user_ids.device
122
+
123
+
124
+ def rank_items(users: Embeddings, items: Embeddings, num_items: int, batch_size: int = 128) -> Ranked:
125
+ assert users.device == items.device
126
+
127
+ num_users = users.ids.shape[0]
128
+
129
+ scores = users.embeddings.new_empty((num_users, num_items))
130
+ item_ids = users.embeddings.new_empty((num_users, num_items), dtype=torch.long)
131
+
132
+ for batch_idx in tqdm(range((num_users + batch_size - 1) // batch_size), desc="Calc topk by batches"):
133
+ start_idx = batch_idx * batch_size
134
+ end_idx = (batch_idx + 1) * batch_size
135
+
136
+ batch_scores = users.embeddings[start_idx:end_idx, :] @ items.embeddings.T
137
+
138
+ sort_indices = batch_scores.topk(num_items, dim=-1).indices
139
+ scores[start_idx:end_idx, :] = torch.gather(batch_scores, dim=-1, index=sort_indices)
140
+
141
+ item_ids[start_idx:end_idx, :] = torch.gather(
142
+ items.ids.expand(sort_indices.shape[0], items.ids.shape[0]), dim=-1, index=sort_indices
143
+ )
144
+
145
+ return Ranked(user_ids=users.ids, item_ids=item_ids, scores=scores, num_item_ids=items.ids.shape[0])
benchmarks/yambda/processing/__init__.py ADDED
File without changes
benchmarks/yambda/processing/chunk_read.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Any, Generator
3
+
4
+ import polars as pl
5
+ import torch
6
+
7
+
8
+ # https://github.com/pola-rs/polars/issues/10683
9
+ def iter_slices(df: pl.LazyFrame, batch_size: int) -> Generator[pl.DataFrame, None, None]:
10
+ assert isinstance(df, pl.LazyFrame), "df must be a LazyFrame"
11
+
12
+ def get_batch(df: pl.LazyFrame, offset: int, batch_size: int) -> pl.DataFrame:
13
+ batch = df.slice(offset, batch_size)
14
+ batch = batch.collect()
15
+ return batch
16
+
17
+ batch = get_batch(df, 0, batch_size)
18
+
19
+ yield batch
20
+
21
+ offset = len(batch)
22
+ if offset:
23
+ while True:
24
+ batch = get_batch(df, offset, batch_size)
25
+ len_ = len(batch)
26
+ if len_:
27
+ offset += len_
28
+ yield batch
29
+ else:
30
+ break
31
+
32
+
33
+ def iter_rows(df: pl.LazyFrame, batch_size: int) -> Generator[dict[str, Any], None, None]:
34
+ for batch in iter_slices(df, batch_size):
35
+ for row in batch.iter_rows(named=True):
36
+ yield row
37
+
38
+
39
+ class YambdaIterableDataset(torch.utils.data.IterableDataset):
40
+ def __init__(self, df: pl.LazyFrame | pl.DataFrame):
41
+ super().__init__()
42
+
43
+ self.start = 0
44
+ self.end = df.lazy().select(pl.len()).collect().item()
45
+
46
+ self.df = df.lazy()
47
+
48
+ def __iter__(self):
49
+ worker_info = torch.utils.data.get_worker_info()
50
+
51
+ df = self.df
52
+
53
+ start = self.start
54
+ end = self.end
55
+
56
+ if worker_info is not None:
57
+ per_worker = int(math.ceil((self.end - self.start) / float(worker_info.num_workers)))
58
+ worker_id = worker_info.id
59
+ start = self.start + worker_id * per_worker
60
+ end = min(start + per_worker, self.end)
61
+
62
+ df_slice = df.slice(start, end - start)
63
+
64
+ for row in iter_rows(df_slice, 2048):
65
+ yield row
66
+
67
+
68
+ def get_default_dataloader(dataset: YambdaIterableDataset, collator, batch_size: int):
69
+ return torch.utils.data.DataLoader(
70
+ dataset,
71
+ multiprocessing_context="spawn",
72
+ num_workers=3,
73
+ prefetch_factor=10,
74
+ batch_size=batch_size,
75
+ collate_fn=collator,
76
+ pin_memory=True,
77
+ pin_memory_device="cuda",
78
+ persistent_workers=True,
79
+ )
benchmarks/yambda/processing/timesplit.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import polars as pl
2
+
3
+ from ..constants import Constants
4
+
5
+
6
+ def flat_split_train_val_test(
7
+ df: pl.LazyFrame,
8
+ test_timestamp: int,
9
+ val_size: int = 0,
10
+ gap_size: int = Constants.GAP_SIZE,
11
+ drop_non_train_items: bool = False,
12
+ engine: str = "streaming",
13
+ ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
14
+ """
15
+ Splits the dataset into training, validation, and test segments based on the provided timestamps.
16
+
17
+ The segments are defined as follows:
18
+ - Training set: [0, test_timestamp - gap_size - val_size - gap_size) if val_size != 0,
19
+ otherwise [0, test_timestamp - gap_size)
20
+ - Validation set: [test_timestamp - val_size - gap_size, test_timestamp - gap_size), if val_size != 0
21
+ - Test set: [test_timestamp, +inf)
22
+
23
+ It retains only those users and items in the validation and test sets that exist in the training set.
24
+
25
+ Parameters:
26
+ ----------
27
+ df : LazyFrame
28
+ The dataset in Polars' LazyFrame format.
29
+ test_timestamp : int | None
30
+ The timestamp marking the start of the test set;
31
+ val_size : int | None
32
+ The size of validation. If 0, no validation set is created.
33
+ gap_size : int
34
+ The duration of gap between training and validation/test sets.
35
+ drop_non_train_items : bool
36
+ Whether to drop items that are not in the training set.
37
+
38
+ Returns:
39
+ -------
40
+ tuple[LazyFrame, LazyFrame | None, LazyFrame]
41
+ A tuple containing LazyFrames for the training, validation (if applicable), and test sets.
42
+ """
43
+
44
+ def drop(df: pl.LazyFrame, unique_train_item_ids) -> pl.LazyFrame:
45
+ if not drop_non_train_items:
46
+ return df
47
+
48
+ return (
49
+ df.with_columns(
50
+ pl.col("item_id").is_in(unique_train_item_ids.get_column("item_id").implode()).alias("item_id_in_train")
51
+ )
52
+ .filter("item_id_in_train")
53
+ .drop("item_id_in_train")
54
+ )
55
+
56
+ train_timestamp = test_timestamp - gap_size - val_size - (gap_size if val_size != 0 else 0)
57
+
58
+ assert gap_size >= 0
59
+ assert val_size >= 0
60
+ assert train_timestamp > 0
61
+
62
+ df_lazy = df.lazy()
63
+
64
+ train = df_lazy.filter(pl.col("timestamp") < train_timestamp)
65
+
66
+ unique_train_uids = train.select("uid").unique().collect(engine=engine)
67
+ unique_train_item_ids = train.select("item_id").unique().collect(engine=engine)
68
+
69
+ validation = None
70
+ if val_size != 0:
71
+ validation = (
72
+ df_lazy.filter(
73
+ (pl.col("timestamp") >= test_timestamp - val_size - gap_size)
74
+ & (pl.col("timestamp") < test_timestamp - gap_size)
75
+ )
76
+ #
77
+ .with_columns(
78
+ pl.col("uid").is_in(unique_train_uids.get_column("uid").implode()).alias("uid_in_train")
79
+ ) # to prevent filter reordering
80
+ .filter("uid_in_train")
81
+ .drop("uid_in_train")
82
+ )
83
+
84
+ validation = drop(validation, unique_train_item_ids)
85
+
86
+ test = (
87
+ df_lazy.filter(pl.col("timestamp") >= test_timestamp)
88
+ #
89
+ .with_columns(
90
+ pl.col("uid").is_in(unique_train_uids.get_column("uid").implode()).alias("uid_in_train")
91
+ ) # to prevent filter reordering
92
+ .filter("uid_in_train")
93
+ .drop("uid_in_train")
94
+ )
95
+
96
+ test = drop(test, unique_train_item_ids)
97
+
98
+ return train, validation, test
99
+
100
+
101
+ def sequential_split_train_val_test(
102
+ df: pl.LazyFrame,
103
+ test_timestamp: int,
104
+ val_size: int = 0,
105
+ gap_size: int = Constants.GAP_SIZE,
106
+ drop_non_train_items: bool = False,
107
+ engine: str = "streaming",
108
+ ) -> tuple[pl.LazyFrame, pl.LazyFrame | None, pl.LazyFrame]:
109
+ """
110
+ Splits the dataset into training, validation, and test segments based on the provided timestamps.
111
+
112
+ The segments are defined as follows:
113
+ - Training set: [0, test_timestamp - gap_size - val_size - gap_size) if val_size != 0,
114
+ otherwise [0, test_timestamp - gap_size)
115
+ - Validation set: [test_timestamp - val_size - gap_size, test_timestamp - gap_size), if val_size != 0
116
+ - Test set: [test_timestamp, +inf)
117
+
118
+ It retains only those users and items in the validation and test sets that exist in the training set.
119
+
120
+ Parameters:
121
+ ----------
122
+ df : LazyFrame
123
+ The dataset in Polars' LazyFrame format.
124
+ test_timestamp : int | None
125
+ The timestamp marking the start of the test set;
126
+ val_size : int | None
127
+ The size of validation. If 0, no validation set is created.
128
+ gap_size : int
129
+ The duration of gap between training and validation/test sets.
130
+ drop_non_train_items : bool
131
+ Whether to drop items that are not in the training set.
132
+
133
+ Returns:
134
+ -------
135
+ tuple[LazyFrame, LazyFrame | None, LazyFrame]
136
+ A tuple containing LazyFrames for the training, validation (if applicable), and test sets.
137
+ """
138
+
139
+ def drop(df: pl.LazyFrame, unique_train_item_ids) -> pl.LazyFrame:
140
+ if not drop_non_train_items:
141
+ return df
142
+
143
+ return df.select(
144
+ "uid",
145
+ pl.all()
146
+ .exclude("uid")
147
+ .list.gather(
148
+ pl.col("item_id").list.eval(
149
+ pl.arg_where(pl.element().is_in(unique_train_item_ids.get_column("item_id").implode()))
150
+ )
151
+ ),
152
+ ).filter(pl.col("item_id").list.len() > 0)
153
+
154
+ train_timestamp = test_timestamp - gap_size - val_size - (gap_size if val_size != 0 else 0)
155
+
156
+ assert gap_size >= 0
157
+ assert val_size >= 0
158
+ assert train_timestamp > 0
159
+
160
+ df_lazy = df.lazy()
161
+
162
+ train = df_lazy.select(
163
+ "uid",
164
+ pl.all()
165
+ .exclude("uid")
166
+ .list.gather(pl.col("timestamp").list.eval(pl.arg_where(pl.element() < train_timestamp))),
167
+ ).filter(pl.col("item_id").list.len() > 0)
168
+
169
+ unique_train_uids = train.select("uid").unique().collect(engine=engine)
170
+ unique_train_item_ids = train.explode("item_id").select("item_id").unique().collect(engine=engine)
171
+
172
+ validation = None
173
+ if val_size != 0:
174
+ validation = (
175
+ df_lazy.select(
176
+ "uid",
177
+ pl.all()
178
+ .exclude("uid")
179
+ .list.gather(
180
+ pl.col("timestamp").list.eval(
181
+ pl.arg_where(
182
+ (pl.element() >= test_timestamp - val_size - gap_size)
183
+ & (pl.element() < test_timestamp - gap_size)
184
+ )
185
+ )
186
+ ),
187
+ )
188
+ .with_columns(
189
+ pl.col("uid").is_in(unique_train_uids.get_column("uid").implode()).alias("uid_in_train")
190
+ ) # to prevent filter reordering
191
+ .filter("uid_in_train")
192
+ .drop("uid_in_train")
193
+ )
194
+
195
+ validation = drop(validation, unique_train_item_ids).filter(pl.col("item_id").list.len() > 0)
196
+
197
+ test = (
198
+ df_lazy.select(
199
+ "uid",
200
+ pl.all()
201
+ .exclude("uid")
202
+ .list.gather(pl.col("timestamp").list.eval(pl.arg_where(pl.element() >= test_timestamp))),
203
+ )
204
+ #
205
+ .with_columns(
206
+ pl.col("uid").is_in(unique_train_uids.get_column("uid").implode()).alias("uid_in_train")
207
+ ) # to prevent filter reordering
208
+ .filter("uid_in_train")
209
+ .drop("uid_in_train")
210
+ )
211
+
212
+ test = drop(test, unique_train_item_ids).filter(pl.col("item_id").list.len() > 0)
213
+
214
+ return train, validation, test
benchmarks/yambda/utils.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import functools
2
+ from typing import Any
3
+
4
+
5
+ def sum_dicts(d1: dict[Any, Any], d2: dict[Any, Any]) -> dict[Any, Any]:
6
+ if len(d1) == 0:
7
+ return d2
8
+ if len(d2) == 0:
9
+ return d1
10
+
11
+ if d1.keys() != d2.keys():
12
+ raise ValueError("Keys do not match.")
13
+
14
+ result = {}
15
+ for key in d1:
16
+ assert isinstance(d1, type(d2))
17
+
18
+ if isinstance(d1[key], dict) and isinstance(d2[key], dict):
19
+ result[key] = sum_dicts(d1[key], d2[key])
20
+ else:
21
+ result[key] = d1[key] + d2[key]
22
+
23
+ return result
24
+
25
+
26
+ def divide_dict(d: dict[Any, Any], denom: float) -> dict[Any, Any]:
27
+ result = {}
28
+ for key in d:
29
+ if isinstance(d[key], dict):
30
+ result[key] = divide_dict(d[key], denom)
31
+ else:
32
+ result[key] = d[key] / denom
33
+
34
+ return result
35
+
36
+
37
+ def mean_dicts(arr: list[dict[Any, Any]]) -> dict[Any, Any]:
38
+ return divide_dict(functools.reduce(sum_dicts, arr), len(arr))
39
+
40
+
41
+ def argmax(a: list[Any], key=lambda x: x) -> Any:
42
+ return max(range(len(a)), key=lambda x: key(a[x]))