Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
yambda / README.md
tytskiy's picture
Update README.md
7ec4728 verified
---
license: apache-2.0
tags:
- recsys
- retrieval
- dataset
pretty_name: Yambda-5B
size_categories:
- 1B<n<10B
configs:
- config_name: flat-50m
data_files:
# - flat/50m/likes.parquet
# - flat/50m/listens.parquet
# - flat/50m/unlikes.parquet
- flat/50m/multi_event.parquet
# - flat/50m/dislikes.parquet
# - flat/50m/undislikes.parquet
- config_name: flat-500m
data_files:
# - flat/500m/likes.parquet
# - flat/500m/listens.parquet
# - flat/500m/unlikes.parquet
- flat/500m/multi_event.parquet
# - flat/500m/dislikes.parquet
# - flat/500m/undislikes.parquet
- config_name: flat-5b
data_files:
# - flat/5b/likes.parquet
# - flat/5b/listens.parquet
# - flat/5b/unlikes.parquet
- flat/5b/multi_event.parquet
# - flat/5b/dislikes.parquet
# - flat/5b/undislikes.parquet
# - config_name: sequential-50m
# data_files:
# - sequential/50m/likes.parquet
# - sequential/50m/listens.parquet
# - sequential/50m/unlikes.parquet
# - sequential/50m/multi_event.parquet
# - sequential/50m/dislikes.parquet
# - sequential/50m/undislikes.parquet
# - config_name: sequential-500m
# data_files:
# - sequential/500m/likes.parquet
# - sequential/500m/listens.parquet
# - sequential/500m/unlikes.parquet
# - sequential/500m/multi_event.parquet
# - sequential/500m/dislikes.parquet
# - sequential/500m/undislikes.parquet
# - config_name: sequential-5b
# data_files:
# - sequential/5b/likes.parquet
# - sequential/5b/listens.parquet
# - sequential/5b/unlikes.parquet
# - sequential/5b/multi_event.parquet
# - sequential/5b/dislikes.parquet
# - sequential/5b/undislikes.parquet
---
# Yambda-5B — A Large-Scale Multi-modal Dataset for Ranking And Retrieval
**Industrial-scale music recommendation dataset with organic/recommendation interactions and audio embeddings**
[📌 Overview](#overview) • [🔑 Key Features](#key-features) • [📊 Statistics](#statistics) • [📝 Format](#data-format) • [🏆 Benchmark](#benchmark) • [⬇️ Download](#download) • [❓ FAQ](#faq)
## Overview
The Yambda-5B dataset is a large-scale open database comprising **4.79 billion user-item interactions** collected from **1 million users** and spanning **9.39 million tracks**. The dataset includes both implicit feedback, such as listening events, and explicit feedback, in the form of likes and dislikes. Additionally, it provides distinctive markers for organic versus recommendation-driven interactions, along with precomputed audio embeddings to facilitate content-aware recommendation systems.
Preprint: https://arxiv.org/abs/2505.22238
## Key Features
- 🎵 4.79B user-music interactions (listens, likes, dislikes, unlikes, undislikes)
- 🕒 Timestamps with global temporal ordering
- 🔊 Audio embeddings for 7.72M tracks
- 💡 Organic and recommendation-driven interactions
- 📈 Multiple dataset scales (50M, 500M, 5B interactions)
- 🧪 Standardized evaluation protocol with baseline benchmarks
## About Dataset
### Statistics
| Dataset | Users | Items | Listens | Likes | Dislikes |
|-------------|----------:|----------:|--------------:|-----------:|-----------:|
| Yambda-50M | 10,000 | 934,057 | 46,467,212 | 881,456 | 107,776 |
| Yambda-500M | 100,000 | 3,004,578 | 466,512,103 | 9,033,960 | 1,128,113 |
| Yambda-5B | 1,000,000 | 9,390,623 | 4,649,567,411 | 89,334,605 | 11,579,143 |
### User History Length Distribution
![user history length](assets/img/user_history_len.png "User History Length")
![user history length log-scale](assets/img/user_history_log_len.png "User History Length Log-scale")
### Item Interaction Count
![item interaction count log-scale](assets/img/item_interactions.png "Item Interaction Count Log-scale")
## Data Format
### File Descriptions
| File | Description | Schema |
|----------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|
| `listens.parquet` | User listening events with playback details | `uid`, `item_id`, `timestamp`, `is_organic`, `played_ratio_pct`, `track_length_seconds` |
| `likes.parquet` | User like actions | `uid`, `item_id`, `timestamp`, `is_organic` |
| `dislikes.parquet` | User dislike actions | `uid`, `item_id`, `timestamp`, `is_organic` |
| `undislikes.parquet` | User undislike actions (reverting dislikes) | `uid`, `item_id`, `timestamp`, `is_organic` |
| `unlikes.parquet` | User unlike actions (reverting likes) | `uid`, `item_id`, `timestamp`, `is_organic` |
| `embeddings.parquet` | Track audio-embeddings | `item_id`, `embed`, `normalized_embed` |
### Common Event Structure (Homogeneous)
Most event files (`listens`, `likes`, `dislikes`, `undislikes`, `unlikes`) share this base structure:
| Field | Type | Description |
|--------------|--------|-------------------------------------------------------------------------------------|
| `uid` | uint32 | Unique user identifier |
| `item_id` | uint32 | Unique track identifier |
| `timestamp` | uint32 | Delta times, binned into 5s units. |
| `is_organic` | uint8 | Boolean flag (0/1) indicating if the interaction was algorithmic (0) or organic (1) |
**Sorting**: All files are sorted by (`uid`, `timestamp`) in ascending order.
### Unified Event Structure (Heterogeneous)
For applications needing all event types in a unified format:
| Field | Type | Description |
|------------------------|-------------------|---------------------------------------------------------------|
| `uid` | uint32 | Unique user identifier |
| `item_id` | uint32 | Unique track identifier |
| `timestamp` | uint32 | Timestamp binned into 5s units.granularity |
| `is_organic` | uint8 | Boolean flag for organic interactions |
| `event_type` | enum | One of: `listen`, `like`, `dislike`, `unlike`, `undislike` |
| `played_ratio_pct` | Optional[uint16] | Percentage of track played (1-100), null for non-listen events |
| `track_length_seconds` | Optional[uint32] | Total track duration in seconds, null for non-listen events |
**Notes**:
- `played_ratio_pct` and `track_length_seconds` are non-null **only** when `event_type = "listen"`
- All fields except the two above are guaranteed non-null
### Sequential (Aggregated) Format
Each dataset is also available in a user-aggregated sequential format with the following structure:
| Field | Type | Description |
|--------------|--------------|--------------------------------------------------|
| `uid` | uint32 | Unique user identifier |
| `item_ids` | List[uint32] | Chronological list of interacted track IDs |
| `timestamps` | List[uint32] | Corresponding interaction timestamps |
| `is_organic` | List[uint8] | Corresponding organic flags for each interaction |
| `played_ratio_pct` | List[Optional[uint16]] | (Only in `listens` and `multi_event`) Play percentages |
| `track_length_seconds` | List[Optional[uint32]] | (Only in `listens` and `multi_event`) Track durations |
**Notes**:
- All lists maintain chronological order
- For each user, `len(item_ids) == len(timestamps) == len(is_organic)`
- In multi-event format, null values are preserved in respective lists
## Benchmark
Code for the baseline models can be found in `benchmarks/` directory, see [Reproducibility Guide](benchmarks/README.md)
### Download
Simplest way:
```python
from datasets import load_dataset
ds = load_dataset("yandex/yambda", data_dir="flat/50m", data_files="likes.parquet")
```
Also, we provide simple wrapper for convenient usage:
```python
from typing import Literal
from datasets import Dataset, DatasetDict, load_dataset
class YambdaDataset:
INTERACTIONS = frozenset([
"likes", "listens", "multi_event", "dislikes", "unlikes", "undislikes"
])
def __init__(
self,
dataset_type: Literal["flat", "sequential"] = "flat",
dataset_size: Literal["50m", "500m", "5b"] = "50m"
):
assert dataset_type in {"flat", "sequential"}
assert dataset_size in {"50m", "500m", "5b"}
self.dataset_type = dataset_type
self.dataset_size = dataset_size
def interaction(self, event_type: Literal[
"likes", "listens", "multi_event", "dislikes", "unlikes", "undislikes"
]) -> Dataset:
assert event_type in YambdaDataset.INTERACTIONS
return self._download(f"{self.dataset_type}/{self.dataset_size}", event_type)
def audio_embeddings(self) -> Dataset:
return self._download("", "embeddings")
def album_item_mapping(self) -> Dataset:
return self._download("", "album_item_mapping")
def artist_item_mapping(self) -> Dataset:
return self._download("", "artist_item_mapping")
@staticmethod
def _download(data_dir: str, file: str) -> Dataset:
data = load_dataset("yandex/yambda", data_dir=data_dir, data_files=f"{file}.parquet")
# Returns DatasetDict; extracting the only split
assert isinstance(data, DatasetDict)
return data["train"]
dataset = YambdaDataset("flat", "50m")
likes = dataset.interaction("likes") # returns a HuggingFace Dataset
```
## FAQ
### Are test items presented in training data?
Not all, some test items do appear in the training set, others do not.
### Are test users presented in training data?
Yes, there are no cold users in the test set.
### How are audio embeddings generated?
Using a convolutional neural network inspired by Contrastive Learning of Musical Representations (J. Spijkervet et al., 2021).
### What's the `is_organic` flag?
Indicates whether interactions occurred through organic discovery (True) or recommendation-driven pathways (False)
### Which events are considered recommendation-driven?
Recommendation events include actions from:
- Personalized music feed
- Personalized playlists
### What counts as a "listened" track or \\(Listen_+\\)?
A track is considered "listened" if over 50% of its duration is played.
### What does it mean when played_ratio_pct is greater than 100?
A played_ratio_pct greater than 100% indicates that the user rewound and
replayed sections of the track—so the total time listened exceeds the original track length.
These values are expected behavior and not log noise. See [discussion](https://huggingface.co/datasets/yandex/yambda/discussions/10)