|
--- |
|
license: apache-2.0 |
|
tags: |
|
- recsys |
|
- retrieval |
|
- dataset |
|
pretty_name: Yambda-5B |
|
size_categories: |
|
- 1B<n<10B |
|
|
|
configs: |
|
- config_name: flat-50m |
|
data_files: |
|
|
|
|
|
|
|
- flat/50m/multi_event.parquet |
|
|
|
|
|
- config_name: flat-500m |
|
data_files: |
|
|
|
|
|
|
|
- flat/500m/multi_event.parquet |
|
|
|
|
|
- config_name: flat-5b |
|
data_files: |
|
|
|
|
|
|
|
- flat/5b/multi_event.parquet |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
--- |
|
|
|
# Yambda-5B — A Large-Scale Multi-modal Dataset for Ranking And Retrieval |
|
|
|
**Industrial-scale music recommendation dataset with organic/recommendation interactions and audio embeddings** |
|
|
|
[📌 Overview](#overview) • [🔑 Key Features](#key-features) • [📊 Statistics](#statistics) • [📝 Format](#data-format) • [🏆 Benchmark](#benchmark) • [⬇️ Download](#download) • [❓ FAQ](#faq) |
|
|
|
## Overview |
|
|
|
The Yambda-5B dataset is a large-scale open database comprising **4.79 billion user-item interactions** collected from **1 million users** and spanning **9.39 million tracks**. The dataset includes both implicit feedback, such as listening events, and explicit feedback, in the form of likes and dislikes. Additionally, it provides distinctive markers for organic versus recommendation-driven interactions, along with precomputed audio embeddings to facilitate content-aware recommendation systems. |
|
|
|
Preprint: https://arxiv.org/abs/2505.22238 |
|
|
|
## Key Features |
|
|
|
- 🎵 4.79B user-music interactions (listens, likes, dislikes, unlikes, undislikes) |
|
- 🕒 Timestamps with global temporal ordering |
|
- 🔊 Audio embeddings for 7.72M tracks |
|
- 💡 Organic and recommendation-driven interactions |
|
- 📈 Multiple dataset scales (50M, 500M, 5B interactions) |
|
- 🧪 Standardized evaluation protocol with baseline benchmarks |
|
|
|
## About Dataset |
|
|
|
### Statistics |
|
|
|
| Dataset | Users | Items | Listens | Likes | Dislikes | |
|
|-------------|----------:|----------:|--------------:|-----------:|-----------:| |
|
| Yambda-50M | 10,000 | 934,057 | 46,467,212 | 881,456 | 107,776 | |
|
| Yambda-500M | 100,000 | 3,004,578 | 466,512,103 | 9,033,960 | 1,128,113 | |
|
| Yambda-5B | 1,000,000 | 9,390,623 | 4,649,567,411 | 89,334,605 | 11,579,143 | |
|
|
|
### User History Length Distribution |
|
|
|
 |
|
|
|
 |
|
|
|
### Item Interaction Count |
|
|
|
 |
|
|
|
## Data Format |
|
|
|
### File Descriptions |
|
|
|
| File | Description | Schema | |
|
|----------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------| |
|
| `listens.parquet` | User listening events with playback details | `uid`, `item_id`, `timestamp`, `is_organic`, `played_ratio_pct`, `track_length_seconds` | |
|
| `likes.parquet` | User like actions | `uid`, `item_id`, `timestamp`, `is_organic` | |
|
| `dislikes.parquet` | User dislike actions | `uid`, `item_id`, `timestamp`, `is_organic` | |
|
| `undislikes.parquet` | User undislike actions (reverting dislikes) | `uid`, `item_id`, `timestamp`, `is_organic` | |
|
| `unlikes.parquet` | User unlike actions (reverting likes) | `uid`, `item_id`, `timestamp`, `is_organic` | |
|
| `embeddings.parquet` | Track audio-embeddings | `item_id`, `embed`, `normalized_embed` | |
|
|
|
### Common Event Structure (Homogeneous) |
|
|
|
Most event files (`listens`, `likes`, `dislikes`, `undislikes`, `unlikes`) share this base structure: |
|
|
|
| Field | Type | Description | |
|
|--------------|--------|-------------------------------------------------------------------------------------| |
|
| `uid` | uint32 | Unique user identifier | |
|
| `item_id` | uint32 | Unique track identifier | |
|
| `timestamp` | uint32 | Delta times, binned into 5s units. | |
|
| `is_organic` | uint8 | Boolean flag (0/1) indicating if the interaction was algorithmic (0) or organic (1) | |
|
|
|
**Sorting**: All files are sorted by (`uid`, `timestamp`) in ascending order. |
|
|
|
### Unified Event Structure (Heterogeneous) |
|
|
|
For applications needing all event types in a unified format: |
|
|
|
| Field | Type | Description | |
|
|------------------------|-------------------|---------------------------------------------------------------| |
|
| `uid` | uint32 | Unique user identifier | |
|
| `item_id` | uint32 | Unique track identifier | |
|
| `timestamp` | uint32 | Timestamp binned into 5s units.granularity | |
|
| `is_organic` | uint8 | Boolean flag for organic interactions | |
|
| `event_type` | enum | One of: `listen`, `like`, `dislike`, `unlike`, `undislike` | |
|
| `played_ratio_pct` | Optional[uint16] | Percentage of track played (1-100), null for non-listen events | |
|
| `track_length_seconds` | Optional[uint32] | Total track duration in seconds, null for non-listen events | |
|
|
|
**Notes**: |
|
|
|
- `played_ratio_pct` and `track_length_seconds` are non-null **only** when `event_type = "listen"` |
|
- All fields except the two above are guaranteed non-null |
|
|
|
### Sequential (Aggregated) Format |
|
|
|
Each dataset is also available in a user-aggregated sequential format with the following structure: |
|
|
|
| Field | Type | Description | |
|
|--------------|--------------|--------------------------------------------------| |
|
| `uid` | uint32 | Unique user identifier | |
|
| `item_ids` | List[uint32] | Chronological list of interacted track IDs | |
|
| `timestamps` | List[uint32] | Corresponding interaction timestamps | |
|
| `is_organic` | List[uint8] | Corresponding organic flags for each interaction | |
|
| `played_ratio_pct` | List[Optional[uint16]] | (Only in `listens` and `multi_event`) Play percentages | |
|
| `track_length_seconds` | List[Optional[uint32]] | (Only in `listens` and `multi_event`) Track durations | |
|
|
|
**Notes**: |
|
|
|
- All lists maintain chronological order |
|
- For each user, `len(item_ids) == len(timestamps) == len(is_organic)` |
|
- In multi-event format, null values are preserved in respective lists |
|
|
|
## Benchmark |
|
|
|
Code for the baseline models can be found in `benchmarks/` directory, see [Reproducibility Guide](benchmarks/README.md) |
|
|
|
### Download |
|
|
|
Simplest way: |
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset("yandex/yambda", data_dir="flat/50m", data_files="likes.parquet") |
|
``` |
|
|
|
Also, we provide simple wrapper for convenient usage: |
|
```python |
|
from typing import Literal |
|
from datasets import Dataset, DatasetDict, load_dataset |
|
|
|
class YambdaDataset: |
|
INTERACTIONS = frozenset([ |
|
"likes", "listens", "multi_event", "dislikes", "unlikes", "undislikes" |
|
]) |
|
|
|
def __init__( |
|
self, |
|
dataset_type: Literal["flat", "sequential"] = "flat", |
|
dataset_size: Literal["50m", "500m", "5b"] = "50m" |
|
): |
|
assert dataset_type in {"flat", "sequential"} |
|
assert dataset_size in {"50m", "500m", "5b"} |
|
self.dataset_type = dataset_type |
|
self.dataset_size = dataset_size |
|
|
|
def interaction(self, event_type: Literal[ |
|
"likes", "listens", "multi_event", "dislikes", "unlikes", "undislikes" |
|
]) -> Dataset: |
|
assert event_type in YambdaDataset.INTERACTIONS |
|
return self._download(f"{self.dataset_type}/{self.dataset_size}", event_type) |
|
|
|
def audio_embeddings(self) -> Dataset: |
|
return self._download("", "embeddings") |
|
|
|
def album_item_mapping(self) -> Dataset: |
|
return self._download("", "album_item_mapping") |
|
|
|
def artist_item_mapping(self) -> Dataset: |
|
return self._download("", "artist_item_mapping") |
|
|
|
@staticmethod |
|
def _download(data_dir: str, file: str) -> Dataset: |
|
data = load_dataset("yandex/yambda", data_dir=data_dir, data_files=f"{file}.parquet") |
|
# Returns DatasetDict; extracting the only split |
|
assert isinstance(data, DatasetDict) |
|
return data["train"] |
|
|
|
dataset = YambdaDataset("flat", "50m") |
|
likes = dataset.interaction("likes") # returns a HuggingFace Dataset |
|
``` |
|
|
|
## FAQ |
|
|
|
### Are test items presented in training data? |
|
|
|
Not all, some test items do appear in the training set, others do not. |
|
|
|
### Are test users presented in training data? |
|
|
|
Yes, there are no cold users in the test set. |
|
|
|
### How are audio embeddings generated? |
|
|
|
Using a convolutional neural network inspired by Contrastive Learning of Musical Representations (J. Spijkervet et al., 2021). |
|
|
|
### What's the `is_organic` flag? |
|
|
|
Indicates whether interactions occurred through organic discovery (True) or recommendation-driven pathways (False) |
|
|
|
### Which events are considered recommendation-driven? |
|
|
|
Recommendation events include actions from: |
|
- Personalized music feed |
|
- Personalized playlists |
|
|
|
### What counts as a "listened" track or \\(Listen_+\\)? |
|
|
|
A track is considered "listened" if over 50% of its duration is played. |
|
|
|
### What does it mean when played_ratio_pct is greater than 100? |
|
|
|
A played_ratio_pct greater than 100% indicates that the user rewound and |
|
replayed sections of the track—so the total time listened exceeds the original track length. |
|
These values are expected behavior and not log noise. See [discussion](https://huggingface.co/datasets/yandex/yambda/discussions/10) |
|
|