File size: 2,116 Bytes
1be89f3 ef73a56 1be89f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
# Reproducibility Guide
## Overview
This part of repo contains the implementation and experiments. This guide will help you reproduce the results using Docker or manual installation.
---
## Docker Setup (Recommended)
### 1. Build Docker Image
```bash
docker build -t yambda-image .
```
### 2. Run Container with GPU Support
```bash
docker run --gpus all \
--runtime=nvidia \
-it \
-v </absolute/path/to/local/data>:/yambda/data \
yambda-image
```
---
## Data Organization
Create following structure in mounted data directory:
```bash
data/
βββ flat/
β βββ 50m/
β βββ likes.parquet
β βββ listens.parquet
β βββ ...
βββ sequential/
βββ 50m/
βββ likes.parquet
βββ listens.parquet
βββ ...
```
Note:
Sequential data is only needed for sasrec. You can build it from flat using scripts/transform2sequential.py or download
---
## Running Experiments
### General Usage
```bash
# For example random_rec
cd models/random_rec/
# Show help for main script
python main.py --help
# Basic execution
python main.py
```
### Specific Methods
#### BPR/ALS
```bash
cd models/bpr_als
python main.py --model bpr
python main.py --model als
```
#### SASRec
```bash
cd models/sasrec
# Training
python train.py --exp_name exp1
# Evaluation
python eval.py --exp_name exp1
```
---
## Manual Installation (Not Recommedned)
### 1. Install Core Dependencies
```bash
pip install torch torchvision torchaudio
```
### 2. Install Implicit (CUDA 11.8 required)
Implicit works only with cuda<12. See reasons [here](https://github.com/NVIDIA/nvidia-docker/issues/700#issuecomment-381073278)
```bash
CUDACXX=/usr/local/cuda-11.8/bin/nvcc \
pip install implicit
```
### 3. Install SANSA
```bash
sudo apt-get install libsuitesparse-dev
git clone https://github.com/glami/sansa.git
cd sansa && \
SUITESPARSE_INCLUDE_DIR=/usr/include/suitesparse \
SUITESPARSE_LIBRARY_DIR=/usr/lib \
pip install .
```
### 4. Install Project Package
```bash
pip install .
```
|