Dataset Viewer
Auto-converted to Parquet
theory_file
stringlengths
5
95
lemma_name
stringlengths
5
250
lemma_command
stringlengths
17
21.3k
lemma_object
stringlengths
5
62.8k
template
stringlengths
7
63.6k
symbols
sequencelengths
0
85
defs
sequencelengths
0
60
input
stringlengths
41
131k
output
stringlengths
22
62.8k
Automatic_Refinement/Parametricity/Relators
Relators.in_br_conv
lemma in_br_conv: "(c,a)\<in>br \<alpha> I \<longleftrightarrow> a=\<alpha> c \<and> I c"
((?c, ?a) \<in> br ?\<alpha> ?I) = (?a = ?\<alpha> ?c \<and> ?I ?c)
((x_1, x_2) \<in> ?H1 x_3 x_4) = (x_2 = x_3 x_1 \<and> x_4 x_1)
[ "Relators.br" ]
[]
###template ((x_1, x_2) \<in> ?H1 x_3 x_4) = (x_2 = x_3 x_1 \<and> x_4 x_1) ###symbols Relators.br ###defs
###output ((?c, ?a) \<in> br ?\<alpha> ?I) = (?a = ?\<alpha> ?c \<and> ?I ?c) ###end
Collections/GenCF/Gen/Gen_Set
Gen_Set.gen_diff
lemma gen_diff[autoref_rules_raw]: assumes PRIO_TAG_GEN_ALGO assumes DEL: "GEN_OP del1 op_set_delete (Rk \<rightarrow> \<langle>Rk\<rangle>Rs1 \<rightarrow> \<langle>Rk\<rangle>Rs1)" assumes IT: "SIDE_GEN_ALGO (is_set_to_list Rk Rs2 it2)" shows "(gen_diff del1 (\<lambda>x. foldli (it2 x)),(-)) \<in> (\<langle>Rk\<rangle>Rs1) \<rightarrow> (\<langle>Rk\<rangle>Rs2) \<rightarrow> (\<langle>Rk\<rangle>Rs1)"
PRIO_TAG_GEN_ALGO \<Longrightarrow> GEN_OP ?del1.0 op_set_delete (?Rk \<rightarrow> \<langle>?Rk\<rangle>?Rs1.0 \<rightarrow> \<langle>?Rk\<rangle>?Rs1.0) \<Longrightarrow> SIDE_GEN_ALGO (is_set_to_list ?Rk ?Rs2.0 ?it2.0) \<Longrightarrow> (gen_diff ?del1.0 (\<lambda>x. foldli (?it2.0 x)), (-)) \<in> \<langle>?Rk\<rangle>?Rs1.0 \<rightarrow> \<langle>?Rk\<rangle>?Rs2.0 \<rightarrow> \<langle>?Rk\<rangle>?Rs1.0
\<lbrakk>?H1; ?H2 x_1 ?H3 (?H4 x_2 (?H5 (?H6 x_3 x_2) (?H6 x_3 x_2))); ?H7 (?H8 x_2 x_4 x_5)\<rbrakk> \<Longrightarrow> (?H9 x_1 (\<lambda>y_0. ?H10 (x_5 y_0)), ?H11) \<in> ?H12 (?H6 x_3 x_2) (?H13 (?H14 x_4 x_2) (?H6 x_3 x_2))
[ "Groups.minus_class.minus", "Foldi.foldli", "Gen_Set.gen_diff", "Gen_Iterator.is_set_to_list", "Autoref_Gen_Algo.SIDE_GEN_ALGO", "Relators.relAPP", "Relators.fun_rel_syn", "Intf_Set.op_set_delete", "Autoref_Fix_Rel.GEN_OP", "Autoref_Fix_Rel.PRIO_TAG_GEN_ALGO" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)" ]
###template \<lbrakk>?H1; ?H2 x_1 ?H3 (?H4 x_2 (?H5 (?H6 x_3 x_2) (?H6 x_3 x_2))); ?H7 (?H8 x_2 x_4 x_5)\<rbrakk> \<Longrightarrow> (?H9 x_1 (\<lambda>y_0. ?H10 (x_5 y_0)), ?H11) \<in> ?H12 (?H6 x_3 x_2) (?H13 (?H14 x_4 x_2) (?H6 x_3 x_2)) ###symbols Groups.minus_class.minus Foldi.foldli Gen_Set.gen_diff Gen_Iterator.is_set_to_list Autoref_Gen_Algo.SIDE_GEN_ALGO Relators.relAPP Relators.fun_rel_syn Intf_Set.op_set_delete Autoref_Fix_Rel.GEN_OP Autoref_Fix_Rel.PRIO_TAG_GEN_ALGO ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65)
###output PRIO_TAG_GEN_ALGO \<Longrightarrow> GEN_OP ?del1.0 op_set_delete (?Rk \<rightarrow> \<langle>?Rk\<rangle>?Rs1.0 \<rightarrow> \<langle>?Rk\<rangle>?Rs1.0) \<Longrightarrow> SIDE_GEN_ALGO (is_set_to_list ?Rk ?Rs2.0 ?it2.0) \<Longrightarrow> (gen_diff ?del1.0 (\<lambda>x. foldli (?it2.0 x)), (-)) \<in> \<langle>?Rk\<rangle>?Rs1.0 \<rightarrow> \<langle>?Rk\<rangle>?Rs2.0 \<rightarrow> \<langle>?Rk\<rangle>?Rs1.0 ###end
AODV/variants/b_fwdrreps/B_Fresher
B_Fresher.dhops_le_hops_imp_update_strictly_fresher
lemma dhops_le_hops_imp_update_strictly_fresher: assumes "dip \<in> vD(rt2 nhip)" and sqn: "sqn (rt2 nhip) dip = osn" and hop: "the (dhops (rt2 nhip) dip) \<le> hops" and **: "rt \<noteq> update rt dip (osn, kno, val, Suc hops, nhip, {})" shows "update rt dip (osn, kno, val, Suc hops, nhip, {}) \<sqsubset>\<^bsub>dip\<^esub> rt2 nhip"
?dip \<in> vD (?rt2.0 ?nhip) \<Longrightarrow> sqn (?rt2.0 ?nhip) ?dip = ?osn \<Longrightarrow> the (dhops (?rt2.0 ?nhip) ?dip) \<le> ?hops \<Longrightarrow> ?rt \<noteq> update ?rt ?dip (?osn, kno, val, Suc ?hops, ?nhip, {}) \<Longrightarrow> update ?rt ?dip (?osn, kno, val, Suc ?hops, ?nhip, {}) \<sqsubset>\<^bsub>?dip\<^esub> ?rt2.0 ?nhip
\<lbrakk>x_1 \<in> ?H1 (x_2 x_3); ?H2 (x_2 x_3) x_1 = x_4; ?H3 (?H4 (x_2 x_3) x_1) \<le> x_5; x_6 \<noteq> ?H5 x_6 x_1 (x_4, ?H6, ?H7, ?H8 x_5, x_3, ?H9)\<rbrakk> \<Longrightarrow> ?H10 (?H5 x_6 x_1 (x_4, ?H6, ?H7, ?H8 x_5, x_3, ?H9)) x_1 (x_2 x_3)
[ "B_Fresher.rt_strictly_fresher_syn", "Set.empty", "Nat.Suc", "Aodv_Basic.val", "Aodv_Basic.kno", "B_Aodv_Data.update", "B_Aodv_Data.dhops", "Option.option.the", "B_Aodv_Data.sqn", "B_Aodv_Data.vD" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "abbreviation val where \"val \\<equiv> Valid\"", "abbreviation kno where \"kno \\<equiv> Known\"", "datatype 'a option =\n None\n | Some (the: 'a)" ]
###template \<lbrakk>x_1 \<in> ?H1 (x_2 x_3); ?H2 (x_2 x_3) x_1 = x_4; ?H3 (?H4 (x_2 x_3) x_1) \<le> x_5; x_6 \<noteq> ?H5 x_6 x_1 (x_4, ?H6, ?H7, ?H8 x_5, x_3, ?H9)\<rbrakk> \<Longrightarrow> ?H10 (?H5 x_6 x_1 (x_4, ?H6, ?H7, ?H8 x_5, x_3, ?H9)) x_1 (x_2 x_3) ###symbols B_Fresher.rt_strictly_fresher_syn Set.empty Nat.Suc Aodv_Basic.val Aodv_Basic.kno B_Aodv_Data.update B_Aodv_Data.dhops Option.option.the B_Aodv_Data.sqn B_Aodv_Data.vD ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" abbreviation val where "val \<equiv> Valid" abbreviation kno where "kno \<equiv> Known" datatype 'a option = None | Some (the: 'a)
###output ?dip \<in> vD (?rt2.0 ?nhip) \<Longrightarrow> sqn (?rt2.0 ?nhip) ?dip = ?osn \<Longrightarrow> the (dhops (?rt2.0 ?nhip) ?dip) \<le> ?hops \<Longrightarrow> ?rt \<noteq> update ?rt ?dip (?osn, kno, val, Suc ?hops, ?nhip, {}) \<Longrightarrow> update ?rt ?dip (?osn, kno, val, Suc ?hops, ?nhip, {}) \<sqsubset>\<^bsub>?dip\<^esub> ?rt2.0 ?nhip ###end
Multirelations_Heterogeneous/Multirelations
Multirelations_Basics.d_llp1
null
Dom ?R \<subseteq> Dom ?S \<Longrightarrow> ?R \<subseteq> Dom ?S * ?R
?H1 (?H2 x_1) (?H3 x_2) \<Longrightarrow> ?H4 x_1 (?H5 (?H3 x_2) x_1)
[ "Multirelations_Basics.s_prod", "Multirelations_Basics.Dom", "Set.subset_eq" ]
[ "definition s_prod :: \"('a,'b) mrel \\<Rightarrow> ('b,'c) mrel \\<Rightarrow> ('a,'c) mrel\" (infixl \"\\<cdot>\" 75) where\n \"R \\<cdot> S = {(a,A). (\\<exists>B. (a,B) \\<in> R \\<and> (\\<exists>f. (\\<forall>b \\<in> B. (b,f b) \\<in> S) \\<and> A = \\<Union>(f ` B)))}\"", "definition Dom :: \"('a,'b) mrel \\<Rightarrow> ('a,'a) mrel\" where\n \"Dom R = {(a,{a}) |a. \\<exists>B. (a,B) \\<in> R}\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
###template ?H1 (?H2 x_1) (?H3 x_2) \<Longrightarrow> ?H4 x_1 (?H5 (?H3 x_2) x_1) ###symbols Multirelations_Basics.s_prod Multirelations_Basics.Dom Set.subset_eq ###defs definition s_prod :: "('a,'b) mrel \<Rightarrow> ('b,'c) mrel \<Rightarrow> ('a,'c) mrel" (infixl "\<cdot>" 75) where "R \<cdot> S = {(a,A). (\<exists>B. (a,B) \<in> R \<and> (\<exists>f. (\<forall>b \<in> B. (b,f b) \<in> S) \<and> A = \<Union>(f ` B)))}" definition Dom :: "('a,'b) mrel \<Rightarrow> ('a,'a) mrel" where "Dom R = {(a,{a}) |a. \<exists>B. (a,B) \<in> R}" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output Dom ?R \<subseteq> Dom ?S \<Longrightarrow> ?R \<subseteq> Dom ?S * ?R ###end
Jordan_Normal_Form/Determinant_Impl
Determinant_Impl.sub1_det
lemma sub1_det: assumes A: "A \<in> carrier_mat n n" and sub1: "sub1 q k l (r,A) = (r'',A'')" and r0: "r \<noteq> 0" and All0: "q \<noteq> 0" and l: "l + k < n" shows "r * det A'' = r'' * det A"
mute_fun ?mf \<Longrightarrow> det_selection_fun ?sel_fun \<Longrightarrow> ?A \<in> carrier_mat ?n ?n \<Longrightarrow> ??.Determinant_Impl.sub1 ?mf ?q ?k ?l (?r, ?A) = (?r'', ?A'') \<Longrightarrow> ?r \<noteq> (0::?'a) \<Longrightarrow> ?q \<noteq> (0::?'a) \<Longrightarrow> ?l + ?k < ?n \<Longrightarrow> ?r * det ?A'' = ?r'' * det ?A
\<lbrakk>?H1 x_1; ?H2 x_2; x_3 \<in> ?H3 x_4 x_4; ?H4 x_1 x_5 x_6 x_7 (x_8, x_3) = (x_9, x_10); x_8 \<noteq> ?H5; x_5 \<noteq> ?H5; ?H6 x_7 x_6 < x_4\<rbrakk> \<Longrightarrow> ?H7 x_8 (?H8 x_10) = ?H7 x_9 (?H8 x_3)
[ "Determinant.det", "Groups.times_class.times", "Groups.plus_class.plus", "Groups.zero_class.zero", "Determinant_Impl.sub1", "Matrix.carrier_mat", "Determinant_Impl.det_selection_fun", "Determinant_Impl.mute_fun" ]
[ "definition det:: \"'a mat \\<Rightarrow> 'a :: comm_ring_1\" where\n \"det A = (if dim_row A = dim_col A then (\\<Sum> p \\<in> {p. p permutes {0 ..< dim_row A}}. \n signof p * (\\<Prod> i = 0 ..< dim_row A. A $$ (i, p i))) else 0)\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class zero =\n fixes zero :: 'a (\"0\")", "fun sub1 :: \"'a \\<Rightarrow> nat \\<Rightarrow> nat \\<Rightarrow> 'a \\<times> 'a mat \\<Rightarrow> 'a \\<times> 'a mat\"\nwhere \"sub1 q 0 l rA = rA\"\n | \"sub1 q (Suc k) l rA = mute q (l + Suc k) l (sub1 q k l rA)\"", "definition carrier_mat :: \"nat \\<Rightarrow> nat \\<Rightarrow> 'a mat set\"\n where \"carrier_mat nr nc = { m . dim_row m = nr \\<and> dim_col m = nc}\"", "definition det_selection_fun :: \"'a det_selection_fun \\<Rightarrow> bool\" where \n \"det_selection_fun f = (\\<forall> xs. xs \\<noteq> [] \\<longrightarrow> f xs \\<in> fst ` set xs)\"", "definition mute_fun :: \"('a :: comm_ring_1 \\<Rightarrow> 'a \\<Rightarrow> 'a \\<times> 'a \\<times> 'a) \\<Rightarrow> bool\" where\n \"mute_fun f = (\\<forall> x y x' y' g. f x y = (x',y',g) \\<longrightarrow> y \\<noteq> 0 \n \\<longrightarrow> x = x' * g \\<and> y * x' = x * y')\"" ]
###template \<lbrakk>?H1 x_1; ?H2 x_2; x_3 \<in> ?H3 x_4 x_4; ?H4 x_1 x_5 x_6 x_7 (x_8, x_3) = (x_9, x_10); x_8 \<noteq> ?H5; x_5 \<noteq> ?H5; ?H6 x_7 x_6 < x_4\<rbrakk> \<Longrightarrow> ?H7 x_8 (?H8 x_10) = ?H7 x_9 (?H8 x_3) ###symbols Determinant.det Groups.times_class.times Groups.plus_class.plus Groups.zero_class.zero Determinant_Impl.sub1 Matrix.carrier_mat Determinant_Impl.det_selection_fun Determinant_Impl.mute_fun ###defs definition det:: "'a mat \<Rightarrow> 'a :: comm_ring_1" where "det A = (if dim_row A = dim_col A then (\<Sum> p \<in> {p. p permutes {0 ..< dim_row A}}. signof p * (\<Prod> i = 0 ..< dim_row A. A $$ (i, p i))) else 0)" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class zero = fixes zero :: 'a ("0") fun sub1 :: "'a \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a \<times> 'a mat \<Rightarrow> 'a \<times> 'a mat" where "sub1 q 0 l rA = rA" | "sub1 q (Suc k) l rA = mute q (l + Suc k) l (sub1 q k l rA)" definition carrier_mat :: "nat \<Rightarrow> nat \<Rightarrow> 'a mat set" where "carrier_mat nr nc = { m . dim_row m = nr \<and> dim_col m = nc}" definition det_selection_fun :: "'a det_selection_fun \<Rightarrow> bool" where "det_selection_fun f = (\<forall> xs. xs \<noteq> [] \<longrightarrow> f xs \<in> fst ` set xs)" definition mute_fun :: "('a :: comm_ring_1 \<Rightarrow> 'a \<Rightarrow> 'a \<times> 'a \<times> 'a) \<Rightarrow> bool" where "mute_fun f = (\<forall> x y x' y' g. f x y = (x',y',g) \<longrightarrow> y \<noteq> 0 \<longrightarrow> x = x' * g \<and> y * x' = x * y')"
###output mute_fun ?mf \<Longrightarrow> det_selection_fun ?sel_fun \<Longrightarrow> ?A \<in> carrier_mat ?n ?n \<Longrightarrow> ??.Determinant_Impl.sub1 ?mf ?q ?k ?l (?r, ?A) = (?r'', ?A'') \<Longrightarrow> ?r \<noteq> (0::?'a) \<Longrightarrow> ?q \<noteq> (0::?'a) \<Longrightarrow> ?l + ?k < ?n \<Longrightarrow> ?r * det ?A'' = ?r'' * det ?A ###end
Regular_Tree_Relations/Util/Ground_Terms
Ground_Terms.parallel_replace_gterm_commute
lemma parallel_replace_gterm_commute [ac_simps]: "p \<bottom> q \<Longrightarrow> s[p \<leftarrow> t]\<^sub>G[q \<leftarrow> u]\<^sub>G = s[q \<leftarrow> u]\<^sub>G[p \<leftarrow> t]\<^sub>G"
?p \<bottom> ?q \<Longrightarrow> ?s[?p \<leftarrow> ?t]\<^sub>G[?q \<leftarrow> ?u]\<^sub>G = ?s[?q \<leftarrow> ?u]\<^sub>G[?p \<leftarrow> ?t]\<^sub>G
?H1 x_1 x_2 \<Longrightarrow> ?H2 (?H2 x_3 x_1 x_4) x_2 x_5 = ?H2 (?H2 x_3 x_2 x_5) x_1 x_4
[ "Ground_Terms.replace_gterm_at", "Term_Context.position_par" ]
[]
###template ?H1 x_1 x_2 \<Longrightarrow> ?H2 (?H2 x_3 x_1 x_4) x_2 x_5 = ?H2 (?H2 x_3 x_2 x_5) x_1 x_4 ###symbols Ground_Terms.replace_gterm_at Term_Context.position_par ###defs
###output ?p \<bottom> ?q \<Longrightarrow> ?s[?p \<leftarrow> ?t]\<^sub>G[?q \<leftarrow> ?u]\<^sub>G = ?s[?q \<leftarrow> ?u]\<^sub>G[?p \<leftarrow> ?t]\<^sub>G ###end
Containers/DList_Set
DList_Set.member_filter
lemma member_filter [simp]: "member (filter P xs) = (\<lambda>x :: 'a. member xs x \<and> P x)"
ID CEQ(?'a) \<noteq> None \<Longrightarrow> DList_Set.member (DList_Set.filter ?P ?xs) = (\<lambda>x. DList_Set.member ?xs x \<and> ?P x)
?H1 ?H2 \<noteq> ?H3 \<Longrightarrow> ?H4 (?H5 x_1 x_2) = (\<lambda>y_0. ?H4 x_2 y_0 \<and> x_1 y_0)
[ "DList_Set.filter", "DList_Set.member", "Option.option.None", "Collection_Eq.ceq_class.ceq", "Containers_Auxiliary.ID" ]
[ "datatype 'a option =\n None\n | Some (the: 'a)", "class ceq =\n fixes ceq :: \"('a \\<Rightarrow> 'a \\<Rightarrow> bool) option\"\n assumes ceq: \"ceq = Some eq \\<Longrightarrow> eq = (=)\"\nbegin", "definition ID :: \"'a \\<Rightarrow> 'a\" where \"ID = id\"" ]
###template ?H1 ?H2 \<noteq> ?H3 \<Longrightarrow> ?H4 (?H5 x_1 x_2) = (\<lambda>y_0. ?H4 x_2 y_0 \<and> x_1 y_0) ###symbols DList_Set.filter DList_Set.member Option.option.None Collection_Eq.ceq_class.ceq Containers_Auxiliary.ID ###defs datatype 'a option = None | Some (the: 'a) class ceq = fixes ceq :: "('a \<Rightarrow> 'a \<Rightarrow> bool) option" assumes ceq: "ceq = Some eq \<Longrightarrow> eq = (=)" begin definition ID :: "'a \<Rightarrow> 'a" where "ID = id"
###output ID CEQ(?'a) \<noteq> None \<Longrightarrow> DList_Set.member (DList_Set.filter ?P ?xs) = (\<lambda>x. DList_Set.member ?xs x \<and> ?P x) ###end
Akra_Bazzi/Akra_Bazzi_Library
Akra_Bazzi_Library.DERIV_nonneg_imp_mono
lemma DERIV_nonneg_imp_mono: assumes "\<And>t. t\<in>{x..y} \<Longrightarrow> (f has_field_derivative f' t) (at t)" assumes "\<And>t. t\<in>{x..y} \<Longrightarrow> f' t \<ge> 0" assumes "(x::real) \<le> y" shows "(f x :: real) \<le> f y"
(\<And>t. t \<in> {?x..?y} \<Longrightarrow> (?f has_real_derivative ?f' t) (at t)) \<Longrightarrow> (\<And>t. t \<in> {?x..?y} \<Longrightarrow> 0 \<le> ?f' t) \<Longrightarrow> ?x \<le> ?y \<Longrightarrow> ?f ?x \<le> ?f ?y
\<lbrakk>\<And>y_0. y_0 \<in> ?H1 x_1 x_2 \<Longrightarrow> ?H2 x_3 (x_4 y_0) (?H3 y_0); \<And>y_1. y_1 \<in> ?H1 x_1 x_2 \<Longrightarrow> ?H4 \<le> x_4 y_1; x_1 \<le> x_2\<rbrakk> \<Longrightarrow> x_3 x_1 \<le> x_3 x_2
[ "Groups.zero_class.zero", "Topological_Spaces.topological_space_class.at", "Deriv.has_real_derivative", "Set_Interval.ord_class.atLeastAtMost" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "abbreviation has_real_derivative :: \"(real \\<Rightarrow> real) \\<Rightarrow> real \\<Rightarrow> real filter \\<Rightarrow> bool\"\n (infix \"(has'_real'_derivative)\" 50)\n where \"(f has_real_derivative D) F \\<equiv> (f has_field_derivative D) F\"" ]
###template \<lbrakk>\<And>y_0. y_0 \<in> ?H1 x_1 x_2 \<Longrightarrow> ?H2 x_3 (x_4 y_0) (?H3 y_0); \<And>y_1. y_1 \<in> ?H1 x_1 x_2 \<Longrightarrow> ?H4 \<le> x_4 y_1; x_1 \<le> x_2\<rbrakk> \<Longrightarrow> x_3 x_1 \<le> x_3 x_2 ###symbols Groups.zero_class.zero Topological_Spaces.topological_space_class.at Deriv.has_real_derivative Set_Interval.ord_class.atLeastAtMost ###defs class zero = fixes zero :: 'a ("0") class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin abbreviation has_real_derivative :: "(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool" (infix "(has'_real'_derivative)" 50) where "(f has_real_derivative D) F \<equiv> (f has_field_derivative D) F"
###output (\<And>t. t \<in> {?x..?y} \<Longrightarrow> (?f has_real_derivative ?f' t) (at t)) \<Longrightarrow> (\<And>t. t \<in> {?x..?y} \<Longrightarrow> 0 \<le> ?f' t) \<Longrightarrow> ?x \<le> ?y \<Longrightarrow> ?f ?x \<le> ?f ?y ###end
AOT/AOT_PossibleWorlds
AOT_PossibleWorlds.actual-s:3
null
\<^bold>\<turnstile>\<^sub>\<box> \<exists>p \<forall>s (Actual(s) \<rightarrow> \<not>s \<Turnstile> p)
H1 x_1 (H2 (\<lambda>y_0. H3 (\<lambda>y_1. H4 (H5 y_1) (H4 (H6 y_1) (H7 (H8 y_1 y_0))))))
[ "AOT_PossibleWorlds.TruthInSituation", "AOT_syntax.AOT_not", "AOT_PossibleWorlds.actual", "AOT_PossibleWorlds.Situation", "AOT_syntax.AOT_imp", "AOT_syntax.AOT_forall", "AOT_syntax.AOT_exists", "AOT_model.AOT_model_valid_in" ]
[ "definition AOT_model_valid_in :: \\<open>w\\<Rightarrow>\\<o>\\<Rightarrow>bool\\<close> where\n \\<open>AOT_model_valid_in w \\<phi> \\<equiv> AOT_model_d\\<o> \\<phi> w\\<close>" ]
###template H1 x_1 (H2 (\<lambda>y_0. H3 (\<lambda>y_1. H4 (H5 y_1) (H4 (H6 y_1) (H7 (H8 y_1 y_0)))))) ###symbols AOT_PossibleWorlds.TruthInSituation AOT_syntax.AOT_not AOT_PossibleWorlds.actual AOT_PossibleWorlds.Situation AOT_syntax.AOT_imp AOT_syntax.AOT_forall AOT_syntax.AOT_exists AOT_model.AOT_model_valid_in ###defs definition AOT_model_valid_in :: \<open>w\<Rightarrow>\<o>\<Rightarrow>bool\<close> where \<open>AOT_model_valid_in w \<phi> \<equiv> AOT_model_d\<o> \<phi> w\<close>
###output \<^bold>\<turnstile>\<^sub>\<box> \<exists>p \<forall>s (Actual(s) \<rightarrow> \<not>s \<Turnstile> p) ###end
Ordinal/Ordinal
OrdinalInverse.ordinal_div_self
null
0 < ?x \<Longrightarrow> ?x div ?x = 1
?H1 < x_1 \<Longrightarrow> ?H2 x_1 x_1 = ?H3
[ "Groups.one_class.one", "Rings.divide_class.divide", "Groups.zero_class.zero" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class divide =\n fixes divide :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"div\" 70)", "class zero =\n fixes zero :: 'a (\"0\")" ]
###template ?H1 < x_1 \<Longrightarrow> ?H2 x_1 x_1 = ?H3 ###symbols Groups.one_class.one Rings.divide_class.divide Groups.zero_class.zero ###defs class one = fixes one :: 'a ("1") class divide = fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70) class zero = fixes zero :: 'a ("0")
###output 0 < ?x \<Longrightarrow> ?x div ?x = 1 ###end
Tycon/Writer_Transformer
Writer_Transformer.invar'_bindWT
lemma invar'_bindWT: "\<lbrakk>invar' m; \<And>x. invar' (k\<cdot>x)\<rbrakk> \<Longrightarrow> invar' (bindWT\<cdot>m\<cdot>k)"
invar' ?m \<Longrightarrow> (\<And>x. invar' (?k\<cdot>x)) \<Longrightarrow> invar' (bindWT\<cdot>?m\<cdot>?k)
\<lbrakk>?H1 x_1; \<And>y_0. ?H2 (?H3 x_2 y_0)\<rbrakk> \<Longrightarrow> ?H2 (?H4 (?H5 ?H6 x_1) x_2)
[ "Writer_Transformer.bindWT", "Cfun.cfun.Rep_cfun", "Writer_Transformer.invar'" ]
[ "definition bindWT :: \"'a\\<cdot>('m::monad,'w::monoid) writerT \\<rightarrow> ('a \\<rightarrow> 'b\\<cdot>('m,'w) writerT) \\<rightarrow> 'b\\<cdot>('m,'w) writerT\"\n where \"bindWT = (\\<Lambda> m k. WriterT\\<cdot>(bind\\<cdot>(runWriterT\\<cdot>m)\\<cdot>\n (\\<Lambda>(Writer\\<cdot>w\\<cdot>x). bind\\<cdot>(runWriterT\\<cdot>(k\\<cdot>x))\\<cdot>(\\<Lambda>(Writer\\<cdot>w'\\<cdot>y).\n return\\<cdot>(Writer\\<cdot>(mappend\\<cdot>w\\<cdot>w')\\<cdot>y)))))\"", "definition invar' :: \"'a\\<cdot>('m::monad, 'w::monoid) writerT \\<Rightarrow> bool\"\n where \"invar' m \\<longleftrightarrow> fmapWT\\<cdot>ID\\<cdot>m = m\"" ]
###template \<lbrakk>?H1 x_1; \<And>y_0. ?H2 (?H3 x_2 y_0)\<rbrakk> \<Longrightarrow> ?H2 (?H4 (?H5 ?H6 x_1) x_2) ###symbols Writer_Transformer.bindWT Cfun.cfun.Rep_cfun Writer_Transformer.invar' ###defs definition bindWT :: "'a\<cdot>('m::monad,'w::monoid) writerT \<rightarrow> ('a \<rightarrow> 'b\<cdot>('m,'w) writerT) \<rightarrow> 'b\<cdot>('m,'w) writerT" where "bindWT = (\<Lambda> m k. WriterT\<cdot>(bind\<cdot>(runWriterT\<cdot>m)\<cdot> (\<Lambda>(Writer\<cdot>w\<cdot>x). bind\<cdot>(runWriterT\<cdot>(k\<cdot>x))\<cdot>(\<Lambda>(Writer\<cdot>w'\<cdot>y). return\<cdot>(Writer\<cdot>(mappend\<cdot>w\<cdot>w')\<cdot>y)))))" definition invar' :: "'a\<cdot>('m::monad, 'w::monoid) writerT \<Rightarrow> bool" where "invar' m \<longleftrightarrow> fmapWT\<cdot>ID\<cdot>m = m"
###output invar' ?m \<Longrightarrow> (\<And>x. invar' (?k\<cdot>x)) \<Longrightarrow> invar' (bindWT\<cdot>?m\<cdot>?k) ###end
FSM_Tests/EquivalenceTesting/Simple_Convergence_Graph_Trie
Simple_Convergence_Graph_Trie.can_merge_by_suffix_code
null
can_merge_by_suffix ?x ?x1.0 ?x2.0 = ts.bex ?x (\<lambda>ys. ts.bex ?x1.0 (\<lambda>ys1. is_prefix ys ys1 \<and> (let ys'' = drop (length ys) ys1 in ts.bex ?x (\<lambda>ys'. ts.memb (ys' @ ys'') ?x2.0))))
?H1 x_1 x_2 x_3 = ?H2 x_1 (\<lambda>y_0. ?H2 x_2 (\<lambda>y_1. ?H3 y_0 y_1 \<and> (let y_2 = ?H4 (?H5 y_0) y_1 in ?H2 x_1 (\<lambda>y_3. ?H6 (?H7 y_3 y_2) x_3))))
[ "List.append", "TrieSetImpl.ts.memb", "List.length", "List.drop", "Util.is_prefix", "TrieSetImpl.ts.bex", "Simple_Convergence_Graph_Trie.can_merge_by_suffix" ]
[ "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"", "primrec drop:: \"nat \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" where\ndrop_Nil: \"drop n [] = []\" |\ndrop_Cons: \"drop n (x # xs) = (case n of 0 \\<Rightarrow> x # xs | Suc m \\<Rightarrow> drop m xs)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>", "fun is_prefix :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> bool\" where\n \"is_prefix [] _ = True\" |\n \"is_prefix (x#xs) [] = False\" |\n \"is_prefix (x#xs) (y#ys) = (x = y \\<and> is_prefix xs ys)\"" ]
###template ?H1 x_1 x_2 x_3 = ?H2 x_1 (\<lambda>y_0. ?H2 x_2 (\<lambda>y_1. ?H3 y_0 y_1 \<and> (let y_2 = ?H4 (?H5 y_0) y_1 in ?H2 x_1 (\<lambda>y_3. ?H6 (?H7 y_3 y_2) x_3)))) ###symbols List.append TrieSetImpl.ts.memb List.length List.drop Util.is_prefix TrieSetImpl.ts.bex Simple_Convergence_Graph_Trie.can_merge_by_suffix ###defs primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size" primrec drop:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where drop_Nil: "drop n [] = []" | drop_Cons: "drop n (x # xs) = (case n of 0 \<Rightarrow> x # xs | Suc m \<Rightarrow> drop m xs)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close> fun is_prefix :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" where "is_prefix [] _ = True" | "is_prefix (x#xs) [] = False" | "is_prefix (x#xs) (y#ys) = (x = y \<and> is_prefix xs ys)"
###output can_merge_by_suffix ?x ?x1.0 ?x2.0 = ts.bex ?x (\<lambda>ys. ts.bex ?x1.0 (\<lambda>ys1. is_prefix ys ys1 \<and> (let ys'' = drop (length ys) ys1 in ts.bex ?x (\<lambda>ys'. ts.memb (ys' @ ys'') ?x2.0)))) ###end
HOL-CSP_OpSem/NewLaws
NewLaws.Hiding_Mprefix_Sliding_non_disjoint
lemma Hiding_Mprefix_Sliding_non_disjoint: \<open>((\<box>a \<in> A \<rightarrow> P a) \<rhd> Q) \ S = (\<box>a \<in> A - S \<rightarrow> (P a \ S)) \<rhd> (Q \ S) \<sqinter> (\<sqinter>a \<in> A \<inter> S. (P a \ S))\<close> if non_disjoint: \<open>A \<inter> S \<noteq> {}\<close>
?A \<inter> ?S \<noteq> {} \<Longrightarrow> Mprefix ?A ?P \<rhd> ?Q \ ?S = (\<box>a\<in>?A - ?S \<rightarrow> (?P a \ ?S)) \<rhd> (?Q \ ?S) \<sqinter> (\<sqinter> a\<in>?A \<inter> ?S. ?P a \ ?S)
?H1 x_1 x_2 \<noteq> ?H2 \<Longrightarrow> ?H3 (?H4 (?H5 x_1 x_3) x_4) x_2 = ?H4 (?H5 (?H6 x_1 x_2) (\<lambda>y_1. ?H3 (x_3 y_1) x_2)) (?H7 (?H3 x_4 x_2) (?H8 (?H1 x_1 x_2) (\<lambda>y_2. ?H3 (x_3 y_2) x_2)))
[ "GlobalNdet.GlobalNdet", "Ndet.Ndet", "Groups.minus_class.minus", "Mprefix.Mprefix", "Sliding.Sliding", "Hiding.Hiding", "Set.empty", "Set.inter" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition Sliding :: \\<open>'\\<alpha> process \\<Rightarrow> '\\<alpha> process \\<Rightarrow> '\\<alpha> process\\<close> (infixl \\<open>\\<rhd>\\<close> 78)\n where \\<open>P \\<rhd> Q \\<equiv> (P \\<box> Q) \\<sqinter> Q\\<close>\n\n\\<comment> \\<open>See if we want to define a MultiSliding operator like MultiSeq.\\<close>", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"" ]
###template ?H1 x_1 x_2 \<noteq> ?H2 \<Longrightarrow> ?H3 (?H4 (?H5 x_1 x_3) x_4) x_2 = ?H4 (?H5 (?H6 x_1 x_2) (\<lambda>y_1. ?H3 (x_3 y_1) x_2)) (?H7 (?H3 x_4 x_2) (?H8 (?H1 x_1 x_2) (\<lambda>y_2. ?H3 (x_3 y_2) x_2))) ###symbols GlobalNdet.GlobalNdet Ndet.Ndet Groups.minus_class.minus Mprefix.Mprefix Sliding.Sliding Hiding.Hiding Set.empty Set.inter ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition Sliding :: \<open>'\<alpha> process \<Rightarrow> '\<alpha> process \<Rightarrow> '\<alpha> process\<close> (infixl \<open>\<rhd>\<close> 78) where \<open>P \<rhd> Q \<equiv> (P \<box> Q) \<sqinter> Q\<close> \<comment> \<open>See if we want to define a MultiSliding operator like MultiSeq.\<close> abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf"
###output ?A \<inter> ?S \<noteq> {} \<Longrightarrow> Mprefix ?A ?P \<rhd> ?Q \ ?S = (\<box>a\<in>?A - ?S \<rightarrow> (?P a \ ?S)) \<rhd> (?Q \ ?S) \<sqinter> (\<sqinter> a\<in>?A \<inter> ?S. ?P a \ ?S) ###end
CZH_Elementary_Categories/czh_ecategories/CZH_SMC_FUNCT
CZH_SMC_FUNCT.smc_FUNCT_cs_intros(2)
null
?\<FF> : ?\<AA> \<mapsto>\<mapsto>\<^sub>C\<^bsub>?\<alpha>\<^esub> ?\<BB> \<Longrightarrow> cf_map ?\<FF> \<in>\<^sub>\<circ> cf_maps ?\<alpha> ?\<AA> ?\<BB>
?H1 x_1 x_2 x_3 x_4 \<Longrightarrow> ?H2 (?H3 x_4) (?H4 x_1 x_2 x_3)
[ "CZH_DG_FUNCT.cf_maps", "CZH_DG_FUNCT.cf_map", "CZH_Sets_Sets.vmember", "CZH_ECAT_Functor.is_functor" ]
[]
###template ?H1 x_1 x_2 x_3 x_4 \<Longrightarrow> ?H2 (?H3 x_4) (?H4 x_1 x_2 x_3) ###symbols CZH_DG_FUNCT.cf_maps CZH_DG_FUNCT.cf_map CZH_Sets_Sets.vmember CZH_ECAT_Functor.is_functor ###defs
###output ?\<FF> : ?\<AA> \<mapsto>\<mapsto>\<^sub>C\<^bsub>?\<alpha>\<^esub> ?\<BB> \<Longrightarrow> cf_map ?\<FF> \<in>\<^sub>\<circ> cf_maps ?\<alpha> ?\<AA> ?\<BB> ###end
Jinja/BV/SemiType
SemiType.order_widen
lemma order_widen [intro,simp]: "wf_prog m P \<Longrightarrow> order (subtype P) (types P)"
wf_prog ?m ?P \<Longrightarrow> order (subtype ?P) (types ?P)
?H1 x_1 x_2 \<Longrightarrow> ?H2 (?H3 x_2) (?H4 x_2)
[ "Decl.types", "SemiType.subtype", "Semilat.order", "WellForm.wf_prog" ]
[ "abbreviation\n \"types P == Collect (CONST is_type P)\"", "definition\n wf_prog :: \"prog \\<Rightarrow> bool\" where\n \"wf_prog G = (let is = ifaces G; cs = classes G in\n ObjectC \\<in> set cs \\<and> \n (\\<forall> m\\<in>set Object_mdecls. accmodi m \\<noteq> Package) \\<and>\n (\\<forall>xn. SXcptC xn \\<in> set cs) \\<and>\n (\\<forall>i\\<in>set is. wf_idecl G i) \\<and> unique is \\<and>\n (\\<forall>c\\<in>set cs. wf_cdecl G c) \\<and> unique cs)\"" ]
###template ?H1 x_1 x_2 \<Longrightarrow> ?H2 (?H3 x_2) (?H4 x_2) ###symbols Decl.types SemiType.subtype Semilat.order WellForm.wf_prog ###defs abbreviation "types P == Collect (CONST is_type P)" definition wf_prog :: "prog \<Rightarrow> bool" where "wf_prog G = (let is = ifaces G; cs = classes G in ObjectC \<in> set cs \<and> (\<forall> m\<in>set Object_mdecls. accmodi m \<noteq> Package) \<and> (\<forall>xn. SXcptC xn \<in> set cs) \<and> (\<forall>i\<in>set is. wf_idecl G i) \<and> unique is \<and> (\<forall>c\<in>set cs. wf_cdecl G c) \<and> unique cs)"
###output wf_prog ?m ?P \<Longrightarrow> order (subtype ?P) (types ?P) ###end
HOL-CSPM/CSPM
CSPM.prefix_MultiNdet_is_MultiDet_prefix
lemma prefix_MultiNdet_is_MultiDet_prefix: \<open>A \<noteq> {} \<Longrightarrow> finite A \<Longrightarrow> (a \<rightarrow> (\<Sqinter> p \<in> A. P p) = \<^bold>\<box> p \<in> A. (a \<rightarrow> P p))\<close>
?A \<noteq> {} \<Longrightarrow> finite ?A \<Longrightarrow> ?a \<rightarrow> MultiNdet ?A ?P = \<^bold>\<box>p\<in>?A. ?a \<rightarrow> ?P p
\<lbrakk>x_1 \<noteq> ?H1; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H3 x_2 (?H4 x_1 x_3) = ?H5 x_1 (\<lambda>y_1. ?H3 x_2 (x_3 y_1))
[ "MultiDet.MultiDet", "MultiNdet.MultiNdet", "Mprefix.write0", "Finite_Set.finite", "Set.empty" ]
[ "definition MultiDet :: \\<open>['a set, 'a \\<Rightarrow> 'b process] \\<Rightarrow> 'b process\\<close>\n where \\<open>MultiDet A P = Finite_Set.fold (\\<lambda>a r. r \\<box> P a) STOP A\\<close>", "definition MultiNdet :: \\<open>['a set, 'a \\<Rightarrow> 'b process] \\<Rightarrow> 'b process\\<close>\n where \\<open>MultiNdet A P = MultiNdet_list (SOME L. set L = A) P\\<close>", "definition write0 :: \"['a, 'a process] \\<Rightarrow> 'a process\"\nwhere \"write0 a P \\<equiv> Mprefix {a} (\\<lambda> x. P)\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"" ]
###template \<lbrakk>x_1 \<noteq> ?H1; ?H2 x_1\<rbrakk> \<Longrightarrow> ?H3 x_2 (?H4 x_1 x_3) = ?H5 x_1 (\<lambda>y_1. ?H3 x_2 (x_3 y_1)) ###symbols MultiDet.MultiDet MultiNdet.MultiNdet Mprefix.write0 Finite_Set.finite Set.empty ###defs definition MultiDet :: \<open>['a set, 'a \<Rightarrow> 'b process] \<Rightarrow> 'b process\<close> where \<open>MultiDet A P = Finite_Set.fold (\<lambda>a r. r \<box> P a) STOP A\<close> definition MultiNdet :: \<open>['a set, 'a \<Rightarrow> 'b process] \<Rightarrow> 'b process\<close> where \<open>MultiNdet A P = MultiNdet_list (SOME L. set L = A) P\<close> definition write0 :: "['a, 'a process] \<Rightarrow> 'a process" where "write0 a P \<equiv> Mprefix {a} (\<lambda> x. P)" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot"
###output ?A \<noteq> {} \<Longrightarrow> finite ?A \<Longrightarrow> ?a \<rightarrow> MultiNdet ?A ?P = \<^bold>\<box>p\<in>?A. ?a \<rightarrow> ?P p ###end
Consensus_Refined/MRU/CT_Proofs
CT_Proofs.step0_ref
lemma step0_ref: "{ct_ref_rel} (\<Union>r C. majorities.opt_mru_step0 r C), CT_trans_step HOs HOs crds next0 send0 0 {> ct_ref_rel}"
\<forall>r. CT_commPerRd r (?HOs r) (?crds r) \<Longrightarrow> {ct_ref_rel} \<Union>r. \<Union> (range (majorities.opt_mru_step0 r)), CT_trans_step ?HOs ?HOs ?crds next0 send0 0 {> ct_ref_rel}
\<forall>y_0. ?H1 y_0 (x_1 y_0) (x_2 y_0) \<Longrightarrow> ?H2 ?H3 (?H4 (?H5 (\<lambda>y_1. ?H4 (?H6 (?H7 y_1))))) (?H8 x_1 x_1 x_2 ?H9 ?H10 ?H11) ?H3
[ "Groups.zero_class.zero", "CT_Defs.send0", "CT_Defs.next0", "CT_Proofs.CT_trans_step", "Three_Step_MRU.majorities.opt_mru_step0", "Set.range", "Complete_Lattices.Union", "CT_Proofs.ct_ref_rel", "Refinement.PO_rhoare", "CT_Defs.CT_commPerRd" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"", "abbreviation Union :: \"'a set set \\<Rightarrow> 'a set\" (\"\\<Union>\")\n where \"\\<Union>S \\<equiv> \\<Squnion>S\"", "definition\n PO_rhoare :: \n \"[('s \\<times> 't) set, ('s \\<times> 's) set, ('t \\<times> 't) set, ('s \\<times> 't) set] \\<Rightarrow> bool\"\n (\"(4{_} _, _ {> _})\" [0, 0, 0] 90)\nwhere\n \"{pre} Ra, Rc {> post} \\<equiv> pre O Rc \\<subseteq> Ra O post\"" ]
###template \<forall>y_0. ?H1 y_0 (x_1 y_0) (x_2 y_0) \<Longrightarrow> ?H2 ?H3 (?H4 (?H5 (\<lambda>y_1. ?H4 (?H6 (?H7 y_1))))) (?H8 x_1 x_1 x_2 ?H9 ?H10 ?H11) ?H3 ###symbols Groups.zero_class.zero CT_Defs.send0 CT_Defs.next0 CT_Proofs.CT_trans_step Three_Step_MRU.majorities.opt_mru_step0 Set.range Complete_Lattices.Union CT_Proofs.ct_ref_rel Refinement.PO_rhoare CT_Defs.CT_commPerRd ###defs class zero = fixes zero :: 'a ("0") abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV" abbreviation Union :: "'a set set \<Rightarrow> 'a set" ("\<Union>") where "\<Union>S \<equiv> \<Squnion>S" definition PO_rhoare :: "[('s \<times> 't) set, ('s \<times> 's) set, ('t \<times> 't) set, ('s \<times> 't) set] \<Rightarrow> bool" ("(4{_} _, _ {> _})" [0, 0, 0] 90) where "{pre} Ra, Rc {> post} \<equiv> pre O Rc \<subseteq> Ra O post"
###output \<forall>r. CT_commPerRd r (?HOs r) (?crds r) \<Longrightarrow> {ct_ref_rel} \<Union>r. \<Union> (range (majorities.opt_mru_step0 r)), CT_trans_step ?HOs ?HOs ?crds next0 send0 0 {> ct_ref_rel} ###end
Chandy_Lamport/Example
Example.trace_snoc
null
trace ?c ?t ?c' \<Longrightarrow> next ?c' ?ev ?c'' \<Longrightarrow> trace ?c (?t @ [?ev]) ?c''
\<lbrakk>?H1 x_1 x_2 x_3; ?H2 x_3 x_4 x_5\<rbrakk> \<Longrightarrow> ?H1 x_1 (?H3 x_2 (?H4 x_4 ?H5)) x_5
[ "List.list.Nil", "List.list.Cons", "List.append", "Example.next", "Example.trace" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"" ]
###template \<lbrakk>?H1 x_1 x_2 x_3; ?H2 x_3 x_4 x_5\<rbrakk> \<Longrightarrow> ?H1 x_1 (?H3 x_2 (?H4 x_4 ?H5)) x_5 ###symbols List.list.Nil List.list.Cons List.append Example.next Example.trace ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys"
###output trace ?c ?t ?c' \<Longrightarrow> next ?c' ?ev ?c'' \<Longrightarrow> trace ?c (?t @ [?ev]) ?c'' ###end
Multirelations_Heterogeneous/Multirelations
Multirelations.ii_isotone
lemma ii_isotone: "R \<subseteq> S \<Longrightarrow> P \<subseteq> Q \<Longrightarrow> R \<inter>\<inter> P \<subseteq> S \<inter>\<inter> Q"
?R \<subseteq> ?S \<Longrightarrow> ?P \<subseteq> ?Q \<Longrightarrow> ?R \<inter>\<inter> ?P \<subseteq> ?S \<inter>\<inter> ?Q
\<lbrakk>?H1 x_1 x_2; ?H1 x_3 x_4\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_1 x_3) (?H2 x_2 x_4)
[ "Multirelations.inner_intersection", "Set.subset_eq" ]
[ "definition inner_intersection :: \"('a,'b) mrel \\<Rightarrow> ('a,'b) mrel \\<Rightarrow> ('a,'b) mrel\" (infixl \"\\<inter>\\<inter>\" 65) where\n \"R \\<inter>\\<inter> S \\<equiv> { (a,B) . \\<exists>C D . B = C \\<inter> D \\<and> (a,C) \\<in> R \\<and> (a,D) \\<in> S }\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
###template \<lbrakk>?H1 x_1 x_2; ?H1 x_3 x_4\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_1 x_3) (?H2 x_2 x_4) ###symbols Multirelations.inner_intersection Set.subset_eq ###defs definition inner_intersection :: "('a,'b) mrel \<Rightarrow> ('a,'b) mrel \<Rightarrow> ('a,'b) mrel" (infixl "\<inter>\<inter>" 65) where "R \<inter>\<inter> S \<equiv> { (a,B) . \<exists>C D . B = C \<inter> D \<and> (a,C) \<in> R \<and> (a,D) \<in> S }" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output ?R \<subseteq> ?S \<Longrightarrow> ?P \<subseteq> ?Q \<Longrightarrow> ?R \<inter>\<inter> ?P \<subseteq> ?S \<inter>\<inter> ?Q ###end
FO_Theory_Rewriting/Util/Multihole_Context
Multihole_Context.less_eq_mctxt_MVarE1
lemma less_eq_mctxt_MVarE1: assumes "MVar v \<le> D" obtains (MVar) "D = MVar v"
MVar ?v \<le> ?D \<Longrightarrow> (?D = MVar ?v \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk>?H1 x_1 \<le> x_2; x_2 = ?H1 x_1 \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3
[ "Multihole_Context.mctxt.MVar" ]
[]
###template \<lbrakk>?H1 x_1 \<le> x_2; x_2 = ?H1 x_1 \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3 ###symbols Multihole_Context.mctxt.MVar ###defs
###output MVar ?v \<le> ?D \<Longrightarrow> (?D = MVar ?v \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis ###end
Polynomial_Interpolation/Ring_Hom_Poly
Ring_Hom_Poly.degree_map_poly_le
lemma degree_map_poly_le: "degree (map_poly f p) \<le> degree p"
degree (map_poly ?f ?p) \<le> degree ?p
?H1 (?H2 x_1 x_2) \<le> ?H3 x_2
[ "Polynomial.map_poly", "Polynomial.degree" ]
[ "definition map_poly :: \"('a :: zero \\<Rightarrow> 'b :: zero) \\<Rightarrow> 'a poly \\<Rightarrow> 'b poly\"\n where \"map_poly f p = Poly (map f (coeffs p))\"", "definition degree :: \"'a::zero poly \\<Rightarrow> nat\"\n where \"degree p = (LEAST n. \\<forall>i>n. coeff p i = 0)\"" ]
###template ?H1 (?H2 x_1 x_2) \<le> ?H3 x_2 ###symbols Polynomial.map_poly Polynomial.degree ###defs definition map_poly :: "('a :: zero \<Rightarrow> 'b :: zero) \<Rightarrow> 'a poly \<Rightarrow> 'b poly" where "map_poly f p = Poly (map f (coeffs p))" definition degree :: "'a::zero poly \<Rightarrow> nat" where "degree p = (LEAST n. \<forall>i>n. coeff p i = 0)"
###output degree (map_poly ?f ?p) \<le> degree ?p ###end
Poincare_Bendixson/Analysis_Misc
Analysis_Misc.eucl_eq_iff
lemma eucl_eq_iff: "x = y \<longleftrightarrow> (\<forall>i<DIM('a). nth_eucl x i = nth_eucl y i)" for x y::"'a::executable_euclidean_space"
(?x = ?y) = (\<forall>i<DIM(?'a). ?x $\<^sub>e i = ?y $\<^sub>e i)
(x_1 = x_2) = (\<forall>y_0<?H1 ?H2. ?H3 x_1 y_0 = ?H3 x_2 y_0)
[ "Analysis_Misc.nth_eucl", "Euclidean_Space.euclidean_space_class.Basis", "Finite_Set.card" ]
[ "definition nth_eucl :: \"'a::executable_euclidean_space \\<Rightarrow> nat \\<Rightarrow> real\" where\n \"nth_eucl x i = x \\<bullet> (Basis_list ! i)\"\n \\<comment> \\<open>TODO: why is that and some sort of \\<open>lambda_eucl\\<close> nowhere available?\\<close>", "class euclidean_space = real_inner +\n fixes Basis :: \"'a set\"\n assumes nonempty_Basis [simp]: \"Basis \\<noteq> {}\"\n assumes finite_Basis [simp]: \"finite Basis\"\n assumes inner_Basis:\n \"\\<lbrakk>u \\<in> Basis; v \\<in> Basis\\<rbrakk> \\<Longrightarrow> inner u v = (if u = v then 1 else 0)\"\n assumes euclidean_all_zero_iff:\n \"(\\<forall>u\\<in>Basis. inner x u = 0) \\<longleftrightarrow> (x = 0)\"" ]
###template (x_1 = x_2) = (\<forall>y_0<?H1 ?H2. ?H3 x_1 y_0 = ?H3 x_2 y_0) ###symbols Analysis_Misc.nth_eucl Euclidean_Space.euclidean_space_class.Basis Finite_Set.card ###defs definition nth_eucl :: "'a::executable_euclidean_space \<Rightarrow> nat \<Rightarrow> real" where "nth_eucl x i = x \<bullet> (Basis_list ! i)" \<comment> \<open>TODO: why is that and some sort of \<open>lambda_eucl\<close> nowhere available?\<close> class euclidean_space = real_inner + fixes Basis :: "'a set" assumes nonempty_Basis [simp]: "Basis \<noteq> {}" assumes finite_Basis [simp]: "finite Basis" assumes inner_Basis: "\<lbrakk>u \<in> Basis; v \<in> Basis\<rbrakk> \<Longrightarrow> inner u v = (if u = v then 1 else 0)" assumes euclidean_all_zero_iff: "(\<forall>u\<in>Basis. inner x u = 0) \<longleftrightarrow> (x = 0)"
###output (?x = ?y) = (\<forall>i<DIM(?'a). ?x $\<^sub>e i = ?y $\<^sub>e i) ###end
Refine_Imperative_HOL/Sepref_Translate
Sepref_Translate.id_WHILEIT
lemma id_WHILEIT[id_rules]: "PR_CONST (WHILEIT I) ::\<^sub>i TYPE(('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a nres) \<Rightarrow> 'a \<Rightarrow> 'a nres)"
PR_CONST WHILE\<^sub>T\<^bsup>?I\<^esup> ::\<^sub>i TYPE((?'a \<Rightarrow> bool) \<Rightarrow> (?'a \<Rightarrow> ?'a nres) \<Rightarrow> ?'a \<Rightarrow> ?'a nres)
?H1 (?H2 (?H3 x_1)) TYPE((?'a \<Rightarrow> bool) \<Rightarrow> (?'a \<Rightarrow> ?'a nres) \<Rightarrow> ?'a \<Rightarrow> ?'a nres)
[ "Refine_While.WHILEIT", "Sepref_Id_Op.PR_CONST", "Sepref_Id_Op.intf_type" ]
[ "definition WHILEIT (\"WHILE\\<^sub>T\\<^bsup>_\\<^esup>\") where \n \"WHILEIT \\<equiv> iWHILEIT bind RETURN\"", "definition intf_type :: \"'a \\<Rightarrow> 'b itself \\<Rightarrow> bool\" (infix \"::\\<^sub>i\" 10) where\n [simp]: \"c::\\<^sub>iI \\<equiv> True\"" ]
###template ?H1 (?H2 (?H3 x_1)) TYPE((?'a \<Rightarrow> bool) \<Rightarrow> (?'a \<Rightarrow> ?'a nres) \<Rightarrow> ?'a \<Rightarrow> ?'a nres) ###symbols Refine_While.WHILEIT Sepref_Id_Op.PR_CONST Sepref_Id_Op.intf_type ###defs definition WHILEIT ("WHILE\<^sub>T\<^bsup>_\<^esup>") where "WHILEIT \<equiv> iWHILEIT bind RETURN" definition intf_type :: "'a \<Rightarrow> 'b itself \<Rightarrow> bool" (infix "::\<^sub>i" 10) where [simp]: "c::\<^sub>iI \<equiv> True"
###output PR_CONST WHILE\<^sub>T\<^bsup>?I\<^esup> ::\<^sub>i TYPE((?'a \<Rightarrow> bool) \<Rightarrow> (?'a \<Rightarrow> ?'a nres) \<Rightarrow> ?'a \<Rightarrow> ?'a nres) ###end
IMP2/lib/IMP2_Aux_Lemmas
IMP2_Aux_Lemmas.mset_ran_eq_single_conv
lemma mset_ran_eq_single_conv: "mset_ran a r = {#x#} \<longleftrightarrow> (\<exists>i. r={i} \<and> x= a i)"
(mset_ran ?a ?r = {#?x#}) = (\<exists>i. ?r = {i} \<and> ?x = ?a i)
(?H1 x_1 x_2 = ?H2 x_3 ?H3) = (\<exists>y_0. x_2 = ?H4 y_0 ?H5 \<and> x_3 = x_1 y_0)
[ "Set.empty", "Set.insert", "Multiset.empty_mset", "Multiset.add_mset", "IMP2_Aux_Lemmas.mset_ran" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "abbreviation empty_mset :: \\<open>'a multiset\\<close> (\\<open>{#}\\<close>)\n where \\<open>empty_mset \\<equiv> 0\\<close>" ]
###template (?H1 x_1 x_2 = ?H2 x_3 ?H3) = (\<exists>y_0. x_2 = ?H4 y_0 ?H5 \<and> x_3 = x_1 y_0) ###symbols Set.empty Set.insert Multiset.empty_mset Multiset.add_mset IMP2_Aux_Lemmas.mset_ran ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" abbreviation empty_mset :: \<open>'a multiset\<close> (\<open>{#}\<close>) where \<open>empty_mset \<equiv> 0\<close>
###output (mset_ran ?a ?r = {#?x#}) = (\<exists>i. ?r = {i} \<and> ?x = ?a i) ###end
CZH_Universal_Constructions/czh_ucategories/CZH_UCAT_Limit_IT
CZH_UCAT_Limit_IT.is_cat_obj_empty_initialE
null
?\<ZZ> : 0\<^sub>C\<^sub>F >\<^sub>C\<^sub>F\<^sub>.\<^sub>0 ?z : 0\<^sub>C \<mapsto>\<mapsto>\<^sub>C\<^bsub>?\<alpha>\<^esub> ?\<CC> \<Longrightarrow> (?\<ZZ> : cf_0 ?\<CC> >\<^sub>C\<^sub>F\<^sub>.\<^sub>c\<^sub>o\<^sub>l\<^sub>i\<^sub>m ?z : cat_0 \<mapsto>\<mapsto>\<^sub>C\<^bsub>?\<alpha>\<^esub> ?\<CC> \<Longrightarrow> ?W) \<Longrightarrow> ?W
\<lbrakk>?H1 x_1 x_2 x_3 x_4; ?H2 x_1 ?H3 x_2 (?H4 x_2) x_3 x_4 \<Longrightarrow> x_5\<rbrakk> \<Longrightarrow> x_5
[ "CZH_ECAT_Simple.cf_0", "CZH_ECAT_Simple.cat_0", "CZH_UCAT_Limit.is_cat_colimit", "CZH_UCAT_Limit_IT.is_cat_obj_empty_initial" ]
[]
###template \<lbrakk>?H1 x_1 x_2 x_3 x_4; ?H2 x_1 ?H3 x_2 (?H4 x_2) x_3 x_4 \<Longrightarrow> x_5\<rbrakk> \<Longrightarrow> x_5 ###symbols CZH_ECAT_Simple.cf_0 CZH_ECAT_Simple.cat_0 CZH_UCAT_Limit.is_cat_colimit CZH_UCAT_Limit_IT.is_cat_obj_empty_initial ###defs
###output ?\<ZZ> : 0\<^sub>C\<^sub>F >\<^sub>C\<^sub>F\<^sub>.\<^sub>0 ?z : 0\<^sub>C \<mapsto>\<mapsto>\<^sub>C\<^bsub>?\<alpha>\<^esub> ?\<CC> \<Longrightarrow> (?\<ZZ> : cf_0 ?\<CC> >\<^sub>C\<^sub>F\<^sub>.\<^sub>c\<^sub>o\<^sub>l\<^sub>i\<^sub>m ?z : cat_0 \<mapsto>\<mapsto>\<^sub>C\<^bsub>?\<alpha>\<^esub> ?\<CC> \<Longrightarrow> ?W) \<Longrightarrow> ?W ###end
Universal_Turing_Machine/UF
UF.godel_code_eq_1
lemma godel_code_eq_1: "(godel_code nl = 1) = (nl = [])"
(godel_code ?nl = 1) = (?nl = [])
(?H1 x_1 = ?H2) = (x_1 = ?H3)
[ "List.list.Nil", "Groups.one_class.one", "UF.godel_code" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "class one =\n fixes one :: 'a (\"1\")", "fun godel_code :: \"nat list \\<Rightarrow> nat\"\n where\n \"godel_code xs = (let lh = length xs in \n 2^lh * (godel_code' xs (Suc 0)))\"" ]
###template (?H1 x_1 = ?H2) = (x_1 = ?H3) ###symbols List.list.Nil Groups.one_class.one UF.godel_code ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" class one = fixes one :: 'a ("1") fun godel_code :: "nat list \<Rightarrow> nat" where "godel_code xs = (let lh = length xs in 2^lh * (godel_code' xs (Suc 0)))"
###output (godel_code ?nl = 1) = (?nl = []) ###end
Deriving/Comparator_Generator/Compare_Instances
Compare_Instances.comparator_option_simps(1)
null
comparator_option ?comp\<^sub>'\<^sub>a None None = Eq
?H1 x_1 ?H2 ?H2 = ?H3
[ "Comparator.order.Eq", "Option.option.None", "Compare_Instances.comparator_option" ]
[ "datatype 'a option =\n None\n | Some (the: 'a)" ]
###template ?H1 x_1 ?H2 ?H2 = ?H3 ###symbols Comparator.order.Eq Option.option.None Compare_Instances.comparator_option ###defs datatype 'a option = None | Some (the: 'a)
###output comparator_option ?comp\<^sub>'\<^sub>a None None = Eq ###end
Decl_Sem_Fun_PL/ValuesFSetProps
ValuesFSetProps.le_any_fun_inv
null
?v \<sqsubseteq> VFun ?t \<Longrightarrow> (\<And>t1. ?v = VFun t1 \<Longrightarrow> fset t1 \<subseteq> fset ?t \<Longrightarrow> ?P) \<Longrightarrow> ?P
\<lbrakk>?H1 x_1 (?H2 x_2); \<And>y_0. \<lbrakk>x_1 = ?H2 y_0; ?H3 (?H4 y_0) (?H4 x_2)\<rbrakk> \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3
[ "FSet.fset.fset", "Set.subset_eq", "ValuesFSet.val.VFun", "ValuesFSet.val_le" ]
[ "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "datatype val = VNat nat | VFun \"(val \\<times> val) fset\"", "inductive val_le :: \"val \\<Rightarrow> val \\<Rightarrow> bool\" (infix \"\\<sqsubseteq>\" 52) where\n vnat_le[intro!]: \"(VNat n) \\<sqsubseteq> (VNat n)\" |\n vfun_le[intro!]: \"fset t1 \\<subseteq> fset t2 \\<Longrightarrow> (VFun t1) \\<sqsubseteq> (VFun t2)\"" ]
###template \<lbrakk>?H1 x_1 (?H2 x_2); \<And>y_0. \<lbrakk>x_1 = ?H2 y_0; ?H3 (?H4 y_0) (?H4 x_2)\<rbrakk> \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3 ###symbols FSet.fset.fset Set.subset_eq ValuesFSet.val.VFun ValuesFSet.val_le ###defs abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" datatype val = VNat nat | VFun "(val \<times> val) fset" inductive val_le :: "val \<Rightarrow> val \<Rightarrow> bool" (infix "\<sqsubseteq>" 52) where vnat_le[intro!]: "(VNat n) \<sqsubseteq> (VNat n)" | vfun_le[intro!]: "fset t1 \<subseteq> fset t2 \<Longrightarrow> (VFun t1) \<sqsubseteq> (VFun t2)"
###output ?v \<sqsubseteq> VFun ?t \<Longrightarrow> (\<And>t1. ?v = VFun t1 \<Longrightarrow> fset t1 \<subseteq> fset ?t \<Longrightarrow> ?P) \<Longrightarrow> ?P ###end
MSO_Regex_Equivalence/M2L_Equivalence_Checking
M2L_Equivalence_Checking.wf_pnPlus
null
M2L_Equivalence_Checking.wf ?\<Sigma> ?n ?r \<Longrightarrow> M2L_Equivalence_Checking.wf ?\<Sigma> ?n ?s \<Longrightarrow> M2L_Equivalence_Checking.wf ?\<Sigma> ?n (pnPlus ?r ?s)
\<lbrakk>?H1 x_1 x_2 x_3; ?H1 x_1 x_2 x_4\<rbrakk> \<Longrightarrow> ?H1 x_1 x_2 (?H2 x_3 x_4)
[ "PNormalization.pnPlus", "M2L_Equivalence_Checking.wf" ]
[ "fun pnPlus :: \"'a::linorder rexp \\<Rightarrow> 'a rexp \\<Rightarrow> 'a rexp\" where\n \"pnPlus Zero r = r\"\n| \"pnPlus r Zero = r\"\n(*<*)\n(*\n| \"pnPlus Full r = Full\"\n| \"pnPlus r Full = Full\"\n*)\n(*>*)\n| \"pnPlus (Plus r s) t = pnPlus r (pnPlus s t)\"\n| \"pnPlus r (Plus s t) =\n (if r = s then (Plus s t)\n else if r \\<le> s then Plus r (Plus s t)\n else Plus s (pnPlus r t))\"\n| \"pnPlus r s =\n (if r = s then r\n else if r \\<le> s then Plus r s\n else Plus s r)\"" ]
###template \<lbrakk>?H1 x_1 x_2 x_3; ?H1 x_1 x_2 x_4\<rbrakk> \<Longrightarrow> ?H1 x_1 x_2 (?H2 x_3 x_4) ###symbols PNormalization.pnPlus M2L_Equivalence_Checking.wf ###defs fun pnPlus :: "'a::linorder rexp \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp" where "pnPlus Zero r = r" | "pnPlus r Zero = r" (*<*) (* | "pnPlus Full r = Full" | "pnPlus r Full = Full" *) (*>*) | "pnPlus (Plus r s) t = pnPlus r (pnPlus s t)" | "pnPlus r (Plus s t) = (if r = s then (Plus s t) else if r \<le> s then Plus r (Plus s t) else Plus s (pnPlus r t))" | "pnPlus r s = (if r = s then r else if r \<le> s then Plus r s else Plus s r)"
###output M2L_Equivalence_Checking.wf ?\<Sigma> ?n ?r \<Longrightarrow> M2L_Equivalence_Checking.wf ?\<Sigma> ?n ?s \<Longrightarrow> M2L_Equivalence_Checking.wf ?\<Sigma> ?n (pnPlus ?r ?s) ###end
Myhill-Nerode/Myhill
Myhill_1.Arden_removes_cl
null
rhss (Arden ?Y ?yrhs) = rhss ?yrhs - {?Y}
?H1 (?H2 x_1 x_2) = ?H3 (?H1 x_2) (?H4 x_1 ?H5)
[ "Set.empty", "Set.insert", "Groups.minus_class.minus", "Myhill_1.Arden", "Myhill_1.rhss" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition \n \"Arden X rhs \\<equiv> \n Append_rexp_rhs (rhs - {Trn X r | r. Trn X r \\<in> rhs}) (Star (\\<Uplus> {r. Trn X r \\<in> rhs}))\"", "definition \n \"rhss rhs \\<equiv> {X | X r. Trn X r \\<in> rhs}\"" ]
###template ?H1 (?H2 x_1 x_2) = ?H3 (?H1 x_2) (?H4 x_1 ?H5) ###symbols Set.empty Set.insert Groups.minus_class.minus Myhill_1.Arden Myhill_1.rhss ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition "Arden X rhs \<equiv> Append_rexp_rhs (rhs - {Trn X r | r. Trn X r \<in> rhs}) (Star (\<Uplus> {r. Trn X r \<in> rhs}))" definition "rhss rhs \<equiv> {X | X r. Trn X r \<in> rhs}"
###output rhss (Arden ?Y ?yrhs) = rhss ?yrhs - {?Y} ###end
JiveDataStoreModel/Isabelle_Store/StoreProperties
StoreProperties.disj4'
lemma disj4': "\<lbrakk>disj (arrV T a) y s \<rbrakk> \<Longrightarrow> disj (s@@(arrV T a).[i]) y s"
StoreProperties.disj (arrV ?T ?a) ?y ?s \<Longrightarrow> StoreProperties.disj (?s@@arrV ?T ?a.[?i]) ?y ?s
?H1 (?H2 x_1 x_2) x_3 x_4 \<Longrightarrow> ?H1 (?H3 x_4 (?H4 (?H2 x_1 x_2) x_5)) x_3 x_4
[ "Location.arr_loc", "Store.access", "Value.Value.arrV", "StoreProperties.disj" ]
[]
###template ?H1 (?H2 x_1 x_2) x_3 x_4 \<Longrightarrow> ?H1 (?H3 x_4 (?H4 (?H2 x_1 x_2) x_5)) x_3 x_4 ###symbols Location.arr_loc Store.access Value.Value.arrV StoreProperties.disj ###defs
###output StoreProperties.disj (arrV ?T ?a) ?y ?s \<Longrightarrow> StoreProperties.disj (?s@@arrV ?T ?a.[?i]) ?y ?s ###end
Monomorphic_Monad/Monad_Overloading
Monad_Overloading.run_tell_envT
lemma run_tell_envT [simp]: "run_env (tell s m) r = tell s (run_env m r)"
run_env (tell ?s ?m) ?r = tell ?s (run_env ?m ?r)
?H1 (?H2 x_1 x_2) x_3 = ?H3 x_1 (?H1 x_2 x_3)
[ "Monad_Overloading.tell", "Monomorphic_Monad.envT.run_env" ]
[ "consts tell :: \"('w, 'm) tell\"", "datatype ('r, 'm) envT = EnvT (run_env: \"'r \\<Rightarrow> 'm\")" ]
###template ?H1 (?H2 x_1 x_2) x_3 = ?H3 x_1 (?H1 x_2 x_3) ###symbols Monad_Overloading.tell Monomorphic_Monad.envT.run_env ###defs consts tell :: "('w, 'm) tell" datatype ('r, 'm) envT = EnvT (run_env: "'r \<Rightarrow> 'm")
###output run_env (tell ?s ?m) ?r = tell ?s (run_env ?m ?r) ###end
Robinson_Arithmetic/Robinson_Arithmetic
Robinson_Arithmetic.dsj_EH(4)
null
insert ?A (insert ?A1.0 (insert ?A2.0 (insert ?A3.0 ?H))) \<turnstile> ?B \<Longrightarrow> insert ?Ba (insert ?A1.0 (insert ?A2.0 (insert ?A3.0 ?H))) \<turnstile> ?B \<Longrightarrow> insert ?A1.0 (insert ?A2.0 (insert ?A3.0 (insert (?A OR ?Ba) ?H))) \<turnstile> ?B
\<lbrakk>?H1 (?H2 x_1 (?H2 x_2 (?H2 x_3 (?H2 x_4 x_5)))) x_6; ?H1 (?H2 x_7 (?H2 x_2 (?H2 x_3 (?H2 x_4 x_5)))) x_6\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_2 (?H2 x_3 (?H2 x_4 (?H2 (?H3 x_1 x_7) x_5)))) x_6
[ "Robinson_Arithmetic.dsj", "Set.insert", "Robinson_Arithmetic.nprv" ]
[ "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "inductive nprv :: \"fmla set \\<Rightarrow> fmla \\<Rightarrow> bool\" (infixl \"\\<turnstile>\" 55)\n where\n Hyp: \"A \\<in> H \\<Longrightarrow> H \\<turnstile> A\"\n | Q: \"A \\<in> Q_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | Bool: \"A \\<in> boolean_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | eql: \"A \\<in> equality_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | Spec: \"A \\<in> special_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | MP: \"H \\<turnstile> A IMP B \\<Longrightarrow> H' \\<turnstile> A \\<Longrightarrow> H \\<union> H' \\<turnstile> B\"\n | exiists: \"H \\<turnstile> A IMP B \\<Longrightarrow> atom i \\<sharp> B \\<Longrightarrow> \\<forall>C \\<in> H. atom i \\<sharp> C \\<Longrightarrow> H \\<turnstile> (exi i A) IMP B\"" ]
###template \<lbrakk>?H1 (?H2 x_1 (?H2 x_2 (?H2 x_3 (?H2 x_4 x_5)))) x_6; ?H1 (?H2 x_7 (?H2 x_2 (?H2 x_3 (?H2 x_4 x_5)))) x_6\<rbrakk> \<Longrightarrow> ?H1 (?H2 x_2 (?H2 x_3 (?H2 x_4 (?H2 (?H3 x_1 x_7) x_5)))) x_6 ###symbols Robinson_Arithmetic.dsj Set.insert Robinson_Arithmetic.nprv ###defs definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" inductive nprv :: "fmla set \<Rightarrow> fmla \<Rightarrow> bool" (infixl "\<turnstile>" 55) where Hyp: "A \<in> H \<Longrightarrow> H \<turnstile> A" | Q: "A \<in> Q_axioms \<Longrightarrow> H \<turnstile> A" | Bool: "A \<in> boolean_axioms \<Longrightarrow> H \<turnstile> A" | eql: "A \<in> equality_axioms \<Longrightarrow> H \<turnstile> A" | Spec: "A \<in> special_axioms \<Longrightarrow> H \<turnstile> A" | MP: "H \<turnstile> A IMP B \<Longrightarrow> H' \<turnstile> A \<Longrightarrow> H \<union> H' \<turnstile> B" | exiists: "H \<turnstile> A IMP B \<Longrightarrow> atom i \<sharp> B \<Longrightarrow> \<forall>C \<in> H. atom i \<sharp> C \<Longrightarrow> H \<turnstile> (exi i A) IMP B"
###output insert ?A (insert ?A1.0 (insert ?A2.0 (insert ?A3.0 ?H))) \<turnstile> ?B \<Longrightarrow> insert ?Ba (insert ?A1.0 (insert ?A2.0 (insert ?A3.0 ?H))) \<turnstile> ?B \<Longrightarrow> insert ?A1.0 (insert ?A2.0 (insert ?A3.0 (insert (?A OR ?Ba) ?H))) \<turnstile> ?B ###end
Zeta_3_Irrational/Zeta_3_Irrational
Zeta_3_Irrational.beukers_integral1_different
lemma beukers_integral1_different: assumes "r > s" shows "beukers_integral1 r s = (\<Sum>k\<in>{s<..r}. 1 / k ^ 2) / (r - s)"
?s \<le> ?r \<Longrightarrow> ?s < ?r \<Longrightarrow> beukers_integral1 ?r ?s = (\<Sum>k\<in>{?s<..?r}. 1 / real (k\<^sup>2)) / real (?r - ?s)
\<lbrakk>x_1 \<le> x_2; x_1 < x_2\<rbrakk> \<Longrightarrow> ?H1 x_2 x_1 = ?H2 (?H3 (\<lambda>y_0. ?H2 ?H4 (?H5 (?H6 y_0))) (?H7 x_1 x_2)) (?H5 (?H8 x_2 x_1))
[ "Groups.minus_class.minus", "Set_Interval.ord_class.greaterThanAtMost", "Power.power_class.power2", "Real.real", "Groups.one_class.one", "Groups_Big.comm_monoid_add_class.sum", "Fields.inverse_class.inverse_divide", "Zeta_3_Irrational.beukers_integral1" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "abbreviation real :: \"nat \\<Rightarrow> real\"\n where \"real \\<equiv> of_nat\"", "class one =\n fixes one :: 'a (\"1\")", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "definition beukers_integral1 :: \"nat \\<Rightarrow> nat \\<Rightarrow> real\" where\n \"beukers_integral1 r s = (\\<integral>(x,y)\\<in>{0<..<1}\\<times>{0<..<1}. (-ln (x*y) / (1 - x*y) * x^r * y^s) \\<partial>lborel)\"" ]
###template \<lbrakk>x_1 \<le> x_2; x_1 < x_2\<rbrakk> \<Longrightarrow> ?H1 x_2 x_1 = ?H2 (?H3 (\<lambda>y_0. ?H2 ?H4 (?H5 (?H6 y_0))) (?H7 x_1 x_2)) (?H5 (?H8 x_2 x_1)) ###symbols Groups.minus_class.minus Set_Interval.ord_class.greaterThanAtMost Power.power_class.power2 Real.real Groups.one_class.one Groups_Big.comm_monoid_add_class.sum Fields.inverse_class.inverse_divide Zeta_3_Irrational.beukers_integral1 ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" abbreviation real :: "nat \<Rightarrow> real" where "real \<equiv> of_nat" class one = fixes one :: 'a ("1") class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin definition beukers_integral1 :: "nat \<Rightarrow> nat \<Rightarrow> real" where "beukers_integral1 r s = (\<integral>(x,y)\<in>{0<..<1}\<times>{0<..<1}. (-ln (x*y) / (1 - x*y) * x^r * y^s) \<partial>lborel)"
###output ?s \<le> ?r \<Longrightarrow> ?s < ?r \<Longrightarrow> beukers_integral1 ?r ?s = (\<Sum>k\<in>{?s<..?r}. 1 / real (k\<^sup>2)) / real (?r - ?s) ###end
Grothendieck_Schemes/Topological_Space
Topological_Spaces.continuous_intros(94)
null
continuous_on ?s ?f \<Longrightarrow> \<forall>x\<in>?s. ?f x \<noteq> (0::?'b) \<Longrightarrow> continuous_on ?s (\<lambda>x. sgn (?f x))
\<lbrakk>?H1 x_1 x_2; \<forall>y_0\<in>x_1. x_2 y_0 \<noteq> ?H2\<rbrakk> \<Longrightarrow> ?H1 x_1 (\<lambda>y_1. ?H3 (x_2 y_1))
[ "Groups.sgn_class.sgn", "Groups.zero_class.zero", "Topological_Spaces.continuous_on" ]
[ "class sgn =\n fixes sgn :: \"'a \\<Rightarrow> 'a\"", "class zero =\n fixes zero :: 'a (\"0\")", "definition continuous_on :: \"'a set \\<Rightarrow> ('a::topological_space \\<Rightarrow> 'b::topological_space) \\<Rightarrow> bool\"\n where \"continuous_on s f \\<longleftrightarrow> (\\<forall>x\\<in>s. (f \\<longlongrightarrow> f x) (at x within s))\"" ]
###template \<lbrakk>?H1 x_1 x_2; \<forall>y_0\<in>x_1. x_2 y_0 \<noteq> ?H2\<rbrakk> \<Longrightarrow> ?H1 x_1 (\<lambda>y_1. ?H3 (x_2 y_1)) ###symbols Groups.sgn_class.sgn Groups.zero_class.zero Topological_Spaces.continuous_on ###defs class sgn = fixes sgn :: "'a \<Rightarrow> 'a" class zero = fixes zero :: 'a ("0") definition continuous_on :: "'a set \<Rightarrow> ('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f \<longlongrightarrow> f x) (at x within s))"
###output continuous_on ?s ?f \<Longrightarrow> \<forall>x\<in>?s. ?f x \<noteq> (0::?'b) \<Longrightarrow> continuous_on ?s (\<lambda>x. sgn (?f x)) ###end
Coinductive/Coinductive
Coinductive_List.ltl_lappend
null
ltl (lappend ?xs ?ys) = (if lnull ?xs then ltl ?ys else lappend (ltl ?xs) ?ys)
?H1 (?H2 x_1 x_2) = (if ?H3 x_1 then ?H1 x_2 else ?H2 (?H1 x_1) x_2)
[ "Coinductive_List.llist.lnull", "Coinductive_List.lappend", "Coinductive_List.llist.ltl" ]
[ "codatatype (lset: 'a) llist =\n lnull: LNil\n | LCons (lhd: 'a) (ltl: \"'a llist\")\nfor\n map: lmap\n rel: llist_all2\nwhere\n \"lhd LNil = undefined\"\n| \"ltl LNil = LNil\"", "codatatype (lset: 'a) llist =\n lnull: LNil\n | LCons (lhd: 'a) (ltl: \"'a llist\")\nfor\n map: lmap\n rel: llist_all2\nwhere\n \"lhd LNil = undefined\"\n| \"ltl LNil = LNil\"" ]
###template ?H1 (?H2 x_1 x_2) = (if ?H3 x_1 then ?H1 x_2 else ?H2 (?H1 x_1) x_2) ###symbols Coinductive_List.llist.lnull Coinductive_List.lappend Coinductive_List.llist.ltl ###defs codatatype (lset: 'a) llist = lnull: LNil | LCons (lhd: 'a) (ltl: "'a llist") for map: lmap rel: llist_all2 where "lhd LNil = undefined" | "ltl LNil = LNil" codatatype (lset: 'a) llist = lnull: LNil | LCons (lhd: 'a) (ltl: "'a llist") for map: lmap rel: llist_all2 where "lhd LNil = undefined" | "ltl LNil = LNil"
###output ltl (lappend ?xs ?ys) = (if lnull ?xs then ltl ?ys else lappend (ltl ?xs) ?ys) ###end
Pi_Calculus/Strong_Late_Sim
Strong_Late_Sim.simCases
lemma simCases[case_names Bound Free]: fixes P :: pi and Q :: pi and Rel :: "(pi \<times> pi) set" assumes Bound: "\<And>a y Q'. \<lbrakk>Q \<longmapsto> a\<guillemotleft>y\<guillemotright> \<prec> Q'; y \<sharp> P\<rbrakk> \<Longrightarrow> \<exists>P'. P \<longmapsto> a\<guillemotleft>y\<guillemotright> \<prec> P' \<and> derivative P' Q' a y Rel" and Free: "\<And>\<alpha> Q'. Q \<longmapsto> \<alpha> \<prec> Q' \<Longrightarrow> \<exists>P'. P \<longmapsto> \<alpha> \<prec> P' \<and> (P', Q') \<in> Rel" shows "P \<leadsto>[Rel] Q"
(\<And>a y Q'. ?Q \<longmapsto> a\<guillemotleft>y\<guillemotright> \<prec> Q' \<Longrightarrow> y \<sharp> ?P \<Longrightarrow> \<exists>P'. ?P \<longmapsto> a\<guillemotleft>y\<guillemotright> \<prec> P' \<and> derivative P' Q' a y ?Rel) \<Longrightarrow> (\<And>\<alpha> Q'. ?Q \<longmapsto> \<alpha> \<prec> Q' \<Longrightarrow> \<exists>P'. ?P \<longmapsto> \<alpha> \<prec> P' \<and> (P', Q') \<in> ?Rel) \<Longrightarrow> ?P \<leadsto>[?Rel] ?Q
\<lbrakk>\<And>y_0 y_1 y_2. \<lbrakk>?H1 x_1 (?H2 y_0 y_1 y_2); ?H3 y_1 x_2\<rbrakk> \<Longrightarrow> \<exists>y_3. ?H1 x_2 (?H2 y_0 y_1 y_3) \<and> ?H4 y_3 y_2 y_0 y_1 x_3; \<And>y_4 y_5. ?H1 x_1 (?H5 y_4 y_5) \<Longrightarrow> \<exists>y_6. ?H1 x_2 (?H5 y_4 y_6) \<and> (y_6, y_5) \<in> x_3\<rbrakk> \<Longrightarrow> ?H6 x_2 x_3 x_1
[ "Strong_Late_Sim.simulation", "Late_Semantics.residual.FreeR", "Strong_Late_Sim.derivative", "Nominal.fresh", "Late_Semantics.residual.BoundR", "Late_Semantics.transitions" ]
[ "definition simulation :: \"pi \\<Rightarrow> (pi \\<times> pi) set \\<Rightarrow> pi \\<Rightarrow> bool\" (\"_ \\<leadsto>[_] _\" [80, 80, 80] 80) where\n \"P \\<leadsto>[Rel] Q \\<equiv> (\\<forall>a x Q'. Q \\<longmapsto>a\\<guillemotleft>x\\<guillemotright> \\<prec> Q' \\<and> x \\<sharp> P \\<longrightarrow> (\\<exists>P'. P \\<longmapsto>a\\<guillemotleft>x\\<guillemotright> \\<prec> P' \\<and> derivative P' Q' a x Rel)) \\<and>\n (\\<forall>\\<alpha> Q'. Q \\<longmapsto>\\<alpha> \\<prec> Q' \\<longrightarrow> (\\<exists>P'. P \\<longmapsto>\\<alpha> \\<prec> P' \\<and> (P', Q') \\<in> Rel))\"", "definition derivative :: \"pi \\<Rightarrow> pi \\<Rightarrow> subject \\<Rightarrow> name \\<Rightarrow> (pi \\<times> pi) set \\<Rightarrow> bool\" where\n \"derivative P Q a x Rel \\<equiv> case a of InputS b \\<Rightarrow> (\\<forall>u. (P[x::=u], Q[x::=u]) \\<in> Rel)\n | BoundOutputS b \\<Rightarrow> (P, Q) \\<in> Rel\"", "definition fresh :: \"'x \\<Rightarrow> 'a \\<Rightarrow> bool\" (\\<open>_ \\<sharp> _\\<close> [80,80] 80) where\n \"a \\<sharp> x \\<longleftrightarrow> a \\<notin> supp x\"" ]
###template \<lbrakk>\<And>y_0 y_1 y_2. \<lbrakk>?H1 x_1 (?H2 y_0 y_1 y_2); ?H3 y_1 x_2\<rbrakk> \<Longrightarrow> \<exists>y_3. ?H1 x_2 (?H2 y_0 y_1 y_3) \<and> ?H4 y_3 y_2 y_0 y_1 x_3; \<And>y_4 y_5. ?H1 x_1 (?H5 y_4 y_5) \<Longrightarrow> \<exists>y_6. ?H1 x_2 (?H5 y_4 y_6) \<and> (y_6, y_5) \<in> x_3\<rbrakk> \<Longrightarrow> ?H6 x_2 x_3 x_1 ###symbols Strong_Late_Sim.simulation Late_Semantics.residual.FreeR Strong_Late_Sim.derivative Nominal.fresh Late_Semantics.residual.BoundR Late_Semantics.transitions ###defs definition simulation :: "pi \<Rightarrow> (pi \<times> pi) set \<Rightarrow> pi \<Rightarrow> bool" ("_ \<leadsto>[_] _" [80, 80, 80] 80) where "P \<leadsto>[Rel] Q \<equiv> (\<forall>a x Q'. Q \<longmapsto>a\<guillemotleft>x\<guillemotright> \<prec> Q' \<and> x \<sharp> P \<longrightarrow> (\<exists>P'. P \<longmapsto>a\<guillemotleft>x\<guillemotright> \<prec> P' \<and> derivative P' Q' a x Rel)) \<and> (\<forall>\<alpha> Q'. Q \<longmapsto>\<alpha> \<prec> Q' \<longrightarrow> (\<exists>P'. P \<longmapsto>\<alpha> \<prec> P' \<and> (P', Q') \<in> Rel))" definition derivative :: "pi \<Rightarrow> pi \<Rightarrow> subject \<Rightarrow> name \<Rightarrow> (pi \<times> pi) set \<Rightarrow> bool" where "derivative P Q a x Rel \<equiv> case a of InputS b \<Rightarrow> (\<forall>u. (P[x::=u], Q[x::=u]) \<in> Rel) | BoundOutputS b \<Rightarrow> (P, Q) \<in> Rel" definition fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" (\<open>_ \<sharp> _\<close> [80,80] 80) where "a \<sharp> x \<longleftrightarrow> a \<notin> supp x"
###output (\<And>a y Q'. ?Q \<longmapsto> a\<guillemotleft>y\<guillemotright> \<prec> Q' \<Longrightarrow> y \<sharp> ?P \<Longrightarrow> \<exists>P'. ?P \<longmapsto> a\<guillemotleft>y\<guillemotright> \<prec> P' \<and> derivative P' Q' a y ?Rel) \<Longrightarrow> (\<And>\<alpha> Q'. ?Q \<longmapsto> \<alpha> \<prec> Q' \<Longrightarrow> \<exists>P'. ?P \<longmapsto> \<alpha> \<prec> P' \<and> (P', Q') \<in> ?Rel) \<Longrightarrow> ?P \<leadsto>[?Rel] ?Q ###end
CakeML/generated/LemExtraDefs
LemExtraDefs.is_digit_char_intro
lemma is_digit_char_intro[simp]: "is_digit (char_to_digit c) = is_digit_char c"
is_digit (char_to_digit ?c) = is_digit_char ?c
?H1 (?H2 x_1) = ?H3 x_1
[ "LemExtraDefs.is_digit_char", "LemExtraDefs.char_to_digit", "LemExtraDefs.is_digit" ]
[]
###template ?H1 (?H2 x_1) = ?H3 x_1 ###symbols LemExtraDefs.is_digit_char LemExtraDefs.char_to_digit LemExtraDefs.is_digit ###defs
###output is_digit (char_to_digit ?c) = is_digit_char ?c ###end
Jinja/J/WellTypeRT
WellTypeRT.WTs_implies_WTrts
null
?P,?E \<turnstile> ?es [::] ?Ts \<Longrightarrow> ?P,?E,?h \<turnstile> ?es [:] ?Ts
?H1 x_1 x_2 x_3 x_4 \<Longrightarrow> ?H2 x_1 x_2 x_5 x_3 x_4
[ "WellTypeRT.WTrts2", "WellType.WTs" ]
[]
###template ?H1 x_1 x_2 x_3 x_4 \<Longrightarrow> ?H2 x_1 x_2 x_5 x_3 x_4 ###symbols WellTypeRT.WTrts2 WellType.WTs ###defs
###output ?P,?E \<turnstile> ?es [::] ?Ts \<Longrightarrow> ?P,?E,?h \<turnstile> ?es [:] ?Ts ###end
Gale_Shapley/Gale_Shapley2
Gale_Shapley2.list_array
lemma list_array: "list (array x n) = replicate n x"
list (array ?x ?n) = replicate ?n ?x
?H1 (?H2 x_1 x_2) = ?H3 x_2 x_1
[ "List.replicate", "Gale_Shapley2.array", "Gale_Shapley2.list" ]
[ "primrec replicate :: \"nat \\<Rightarrow> 'a \\<Rightarrow> 'a list\" where\nreplicate_0: \"replicate 0 x = []\" |\nreplicate_Suc: \"replicate (Suc n) x = x # replicate n x\"", "abbreviation \"array \\<equiv> new_array\"", "abbreviation \"list \\<equiv> list_of_array\"" ]
###template ?H1 (?H2 x_1 x_2) = ?H3 x_2 x_1 ###symbols List.replicate Gale_Shapley2.array Gale_Shapley2.list ###defs primrec replicate :: "nat \<Rightarrow> 'a \<Rightarrow> 'a list" where replicate_0: "replicate 0 x = []" | replicate_Suc: "replicate (Suc n) x = x # replicate n x" abbreviation "array \<equiv> new_array" abbreviation "list \<equiv> list_of_array"
###output list (array ?x ?n) = replicate ?n ?x ###end
UTP/toolkit/List_Extra
List_Extra.nth_el_appendl
lemma nth_el_appendl[simp]: "i < length xs \<Longrightarrow> (xs @ ys)\<langle>i\<rangle>\<^sub>l = xs\<langle>i\<rangle>\<^sub>l"
?i < length ?xs \<Longrightarrow> (?xs @ ?ys)\<langle>?i\<rangle>\<^sub>l = ?xs\<langle>?i\<rangle>\<^sub>l
x_1 < ?H1 x_2 \<Longrightarrow> ?H2 (?H3 x_2 x_3) x_1 = ?H2 x_2 x_1
[ "List.append", "List_Extra.nth_el", "List.length" ]
[ "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"" ]
###template x_1 < ?H1 x_2 \<Longrightarrow> ?H2 (?H3 x_2 x_3) x_1 = ?H2 x_2 x_1 ###symbols List.append List_Extra.nth_el List.length ###defs primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size"
###output ?i < length ?xs \<Longrightarrow> (?xs @ ?ys)\<langle>?i\<rangle>\<^sub>l = ?xs\<langle>?i\<rangle>\<^sub>l ###end
FSM_Tests/Prime_Transformation
Prime_Transformation.uint64_nat_bij
lemma uint64_nat_bij : "(x :: nat) < 2^64 \<Longrightarrow> nat_of_uint64 (uint64_of_nat x) = x"
?x < 2 ^ 64 \<Longrightarrow> nat_of_uint64 (uint64_of_nat ?x) = ?x
x_1 < ?H1 (?H2 (?H3 ?H4)) (?H2 (?H3 (?H3 (?H3 (?H3 (?H3 (?H3 ?H4))))))) \<Longrightarrow> ?H5 (?H6 x_1) = x_1
[ "Uint64.uint64_of_nat", "Uint64.nat_of_uint64", "Num.num.One", "Num.num.Bit0", "Num.numeral_class.numeral", "Power.power_class.power" ]
[ "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"" ]
###template x_1 < ?H1 (?H2 (?H3 ?H4)) (?H2 (?H3 (?H3 (?H3 (?H3 (?H3 (?H3 ?H4))))))) \<Longrightarrow> ?H5 (?H6 x_1) = x_1 ###symbols Uint64.uint64_of_nat Uint64.nat_of_uint64 Num.num.One Num.num.Bit0 Num.numeral_class.numeral Power.power_class.power ###defs datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n"
###output ?x < 2 ^ 64 \<Longrightarrow> nat_of_uint64 (uint64_of_nat ?x) = ?x ###end
Stateful_Protocol_Composition_and_Typing/Messages
Messages.nonvar_term_has_composed_shallow_term
lemma nonvar_term_has_composed_shallow_term: fixes t::"('f,'v) term" assumes "\<not>(\<exists>x. t = Var x)" shows "\<exists>f T. Fun f T \<sqsubseteq> t \<and> (\<forall>s \<in> set T. (\<exists>c. s = Fun c []) \<or> (\<exists>x. s = Var x))"
\<nexists>x. ?t = Var x \<Longrightarrow> \<exists>f T. Fun f T \<sqsubseteq> ?t \<and> (\<forall>s\<in>set T. (\<exists>c. s = Fun c []) \<or> (\<exists>x. s = Var x))
\<nexists>y_0. x_1 = ?H1 y_0 \<Longrightarrow> \<exists>y_1 y_2. ?H2 (?H3 y_1 y_2) x_1 \<and> (\<forall>y_3\<in>?H4 y_2. (\<exists>y_4. y_3 = ?H3 y_4 ?H5) \<or> (\<exists>y_5. y_3 = ?H1 y_5))
[ "List.list.Nil", "List.list.set", "Term.term.Fun", "Messages.subtermeq", "Term.term.Var" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "type_synonym \"term\" = \"(expr+stmt,var,expr list) sum3\"", "abbreviation subtermeq (infix \"\\<sqsubseteq>\" 50) where \"t' \\<sqsubseteq> t \\<equiv> (t' \\<in> subterms t)\"", "type_synonym \"term\" = \"(expr+stmt,var,expr list) sum3\"" ]
###template \<nexists>y_0. x_1 = ?H1 y_0 \<Longrightarrow> \<exists>y_1 y_2. ?H2 (?H3 y_1 y_2) x_1 \<and> (\<forall>y_3\<in>?H4 y_2. (\<exists>y_4. y_3 = ?H3 y_4 ?H5) \<or> (\<exists>y_5. y_3 = ?H1 y_5)) ###symbols List.list.Nil List.list.set Term.term.Fun Messages.subtermeq Term.term.Var ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" type_synonym "term" = "(expr+stmt,var,expr list) sum3" abbreviation subtermeq (infix "\<sqsubseteq>" 50) where "t' \<sqsubseteq> t \<equiv> (t' \<in> subterms t)" type_synonym "term" = "(expr+stmt,var,expr list) sum3"
###output \<nexists>x. ?t = Var x \<Longrightarrow> \<exists>f T. Fun f T \<sqsubseteq> ?t \<and> (\<forall>s\<in>set T. (\<exists>c. s = Fun c []) \<or> (\<exists>x. s = Var x)) ###end
Planarity_Certificates/Planarity/Permutations_2
Permutations_2.orbit_perm_swap
lemma orbit_perm_swap: "orbit (perm_swap a b f) x = (a \<rightleftharpoons>\<^sub>F b) ` orbit f ((a \<rightleftharpoons>\<^sub>F b) x)"
orbit (perm_swap ?a ?b ?f) ?x = (?a \<rightleftharpoons>\<^sub>F ?b) ` orbit ?f ((?a \<rightleftharpoons>\<^sub>F ?b) ?x)
?H1 (?H2 x_1 x_2 x_3) x_4 = ?H3 (?H4 x_1 x_2) (?H1 x_3 (?H4 x_1 x_2 x_4))
[ "Permutations_2.funswapid", "Set.image", "Permutations_2.perm_swap", "Orbits.orbit" ]
[ "definition image :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"`\" 90)\n where \"f ` A = {y. \\<exists>x\\<in>A. y = f x}\"", "inductive_set orbit :: \"('a \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> 'a set\" for f x where\n base: \"f x \\<in> orbit f x\" |\n step: \"y \\<in> orbit f x \\<Longrightarrow> f y \\<in> orbit f x\"" ]
###template ?H1 (?H2 x_1 x_2 x_3) x_4 = ?H3 (?H4 x_1 x_2) (?H1 x_3 (?H4 x_1 x_2 x_4)) ###symbols Permutations_2.funswapid Set.image Permutations_2.perm_swap Orbits.orbit ###defs definition image :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "`" 90) where "f ` A = {y. \<exists>x\<in>A. y = f x}" inductive_set orbit :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a set" for f x where base: "f x \<in> orbit f x" | step: "y \<in> orbit f x \<Longrightarrow> f y \<in> orbit f x"
###output orbit (perm_swap ?a ?b ?f) ?x = (?a \<rightleftharpoons>\<^sub>F ?b) ` orbit ?f ((?a \<rightleftharpoons>\<^sub>F ?b) ?x) ###end
Attack_Trees/AT
AT.length_last
lemma length_last[rule_format]: "(l @ [x]) ! (length (l @ [x]) - 1) = x"
(?l @ [?x]) ! (length (?l @ [?x]) - 1) = ?x
?H1 (?H2 x_1 (?H3 x_2 ?H4)) (?H5 (?H6 (?H2 x_1 (?H3 x_2 ?H4))) ?H7) = x_2
[ "Groups.one_class.one", "List.length", "Groups.minus_class.minus", "List.list.Nil", "List.list.Cons", "List.append", "List.nth" ]
[ "class one =\n fixes one :: 'a (\"1\")", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "primrec (nonexhaustive) nth :: \"'a list => nat => 'a\" (infixl \"!\" 100) where\nnth_Cons: \"(x # xs) ! n = (case n of 0 \\<Rightarrow> x | Suc k \\<Rightarrow> xs ! k)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>" ]
###template ?H1 (?H2 x_1 (?H3 x_2 ?H4)) (?H5 (?H6 (?H2 x_1 (?H3 x_2 ?H4))) ?H7) = x_2 ###symbols Groups.one_class.one List.length Groups.minus_class.minus List.list.Nil List.list.Cons List.append List.nth ###defs class one = fixes one :: 'a ("1") abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close>
###output (?l @ [?x]) ! (length (?l @ [?x]) - 1) = ?x ###end
JinjaThreads/Compiler/J1
J1State.call1_callE
null
call1 (?obj\<bullet>?M(?pns)) = \<lfloor>(?a, ?M', ?vs)\<rfloor> \<Longrightarrow> (call1 ?obj = \<lfloor>(?a, ?M', ?vs)\<rfloor> \<Longrightarrow> ?thesis) \<Longrightarrow> (\<And>v. ?obj = Val v \<Longrightarrow> calls1 ?pns = \<lfloor>(?a, ?M', ?vs)\<rfloor> \<Longrightarrow> ?thesis) \<Longrightarrow> (?obj = addr ?a \<Longrightarrow> ?pns = map Val ?vs \<Longrightarrow> ?M = ?M' \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk>?H1 (?H2 x_1 x_2 x_3) = ?H3 (x_4, x_5, x_6); ?H1 x_1 = ?H3 (x_4, x_5, x_6) \<Longrightarrow> x_7; \<And>y_0. \<lbrakk>x_1 = ?H4 y_0; ?H5 x_3 = ?H3 (x_4, x_5, x_6)\<rbrakk> \<Longrightarrow> x_7; \<lbrakk>x_1 = ?H6 x_4; x_3 = ?H7 ?H4 x_6; x_2 = x_5\<rbrakk> \<Longrightarrow> x_7\<rbrakk> \<Longrightarrow> x_7
[ "List.list.map", "Expr.addr", "J1State.calls1", "Expr.exp.Val", "Option.option.Some", "Expr.exp.Call", "J1State.call1" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype 'a option =\n None\n | Some (the: 'a)" ]
###template \<lbrakk>?H1 (?H2 x_1 x_2 x_3) = ?H3 (x_4, x_5, x_6); ?H1 x_1 = ?H3 (x_4, x_5, x_6) \<Longrightarrow> x_7; \<And>y_0. \<lbrakk>x_1 = ?H4 y_0; ?H5 x_3 = ?H3 (x_4, x_5, x_6)\<rbrakk> \<Longrightarrow> x_7; \<lbrakk>x_1 = ?H6 x_4; x_3 = ?H7 ?H4 x_6; x_2 = x_5\<rbrakk> \<Longrightarrow> x_7\<rbrakk> \<Longrightarrow> x_7 ###symbols List.list.map Expr.addr J1State.calls1 Expr.exp.Val Option.option.Some Expr.exp.Call J1State.call1 ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype 'a option = None | Some (the: 'a)
###output call1 (?obj\<bullet>?M(?pns)) = \<lfloor>(?a, ?M', ?vs)\<rfloor> \<Longrightarrow> (call1 ?obj = \<lfloor>(?a, ?M', ?vs)\<rfloor> \<Longrightarrow> ?thesis) \<Longrightarrow> (\<And>v. ?obj = Val v \<Longrightarrow> calls1 ?pns = \<lfloor>(?a, ?M', ?vs)\<rfloor> \<Longrightarrow> ?thesis) \<Longrightarrow> (?obj = addr ?a \<Longrightarrow> ?pns = map Val ?vs \<Longrightarrow> ?M = ?M' \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis ###end
UTP/utp/utp_pred
utp_pred.subst_not
lemma subst_not [usubst]: "\<sigma> \<dagger> (\<not> P) = (\<not> \<sigma> \<dagger> P)"
?\<sigma> \<dagger> (\<not> ?P) = (\<not> ?\<sigma> \<dagger> ?P)
?H1 x_1 (?H2 x_2) = ?H3 (?H1 x_1 x_2)
[ "utp_pred.not_upred", "utp_subst.subst" ]
[]
###template ?H1 x_1 (?H2 x_2) = ?H3 (?H1 x_1 x_2) ###symbols utp_pred.not_upred utp_subst.subst ###defs
###output ?\<sigma> \<dagger> (\<not> ?P) = (\<not> ?\<sigma> \<dagger> ?P) ###end
Abstract-Hoare-Logics/Procs/PsHoareTotal
PsHoareTotal.MGT_implies_complete
lemma MGT_implies_complete: "{} |\<turnstile>\<^sub>t {MGT\<^sub>t c} \<Longrightarrow> {} \<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {P}c{Q::state assn}"
{} |\<turnstile>\<^sub>t {MGT\<^sub>t ?c} \<Longrightarrow> {} \<Turnstile>\<^sub>t {?P} ?c {?Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {?P} ?c {?Q}
\<lbrakk>?H1 ?H2 (?H3 (?H4 x_1) ?H2); ?H5 ?H2 x_2 x_1 x_3\<rbrakk> \<Longrightarrow> ?H6 ?H2 x_2 x_1 x_3
[ "PsHoareTotal.thoare'", "PsHoareTotal.ctvalid", "PsHoareTotal.MGT\\<^sub>t", "Set.insert", "Set.empty", "PsHoareTotal.thoare" ]
[ "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"" ]
###template \<lbrakk>?H1 ?H2 (?H3 (?H4 x_1) ?H2); ?H5 ?H2 x_2 x_1 x_3\<rbrakk> \<Longrightarrow> ?H6 ?H2 x_2 x_1 x_3 ###symbols PsHoareTotal.thoare' PsHoareTotal.ctvalid PsHoareTotal.MGT\<^sub>t Set.insert Set.empty PsHoareTotal.thoare ###defs definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot"
###output {} |\<turnstile>\<^sub>t {MGT\<^sub>t ?c} \<Longrightarrow> {} \<Turnstile>\<^sub>t {?P} ?c {?Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {?P} ?c {?Q} ###end
DiskPaxos/DiskPaxos_Inv3
DiskPaxos_Inv3.InitPhase_HInv3_q
lemma InitPhase_HInv3_q: "\<lbrakk> InitializePhase s s' q ; HInv3_L s' p q d \<rbrakk> \<Longrightarrow> HInv3_R s' p q d"
InitializePhase ?s ?s' ?q \<Longrightarrow> HInv3_L ?s' ?p ?q ?d \<Longrightarrow> HInv3_R ?s' ?p ?q ?d
\<lbrakk>?H1 x_1 x_2 x_3; ?H2 x_2 x_4 x_3 x_5\<rbrakk> \<Longrightarrow> ?H3 x_2 x_4 x_3 x_5
[ "DiskPaxos_Inv3.HInv3_R", "DiskPaxos_Inv3.HInv3_L", "DiskPaxos_Model.InitializePhase" ]
[ "definition HInv3_R :: \"state \\<Rightarrow> Proc \\<Rightarrow> Proc \\<Rightarrow> Disk \\<Rightarrow> bool\"\nwhere\n \"HInv3_R s p q d = (\\<lparr>block= dblock s q, proc= q\\<rparr> \\<in> blocksRead s p d\n \\<or> \\<lparr>block= dblock s p, proc= p\\<rparr> \\<in> blocksRead s q d)\"", "definition HInv3_L :: \"state \\<Rightarrow> Proc \\<Rightarrow> Proc \\<Rightarrow> Disk \\<Rightarrow> bool\"\nwhere\n \"HInv3_L s p q d = (phase s p \\<in> {1,2}\n \\<and> phase s q \\<in> {1,2} \n \\<and> hasRead s p d q\n \\<and> hasRead s q d p)\"", "definition InitializePhase :: \"state \\<Rightarrow> state \\<Rightarrow> Proc \\<Rightarrow> bool\"\n where\n \"InitializePhase s s' p =\n (disksWritten s' = (disksWritten s)(p := {})\n & blocksRead s' = (blocksRead s)(p := (\\<lambda>d. {})))\"" ]
###template \<lbrakk>?H1 x_1 x_2 x_3; ?H2 x_2 x_4 x_3 x_5\<rbrakk> \<Longrightarrow> ?H3 x_2 x_4 x_3 x_5 ###symbols DiskPaxos_Inv3.HInv3_R DiskPaxos_Inv3.HInv3_L DiskPaxos_Model.InitializePhase ###defs definition HInv3_R :: "state \<Rightarrow> Proc \<Rightarrow> Proc \<Rightarrow> Disk \<Rightarrow> bool" where "HInv3_R s p q d = (\<lparr>block= dblock s q, proc= q\<rparr> \<in> blocksRead s p d \<or> \<lparr>block= dblock s p, proc= p\<rparr> \<in> blocksRead s q d)" definition HInv3_L :: "state \<Rightarrow> Proc \<Rightarrow> Proc \<Rightarrow> Disk \<Rightarrow> bool" where "HInv3_L s p q d = (phase s p \<in> {1,2} \<and> phase s q \<in> {1,2} \<and> hasRead s p d q \<and> hasRead s q d p)" definition InitializePhase :: "state \<Rightarrow> state \<Rightarrow> Proc \<Rightarrow> bool" where "InitializePhase s s' p = (disksWritten s' = (disksWritten s)(p := {}) & blocksRead s' = (blocksRead s)(p := (\<lambda>d. {})))"
###output InitializePhase ?s ?s' ?q \<Longrightarrow> HInv3_L ?s' ?p ?q ?d \<Longrightarrow> HInv3_R ?s' ?p ?q ?d ###end
Q0_Metatheory/Propositional_Wff
Propositional_Wff.\<V>\<^sub>B_neg
null
?A \<in> pwffs \<Longrightarrow> is_tv_assignment ?\<phi> \<Longrightarrow> \<V>\<^sub>B ?\<phi> (\<sim>\<^sup>\<Q> ?A) = \<sim> \<V>\<^sub>B ?\<phi> ?A
\<lbrakk>x_1 \<in> ?H1; ?H2 x_2\<rbrakk> \<Longrightarrow> ?H3 x_2 (?H4 x_1) = ?H5 (?H3 x_2 x_1)
[ "Boolean_Algebra.negation", "Syntax.neg", "Propositional_Wff.\\<V>\\<^sub>B", "Propositional_Wff.is_tv_assignment", "Propositional_Wff.pwffs" ]
[ "definition negation :: \"V \\<Rightarrow> V\" (\"\\<sim> _\" [141] 141) where\n [simp]: \"\\<sim> p = bool_to_V (\\<not> bool_from_V p)\"", "definition neg :: \"'fmla \\<Rightarrow> 'fmla\" where\n \"neg \\<phi> = imp \\<phi> fls\"", "definition \\<V>\\<^sub>B :: \"(nat \\<Rightarrow> V) \\<Rightarrow> form \\<Rightarrow> V\" where\n [simp]: \"\\<V>\\<^sub>B \\<phi> A = (THE b. \\<V>\\<^sub>B_graph \\<phi> A b)\"", "definition is_tv_assignment :: \"(nat \\<Rightarrow> V) \\<Rightarrow> bool\" where\n [iff]: \"is_tv_assignment \\<phi> \\<longleftrightarrow> (\\<forall>p. \\<phi> p \\<in> elts \\<bool>)\"", "inductive_set pwffs :: \"form set\" where\n T_pwff: \"T\\<^bsub>o\\<^esub> \\<in> pwffs\"\n| F_pwff: \"F\\<^bsub>o\\<^esub> \\<in> pwffs\"\n| var_pwff: \"p\\<^bsub>o\\<^esub> \\<in> pwffs\"\n| neg_pwff: \"\\<sim>\\<^sup>\\<Q> A \\<in> pwffs\" if \"A \\<in> pwffs\"\n| conj_pwff: \"A \\<and>\\<^sup>\\<Q> B \\<in> pwffs\" if \"A \\<in> pwffs\" and \"B \\<in> pwffs\"\n| disj_pwff: \"A \\<or>\\<^sup>\\<Q> B \\<in> pwffs\" if \"A \\<in> pwffs\" and \"B \\<in> pwffs\"\n| imp_pwff: \"A \\<supset>\\<^sup>\\<Q> B \\<in> pwffs\" if \"A \\<in> pwffs\" and \"B \\<in> pwffs\"\n| eqv_pwff: \"A \\<equiv>\\<^sup>\\<Q> B \\<in> pwffs\" if \"A \\<in> pwffs\" and \"B \\<in> pwffs\"" ]
###template \<lbrakk>x_1 \<in> ?H1; ?H2 x_2\<rbrakk> \<Longrightarrow> ?H3 x_2 (?H4 x_1) = ?H5 (?H3 x_2 x_1) ###symbols Boolean_Algebra.negation Syntax.neg Propositional_Wff.\<V>\<^sub>B Propositional_Wff.is_tv_assignment Propositional_Wff.pwffs ###defs definition negation :: "V \<Rightarrow> V" ("\<sim> _" [141] 141) where [simp]: "\<sim> p = bool_to_V (\<not> bool_from_V p)" definition neg :: "'fmla \<Rightarrow> 'fmla" where "neg \<phi> = imp \<phi> fls" definition \<V>\<^sub>B :: "(nat \<Rightarrow> V) \<Rightarrow> form \<Rightarrow> V" where [simp]: "\<V>\<^sub>B \<phi> A = (THE b. \<V>\<^sub>B_graph \<phi> A b)" definition is_tv_assignment :: "(nat \<Rightarrow> V) \<Rightarrow> bool" where [iff]: "is_tv_assignment \<phi> \<longleftrightarrow> (\<forall>p. \<phi> p \<in> elts \<bool>)" inductive_set pwffs :: "form set" where T_pwff: "T\<^bsub>o\<^esub> \<in> pwffs" | F_pwff: "F\<^bsub>o\<^esub> \<in> pwffs" | var_pwff: "p\<^bsub>o\<^esub> \<in> pwffs" | neg_pwff: "\<sim>\<^sup>\<Q> A \<in> pwffs" if "A \<in> pwffs" | conj_pwff: "A \<and>\<^sup>\<Q> B \<in> pwffs" if "A \<in> pwffs" and "B \<in> pwffs" | disj_pwff: "A \<or>\<^sup>\<Q> B \<in> pwffs" if "A \<in> pwffs" and "B \<in> pwffs" | imp_pwff: "A \<supset>\<^sup>\<Q> B \<in> pwffs" if "A \<in> pwffs" and "B \<in> pwffs" | eqv_pwff: "A \<equiv>\<^sup>\<Q> B \<in> pwffs" if "A \<in> pwffs" and "B \<in> pwffs"
###output ?A \<in> pwffs \<Longrightarrow> is_tv_assignment ?\<phi> \<Longrightarrow> \<V>\<^sub>B ?\<phi> (\<sim>\<^sup>\<Q> ?A) = \<sim> \<V>\<^sub>B ?\<phi> ?A ###end
LTL_to_DRA/LTL_Rabin_Unfold_Opt
LTL_Rabin_Unfold_Opt.ltl_to_generalized_rabin_af\<^sub>\<UU>_correct
null
finite ?\<Sigma> \<Longrightarrow> range ?w \<subseteq> ?\<Sigma> \<Longrightarrow> ?w \<Turnstile> ?\<phi> = accept\<^sub>G\<^sub>R (ltl_to_generalized_rabin_af\<^sub>\<UU> ?\<Sigma> ?\<phi>) ?w
\<lbrakk>?H1 x_1; ?H2 (?H3 x_2) x_1\<rbrakk> \<Longrightarrow> ?H4 x_2 x_3 = ?H5 (?H6 x_1 x_3) x_2
[ "LTL_Rabin_Unfold_Opt.ltl_to_generalized_rabin_af\\<^sub>\\<UU>", "Rabin.accept\\<^sub>G\\<^sub>R", "LTL_FGXU.ltl_semantics", "Set.range", "Set.subset_eq", "Finite_Set.finite" ]
[ "fun ltl_to_generalized_rabin_af\\<^sub>\\<UU>\nwhere\n \"ltl_to_generalized_rabin_af\\<^sub>\\<UU> \\<Sigma> \\<phi> = ltl_to_rabin_base_def.ltl_to_generalized_rabin \\<up>af\\<^sub>\\<UU> \\<up>af\\<^sub>G\\<^sub>\\<UU> (Abs \\<circ> Unf) (Abs \\<circ> Unf\\<^sub>G) M\\<^sub>\\<UU>_fin \\<Sigma> \\<phi>\"", "definition accept\\<^sub>G\\<^sub>R :: \"('a, 'b) generalized_rabin_automaton \\<Rightarrow> 'b word \\<Rightarrow> bool\"\nwhere \n \"accept\\<^sub>G\\<^sub>R R w \\<equiv> (\\<exists>(Fin, Inf) \\<in> (snd (snd R)). accepting_pair\\<^sub>G\\<^sub>R (fst R) (fst (snd R)) (Fin, Inf) w)\"", "fun ltl_semantics :: \"['a set word, 'a ltl] \\<Rightarrow> bool\" (infix \"\\<Turnstile>\" 80)\nwhere\n \"w \\<Turnstile> True = True\"\n| \"w \\<Turnstile> False = False\"\n| \"w \\<Turnstile> p(q) = (q \\<in> w 0)\"\n| \"w \\<Turnstile> np(q) = (q \\<notin> w 0)\"\n| \"w \\<Turnstile> \\<phi> and \\<psi> = (w \\<Turnstile> \\<phi> \\<and> w \\<Turnstile> \\<psi>)\"\n| \"w \\<Turnstile> \\<phi> or \\<psi> = (w \\<Turnstile> \\<phi> \\<or> w \\<Turnstile> \\<psi>)\"\n| \"w \\<Turnstile> X \\<phi> = (suffix 1 w \\<Turnstile> \\<phi>)\"\n| \"w \\<Turnstile> G \\<phi> = (\\<forall>k. suffix k w \\<Turnstile> \\<phi>)\"\n| \"w \\<Turnstile> F \\<phi> = (\\<exists>k. suffix k w \\<Turnstile> \\<phi>)\"\n| \"w \\<Turnstile> \\<phi> U \\<psi> = (\\<exists>k. suffix k w \\<Turnstile> \\<psi> \\<and> (\\<forall>j < k. suffix j w \\<Turnstile> \\<phi>))\"", "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
###template \<lbrakk>?H1 x_1; ?H2 (?H3 x_2) x_1\<rbrakk> \<Longrightarrow> ?H4 x_2 x_3 = ?H5 (?H6 x_1 x_3) x_2 ###symbols LTL_Rabin_Unfold_Opt.ltl_to_generalized_rabin_af\<^sub>\<UU> Rabin.accept\<^sub>G\<^sub>R LTL_FGXU.ltl_semantics Set.range Set.subset_eq Finite_Set.finite ###defs fun ltl_to_generalized_rabin_af\<^sub>\<UU> where "ltl_to_generalized_rabin_af\<^sub>\<UU> \<Sigma> \<phi> = ltl_to_rabin_base_def.ltl_to_generalized_rabin \<up>af\<^sub>\<UU> \<up>af\<^sub>G\<^sub>\<UU> (Abs \<circ> Unf) (Abs \<circ> Unf\<^sub>G) M\<^sub>\<UU>_fin \<Sigma> \<phi>" definition accept\<^sub>G\<^sub>R :: "('a, 'b) generalized_rabin_automaton \<Rightarrow> 'b word \<Rightarrow> bool" where "accept\<^sub>G\<^sub>R R w \<equiv> (\<exists>(Fin, Inf) \<in> (snd (snd R)). accepting_pair\<^sub>G\<^sub>R (fst R) (fst (snd R)) (Fin, Inf) w)" fun ltl_semantics :: "['a set word, 'a ltl] \<Rightarrow> bool" (infix "\<Turnstile>" 80) where "w \<Turnstile> True = True" | "w \<Turnstile> False = False" | "w \<Turnstile> p(q) = (q \<in> w 0)" | "w \<Turnstile> np(q) = (q \<notin> w 0)" | "w \<Turnstile> \<phi> and \<psi> = (w \<Turnstile> \<phi> \<and> w \<Turnstile> \<psi>)" | "w \<Turnstile> \<phi> or \<psi> = (w \<Turnstile> \<phi> \<or> w \<Turnstile> \<psi>)" | "w \<Turnstile> X \<phi> = (suffix 1 w \<Turnstile> \<phi>)" | "w \<Turnstile> G \<phi> = (\<forall>k. suffix k w \<Turnstile> \<phi>)" | "w \<Turnstile> F \<phi> = (\<exists>k. suffix k w \<Turnstile> \<phi>)" | "w \<Turnstile> \<phi> U \<psi> = (\<exists>k. suffix k w \<Turnstile> \<psi> \<and> (\<forall>j < k. suffix j w \<Turnstile> \<phi>))" abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output finite ?\<Sigma> \<Longrightarrow> range ?w \<subseteq> ?\<Sigma> \<Longrightarrow> ?w \<Turnstile> ?\<phi> = accept\<^sub>G\<^sub>R (ltl_to_generalized_rabin_af\<^sub>\<UU> ?\<Sigma> ?\<phi>) ?w ###end
Transformer_Semantics/Isotone_Transformers
Isotone_Transformers.fiter_qiter1
lemma fiter_qiter1: "Abs_iso (fiter_fun (Rep_iso f) (Rep_iso g) (Rep_iso h)) = qiter_fun f g h"
Abs_iso (fiter_fun (Rep_iso ?f) (Rep_iso ?g) (Rep_iso ?h)) = qiter_fun ?f ?g ?h
?H1 (?H2 (?H3 x_1) (?H3 x_2) (?H3 x_3)) = ?H4 x_1 x_2 x_3
[ "Quantale_Star.unital_near_quantale_class.qiter_fun", "Order_Lattice_Props.iso.Rep_iso", "Isotone_Transformers.fiter_fun", "Order_Lattice_Props.iso.Abs_iso" ]
[ "definition fiter_fun :: \"('a \\<Rightarrow> 'c::semilattice_inf) \\<Rightarrow> ('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" where \n \"fiter_fun f g = (\\<sqinter>) f \\<circ> (\\<circ>) g\"" ]
###template ?H1 (?H2 (?H3 x_1) (?H3 x_2) (?H3 x_3)) = ?H4 x_1 x_2 x_3 ###symbols Quantale_Star.unital_near_quantale_class.qiter_fun Order_Lattice_Props.iso.Rep_iso Isotone_Transformers.fiter_fun Order_Lattice_Props.iso.Abs_iso ###defs definition fiter_fun :: "('a \<Rightarrow> 'c::semilattice_inf) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" where "fiter_fun f g = (\<sqinter>) f \<circ> (\<circ>) g"
###output Abs_iso (fiter_fun (Rep_iso ?f) (Rep_iso ?g) (Rep_iso ?h)) = qiter_fun ?f ?g ?h ###end
ConcurrentIMP/Infinite_Sequences
Infinite_Sequences.stake_nth
lemma stake_nth[simp]: assumes "i < j" shows "stake j s ! i = s i"
?i < ?j \<Longrightarrow> stake ?j ?s ! ?i = ?s ?i
x_1 < x_2 \<Longrightarrow> ?H1 (?H2 x_2 x_3) x_1 = x_3 x_1
[ "Infinite_Sequences.stake", "List.nth" ]
[ "primrec stake :: \"nat \\<Rightarrow> 'a seq \\<Rightarrow> 'a list\" where\n \"stake 0 \\<sigma> = []\"\n| \"stake (Suc n) \\<sigma> = \\<sigma> 0 # stake n (\\<sigma> |\\<^sub>s 1)\"", "primrec (nonexhaustive) nth :: \"'a list => nat => 'a\" (infixl \"!\" 100) where\nnth_Cons: \"(x # xs) ! n = (case n of 0 \\<Rightarrow> x | Suc k \\<Rightarrow> xs ! k)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>" ]
###template x_1 < x_2 \<Longrightarrow> ?H1 (?H2 x_2 x_3) x_1 = x_3 x_1 ###symbols Infinite_Sequences.stake List.nth ###defs primrec stake :: "nat \<Rightarrow> 'a seq \<Rightarrow> 'a list" where "stake 0 \<sigma> = []" | "stake (Suc n) \<sigma> = \<sigma> 0 # stake n (\<sigma> |\<^sub>s 1)" primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close>
###output ?i < ?j \<Longrightarrow> stake ?j ?s ! ?i = ?s ?i ###end
CryptHOL/Computational_Model
Computational_Model.plus_intercept_parametric
lemma plus_intercept_parametric [transfer_rule]: includes lifting_syntax shows "((S ===> X1 ===> rel_gpv (rel_prod Y1 S) C) ===> (S ===> X2 ===> rel_gpv (rel_prod Y2 S) C) ===> S ===> rel_sum X1 X2 ===> rel_gpv (rel_prod (rel_sum Y1 Y2) S) C) plus_intercept plus_intercept"
rel_fun (rel_fun ?S (rel_fun ?X1.0 (rel_gpv (rel_prod ?Y1.0 ?S) ?C))) (rel_fun (rel_fun ?S (rel_fun ?X2.0 (rel_gpv (rel_prod ?Y2.0 ?S) ?C))) (rel_fun ?S (rel_fun (rel_sum ?X1.0 ?X2.0) (rel_gpv (rel_prod (rel_sum ?Y1.0 ?Y2.0) ?S) ?C)))) plus_intercept plus_intercept
?H1 (?H2 x_1 (?H3 x_2 (?H4 (?H5 x_3 x_1) x_4))) (?H6 (?H7 x_1 (?H8 x_5 (?H9 (?H10 x_6 x_1) x_4))) (?H11 x_1 (?H12 (?H13 x_2 x_5) (?H14 (?H15 (?H16 x_3 x_6) x_1) x_4)))) ?H17 ?H18
[ "Computational_Model.plus_intercept", "BNF_Def.rel_sum", "Basic_BNFs.rel_prod", "Generative_Probabilistic_Value.gpv.rel_gpv", "BNF_Def.rel_fun" ]
[ "primrec plus_intercept :: \"'s \\<Rightarrow> 'x1 + 'x2 \\<Rightarrow> (('y1 + 'y2) \\<times> 's, 'call, 'ret) gpv\"\nwhere\n \"plus_intercept s (Inl x) = map_gpv (apfst Inl) id (left s x)\"\n| \"plus_intercept s (Inr x) = map_gpv (apfst Inr) id (right s x)\"", "inductive\n rel_sum :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> 'a + 'b \\<Rightarrow> 'c + 'd \\<Rightarrow> bool\" for R1 R2\nwhere\n \"R1 a c \\<Longrightarrow> rel_sum R1 R2 (Inl a) (Inl c)\"\n| \"R2 b d \\<Longrightarrow> rel_sum R1 R2 (Inr b) (Inr d)\"", "inductive\n rel_prod :: \"('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> 'a \\<times> 'c \\<Rightarrow> 'b \\<times> 'd \\<Rightarrow> bool\" for R1 R2\nwhere\n \"\\<lbrakk>R1 a b; R2 c d\\<rbrakk> \\<Longrightarrow> rel_prod R1 R2 (a, c) (b, d)\"", "codatatype (results'_gpv: 'a, outs'_gpv: 'out, 'in) gpv\n = GPV (the_gpv: \"('a, 'out, 'in \\<Rightarrow> ('a, 'out, 'in) gpv) generat spmf\")", "definition\n rel_fun :: \"('a \\<Rightarrow> 'c \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'd) \\<Rightarrow> bool\"\nwhere\n \"rel_fun A B = (\\<lambda>f g. \\<forall>x y. A x y \\<longrightarrow> B (f x) (g y))\"" ]
###template ?H1 (?H2 x_1 (?H3 x_2 (?H4 (?H5 x_3 x_1) x_4))) (?H6 (?H7 x_1 (?H8 x_5 (?H9 (?H10 x_6 x_1) x_4))) (?H11 x_1 (?H12 (?H13 x_2 x_5) (?H14 (?H15 (?H16 x_3 x_6) x_1) x_4)))) ?H17 ?H18 ###symbols Computational_Model.plus_intercept BNF_Def.rel_sum Basic_BNFs.rel_prod Generative_Probabilistic_Value.gpv.rel_gpv BNF_Def.rel_fun ###defs primrec plus_intercept :: "'s \<Rightarrow> 'x1 + 'x2 \<Rightarrow> (('y1 + 'y2) \<times> 's, 'call, 'ret) gpv" where "plus_intercept s (Inl x) = map_gpv (apfst Inl) id (left s x)" | "plus_intercept s (Inr x) = map_gpv (apfst Inr) id (right s x)" inductive rel_sum :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd \<Rightarrow> bool" for R1 R2 where "R1 a c \<Longrightarrow> rel_sum R1 R2 (Inl a) (Inl c)" | "R2 b d \<Longrightarrow> rel_sum R1 R2 (Inr b) (Inr d)" inductive rel_prod :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> 'a \<times> 'c \<Rightarrow> 'b \<times> 'd \<Rightarrow> bool" for R1 R2 where "\<lbrakk>R1 a b; R2 c d\<rbrakk> \<Longrightarrow> rel_prod R1 R2 (a, c) (b, d)" codatatype (results'_gpv: 'a, outs'_gpv: 'out, 'in) gpv = GPV (the_gpv: "('a, 'out, 'in \<Rightarrow> ('a, 'out, 'in) gpv) generat spmf") definition rel_fun :: "('a \<Rightarrow> 'c \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'd) \<Rightarrow> bool" where "rel_fun A B = (\<lambda>f g. \<forall>x y. A x y \<longrightarrow> B (f x) (g y))"
###output rel_fun (rel_fun ?S (rel_fun ?X1.0 (rel_gpv (rel_prod ?Y1.0 ?S) ?C))) (rel_fun (rel_fun ?S (rel_fun ?X2.0 (rel_gpv (rel_prod ?Y2.0 ?S) ?C))) (rel_fun ?S (rel_fun (rel_sum ?X1.0 ?X2.0) (rel_gpv (rel_prod (rel_sum ?Y1.0 ?Y2.0) ?S) ?C)))) plus_intercept plus_intercept ###end
Lp/Functional_Spaces
Functional_Spaces.quasinorm_equivalent_trans
lemma quasinorm_equivalent_trans [trans]: assumes "N1 =\<^sub>N N2" "N2 =\<^sub>N N3" shows "N1 =\<^sub>N N3"
?N1.0 =\<^sub>N ?N2.0 \<Longrightarrow> ?N2.0 =\<^sub>N ?N3.0 \<Longrightarrow> ?N1.0 =\<^sub>N ?N3.0
\<lbrakk>?H1 x_1 x_2; ?H1 x_2 x_3\<rbrakk> \<Longrightarrow> ?H1 x_1 x_3
[ "Functional_Spaces.quasinorm_equivalent" ]
[ "definition quasinorm_equivalent::\"('a::real_vector) quasinorm \\<Rightarrow> 'a quasinorm \\<Rightarrow> bool\" (infix \"=\\<^sub>N\" 60)\n where \"quasinorm_equivalent N1 N2 = ((N1 \\<subseteq>\\<^sub>N N2) \\<and> (N2 \\<subseteq>\\<^sub>N N1))\"" ]
###template \<lbrakk>?H1 x_1 x_2; ?H1 x_2 x_3\<rbrakk> \<Longrightarrow> ?H1 x_1 x_3 ###symbols Functional_Spaces.quasinorm_equivalent ###defs definition quasinorm_equivalent::"('a::real_vector) quasinorm \<Rightarrow> 'a quasinorm \<Rightarrow> bool" (infix "=\<^sub>N" 60) where "quasinorm_equivalent N1 N2 = ((N1 \<subseteq>\<^sub>N N2) \<and> (N2 \<subseteq>\<^sub>N N1))"
###output ?N1.0 =\<^sub>N ?N2.0 \<Longrightarrow> ?N2.0 =\<^sub>N ?N3.0 \<Longrightarrow> ?N1.0 =\<^sub>N ?N3.0 ###end
S_Finite_Measure_Monad/Measure_QuasiBorel_Adjunction
Measure_QuasiBorel_Adjunction.qbs_Mx_subset_of_measurable
lemma qbs_Mx_subset_of_measurable: "qbs_Mx X \<subseteq> borel \<rightarrow>\<^sub>M qbs_to_measure X"
qbs_Mx ?X \<subseteq> borel \<rightarrow>\<^sub>M qbs_to_measure ?X
?H1 (?H2 x_1) (?H3 ?H4 (?H5 x_1))
[ "Measure_QuasiBorel_Adjunction.qbs_to_measure", "Borel_Space.topological_space_class.borel", "Sigma_Algebra.measurable", "QuasiBorel.qbs_Mx", "Set.subset_eq" ]
[ "definition qbs_to_measure :: \"'a quasi_borel \\<Rightarrow> 'a measure\" where\n\"qbs_to_measure X \\<equiv> Abs_measure (qbs_space X, sigma_Mx X, \\<lambda>A. (if A = {} then 0 else if A \\<in> - sigma_Mx X then 0 else \\<infinity>))\"", "definition qbs_Mx :: \"'a quasi_borel \\<Rightarrow> (real \\<Rightarrow> 'a) set\" where\n \"qbs_Mx X \\<equiv> snd (Rep_quasi_borel X)\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
###template ?H1 (?H2 x_1) (?H3 ?H4 (?H5 x_1)) ###symbols Measure_QuasiBorel_Adjunction.qbs_to_measure Borel_Space.topological_space_class.borel Sigma_Algebra.measurable QuasiBorel.qbs_Mx Set.subset_eq ###defs definition qbs_to_measure :: "'a quasi_borel \<Rightarrow> 'a measure" where "qbs_to_measure X \<equiv> Abs_measure (qbs_space X, sigma_Mx X, \<lambda>A. (if A = {} then 0 else if A \<in> - sigma_Mx X then 0 else \<infinity>))" definition qbs_Mx :: "'a quasi_borel \<Rightarrow> (real \<Rightarrow> 'a) set" where "qbs_Mx X \<equiv> snd (Rep_quasi_borel X)" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output qbs_Mx ?X \<subseteq> borel \<rightarrow>\<^sub>M qbs_to_measure ?X ###end
Security_Protocol_Refinement/Refinement/Message
Message.parts_insert_Number
lemma parts_insert_Number [simp]: "parts (insert (Number N) H) = insert (Number N) (parts H)"
parts (insert (Number ?N) ?H) = insert (Number ?N) (parts ?H)
?H1 (?H2 (?H3 x_1) x_2) = ?H2 (?H3 x_1) (?H1 x_2)
[ "Message.msg.Number", "Set.insert", "Message.parts" ]
[ "datatype\n msg = Agent agent \\<comment> \\<open>Agent names\\<close>\n | Number nat \\<comment> \\<open>Ordinary integers, timestamps, ...\\<close>\n | Nonce nat \\<comment> \\<open>Unguessable nonces\\<close>\n | Key key \\<comment> \\<open>Crypto keys\\<close>\n | Hash msg \\<comment> \\<open>Hashing\\<close>\n | MPair msg msg \\<comment> \\<open>Compound messages\\<close>\n | Crypt key msg \\<comment> \\<open>Encryption, public- or shared-key\\<close>", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "inductive_set\n parts :: \"msg set \\<Rightarrow> msg set\"\n for H :: \"msg set\"\n where\n Inj [intro]: \"X \\<in> H \\<Longrightarrow> X \\<in> parts H\"\n | Fst: \"\\<lbrace>X,Y\\<rbrace> \\<in> parts H \\<Longrightarrow> X \\<in> parts H\"\n | Snd: \"\\<lbrace>X,Y\\<rbrace> \\<in> parts H \\<Longrightarrow> Y \\<in> parts H\"\n | Body: \"Crypt K X \\<in> parts H \\<Longrightarrow> X \\<in> parts H\"" ]
###template ?H1 (?H2 (?H3 x_1) x_2) = ?H2 (?H3 x_1) (?H1 x_2) ###symbols Message.msg.Number Set.insert Message.parts ###defs datatype msg = Agent agent \<comment> \<open>Agent names\<close> | Number nat \<comment> \<open>Ordinary integers, timestamps, ...\<close> | Nonce nat \<comment> \<open>Unguessable nonces\<close> | Key key \<comment> \<open>Crypto keys\<close> | Hash msg \<comment> \<open>Hashing\<close> | MPair msg msg \<comment> \<open>Compound messages\<close> | Crypt key msg \<comment> \<open>Encryption, public- or shared-key\<close> definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" inductive_set parts :: "msg set \<Rightarrow> msg set" for H :: "msg set" where Inj [intro]: "X \<in> H \<Longrightarrow> X \<in> parts H" | Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> X \<in> parts H" | Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H \<Longrightarrow> Y \<in> parts H" | Body: "Crypt K X \<in> parts H \<Longrightarrow> X \<in> parts H"
###output parts (insert (Number ?N) ?H) = insert (Number ?N) (parts ?H) ###end
MiniSail/WellformedL
WellformedL.freshers(21)
null
?a \<sharp> (?c1.0 AND ?c2.0 ) = (?a \<sharp> ?c1.0 \<and> ?a \<sharp> ?c2.0)
?H1 x_1 (?H2 x_2 x_3) = (?H1 x_1 x_2 \<and> ?H1 x_1 x_3)
[ "Syntax.C_conj", "Nominal2_Base.pt_class.fresh" ]
[ "class pt =\n fixes permute :: \"perm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (\"_ \\<bullet> _\" [76, 75] 75)\n assumes permute_zero [simp]: \"0 \\<bullet> x = x\"\n assumes permute_plus [simp]: \"(p + q) \\<bullet> x = p \\<bullet> (q \\<bullet> x)\"\nbegin" ]
###template ?H1 x_1 (?H2 x_2 x_3) = (?H1 x_1 x_2 \<and> ?H1 x_1 x_3) ###symbols Syntax.C_conj Nominal2_Base.pt_class.fresh ###defs class pt = fixes permute :: "perm \<Rightarrow> 'a \<Rightarrow> 'a" ("_ \<bullet> _" [76, 75] 75) assumes permute_zero [simp]: "0 \<bullet> x = x" assumes permute_plus [simp]: "(p + q) \<bullet> x = p \<bullet> (q \<bullet> x)" begin
###output ?a \<sharp> (?c1.0 AND ?c2.0 ) = (?a \<sharp> ?c1.0 \<and> ?a \<sharp> ?c2.0) ###end
CZH_Elementary_Categories/czh_ecategories/CZH_ECAT_Ordinal
CZH_ECAT_Ordinal.cat_ordinal_is_leD
lemma cat_ordinal_is_leD[dest]: assumes "a \<le>\<^sub>O\<^bsub>cat_ordinal A\<^esub> b" shows "[a, b]\<^sub>\<circ> : a \<mapsto>\<^bsub>cat_ordinal A\<^esub> b"
?a \<le>\<^sub>O\<^bsub>cat_ordinal ?A\<^esub> ?b \<Longrightarrow> [?a, ?b]\<^sub>\<circ> : ?a \<mapsto>\<^bsub>cat_ordinal ?A\<^esub> ?b
?H1 (?H2 x_1) x_2 x_3 \<Longrightarrow> ?H3 (?H2 x_1) x_2 x_3 (?H4 (?H4 ?H5 x_2) x_3)
[ "CZH_Sets_FSequences.vempty_vfsequence", "CZH_Sets_FSequences.vcons", "CZH_DG_Digraph.is_arr", "CZH_ECAT_Ordinal.cat_ordinal", "CZH_ECAT_Order.is_le" ]
[]
###template ?H1 (?H2 x_1) x_2 x_3 \<Longrightarrow> ?H3 (?H2 x_1) x_2 x_3 (?H4 (?H4 ?H5 x_2) x_3) ###symbols CZH_Sets_FSequences.vempty_vfsequence CZH_Sets_FSequences.vcons CZH_DG_Digraph.is_arr CZH_ECAT_Ordinal.cat_ordinal CZH_ECAT_Order.is_le ###defs
###output ?a \<le>\<^sub>O\<^bsub>cat_ordinal ?A\<^esub> ?b \<Longrightarrow> [?a, ?b]\<^sub>\<circ> : ?a \<mapsto>\<^bsub>cat_ordinal ?A\<^esub> ?b ###end
Jordan_Normal_Form/Jordan_Normal_Form_Existence
Jordan_Normal_Form_Existence.swap_cols_rows_block_index
lemma swap_cols_rows_block_index[simp]: "i < dim_row A \<Longrightarrow> i < dim_col A \<Longrightarrow> j < dim_row A \<Longrightarrow> j < dim_col A \<Longrightarrow> low \<le> high \<Longrightarrow> high < dim_row A \<Longrightarrow> high < dim_col A \<Longrightarrow> swap_cols_rows_block low high A $$ (i,j) = A $$ (if i = low then high else if i > low \<and> i \<le> high then i - 1 else i, if j = low then high else if j > low \<and> j \<le> high then j - 1 else j)"
?i < dim_row ?A \<Longrightarrow> ?i < dim_col ?A \<Longrightarrow> ?j < dim_row ?A \<Longrightarrow> ?j < dim_col ?A \<Longrightarrow> ?low \<le> ?high \<Longrightarrow> ?high < dim_row ?A \<Longrightarrow> ?high < dim_col ?A \<Longrightarrow> ??.Jordan_Normal_Form_Existence.swap_cols_rows_block ?low ?high ?A $$ (?i, ?j) = ?A $$ (if ?i = ?low then ?high else if ?low < ?i \<and> ?i \<le> ?high then ?i - 1 else ?i, if ?j = ?low then ?high else if ?low < ?j \<and> ?j \<le> ?high then ?j - 1 else ?j)
\<lbrakk>x_1 < ?H1 x_2; x_1 < ?H2 x_2; x_3 < ?H1 x_2; x_3 < ?H2 x_2; x_4 \<le> x_5; x_5 < ?H1 x_2; x_5 < ?H2 x_2\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_4 x_5 x_2) (x_1, x_3) = ?H3 x_2 (if x_1 = x_4 then x_5 else if x_4 < x_1 \<and> x_1 \<le> x_5 then ?H5 x_1 ?H6 else x_1, if x_3 = x_4 then x_5 else if x_4 < x_3 \<and> x_3 \<le> x_5 then ?H5 x_3 ?H6 else x_3)
[ "Groups.one_class.one", "Groups.minus_class.minus", "Jordan_Normal_Form_Existence.swap_cols_rows_block", "Matrix.index_mat", "Matrix.dim_col", "Matrix.dim_row" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "function swap_cols_rows_block :: \"nat \\<Rightarrow> nat \\<Rightarrow> 'a mat \\<Rightarrow> 'a mat\" where\n \"swap_cols_rows_block i j A = (if i < j then\n swap_cols_rows_block (Suc i) j (swap_cols_rows i j A) else A)\"" ]
###template \<lbrakk>x_1 < ?H1 x_2; x_1 < ?H2 x_2; x_3 < ?H1 x_2; x_3 < ?H2 x_2; x_4 \<le> x_5; x_5 < ?H1 x_2; x_5 < ?H2 x_2\<rbrakk> \<Longrightarrow> ?H3 (?H4 x_4 x_5 x_2) (x_1, x_3) = ?H3 x_2 (if x_1 = x_4 then x_5 else if x_4 < x_1 \<and> x_1 \<le> x_5 then ?H5 x_1 ?H6 else x_1, if x_3 = x_4 then x_5 else if x_4 < x_3 \<and> x_3 \<le> x_5 then ?H5 x_3 ?H6 else x_3) ###symbols Groups.one_class.one Groups.minus_class.minus Jordan_Normal_Form_Existence.swap_cols_rows_block Matrix.index_mat Matrix.dim_col Matrix.dim_row ###defs class one = fixes one :: 'a ("1") class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) function swap_cols_rows_block :: "nat \<Rightarrow> nat \<Rightarrow> 'a mat \<Rightarrow> 'a mat" where "swap_cols_rows_block i j A = (if i < j then swap_cols_rows_block (Suc i) j (swap_cols_rows i j A) else A)"
###output ?i < dim_row ?A \<Longrightarrow> ?i < dim_col ?A \<Longrightarrow> ?j < dim_row ?A \<Longrightarrow> ?j < dim_col ?A \<Longrightarrow> ?low \<le> ?high \<Longrightarrow> ?high < dim_row ?A \<Longrightarrow> ?high < dim_col ?A \<Longrightarrow> ??.Jordan_Normal_Form_Existence.swap_cols_rows_block ?low ?high ?A $$ (?i, ?j) = ?A $$ (if ?i = ?low then ?high else if ?low < ?i \<and> ?i \<le> ?high then ?i - 1 else ?i, if ?j = ?low then ?high else if ?low < ?j \<and> ?j \<le> ?high then ?j - 1 else ?j) ###end
Knot_Theory/Linkrel_Kauffman
Linkrel_Kauffman.straighten_topdown_inv
theorem straighten_topdown_inv:"straighten_topdown w1 w2 \<Longrightarrow> (kauff_mat w1) = (kauff_mat w2)"
straighten_topdown ?w1.0 ?w2.0 \<Longrightarrow> kauff_mat ?w1.0 = kauff_mat ?w2.0
?H1 x_1 x_2 \<Longrightarrow> ?H2 x_1 = ?H2 x_2
[ "Kauffman_Matrix.kauff_mat", "Tangle_Moves.straighten_topdown" ]
[ "primrec kauff_mat::\"wall \\<Rightarrow> rat_poly mat\"\nwhere \n\"kauff_mat (basic w) = (blockmat w)\"\n|\"kauff_mat (w*ws) = rat_poly.matrix_mult (blockmat w) (kauff_mat ws)\"", "definition straighten_topdown::relation\nwhere\n\"straighten_topdown x y \\<equiv> ((x =((basic ((vert#cup#[])))\n \\<circ>(basic ((cap#vert#[])))))\n \\<and>(y = ((basic (vert#[]))\\<circ>(basic (vert#[])))))\"" ]
###template ?H1 x_1 x_2 \<Longrightarrow> ?H2 x_1 = ?H2 x_2 ###symbols Kauffman_Matrix.kauff_mat Tangle_Moves.straighten_topdown ###defs primrec kauff_mat::"wall \<Rightarrow> rat_poly mat" where "kauff_mat (basic w) = (blockmat w)" |"kauff_mat (w*ws) = rat_poly.matrix_mult (blockmat w) (kauff_mat ws)" definition straighten_topdown::relation where "straighten_topdown x y \<equiv> ((x =((basic ((vert#cup#[]))) \<circ>(basic ((cap#vert#[]))))) \<and>(y = ((basic (vert#[]))\<circ>(basic (vert#[])))))"
###output straighten_topdown ?w1.0 ?w2.0 \<Longrightarrow> kauff_mat ?w1.0 = kauff_mat ?w2.0 ###end
Winding_Number_Eval/Cauchy_Index_Theorem
Cauchy_Index_Theorem.jumpF_neg_has_sgnx
lemma jumpF_neg_has_sgnx: assumes "jumpF f F < 0" shows "(f has_sgnx -1) F"
jumpF ?f ?F < 0 \<Longrightarrow> (?f has_sgnx - 1) ?F
?H1 x_1 x_2 < ?H2 \<Longrightarrow> ?H3 x_1 (?H4 ?H5) x_2
[ "Groups.one_class.one", "Groups.uminus_class.uminus", "Cauchy_Index_Theorem.has_sgnx", "Groups.zero_class.zero", "Cauchy_Index_Theorem.jumpF" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)", "definition has_sgnx::\"(real \\<Rightarrow> real) \\<Rightarrow> real \\<Rightarrow> real filter \\<Rightarrow> bool\" \n (infixr \"has'_sgnx\" 55) where\n \"(f has_sgnx c) F= (eventually (\\<lambda>x. sgn(f x) = c) F)\"", "class zero =\n fixes zero :: 'a (\"0\")", "definition jumpF::\"(real \\<Rightarrow> real) \\<Rightarrow> real filter \\<Rightarrow> real\" where \n \"jumpF f F \\<equiv> (if filterlim f at_top F then 1/2 else \n if filterlim f at_bot F then -1/2 else (0::real))\"" ]
###template ?H1 x_1 x_2 < ?H2 \<Longrightarrow> ?H3 x_1 (?H4 ?H5) x_2 ###symbols Groups.one_class.one Groups.uminus_class.uminus Cauchy_Index_Theorem.has_sgnx Groups.zero_class.zero Cauchy_Index_Theorem.jumpF ###defs class one = fixes one :: 'a ("1") class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80) definition has_sgnx::"(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool" (infixr "has'_sgnx" 55) where "(f has_sgnx c) F= (eventually (\<lambda>x. sgn(f x) = c) F)" class zero = fixes zero :: 'a ("0") definition jumpF::"(real \<Rightarrow> real) \<Rightarrow> real filter \<Rightarrow> real" where "jumpF f F \<equiv> (if filterlim f at_top F then 1/2 else if filterlim f at_bot F then -1/2 else (0::real))"
###output jumpF ?f ?F < 0 \<Longrightarrow> (?f has_sgnx - 1) ?F ###end
Encodability_Process_Calculi/SimulationRelations
SimulationRelations.weak_reduction_contrasimulation_and_closures(2)
lemma weak_reduction_contrasimulation_and_closures: fixes Rel :: "('proc \<times> 'proc) set" and Cal :: "'proc processCalculus" assumes contrasimulation: "weak_reduction_contrasimulation Rel Cal" shows "weak_reduction_contrasimulation (Rel\<^sup>=) Cal" and "weak_reduction_contrasimulation (Rel\<^sup>+) Cal" and "weak_reduction_contrasimulation (Rel\<^sup>*) Cal"
weak_reduction_contrasimulation ?Rel ?Cal \<Longrightarrow> weak_reduction_contrasimulation (?Rel\<^sup>+) ?Cal
?H1 x_1 x_2 \<Longrightarrow> ?H1 (?H2 x_1) x_2
[ "Transitive_Closure.trancl", "SimulationRelations.weak_reduction_contrasimulation" ]
[ "inductive_set trancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>+)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n r_into_trancl [intro, Pure.intro]: \"(a, b) \\<in> r \\<Longrightarrow> (a, b) \\<in> r\\<^sup>+\"\n | trancl_into_trancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>+ \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>+\"", "abbreviation weak_reduction_contrasimulation\n :: \"('proc \\<times> 'proc) set \\<Rightarrow> 'proc processCalculus \\<Rightarrow> bool\"\n where\n \"weak_reduction_contrasimulation Rel Cal \\<equiv>\n \\<forall>P Q P'. (P, Q) \\<in> Rel \\<and> P \\<longmapsto>Cal* P' \\<longrightarrow> (\\<exists>Q'. Q \\<longmapsto>Cal* Q' \\<and> (Q', P') \\<in> Rel)\"" ]
###template ?H1 x_1 x_2 \<Longrightarrow> ?H1 (?H2 x_1) x_2 ###symbols Transitive_Closure.trancl SimulationRelations.weak_reduction_contrasimulation ###defs inductive_set trancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>+)" [1000] 999) for r :: "('a \<times> 'a) set" where r_into_trancl [intro, Pure.intro]: "(a, b) \<in> r \<Longrightarrow> (a, b) \<in> r\<^sup>+" | trancl_into_trancl [Pure.intro]: "(a, b) \<in> r\<^sup>+ \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>+" abbreviation weak_reduction_contrasimulation :: "('proc \<times> 'proc) set \<Rightarrow> 'proc processCalculus \<Rightarrow> bool" where "weak_reduction_contrasimulation Rel Cal \<equiv> \<forall>P Q P'. (P, Q) \<in> Rel \<and> P \<longmapsto>Cal* P' \<longrightarrow> (\<exists>Q'. Q \<longmapsto>Cal* Q' \<and> (Q', P') \<in> Rel)"
###output weak_reduction_contrasimulation ?Rel ?Cal \<Longrightarrow> weak_reduction_contrasimulation (?Rel\<^sup>+) ?Cal ###end
Crypto_Standards/FIPS180_4
FIPS180_4.SHA256_MessageSchedule_rec_valid
lemma SHA256_MessageSchedule_rec_valid: assumes "word32s_valid W" shows "word32s_valid (SHA256_MessageSchedule_rec n W)"
word32s_valid ?W \<Longrightarrow> word32s_valid (SHA256_MessageSchedule_rec ?n ?W)
?H1 x_1 \<Longrightarrow> ?H1 (?H2 x_2 x_1)
[ "FIPS180_4.SHA256_MessageSchedule_rec", "Words.word32s_valid" ]
[ "fun SHA256_MessageSchedule_rec :: \"nat \\<Rightarrow> words \\<Rightarrow> words\" where\n \"SHA256_MessageSchedule_rec n W = \n ( let t = length W in\n if t < 16 then W else (\n if n = 0 then W else\n SHA256_MessageSchedule_rec (n-1) (SHA256_MessageSchedule_1 W) )\n )\"", "abbreviation word32s_valid :: \"words \\<Rightarrow> bool\" where\n \"word32s_valid bs \\<equiv> words_valid 32 bs\"" ]
###template ?H1 x_1 \<Longrightarrow> ?H1 (?H2 x_2 x_1) ###symbols FIPS180_4.SHA256_MessageSchedule_rec Words.word32s_valid ###defs fun SHA256_MessageSchedule_rec :: "nat \<Rightarrow> words \<Rightarrow> words" where "SHA256_MessageSchedule_rec n W = ( let t = length W in if t < 16 then W else ( if n = 0 then W else SHA256_MessageSchedule_rec (n-1) (SHA256_MessageSchedule_1 W) ) )" abbreviation word32s_valid :: "words \<Rightarrow> bool" where "word32s_valid bs \<equiv> words_valid 32 bs"
###output word32s_valid ?W \<Longrightarrow> word32s_valid (SHA256_MessageSchedule_rec ?n ?W) ###end
Frequency_Moments/K_Smallest
K_Smallest.least_eq_iff
lemma least_eq_iff: assumes "finite B" assumes "A \<subseteq> B" assumes "\<And>x. x \<in> B \<Longrightarrow> rank_of x B < k \<Longrightarrow> x \<in> A" shows "least k A = least k B"
finite ?B \<Longrightarrow> ?A \<subseteq> ?B \<Longrightarrow> (\<And>x. x \<in> ?B \<Longrightarrow> rank_of x ?B < ?k \<Longrightarrow> x \<in> ?A) \<Longrightarrow> K_Smallest.least ?k ?A = K_Smallest.least ?k ?B
\<lbrakk>?H1 x_1; ?H2 x_2 x_1; \<And>y_0. \<lbrakk>y_0 \<in> x_1; ?H3 y_0 x_1 < x_3\<rbrakk> \<Longrightarrow> y_0 \<in> x_2\<rbrakk> \<Longrightarrow> ?H4 x_3 x_2 = ?H4 x_3 x_1
[ "K_Smallest.least", "K_Smallest.rank_of", "Set.subset_eq", "Finite_Set.finite" ]
[ "definition least where \"least k S = {y \\<in> S. rank_of y S < k}\"", "definition rank_of :: \"'a :: linorder \\<Rightarrow> 'a set \\<Rightarrow> nat\" where \"rank_of x S = card {y \\<in> S. y < x}\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
###template \<lbrakk>?H1 x_1; ?H2 x_2 x_1; \<And>y_0. \<lbrakk>y_0 \<in> x_1; ?H3 y_0 x_1 < x_3\<rbrakk> \<Longrightarrow> y_0 \<in> x_2\<rbrakk> \<Longrightarrow> ?H4 x_3 x_2 = ?H4 x_3 x_1 ###symbols K_Smallest.least K_Smallest.rank_of Set.subset_eq Finite_Set.finite ###defs definition least where "least k S = {y \<in> S. rank_of y S < k}" definition rank_of :: "'a :: linorder \<Rightarrow> 'a set \<Rightarrow> nat" where "rank_of x S = card {y \<in> S. y < x}" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output finite ?B \<Longrightarrow> ?A \<subseteq> ?B \<Longrightarrow> (\<And>x. x \<in> ?B \<Longrightarrow> rank_of x ?B < ?k \<Longrightarrow> x \<in> ?A) \<Longrightarrow> K_Smallest.least ?k ?A = K_Smallest.least ?k ?B ###end
Valuation/Valuation1
Valuation1.zle_less_trans
lemma zle_less_trans:"\<lbrakk>(i::int) \<le> j; j < k\<rbrakk> \<Longrightarrow> i < k"
?i \<le> ?j \<Longrightarrow> ?j < ?k \<Longrightarrow> ?i < ?k
\<lbrakk>x_1 \<le> x_2; x_2 < x_3\<rbrakk> \<Longrightarrow> x_1 < x_3
[]
[]
###template \<lbrakk>x_1 \<le> x_2; x_2 < x_3\<rbrakk> \<Longrightarrow> x_1 < x_3 ###symbols ###defs
###output ?i \<le> ?j \<Longrightarrow> ?j < ?k \<Longrightarrow> ?i < ?k ###end
S_Finite_Measure_Monad/Query
Query.Total_simp(1)
lemma Total_simp: "Total [] = 0" "Total (y#ls) = y + Total ls"
0 < ?\<sigma> \<Longrightarrow> Query.Total [] = 0
?H1 < x_1 \<Longrightarrow> ?H2 ?H3 = ?H1
[ "List.list.Nil", "Query.Total", "Groups.zero_class.zero" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition Total :: \"real list \\<Rightarrow> real\" where \"Total = (\\<lambda>l. foldr (+) l 0)\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
###template ?H1 < x_1 \<Longrightarrow> ?H2 ?H3 = ?H1 ###symbols List.list.Nil Query.Total Groups.zero_class.zero ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition Total :: "real list \<Rightarrow> real" where "Total = (\<lambda>l. foldr (+) l 0)" class zero = fixes zero :: 'a ("0")
###output 0 < ?\<sigma> \<Longrightarrow> Query.Total [] = 0 ###end
Robinson_Arithmetic/Instance
Instance.prv_eqv_imp_transi_rev
null
?\<phi>1.0 \<in> UNIV \<Longrightarrow> ?\<phi>2.0 \<in> UNIV \<Longrightarrow> ?\<chi> \<in> UNIV \<Longrightarrow> {} \<turnstile> eqv ?\<phi>1.0 ?\<phi>2.0 \<Longrightarrow> {} \<turnstile> ?\<phi>1.0 IMP ?\<chi> \<Longrightarrow> {} \<turnstile> ?\<phi>2.0 IMP ?\<chi>
\<lbrakk>x_1 \<in> ?H1; x_2 \<in> ?H1; x_3 \<in> ?H1; ?H2 ?H3 (?H4 x_1 x_2); ?H2 ?H3 (?H5 x_1 x_3)\<rbrakk> \<Longrightarrow> ?H2 ?H3 (?H5 x_2 x_3)
[ "Robinson_Arithmetic.imp", "Instance.eqv", "Set.empty", "Robinson_Arithmetic.nprv", "Set.UNIV" ]
[ "abbreviation imp :: \"fmla \\<Rightarrow> fmla \\<Rightarrow> fmla\" (infixr \"IMP\" 125)\n where \"imp A B \\<equiv> dsj (neg A) B\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "inductive nprv :: \"fmla set \\<Rightarrow> fmla \\<Rightarrow> bool\" (infixl \"\\<turnstile>\" 55)\n where\n Hyp: \"A \\<in> H \\<Longrightarrow> H \\<turnstile> A\"\n | Q: \"A \\<in> Q_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | Bool: \"A \\<in> boolean_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | eql: \"A \\<in> equality_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | Spec: \"A \\<in> special_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | MP: \"H \\<turnstile> A IMP B \\<Longrightarrow> H' \\<turnstile> A \\<Longrightarrow> H \\<union> H' \\<turnstile> B\"\n | exiists: \"H \\<turnstile> A IMP B \\<Longrightarrow> atom i \\<sharp> B \\<Longrightarrow> \\<forall>C \\<in> H. atom i \\<sharp> C \\<Longrightarrow> H \\<turnstile> (exi i A) IMP B\"", "abbreviation UNIV :: \"'a set\"\n where \"UNIV \\<equiv> top\"" ]
###template \<lbrakk>x_1 \<in> ?H1; x_2 \<in> ?H1; x_3 \<in> ?H1; ?H2 ?H3 (?H4 x_1 x_2); ?H2 ?H3 (?H5 x_1 x_3)\<rbrakk> \<Longrightarrow> ?H2 ?H3 (?H5 x_2 x_3) ###symbols Robinson_Arithmetic.imp Instance.eqv Set.empty Robinson_Arithmetic.nprv Set.UNIV ###defs abbreviation imp :: "fmla \<Rightarrow> fmla \<Rightarrow> fmla" (infixr "IMP" 125) where "imp A B \<equiv> dsj (neg A) B" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" inductive nprv :: "fmla set \<Rightarrow> fmla \<Rightarrow> bool" (infixl "\<turnstile>" 55) where Hyp: "A \<in> H \<Longrightarrow> H \<turnstile> A" | Q: "A \<in> Q_axioms \<Longrightarrow> H \<turnstile> A" | Bool: "A \<in> boolean_axioms \<Longrightarrow> H \<turnstile> A" | eql: "A \<in> equality_axioms \<Longrightarrow> H \<turnstile> A" | Spec: "A \<in> special_axioms \<Longrightarrow> H \<turnstile> A" | MP: "H \<turnstile> A IMP B \<Longrightarrow> H' \<turnstile> A \<Longrightarrow> H \<union> H' \<turnstile> B" | exiists: "H \<turnstile> A IMP B \<Longrightarrow> atom i \<sharp> B \<Longrightarrow> \<forall>C \<in> H. atom i \<sharp> C \<Longrightarrow> H \<turnstile> (exi i A) IMP B" abbreviation UNIV :: "'a set" where "UNIV \<equiv> top"
###output ?\<phi>1.0 \<in> UNIV \<Longrightarrow> ?\<phi>2.0 \<in> UNIV \<Longrightarrow> ?\<chi> \<in> UNIV \<Longrightarrow> {} \<turnstile> eqv ?\<phi>1.0 ?\<phi>2.0 \<Longrightarrow> {} \<turnstile> ?\<phi>1.0 IMP ?\<chi> \<Longrightarrow> {} \<turnstile> ?\<phi>2.0 IMP ?\<chi> ###end
UpDown_Scheme/Triangular_Function
Triangular_Function.\<phi>_right_support'
null
?x \<in> {real_of_int ?i / 2 ^ (?l + 1)..real_of_int (?i + 1) / 2 ^ (?l + 1)} \<Longrightarrow> \<phi> (?l, ?i) ?x = 1 - ?x * 2 ^ (?l + 1) + real_of_int ?i
x_1 \<in> ?H1 (?H2 (?H3 x_2) (?H4 (?H5 (?H6 ?H7)) (?H8 x_3 ?H9))) (?H2 (?H3 (?H10 x_2 ?H11)) (?H4 (?H5 (?H6 ?H7)) (?H8 x_3 ?H9))) \<Longrightarrow> ?H12 (x_3, x_2) x_1 = ?H13 (?H14 ?H15 (?H16 x_1 (?H4 (?H5 (?H6 ?H7)) (?H8 x_3 ?H9)))) (?H3 x_2)
[ "Groups.times_class.times", "Groups.minus_class.minus", "Triangular_Function.\\<phi>", "Groups.one_class.one", "Groups.plus_class.plus", "Num.num.One", "Num.num.Bit0", "Num.numeral_class.numeral", "Power.power_class.power", "Real.real_of_int", "Fields.inverse_class.inverse_divide", "Set_Interval.ord_class.atLeastAtMost" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition \\<phi> :: \"(nat \\<times> int) \\<Rightarrow> real \\<Rightarrow> real\" where\n \"\\<phi> \\<equiv> (\\<lambda>(l,i) x. max 0 (1 - \\<bar> x * 2^(l + 1) - real_of_int i \\<bar>))\"", "class one =\n fixes one :: 'a (\"1\")", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "abbreviation real_of_int :: \"int \\<Rightarrow> real\"\n where \"real_of_int \\<equiv> of_int\"", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin" ]
###template x_1 \<in> ?H1 (?H2 (?H3 x_2) (?H4 (?H5 (?H6 ?H7)) (?H8 x_3 ?H9))) (?H2 (?H3 (?H10 x_2 ?H11)) (?H4 (?H5 (?H6 ?H7)) (?H8 x_3 ?H9))) \<Longrightarrow> ?H12 (x_3, x_2) x_1 = ?H13 (?H14 ?H15 (?H16 x_1 (?H4 (?H5 (?H6 ?H7)) (?H8 x_3 ?H9)))) (?H3 x_2) ###symbols Groups.times_class.times Groups.minus_class.minus Triangular_Function.\<phi> Groups.one_class.one Groups.plus_class.plus Num.num.One Num.num.Bit0 Num.numeral_class.numeral Power.power_class.power Real.real_of_int Fields.inverse_class.inverse_divide Set_Interval.ord_class.atLeastAtMost ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition \<phi> :: "(nat \<times> int) \<Rightarrow> real \<Rightarrow> real" where "\<phi> \<equiv> (\<lambda>(l,i) x. max 0 (1 - \<bar> x * 2^(l + 1) - real_of_int i \<bar>))" class one = fixes one :: 'a ("1") class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" abbreviation real_of_int :: "int \<Rightarrow> real" where "real_of_int \<equiv> of_int" class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin
###output ?x \<in> {real_of_int ?i / 2 ^ (?l + 1)..real_of_int (?i + 1) / 2 ^ (?l + 1)} \<Longrightarrow> \<phi> (?l, ?i) ?x = 1 - ?x * 2 ^ (?l + 1) + real_of_int ?i ###end
SenSocialChoice/FSext
FSext.has_0
lemma has_0: "has 0 S"
has 0 ?S
?H1 ?H2 x_1
[ "Groups.zero_class.zero", "FSext.has" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "definition has :: \"nat \\<Rightarrow> 'a set \\<Rightarrow> bool\" where\n \"has n S \\<equiv> \\<exists>xs. hasw xs S \\<and> length xs = n\"" ]
###template ?H1 ?H2 x_1 ###symbols Groups.zero_class.zero FSext.has ###defs class zero = fixes zero :: 'a ("0") definition has :: "nat \<Rightarrow> 'a set \<Rightarrow> bool" where "has n S \<equiv> \<exists>xs. hasw xs S \<and> length xs = n"
###output has 0 ?S ###end
CZH_Elementary_Categories/czh_ecategories/CZH_ECAT_PCategory
CZH_ECAT_PCategory.cat_prod_Comp_app_component
null
?g : ?b \<mapsto>\<^bsub>cat_prod ?I ?\<AA>\<^esub> ?c \<Longrightarrow> ?f : ?a \<mapsto>\<^bsub>cat_prod ?I ?\<AA>\<^esub> ?b \<Longrightarrow> ?i \<in>\<^sub>\<circ> ?I \<Longrightarrow> (?g \<circ>\<^sub>A\<^bsub>cat_prod ?I ?\<AA>\<^esub> ?f)\<lparr>?i\<rparr> = ?g\<lparr>?i\<rparr> \<circ>\<^sub>A\<^bsub>?\<AA> ?i\<^esub> ?f\<lparr>?i\<rparr>
\<lbrakk>?H1 (?H2 x_1 x_2) x_3 x_4 x_5; ?H1 (?H2 x_1 x_2) x_6 x_3 x_7; ?H3 x_8 x_1\<rbrakk> \<Longrightarrow> ?H4 (?H5 (?H2 x_1 x_2) x_5 x_7) x_8 = ?H5 (x_2 x_8) (?H4 x_5 x_8) (?H4 x_7 x_8)
[ "CZH_SMC_Semicategory.Comp_app", "ZFC_Cardinals.app", "CZH_Sets_Sets.vmember", "CZH_ECAT_PCategory.cat_prod", "CZH_DG_Digraph.is_arr" ]
[ "definition app :: \"[V,V] \\<Rightarrow> V\"\n where \"app f x \\<equiv> THE y. \\<langle>x,y\\<rangle> \\<in> elts f\"" ]
###template \<lbrakk>?H1 (?H2 x_1 x_2) x_3 x_4 x_5; ?H1 (?H2 x_1 x_2) x_6 x_3 x_7; ?H3 x_8 x_1\<rbrakk> \<Longrightarrow> ?H4 (?H5 (?H2 x_1 x_2) x_5 x_7) x_8 = ?H5 (x_2 x_8) (?H4 x_5 x_8) (?H4 x_7 x_8) ###symbols CZH_SMC_Semicategory.Comp_app ZFC_Cardinals.app CZH_Sets_Sets.vmember CZH_ECAT_PCategory.cat_prod CZH_DG_Digraph.is_arr ###defs definition app :: "[V,V] \<Rightarrow> V" where "app f x \<equiv> THE y. \<langle>x,y\<rangle> \<in> elts f"
###output ?g : ?b \<mapsto>\<^bsub>cat_prod ?I ?\<AA>\<^esub> ?c \<Longrightarrow> ?f : ?a \<mapsto>\<^bsub>cat_prod ?I ?\<AA>\<^esub> ?b \<Longrightarrow> ?i \<in>\<^sub>\<circ> ?I \<Longrightarrow> (?g \<circ>\<^sub>A\<^bsub>cat_prod ?I ?\<AA>\<^esub> ?f)\<lparr>?i\<rparr> = ?g\<lparr>?i\<rparr> \<circ>\<^sub>A\<^bsub>?\<AA> ?i\<^esub> ?f\<lparr>?i\<rparr> ###end
Goedel_HFSet_Semanticless/Instance
Instance.imp
null
?\<phi>1.0 \<in> UNIV \<Longrightarrow> ?\<phi>2.0 \<in> UNIV \<Longrightarrow> ?\<phi>1.0 IMP ?\<phi>2.0 \<in> UNIV
\<lbrakk>x_1 \<in> ?H1; x_2 \<in> ?H1\<rbrakk> \<Longrightarrow> ?H2 x_1 x_2 \<in> ?H1
[ "SyntaxN.Imp", "Set.UNIV" ]
[ "abbreviation Imp :: \"fm \\<Rightarrow> fm \\<Rightarrow> fm\" (infixr \"IMP\" 125)\n where \"Imp A B \\<equiv> Disj (Neg A) B\"", "abbreviation UNIV :: \"'a set\"\n where \"UNIV \\<equiv> top\"" ]
###template \<lbrakk>x_1 \<in> ?H1; x_2 \<in> ?H1\<rbrakk> \<Longrightarrow> ?H2 x_1 x_2 \<in> ?H1 ###symbols SyntaxN.Imp Set.UNIV ###defs abbreviation Imp :: "fm \<Rightarrow> fm \<Rightarrow> fm" (infixr "IMP" 125) where "Imp A B \<equiv> Disj (Neg A) B" abbreviation UNIV :: "'a set" where "UNIV \<equiv> top"
###output ?\<phi>1.0 \<in> UNIV \<Longrightarrow> ?\<phi>2.0 \<in> UNIV \<Longrightarrow> ?\<phi>1.0 IMP ?\<phi>2.0 \<in> UNIV ###end
FSM_Tests/EquivalenceTesting/SPYH_Method_Implementations
SPYH_Method_Implementations.spyh_method_via_h_framework_lists_completeness
lemma spyh_method_via_h_framework_lists_completeness : fixes M1 :: "('a::linorder,'b::linorder,'c::linorder) fsm" fixes M2 :: "('d,'b,'c) fsm" assumes "observable M1" and "observable M2" and "minimal M1" and "minimal M2" and "size_r M1 \<le> m" and "size M2 \<le> m" and "inputs M2 = inputs M1" and "outputs M2 = outputs M1" shows "(L M1 = L M2) \<longleftrightarrow> list_all (passes_test_case M2 (initial M2)) (spyh_method_via_h_framework_lists M1 m completeInputTraces useInputHeuristic)"
observable ?M1.0 \<Longrightarrow> observable ?M2.0 \<Longrightarrow> minimal ?M1.0 \<Longrightarrow> minimal ?M2.0 \<Longrightarrow> size_r ?M1.0 \<le> ?m \<Longrightarrow> FSM.size ?M2.0 \<le> ?m \<Longrightarrow> FSM.inputs ?M2.0 = FSM.inputs ?M1.0 \<Longrightarrow> FSM.outputs ?M2.0 = FSM.outputs ?M1.0 \<Longrightarrow> (L ?M1.0 = L ?M2.0) = list_all (passes_test_case ?M2.0 (FSM.initial ?M2.0)) (spyh_method_via_h_framework_lists ?M1.0 ?m ?completeInputTraces ?useInputHeuristic)
\<lbrakk>?H1 x_1; ?H2 x_2; ?H3 x_1; ?H4 x_2; ?H5 x_1 \<le> x_3; ?H6 x_2 \<le> x_3; ?H7 x_2 = ?H8 x_1; ?H9 x_2 = ?H10 x_1\<rbrakk> \<Longrightarrow> (?H11 x_1 = ?H12 x_2) = ?H13 (?H14 x_2 (?H15 x_2)) (?H16 x_1 x_3 x_4 x_5)
[ "SPYH_Method_Implementations.spyh_method_via_h_framework_lists", "FSM.initial", "Test_Suite_Representations.passes_test_case", "List.list.list_all", "FSM.L", "FSM.outputs", "FSM.inputs", "FSM.size", "FSM.size_r", "FSM.minimal", "FSM.observable" ]
[ "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "abbreviation \"L M \\<equiv> LS M (initial M)\"", "definition size where [simp, code]: \"size (m::('a, 'b, 'c) fsm) = card (states m)\"", "abbreviation \"size_r M \\<equiv> card (reachable_states M)\"", "fun minimal :: \"('a,'b,'c) fsm \\<Rightarrow> bool\" where\n \"minimal M = (\\<forall> q \\<in> states M . \\<forall> q' \\<in> states M . q \\<noteq> q' \\<longrightarrow> LS M q \\<noteq> LS M q')\"", "fun observable :: \"('in, 'out, 'state) FSM \\<Rightarrow> bool\" where\n \"observable M = (\\<forall> t . \\<forall> s1 . ((succ M) t s1 = {}) \n \\<or> (\\<exists> s2 . (succ M) t s1 = {s2}))\"" ]
###template \<lbrakk>?H1 x_1; ?H2 x_2; ?H3 x_1; ?H4 x_2; ?H5 x_1 \<le> x_3; ?H6 x_2 \<le> x_3; ?H7 x_2 = ?H8 x_1; ?H9 x_2 = ?H10 x_1\<rbrakk> \<Longrightarrow> (?H11 x_1 = ?H12 x_2) = ?H13 (?H14 x_2 (?H15 x_2)) (?H16 x_1 x_3 x_4 x_5) ###symbols SPYH_Method_Implementations.spyh_method_via_h_framework_lists FSM.initial Test_Suite_Representations.passes_test_case List.list.list_all FSM.L FSM.outputs FSM.inputs FSM.size FSM.size_r FSM.minimal FSM.observable ###defs datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" abbreviation "L M \<equiv> LS M (initial M)" definition size where [simp, code]: "size (m::('a, 'b, 'c) fsm) = card (states m)" abbreviation "size_r M \<equiv> card (reachable_states M)" fun minimal :: "('a,'b,'c) fsm \<Rightarrow> bool" where "minimal M = (\<forall> q \<in> states M . \<forall> q' \<in> states M . q \<noteq> q' \<longrightarrow> LS M q \<noteq> LS M q')" fun observable :: "('in, 'out, 'state) FSM \<Rightarrow> bool" where "observable M = (\<forall> t . \<forall> s1 . ((succ M) t s1 = {}) \<or> (\<exists> s2 . (succ M) t s1 = {s2}))"
###output observable ?M1.0 \<Longrightarrow> observable ?M2.0 \<Longrightarrow> minimal ?M1.0 \<Longrightarrow> minimal ?M2.0 \<Longrightarrow> size_r ?M1.0 \<le> ?m \<Longrightarrow> FSM.size ?M2.0 \<le> ?m \<Longrightarrow> FSM.inputs ?M2.0 = FSM.inputs ?M1.0 \<Longrightarrow> FSM.outputs ?M2.0 = FSM.outputs ?M1.0 \<Longrightarrow> (L ?M1.0 = L ?M2.0) = list_all (passes_test_case ?M2.0 (FSM.initial ?M2.0)) (spyh_method_via_h_framework_lists ?M1.0 ?m ?completeInputTraces ?useInputHeuristic) ###end
Incompleteness/Pseudo_Coding
Pseudo_Coding.perm_self_inverseI
lemma perm_self_inverseI: "\<lbrakk>-p = q; a \<sharp> p; a' \<sharp> p\<rbrakk> \<Longrightarrow> - ((a \<rightleftharpoons> a') + p) = (a \<rightleftharpoons> a') + q"
- ?p = ?q \<Longrightarrow> ?a \<sharp> ?p \<Longrightarrow> ?a' \<sharp> ?p \<Longrightarrow> - ((?a \<rightleftharpoons> ?a') + ?p) = (?a \<rightleftharpoons> ?a') + ?q
\<lbrakk>?H1 x_1 = x_2; ?H2 x_3 x_1; ?H2 x_4 x_1\<rbrakk> \<Longrightarrow> ?H1 (?H3 (?H4 x_3 x_4) x_1) = ?H3 (?H4 x_3 x_4) x_2
[ "Nominal2_Base.swap", "Groups.plus_class.plus", "Nominal2_Base.pt_class.fresh", "Groups.uminus_class.uminus" ]
[ "definition\n swap :: \"atom \\<Rightarrow> atom \\<Rightarrow> perm\" (\"'(_ \\<rightleftharpoons> _')\")\nwhere\n \"(a \\<rightleftharpoons> b) =\n Abs_perm (if sort_of a = sort_of b\n then (\\<lambda>c. if a = c then b else if b = c then a else c)\n else id)\"", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "class pt =\n fixes permute :: \"perm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (\"_ \\<bullet> _\" [76, 75] 75)\n assumes permute_zero [simp]: \"0 \\<bullet> x = x\"\n assumes permute_plus [simp]: \"(p + q) \\<bullet> x = p \\<bullet> (q \\<bullet> x)\"\nbegin", "class uminus =\n fixes uminus :: \"'a \\<Rightarrow> 'a\" (\"- _\" [81] 80)" ]
###template \<lbrakk>?H1 x_1 = x_2; ?H2 x_3 x_1; ?H2 x_4 x_1\<rbrakk> \<Longrightarrow> ?H1 (?H3 (?H4 x_3 x_4) x_1) = ?H3 (?H4 x_3 x_4) x_2 ###symbols Nominal2_Base.swap Groups.plus_class.plus Nominal2_Base.pt_class.fresh Groups.uminus_class.uminus ###defs definition swap :: "atom \<Rightarrow> atom \<Rightarrow> perm" ("'(_ \<rightleftharpoons> _')") where "(a \<rightleftharpoons> b) = Abs_perm (if sort_of a = sort_of b then (\<lambda>c. if a = c then b else if b = c then a else c) else id)" class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) class pt = fixes permute :: "perm \<Rightarrow> 'a \<Rightarrow> 'a" ("_ \<bullet> _" [76, 75] 75) assumes permute_zero [simp]: "0 \<bullet> x = x" assumes permute_plus [simp]: "(p + q) \<bullet> x = p \<bullet> (q \<bullet> x)" begin class uminus = fixes uminus :: "'a \<Rightarrow> 'a" ("- _" [81] 80)
###output - ?p = ?q \<Longrightarrow> ?a \<sharp> ?p \<Longrightarrow> ?a' \<sharp> ?p \<Longrightarrow> - ((?a \<rightleftharpoons> ?a') + ?p) = (?a \<rightleftharpoons> ?a') + ?q ###end
Refine_Imperative_HOL/Sepref
Sepref_HOL_Bindings.invalid_list_merge(2)
null
?A \<or>\<^sub>A hn_ctxt (list_assn (invalid_assn ?Aa)) ?l ?l' \<Longrightarrow>\<^sub>t ?C \<Longrightarrow> ?A \<or>\<^sub>A hn_invalid (list_assn ?Aa) ?l ?l' \<Longrightarrow>\<^sub>t ?C
?H1 (?H2 x_1 (?H3 (?H4 (?H5 x_2)) x_3 x_4)) x_5 \<Longrightarrow> ?H1 (?H2 x_1 (?H6 (?H4 x_2) x_3 x_4)) x_5
[ "Sepref_Basic.hn_invalid", "Sepref_Basic.invalid_assn", "Sepref_HOL_Bindings.list_assn", "Sepref_Basic.hn_ctxt", "Assertions.sup_assn", "Assertions.entailst" ]
[ "abbreviation \"hn_invalid R \\<equiv> hn_ctxt (invalid_assn R)\"", "definition \"invalid_assn R x y \\<equiv> \\<up>(\\<exists>h. h\\<Turnstile>R x y) * True\"", "fun list_assn :: \"('a \\<Rightarrow> 'c \\<Rightarrow> assn) \\<Rightarrow> 'a list \\<Rightarrow> 'c list \\<Rightarrow> assn\" where\n \"list_assn P [] [] = emp\"\n| \"list_assn P (a#as) (c#cs) = P a c * list_assn P as cs\"\n| \"list_assn _ _ _ = False\"", "definition hn_ctxt :: \"('a\\<Rightarrow>'c\\<Rightarrow>assn) \\<Rightarrow> 'a \\<Rightarrow> 'c \\<Rightarrow> assn\" \n \\<comment> \\<open>Tag for refinement assertion\\<close>\n where\n \"hn_ctxt P a c \\<equiv> P a c\"", "abbreviation sup_assn::\"assn\\<Rightarrow>assn\\<Rightarrow>assn\" (infixr \"\\<or>\\<^sub>A\" 61) \n where \"sup_assn \\<equiv> sup\"", "definition entailst :: \"assn \\<Rightarrow> assn \\<Rightarrow> bool\" (infix \"\\<Longrightarrow>\\<^sub>t\" 10)\n where \"entailst A B \\<equiv> A \\<Longrightarrow>\\<^sub>A B * True\"" ]
###template ?H1 (?H2 x_1 (?H3 (?H4 (?H5 x_2)) x_3 x_4)) x_5 \<Longrightarrow> ?H1 (?H2 x_1 (?H6 (?H4 x_2) x_3 x_4)) x_5 ###symbols Sepref_Basic.hn_invalid Sepref_Basic.invalid_assn Sepref_HOL_Bindings.list_assn Sepref_Basic.hn_ctxt Assertions.sup_assn Assertions.entailst ###defs abbreviation "hn_invalid R \<equiv> hn_ctxt (invalid_assn R)" definition "invalid_assn R x y \<equiv> \<up>(\<exists>h. h\<Turnstile>R x y) * True" fun list_assn :: "('a \<Rightarrow> 'c \<Rightarrow> assn) \<Rightarrow> 'a list \<Rightarrow> 'c list \<Rightarrow> assn" where "list_assn P [] [] = emp" | "list_assn P (a#as) (c#cs) = P a c * list_assn P as cs" | "list_assn _ _ _ = False" definition hn_ctxt :: "('a\<Rightarrow>'c\<Rightarrow>assn) \<Rightarrow> 'a \<Rightarrow> 'c \<Rightarrow> assn" \<comment> \<open>Tag for refinement assertion\<close> where "hn_ctxt P a c \<equiv> P a c" abbreviation sup_assn::"assn\<Rightarrow>assn\<Rightarrow>assn" (infixr "\<or>\<^sub>A" 61) where "sup_assn \<equiv> sup" definition entailst :: "assn \<Rightarrow> assn \<Rightarrow> bool" (infix "\<Longrightarrow>\<^sub>t" 10) where "entailst A B \<equiv> A \<Longrightarrow>\<^sub>A B * True"
###output ?A \<or>\<^sub>A hn_ctxt (list_assn (invalid_assn ?Aa)) ?l ?l' \<Longrightarrow>\<^sub>t ?C \<Longrightarrow> ?A \<or>\<^sub>A hn_invalid (list_assn ?Aa) ?l ?l' \<Longrightarrow>\<^sub>t ?C ###end
Real_Time_Deque/States_Proof
States_Proof.list_small_first_pop_small
lemma list_small_first_pop_small [simp]: "\<lbrakk> invar (States dir big small); 0 < size small; Small.pop small = (x, small')\<rbrakk> \<Longrightarrow> x # list_small_first (States dir big small') = list_small_first (States dir big small)"
invar (States ?dir ?big ?small) \<Longrightarrow> 0 < size ?small \<Longrightarrow> Small.pop ?small = (?x, ?small') \<Longrightarrow> ?x # list_small_first (States ?dir ?big ?small') = list_small_first (States ?dir ?big ?small)
\<lbrakk>?H1 (?H2 x_1 x_2 x_3); ?H3 < ?H4 x_3; ?H5 x_3 = (x_4, x_5)\<rbrakk> \<Longrightarrow> ?H6 x_4 (?H7 (?H2 x_1 x_2 x_5)) = ?H7 (?H2 x_1 x_2 x_3)
[ "States_Aux.list_small_first", "List.list.Cons", "Small.pop", "Nat.size_class.size", "Groups.zero_class.zero", "States.states.States", "Type_Classes.invar_class.invar" ]
[ "fun list_small_first :: \"'a states \\<Rightarrow> 'a list\" where\n \"list_small_first states = (let (big, small) = lists states in small @ (rev big))\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "fun pop :: \"'a small_state \\<Rightarrow> 'a * 'a small_state\" where\n \"pop (Small3 state) = (\n let (x, state) = Common.pop state \n in (x, Small3 state)\n )\"\n| \"pop (Small1 current small auxS) = \n (first current, Small1 (drop_first current) small auxS)\"\n| \"pop (Small2 current auxS big newS count) = \n (first current, Small2 (drop_first current) auxS big newS count)\"", "class size =\n fixes size :: \"'a \\<Rightarrow> nat\" \\<comment> \\<open>see further theory \\<open>Wellfounded\\<close>\\<close>", "class zero =\n fixes zero :: 'a (\"0\")", "datatype 'a states = States direction \"'a big_state\" \"'a small_state\"", "class invar =\n fixes invar :: \"'a \\<Rightarrow> bool\"" ]
###template \<lbrakk>?H1 (?H2 x_1 x_2 x_3); ?H3 < ?H4 x_3; ?H5 x_3 = (x_4, x_5)\<rbrakk> \<Longrightarrow> ?H6 x_4 (?H7 (?H2 x_1 x_2 x_5)) = ?H7 (?H2 x_1 x_2 x_3) ###symbols States_Aux.list_small_first List.list.Cons Small.pop Nat.size_class.size Groups.zero_class.zero States.states.States Type_Classes.invar_class.invar ###defs fun list_small_first :: "'a states \<Rightarrow> 'a list" where "list_small_first states = (let (big, small) = lists states in small @ (rev big))" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" fun pop :: "'a small_state \<Rightarrow> 'a * 'a small_state" where "pop (Small3 state) = ( let (x, state) = Common.pop state in (x, Small3 state) )" | "pop (Small1 current small auxS) = (first current, Small1 (drop_first current) small auxS)" | "pop (Small2 current auxS big newS count) = (first current, Small2 (drop_first current) auxS big newS count)" class size = fixes size :: "'a \<Rightarrow> nat" \<comment> \<open>see further theory \<open>Wellfounded\<close>\<close> class zero = fixes zero :: 'a ("0") datatype 'a states = States direction "'a big_state" "'a small_state" class invar = fixes invar :: "'a \<Rightarrow> bool"
###output invar (States ?dir ?big ?small) \<Longrightarrow> 0 < size ?small \<Longrightarrow> Small.pop ?small = (?x, ?small') \<Longrightarrow> ?x # list_small_first (States ?dir ?big ?small') = list_small_first (States ?dir ?big ?small) ###end
HOL-CSP/Process
Process.F_T
lemma F_T: "(s, X) \<in> \<F> P \<Longrightarrow> s \<in> \<T> P"
(?s, ?X) \<in> \<F> ?P \<Longrightarrow> ?s \<in> \<T> ?P
(x_1, x_2) \<in> ?H1 x_3 \<Longrightarrow> x_1 \<in> ?H2 x_3
[ "Process.Traces", "Process.Failures" ]
[]
###template (x_1, x_2) \<in> ?H1 x_3 \<Longrightarrow> x_1 \<in> ?H2 x_3 ###symbols Process.Traces Process.Failures ###defs
###output (?s, ?X) \<in> \<F> ?P \<Longrightarrow> ?s \<in> \<T> ?P ###end
Graph_Saturation/LabeledGraphs
LabeledGraphs.subgraph_restrict
lemma subgraph_restrict[simp]: "subgraph G (restrict G) = graph G"
subgraph ?G (restrict ?G) = graph ?G
?H1 x_1 (?H2 x_1) = ?H3 x_1
[ "LabeledGraphs.graph", "LabeledGraphs.restrict", "LabeledGraphs.subgraph" ]
[ "abbreviation graph where\n \"graph X \\<equiv> X = restrict X\"", "definition restrict where\n \"restrict G = LG {(l,v1,v2) \\<in> edges G. v1 \\<in> vertices G \\<and> v2 \\<in> vertices G } (vertices G)\"", "abbreviation subgraph\n where \"subgraph G\\<^sub>1 G\\<^sub>2 \n \\<equiv> graph_homomorphism G\\<^sub>1 G\\<^sub>2 (Id_on (vertices G\\<^sub>1))\"" ]
###template ?H1 x_1 (?H2 x_1) = ?H3 x_1 ###symbols LabeledGraphs.graph LabeledGraphs.restrict LabeledGraphs.subgraph ###defs abbreviation graph where "graph X \<equiv> X = restrict X" definition restrict where "restrict G = LG {(l,v1,v2) \<in> edges G. v1 \<in> vertices G \<and> v2 \<in> vertices G } (vertices G)" abbreviation subgraph where "subgraph G\<^sub>1 G\<^sub>2 \<equiv> graph_homomorphism G\<^sub>1 G\<^sub>2 (Id_on (vertices G\<^sub>1))"
###output subgraph ?G (restrict ?G) = graph ?G ###end
ROBDD/Middle_Impl
Middle_Impl.True_rep
lemma True_rep[simp]: "bdd_sane s \<Longrightarrow> (ni,Trueif)\<in>Rmi s \<longleftrightarrow> ni=Suc 0"
bdd_sane ?s \<Longrightarrow> ((?ni, Trueif) \<in> Rmi ?s) = (?ni = Suc 0)
?H1 x_1 \<Longrightarrow> ((x_2, ?H2) \<in> ?H3 x_1) = (x_2 = ?H4 ?H5)
[ "Groups.zero_class.zero", "Nat.Suc", "Middle_Impl.Rmi", "BDT.ifex.Trueif", "Middle_Impl.bdd_sane" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "definition \"Rmi s \\<equiv> {(a,b)|a b. Rmi_g a b s}\"", "datatype 'a ifex = Trueif | Falseif | IF 'a \"'a ifex\" \"'a ifex\"", "definition \"bdd_sane bdd \\<equiv> pointermap_sane (dpm bdd) \\<and> mi_pre.map_invar_impl (dcl bdd) bdd\"" ]
###template ?H1 x_1 \<Longrightarrow> ((x_2, ?H2) \<in> ?H3 x_1) = (x_2 = ?H4 ?H5) ###symbols Groups.zero_class.zero Nat.Suc Middle_Impl.Rmi BDT.ifex.Trueif Middle_Impl.bdd_sane ###defs class zero = fixes zero :: 'a ("0") definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" definition "Rmi s \<equiv> {(a,b)|a b. Rmi_g a b s}" datatype 'a ifex = Trueif | Falseif | IF 'a "'a ifex" "'a ifex" definition "bdd_sane bdd \<equiv> pointermap_sane (dpm bdd) \<and> mi_pre.map_invar_impl (dcl bdd) bdd"
###output bdd_sane ?s \<Longrightarrow> ((?ni, Trueif) \<in> Rmi ?s) = (?ni = Suc 0) ###end
Differential_Dynamic_Logic/Denotational_Semantics
Denotational_Semantics.stimes_case
lemma stimes_case: "sterm_sem I (Times t1 t2) = (\<lambda>v. (sterm_sem I t1 v) * (sterm_sem I t2 v))"
sterm_sem ?I (Times ?t1.0 ?t2.0) = (\<lambda>v. sterm_sem ?I ?t1.0 v * sterm_sem ?I ?t2.0 v)
?H1 x_1 (?H2 x_2 x_3) = (\<lambda>y_0. ?H3 (?H1 x_1 x_2 y_0) (?H1 x_1 x_3 y_0))
[ "Groups.times_class.times", "Syntax.trm.Times", "Denotational_Semantics.sterm_sem" ]
[ "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "datatype ('a, 'c) trm =\n\\<comment> \\<open>Real-valued variables given meaning by the state and modified by programs.\\<close>\n Var 'c\n\\<comment> \\<open>N.B. This is technically more expressive than True dL since most reals\\<close>\n\\<comment> \\<open>can't be written down.\\<close>\n| Const real\n\\<comment> \\<open>A function (applied to its arguments) consists of an identifier for the function\\<close>\n\\<comment> \\<open>and a function \\<open>'c \\<Rightarrow> ('a, 'c) trm\\<close> (where \\<open>'c\\<close> is a finite type) which specifies one\\<close>\n\\<comment> \\<open>argument of the function for each element of type \\<open>'c\\<close>. To simulate a function with\\<close>\n\\<comment> \\<open>less than \\<open>'c\\<close> arguments, set the remaining arguments to a constant, such as \\<open>Const 0\\<close>\\<close>\n| Function 'a \"'c \\<Rightarrow> ('a, 'c) trm\" (\"$f\")\n| Plus \"('a, 'c) trm\" \"('a, 'c) trm\"\n| Times \"('a, 'c) trm\" \"('a, 'c) trm\"\n\\<comment> \\<open>A (real-valued) variable standing for a differential, such as \\<open>x'\\<close>, given meaning by the state\\<close>\n\\<comment> \\<open>and modified by programs.\\<close>\n| DiffVar 'c (\"$''\")\n\\<comment> \\<open>The differential of an arbitrary term \\<open>(\\<theta>)'\\<close>\\<close>\n| Differential \"('a, 'c) trm\"", "primrec sterm_sem :: \"('a::finite, 'b::finite, 'c::finite) interp \\<Rightarrow> ('a, 'c) trm \\<Rightarrow> 'c simple_state \\<Rightarrow> real\"\nwhere\n \"sterm_sem I (Var x) v = v $ x\"\n| \"sterm_sem I (Function f args) v = Functions I f (\\<chi> i. sterm_sem I (args i) v)\"\n| \"sterm_sem I (Plus t1 t2) v = sterm_sem I t1 v + sterm_sem I t2 v\"\n| \"sterm_sem I (Times t1 t2) v = sterm_sem I t1 v * sterm_sem I t2 v\"\n| \"sterm_sem I (Const r) v = r\"\n| \"sterm_sem I ($' c) v = undefined\"\n| \"sterm_sem I (Differential d) v = undefined\"\n \n\\<comment> \\<open>\\<open>frechet I \\<theta> \\<nu>\\<close> syntactically computes the frechet derivative of the term \\<open>\\<theta>\\<close> in the interpretation\\<close>\n\\<comment> \\<open>\\<open>I\\<close> at state \\<open>\\<nu>\\<close> (containing only the unprimed variables). The frechet derivative is a\\<close>\n\\<comment> \\<open>linear map from the differential state \\<open>\\<nu>\\<close> to reals.\\<close>" ]
###template ?H1 x_1 (?H2 x_2 x_3) = (\<lambda>y_0. ?H3 (?H1 x_1 x_2 y_0) (?H1 x_1 x_3 y_0)) ###symbols Groups.times_class.times Syntax.trm.Times Denotational_Semantics.sterm_sem ###defs class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) datatype ('a, 'c) trm = \<comment> \<open>Real-valued variables given meaning by the state and modified by programs.\<close> Var 'c \<comment> \<open>N.B. This is technically more expressive than True dL since most reals\<close> \<comment> \<open>can't be written down.\<close> | Const real \<comment> \<open>A function (applied to its arguments) consists of an identifier for the function\<close> \<comment> \<open>and a function \<open>'c \<Rightarrow> ('a, 'c) trm\<close> (where \<open>'c\<close> is a finite type) which specifies one\<close> \<comment> \<open>argument of the function for each element of type \<open>'c\<close>. To simulate a function with\<close> \<comment> \<open>less than \<open>'c\<close> arguments, set the remaining arguments to a constant, such as \<open>Const 0\<close>\<close> | Function 'a "'c \<Rightarrow> ('a, 'c) trm" ("$f") | Plus "('a, 'c) trm" "('a, 'c) trm" | Times "('a, 'c) trm" "('a, 'c) trm" \<comment> \<open>A (real-valued) variable standing for a differential, such as \<open>x'\<close>, given meaning by the state\<close> \<comment> \<open>and modified by programs.\<close> | DiffVar 'c ("$''") \<comment> \<open>The differential of an arbitrary term \<open>(\<theta>)'\<close>\<close> | Differential "('a, 'c) trm" primrec sterm_sem :: "('a::finite, 'b::finite, 'c::finite) interp \<Rightarrow> ('a, 'c) trm \<Rightarrow> 'c simple_state \<Rightarrow> real" where "sterm_sem I (Var x) v = v $ x" | "sterm_sem I (Function f args) v = Functions I f (\<chi> i. sterm_sem I (args i) v)" | "sterm_sem I (Plus t1 t2) v = sterm_sem I t1 v + sterm_sem I t2 v" | "sterm_sem I (Times t1 t2) v = sterm_sem I t1 v * sterm_sem I t2 v" | "sterm_sem I (Const r) v = r" | "sterm_sem I ($' c) v = undefined" | "sterm_sem I (Differential d) v = undefined" \<comment> \<open>\<open>frechet I \<theta> \<nu>\<close> syntactically computes the frechet derivative of the term \<open>\<theta>\<close> in the interpretation\<close> \<comment> \<open>\<open>I\<close> at state \<open>\<nu>\<close> (containing only the unprimed variables). The frechet derivative is a\<close> \<comment> \<open>linear map from the differential state \<open>\<nu>\<close> to reals.\<close>
###output sterm_sem ?I (Times ?t1.0 ?t2.0) = (\<lambda>v. sterm_sem ?I ?t1.0 v * sterm_sem ?I ?t2.0 v) ###end
DiskPaxos/DiskPaxos_Inv3
DiskPaxos_Inv3.EndPhase0_HInv3_q
lemma EndPhase0_HInv3_q: "\<lbrakk> EndPhase0 s s' q; HInv3_L s' p q d \<rbrakk> \<Longrightarrow> HInv3_R s' p q d"
EndPhase0 ?s ?s' ?q \<Longrightarrow> HInv3_L ?s' ?p ?q ?d \<Longrightarrow> HInv3_R ?s' ?p ?q ?d
\<lbrakk>?H1 x_1 x_2 x_3; ?H2 x_2 x_4 x_3 x_5\<rbrakk> \<Longrightarrow> ?H3 x_2 x_4 x_3 x_5
[ "DiskPaxos_Inv3.HInv3_R", "DiskPaxos_Inv3.HInv3_L", "DiskPaxos_Model.EndPhase0" ]
[ "definition HInv3_R :: \"state \\<Rightarrow> Proc \\<Rightarrow> Proc \\<Rightarrow> Disk \\<Rightarrow> bool\"\nwhere\n \"HInv3_R s p q d = (\\<lparr>block= dblock s q, proc= q\\<rparr> \\<in> blocksRead s p d\n \\<or> \\<lparr>block= dblock s p, proc= p\\<rparr> \\<in> blocksRead s q d)\"", "definition HInv3_L :: \"state \\<Rightarrow> Proc \\<Rightarrow> Proc \\<Rightarrow> Disk \\<Rightarrow> bool\"\nwhere\n \"HInv3_L s p q d = (phase s p \\<in> {1,2}\n \\<and> phase s q \\<in> {1,2} \n \\<and> hasRead s p d q\n \\<and> hasRead s q d p)\"", "definition EndPhase0 :: \"state \\<Rightarrow> state \\<Rightarrow> Proc \\<Rightarrow> bool\"\nwhere\n \"EndPhase0 s s' p =\n (phase s p = 0\n \\<and> IsMajority ({d. hasRead s p d p})\n \\<and> (\\<exists>b \\<in> Ballot p. \n (\\<forall>r \\<in> allBlocksRead s p. mbal r < b)\n \\<and> dblock s' = (dblock s) ( p:= \n (SOME r. r \\<in> allBlocksRead s p \n \\<and> (\\<forall>s \\<in> allBlocksRead s p. bal s \\<le> bal r)) \\<lparr> mbal := b \\<rparr> ))\n \\<and> InitializePhase s s' p\n \\<and> phase s' = (phase s) (p:= 1)\n \\<and> inpt s' = inpt s \\<and> outpt s' = outpt s \\<and> disk s' = disk s)\"" ]
###template \<lbrakk>?H1 x_1 x_2 x_3; ?H2 x_2 x_4 x_3 x_5\<rbrakk> \<Longrightarrow> ?H3 x_2 x_4 x_3 x_5 ###symbols DiskPaxos_Inv3.HInv3_R DiskPaxos_Inv3.HInv3_L DiskPaxos_Model.EndPhase0 ###defs definition HInv3_R :: "state \<Rightarrow> Proc \<Rightarrow> Proc \<Rightarrow> Disk \<Rightarrow> bool" where "HInv3_R s p q d = (\<lparr>block= dblock s q, proc= q\<rparr> \<in> blocksRead s p d \<or> \<lparr>block= dblock s p, proc= p\<rparr> \<in> blocksRead s q d)" definition HInv3_L :: "state \<Rightarrow> Proc \<Rightarrow> Proc \<Rightarrow> Disk \<Rightarrow> bool" where "HInv3_L s p q d = (phase s p \<in> {1,2} \<and> phase s q \<in> {1,2} \<and> hasRead s p d q \<and> hasRead s q d p)" definition EndPhase0 :: "state \<Rightarrow> state \<Rightarrow> Proc \<Rightarrow> bool" where "EndPhase0 s s' p = (phase s p = 0 \<and> IsMajority ({d. hasRead s p d p}) \<and> (\<exists>b \<in> Ballot p. (\<forall>r \<in> allBlocksRead s p. mbal r < b) \<and> dblock s' = (dblock s) ( p:= (SOME r. r \<in> allBlocksRead s p \<and> (\<forall>s \<in> allBlocksRead s p. bal s \<le> bal r)) \<lparr> mbal := b \<rparr> )) \<and> InitializePhase s s' p \<and> phase s' = (phase s) (p:= 1) \<and> inpt s' = inpt s \<and> outpt s' = outpt s \<and> disk s' = disk s)"
###output EndPhase0 ?s ?s' ?q \<Longrightarrow> HInv3_L ?s' ?p ?q ?d \<Longrightarrow> HInv3_R ?s' ?p ?q ?d ###end
Count_Complex_Roots/Extended_Sturm
Extended_Sturm.cindex_polyE_mod
lemma cindex_polyE_mod: fixes p q::"real poly" shows "cindex_polyE a b q p = cindex_polyE a b (q mod p) p"
cindex_polyE ?a ?b ?q ?p = cindex_polyE ?a ?b (?q mod ?p) ?p
?H1 x_1 x_2 x_3 x_4 = ?H1 x_1 x_2 (?H2 x_3 x_4) x_4
[ "Rings.modulo_class.modulo", "Extended_Sturm.cindex_polyE" ]
[ "class modulo = dvd + divide +\n fixes modulo :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"mod\" 70)", "definition cindex_polyE:: \"real \\<Rightarrow> real \\<Rightarrow> real poly \\<Rightarrow> real poly \\<Rightarrow> real\" where\n \"cindex_polyE a b q p = jumpF_polyR q p a + cindex_poly a b q p - jumpF_polyL q p b\"" ]
###template ?H1 x_1 x_2 x_3 x_4 = ?H1 x_1 x_2 (?H2 x_3 x_4) x_4 ###symbols Rings.modulo_class.modulo Extended_Sturm.cindex_polyE ###defs class modulo = dvd + divide + fixes modulo :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70) definition cindex_polyE:: "real \<Rightarrow> real \<Rightarrow> real poly \<Rightarrow> real poly \<Rightarrow> real" where "cindex_polyE a b q p = jumpF_polyR q p a + cindex_poly a b q p - jumpF_polyL q p b"
###output cindex_polyE ?a ?b ?q ?p = cindex_polyE ?a ?b (?q mod ?p) ?p ###end
Given_Clause_Loops/Given_Clause_Loops_Util
Given_Clause_Loops_Util.set_drop_fold_removeAll
lemma set_drop_fold_removeAll: "set (drop k (fold removeAll ys xs)) \<subseteq> set (drop k xs)"
set (drop ?k (fold removeAll ?ys ?xs)) \<subseteq> set (drop ?k ?xs)
?H1 (?H2 (?H3 x_1 (?H4 ?H5 x_2 x_3))) (?H2 (?H3 x_1 x_3))
[ "List.removeAll", "List.fold", "List.drop", "List.list.set", "Set.subset_eq" ]
[ "primrec removeAll :: \"'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" where\n\"removeAll x [] = []\" |\n\"removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)\"", "primrec fold :: \"('a \\<Rightarrow> 'b \\<Rightarrow> 'b) \\<Rightarrow> 'a list \\<Rightarrow> 'b \\<Rightarrow> 'b\" where\nfold_Nil: \"fold f [] = id\" |\nfold_Cons: \"fold f (x # xs) = fold f xs \\<circ> f x\"", "primrec drop:: \"nat \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" where\ndrop_Nil: \"drop n [] = []\" |\ndrop_Cons: \"drop n (x # xs) = (case n of 0 \\<Rightarrow> x # xs | Suc m \\<Rightarrow> drop m xs)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
###template ?H1 (?H2 (?H3 x_1 (?H4 ?H5 x_2 x_3))) (?H2 (?H3 x_1 x_3)) ###symbols List.removeAll List.fold List.drop List.list.set Set.subset_eq ###defs primrec removeAll :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where "removeAll x [] = []" | "removeAll x (y # xs) = (if x = y then removeAll x xs else y # removeAll x xs)" primrec fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b \<Rightarrow> 'b" where fold_Nil: "fold f [] = id" | fold_Cons: "fold f (x # xs) = fold f xs \<circ> f x" primrec drop:: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list" where drop_Nil: "drop n [] = []" | drop_Cons: "drop n (x # xs) = (case n of 0 \<Rightarrow> x # xs | Suc m \<Rightarrow> drop m xs)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close> datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output set (drop ?k (fold removeAll ?ys ?xs)) \<subseteq> set (drop ?k ?xs) ###end
HOL-CSP/Assertions
Assertions.CHAOS\<^sub>S\<^sub>K\<^sub>I\<^sub>P_CHAOS_refine_F
null
CHAOS\<^sub>S\<^sub>K\<^sub>I\<^sub>P ?A \<sqsubseteq>\<^sub>F CHAOS ?A
?H1 (?H2 x_1) (?H3 x_1)
[ "Assertions.CHAOS", "Assertions.CHAOS\\<^sub>S\\<^sub>K\\<^sub>I\\<^sub>P", "Process_Order.failure_refine" ]
[ "definition CHAOS :: \"'a set \\<Rightarrow> 'a process\" \n where \"CHAOS A \\<equiv> \\<mu> X. (STOP \\<sqinter> (\\<box> x \\<in> A \\<rightarrow> X))\"", "definition CHAOS\\<^sub>S\\<^sub>K\\<^sub>I\\<^sub>P :: \"'a set \\<Rightarrow> 'a process\" \n where \"CHAOS\\<^sub>S\\<^sub>K\\<^sub>I\\<^sub>P A \\<equiv> \\<mu> X. (SKIP \\<sqinter> STOP \\<sqinter> (\\<box> x \\<in> A \\<rightarrow> X))\"", "definition failure_refine :: \\<open>'a process \\<Rightarrow> 'a process \\<Rightarrow> bool\\<close> (infix \\<open>\\<sqsubseteq>\\<^sub>F\\<close> 60)\n where \\<open>P \\<sqsubseteq>\\<^sub>F Q \\<equiv> \\<F> Q \\<subseteq> \\<F> P\\<close>" ]
###template ?H1 (?H2 x_1) (?H3 x_1) ###symbols Assertions.CHAOS Assertions.CHAOS\<^sub>S\<^sub>K\<^sub>I\<^sub>P Process_Order.failure_refine ###defs definition CHAOS :: "'a set \<Rightarrow> 'a process" where "CHAOS A \<equiv> \<mu> X. (STOP \<sqinter> (\<box> x \<in> A \<rightarrow> X))" definition CHAOS\<^sub>S\<^sub>K\<^sub>I\<^sub>P :: "'a set \<Rightarrow> 'a process" where "CHAOS\<^sub>S\<^sub>K\<^sub>I\<^sub>P A \<equiv> \<mu> X. (SKIP \<sqinter> STOP \<sqinter> (\<box> x \<in> A \<rightarrow> X))" definition failure_refine :: \<open>'a process \<Rightarrow> 'a process \<Rightarrow> bool\<close> (infix \<open>\<sqsubseteq>\<^sub>F\<close> 60) where \<open>P \<sqsubseteq>\<^sub>F Q \<equiv> \<F> Q \<subseteq> \<F> P\<close>
###output CHAOS\<^sub>S\<^sub>K\<^sub>I\<^sub>P ?A \<sqsubseteq>\<^sub>F CHAOS ?A ###end
Green/Derivs
Derivs.has_vector_derivative_transform_at
lemma has_vector_derivative_transform_at: assumes "0 < d" and "\<forall>x'. dist x' x < d \<longrightarrow> f x' = g x'" and "(f has_vector_derivative f') (at x)" shows "(g has_vector_derivative f') (at x)"
0 < ?d \<Longrightarrow> \<forall>x'. dist x' ?x < ?d \<longrightarrow> ?f x' = ?g x' \<Longrightarrow> (?f has_vector_derivative ?f') (at ?x) \<Longrightarrow> (?g has_vector_derivative ?f') (at ?x)
\<lbrakk>?H1 < x_1; \<forall>y_0. ?H2 y_0 x_2 < x_1 \<longrightarrow> x_3 y_0 = x_4 y_0; ?H3 x_3 x_5 (?H4 x_2)\<rbrakk> \<Longrightarrow> ?H3 x_4 x_5 (?H4 x_2)
[ "Topological_Spaces.topological_space_class.at", "Deriv.has_vector_derivative", "Real_Vector_Spaces.dist_class.dist", "Groups.zero_class.zero" ]
[ "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "definition has_vector_derivative :: \"(real \\<Rightarrow> 'b::real_normed_vector) \\<Rightarrow> 'b \\<Rightarrow> real filter \\<Rightarrow> bool\"\n (infix \"has'_vector'_derivative\" 50)\n where \"(f has_vector_derivative f') net \\<longleftrightarrow> (f has_derivative (\\<lambda>x. x *\\<^sub>R f')) net\"", "class dist =\n fixes dist :: \"'a \\<Rightarrow> 'a \\<Rightarrow> real\"", "class zero =\n fixes zero :: 'a (\"0\")" ]
###template \<lbrakk>?H1 < x_1; \<forall>y_0. ?H2 y_0 x_2 < x_1 \<longrightarrow> x_3 y_0 = x_4 y_0; ?H3 x_3 x_5 (?H4 x_2)\<rbrakk> \<Longrightarrow> ?H3 x_4 x_5 (?H4 x_2) ###symbols Topological_Spaces.topological_space_class.at Deriv.has_vector_derivative Real_Vector_Spaces.dist_class.dist Groups.zero_class.zero ###defs class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin definition has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool" (infix "has'_vector'_derivative" 50) where "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net" class dist = fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real" class zero = fixes zero :: 'a ("0")
###output 0 < ?d \<Longrightarrow> \<forall>x'. dist x' ?x < ?d \<longrightarrow> ?f x' = ?g x' \<Longrightarrow> (?f has_vector_derivative ?f') (at ?x) \<Longrightarrow> (?g has_vector_derivative ?f') (at ?x) ###end
ConcurrentGC/Global_Invariants_Lemmas
Global_Invariants_Lemmas.valid_refs_invD(7)
lemma valid_refs_invD[elim]: "\<lbrakk> x \<in> mut_m.mut_roots m s; (x reaches y) s; valid_refs_inv s \<rbrakk> \<Longrightarrow> valid_ref y s" "\<lbrakk> x \<in> mut_m.mut_roots m s; (x reaches y) s; valid_refs_inv s \<rbrakk> \<Longrightarrow> \<exists>obj. sys_heap s y = Some obj" "\<lbrakk> x \<in> mut_m.tso_store_refs m s; (x reaches y) s; valid_refs_inv s \<rbrakk> \<Longrightarrow> valid_ref y s" "\<lbrakk> x \<in> mut_m.tso_store_refs m s; (x reaches y) s; valid_refs_inv s \<rbrakk> \<Longrightarrow> \<exists>obj. sys_heap s y = Some obj" "\<lbrakk> w \<in> set (sys_mem_store_buffers (mutator m) s); x \<in> store_refs w; (x reaches y) s; valid_refs_inv s \<rbrakk> \<Longrightarrow> valid_ref y s" "\<lbrakk> w \<in> set (sys_mem_store_buffers (mutator m) s); x \<in> store_refs w; (x reaches y) s; valid_refs_inv s \<rbrakk> \<Longrightarrow> \<exists>obj. sys_heap s y = Some obj" "\<lbrakk> grey x s; (x reaches y) s; valid_refs_inv s \<rbrakk> \<Longrightarrow> valid_ref y s" "\<lbrakk> mut_m.reachable m x s; valid_refs_inv s \<rbrakk> \<Longrightarrow> valid_ref x s" "\<lbrakk> mut_m.reachable m x s; valid_refs_inv s \<rbrakk> \<Longrightarrow> \<exists>obj. sys_heap s x = Some obj" "\<lbrakk> x \<in> mut_m.mut_ghost_honorary_root m s; (x reaches y) s; valid_refs_inv s \<rbrakk> \<Longrightarrow> valid_ref y s" "\<lbrakk> x \<in> mut_m.mut_ghost_honorary_root m s; (x reaches y) s; valid_refs_inv s \<rbrakk> \<Longrightarrow> \<exists>obj. sys_heap s y = Some obj"
grey ?x ?s \<Longrightarrow> (?x reaches ?y) ?s \<Longrightarrow> valid_refs_inv ?s \<Longrightarrow> obj_at (\<lambda>s. True) ?y ?s
\<lbrakk>?H1 x_1 x_2; ?H2 x_1 x_3 x_2; ?H3 x_2\<rbrakk> \<Longrightarrow> ?H4 (\<lambda>y_0. True) x_3 x_2
[ "Proofs_Basis.obj_at", "Global_Invariants.valid_refs_inv", "Proofs_Basis.reaches", "Proofs_Basis.grey" ]
[ "definition obj_at :: \"(('field, 'payload, 'ref) object \\<Rightarrow> bool) \\<Rightarrow> 'ref \\<Rightarrow> ('field, 'mut, 'payload, 'ref) lsts_pred\" where\n \"obj_at P r \\<equiv> \\<lambda>s. case sys_heap s r of None \\<Rightarrow> False | Some obj \\<Rightarrow> P obj\"", "definition valid_refs_inv :: \"('field, 'mut, 'payload, 'ref) lsts_pred\" where\n \"valid_refs_inv = (\\<^bold>\\<forall>m x. mut_m.reachable m x \\<^bold>\\<or> grey_reachable x \\<^bold>\\<longrightarrow> valid_ref x)\"", "definition reaches :: \"'ref \\<Rightarrow> 'ref \\<Rightarrow> ('field, 'mut, 'payload, 'ref) lsts_pred\" (infix \"reaches\" 51) where\n \"x reaches y = (\\<lambda>s. (\\<lambda>x y. (x points_to y) s)\\<^sup>*\\<^sup>* x y)\"", "definition grey :: \"'ref \\<Rightarrow> ('field, 'mut, 'payload, 'ref) lsts_pred\" where\n \"grey r = (\\<^bold>\\<exists>p. \\<langle>r\\<rangle> \\<^bold>\\<in> WL p)\"" ]
###template \<lbrakk>?H1 x_1 x_2; ?H2 x_1 x_3 x_2; ?H3 x_2\<rbrakk> \<Longrightarrow> ?H4 (\<lambda>y_0. True) x_3 x_2 ###symbols Proofs_Basis.obj_at Global_Invariants.valid_refs_inv Proofs_Basis.reaches Proofs_Basis.grey ###defs definition obj_at :: "(('field, 'payload, 'ref) object \<Rightarrow> bool) \<Rightarrow> 'ref \<Rightarrow> ('field, 'mut, 'payload, 'ref) lsts_pred" where "obj_at P r \<equiv> \<lambda>s. case sys_heap s r of None \<Rightarrow> False | Some obj \<Rightarrow> P obj" definition valid_refs_inv :: "('field, 'mut, 'payload, 'ref) lsts_pred" where "valid_refs_inv = (\<^bold>\<forall>m x. mut_m.reachable m x \<^bold>\<or> grey_reachable x \<^bold>\<longrightarrow> valid_ref x)" definition reaches :: "'ref \<Rightarrow> 'ref \<Rightarrow> ('field, 'mut, 'payload, 'ref) lsts_pred" (infix "reaches" 51) where "x reaches y = (\<lambda>s. (\<lambda>x y. (x points_to y) s)\<^sup>*\<^sup>* x y)" definition grey :: "'ref \<Rightarrow> ('field, 'mut, 'payload, 'ref) lsts_pred" where "grey r = (\<^bold>\<exists>p. \<langle>r\<rangle> \<^bold>\<in> WL p)"
###output grey ?x ?s \<Longrightarrow> (?x reaches ?y) ?s \<Longrightarrow> valid_refs_inv ?s \<Longrightarrow> obj_at (\<lambda>s. True) ?y ?s ###end
Lazy-Lists-II/LList2
LList2.lappend_is_LNil_conv
lemma lappend_is_LNil_conv [iff]: "(s @@ t = LNil) = (s = LNil \<and> t = LNil)"
(?s @@ ?t = LNil) = (?s = LNil \<and> ?t = LNil)
(?H1 x_1 x_2 = ?H2) = (x_1 = ?H2 \<and> x_2 = ?H2)
[ "Coinductive_List.llist.LNil", "Coinductive_List.lappend" ]
[ "codatatype (lset: 'a) llist =\n lnull: LNil\n | LCons (lhd: 'a) (ltl: \"'a llist\")\nfor\n map: lmap\n rel: llist_all2\nwhere\n \"lhd LNil = undefined\"\n| \"ltl LNil = LNil\"" ]
###template (?H1 x_1 x_2 = ?H2) = (x_1 = ?H2 \<and> x_2 = ?H2) ###symbols Coinductive_List.llist.LNil Coinductive_List.lappend ###defs codatatype (lset: 'a) llist = lnull: LNil | LCons (lhd: 'a) (ltl: "'a llist") for map: lmap rel: llist_all2 where "lhd LNil = undefined" | "ltl LNil = LNil"
###output (?s @@ ?t = LNil) = (?s = LNil \<and> ?t = LNil) ###end
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
8