Dataset Viewer
Auto-converted to Parquet
theory_file
stringlengths
5
95
lemma_name
stringlengths
5
255
lemma_command
stringlengths
17
12k
lemma_object
stringlengths
5
38.6k
template
stringlengths
7
34.2k
symbols
sequencelengths
0
85
types
sequencelengths
0
85
defs
sequencelengths
0
60
output_key
stringclasses
1 value
input
stringlengths
20
44.8k
output
stringlengths
22
38.7k
Regular_Tree_Relations/Util/FSet_Utils
FSet_Utils.ftrancl_map_prod_mono
null
map_both ?f |`| ?R|\<^sup>+| |\<subseteq>| (map_both ?f |`| ?R)|\<^sup>+|
?H1 (?H2 (?H3 x_1) (?H4 x_2)) (?H5 (?H2 (?H3 x_1) x_2))
[ "FSet_Utils.ftrancl", "Term_Context.map_both", "FSet.fimage", "FSet.fsubset_eq" ]
[ "('a \\<times> 'a) fset \\<Rightarrow> ('a \\<times> 'a) fset", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<times> 'a \\<Rightarrow> 'b \\<times> 'b", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a fset \\<Rightarrow> 'b fset", "'a fset \\<Rightarrow> 'a fset \\<Rightarrow> bool" ]
[ "abbreviation fsubset_eq :: \"'a fset \\<Rightarrow> 'a fset \\<Rightarrow> bool\" (infix \"|\\<subseteq>|\" 50) where \"xs |\\<subseteq>| ys \\<equiv> xs \\<le> ys\"" ]
lemma_object
###symbols FSet_Utils.ftrancl :::: ('a \<times> 'a) fset \<Rightarrow> ('a \<times> 'a) fset Term_Context.map_both :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'b \<times> 'b FSet.fimage :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset FSet.fsubset_eq :::: 'a fset \<Rightarrow> 'a fset \<Rightarrow> bool ###defs abbreviation fsubset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" (infix "|\<subseteq>|" 50) where "xs |\<subseteq>| ys \<equiv> xs \<le> ys"
###output map_both ?f |`| ?R|\<^sup>+| |\<subseteq>| (map_both ?f |`| ?R)|\<^sup>+|###end
CoCon/Discussion_Confidentiality/Discussion_NCPC
Discussion_NCPC.iaction_mono
null
iaction ?\<Delta> ?s ?vl ?s1.0 ?vl1.0 \<Longrightarrow> (\<And>s vl s1 vl1. ?\<Delta> s vl s1 vl1 \<Longrightarrow> ?\<Delta>' s vl s1 vl1) \<Longrightarrow> iaction ?\<Delta>' ?s ?vl ?s1.0 ?vl1.0
\<lbrakk> ?H1 x_1 x_2 x_3 x_4 x_5; \<And>y_0 y_1 y_2 y_3. x_1 y_0 y_1 y_2 y_3 \<Longrightarrow> x_6 y_0 y_1 y_2 y_3\<rbrakk> \<Longrightarrow> ?H1 x_6 x_2 x_3 x_4 x_5
[ "Discussion_NCPC.iaction" ]
[ "('a \\<Rightarrow> 'b \\<Rightarrow> state \\<Rightarrow> String.literal list \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> state \\<Rightarrow> String.literal list \\<Rightarrow> bool" ]
[]
lemma_object
###symbols Discussion_NCPC.iaction :::: ('a \<Rightarrow> 'b \<Rightarrow> state \<Rightarrow> String.literal list \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> state \<Rightarrow> String.literal list \<Rightarrow> bool ###defs
###output iaction ?\<Delta> ?s ?vl ?s1.0 ?vl1.0 \<Longrightarrow> (\<And>s vl s1 vl1. ?\<Delta> s vl s1 vl1 \<Longrightarrow> ?\<Delta>' s vl s1 vl1) \<Longrightarrow> iaction ?\<Delta>' ?s ?vl ?s1.0 ?vl1.0###end
Combinatorial_Q_Analogues/Q_Pochhammer_Infinite
Q_Pochhammer_Infinite.has_prod_euler_phi
lemma has_prod_euler_phi: "norm q < 1 \<Longrightarrow> (\<lambda>n. 1 - q ^ Suc n) has_prod euler_phi q"
norm ?q < 1 \<Longrightarrow> (\<lambda>n. (1:: ?'a) - ?q ^ Suc n) has_prod euler_phi ?q
?H1 x_1 < ?H2 \<Longrightarrow> ?H3 (\<lambda>y_0. ?H4 ?H5 (?H6 x_1 (?H7 y_0))) (?H8 x_1)
[ "Q_Pochhammer_Infinite.euler_phi", "Nat.Suc", "Power.power_class.power", "Groups.minus_class.minus", "Infinite_Products.has_prod", "Groups.one_class.one", "Real_Vector_Spaces.norm_class.norm" ]
[ "'a \\<Rightarrow> 'a", "nat \\<Rightarrow> nat", "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "(nat \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> bool", "'a", "'a \\<Rightarrow> real" ]
[ "definition euler_phi :: \"'a :: {real_normed_field, banach, heine_borel} \\<Rightarrow> 'a\" where\n \"euler_phi q = qpochhammer_inf q q\"", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "class one =\n fixes one :: 'a (\"1\")", "class norm =\n fixes norm :: \"'a \\<Rightarrow> real\"" ]
lemma_object
###symbols Q_Pochhammer_Infinite.euler_phi :::: 'a \<Rightarrow> 'a Nat.Suc :::: nat \<Rightarrow> nat Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Infinite_Products.has_prod :::: (nat \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> bool Groups.one_class.one :::: 'a Real_Vector_Spaces.norm_class.norm :::: 'a \<Rightarrow> real ###defs definition euler_phi :: "'a :: {real_normed_field, banach, heine_borel} \<Rightarrow> 'a" where "euler_phi q = qpochhammer_inf q q" definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) class one = fixes one :: 'a ("1") class norm = fixes norm :: "'a \<Rightarrow> real"
###output norm ?q < 1 \<Longrightarrow> (\<lambda>n. (1:: ?'a) - ?q ^ Suc n) has_prod euler_phi ?q###end
Virtual_Substitution/ExecutiblePolyProps
ExecutiblePolyProps.const_lookup_suc
lemma const_lookup_suc : "isolate_variable_sparse (Const p :: real mpoly) x (Suc i) = 0"
isolate_variable_sparse (Const ?p) ?x (Suc ?i) = 0
?H1 (?H2 x_1) x_2 (?H3 x_3) = ?H4
[ "Groups.zero_class.zero", "Nat.Suc", "MPoly_Type.Const", "MPolyExtension.isolate_variable_sparse" ]
[ "'a", "nat \\<Rightarrow> nat", "'a \\<Rightarrow> 'a mpoly", "'a mpoly \\<Rightarrow> nat \\<Rightarrow> nat \\<Rightarrow> 'a mpoly" ]
[ "class zero =\n fixes zero :: 'a (\"0\")", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"" ]
lemma_object
###symbols Groups.zero_class.zero :::: 'a Nat.Suc :::: nat \<Rightarrow> nat MPoly_Type.Const :::: 'a \<Rightarrow> 'a mpoly MPolyExtension.isolate_variable_sparse :::: 'a mpoly \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a mpoly ###defs class zero = fixes zero :: 'a ("0") definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))"
###output isolate_variable_sparse (Const ?p) ?x (Suc ?i) = 0###end
Refine_Imperative_HOL/Sepref_Rules
Sepref_Rules.fref_PRE_D1
lemma fref_PRE_D1: assumes "(f,h) \<in> fref (comp_PRE S1 Q (\<lambda>x _. P x) X) R S" shows "(f,h) \<in> fref (\<lambda>x. Q x \<and> P x) R S"
(?f, ?h) \<in> [comp_PRE ?S1.0 ?Q (\<lambda>x _. ?P x) ?X]\<^sub>f ?R \<rightarrow> ?S \<Longrightarrow> (?f, ?h) \<in> [\<lambda>x. ?Q x \<and> ?P x]\<^sub>f ?R \<rightarrow> ?S
(x_1, x_2) \<in> ?H1 (?H2 x_3 x_4 (\<lambda>y_0 y_1. x_5 y_0) x_6) x_7 x_8 \<Longrightarrow> (x_1, x_2) \<in> ?H1 (\<lambda>y_2. x_4 y_2 \<and> x_5 y_2) x_7 x_8
[ "Sepref_Rules.comp_PRE", "Sepref_Rules.fref" ]
[ "('a \\<times> 'b) set \\<Rightarrow> ('b \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> ('b \\<Rightarrow> bool) \\<Rightarrow> 'b \\<Rightarrow> bool", "('a \\<Rightarrow> bool) \\<Rightarrow> ('b \\<times> 'a) set \\<Rightarrow> ('c \\<times> 'd) set \\<Rightarrow> (('b \\<Rightarrow> 'c) \\<times> ('a \\<Rightarrow> 'd)) set" ]
[ "definition \"comp_PRE R P Q S \\<equiv> \\<lambda>x. S x \\<longrightarrow> (P x \\<and> (\\<forall>y. (y,x)\\<in>R \\<longrightarrow> Q x y))\"", "definition fref :: \"('c \\<Rightarrow> bool) \\<Rightarrow> ('a \\<times> 'c) set \\<Rightarrow> ('b \\<times> 'd) set\n \\<Rightarrow> (('a \\<Rightarrow> 'b) \\<times> ('c \\<Rightarrow> 'd)) set\"\n (\"[_]\\<^sub>f _ \\<rightarrow> _\" [0,60,60] 60) \n where \"[P]\\<^sub>f R \\<rightarrow> S \\<equiv> {(f,g). \\<forall>x y. P y \\<and> (x,y)\\<in>R \\<longrightarrow> (f x, g y)\\<in>S}\"" ]
lemma_object
###symbols Sepref_Rules.comp_PRE :::: ('a \<times> 'b) set \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> 'b \<Rightarrow> bool Sepref_Rules.fref :::: ('a \<Rightarrow> bool) \<Rightarrow> ('b \<times> 'a) set \<Rightarrow> ('c \<times> 'd) set \<Rightarrow> (('b \<Rightarrow> 'c) \<times> ('a \<Rightarrow> 'd)) set ###defs definition "comp_PRE R P Q S \<equiv> \<lambda>x. S x \<longrightarrow> (P x \<and> (\<forall>y. (y,x)\<in>R \<longrightarrow> Q x y))" definition fref :: "('c \<Rightarrow> bool) \<Rightarrow> ('a \<times> 'c) set \<Rightarrow> ('b \<times> 'd) set \<Rightarrow> (('a \<Rightarrow> 'b) \<times> ('c \<Rightarrow> 'd)) set" ("[_]\<^sub>f _ \<rightarrow> _" [0,60,60] 60) where "[P]\<^sub>f R \<rightarrow> S \<equiv> {(f,g). \<forall>x y. P y \<and> (x,y)\<in>R \<longrightarrow> (f x, g y)\<in>S}"
###output (?f, ?h) \<in> [comp_PRE ?S1.0 ?Q (\<lambda>x _. ?P x) ?X]\<^sub>f ?R \<rightarrow> ?S \<Longrightarrow> (?f, ?h) \<in> [\<lambda>x. ?Q x \<and> ?P x]\<^sub>f ?R \<rightarrow> ?S###end
Sort_Encodings/M
Map.fun_upd_restrict
null
(?m |` ?D)(?x := ?y) = (?m |` (?D - { ?x}))(?x := ?y)
?H1 (?H2 x_1 x_2) x_3 x_4 = ?H1 (?H2 x_1 (?H3 x_2 (?H4 x_3 ?H5))) x_3 x_4
[ "Set.empty", "Set.insert", "Groups.minus_class.minus", "Map.restrict_map", "Fun.fun_upd" ]
[ "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b option) \\<Rightarrow> 'a set \\<Rightarrow> 'a \\<Rightarrow> 'b option", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> 'a \\<Rightarrow> 'b" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition\n restrict_map :: \"('a \\<rightharpoonup> 'b) \\<Rightarrow> 'a set \\<Rightarrow> ('a \\<rightharpoonup> 'b)\" (infixl \"|`\" 110) where\n \"m|`A = (\\<lambda>x. if x \\<in> A then m x else None)\"", "definition fun_upd :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b \\<Rightarrow> ('a \\<Rightarrow> 'b)\"\n where \"fun_upd f a b = (\\<lambda>x. if x = a then b else f x)\"" ]
lemma_object
###symbols Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Map.restrict_map :::: ('a \<Rightarrow> 'b option) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b option Fun.fun_upd :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> 'b ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition restrict_map :: "('a \<rightharpoonup> 'b) \<Rightarrow> 'a set \<Rightarrow> ('a \<rightharpoonup> 'b)" (infixl "|`" 110) where "m|`A = (\<lambda>x. if x \<in> A then m x else None)" definition fun_upd :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)" where "fun_upd f a b = (\<lambda>x. if x = a then b else f x)"
###output (?m |` ?D)(?x := ?y) = (?m |` (?D - { ?x}))(?x := ?y)###end
pGCL/Healthiness
Healthiness.lfp_loop_greatest
lemma lfp_loop_greatest: fixes P::"'s expect" assumes lb: "\<And>R. \<lambda>s. \<guillemotleft>G\<guillemotright> s * wp body R s + \<guillemotleft>\<N> G\<guillemotright> s * P s \<tturnstile> R \<Longrightarrow> sound R \<Longrightarrow> Q \<tturnstile> R" and hb: "healthy (wp body)" and sP: "sound P" and sQ: "sound Q" shows "Q \<tturnstile> lfp_exp (\<lambda>Q s. \<guillemotleft>G\<guillemotright> s * wp body Q s + \<guillemotleft>\<N> G\<guillemotright> s * P s)"
(\<And>R. \<lambda>s. \<guillemotleft> ?G \<guillemotright> s * wp ?body R s + \<guillemotleft> \<N> ?G \<guillemotright> s * ?P s \<tturnstile> R \<Longrightarrow> sound R \<Longrightarrow> ?Q \<tturnstile> R) \<Longrightarrow> healthy (wp ?body) \<Longrightarrow> sound ?P \<Longrightarrow> sound ?Q \<Longrightarrow> ?Q \<tturnstile> lfp_exp (\<lambda>Q s. \<guillemotleft> ?G \<guillemotright> s * wp ?body Q s + \<guillemotleft> \<N> ?G \<guillemotright> s * ?P s)
\<lbrakk>\<And>y_0. \<lbrakk> ?H1 (\<lambda>y_1. ?H2 (?H3 (?H4 x_1 y_1) (?H5 x_2 y_0 y_1)) (?H3 (?H4 (?H6 x_1) y_1) (x_3 y_1))) y_0; ?H7 y_0\<rbrakk> \<Longrightarrow> ?H1 x_4 y_0; ?H8 (?H5 x_2); ?H7 x_3; ?H7 x_4\<rbrakk> \<Longrightarrow> ?H1 x_4 (?H9 (\<lambda>y_2 y_3. ?H2 (?H3 (?H4 x_1 y_3) (?H5 x_2 y_2 y_3)) (?H3 (?H4 (?H6 x_1) y_3) (x_3 y_3))))
[ "Induction.lfp_exp", "Transformers.healthy", "Expectations.sound", "Expectations.negate", "Embedding.wp", "Expectations.embed_bool", "Groups.times_class.times", "Groups.plus_class.plus", "Expectations.entails" ]
[ "(('a \\<Rightarrow> real) \\<Rightarrow> 'a \\<Rightarrow> real) \\<Rightarrow> 'a \\<Rightarrow> real", "(('a \\<Rightarrow> real) \\<Rightarrow> 'a \\<Rightarrow> real) \\<Rightarrow> bool", "('a \\<Rightarrow> real) \\<Rightarrow> bool", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> bool", "(bool \\<Rightarrow> ('a \\<Rightarrow> real) \\<Rightarrow> 'a \\<Rightarrow> real) \\<Rightarrow> ('a \\<Rightarrow> real) \\<Rightarrow> 'a \\<Rightarrow> real", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> real", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> real) \\<Rightarrow> ('a \\<Rightarrow> real) \\<Rightarrow> bool" ]
[ "definition lfp_exp :: \"'s trans \\<Rightarrow> 's expect\"\nwhere \"lfp_exp t = Inf_exp {P. sound P \\<and> t P \\<le> P}\"", "definition\n healthy :: \"(('s \\<Rightarrow> real) \\<Rightarrow> ('s \\<Rightarrow> real)) \\<Rightarrow> bool\"\nwhere\n \"healthy t \\<longleftrightarrow> feasible t \\<and> mono_trans t \\<and> scaling t\"", "definition sound :: \"('s \\<Rightarrow> real) \\<Rightarrow> bool\"\nwhere \"sound P \\<equiv> bounded P \\<and> nneg P\"", "definition negate :: \"('s \\<Rightarrow> bool) \\<Rightarrow> 's \\<Rightarrow> bool\" (\"\\<N>\")\nwhere \"negate P = (\\<lambda>s. \\<not> P s)\"", "definition\n wp :: \"'s prog \\<Rightarrow> 's trans\"\nwhere\n \"wp pr \\<equiv> pr True\"", "definition\n embed_bool :: \"('s \\<Rightarrow> bool) \\<Rightarrow> 's \\<Rightarrow> real\" (\"\\<guillemotleft> _ \\<guillemotright>\" 1000)\nwhere\n \"\\<guillemotleft>P\\<guillemotright> \\<equiv> (\\<lambda>s. if P s then 1 else 0)\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "abbreviation entails :: \"('s \\<Rightarrow> real) \\<Rightarrow> ('s \\<Rightarrow> real) \\<Rightarrow> bool\" (\"_ \\<tturnstile> _\" 50)\nwhere \"P \\<tturnstile> Q \\<equiv> P \\<le> Q\"" ]
lemma_object
###symbols Induction.lfp_exp :::: (('a \<Rightarrow> real) \<Rightarrow> 'a \<Rightarrow> real) \<Rightarrow> 'a \<Rightarrow> real Transformers.healthy :::: (('a \<Rightarrow> real) \<Rightarrow> 'a \<Rightarrow> real) \<Rightarrow> bool Expectations.sound :::: ('a \<Rightarrow> real) \<Rightarrow> bool Expectations.negate :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> bool Embedding.wp :::: (bool \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> 'a \<Rightarrow> real) \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> 'a \<Rightarrow> real Expectations.embed_bool :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> real Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Expectations.entails :::: ('a \<Rightarrow> real) \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool ###defs definition lfp_exp :: "'s trans \<Rightarrow> 's expect" where "lfp_exp t = Inf_exp {P. sound P \<and> t P \<le> P}" definition healthy :: "(('s \<Rightarrow> real) \<Rightarrow> ('s \<Rightarrow> real)) \<Rightarrow> bool" where "healthy t \<longleftrightarrow> feasible t \<and> mono_trans t \<and> scaling t" definition sound :: "('s \<Rightarrow> real) \<Rightarrow> bool" where "sound P \<equiv> bounded P \<and> nneg P" definition negate :: "('s \<Rightarrow> bool) \<Rightarrow> 's \<Rightarrow> bool" ("\<N>") where "negate P = (\<lambda>s. \<not> P s)" definition wp :: "'s prog \<Rightarrow> 's trans" where "wp pr \<equiv> pr True" definition embed_bool :: "('s \<Rightarrow> bool) \<Rightarrow> 's \<Rightarrow> real" ("\<guillemotleft> _ \<guillemotright>" 1000) where "\<guillemotleft>P\<guillemotright> \<equiv> (\<lambda>s. if P s then 1 else 0)" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) abbreviation entails :: "('s \<Rightarrow> real) \<Rightarrow> ('s \<Rightarrow> real) \<Rightarrow> bool" ("_ \<tturnstile> _" 50) where "P \<tturnstile> Q \<equiv> P \<le> Q"
###output (\<And>R. \<lambda>s. \<guillemotleft> ?G \<guillemotright> s * wp ?body R s + \<guillemotleft> \<N> ?G \<guillemotright> s * ?P s \<tturnstile> R \<Longrightarrow> sound R \<Longrightarrow> ?Q \<tturnstile> R) \<Longrightarrow> healthy (wp ?body) \<Longrightarrow> sound ?P \<Longrightarrow> sound ?Q \<Longrightarrow> ?Q \<tturnstile> lfp_exp (\<lambda>Q s. \<guillemotleft> ?G \<guillemotright> s * wp ?body Q s + \<guillemotleft> \<N> ?G \<guillemotright> s * ?P s)###end
Grothendieck_Schemes/Topological_Space
Topological_Spaces.tendsto_within_subset
null
filterlim ?f ?l (at ?x within ?S) \<Longrightarrow> ?T \<subseteq> ?S \<Longrightarrow> filterlim ?f ?l (at ?x within ?T)
\<lbrakk> ?H1 x_1 x_2 (?H2 x_3 x_4); ?H3 x_5 x_4\<rbrakk> \<Longrightarrow> ?H1 x_1 x_2 (?H2 x_3 x_5)
[ "Set.subset_eq", "Topological_Spaces.topological_space_class.at_within", "Filter.filterlim" ]
[ "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a filter", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b filter \\<Rightarrow> 'a filter \\<Rightarrow> bool" ]
[ "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"", "class topological_space = \"open\" +\n assumes open_UNIV [simp, intro]: \"open UNIV\"\n assumes open_Int [intro]: \"open S \\<Longrightarrow> open T \\<Longrightarrow> open (S \\<inter> T)\"\n assumes open_Union [intro]: \"\\<forall>S\\<in>K. open S \\<Longrightarrow> open (\\<Union>K)\"\nbegin", "definition filterlim :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b filter \\<Rightarrow> 'a filter \\<Rightarrow> bool\" where\n \"filterlim f F2 F1 \\<longleftrightarrow> filtermap f F1 \\<le> F2\"" ]
lemma_object
###symbols Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool Topological_Spaces.topological_space_class.at_within :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a filter Filter.filterlim :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool ###defs abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq" class topological_space = "open" + assumes open_UNIV [simp, intro]: "open UNIV" assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union>K)" begin definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2"
###output filterlim ?f ?l (at ?x within ?S) \<Longrightarrow> ?T \<subseteq> ?S \<Longrightarrow> filterlim ?f ?l (at ?x within ?T)###end
SIFPL/HuntSands
HuntSands.Sec2
lemma Sec2: "(p,G,c,H):HS \<Longrightarrow> (\<exists> \<Phi> . \<Turnstile> c : (Sec (Q p H) (EQ G q) (EQ H q) \<Phi>))"
(?p, ?G, ?c, ?H) \<in> HS \<Longrightarrow> \<exists>\<Phi>. \<Turnstile> ?c : Sec (Q ?p ?H) (EQ ?G ?q) (EQ ?H ?q) \<Phi>
(x_1, x_2, x_3, x_4) \<in> ?H1 \<Longrightarrow> \<exists>y_0. ?H2 x_3 (?H3 (?H4 x_1 x_4) (?H5 x_2 x_5) (?H5 x_4 x_5) y_0)
[ "HuntSands.EQ", "HuntSands.Q", "HuntSands.Sec", "VDM.VDM_valid", "HuntSands.HS" ]
[ "(Var \\<Rightarrow> L) \\<Rightarrow> L \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> bool", "L \\<Rightarrow> (Var \\<Rightarrow> L) \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> bool", "((Var \\<Rightarrow> Val) \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> bool) \\<Rightarrow> ((Var \\<Rightarrow> Val) \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> bool) \\<Rightarrow> ((Var \\<Rightarrow> Val) \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> bool) \\<Rightarrow> ((Var \\<Rightarrow> Val) \\<times> (Var \\<Rightarrow> Val) \\<Rightarrow> bool) \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> bool", "IMP \\<Rightarrow> ((Var \\<Rightarrow> Val) \\<Rightarrow> (Var \\<Rightarrow> Val) \\<Rightarrow> bool) \\<Rightarrow> bool", "(L \\<times> (Var \\<Rightarrow> L) \\<times> IMP \\<times> (Var \\<Rightarrow> L)) set" ]
[ "definition EQ:: \"CONTEXT \\<Rightarrow> L \\<Rightarrow> State \\<Rightarrow> State \\<Rightarrow> bool\"\nwhere \"EQ G p = (\\<lambda> s t . \\<forall> x . LEQ (G x) p \\<longrightarrow> s x = t x)\"", "definition Q::\"L \\<Rightarrow> CONTEXT \\<Rightarrow> VDMAssn\"\nwhere \"Q p H = (\\<lambda> s t . \\<forall> x . (\\<not> LEQ p (H x)) \\<longrightarrow> t x = s x)\"", "definition Sec :: \"VDMAssn \\<Rightarrow> (State \\<Rightarrow> State \\<Rightarrow> bool) \\<Rightarrow>\n (State \\<Rightarrow> State \\<Rightarrow> bool) \\<Rightarrow> TT \\<Rightarrow> VDMAssn\"\nwhere \"Sec A R S \\<Phi> s t = (A s t \\<and>\n (\\<forall> r . R s r \\<longrightarrow> \\<Phi>(t,r)) \\<and> (\\<forall> r . \\<Phi>(r,s) \\<longrightarrow> S r t))\"", "definition VDM_valid :: \"IMP \\<Rightarrow> VDMAssn \\<Rightarrow> bool\"\n (\" \\<Turnstile> _ : _ \" [100,100] 100)\nwhere \"\\<Turnstile> c : A = (\\<forall> s t . (s,c \\<Down> t) \\<longrightarrow> A s t)\"", "inductive_set HS::\"(L \\<times> CONTEXT \\<times> IMP \\<times> CONTEXT) set\"\nwhere\nHS_Skip: \"(p,G,Skip,G):HS\"\n\n| HS_Assign:\n \"(G,e,t):HS_E \\<Longrightarrow> (p,G,Assign x e,upd G x (LUB p t)):HS\"\n\n| HS_Seq:\n \"\\<lbrakk>(p,G,c,K):HS; (p,K,d,H):HS\\<rbrakk> \\<Longrightarrow> (p,G, Comp c d,H):HS\"\n\n| HS_If:\n \"\\<lbrakk>(G,b,t):HS_B; (LUB p t,G,c,H):HS; (LUB p t,G,d,H):HS\\<rbrakk> \\<Longrightarrow>\n (p,G,Iff b c d,H):HS\"\n\n| HS_If_alg:\n \"\\<lbrakk>(G,b,p):HS_B; (p,G,c,H):HS; (p,G,d,H):HS\\<rbrakk> \\<Longrightarrow>\n (p,G,Iff b c d,H):HS\"\n\n| HS_While:\n \"\\<lbrakk>(G,b,t):HS_B; (LUB p t,G,c,H):HS;H=G\\<rbrakk> \\<Longrightarrow>\n (p,G,While b c,H):HS\"\n\n| HS_Sub:\n \"\\<lbrakk> (pp,GG,c,HH):HS; LEQ p pp; \\<forall> x . LEQ (G x) (GG x); \n \\<forall> x . LEQ (HH x) (H x)\\<rbrakk> \\<Longrightarrow>\n (p,G,c,H):HS\"" ]
lemma_object
###symbols HuntSands.EQ :::: (Var \<Rightarrow> L) \<Rightarrow> L \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> bool HuntSands.Q :::: L \<Rightarrow> (Var \<Rightarrow> L) \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> bool HuntSands.Sec :::: ((Var \<Rightarrow> Val) \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> bool) \<Rightarrow> ((Var \<Rightarrow> Val) \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> bool) \<Rightarrow> ((Var \<Rightarrow> Val) \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> bool) \<Rightarrow> ((Var \<Rightarrow> Val) \<times> (Var \<Rightarrow> Val) \<Rightarrow> bool) \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> bool VDM.VDM_valid :::: IMP \<Rightarrow> ((Var \<Rightarrow> Val) \<Rightarrow> (Var \<Rightarrow> Val) \<Rightarrow> bool) \<Rightarrow> bool HuntSands.HS :::: (L \<times> (Var \<Rightarrow> L) \<times> IMP \<times> (Var \<Rightarrow> L)) set ###defs definition EQ:: "CONTEXT \<Rightarrow> L \<Rightarrow> State \<Rightarrow> State \<Rightarrow> bool" where "EQ G p = (\<lambda> s t . \<forall> x . LEQ (G x) p \<longrightarrow> s x = t x)" definition Q::"L \<Rightarrow> CONTEXT \<Rightarrow> VDMAssn" where "Q p H = (\<lambda> s t . \<forall> x . (\<not> LEQ p (H x)) \<longrightarrow> t x = s x)" definition Sec :: "VDMAssn \<Rightarrow> (State \<Rightarrow> State \<Rightarrow> bool) \<Rightarrow> (State \<Rightarrow> State \<Rightarrow> bool) \<Rightarrow> TT \<Rightarrow> VDMAssn" where "Sec A R S \<Phi> s t = (A s t \<and> (\<forall> r . R s r \<longrightarrow> \<Phi>(t,r)) \<and> (\<forall> r . \<Phi>(r,s) \<longrightarrow> S r t))" definition VDM_valid :: "IMP \<Rightarrow> VDMAssn \<Rightarrow> bool" (" \<Turnstile> _ : _ " [100,100] 100) where "\<Turnstile> c : A = (\<forall> s t . (s,c \<Down> t) \<longrightarrow> A s t)" inductive_set HS::"(L \<times> CONTEXT \<times> IMP \<times> CONTEXT) set" where HS_Skip: "(p,G,Skip,G):HS" | HS_Assign: "(G,e,t):HS_E \<Longrightarrow> (p,G,Assign x e,upd G x (LUB p t)):HS" | HS_Seq: "\<lbrakk>(p,G,c,K):HS; (p,K,d,H):HS\<rbrakk> \<Longrightarrow> (p,G, Comp c d,H):HS" | HS_If: "\<lbrakk>(G,b,t):HS_B; (LUB p t,G,c,H):HS; (LUB p t,G,d,H):HS\<rbrakk> \<Longrightarrow> (p,G,Iff b c d,H):HS" | HS_If_alg: "\<lbrakk>(G,b,p):HS_B; (p,G,c,H):HS; (p,G,d,H):HS\<rbrakk> \<Longrightarrow> (p,G,Iff b c d,H):HS" | HS_While: "\<lbrakk>(G,b,t):HS_B; (LUB p t,G,c,H):HS;H=G\<rbrakk> \<Longrightarrow> (p,G,While b c,H):HS" | HS_Sub: "\<lbrakk> (pp,GG,c,HH):HS; LEQ p pp; \<forall> x . LEQ (G x) (GG x); \<forall> x . LEQ (HH x) (H x)\<rbrakk> \<Longrightarrow> (p,G,c,H):HS"
###output (?p, ?G, ?c, ?H) \<in> HS \<Longrightarrow> \<exists>\<Phi>. \<Turnstile> ?c : Sec (Q ?p ?H) (EQ ?G ?q) (EQ ?H ?q) \<Phi>###end
UTP/utp/utp
utp_var.pr_var_vwb_lens
null
vwb_lens ?x \<Longrightarrow> vwb_lens (& ?x)
?H1 x_1 \<Longrightarrow> ?H1 (?H2 x_1)
[ "utp_var.pr_var", "Lens_Laws.vwb_lens" ]
[ "('a \\<Longrightarrow> 'b) \\<Rightarrow> 'a \\<Longrightarrow> 'b", "('a \\<Longrightarrow> 'b) \\<Rightarrow> bool" ]
[]
lemma_object
###symbols utp_var.pr_var :::: ('a \<Longrightarrow> 'b) \<Rightarrow> 'a \<Longrightarrow> 'b Lens_Laws.vwb_lens :::: ('a \<Longrightarrow> 'b) \<Rightarrow> bool ###defs
###output vwb_lens ?x \<Longrightarrow> vwb_lens (& ?x)###end
Stateful_Protocol_Composition_and_Typing/Labeled_Stateful_Strands
Labeled_Stateful_Strands.trms\<^sub>s\<^sub>s\<^sub>t_unlabel_dual_subst_cons
null
trms\<^sub>l\<^sub>s\<^sub>s\<^sub>t (dual\<^sub>l\<^sub>s\<^sub>s\<^sub>t (?a # ?A \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t ?\<sigma>)) = trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p (snd ?a \<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p ?\<sigma>) \<union> trms\<^sub>l\<^sub>s\<^sub>s\<^sub>t (dual\<^sub>l\<^sub>s\<^sub>s\<^sub>t (?A \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t ?\<sigma>))
?H1 (?H2 (?H3 (?H4 x_1 x_2) x_3)) = ?H5 (?H6 (?H7 (?H8 x_1) x_3)) (?H1 (?H2 (?H3 x_2 x_3)))
[ "Product_Type.prod.snd", "Stateful_Strands.subst_apply_stateful_strand_step", "Stateful_Strands.trms\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p", "Set.union", "List.list.Cons", "Labeled_Stateful_Strands.subst_apply_labeled_stateful_strand", "Labeled_Stateful_Strands.dual\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t", "Labeled_Stateful_Strands.trms\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t" ]
[ "'a \\<times> 'b \\<Rightarrow> 'b", "('a, 'b) stateful_strand_step \\<Rightarrow> ('b \\<Rightarrow> ('a, 'b) Term.term) \\<Rightarrow> ('a, 'b) stateful_strand_step", "('a, 'b) stateful_strand_step \\<Rightarrow> ('a, 'b) Term.term set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "('a strand_label \\<times> ('b, 'c) stateful_strand_step) list \\<Rightarrow> ('c \\<Rightarrow> ('b, 'c) Term.term) \\<Rightarrow> ('a strand_label \\<times> ('b, 'c) stateful_strand_step) list", "('a strand_label \\<times> ('b, 'c) stateful_strand_step) list \\<Rightarrow> ('a strand_label \\<times> ('b, 'c) stateful_strand_step) list", "('a \\<times> ('b, 'c) stateful_strand_step) list \\<Rightarrow> ('b, 'c) Term.term set" ]
[ "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "fun subst_apply_stateful_strand_step::\n \"('a,'b) stateful_strand_step \\<Rightarrow> ('a,'b) subst \\<Rightarrow> ('a,'b) stateful_strand_step\"\n (infix \"\\<cdot>\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p\" 51) where\n \"send\\<langle>ts\\<rangle> \\<cdot>\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p \\<theta> = send\\<langle>ts \\<cdot>\\<^sub>l\\<^sub>i\\<^sub>s\\<^sub>t \\<theta>\\<rangle>\"\n| \"receive\\<langle>ts\\<rangle> \\<cdot>\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p \\<theta> = receive\\<langle>ts \\<cdot>\\<^sub>l\\<^sub>i\\<^sub>s\\<^sub>t \\<theta>\\<rangle>\"\n| \"\\<langle>a: t \\<doteq> s\\<rangle> \\<cdot>\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p \\<theta> = \\<langle>a: (t \\<cdot> \\<theta>) \\<doteq> (s \\<cdot> \\<theta>)\\<rangle>\"\n| \"\\<langle>a: t \\<in> s\\<rangle> \\<cdot>\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p \\<theta> = \\<langle>a: (t \\<cdot> \\<theta>) \\<in> (s \\<cdot> \\<theta>)\\<rangle>\"\n| \"insert\\<langle>t,s\\<rangle> \\<cdot>\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p \\<theta> = insert\\<langle>t \\<cdot> \\<theta>, s \\<cdot> \\<theta>\\<rangle>\"\n| \"delete\\<langle>t,s\\<rangle> \\<cdot>\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p \\<theta> = delete\\<langle>t \\<cdot> \\<theta>, s \\<cdot> \\<theta>\\<rangle>\"\n| \"\\<forall>X\\<langle>\\<or>\\<noteq>: F \\<or>\\<notin>: G\\<rangle> \\<cdot>\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p \\<theta> = \\<forall>X\\<langle>\\<or>\\<noteq>: (F \\<cdot>\\<^sub>p\\<^sub>a\\<^sub>i\\<^sub>r\\<^sub>s rm_vars (set X) \\<theta>) \\<or>\\<notin>: (G \\<cdot>\\<^sub>p\\<^sub>a\\<^sub>i\\<^sub>r\\<^sub>s rm_vars (set X) \\<theta>)\\<rangle>\"", "fun trms\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p where\n \"trms\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p (Send ts) = set ts\"\n| \"trms\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p (Receive ts) = set ts\"\n| \"trms\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p (Equality _ t t') = {t,t'}\"\n| \"trms\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p (Insert t t') = {t,t'}\"\n| \"trms\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p (Delete t t') = {t,t'}\"\n| \"trms\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p (InSet _ t t') = {t,t'}\"\n| \"trms\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p (NegChecks _ F F') = trms\\<^sub>p\\<^sub>a\\<^sub>i\\<^sub>r\\<^sub>s F \\<union> trms\\<^sub>p\\<^sub>a\\<^sub>i\\<^sub>r\\<^sub>s F'\"", "abbreviation union :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<union>\" 65)\n where \"union \\<equiv> sup\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition subst_apply_labeled_stateful_strand::\n \"('a,'b,'c) labeled_stateful_strand \\<Rightarrow> ('a,'b) subst \\<Rightarrow> ('a,'b,'c) labeled_stateful_strand\"\n (infix \"\\<cdot>\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t\" 51) where\n \"S \\<cdot>\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t \\<theta> \\<equiv> map (\\<lambda>x. x \\<cdot>\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p \\<theta>) S\"", "abbreviation trms\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t where \"trms\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t S \\<equiv> trms\\<^sub>s\\<^sub>s\\<^sub>t (unlabel S)\"" ]
lemma_object
###symbols Product_Type.prod.snd :::: 'a \<times> 'b \<Rightarrow> 'b Stateful_Strands.subst_apply_stateful_strand_step :::: ('a, 'b) stateful_strand_step \<Rightarrow> ('b \<Rightarrow> ('a, 'b) Term.term) \<Rightarrow> ('a, 'b) stateful_strand_step Stateful_Strands.trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p :::: ('a, 'b) stateful_strand_step \<Rightarrow> ('a, 'b) Term.term set Set.union :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list Labeled_Stateful_Strands.subst_apply_labeled_stateful_strand :::: ('a strand_label \<times> ('b, 'c) stateful_strand_step) list \<Rightarrow> ('c \<Rightarrow> ('b, 'c) Term.term) \<Rightarrow> ('a strand_label \<times> ('b, 'c) stateful_strand_step) list Labeled_Stateful_Strands.dual\<^sub>l\<^sub>s\<^sub>s\<^sub>t :::: ('a strand_label \<times> ('b, 'c) stateful_strand_step) list \<Rightarrow> ('a strand_label \<times> ('b, 'c) stateful_strand_step) list Labeled_Stateful_Strands.trms\<^sub>l\<^sub>s\<^sub>s\<^sub>t :::: ('a \<times> ('b, 'c) stateful_strand_step) list \<Rightarrow> ('b, 'c) Term.term set ###defs definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" fun subst_apply_stateful_strand_step:: "('a,'b) stateful_strand_step \<Rightarrow> ('a,'b) subst \<Rightarrow> ('a,'b) stateful_strand_step" (infix "\<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p" 51) where "send\<langle>ts\<rangle> \<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p \<theta> = send\<langle>ts \<cdot>\<^sub>l\<^sub>i\<^sub>s\<^sub>t \<theta>\<rangle>" | "receive\<langle>ts\<rangle> \<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p \<theta> = receive\<langle>ts \<cdot>\<^sub>l\<^sub>i\<^sub>s\<^sub>t \<theta>\<rangle>" | "\<langle>a: t \<doteq> s\<rangle> \<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p \<theta> = \<langle>a: (t \<cdot> \<theta>) \<doteq> (s \<cdot> \<theta>)\<rangle>" | "\<langle>a: t \<in> s\<rangle> \<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p \<theta> = \<langle>a: (t \<cdot> \<theta>) \<in> (s \<cdot> \<theta>)\<rangle>" | "insert\<langle>t,s\<rangle> \<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p \<theta> = insert\<langle>t \<cdot> \<theta>, s \<cdot> \<theta>\<rangle>" | "delete\<langle>t,s\<rangle> \<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p \<theta> = delete\<langle>t \<cdot> \<theta>, s \<cdot> \<theta>\<rangle>" | "\<forall>X\<langle>\<or>\<noteq>: F \<or>\<notin>: G\<rangle> \<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p \<theta> = \<forall>X\<langle>\<or>\<noteq>: (F \<cdot>\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s rm_vars (set X) \<theta>) \<or>\<notin>: (G \<cdot>\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s rm_vars (set X) \<theta>)\<rangle>" fun trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p where "trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p (Send ts) = set ts" | "trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p (Receive ts) = set ts" | "trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p (Equality _ t t') = {t,t'}" | "trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p (Insert t t') = {t,t'}" | "trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p (Delete t t') = {t,t'}" | "trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p (InSet _ t t') = {t,t'}" | "trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p (NegChecks _ F F') = trms\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s F \<union> trms\<^sub>p\<^sub>a\<^sub>i\<^sub>r\<^sub>s F'" abbreviation union :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<union>" 65) where "union \<equiv> sup" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition subst_apply_labeled_stateful_strand:: "('a,'b,'c) labeled_stateful_strand \<Rightarrow> ('a,'b) subst \<Rightarrow> ('a,'b,'c) labeled_stateful_strand" (infix "\<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t" 51) where "S \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta> \<equiv> map (\<lambda>x. x \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t\<^sub>p \<theta>) S" abbreviation trms\<^sub>l\<^sub>s\<^sub>s\<^sub>t where "trms\<^sub>l\<^sub>s\<^sub>s\<^sub>t S \<equiv> trms\<^sub>s\<^sub>s\<^sub>t (unlabel S)"
###output trms\<^sub>l\<^sub>s\<^sub>s\<^sub>t (dual\<^sub>l\<^sub>s\<^sub>s\<^sub>t (?a # ?A \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t ?\<sigma>)) = trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p (snd ?a \<cdot>\<^sub>s\<^sub>s\<^sub>t\<^sub>p ?\<sigma>) \<union> trms\<^sub>l\<^sub>s\<^sub>s\<^sub>t (dual\<^sub>l\<^sub>s\<^sub>s\<^sub>t (?A \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t ?\<sigma>))###end
Finite_Fields/Finite_Fields_Preliminary_Results
Finite_Fields_Preliminary_Results.divides_hom
lemma divides_hom: assumes "h \<in> ring_iso R S" assumes "domain R" "domain S" assumes "x \<in> carrier R" "y \<in> carrier R" shows "x divides\<^bsub>R\<^esub> y \<longleftrightarrow> (h x) divides\<^bsub>S\<^esub> (h y)" (is "?lhs \<longleftrightarrow> ?rhs")
?h \<in> ring_iso ?R ?S \<Longrightarrow> domain ?R \<Longrightarrow> domain ?S \<Longrightarrow> ?x \<in> carrier ?R \<Longrightarrow> ?y \<in> carrier ?R \<Longrightarrow> ?x divides\<^bsub> ?R\<^esub> ?y = ?h ?x divides\<^bsub> ?S\<^esub> ?h ?y
\<lbrakk>x_1 \<in> ?H1 x_2 x_3; ?H2 x_2; ?H3 x_3; x_4 \<in> ?H4 x_2; x_5 \<in> ?H4 x_2\<rbrakk> \<Longrightarrow> ?H5 x_2 x_4 x_5 = ?H6 x_3 (x_1 x_4) (x_1 x_5)
[ "Divisibility.factor", "Congruence.partial_object.carrier", "Ring.domain", "QuotRing.ring_iso" ]
[ "('a, 'b) monoid_scheme \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> bool", "('a, 'b) partial_object_scheme \\<Rightarrow> 'a set", "('a, 'b) ring_scheme \\<Rightarrow> bool", "('a, 'b) ring_scheme \\<Rightarrow> ('c, 'd) ring_scheme \\<Rightarrow> ('a \\<Rightarrow> 'c) set" ]
[ "definition factor :: \"[_, 'a, 'a] \\<Rightarrow> bool\" (infix \"divides\\<index>\" 65)\n where \"a divides\\<^bsub>G\\<^esub> b \\<longleftrightarrow> (\\<exists>c\\<in>carrier G. b = a \\<otimes>\\<^bsub>G\\<^esub> c)\"", "definition\n ring_iso :: \"_ \\<Rightarrow> _ \\<Rightarrow> ('a \\<Rightarrow> 'b) set\"\n where \"ring_iso R S = { h. h \\<in> ring_hom R S \\<and> bij_betw h (carrier R) (carrier S) }\"" ]
lemma_object
###symbols Divisibility.factor :::: ('a, 'b) monoid_scheme \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool Congruence.partial_object.carrier :::: ('a, 'b) partial_object_scheme \<Rightarrow> 'a set Ring.domain :::: ('a, 'b) ring_scheme \<Rightarrow> bool QuotRing.ring_iso :::: ('a, 'b) ring_scheme \<Rightarrow> ('c, 'd) ring_scheme \<Rightarrow> ('a \<Rightarrow> 'c) set ###defs definition factor :: "[_, 'a, 'a] \<Rightarrow> bool" (infix "divides\<index>" 65) where "a divides\<^bsub>G\<^esub> b \<longleftrightarrow> (\<exists>c\<in>carrier G. b = a \<otimes>\<^bsub>G\<^esub> c)" definition ring_iso :: "_ \<Rightarrow> _ \<Rightarrow> ('a \<Rightarrow> 'b) set" where "ring_iso R S = { h. h \<in> ring_hom R S \<and> bij_betw h (carrier R) (carrier S) }"
###output ?h \<in> ring_iso ?R ?S \<Longrightarrow> domain ?R \<Longrightarrow> domain ?S \<Longrightarrow> ?x \<in> carrier ?R \<Longrightarrow> ?y \<in> carrier ?R \<Longrightarrow> ?x divides\<^bsub> ?R\<^esub> ?y = ?h ?x divides\<^bsub> ?S\<^esub> ?h ?y###end
Shadow_SC_DOM/classes/ShadowRootClass
ShadowRootClass.known_ptrs_new_ptr
lemma known_ptrs_new_ptr: "object_ptr_kinds h' = object_ptr_kinds h |\<union>| {|new_ptr|} \<Longrightarrow> known_ptr new_ptr \<Longrightarrow> a_known_ptrs h \<Longrightarrow> a_known_ptrs h'"
object_ptr_kinds ?h' = object_ptr_kinds ?h |\<union>| {| ?new_ptr|} \<Longrightarrow> ShadowRootClass.known_ptr ?new_ptr \<Longrightarrow> ShadowRootClass.known_ptrs ?h \<Longrightarrow> ShadowRootClass.known_ptrs ?h'
\<lbrakk> ?H1 x_1 = ?H2 (?H3 x_2) (?H4 x_3 ?H5); ?H6 x_3; ?H7 x_2\<rbrakk> \<Longrightarrow> ?H8 x_1
[ "ShadowRootClass.known_ptrs", "ShadowRootClass.known_ptr", "FSet.fempty", "FSet.finsert", "FSet.funion", "ObjectClass.object_ptr_kinds" ]
[ "(_) heap \\<Rightarrow> bool", "(_) object_ptr \\<Rightarrow> bool", "'a fset", "'a \\<Rightarrow> 'a fset \\<Rightarrow> 'a fset", "'a fset \\<Rightarrow> 'a fset \\<Rightarrow> 'a fset", "(_) heap \\<Rightarrow> (_) object_ptr fset" ]
[ "abbreviation fempty :: \"'a fset\" (\"{||}\") where \"{||} \\<equiv> bot\"", "abbreviation funion :: \"'a fset \\<Rightarrow> 'a fset \\<Rightarrow> 'a fset\" (infixl \"|\\<union>|\" 65) where \"xs |\\<union>| ys \\<equiv> sup xs ys\"" ]
lemma_object
###symbols ShadowRootClass.known_ptrs :::: (_) heap \<Rightarrow> bool ShadowRootClass.known_ptr :::: (_) object_ptr \<Rightarrow> bool FSet.fempty :::: 'a fset FSet.finsert :::: 'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset FSet.funion :::: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset ObjectClass.object_ptr_kinds :::: (_) heap \<Rightarrow> (_) object_ptr fset ###defs abbreviation fempty :: "'a fset" ("{||}") where "{||} \<equiv> bot" abbreviation funion :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" (infixl "|\<union>|" 65) where "xs |\<union>| ys \<equiv> sup xs ys"
###output object_ptr_kinds ?h' = object_ptr_kinds ?h |\<union>| {| ?new_ptr|} \<Longrightarrow> ShadowRootClass.known_ptr ?new_ptr \<Longrightarrow> ShadowRootClass.known_ptrs ?h \<Longrightarrow> ShadowRootClass.known_ptrs ?h'###end
Coinductive/Coinductive
Coinductive_List.lappend_lnull1
null
lnull ?xs \<Longrightarrow> lappend ?xs ?ys = ?ys
?H1 x_1 \<Longrightarrow> ?H2 x_1 x_2 = x_2
[ "Coinductive_List.lappend", "Coinductive_List.llist.lnull" ]
[ "'a llist \\<Rightarrow> 'a llist \\<Rightarrow> 'a llist", "'a llist \\<Rightarrow> bool" ]
[ "codatatype (lset: 'a) llist =\n lnull: LNil\n | LCons (lhd: 'a) (ltl: \"'a llist\")\nfor\n map: lmap\n rel: llist_all2\nwhere\n \"lhd LNil = undefined\"\n| \"ltl LNil = LNil\"" ]
lemma_object
###symbols Coinductive_List.lappend :::: 'a llist \<Rightarrow> 'a llist \<Rightarrow> 'a llist Coinductive_List.llist.lnull :::: 'a llist \<Rightarrow> bool ###defs codatatype (lset: 'a) llist = lnull: LNil | LCons (lhd: 'a) (ltl: "'a llist") for map: lmap rel: llist_all2 where "lhd LNil = undefined" | "ltl LNil = LNil"
###output lnull ?xs \<Longrightarrow> lappend ?xs ?ys = ?ys###end
Slicing/JinjaVM/SemanticsWF
SemanticsWF.stkss_cong
lemma stkss_cong [cong]: "\<lbrakk> P = P'; cs = cs'; \<And>a b. \<lbrakk> a < length cs; b < stkLength P (fst(cs ! (length cs - Suc a))) (fst(snd(cs ! (length cs - Suc a)))) (snd(snd(cs ! (length cs - Suc a)))) \<rbrakk> \<Longrightarrow> stk (a, b) = stk' (a, b) \<rbrakk> \<Longrightarrow> stkss P cs stk = stkss P' cs' stk'"
?P = ?P' \<Longrightarrow> ?cs = ?cs' \<Longrightarrow> (\<And>a b. a < length ?cs \<Longrightarrow> b < stkLength ?P (fst (?cs ! (length ?cs - Suc a))) (fst (snd (?cs ! (length ?cs - Suc a)))) (snd (snd (?cs ! (length ?cs - Suc a)))) \<Longrightarrow> ?stk (a, b) = ?stk' (a, b)) \<Longrightarrow> stkss ?P ?cs ?stk = stkss ?P' ?cs' ?stk'
\<lbrakk>x_1 = x_2; x_3 = x_4; \<And>y_0 y_1. \<lbrakk>y_0 < ?H1 x_3; y_1 < ?H2 x_1 (?H3 (?H4 x_3 (?H5 (?H1 x_3) (?H6 y_0)))) (?H7 (?H8 (?H4 x_3 (?H5 (?H1 x_3) (?H6 y_0))))) (?H9 (?H8 (?H4 x_3 (?H5 (?H1 x_3) (?H6 y_0)))))\<rbrakk> \<Longrightarrow> x_5 (y_0, y_1) = x_6 (y_0, y_1)\<rbrakk> \<Longrightarrow> ?H10 x_1 x_3 x_5 = ?H10 x_2 x_4 x_6
[ "JVMCFG.stkss", "Product_Type.prod.snd", "Nat.Suc", "Groups.minus_class.minus", "List.nth", "Product_Type.prod.fst", "JVMCFG.stkLength", "List.length" ]
[ "wf_jvmprog \\<Rightarrow> (char list \\<times> char list \\<times> nat) list \\<Rightarrow> (nat \\<times> nat \\<Rightarrow> 'a) \\<Rightarrow> 'a list list", "'a \\<times> 'b \\<Rightarrow> 'b", "nat \\<Rightarrow> nat", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a list \\<Rightarrow> nat \\<Rightarrow> 'a", "'a \\<times> 'b \\<Rightarrow> 'a", "wf_jvmprog \\<Rightarrow> char list \\<Rightarrow> char list \\<Rightarrow> nat \\<Rightarrow> nat", "'a list \\<Rightarrow> nat" ]
[ "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "primrec (nonexhaustive) nth :: \"'a list => nat => 'a\" (infixl \"!\" 100) where\nnth_Cons: \"(x # xs) ! n = (case n of 0 \\<Rightarrow> x | Suc k \\<Rightarrow> xs ! k)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"" ]
lemma_object
###symbols JVMCFG.stkss :::: wf_jvmprog \<Rightarrow> (char list \<times> char list \<times> nat) list \<Rightarrow> (nat \<times> nat \<Rightarrow> 'a) \<Rightarrow> 'a list list Product_Type.prod.snd :::: 'a \<times> 'b \<Rightarrow> 'b Nat.Suc :::: nat \<Rightarrow> nat Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a List.nth :::: 'a list \<Rightarrow> nat \<Rightarrow> 'a Product_Type.prod.fst :::: 'a \<times> 'b \<Rightarrow> 'a JVMCFG.stkLength :::: wf_jvmprog \<Rightarrow> char list \<Rightarrow> char list \<Rightarrow> nat \<Rightarrow> nat List.length :::: 'a list \<Rightarrow> nat ###defs definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close> definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size"
###output ?P = ?P' \<Longrightarrow> ?cs = ?cs' \<Longrightarrow> (\<And>a b. a < length ?cs \<Longrightarrow> b < stkLength ?P (fst (?cs ! (length ?cs - Suc a))) (fst (snd (?cs ! (length ?cs - Suc a)))) (snd (snd (?cs ! (length ?cs - Suc a)))) \<Longrightarrow> ?stk (a, b) = ?stk' (a, b)) \<Longrightarrow> stkss ?P ?cs ?stk = stkss ?P' ?cs' ?stk'###end
S_Finite_Measure_Monad/QuasiBorel
QuasiBorel.exp_qbs_space
null
qbs_space (?X \<Rightarrow>\<^sub>Q ?Y) = {f. \<forall>\<alpha>\<in>qbs_Mx ?X. f \<circ> \<alpha> \<in> qbs_Mx ?Y}
?H1 (?H2 x_1 x_2) = ?H3 (\<lambda>y_0. \<forall>y_1\<in> ?H4 x_1. ?H5 y_0 y_1 \<in> ?H6 x_2)
[ "Fun.comp", "QuasiBorel.qbs_Mx", "Set.Collect", "QuasiBorel.exp_qbs", "QuasiBorel.qbs_space" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "'a quasi_borel \\<Rightarrow> (real \\<Rightarrow> 'a) set", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a set", "'a quasi_borel \\<Rightarrow> 'b quasi_borel \\<Rightarrow> ('a \\<Rightarrow> 'b) quasi_borel", "'a quasi_borel \\<Rightarrow> 'a set" ]
[ "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "definition qbs_Mx :: \"'a quasi_borel \\<Rightarrow> (real \\<Rightarrow> 'a) set\" where\n \"qbs_Mx X \\<equiv> snd (Rep_quasi_borel X)\"", "definition exp_qbs :: \"['a quasi_borel, 'b quasi_borel] \\<Rightarrow> ('a \\<Rightarrow> 'b) quasi_borel\" (infixr \"\\<Rightarrow>\\<^sub>Q\" 61) where\n\"X \\<Rightarrow>\\<^sub>Q Y \\<equiv> Abs_quasi_borel ({f. \\<forall>\\<alpha> \\<in> qbs_Mx X. f \\<circ> \\<alpha> \\<in> qbs_Mx Y}, {g. \\<forall>\\<alpha>\\<in> borel_measurable borel. \\<forall>\\<beta>\\<in> qbs_Mx X. (\\<lambda>r. g (\\<alpha> r) (\\<beta> r)) \\<in> qbs_Mx Y})\"", "definition qbs_space :: \"'a quasi_borel \\<Rightarrow> 'a set\" where\n \"qbs_space X \\<equiv> fst (Rep_quasi_borel X)\"" ]
lemma_object
###symbols Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b QuasiBorel.qbs_Mx :::: 'a quasi_borel \<Rightarrow> (real \<Rightarrow> 'a) set Set.Collect :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a set QuasiBorel.exp_qbs :::: 'a quasi_borel \<Rightarrow> 'b quasi_borel \<Rightarrow> ('a \<Rightarrow> 'b) quasi_borel QuasiBorel.qbs_space :::: 'a quasi_borel \<Rightarrow> 'a set ###defs definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" definition qbs_Mx :: "'a quasi_borel \<Rightarrow> (real \<Rightarrow> 'a) set" where "qbs_Mx X \<equiv> snd (Rep_quasi_borel X)" definition exp_qbs :: "['a quasi_borel, 'b quasi_borel] \<Rightarrow> ('a \<Rightarrow> 'b) quasi_borel" (infixr "\<Rightarrow>\<^sub>Q" 61) where "X \<Rightarrow>\<^sub>Q Y \<equiv> Abs_quasi_borel ({f. \<forall>\<alpha> \<in> qbs_Mx X. f \<circ> \<alpha> \<in> qbs_Mx Y}, {g. \<forall>\<alpha>\<in> borel_measurable borel. \<forall>\<beta>\<in> qbs_Mx X. (\<lambda>r. g (\<alpha> r) (\<beta> r)) \<in> qbs_Mx Y})" definition qbs_space :: "'a quasi_borel \<Rightarrow> 'a set" where "qbs_space X \<equiv> fst (Rep_quasi_borel X)"
###output qbs_space (?X \<Rightarrow>\<^sub>Q ?Y) = {f. \<forall>\<alpha>\<in>qbs_Mx ?X. f \<circ> \<alpha> \<in> qbs_Mx ?Y}###end
Refine_Imperative_HOL/Sepref_HOL_Bindings
Sepref_HOL_Bindings.list_assn_aux_append_conv2
lemma list_assn_aux_append_conv2: "list_assn R l (m1@m2) = (\<exists>\<^sub>Al1 l2. list_assn R l1 m1 * list_assn R l2 m2 * \<up>(l=l1@l2))"
list_assn ?R ?l (?m1.0 @ ?m2.0) = (\<exists>\<^sub>Al1 l2. list_assn ?R l1 ?m1.0 * list_assn ?R l2 ?m2.0 * \<up> (?l = l1 @ l2))
?H1 x_1 x_2 (?H2 x_3 x_4) = ?H3 (\<lambda>y_0. ?H3 (\<lambda>y_1. ?H4 (?H4 (?H1 x_1 y_0 x_3) (?H1 x_1 y_1 x_4)) (?H5 (x_2 = ?H6 y_0 y_1))))
[ "Assertions.pure_assn", "Groups.times_class.times", "Assertions.ex_assn", "List.append", "Sepref_HOL_Bindings.list_assn" ]
[ "bool \\<Rightarrow> assn", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<Rightarrow> assn) \\<Rightarrow> assn", "'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "('a \\<Rightarrow> 'b \\<Rightarrow> assn) \\<Rightarrow> 'a list \\<Rightarrow> 'b list \\<Rightarrow> assn" ]
[ "definition pure_assn :: \"bool \\<Rightarrow> assn\" (\"\\<up>\") where\n \"\\<up>b \\<equiv> Abs_assn (pure_assn_raw b)\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "definition ex_assn :: \"('a \\<Rightarrow> assn) \\<Rightarrow> assn\" (binder \"\\<exists>\\<^sub>A\" 11)\n where \"(\\<exists>\\<^sub>Ax. P x) \\<equiv> Abs_assn (\\<lambda>h. \\<exists>x. h\\<Turnstile>P x)\"", "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "fun list_assn :: \"('a \\<Rightarrow> 'c \\<Rightarrow> assn) \\<Rightarrow> 'a list \\<Rightarrow> 'c list \\<Rightarrow> assn\" where\n \"list_assn P [] [] = emp\"\n| \"list_assn P (a#as) (c#cs) = P a c * list_assn P as cs\"\n| \"list_assn _ _ _ = False\"" ]
lemma_object
###symbols Assertions.pure_assn :::: bool \<Rightarrow> assn Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Assertions.ex_assn :::: ('a \<Rightarrow> assn) \<Rightarrow> assn List.append :::: 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list Sepref_HOL_Bindings.list_assn :::: ('a \<Rightarrow> 'b \<Rightarrow> assn) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> assn ###defs definition pure_assn :: "bool \<Rightarrow> assn" ("\<up>") where "\<up>b \<equiv> Abs_assn (pure_assn_raw b)" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) definition ex_assn :: "('a \<Rightarrow> assn) \<Rightarrow> assn" (binder "\<exists>\<^sub>A" 11) where "(\<exists>\<^sub>Ax. P x) \<equiv> Abs_assn (\<lambda>h. \<exists>x. h\<Turnstile>P x)" primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" fun list_assn :: "('a \<Rightarrow> 'c \<Rightarrow> assn) \<Rightarrow> 'a list \<Rightarrow> 'c list \<Rightarrow> assn" where "list_assn P [] [] = emp" | "list_assn P (a#as) (c#cs) = P a c * list_assn P as cs" | "list_assn _ _ _ = False"
###output list_assn ?R ?l (?m1.0 @ ?m2.0) = (\<exists>\<^sub>Al1 l2. list_assn ?R l1 ?m1.0 * list_assn ?R l2 ?m2.0 * \<up> (?l = l1 @ l2))###end
UTP/utp/utp_rel
utp_rel.bool_seqr_laws(1)
lemma bool_seqr_laws [usubst]: fixes x :: "(bool \<Longrightarrow> '\<alpha>)" shows "\<And> P Q \<sigma>. \<sigma>($x \<mapsto>\<^sub>s True) \<dagger> (P ;; Q) = \<sigma> \<dagger> (P\<lbrakk>True/$x\<rbrakk> ;; Q)" "\<And> P Q \<sigma>. \<sigma>($x \<mapsto>\<^sub>s False) \<dagger> (P ;; Q) = \<sigma> \<dagger> (P\<lbrakk>False/$x\<rbrakk> ;; Q)" "\<And> P Q \<sigma>. \<sigma>($x\<acute> \<mapsto>\<^sub>s True) \<dagger> (P ;; Q) = \<sigma> \<dagger> (P ;; Q\<lbrakk>True/$x\<acute>\<rbrakk>)" "\<And> P Q \<sigma>. \<sigma>($x\<acute> \<mapsto>\<^sub>s False) \<dagger> (P ;; Q) = \<sigma> \<dagger> (P ;; Q\<lbrakk>False/$x\<acute>\<rbrakk>)"
?\<sigma>($ ?x \<mapsto>\<^sub>s True) \<dagger> (?P ;; ?Q) = ?\<sigma> \<dagger> (?P\<lbrakk>True/$ ?x\<rbrakk> ;; ?Q)
?H1 (?H2 x_1 (?H3 x_2) ?H4) (?H5 x_3 x_4) = ?H1 x_1 (?H5 (?H6 (?H7 ?H8 (?H9 x_2) ?H10) x_3) x_4)
[ "Fun.id", "utp_rel.seqr", "utp_pred.True_upred", "utp_var.in_var", "utp_subst.subst_upd_uvar", "utp_subst.subst" ]
[ "'a \\<Rightarrow> 'a", "('a, 'b) urel \\<Rightarrow> ('b, 'c) urel \\<Rightarrow> ('a, 'c) urel", "'a upred", "('a \\<Longrightarrow> 'b) \\<Rightarrow> 'a \\<Longrightarrow> 'b \\<times> 'c", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Longrightarrow> 'b) \\<Rightarrow> ('c, 'a) uexpr \\<Rightarrow> 'a \\<Rightarrow> 'b", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c, 'b) uexpr \\<Rightarrow> ('c, 'a) uexpr" ]
[ "definition id :: \"'a \\<Rightarrow> 'a\"\n where \"id = (\\<lambda>x. x)\"" ]
lemma_object
###symbols Fun.id :::: 'a \<Rightarrow> 'a utp_rel.seqr :::: ('a, 'b) urel \<Rightarrow> ('b, 'c) urel \<Rightarrow> ('a, 'c) urel utp_pred.True_upred :::: 'a upred utp_var.in_var :::: ('a \<Longrightarrow> 'b) \<Rightarrow> 'a \<Longrightarrow> 'b \<times> 'c utp_subst.subst_upd_uvar :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Longrightarrow> 'b) \<Rightarrow> ('c, 'a) uexpr \<Rightarrow> 'a \<Rightarrow> 'b utp_subst.subst :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c, 'b) uexpr \<Rightarrow> ('c, 'a) uexpr ###defs definition id :: "'a \<Rightarrow> 'a" where "id = (\<lambda>x. x)"
###output ?\<sigma>($ ?x \<mapsto>\<^sub>s True) \<dagger> (?P ;; ?Q) = ?\<sigma> \<dagger> (?P\<lbrakk>True/$ ?x\<rbrakk> ;; ?Q)###end
CZH_Elementary_Categories/czh_ecategories/CZH_ECAT_SS
CZH_ECAT_SS.the_cat_scospan_Obj_\<bb>I
null
?a = \<bb>\<^sub>S\<^sub>S \<Longrightarrow> ?a \<in>\<^sub>\<circ> \<rightarrow>\<bullet>\<leftarrow>\<^sub>C\<lparr>Obj\<rparr>
x_1 = ?H1 \<Longrightarrow> ?H2 x_1 (?H3 ?H4 ?H5)
[ "CZH_DG_Digraph.Obj", "CZH_ECAT_SS.the_cat_scospan", "ZFC_Cardinals.app", "CZH_Sets_Sets.vmember", "CZH_ECAT_SS.\\<bb>\\<^sub>S\\<^sub>S" ]
[ "V", "V", "V \\<Rightarrow> V \\<Rightarrow> V", "V \\<Rightarrow> V \\<Rightarrow> bool", "V" ]
[ "definition app :: \"[V,V] \\<Rightarrow> V\"\n where \"app f x \\<equiv> THE y. \\<langle>x,y\\<rangle> \\<in> elts f\"" ]
lemma_object
###symbols CZH_DG_Digraph.Obj :::: V CZH_ECAT_SS.the_cat_scospan :::: V ZFC_Cardinals.app :::: V \<Rightarrow> V \<Rightarrow> V CZH_Sets_Sets.vmember :::: V \<Rightarrow> V \<Rightarrow> bool CZH_ECAT_SS.\<bb>\<^sub>S\<^sub>S :::: V ###defs definition app :: "[V,V] \<Rightarrow> V" where "app f x \<equiv> THE y. \<langle>x,y\<rangle> \<in> elts f"
###output ?a = \<bb>\<^sub>S\<^sub>S \<Longrightarrow> ?a \<in>\<^sub>\<circ> \<rightarrow>\<bullet>\<leftarrow>\<^sub>C\<lparr>Obj\<rparr>###end
Automated_Stateful_Protocol_Verification/Transactions
Transactions.transaction_strand_subst_subsets(4)
lemma transaction_strand_subst_subsets[simp]: "set (transaction_receive T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>) \<subseteq> set (transaction_strand T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>)" "set (transaction_checks T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>) \<subseteq> set (transaction_strand T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>)" "set (transaction_updates T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>) \<subseteq> set (transaction_strand T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>)" "set (transaction_send T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>) \<subseteq> set (transaction_strand T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>)" "set (unlabel (transaction_receive T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>)) \<subseteq> set (unlabel (transaction_strand T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>))" "set (unlabel (transaction_checks T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>)) \<subseteq> set (unlabel (transaction_strand T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>))" "set (unlabel (transaction_updates T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>)) \<subseteq> set (unlabel (transaction_strand T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>))" "set (unlabel (transaction_send T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>)) \<subseteq> set (unlabel (transaction_strand T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta>))"
set (transaction_send ?T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t ?\<theta>) \<subseteq> set (transaction_strand ?T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t ?\<theta>)
?H1 (?H2 (?H3 (?H4 x_1) x_2)) (?H2 (?H3 (?H5 x_1) x_2))
[ "Transactions.transaction_strand", "Transactions.prot_transaction.transaction_send", "Labeled_Stateful_Strands.subst_apply_labeled_stateful_strand", "List.list.set", "Set.subset_eq" ]
[ "('a, 'b, 'c, 'd) prot_transaction \\<Rightarrow> ('d strand_label \\<times> (('a, 'b, 'c, 'd) prot_fun, (('a, 'b, 'c, 'd) prot_fun, 'b prot_atom) Term.term \\<times> nat) stateful_strand_step) list", "('a, 'b, 'c, 'd) prot_transaction \\<Rightarrow> ('d strand_label \\<times> (('a, 'b, 'c, 'd) prot_fun, (('a, 'b, 'c, 'd) prot_fun, 'b prot_atom) Term.term \\<times> nat) stateful_strand_step) list", "('a strand_label \\<times> ('b, 'c) stateful_strand_step) list \\<Rightarrow> ('c \\<Rightarrow> ('b, 'c) Term.term) \\<Rightarrow> ('a strand_label \\<times> ('b, 'c) stateful_strand_step) list", "'a list \\<Rightarrow> 'a set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "definition transaction_strand where\n \"transaction_strand T \\<equiv>\n transaction_receive T@transaction_checks T@\n transaction_updates T@transaction_send T\"", "datatype ('a,'b,'c,'d) prot_transaction =\n Transaction\n (transaction_decl: \"unit \\<Rightarrow> (('a,'b,'c,'d) prot_var \\<times> 'a set) list\")\n (transaction_fresh: \"('a,'b,'c,'d) prot_var list\")\n (transaction_receive: \"('a,'b,'c,'d) prot_strand\")\n (transaction_checks: \"('a,'b,'c,'d) prot_strand\")\n (transaction_updates: \"('a,'b,'c,'d) prot_strand\")\n (transaction_send: \"('a,'b,'c,'d) prot_strand\")", "definition subst_apply_labeled_stateful_strand::\n \"('a,'b,'c) labeled_stateful_strand \\<Rightarrow> ('a,'b) subst \\<Rightarrow> ('a,'b,'c) labeled_stateful_strand\"\n (infix \"\\<cdot>\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t\" 51) where\n \"S \\<cdot>\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t \\<theta> \\<equiv> map (\\<lambda>x. x \\<cdot>\\<^sub>l\\<^sub>s\\<^sub>s\\<^sub>t\\<^sub>p \\<theta>) S\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
lemma_object
###symbols Transactions.transaction_strand :::: ('a, 'b, 'c, 'd) prot_transaction \<Rightarrow> ('d strand_label \<times> (('a, 'b, 'c, 'd) prot_fun, (('a, 'b, 'c, 'd) prot_fun, 'b prot_atom) Term.term \<times> nat) stateful_strand_step) list Transactions.prot_transaction.transaction_send :::: ('a, 'b, 'c, 'd) prot_transaction \<Rightarrow> ('d strand_label \<times> (('a, 'b, 'c, 'd) prot_fun, (('a, 'b, 'c, 'd) prot_fun, 'b prot_atom) Term.term \<times> nat) stateful_strand_step) list Labeled_Stateful_Strands.subst_apply_labeled_stateful_strand :::: ('a strand_label \<times> ('b, 'c) stateful_strand_step) list \<Rightarrow> ('c \<Rightarrow> ('b, 'c) Term.term) \<Rightarrow> ('a strand_label \<times> ('b, 'c) stateful_strand_step) list List.list.set :::: 'a list \<Rightarrow> 'a set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs definition transaction_strand where "transaction_strand T \<equiv> transaction_receive T@transaction_checks T@ transaction_updates T@transaction_send T" datatype ('a,'b,'c,'d) prot_transaction = Transaction (transaction_decl: "unit \<Rightarrow> (('a,'b,'c,'d) prot_var \<times> 'a set) list") (transaction_fresh: "('a,'b,'c,'d) prot_var list") (transaction_receive: "('a,'b,'c,'d) prot_strand") (transaction_checks: "('a,'b,'c,'d) prot_strand") (transaction_updates: "('a,'b,'c,'d) prot_strand") (transaction_send: "('a,'b,'c,'d) prot_strand") definition subst_apply_labeled_stateful_strand:: "('a,'b,'c) labeled_stateful_strand \<Rightarrow> ('a,'b) subst \<Rightarrow> ('a,'b,'c) labeled_stateful_strand" (infix "\<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t" 51) where "S \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t \<theta> \<equiv> map (\<lambda>x. x \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t\<^sub>p \<theta>) S" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output set (transaction_send ?T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t ?\<theta>) \<subseteq> set (transaction_strand ?T \<cdot>\<^sub>l\<^sub>s\<^sub>s\<^sub>t ?\<theta>)###end
DFS_Framework/Impl/Structural/General_DFS_Structure
General_DFS_Structure.DFS_code_unfold(2)
null
Let (GHOST ?m) ?f = ?f ?m
Let (?H1 x_1) x_2 = x_2 x_1
[ "DFS_Framework_Refine_Aux.GHOST" ]
[ "'a \\<Rightarrow> 'a" ]
[]
lemma_object
###symbols DFS_Framework_Refine_Aux.GHOST :::: 'a \<Rightarrow> 'a ###defs
###output Let (GHOST ?m) ?f = ?f ?m###end
CZH_Elementary_Categories/czh_ecategories/CZH_ECAT_PCategory
CZH_ECAT_PCategory.cf_up_ArrMap_vdomain
null
\<D>\<^sub>\<circ> (cf_up ?I ?\<AA> ?\<CC> ?\<phi>\<lparr>ArrMap\<rparr>) = ?\<CC>\<lparr>Arr\<rparr>
?H1 (?H2 (?H3 x_1 x_2 x_3 x_4) ?H4) = ?H2 x_3 ?H5
[ "CZH_DG_Digraph.Arr", "CZH_DG_DGHM.ArrMap", "CZH_ECAT_PCategory.cf_up", "ZFC_Cardinals.app", "CZH_Sets_BRelations.app_vdomain" ]
[ "V", "V", "V \\<Rightarrow> (V \\<Rightarrow> V) \\<Rightarrow> V \\<Rightarrow> (V \\<Rightarrow> V) \\<Rightarrow> V", "V \\<Rightarrow> V \\<Rightarrow> V", "V \\<Rightarrow> V" ]
[ "definition app :: \"[V,V] \\<Rightarrow> V\"\n where \"app f x \\<equiv> THE y. \\<langle>x,y\\<rangle> \\<in> elts f\"" ]
lemma_object
###symbols CZH_DG_Digraph.Arr :::: V CZH_DG_DGHM.ArrMap :::: V CZH_ECAT_PCategory.cf_up :::: V \<Rightarrow> (V \<Rightarrow> V) \<Rightarrow> V \<Rightarrow> (V \<Rightarrow> V) \<Rightarrow> V ZFC_Cardinals.app :::: V \<Rightarrow> V \<Rightarrow> V CZH_Sets_BRelations.app_vdomain :::: V \<Rightarrow> V ###defs definition app :: "[V,V] \<Rightarrow> V" where "app f x \<equiv> THE y. \<langle>x,y\<rangle> \<in> elts f"
###output \<D>\<^sub>\<circ> (cf_up ?I ?\<AA> ?\<CC> ?\<phi>\<lparr>ArrMap\<rparr>) = ?\<CC>\<lparr>Arr\<rparr>###end
Heard_Of/lastvoting/LastVotingProof
LastVotingProof.highestStampRcvd_exists
lemma highestStampRcvd_exists: assumes nempty: "valStampsRcvd msgs \<noteq> {}" obtains p v where "msgs p = Some (ValStamp v (highestStampRcvd msgs))"
valStampsRcvd ?msgs \<noteq> {} \<Longrightarrow> (\<And>p v. ?msgs p = Some (ValStamp v (highestStampRcvd ?msgs)) \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk> ?H1 x_1 \<noteq> ?H2; \<And>y_0 y_1. x_1 y_0 = ?H3 (?H4 y_1 (?H5 x_1)) \<Longrightarrow> x_2\<rbrakk> \<Longrightarrow> x_2
[ "LastVotingDefs.highestStampRcvd", "LastVotingDefs.msg.ValStamp", "Option.option.Some", "Set.empty", "LastVotingDefs.valStampsRcvd" ]
[ "(Proc \\<Rightarrow> 'a msg option) \\<Rightarrow> nat", "'a \\<Rightarrow> nat \\<Rightarrow> 'a msg", "'a \\<Rightarrow> 'a option", "'a set", "(Proc \\<Rightarrow> 'a msg option) \\<Rightarrow> Proc set" ]
[ "datatype 'a option =\n None\n | Some (the: 'a)", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"" ]
lemma_object
###symbols LastVotingDefs.highestStampRcvd :::: (Proc \<Rightarrow> 'a msg option) \<Rightarrow> nat LastVotingDefs.msg.ValStamp :::: 'a \<Rightarrow> nat \<Rightarrow> 'a msg Option.option.Some :::: 'a \<Rightarrow> 'a option Set.empty :::: 'a set LastVotingDefs.valStampsRcvd :::: (Proc \<Rightarrow> 'a msg option) \<Rightarrow> Proc set ###defs datatype 'a option = None | Some (the: 'a) abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot"
###output valStampsRcvd ?msgs \<noteq> {} \<Longrightarrow> (\<And>p v. ?msgs p = Some (ValStamp v (highestStampRcvd ?msgs)) \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis###end
Ordinary_Differential_Equations/Refinement/Refine_Interval
Refine_Interval.split_ivls_at_halfspace_impl
null
DIM_precond TYPE(?'a) ?D \<Longrightarrow> (?Xi, ?X) \<in> clw_rel lvivl_rel \<Longrightarrow> (?sctni, ?sctn) \<in> \<langle>lv_rel\<rangle>sctn_rel \<Longrightarrow> (nres_of (dFORWEAK_LIST ?Xi (dRETURN []) (\<lambda>xa. split_ivl_at_halfspace_impl ?D ?sctni xa \<bind> (\<lambda>(a, b). dRETURN (filter_empty_ivls_impl (list_all2 (\<le>)) ([a] @ [b])))) (\<lambda>xa y. dRETURN (y @ xa))), split_ivls_at_halfspace $ ?sctn $ ?X) \<in> \<langle>clw_rel lvivl_rel\<rangle>nres_rel
\<lbrakk> ?H1 TYPE(?'a) x_1; (x_2, x_3) \<in> ?H2 ?H3; (x_4, x_5) \<in> ?H4 ?H5 ?H6\<rbrakk> \<Longrightarrow> (?H7 (?H8 x_2 (?H9 ?H10) (\<lambda>y_0. ?H11 (?H12 x_1 x_4 y_0) (?H13 (\<lambda>y_1 y_2. ?H9 (?H14 (?H15 (\<le>)) (?H16 (?H17 y_1 ?H10) (?H17 y_2 ?H10)))))) (\<lambda>y_3 y_4. ?H9 (?H16 y_4 y_3))), ?H18 (?H19 ?H20 x_5) x_3) \<in> ?H21 ?H22 (?H2 ?H3)
[ "Refine_Basic.nres_rel", "Refine_Interval.split_ivls_at_halfspace", "Autoref_Tagging.APP", "List.list.Cons", "List.append", "List.list.list_all2", "Refine_Interval.filter_empty_ivls_impl", "Product_Type.prod.case_prod", "Refine_Interval.split_ivl_at_halfspace_impl", "Refine_Det.dbind", "List.list.Nil", "Refine_Det.dres.dRETURN", "Weak_Set.dFORWEAK_LIST", "Refine_Transfer.nres_of", "Refine_Vector_List.lv_rel", "Refine_Hyperplane.sctn_rel", "Relators.relAPP", "Refine_Interval.lvivl_rel", "Refine_Unions.clw_rel", "Refine_Vector_List.DIM_precond" ]
[ "('a \\<times> 'b) set \\<Rightarrow> ('a nres \\<times> 'b nres) set", "'a sctn \\<Rightarrow> 'a set \\<Rightarrow> 'a set nres", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'b", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> 'a list \\<Rightarrow> 'b list \\<Rightarrow> bool", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('a \\<times> 'b) list \\<Rightarrow> ('a \\<times> 'b) list", "('a \\<Rightarrow> 'b \\<Rightarrow> 'c) \\<Rightarrow> 'a \\<times> 'b \\<Rightarrow> 'c", "nat \\<Rightarrow> real list sctn \\<Rightarrow> real list \\<times> real list \\<Rightarrow> ((real list \\<times> real list) \\<times> real list \\<times> real list) dres", "'a dres \\<Rightarrow> ('a \\<Rightarrow> 'b dres) \\<Rightarrow> 'b dres", "'a list", "'a \\<Rightarrow> 'a dres", "'a list \\<Rightarrow> 'b dres \\<Rightarrow> ('a \\<Rightarrow> 'b dres) \\<Rightarrow> ('b \\<Rightarrow> 'b \\<Rightarrow> 'b dres) \\<Rightarrow> 'b dres", "'a dres \\<Rightarrow> 'a nres", "(real list \\<times> 'a) set", "('a \\<times> 'b) set \\<Rightarrow> ('a sctn \\<times> 'b sctn) set", "(('a \\<times> 'b) set \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<times> 'b) set \\<Rightarrow> 'c", "((real list \\<times> real list) \\<times> 'a set) set", "('a \\<times> 'b set) set \\<Rightarrow> ('a list \\<times> 'b set) set", "'a itself \\<Rightarrow> nat \\<Rightarrow> bool" ]
[ "definition nres_rel where \n nres_rel_def_internal: \"nres_rel R \\<equiv> {(c,a). c \\<le> \\<Down>R a}\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "function dbind where \n \"dbind dFAIL _ = dFAIL\"\n| \"dbind dSUCCEED _ = dSUCCEED\"\n| \"dbind (dRETURN x) f = f x\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype 'a dres = \n dSUCCEEDi \\<comment> \\<open>No result\\<close>\n| dFAILi \\<comment> \\<open>Failure\\<close>\n| dRETURN 'a \\<comment> \\<open>Regular result\\<close>", "definition \"nres_of r \\<equiv> case r of\n dSUCCEEDi \\<Rightarrow> SUCCEED\n| dFAILi \\<Rightarrow> FAIL\n| dRETURN x \\<Rightarrow> RETURN x\"" ]
lemma_object
###symbols Refine_Basic.nres_rel :::: ('a \<times> 'b) set \<Rightarrow> ('a nres \<times> 'b nres) set Refine_Interval.split_ivls_at_halfspace :::: 'a sctn \<Rightarrow> 'a set \<Rightarrow> 'a set nres Autoref_Tagging.APP :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list List.append :::: 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list List.list.list_all2 :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> bool Refine_Interval.filter_empty_ivls_impl :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> ('a \<times> 'b) list Product_Type.prod.case_prod :::: ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a \<times> 'b \<Rightarrow> 'c Refine_Interval.split_ivl_at_halfspace_impl :::: nat \<Rightarrow> real list sctn \<Rightarrow> real list \<times> real list \<Rightarrow> ((real list \<times> real list) \<times> real list \<times> real list) dres Refine_Det.dbind :::: 'a dres \<Rightarrow> ('a \<Rightarrow> 'b dres) \<Rightarrow> 'b dres List.list.Nil :::: 'a list Refine_Det.dres.dRETURN :::: 'a \<Rightarrow> 'a dres Weak_Set.dFORWEAK_LIST :::: 'a list \<Rightarrow> 'b dres \<Rightarrow> ('a \<Rightarrow> 'b dres) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> 'b dres) \<Rightarrow> 'b dres Refine_Transfer.nres_of :::: 'a dres \<Rightarrow> 'a nres Refine_Vector_List.lv_rel :::: (real list \<times> 'a) set Refine_Hyperplane.sctn_rel :::: ('a \<times> 'b) set \<Rightarrow> ('a sctn \<times> 'b sctn) set Relators.relAPP :::: (('a \<times> 'b) set \<Rightarrow> 'c) \<Rightarrow> ('a \<times> 'b) set \<Rightarrow> 'c Refine_Interval.lvivl_rel :::: ((real list \<times> real list) \<times> 'a set) set Refine_Unions.clw_rel :::: ('a \<times> 'b set) set \<Rightarrow> ('a list \<times> 'b set) set Refine_Vector_List.DIM_precond :::: 'a itself \<Rightarrow> nat \<Rightarrow> bool ###defs definition nres_rel where nres_rel_def_internal: "nres_rel R \<equiv> {(c,a). c \<le> \<Down>R a}" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" function dbind where "dbind dFAIL _ = dFAIL" | "dbind dSUCCEED _ = dSUCCEED" | "dbind (dRETURN x) f = f x" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype 'a dres = dSUCCEEDi \<comment> \<open>No result\<close> | dFAILi \<comment> \<open>Failure\<close> | dRETURN 'a \<comment> \<open>Regular result\<close> definition "nres_of r \<equiv> case r of dSUCCEEDi \<Rightarrow> SUCCEED | dFAILi \<Rightarrow> FAIL | dRETURN x \<Rightarrow> RETURN x"
###output DIM_precond TYPE(?'a) ?D \<Longrightarrow> (?Xi, ?X) \<in> clw_rel lvivl_rel \<Longrightarrow> (?sctni, ?sctn) \<in> \<langle>lv_rel\<rangle>sctn_rel \<Longrightarrow> (nres_of (dFORWEAK_LIST ?Xi (dRETURN []) (\<lambda>xa. split_ivl_at_halfspace_impl ?D ?sctni xa \<bind> (\<lambda>(a, b). dRETURN (filter_empty_ivls_impl (list_all2 (\<le>)) ([a] @ [b])))) (\<lambda>xa y. dRETURN (y @ xa))), split_ivls_at_halfspace $ ?sctn $ ?X) \<in> \<langle>clw_rel lvivl_rel\<rangle>nres_rel###end
CZH_Universal_Constructions/czh_ucategories/CZH_UCAT_Limit_Equalizer
CZH_UCAT_Limit_Equalizer.is_cat_coequalizerI
null
?\<epsilon> : \<Up>\<rightarrow>\<Up>\<^sub>C\<^sub>F ?\<CC> (\<bb>\<^sub>P\<^sub>L ?F) (\<aa>\<^sub>P\<^sub>L ?F) ?F ?\<bb> ?\<aa> ?F' >\<^sub>C\<^sub>F\<^sub>.\<^sub>c\<^sub>o\<^sub>l\<^sub>i\<^sub>m ?E : \<Up>\<^sub>C (\<bb>\<^sub>P\<^sub>L ?F) (\<aa>\<^sub>P\<^sub>L ?F) ?F \<mapsto>\<mapsto>\<^sub>C\<^bsub> ?\<alpha>\<^esub> ?\<CC> \<Longrightarrow> vsv ?F' \<Longrightarrow> ?F \<in>\<^sub>\<circ> Vset ?\<alpha> \<Longrightarrow> ?F \<noteq> []\<^sub>\<circ> \<Longrightarrow> \<D>\<^sub>\<circ> ?F' = ?F \<Longrightarrow> (\<And>\<ff>. \<ff> \<in>\<^sub>\<circ> ?F \<Longrightarrow> ?F'\<lparr>\<ff>\<rparr> : ?\<bb> \<mapsto>\<^bsub> ?\<CC>\<^esub> ?\<aa>) \<Longrightarrow> ?\<epsilon> : (?\<aa>, ?\<bb>, ?F, ?F') >\<^sub>C\<^sub>F\<^sub>.\<^sub>c\<^sub>o\<^sub>e\<^sub>q ?E : \<Up>\<^sub>C \<mapsto>\<mapsto>\<^sub>C\<^bsub> ?\<alpha>\<^esub> ?\<CC>
\<lbrakk> ?H1 x_1 (?H2 (?H3 x_2) (?H4 x_2) x_2) x_3 (?H5 x_3 (?H3 x_2) (?H4 x_2) x_2 x_4 x_5 x_6) x_7 x_8; ?H6 x_6; ?H7 x_2 (?H8 x_1); x_2 \<noteq> ?H9; ?H10 x_6 = x_2; \<And>y_0. ?H7 y_0 x_2 \<Longrightarrow> ?H11 x_3 x_4 x_5 (?H12 x_6 y_0)\<rbrakk> \<Longrightarrow> ?H13 x_1 x_5 x_4 x_2 x_6 x_3 x_7 x_8
[ "CZH_UCAT_Limit_Equalizer.is_cat_coequalizer", "ZFC_Cardinals.app", "CZH_DG_Digraph.is_arr", "CZH_Sets_BRelations.app_vdomain", "CZH_Sets_FSequences.vempty_vfsequence", "ZFC_in_HOL.Vset", "CZH_Sets_Sets.vmember", "CZH_Sets_BRelations.vsv", "CZH_ECAT_Parallel.the_cf_parallel", "CZH_ECAT_Parallel.\\<aa>\\<^sub>P\\<^sub>L", "CZH_ECAT_Parallel.\\<bb>\\<^sub>P\\<^sub>L", "CZH_ECAT_Parallel.the_cat_parallel", "CZH_UCAT_Limit.is_cat_colimit" ]
[ "V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> bool", "V \\<Rightarrow> V \\<Rightarrow> V", "V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> bool", "V \\<Rightarrow> V", "V", "V \\<Rightarrow> V", "V \\<Rightarrow> V \\<Rightarrow> bool", "V \\<Rightarrow> bool", "V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V", "V \\<Rightarrow> V", "V \\<Rightarrow> V", "V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V", "V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> V \\<Rightarrow> bool" ]
[ "definition app :: \"[V,V] \\<Rightarrow> V\"\n where \"app f x \\<equiv> THE y. \\<langle>x,y\\<rangle> \\<in> elts f\"", "abbreviation Vset :: \"V \\<Rightarrow> V\" where \"Vset \\<equiv> Vfrom 0\"" ]
lemma_object
###symbols CZH_UCAT_Limit_Equalizer.is_cat_coequalizer :::: V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> bool ZFC_Cardinals.app :::: V \<Rightarrow> V \<Rightarrow> V CZH_DG_Digraph.is_arr :::: V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> bool CZH_Sets_BRelations.app_vdomain :::: V \<Rightarrow> V CZH_Sets_FSequences.vempty_vfsequence :::: V ZFC_in_HOL.Vset :::: V \<Rightarrow> V CZH_Sets_Sets.vmember :::: V \<Rightarrow> V \<Rightarrow> bool CZH_Sets_BRelations.vsv :::: V \<Rightarrow> bool CZH_ECAT_Parallel.the_cf_parallel :::: V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V CZH_ECAT_Parallel.\<aa>\<^sub>P\<^sub>L :::: V \<Rightarrow> V CZH_ECAT_Parallel.\<bb>\<^sub>P\<^sub>L :::: V \<Rightarrow> V CZH_ECAT_Parallel.the_cat_parallel :::: V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V CZH_UCAT_Limit.is_cat_colimit :::: V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> V \<Rightarrow> bool ###defs definition app :: "[V,V] \<Rightarrow> V" where "app f x \<equiv> THE y. \<langle>x,y\<rangle> \<in> elts f" abbreviation Vset :: "V \<Rightarrow> V" where "Vset \<equiv> Vfrom 0"
###output ?\<epsilon> : \<Up>\<rightarrow>\<Up>\<^sub>C\<^sub>F ?\<CC> (\<bb>\<^sub>P\<^sub>L ?F) (\<aa>\<^sub>P\<^sub>L ?F) ?F ?\<bb> ?\<aa> ?F' >\<^sub>C\<^sub>F\<^sub>.\<^sub>c\<^sub>o\<^sub>l\<^sub>i\<^sub>m ?E : \<Up>\<^sub>C (\<bb>\<^sub>P\<^sub>L ?F) (\<aa>\<^sub>P\<^sub>L ?F) ?F \<mapsto>\<mapsto>\<^sub>C\<^bsub> ?\<alpha>\<^esub> ?\<CC> \<Longrightarrow> vsv ?F' \<Longrightarrow> ?F \<in>\<^sub>\<circ> Vset ?\<alpha> \<Longrightarrow> ?F \<noteq> []\<^sub>\<circ> \<Longrightarrow> \<D>\<^sub>\<circ> ?F' = ?F \<Longrightarrow> (\<And>\<ff>. \<ff> \<in>\<^sub>\<circ> ?F \<Longrightarrow> ?F'\<lparr>\<ff>\<rparr> : ?\<bb> \<mapsto>\<^bsub> ?\<CC>\<^esub> ?\<aa>) \<Longrightarrow> ?\<epsilon> : (?\<aa>, ?\<bb>, ?F, ?F') >\<^sub>C\<^sub>F\<^sub>.\<^sub>c\<^sub>o\<^sub>e\<^sub>q ?E : \<Up>\<^sub>C \<mapsto>\<mapsto>\<^sub>C\<^bsub> ?\<alpha>\<^esub> ?\<CC>###end
DFS_Framework/Examples/Feedback_Arcs
Feedback_Arcs.find_fas_correct
lemma find_fas_correct: assumes "graph G" assumes "finite ((g_E G)\<^sup>* `` g_V0 G)" shows "find_fas G \<le> SPEC (is_fas G)"
graph ?G \<Longrightarrow> finite ((g_E ?G)\<^sup>* `` g_V0 ?G) \<Longrightarrow> find_fas ?G \<le> SPEC (is_fas ?G)
\<lbrakk> ?H1 x_1; ?H2 (?H3 (?H4 (?H5 x_1)) (?H6 x_1))\<rbrakk> \<Longrightarrow> ?H7 x_1 \<le> ?H8 (?H9 x_1)
[ "Feedback_Arcs.is_fas", "Refine_Basic.SPEC", "Feedback_Arcs.find_fas", "Digraph.graph_rec.g_V0", "Digraph.graph_rec.g_E", "Transitive_Closure.rtrancl", "Relation.Image", "Finite_Set.finite", "Digraph.graph" ]
[ "('a, 'b) graph_rec_scheme \\<Rightarrow> ('a \\<times> 'a) set \\<Rightarrow> bool", "('a \\<Rightarrow> bool) \\<Rightarrow> 'a nres", "('a, 'b) graph_rec_scheme \\<Rightarrow> ('a \\<times> 'a) set nres", "('a, 'b) graph_rec_scheme \\<Rightarrow> 'a set", "('a, 'b) graph_rec_scheme \\<Rightarrow> ('a \\<times> 'a) set", "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set", "('a \\<times> 'b) set \\<Rightarrow> 'a set \\<Rightarrow> 'b set", "'a set \\<Rightarrow> bool", "('a, 'b) graph_rec_scheme \\<Rightarrow> bool" ]
[ "abbreviation \"SPEC \\<Phi> \\<equiv> RES (Collect \\<Phi>)\"", "inductive_set rtrancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>*)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n rtrancl_refl [intro!, Pure.intro!, simp]: \"(a, a) \\<in> r\\<^sup>*\"\n | rtrancl_into_rtrancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>* \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>*\"", "definition Image :: \"('a \\<times> 'b) set \\<Rightarrow> 'a set \\<Rightarrow> 'b set\" (infixr \"``\" 90)\n where \"r `` s = {y. \\<exists>x\\<in>s. (x, y) \\<in> r}\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
lemma_object
###symbols Feedback_Arcs.is_fas :::: ('a, 'b) graph_rec_scheme \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool Refine_Basic.SPEC :::: ('a \<Rightarrow> bool) \<Rightarrow> 'a nres Feedback_Arcs.find_fas :::: ('a, 'b) graph_rec_scheme \<Rightarrow> ('a \<times> 'a) set nres Digraph.graph_rec.g_V0 :::: ('a, 'b) graph_rec_scheme \<Rightarrow> 'a set Digraph.graph_rec.g_E :::: ('a, 'b) graph_rec_scheme \<Rightarrow> ('a \<times> 'a) set Transitive_Closure.rtrancl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set Relation.Image :::: ('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set Finite_Set.finite :::: 'a set \<Rightarrow> bool Digraph.graph :::: ('a, 'b) graph_rec_scheme \<Rightarrow> bool ###defs abbreviation "SPEC \<Phi> \<equiv> RES (Collect \<Phi>)" inductive_set rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>*)" [1000] 999) for r :: "('a \<times> 'a) set" where rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) \<in> r\<^sup>*" | rtrancl_into_rtrancl [Pure.intro]: "(a, b) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>*" definition Image :: "('a \<times> 'b) set \<Rightarrow> 'a set \<Rightarrow> 'b set" (infixr "``" 90) where "r `` s = {y. \<exists>x\<in>s. (x, y) \<in> r}" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output graph ?G \<Longrightarrow> finite ((g_E ?G)\<^sup>* `` g_V0 ?G) \<Longrightarrow> find_fas ?G \<le> SPEC (is_fas ?G)###end
List_Update/List_Factoring
List_Factoring.steps'_snoc
lemma steps'_snoc: "length rs = length as \<Longrightarrow> n = (length as) \<Longrightarrow> steps' init (rs@[r]) (as@[a]) (Suc n) = step (steps' init rs as n) r a"
length ?rs = length ?as \<Longrightarrow> ?n = length ?as \<Longrightarrow> steps' ?init (?rs @ [ ?r]) (?as @ [ ?a]) (Suc ?n) = step (steps' ?init ?rs ?as ?n) ?r ?a
\<lbrakk> ?H1 x_1 = ?H2 x_2; x_3 = ?H2 x_2\<rbrakk> \<Longrightarrow> ?H3 x_4 (?H4 x_1 (?H5 x_5 ?H6)) (?H7 x_2 (?H8 x_6 ?H9)) (?H10 x_3) = ?H11 (?H3 x_4 x_1 x_2 x_3) x_5 x_6
[ "Move_to_Front.step", "Nat.Suc", "List.list.Nil", "List.list.Cons", "List.append", "List_Factoring.steps'", "List.length" ]
[ "'a list \\<Rightarrow> 'a \\<Rightarrow> nat \\<times> nat list \\<Rightarrow> 'a list", "nat \\<Rightarrow> nat", "'a list", "'a \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "'a list \\<Rightarrow> 'a list \\<Rightarrow> (nat \\<times> nat list) list \\<Rightarrow> nat \\<Rightarrow> 'a list", "'a list \\<Rightarrow> nat" ]
[ "definition step :: \"'a state \\<Rightarrow> 'a \\<Rightarrow> answer \\<Rightarrow> 'a state\" where\n\"step s r a =\n (let (k,sws) = a in mtf2 k r (swaps sws s))\"", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "fun steps' where\n \"steps' s _ _ 0 = s\"\n| \"steps' s [] [] (Suc n) = s\"\n| \"steps' s (q#qs) (a#as) (Suc n) = steps' (step s q a) qs as n\"", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"" ]
lemma_object
###symbols Move_to_Front.step :::: 'a list \<Rightarrow> 'a \<Rightarrow> nat \<times> nat list \<Rightarrow> 'a list Nat.Suc :::: nat \<Rightarrow> nat List.list.Nil :::: 'a list List.list.Cons :::: 'a \<Rightarrow> 'a list \<Rightarrow> 'a list List.append :::: 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list List_Factoring.steps' :::: 'a list \<Rightarrow> 'a list \<Rightarrow> (nat \<times> nat list) list \<Rightarrow> nat \<Rightarrow> 'a list List.length :::: 'a list \<Rightarrow> nat ###defs definition step :: "'a state \<Rightarrow> 'a \<Rightarrow> answer \<Rightarrow> 'a state" where "step s r a = (let (k,sws) = a in mtf2 k r (swaps sws s))" definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" fun steps' where "steps' s _ _ 0 = s" | "steps' s [] [] (Suc n) = s" | "steps' s (q#qs) (a#as) (Suc n) = steps' (step s q a) qs as n" abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size"
###output length ?rs = length ?as \<Longrightarrow> ?n = length ?as \<Longrightarrow> steps' ?init (?rs @ [ ?r]) (?as @ [ ?a]) (Suc ?n) = step (steps' ?init ?rs ?as ?n) ?r ?a###end
AutoFocus-Stream/AF_Stream
AF_Stream.is_Msg_message_af_conv2
lemma is_Msg_message_af_conv2: "is_Msg m = (m \<noteq> \<NoMsg>)"
is_Msg ?m = (?m \<noteq> NoMsg)
?H1 x_1 = (x_1 \<noteq> ?H2)
[ "AF_Stream.message_af.NoMsg", "AF_Stream.is_Msg" ]
[ "'a message_af", "'a \\<Rightarrow> bool" ]
[ "datatype 'a message_af = NoMsg | Msg 'a", "definition is_Msg :: \"'a \\<Rightarrow> bool\"\n where \"is_Msg x \\<equiv> (\\<not> is_NoMsg x)\"" ]
lemma_object
###symbols AF_Stream.message_af.NoMsg :::: 'a message_af AF_Stream.is_Msg :::: 'a \<Rightarrow> bool ###defs datatype 'a message_af = NoMsg | Msg 'a definition is_Msg :: "'a \<Rightarrow> bool" where "is_Msg x \<equiv> (\<not> is_NoMsg x)"
###output is_Msg ?m = (?m \<noteq> NoMsg)###end
AODV/Aodv_Data
Aodv_Data.sqnf_update
lemma sqnf_update [simp]: "\<And>rt dip dsn dsk flg hops sip. rt \<noteq> update rt dip (dsn, dsk, flg, hops, sip, {}) \<Longrightarrow> sqnf (update rt dip (dsn, dsk, flg, hops, sip, {})) dip = dsk"
?rt \<noteq> update ?rt ?dip (?dsn, ?dsk, ?flg, ?hops, ?sip, {}) \<Longrightarrow> sqnf (update ?rt ?dip (?dsn, ?dsk, ?flg, ?hops, ?sip, {})) ?dip = ?dsk
x_1 \<noteq> ?H1 x_1 x_2 (x_3, x_4, x_5, x_6, x_7, ?H2) \<Longrightarrow> ?H3 (?H1 x_1 x_2 (x_3, x_4, x_5, x_6, x_7, ?H2)) x_2 = x_4
[ "Aodv_Data.sqnf", "Set.empty", "Aodv_Data.update" ]
[ "(nat \\<Rightarrow> (nat \\<times> k \\<times> f \\<times> nat \\<times> nat \\<times> nat set) option) \\<Rightarrow> nat \\<Rightarrow> k", "'a set", "(nat \\<Rightarrow> (nat \\<times> k \\<times> f \\<times> nat \\<times> nat \\<times> nat set) option) \\<Rightarrow> nat \\<Rightarrow> nat \\<times> k \\<times> f \\<times> nat \\<times> nat \\<times> nat set \\<Rightarrow> nat \\<Rightarrow> (nat \\<times> k \\<times> f \\<times> nat \\<times> nat \\<times> nat set) option" ]
[ "definition sqnf :: \"rt \\<Rightarrow> ip \\<Rightarrow> k\"\n where \"sqnf rt dip \\<equiv> case \\<sigma>\\<^bsub>route\\<^esub>(rt, dip) of Some r \\<Rightarrow> \\<pi>\\<^sub>3(r) | None \\<Rightarrow> unk\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition update :: \"rt \\<Rightarrow> ip \\<Rightarrow> r \\<Rightarrow> rt\"\n where\n \"update rt ip r \\<equiv>\n case \\<sigma>\\<^bsub>route\\<^esub>(rt, ip) of\n None \\<Rightarrow> rt (ip \\<mapsto> r)\n | Some s \\<Rightarrow>\n if \\<pi>\\<^sub>2(s) < \\<pi>\\<^sub>2(r) then rt (ip \\<mapsto> addpre r (\\<pi>\\<^sub>7(s)))\n else if \\<pi>\\<^sub>2(s) = \\<pi>\\<^sub>2(r) \\<and> (\\<pi>\\<^sub>5(s) > \\<pi>\\<^sub>5(r) \\<or> \\<pi>\\<^sub>4(s) = inv)\n then rt (ip \\<mapsto> addpre r (\\<pi>\\<^sub>7(s)))\n else if \\<pi>\\<^sub>3(r) = unk\n then rt (ip \\<mapsto> (\\<pi>\\<^sub>2(s), snd (addpre r (\\<pi>\\<^sub>7(s)))))\n else rt (ip \\<mapsto> addpre s (\\<pi>\\<^sub>7(r)))\"" ]
lemma_object
###symbols Aodv_Data.sqnf :::: (nat \<Rightarrow> (nat \<times> k \<times> f \<times> nat \<times> nat \<times> nat set) option) \<Rightarrow> nat \<Rightarrow> k Set.empty :::: 'a set Aodv_Data.update :::: (nat \<Rightarrow> (nat \<times> k \<times> f \<times> nat \<times> nat \<times> nat set) option) \<Rightarrow> nat \<Rightarrow> nat \<times> k \<times> f \<times> nat \<times> nat \<times> nat set \<Rightarrow> nat \<Rightarrow> (nat \<times> k \<times> f \<times> nat \<times> nat \<times> nat set) option ###defs definition sqnf :: "rt \<Rightarrow> ip \<Rightarrow> k" where "sqnf rt dip \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, dip) of Some r \<Rightarrow> \<pi>\<^sub>3(r) | None \<Rightarrow> unk" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition update :: "rt \<Rightarrow> ip \<Rightarrow> r \<Rightarrow> rt" where "update rt ip r \<equiv> case \<sigma>\<^bsub>route\<^esub>(rt, ip) of None \<Rightarrow> rt (ip \<mapsto> r) | Some s \<Rightarrow> if \<pi>\<^sub>2(s) < \<pi>\<^sub>2(r) then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s))) else if \<pi>\<^sub>2(s) = \<pi>\<^sub>2(r) \<and> (\<pi>\<^sub>5(s) > \<pi>\<^sub>5(r) \<or> \<pi>\<^sub>4(s) = inv) then rt (ip \<mapsto> addpre r (\<pi>\<^sub>7(s))) else if \<pi>\<^sub>3(r) = unk then rt (ip \<mapsto> (\<pi>\<^sub>2(s), snd (addpre r (\<pi>\<^sub>7(s))))) else rt (ip \<mapsto> addpre s (\<pi>\<^sub>7(r)))"
###output ?rt \<noteq> update ?rt ?dip (?dsn, ?dsk, ?flg, ?hops, ?sip, {}) \<Longrightarrow> sqnf (update ?rt ?dip (?dsn, ?dsk, ?flg, ?hops, ?sip, {})) ?dip = ?dsk###end
UTP/utp/utp_pred_laws
utp_pred_laws.min_top
null
ord.min (\<le>) True ?x = ?x
?H1 (\<le>) ?H2 x_1 = x_1
[ "utp_pred.True_upred", "Orderings.ord.min" ]
[ "'a upred", "('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> 'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class ord =\n fixes less_eq :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\n and less :: \"'a \\<Rightarrow> 'a \\<Rightarrow> bool\"\nbegin" ]
lemma_object
###symbols utp_pred.True_upred :::: 'a upred Orderings.ord.min :::: ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class ord = fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" begin
###output ord.min (\<le>) True ?x = ?x###end
Coinductive/Coinductive
Coinductive_List.mcont2mcont_lzip1
null
mcont ?lub ?ord lSup lprefix ?t \<Longrightarrow> mcont ?lub ?ord lSup lprefix (\<lambda>x. lzip (?t x) ?ys1)
?H1 x_1 x_2 ?H2 ?H3 x_3 \<Longrightarrow> ?H4 x_1 x_2 ?H5 ?H6 (\<lambda>y_1. ?H7 (x_3 y_1) x_4)
[ "Coinductive_List.lzip", "Coinductive_List.lprefix", "Coinductive_List.lSup", "Complete_Partial_Order2.mcont" ]
[ "'a llist \\<Rightarrow> 'b llist \\<Rightarrow> ('a \\<times> 'b) llist", "'a llist \\<Rightarrow> 'a llist \\<Rightarrow> bool", "'a llist set \\<Rightarrow> 'a llist", "('a set \\<Rightarrow> 'a) \\<Rightarrow> ('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> ('b set \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool" ]
[ "primcorec lzip :: \"'a llist \\<Rightarrow> 'b llist \\<Rightarrow> ('a \\<times> 'b) llist\"\nwhere\n \"lnull xs \\<or> lnull ys \\<Longrightarrow> lnull (lzip xs ys)\"\n| \"lhd (lzip xs ys) = (lhd xs, lhd ys)\"\n| \"ltl (lzip xs ys) = lzip (ltl xs) (ltl ys)\"", "coinductive lprefix :: \"'a llist \\<Rightarrow> 'a llist \\<Rightarrow> bool\" (infix \"\\<sqsubseteq>\" 65)\nwhere\n LNil_lprefix [simp, intro!]: \"LNil \\<sqsubseteq> xs\"\n| Le_LCons: \"xs \\<sqsubseteq> ys \\<Longrightarrow> LCons x xs \\<sqsubseteq> LCons x ys\"", "primcorec lSup :: \"'a llist set \\<Rightarrow> 'a llist\"\nwhere\n \"lSup A =\n (if \\<forall>x\\<in>A. lnull x then LNil\n else LCons (THE x. x \\<in> lhd ` (A \\<inter> {xs. \\<not> lnull xs})) (lSup (ltl ` (A \\<inter> {xs. \\<not> lnull xs}))))\"", "definition mcont :: \"('a set \\<Rightarrow> 'a) \\<Rightarrow> ('a \\<Rightarrow> 'a \\<Rightarrow> bool) \\<Rightarrow> ('b set \\<Rightarrow> 'b) \\<Rightarrow> ('b \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> bool\"\nwhere\n \"mcont luba orda lubb ordb f \\<longleftrightarrow>\n monotone orda ordb f \\<and> cont luba orda lubb ordb f\"" ]
lemma_object
###symbols Coinductive_List.lzip :::: 'a llist \<Rightarrow> 'b llist \<Rightarrow> ('a \<times> 'b) llist Coinductive_List.lprefix :::: 'a llist \<Rightarrow> 'a llist \<Rightarrow> bool Coinductive_List.lSup :::: 'a llist set \<Rightarrow> 'a llist Complete_Partial_Order2.mcont :::: ('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b set \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool ###defs primcorec lzip :: "'a llist \<Rightarrow> 'b llist \<Rightarrow> ('a \<times> 'b) llist" where "lnull xs \<or> lnull ys \<Longrightarrow> lnull (lzip xs ys)" | "lhd (lzip xs ys) = (lhd xs, lhd ys)" | "ltl (lzip xs ys) = lzip (ltl xs) (ltl ys)" coinductive lprefix :: "'a llist \<Rightarrow> 'a llist \<Rightarrow> bool" (infix "\<sqsubseteq>" 65) where LNil_lprefix [simp, intro!]: "LNil \<sqsubseteq> xs" | Le_LCons: "xs \<sqsubseteq> ys \<Longrightarrow> LCons x xs \<sqsubseteq> LCons x ys" primcorec lSup :: "'a llist set \<Rightarrow> 'a llist" where "lSup A = (if \<forall>x\<in>A. lnull x then LNil else LCons (THE x. x \<in> lhd ` (A \<inter> {xs. \<not> lnull xs})) (lSup (ltl ` (A \<inter> {xs. \<not> lnull xs}))))" definition mcont :: "('a set \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b set \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool" where "mcont luba orda lubb ordb f \<longleftrightarrow> monotone orda ordb f \<and> cont luba orda lubb ordb f"
###output mcont ?lub ?ord lSup lprefix ?t \<Longrightarrow> mcont ?lub ?ord lSup lprefix (\<lambda>x. lzip (?t x) ?ys1)###end
LTL_to_GBA/LTL_to_GBA_impl
LTL_to_GBA_impl.create_name_gba_alt
lemma create_name_gba_alt: "create_name_gba \<phi> = do { nds \<leftarrow> create_graph\<^sub>T \<phi>; ASSERT (nds_invars nds); RETURN (gba_rename_ext (\<lambda>_. ()) name (create_gba_from_nodes \<phi> nds)) }"
create_name_gba ?\<phi> = create_graph\<^sub>T ?\<phi> \<bind> (\<lambda>nds. ASSERT (nds_invars nds) \<bind> (\<lambda>_. RETURN (gba_rename name (create_gba_from_nodes ?\<phi> nds))))
?H1 x_1 = ?H2 (?H3 x_1) (\<lambda>y_0. ?H4 (?H5 (?H6 y_0)) (\<lambda>y_1. ?H7 (?H8 ?H9 (?H10 x_1 y_0))))
[ "LTL_to_GBA.create_gba_from_nodes", "LTL_to_GBA.node.name", "Automata.gba_rename", "Refine_Basic.RETURN", "LTL_to_GBA.nds_invars", "Refine_Basic.ASSERT", "LTL_to_GBA.create_graph\\<^sub>T", "Refine_Basic.bind", "LTL_to_GBA.create_name_gba" ]
[ "'a ltlr \\<Rightarrow> 'a node set \\<Rightarrow> ('a node, 'a set) gba_rec", "('a, 'b) node_scheme \\<Rightarrow> nat", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('a, 'c, 'd) gba_rec_scheme \\<Rightarrow> ('b, 'c) gba_rec", "'a \\<Rightarrow> 'a nres", "('a, 'b) node_scheme set \\<Rightarrow> bool", "bool \\<Rightarrow> unit nres", "'a ltlr \\<Rightarrow> 'a node set nres", "'a nres \\<Rightarrow> ('a \\<Rightarrow> 'b nres) \\<Rightarrow> 'b nres", "'a ltlr \\<Rightarrow> (nat, 'a set) gba_rec nres" ]
[ "definition create_gba_from_nodes :: \"'a frml \\<Rightarrow> 'a node set \\<Rightarrow> ('a node, 'a set) gba_rec\"\nwhere \"create_gba_from_nodes \\<phi> qs \\<equiv> \\<lparr>\n g_V = qs,\n g_E = {(q, q'). q\\<in>qs \\<and> q'\\<in>qs \\<and> name q\\<in>incoming q'},\n g_V0 = {q\\<in>qs. expand_init\\<in>incoming q},\n gbg_F = {{q\\<in>qs. \\<mu> U\\<^sub>r \\<eta>\\<in>old q \\<longrightarrow> \\<eta>\\<in>old q}|\\<mu> \\<eta>. \\<mu> U\\<^sub>r \\<eta> \\<in> subfrmlsr \\<phi>},\n gba_L = \\<lambda>q l. q\\<in>qs \\<and> {p. prop\\<^sub>r(p)\\<in>old q}\\<subseteq>l \\<and> {p. nprop\\<^sub>r(p)\\<in>old q} \\<inter> l = {}\n\\<rparr>\"", "abbreviation \"gba_rename \\<equiv> gba_rename_ext (\\<lambda>_. ())\"", "definition \"RETURN x \\<equiv> RES {x}\"", "definition \"nds_invars nds \\<equiv>\n inj_on name nds\n \\<and> finite nds\n \\<and> expand_init \\<notin> name`nds\n \\<and> (\\<forall>nd\\<in>nds.\n finite (old nd)\n \\<and> incoming nd \\<subseteq> insert expand_init (name ` nds))\"", "definition ASSERT where \"ASSERT \\<equiv> iASSERT RETURN\"", "definition create_graph\\<^sub>T :: \"'a frml \\<Rightarrow> 'a node set nres\"\nwhere\n \"create_graph\\<^sub>T \\<phi> \\<equiv> do {\n (_, nds) \\<leftarrow> expand\\<^sub>T (\n \\<lparr>\n name = expand_new_name expand_init,\n incoming = {expand_init},\n new = {\\<phi>},\n old = {},\n next = {}\n \\<rparr>::'a node,\n {}::'a node set);\n RETURN nds\n }\"", "definition bind where \"bind M f \\<equiv> case M of \n FAILi \\<Rightarrow> FAIL |\n RES X \\<Rightarrow> Sup (f`X)\"", "definition \"create_name_gba \\<phi> \\<equiv> do {\n G \\<leftarrow> create_gba \\<phi>;\n ASSERT (nds_invars (g_V G));\n RETURN (gba_rename name G)\n}\"" ]
lemma_object
###symbols LTL_to_GBA.create_gba_from_nodes :::: 'a ltlr \<Rightarrow> 'a node set \<Rightarrow> ('a node, 'a set) gba_rec LTL_to_GBA.node.name :::: ('a, 'b) node_scheme \<Rightarrow> nat Automata.gba_rename :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'c, 'd) gba_rec_scheme \<Rightarrow> ('b, 'c) gba_rec Refine_Basic.RETURN :::: 'a \<Rightarrow> 'a nres LTL_to_GBA.nds_invars :::: ('a, 'b) node_scheme set \<Rightarrow> bool Refine_Basic.ASSERT :::: bool \<Rightarrow> unit nres LTL_to_GBA.create_graph\<^sub>T :::: 'a ltlr \<Rightarrow> 'a node set nres Refine_Basic.bind :::: 'a nres \<Rightarrow> ('a \<Rightarrow> 'b nres) \<Rightarrow> 'b nres LTL_to_GBA.create_name_gba :::: 'a ltlr \<Rightarrow> (nat, 'a set) gba_rec nres ###defs definition create_gba_from_nodes :: "'a frml \<Rightarrow> 'a node set \<Rightarrow> ('a node, 'a set) gba_rec" where "create_gba_from_nodes \<phi> qs \<equiv> \<lparr> g_V = qs, g_E = {(q, q'). q\<in>qs \<and> q'\<in>qs \<and> name q\<in>incoming q'}, g_V0 = {q\<in>qs. expand_init\<in>incoming q}, gbg_F = {{q\<in>qs. \<mu> U\<^sub>r \<eta>\<in>old q \<longrightarrow> \<eta>\<in>old q}|\<mu> \<eta>. \<mu> U\<^sub>r \<eta> \<in> subfrmlsr \<phi>}, gba_L = \<lambda>q l. q\<in>qs \<and> {p. prop\<^sub>r(p)\<in>old q}\<subseteq>l \<and> {p. nprop\<^sub>r(p)\<in>old q} \<inter> l = {} \<rparr>" abbreviation "gba_rename \<equiv> gba_rename_ext (\<lambda>_. ())" definition "RETURN x \<equiv> RES {x}" definition "nds_invars nds \<equiv> inj_on name nds \<and> finite nds \<and> expand_init \<notin> name`nds \<and> (\<forall>nd\<in>nds. finite (old nd) \<and> incoming nd \<subseteq> insert expand_init (name ` nds))" definition ASSERT where "ASSERT \<equiv> iASSERT RETURN" definition create_graph\<^sub>T :: "'a frml \<Rightarrow> 'a node set nres" where "create_graph\<^sub>T \<phi> \<equiv> do { (_, nds) \<leftarrow> expand\<^sub>T ( \<lparr> name = expand_new_name expand_init, incoming = {expand_init}, new = {\<phi>}, old = {}, next = {} \<rparr>::'a node, {}::'a node set); RETURN nds }" definition bind where "bind M f \<equiv> case M of FAILi \<Rightarrow> FAIL | RES X \<Rightarrow> Sup (f`X)" definition "create_name_gba \<phi> \<equiv> do { G \<leftarrow> create_gba \<phi>; ASSERT (nds_invars (g_V G)); RETURN (gba_rename name G) }"
###output create_name_gba ?\<phi> = create_graph\<^sub>T ?\<phi> \<bind> (\<lambda>nds. ASSERT (nds_invars nds) \<bind> (\<lambda>_. RETURN (gba_rename name (create_gba_from_nodes ?\<phi> nds))))###end
ConcurrentGC/Tactics
Tactics.vcg_sem_simps(322)
null
\<not> rel_mem_load_action ?R1.0 ?R2.0 mr_fM (mr_Payload ?x21.0 ?x22.0)
\<not> ?H1 x_1 x_2 ?H2 (?H3 x_3 x_4)
[ "Model.mem_load_action.mr_Payload", "Model.mem_load_action.mr_fM", "Model.mem_load_action.rel_mem_load_action" ]
[ "'a \\<Rightarrow> 'b \\<Rightarrow> ('b, 'a) mem_load_action", "('a, 'b) mem_load_action", "('a \\<Rightarrow> 'b \\<Rightarrow> bool) \\<Rightarrow> ('c \\<Rightarrow> 'd \\<Rightarrow> bool) \\<Rightarrow> ('a, 'c) mem_load_action \\<Rightarrow> ('b, 'd) mem_load_action \\<Rightarrow> bool" ]
[ "datatype ('field, 'ref) mem_load_action\n = mr_Ref 'ref 'field\n | mr_Payload 'ref 'field\n | mr_Mark 'ref\n | mr_Phase\n | mr_fM\n | mr_fA", "datatype ('field, 'ref) mem_load_action\n = mr_Ref 'ref 'field\n | mr_Payload 'ref 'field\n | mr_Mark 'ref\n | mr_Phase\n | mr_fM\n | mr_fA", "datatype ('field, 'ref) mem_load_action\n = mr_Ref 'ref 'field\n | mr_Payload 'ref 'field\n | mr_Mark 'ref\n | mr_Phase\n | mr_fM\n | mr_fA" ]
lemma_object
###symbols Model.mem_load_action.mr_Payload :::: 'a \<Rightarrow> 'b \<Rightarrow> ('b, 'a) mem_load_action Model.mem_load_action.mr_fM :::: ('a, 'b) mem_load_action Model.mem_load_action.rel_mem_load_action :::: ('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('c \<Rightarrow> 'd \<Rightarrow> bool) \<Rightarrow> ('a, 'c) mem_load_action \<Rightarrow> ('b, 'd) mem_load_action \<Rightarrow> bool ###defs datatype ('field, 'ref) mem_load_action = mr_Ref 'ref 'field | mr_Payload 'ref 'field | mr_Mark 'ref | mr_Phase | mr_fM | mr_fA datatype ('field, 'ref) mem_load_action = mr_Ref 'ref 'field | mr_Payload 'ref 'field | mr_Mark 'ref | mr_Phase | mr_fM | mr_fA datatype ('field, 'ref) mem_load_action = mr_Ref 'ref 'field | mr_Payload 'ref 'field | mr_Mark 'ref | mr_Phase | mr_fM | mr_fA
###output \<not> rel_mem_load_action ?R1.0 ?R2.0 mr_fM (mr_Payload ?x21.0 ?x22.0)###end
Verified-Prover/Prover
Prover.ss(92)
null
fv (FDisj ?f ?g) = fv ?f @ fv ?g
?H1 (?H2 x_1 x_2) = ?H3 (?H1 x_1) (?H1 x_2)
[ "List.append", "Prover.form.FDisj", "Prover.fv" ]
[ "'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list", "form \\<Rightarrow> form \\<Rightarrow> form", "form \\<Rightarrow> nat list" ]
[ "primrec append :: \"'a list \\<Rightarrow> 'a list \\<Rightarrow> 'a list\" (infixr \"@\" 65) where\nappend_Nil: \"[] @ ys = ys\" |\nappend_Cons: \"(x#xs) @ ys = x # xs @ ys\"", "datatype form = \n PAtom pred \"var list\"\n | NAtom pred \"var list\"\n | FConj form form\n | FDisj form form\n | FAll form\n | FEx form", "primrec fv :: \"form => var list\" \\<comment> \\<open>shouldn't need to be more constructive than this\\<close>\nwhere\n \"fv (PAtom p vs) = vs\"\n| \"fv (NAtom p vs) = vs\"\n| \"fv (FConj f g) = (fv f) @ (fv g)\"\n| \"fv (FDisj f g) = (fv f) @ (fv g)\"\n| \"fv (FAll f) = preSuc (fv f)\"\n| \"fv (FEx f) = preSuc (fv f)\"" ]
lemma_object
###symbols List.append :::: 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list Prover.form.FDisj :::: form \<Rightarrow> form \<Rightarrow> form Prover.fv :::: form \<Rightarrow> nat list ###defs primrec append :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixr "@" 65) where append_Nil: "[] @ ys = ys" | append_Cons: "(x#xs) @ ys = x # xs @ ys" datatype form = PAtom pred "var list" | NAtom pred "var list" | FConj form form | FDisj form form | FAll form | FEx form primrec fv :: "form => var list" \<comment> \<open>shouldn't need to be more constructive than this\<close> where "fv (PAtom p vs) = vs" | "fv (NAtom p vs) = vs" | "fv (FConj f g) = (fv f) @ (fv g)" | "fv (FDisj f g) = (fv f) @ (fv g)" | "fv (FAll f) = preSuc (fv f)" | "fv (FEx f) = preSuc (fv f)"
###output fv (FDisj ?f ?g) = fv ?f @ fv ?g###end
Containers/Examples/TwoSat_Ex
TwoSat_Ex.imp_graph_rtrancl_skew_sym
lemma imp_graph_rtrancl_skew_sym: "(l\<^sub>1, l\<^sub>2) \<in> (imp_graph cnf)\<^sup>* \<Longrightarrow> (negate l\<^sub>2, negate l\<^sub>1) \<in> (imp_graph cnf)\<^sup>*"
(?l\<^sub>1, ?l\<^sub>2) \<in> (imp_graph ?cnf)\<^sup>* \<Longrightarrow> (negate ?l\<^sub>2, negate ?l\<^sub>1) \<in> (imp_graph ?cnf)\<^sup>*
(x_1, x_2) \<in> ?H1 (?H2 x_3) \<Longrightarrow> (?H3 x_2, ?H3 x_1) \<in> ?H1 (?H2 x_3)
[ "TwoSat_Ex.negate", "TwoSat_Ex.imp_graph", "Transitive_Closure.rtrancl" ]
[ "lit \\<Rightarrow> lit", "lit uprod set \\<Rightarrow> (lit \\<times> lit) set", "('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set" ]
[ "inductive_set rtrancl :: \"('a \\<times> 'a) set \\<Rightarrow> ('a \\<times> 'a) set\" (\"(_\\<^sup>*)\" [1000] 999)\n for r :: \"('a \\<times> 'a) set\"\n where\n rtrancl_refl [intro!, Pure.intro!, simp]: \"(a, a) \\<in> r\\<^sup>*\"\n | rtrancl_into_rtrancl [Pure.intro]: \"(a, b) \\<in> r\\<^sup>* \\<Longrightarrow> (b, c) \\<in> r \\<Longrightarrow> (a, c) \\<in> r\\<^sup>*\"" ]
lemma_object
###symbols TwoSat_Ex.negate :::: lit \<Rightarrow> lit TwoSat_Ex.imp_graph :::: lit uprod set \<Rightarrow> (lit \<times> lit) set Transitive_Closure.rtrancl :::: ('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set ###defs inductive_set rtrancl :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set" ("(_\<^sup>*)" [1000] 999) for r :: "('a \<times> 'a) set" where rtrancl_refl [intro!, Pure.intro!, simp]: "(a, a) \<in> r\<^sup>*" | rtrancl_into_rtrancl [Pure.intro]: "(a, b) \<in> r\<^sup>* \<Longrightarrow> (b, c) \<in> r \<Longrightarrow> (a, c) \<in> r\<^sup>*"
###output (?l\<^sub>1, ?l\<^sub>2) \<in> (imp_graph ?cnf)\<^sup>* \<Longrightarrow> (negate ?l\<^sub>2, negate ?l\<^sub>1) \<in> (imp_graph ?cnf)\<^sup>*###end
Extended_Finite_State_Machines/EFSM_LTL
EFSM_LTL.once_none_nxt_always_none
lemma once_none_nxt_always_none: "alw (nxt (state_eq None)) (make_full_observation e None r p t)"
alw (nxt (state_eq None)) (make_full_observation ?e None ?r ?p ?t)
?H1 (?H2 (?H3 ?H4)) (?H5 x_1 ?H4 x_2 x_3 x_4)
[ "EFSM_LTL.make_full_observation", "Option.option.None", "EFSM_LTL.state_eq", "Linear_Temporal_Logic_on_Streams.nxt", "Linear_Temporal_Logic_on_Streams.alw" ]
[ "((nat \\<times> nat) \\<times> transition) fset \\<Rightarrow> nat option \\<Rightarrow> nat \\<Rightarrow>f value option \\<Rightarrow> value option list \\<Rightarrow> (String.literal \\<times> value list) stream \\<Rightarrow> state stream", "'a option", "nat option \\<Rightarrow> state stream \\<Rightarrow> bool", "('a stream \\<Rightarrow> 'b) \\<Rightarrow> 'a stream \\<Rightarrow> 'b", "('a stream \\<Rightarrow> bool) \\<Rightarrow> 'a stream \\<Rightarrow> bool" ]
[ "primcorec make_full_observation :: \"transition_matrix \\<Rightarrow> cfstate option \\<Rightarrow> registers \\<Rightarrow> outputs \\<Rightarrow> action stream \\<Rightarrow> whitebox_trace\" where\n \"make_full_observation e s d p i = (\n let (s', o', d') = ltl_step e s d (shd i) in\n \\<lparr>statename = s, datastate = d, action=(shd i), output = p\\<rparr>##(make_full_observation e s' d' o' (stl i))\n )\"", "datatype 'a option =\n None\n | Some (the: 'a)", "abbreviation state_eq :: \"cfstate option \\<Rightarrow> whitebox_trace \\<Rightarrow> bool\" where\n \"state_eq v s \\<equiv> statename (shd s) = v\"", "fun nxt where \"nxt \\<phi> xs = \\<phi> (stl xs)\"", "coinductive alw for \\<phi> where\nalw: \"\\<lbrakk>\\<phi> xs; alw \\<phi> (stl xs)\\<rbrakk> \\<Longrightarrow> alw \\<phi> xs\"\n\n\\<comment> \\<open>weak until:\\<close>" ]
lemma_object
###symbols EFSM_LTL.make_full_observation :::: ((nat \<times> nat) \<times> transition) fset \<Rightarrow> nat option \<Rightarrow> nat \<Rightarrow>f value option \<Rightarrow> value option list \<Rightarrow> (String.literal \<times> value list) stream \<Rightarrow> state stream Option.option.None :::: 'a option EFSM_LTL.state_eq :::: nat option \<Rightarrow> state stream \<Rightarrow> bool Linear_Temporal_Logic_on_Streams.nxt :::: ('a stream \<Rightarrow> 'b) \<Rightarrow> 'a stream \<Rightarrow> 'b Linear_Temporal_Logic_on_Streams.alw :::: ('a stream \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> bool ###defs primcorec make_full_observation :: "transition_matrix \<Rightarrow> cfstate option \<Rightarrow> registers \<Rightarrow> outputs \<Rightarrow> action stream \<Rightarrow> whitebox_trace" where "make_full_observation e s d p i = ( let (s', o', d') = ltl_step e s d (shd i) in \<lparr>statename = s, datastate = d, action=(shd i), output = p\<rparr>##(make_full_observation e s' d' o' (stl i)) )" datatype 'a option = None | Some (the: 'a) abbreviation state_eq :: "cfstate option \<Rightarrow> whitebox_trace \<Rightarrow> bool" where "state_eq v s \<equiv> statename (shd s) = v" fun nxt where "nxt \<phi> xs = \<phi> (stl xs)" coinductive alw for \<phi> where alw: "\<lbrakk>\<phi> xs; alw \<phi> (stl xs)\<rbrakk> \<Longrightarrow> alw \<phi> xs" \<comment> \<open>weak until:\<close>
###output alw (nxt (state_eq None)) (make_full_observation ?e None ?r ?p ?t)###end
Incompleteness/II_Prelims
II_Prelims.ShiftP_Mem2
lemma ShiftP_Mem2: assumes "atom u \<sharp> (f,k,del,a,b)" shows "{ShiftP f k del g, HPair a b IN g} \<turnstile> Ex u ((Var u) IN k AND HaddP del (Var u) a AND HPair (Var u) b IN f)"
atom ?u \<sharp> (?f, ?k, ?del, ?a, ?b) \<Longrightarrow> {ShiftP ?f ?k ?del ?g, HPair ?a ?b IN ?g} \<turnstile> SyntaxN.Ex ?u (Var ?u IN ?k AND HaddP ?del (Var ?u) ?a AND HPair (Var ?u) ?b IN ?f)
?H1 (?H2 x_1) (x_2, x_3, x_4, x_5, x_6) \<Longrightarrow> ?H3 (?H4 (?H5 x_2 x_3 x_4 x_7) (?H4 (?H6 (?H7 x_5 x_6) x_7) ?H8)) (?H9 x_1 (?H10 (?H6 (?H11 x_1) x_3) (?H10 (?H12 x_4 (?H11 x_1) x_5) (?H6 (?H7 (?H11 x_1) x_6) x_2))))
[ "II_Prelims.HaddP", "SyntaxN.Var", "SyntaxN.Conj", "SyntaxN.Ex", "Set.empty", "SyntaxN.HPair", "SyntaxN.Mem", "II_Prelims.ShiftP", "Set.insert", "SyntaxN.hfthm", "Nominal2_Base.at_base_class.atom", "Nominal2_Base.pt_class.fresh" ]
[ "tm \\<Rightarrow> tm \\<Rightarrow> tm \\<Rightarrow> fm", "name \\<Rightarrow> tm", "fm \\<Rightarrow> fm \\<Rightarrow> fm", "name \\<Rightarrow> fm \\<Rightarrow> fm", "'a set", "tm \\<Rightarrow> tm \\<Rightarrow> tm", "tm \\<Rightarrow> tm \\<Rightarrow> fm", "tm \\<Rightarrow> tm \\<Rightarrow> tm \\<Rightarrow> tm \\<Rightarrow> fm", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "fm set \\<Rightarrow> fm \\<Rightarrow> bool", "'a \\<Rightarrow> atom", "atom \\<Rightarrow> 'a \\<Rightarrow> bool" ]
[ "definition Conj :: \"fm \\<Rightarrow> fm \\<Rightarrow> fm\" (infixr \"AND\" 135)\n where \"Conj A B \\<equiv> Neg (Disj (Neg A) (Neg B))\"", "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition HPair :: \"tm \\<Rightarrow> tm \\<Rightarrow> tm\"\n where \"HPair a b = Eats (Eats Zero (Eats (Eats Zero b) a)) (Eats (Eats Zero a) a)\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "inductive hfthm :: \"fm set \\<Rightarrow> fm \\<Rightarrow> bool\" (infixl \"\\<turnstile>\" 55)\n where\n Hyp: \"A \\<in> H \\<Longrightarrow> H \\<turnstile> A\"\n | Extra: \"H \\<turnstile> extra_axiom\"\n | Bool: \"A \\<in> boolean_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | Eq: \"A \\<in> equality_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | Spec: \"A \\<in> special_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | HF: \"A \\<in> HF_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | Ind: \"A \\<in> induction_axioms \\<Longrightarrow> H \\<turnstile> A\"\n | MP: \"H \\<turnstile> A IMP B \\<Longrightarrow> H' \\<turnstile> A \\<Longrightarrow> H \\<union> H' \\<turnstile> B\"\n | Exists: \"H \\<turnstile> A IMP B \\<Longrightarrow> atom i \\<sharp> B \\<Longrightarrow> \\<forall>C \\<in> H. atom i \\<sharp> C \\<Longrightarrow> H \\<turnstile> (Ex i A) IMP B\"", "class at_base = pt +\n fixes atom :: \"'a \\<Rightarrow> atom\"\n assumes atom_eq_iff [simp]: \"atom a = atom b \\<longleftrightarrow> a = b\"\n assumes atom_eqvt: \"p \\<bullet> (atom a) = atom (p \\<bullet> a)\"", "class pt =\n fixes permute :: \"perm \\<Rightarrow> 'a \\<Rightarrow> 'a\" (\"_ \\<bullet> _\" [76, 75] 75)\n assumes permute_zero [simp]: \"0 \\<bullet> x = x\"\n assumes permute_plus [simp]: \"(p + q) \\<bullet> x = p \\<bullet> (q \\<bullet> x)\"\nbegin" ]
lemma_object
###symbols II_Prelims.HaddP :::: tm \<Rightarrow> tm \<Rightarrow> tm \<Rightarrow> fm SyntaxN.Var :::: name \<Rightarrow> tm SyntaxN.Conj :::: fm \<Rightarrow> fm \<Rightarrow> fm SyntaxN.Ex :::: name \<Rightarrow> fm \<Rightarrow> fm Set.empty :::: 'a set SyntaxN.HPair :::: tm \<Rightarrow> tm \<Rightarrow> tm SyntaxN.Mem :::: tm \<Rightarrow> tm \<Rightarrow> fm II_Prelims.ShiftP :::: tm \<Rightarrow> tm \<Rightarrow> tm \<Rightarrow> tm \<Rightarrow> fm Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set SyntaxN.hfthm :::: fm set \<Rightarrow> fm \<Rightarrow> bool Nominal2_Base.at_base_class.atom :::: 'a \<Rightarrow> atom Nominal2_Base.pt_class.fresh :::: atom \<Rightarrow> 'a \<Rightarrow> bool ###defs definition Conj :: "fm \<Rightarrow> fm \<Rightarrow> fm" (infixr "AND" 135) where "Conj A B \<equiv> Neg (Disj (Neg A) (Neg B))" abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition HPair :: "tm \<Rightarrow> tm \<Rightarrow> tm" where "HPair a b = Eats (Eats Zero (Eats (Eats Zero b) a)) (Eats (Eats Zero a) a)" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" inductive hfthm :: "fm set \<Rightarrow> fm \<Rightarrow> bool" (infixl "\<turnstile>" 55) where Hyp: "A \<in> H \<Longrightarrow> H \<turnstile> A" | Extra: "H \<turnstile> extra_axiom" | Bool: "A \<in> boolean_axioms \<Longrightarrow> H \<turnstile> A" | Eq: "A \<in> equality_axioms \<Longrightarrow> H \<turnstile> A" | Spec: "A \<in> special_axioms \<Longrightarrow> H \<turnstile> A" | HF: "A \<in> HF_axioms \<Longrightarrow> H \<turnstile> A" | Ind: "A \<in> induction_axioms \<Longrightarrow> H \<turnstile> A" | MP: "H \<turnstile> A IMP B \<Longrightarrow> H' \<turnstile> A \<Longrightarrow> H \<union> H' \<turnstile> B" | Exists: "H \<turnstile> A IMP B \<Longrightarrow> atom i \<sharp> B \<Longrightarrow> \<forall>C \<in> H. atom i \<sharp> C \<Longrightarrow> H \<turnstile> (Ex i A) IMP B" class at_base = pt + fixes atom :: "'a \<Rightarrow> atom" assumes atom_eq_iff [simp]: "atom a = atom b \<longleftrightarrow> a = b" assumes atom_eqvt: "p \<bullet> (atom a) = atom (p \<bullet> a)" class pt = fixes permute :: "perm \<Rightarrow> 'a \<Rightarrow> 'a" ("_ \<bullet> _" [76, 75] 75) assumes permute_zero [simp]: "0 \<bullet> x = x" assumes permute_plus [simp]: "(p + q) \<bullet> x = p \<bullet> (q \<bullet> x)" begin
###output atom ?u \<sharp> (?f, ?k, ?del, ?a, ?b) \<Longrightarrow> {ShiftP ?f ?k ?del ?g, HPair ?a ?b IN ?g} \<turnstile> SyntaxN.Ex ?u (Var ?u IN ?k AND HaddP ?del (Var ?u) ?a AND HPair (Var ?u) ?b IN ?f)###end
UPF_Firewall/FWNormalisation/NormalisationIPPProofs
NormalisationIPPProofs.C_eqLemmas_id(23)
null
OnlyTwoNets ?p \<Longrightarrow> NetsCollected2 ?p \<Longrightarrow> NetsCollected ?p \<Longrightarrow> noDenyAll1 ?p \<Longrightarrow> allNetsDistinct ?p \<Longrightarrow> separated ?p
\<lbrakk> ?H1 x_1; ?H2 x_1; ?H3 x_1; ?H4 x_1; ?H5 x_1\<rbrakk> \<Longrightarrow> ?H6 x_1
[ "FWNormalisationCore.separated", "FWNormalisationCore.allNetsDistinct", "FWNormalisationCore.noDenyAll1", "FWNormalisationCore.NetsCollected", "FWNormalisationCore.NetsCollected2", "FWNormalisationCore.OnlyTwoNets" ]
[ "('a set set, 'b) Combinators list \\<Rightarrow> bool", "('a set set, 'b) Combinators list \\<Rightarrow> bool", "('a, 'b) Combinators list \\<Rightarrow> bool", "('a, 'b) Combinators list \\<Rightarrow> bool", "('a, 'b) Combinators list \\<Rightarrow> bool", "('a, 'b) Combinators list \\<Rightarrow> bool" ]
[]
lemma_object
###symbols FWNormalisationCore.separated :::: ('a set set, 'b) Combinators list \<Rightarrow> bool FWNormalisationCore.allNetsDistinct :::: ('a set set, 'b) Combinators list \<Rightarrow> bool FWNormalisationCore.noDenyAll1 :::: ('a, 'b) Combinators list \<Rightarrow> bool FWNormalisationCore.NetsCollected :::: ('a, 'b) Combinators list \<Rightarrow> bool FWNormalisationCore.NetsCollected2 :::: ('a, 'b) Combinators list \<Rightarrow> bool FWNormalisationCore.OnlyTwoNets :::: ('a, 'b) Combinators list \<Rightarrow> bool ###defs
###output OnlyTwoNets ?p \<Longrightarrow> NetsCollected2 ?p \<Longrightarrow> NetsCollected ?p \<Longrightarrow> noDenyAll1 ?p \<Longrightarrow> allNetsDistinct ?p \<Longrightarrow> separated ?p###end
Affine_Arithmetic/Straight_Line_Program
Straight_Line_Program.comparator_floatarith_simps(289)
null
comparator_floatarith (floatarith.Var ?x) (floatarith.Add ?y ?ya) = Gt
?H1 (?H2 x_1) (?H3 x_2 x_3) = ?H4
[ "Comparator.order.Gt", "Approximation.floatarith.Add", "Approximation.floatarith.Var", "Straight_Line_Program.comparator_floatarith" ]
[ "order", "floatarith \\<Rightarrow> floatarith \\<Rightarrow> floatarith", "nat \\<Rightarrow> floatarith", "floatarith \\<Rightarrow> floatarith \\<Rightarrow> order" ]
[ "datatype floatarith\n = Add floatarith floatarith\n | Minus floatarith\n | Mult floatarith floatarith\n | Inverse floatarith\n | Cos floatarith\n | Arctan floatarith\n | Abs floatarith\n | Max floatarith floatarith\n | Min floatarith floatarith\n | Pi\n | Sqrt floatarith\n | Exp floatarith\n | Powr floatarith floatarith\n | Ln floatarith\n | Power floatarith nat\n | Floor floatarith\n | Var nat\n | Num float", "datatype floatarith\n = Add floatarith floatarith\n | Minus floatarith\n | Mult floatarith floatarith\n | Inverse floatarith\n | Cos floatarith\n | Arctan floatarith\n | Abs floatarith\n | Max floatarith floatarith\n | Min floatarith floatarith\n | Pi\n | Sqrt floatarith\n | Exp floatarith\n | Powr floatarith floatarith\n | Ln floatarith\n | Power floatarith nat\n | Floor floatarith\n | Var nat\n | Num float" ]
lemma_object
###symbols Comparator.order.Gt :::: order Approximation.floatarith.Add :::: floatarith \<Rightarrow> floatarith \<Rightarrow> floatarith Approximation.floatarith.Var :::: nat \<Rightarrow> floatarith Straight_Line_Program.comparator_floatarith :::: floatarith \<Rightarrow> floatarith \<Rightarrow> order ###defs datatype floatarith = Add floatarith floatarith | Minus floatarith | Mult floatarith floatarith | Inverse floatarith | Cos floatarith | Arctan floatarith | Abs floatarith | Max floatarith floatarith | Min floatarith floatarith | Pi | Sqrt floatarith | Exp floatarith | Powr floatarith floatarith | Ln floatarith | Power floatarith nat | Floor floatarith | Var nat | Num float datatype floatarith = Add floatarith floatarith | Minus floatarith | Mult floatarith floatarith | Inverse floatarith | Cos floatarith | Arctan floatarith | Abs floatarith | Max floatarith floatarith | Min floatarith floatarith | Pi | Sqrt floatarith | Exp floatarith | Powr floatarith floatarith | Ln floatarith | Power floatarith nat | Floor floatarith | Var nat | Num float
###output comparator_floatarith (floatarith.Var ?x) (floatarith.Add ?y ?ya) = Gt###end
S_Finite_Measure_Monad/Measure_QuasiBorel_Adjunction
Measure_QuasiBorel_Adjunction.qbs_Mx_subset_of_measurable
lemma qbs_Mx_subset_of_measurable: "qbs_Mx X \<subseteq> borel \<rightarrow>\<^sub>M qbs_to_measure X"
qbs_Mx ?X \<subseteq> borel \<rightarrow>\<^sub>M qbs_to_measure ?X
?H1 (?H2 x_1) (?H3 ?H4 (?H5 x_1))
[ "Measure_QuasiBorel_Adjunction.qbs_to_measure", "Borel_Space.topological_space_class.borel", "Sigma_Algebra.measurable", "QuasiBorel.qbs_Mx", "Set.subset_eq" ]
[ "'a quasi_borel \\<Rightarrow> 'a measure", "'a measure", "'a measure \\<Rightarrow> 'b measure \\<Rightarrow> ('a \\<Rightarrow> 'b) set", "'a quasi_borel \\<Rightarrow> (real \\<Rightarrow> 'a) set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "definition qbs_to_measure :: \"'a quasi_borel \\<Rightarrow> 'a measure\" where\n\"qbs_to_measure X \\<equiv> Abs_measure (qbs_space X, sigma_Mx X, \\<lambda>A. (if A = {} then 0 else if A \\<in> - sigma_Mx X then 0 else \\<infinity>))\"", "definition qbs_Mx :: \"'a quasi_borel \\<Rightarrow> (real \\<Rightarrow> 'a) set\" where\n \"qbs_Mx X \\<equiv> snd (Rep_quasi_borel X)\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
lemma_object
###symbols Measure_QuasiBorel_Adjunction.qbs_to_measure :::: 'a quasi_borel \<Rightarrow> 'a measure Borel_Space.topological_space_class.borel :::: 'a measure Sigma_Algebra.measurable :::: 'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set QuasiBorel.qbs_Mx :::: 'a quasi_borel \<Rightarrow> (real \<Rightarrow> 'a) set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs definition qbs_to_measure :: "'a quasi_borel \<Rightarrow> 'a measure" where "qbs_to_measure X \<equiv> Abs_measure (qbs_space X, sigma_Mx X, \<lambda>A. (if A = {} then 0 else if A \<in> - sigma_Mx X then 0 else \<infinity>))" definition qbs_Mx :: "'a quasi_borel \<Rightarrow> (real \<Rightarrow> 'a) set" where "qbs_Mx X \<equiv> snd (Rep_quasi_borel X)" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output qbs_Mx ?X \<subseteq> borel \<rightarrow>\<^sub>M qbs_to_measure ?X###end
Multirelations_Heterogeneous/Multirelations
Multirelations_Basics.d_lb2
null
Dom ?R * Dom ?S \<subseteq> Dom ?S
?H1 (?H2 (?H3 x_1) (?H4 x_2)) (?H4 x_2)
[ "Multirelations_Basics.Dom", "Multirelations_Basics.s_prod", "Set.subset_eq" ]
[ "('a \\<times> 'b set) set \\<Rightarrow> ('a \\<times> 'a set) set", "('a \\<times> 'b set) set \\<Rightarrow> ('b \\<times> 'c set) set \\<Rightarrow> ('a \\<times> 'c set) set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "definition Dom :: \"('a,'b) mrel \\<Rightarrow> ('a,'a) mrel\" where\n \"Dom R = {(a,{a}) |a. \\<exists>B. (a,B) \\<in> R}\"", "definition s_prod :: \"('a,'b) mrel \\<Rightarrow> ('b,'c) mrel \\<Rightarrow> ('a,'c) mrel\" (infixl \"\\<cdot>\" 75) where\n \"R \\<cdot> S = {(a,A). (\\<exists>B. (a,B) \\<in> R \\<and> (\\<exists>f. (\\<forall>b \\<in> B. (b,f b) \\<in> S) \\<and> A = \\<Union>(f ` B)))}\"", "abbreviation subset_eq :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> bool\"\n where \"subset_eq \\<equiv> less_eq\"" ]
lemma_object
###symbols Multirelations_Basics.Dom :::: ('a \<times> 'b set) set \<Rightarrow> ('a \<times> 'a set) set Multirelations_Basics.s_prod :::: ('a \<times> 'b set) set \<Rightarrow> ('b \<times> 'c set) set \<Rightarrow> ('a \<times> 'c set) set Set.subset_eq :::: 'a set \<Rightarrow> 'a set \<Rightarrow> bool ###defs definition Dom :: "('a,'b) mrel \<Rightarrow> ('a,'a) mrel" where "Dom R = {(a,{a}) |a. \<exists>B. (a,B) \<in> R}" definition s_prod :: "('a,'b) mrel \<Rightarrow> ('b,'c) mrel \<Rightarrow> ('a,'c) mrel" (infixl "\<cdot>" 75) where "R \<cdot> S = {(a,A). (\<exists>B. (a,B) \<in> R \<and> (\<exists>f. (\<forall>b \<in> B. (b,f b) \<in> S) \<and> A = \<Union>(f ` B)))}" abbreviation subset_eq :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" where "subset_eq \<equiv> less_eq"
###output Dom ?R * Dom ?S \<subseteq> Dom ?S###end
CZH_Foundations/czh_sets/CZH_Sets_BRelations
CZH_Sets_BRelations.app_vrangeE
lemma app_vrangeE[elim]: assumes "b \<in>\<^sub>\<circ> \<R>\<^sub>\<circ> r" obtains a where "\<langle>a, b\<rangle> \<in>\<^sub>\<circ> r"
?b \<in>\<^sub>\<circ> \<R>\<^sub>\<circ> ?r \<Longrightarrow> (\<And>a. \<langle>a, ?b\<rangle> \<in>\<^sub>\<circ> ?r \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis
\<lbrakk> ?H1 x_1 (?H2 x_2); \<And>y_0. ?H1 (?H3 y_0 x_1) x_2 \<Longrightarrow> x_3\<rbrakk> \<Longrightarrow> x_3
[ "ZFC_Cardinals.vpair", "CZH_Sets_BRelations.app_vrange", "CZH_Sets_Sets.vmember" ]
[ "V \\<Rightarrow> V \\<Rightarrow> V", "V \\<Rightarrow> V", "V \\<Rightarrow> V \\<Rightarrow> bool" ]
[ "definition vpair :: \"V \\<Rightarrow> V \\<Rightarrow> V\"\n where \"vpair a b = set {set {a},set {a,b}}\"" ]
lemma_object
###symbols ZFC_Cardinals.vpair :::: V \<Rightarrow> V \<Rightarrow> V CZH_Sets_BRelations.app_vrange :::: V \<Rightarrow> V CZH_Sets_Sets.vmember :::: V \<Rightarrow> V \<Rightarrow> bool ###defs definition vpair :: "V \<Rightarrow> V \<Rightarrow> V" where "vpair a b = set {set {a},set {a,b}}"
###output ?b \<in>\<^sub>\<circ> \<R>\<^sub>\<circ> ?r \<Longrightarrow> (\<And>a. \<langle>a, ?b\<rangle> \<in>\<^sub>\<circ> ?r \<Longrightarrow> ?thesis) \<Longrightarrow> ?thesis###end
Coproduct_Measure/Coproduct_Measure
Coproduct_Measure.emeasure_coPiM_finite
lemma emeasure_coPiM_finite: assumes "finite I" "A \<in> sets (coPiM I Mi)" shows "emeasure (coPiM I Mi) A = (\<Sum>i\<in>I. emeasure (Mi i) (Pair i -` A))"
finite ?I \<Longrightarrow> ?A \<in> sets (coPiM ?I ?Mi) \<Longrightarrow> emeasure (coPiM ?I ?Mi) ?A = (\<Sum>i\<in> ?I. emeasure (?Mi i) (Pair i -` ?A))
\<lbrakk> ?H1 x_1; x_2 \<in> ?H2 (?H3 x_1 x_3)\<rbrakk> \<Longrightarrow> ?H4 (?H3 x_1 x_3) x_2 = ?H5 (\<lambda>y_0. ?H6 (x_3 y_0) (?H7 (Pair y_0) x_2)) x_1
[ "Set.vimage", "Groups_Big.comm_monoid_add_class.sum", "Sigma_Algebra.emeasure", "Coproduct_Measure.coPiM", "Sigma_Algebra.sets", "Finite_Set.finite" ]
[ "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a set \\<Rightarrow> 'b", "'a measure \\<Rightarrow> 'a set \\<Rightarrow> ennreal", "'a set \\<Rightarrow> ('a \\<Rightarrow> 'b measure) \\<Rightarrow> ('a \\<times> 'b) measure", "'a measure \\<Rightarrow> 'a set set", "'a set \\<Rightarrow> bool" ]
[ "definition vimage :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set \\<Rightarrow> 'a set\" (infixr \"-`\" 90)\n where \"f -` B \\<equiv> {x. f x \\<in> B}\"", "definition coPiM :: \"['i set, 'i \\<Rightarrow> 'a measure] \\<Rightarrow> ('i \\<times> 'a) measure\" where\n\"coPiM I Mi \\<equiv> measure_of\n (SIGMA i:I. space (Mi i))\n {A. A\\<subseteq>(SIGMA i:I. space (Mi i)) \\<and> (\\<forall>i\\<in>I. Pair i -` A \\<in> sets (Mi i))}\n (\\<lambda>A. (\\<Sum>\\<^sub>\\<infinity>i\\<in>I. emeasure (Mi i) (Pair i -` A)))\"", "class finite =\n assumes finite_UNIV: \"finite (UNIV :: 'a set)\"\nbegin" ]
lemma_object
###symbols Set.vimage :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set Groups_Big.comm_monoid_add_class.sum :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b Sigma_Algebra.emeasure :::: 'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal Coproduct_Measure.coPiM :::: 'a set \<Rightarrow> ('a \<Rightarrow> 'b measure) \<Rightarrow> ('a \<times> 'b) measure Sigma_Algebra.sets :::: 'a measure \<Rightarrow> 'a set set Finite_Set.finite :::: 'a set \<Rightarrow> bool ###defs definition vimage :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set \<Rightarrow> 'a set" (infixr "-`" 90) where "f -` B \<equiv> {x. f x \<in> B}" definition coPiM :: "['i set, 'i \<Rightarrow> 'a measure] \<Rightarrow> ('i \<times> 'a) measure" where "coPiM I Mi \<equiv> measure_of (SIGMA i:I. space (Mi i)) {A. A\<subseteq>(SIGMA i:I. space (Mi i)) \<and> (\<forall>i\<in>I. Pair i -` A \<in> sets (Mi i))} (\<lambda>A. (\<Sum>\<^sub>\<infinity>i\<in>I. emeasure (Mi i) (Pair i -` A)))" class finite = assumes finite_UNIV: "finite (UNIV :: 'a set)" begin
###output finite ?I \<Longrightarrow> ?A \<in> sets (coPiM ?I ?Mi) \<Longrightarrow> emeasure (coPiM ?I ?Mi) ?A = (\<Sum>i\<in> ?I. emeasure (?Mi i) (Pair i -` ?A))###end
Slicing/JinjaVM/JVMCFG
JVMCFG.nth_tl
lemma nth_tl : "xs \<noteq> [] \<Longrightarrow> tl xs ! n = xs ! (Suc n)"
?xs \<noteq> [] \<Longrightarrow> tl ?xs ! ?n = ?xs ! Suc ?n
x_1 \<noteq> ?H1 \<Longrightarrow> ?H2 (?H3 x_1) x_2 = ?H2 x_1 (?H4 x_2)
[ "Nat.Suc", "List.list.tl", "List.nth", "List.list.Nil" ]
[ "nat \\<Rightarrow> nat", "'a list \\<Rightarrow> 'a list", "'a list \\<Rightarrow> nat \\<Rightarrow> 'a", "'a list" ]
[ "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec (nonexhaustive) nth :: \"'a list => nat => 'a\" (infixl \"!\" 100) where\nnth_Cons: \"(x # xs) ! n = (case n of 0 \\<Rightarrow> x | Suc k \\<Rightarrow> xs ! k)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>n = 0\\<close> and \\<open>n = Suc k\\<close>\\<close>", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"" ]
lemma_object
###symbols Nat.Suc :::: nat \<Rightarrow> nat List.list.tl :::: 'a list \<Rightarrow> 'a list List.nth :::: 'a list \<Rightarrow> nat \<Rightarrow> 'a List.list.Nil :::: 'a list ###defs definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec (nonexhaustive) nth :: "'a list => nat => 'a" (infixl "!" 100) where nth_Cons: "(x # xs) ! n = (case n of 0 \<Rightarrow> x | Suc k \<Rightarrow> xs ! k)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>n = 0\<close> and \<open>n = Suc k\<close>\<close> datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []"
###output ?xs \<noteq> [] \<Longrightarrow> tl ?xs ! ?n = ?xs ! Suc ?n###end
AODV/variants/b_fwdrreps/B_Aodv
B_Aodv_Data.iD_addpreRT
null
?dip \<in> kD ?rt \<Longrightarrow> iD (the (addpreRT ?rt ?dip ?npre)) = iD ?rt
x_1 \<in> ?H1 x_2 \<Longrightarrow> ?H2 (?H3 (?H4 x_2 x_1 x_3)) = ?H2 x_2
[ "B_Aodv_Data.addpreRT", "Option.option.the", "B_Aodv_Data.iD", "B_Aodv_Data.kD" ]
[ "(nat \\<Rightarrow> (nat \\<times> k \\<times> f \\<times> nat \\<times> nat \\<times> nat set) option) \\<Rightarrow> nat \\<Rightarrow> nat set \\<Rightarrow> (nat \\<Rightarrow> (nat \\<times> k \\<times> f \\<times> nat \\<times> nat \\<times> nat set) option) option", "'a option \\<Rightarrow> 'a", "(nat \\<Rightarrow> (nat \\<times> k \\<times> f \\<times> nat \\<times> nat \\<times> nat set) option) \\<Rightarrow> nat set", "(nat \\<Rightarrow> (nat \\<times> k \\<times> f \\<times> nat \\<times> nat \\<times> nat set) option) \\<Rightarrow> nat set" ]
[ "datatype 'a option =\n None\n | Some (the: 'a)" ]
lemma_object
###symbols B_Aodv_Data.addpreRT :::: (nat \<Rightarrow> (nat \<times> k \<times> f \<times> nat \<times> nat \<times> nat set) option) \<Rightarrow> nat \<Rightarrow> nat set \<Rightarrow> (nat \<Rightarrow> (nat \<times> k \<times> f \<times> nat \<times> nat \<times> nat set) option) option Option.option.the :::: 'a option \<Rightarrow> 'a B_Aodv_Data.iD :::: (nat \<Rightarrow> (nat \<times> k \<times> f \<times> nat \<times> nat \<times> nat set) option) \<Rightarrow> nat set B_Aodv_Data.kD :::: (nat \<Rightarrow> (nat \<times> k \<times> f \<times> nat \<times> nat \<times> nat set) option) \<Rightarrow> nat set ###defs datatype 'a option = None | Some (the: 'a)
###output ?dip \<in> kD ?rt \<Longrightarrow> iD (the (addpreRT ?rt ?dip ?npre)) = iD ?rt###end
Word_Lib/More_Word
More_Word.word_less_sub_1
lemma word_less_sub_1: "x < (y :: 'a :: len word) \<Longrightarrow> x \<le> y - 1"
?x < ?y \<Longrightarrow> ?x \<le> ?y - 1
x_1 < x_2 \<Longrightarrow> x_1 \<le> ?H1 x_2 ?H2
[ "Groups.one_class.one", "Groups.minus_class.minus" ]
[ "'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class one =\n fixes one :: 'a (\"1\")", "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)" ]
lemma_object
###symbols Groups.one_class.one :::: 'a Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class one = fixes one :: 'a ("1") class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65)
###output ?x < ?y \<Longrightarrow> ?x \<le> ?y - 1###end
Berlekamp_Zassenhaus/Square_Free_Factorization_Int
Square_Free_Factorization_Int.square_free_factorization_int'(3)
lemma square_free_factorization_int': assumes res: "square_free_factorization_int' f = (d, fs)" shows "square_free_factorization f (d,fs)" "(fi, i) \<in> set fs \<Longrightarrow> content fi = 1 \<and> lead_coeff fi > 0" "distinct (map snd fs)"
square_free_factorization_int' ?f = (?d, ?fs) \<Longrightarrow> distinct (map snd ?fs)
?H1 x_1 = (x_2, x_3) \<Longrightarrow> ?H2 (?H3 ?H4 x_3)
[ "Product_Type.prod.snd", "List.list.map", "List.distinct", "Square_Free_Factorization_Int.square_free_factorization_int'" ]
[ "'a \\<times> 'b \\<Rightarrow> 'b", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a list \\<Rightarrow> 'b list", "'a list \\<Rightarrow> bool", "int poly \\<Rightarrow> int \\<times> (int poly \\<times> nat) list" ]
[ "definition \"prod = {f. \\<exists>a b. f = Pair_Rep (a::'a) (b::'b)}\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "primrec distinct :: \"'a list \\<Rightarrow> bool\" where\n\"distinct [] \\<longleftrightarrow> True\" |\n\"distinct (x # xs) \\<longleftrightarrow> x \\<notin> set xs \\<and> distinct xs\"", "definition square_free_factorization_int' :: \"int poly \\<Rightarrow> int \\<times> (int poly \\<times> nat)list\" where\n \"square_free_factorization_int' f = (if degree f = 0\n then (lead_coeff f,[]) else (let \\<comment> \\<open>content factorization\\<close>\n c = content f;\n d = (sgn (lead_coeff f) * c);\n g = sdiv_poly f d\n \\<comment> \\<open>and \\<open>square_free\\<close> factorization\\<close>\n in (d, square_free_factorization_int_main g)))\"" ]
lemma_object
###symbols Product_Type.prod.snd :::: 'a \<times> 'b \<Rightarrow> 'b List.list.map :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a list \<Rightarrow> 'b list List.distinct :::: 'a list \<Rightarrow> bool Square_Free_Factorization_Int.square_free_factorization_int' :::: int poly \<Rightarrow> int \<times> (int poly \<times> nat) list ###defs definition "prod = {f. \<exists>a b. f = Pair_Rep (a::'a) (b::'b)}" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" primrec distinct :: "'a list \<Rightarrow> bool" where "distinct [] \<longleftrightarrow> True" | "distinct (x # xs) \<longleftrightarrow> x \<notin> set xs \<and> distinct xs" definition square_free_factorization_int' :: "int poly \<Rightarrow> int \<times> (int poly \<times> nat)list" where "square_free_factorization_int' f = (if degree f = 0 then (lead_coeff f,[]) else (let \<comment> \<open>content factorization\<close> c = content f; d = (sgn (lead_coeff f) * c); g = sdiv_poly f d \<comment> \<open>and \<open>square_free\<close> factorization\<close> in (d, square_free_factorization_int_main g)))"
###output square_free_factorization_int' ?f = (?d, ?fs) \<Longrightarrow> distinct (map snd ?fs)###end
Adaptive_State_Counting/FSM/FSM
FSM.path_last_io_target
lemma path_last_io_target : assumes "path M (xs || tr) q" and "length xs = length tr" and "length xs > 0" shows "last tr \<in> io_targets M q xs"
path ?M (?xs || ?tr) ?q \<Longrightarrow> length ?xs = length ?tr \<Longrightarrow> 0 < length ?xs \<Longrightarrow> last ?tr \<in> io_targets ?M ?q ?xs
\<lbrakk> ?H1 x_1 (?H2 x_2 x_3) x_4; ?H3 x_2 = ?H4 x_3; ?H5 < ?H3 x_2\<rbrakk> \<Longrightarrow> ?H6 x_3 \<in> ?H7 x_1 x_4 x_2
[ "FSM.io_targets", "List.last", "Groups.zero_class.zero", "List.length", "List.zip", "FSM.path" ]
[ "('a, 'b, 'c) FSM \\<Rightarrow> 'c \\<Rightarrow> ('a \\<times> 'b) list \\<Rightarrow> 'c set", "'a list \\<Rightarrow> 'a", "'a", "'a list \\<Rightarrow> nat", "'a list \\<Rightarrow> 'b list \\<Rightarrow> ('a \\<times> 'b) list", "'a itself \\<Rightarrow> ('b, 'c, 'd, 'a) FSM_scheme \\<Rightarrow> (('b \\<times> 'c) \\<times> 'd) list \\<Rightarrow> 'd \\<Rightarrow> bool" ]
[ "fun io_targets :: \"('a,'b,'c) fsm \\<Rightarrow> ('b \\<times> 'c) list \\<Rightarrow> 'a \\<Rightarrow> 'a set\" where\n \"io_targets M io q = {target q p | p . path M q p \\<and> p_io p = io}\"", "primrec (nonexhaustive) last :: \"'a list \\<Rightarrow> 'a\" where\n\"last (x # xs) = (if xs = [] then x else last xs)\"", "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation length :: \"'a list \\<Rightarrow> nat\" where\n\"length \\<equiv> size\"", "primrec zip :: \"'a list \\<Rightarrow> 'b list \\<Rightarrow> ('a \\<times> 'b) list\" where\n\"zip xs [] = []\" |\nzip_Cons: \"zip xs (y # ys) =\n (case xs of [] \\<Rightarrow> [] | z # zs \\<Rightarrow> (z, y) # zip zs ys)\"\n \\<comment> \\<open>Warning: simpset does not contain this definition, but separate\n theorems for \\<open>xs = []\\<close> and \\<open>xs = z # zs\\<close>\\<close>", "inductive path :: \"('state, 'input, 'output) fsm \\<Rightarrow> 'state \\<Rightarrow> ('state, 'input, 'output) path \\<Rightarrow> bool\" \n where\n nil[intro!] : \"q \\<in> states M \\<Longrightarrow> path M q []\" |\n cons[intro!] : \"t \\<in> transitions M \\<Longrightarrow> path M (t_target t) ts \\<Longrightarrow> path M (t_source t) (t#ts)\"" ]
lemma_object
###symbols FSM.io_targets :::: ('a, 'b, 'c) FSM \<Rightarrow> 'c \<Rightarrow> ('a \<times> 'b) list \<Rightarrow> 'c set List.last :::: 'a list \<Rightarrow> 'a Groups.zero_class.zero :::: 'a List.length :::: 'a list \<Rightarrow> nat List.zip :::: 'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list FSM.path :::: 'a itself \<Rightarrow> ('b, 'c, 'd, 'a) FSM_scheme \<Rightarrow> (('b \<times> 'c) \<times> 'd) list \<Rightarrow> 'd \<Rightarrow> bool ###defs fun io_targets :: "('a,'b,'c) fsm \<Rightarrow> ('b \<times> 'c) list \<Rightarrow> 'a \<Rightarrow> 'a set" where "io_targets M io q = {target q p | p . path M q p \<and> p_io p = io}" primrec (nonexhaustive) last :: "'a list \<Rightarrow> 'a" where "last (x # xs) = (if xs = [] then x else last xs)" class zero = fixes zero :: 'a ("0") abbreviation length :: "'a list \<Rightarrow> nat" where "length \<equiv> size" primrec zip :: "'a list \<Rightarrow> 'b list \<Rightarrow> ('a \<times> 'b) list" where "zip xs [] = []" | zip_Cons: "zip xs (y # ys) = (case xs of [] \<Rightarrow> [] | z # zs \<Rightarrow> (z, y) # zip zs ys)" \<comment> \<open>Warning: simpset does not contain this definition, but separate theorems for \<open>xs = []\<close> and \<open>xs = z # zs\<close>\<close> inductive path :: "('state, 'input, 'output) fsm \<Rightarrow> 'state \<Rightarrow> ('state, 'input, 'output) path \<Rightarrow> bool" where nil[intro!] : "q \<in> states M \<Longrightarrow> path M q []" | cons[intro!] : "t \<in> transitions M \<Longrightarrow> path M (t_target t) ts \<Longrightarrow> path M (t_source t) (t#ts)"
###output path ?M (?xs || ?tr) ?q \<Longrightarrow> length ?xs = length ?tr \<Longrightarrow> 0 < length ?xs \<Longrightarrow> last ?tr \<in> io_targets ?M ?q ?xs###end
Pi_Calculus/Rel
Relation.Range_empty_iff
null
(Range ?r = {}) = (?r = {})
(?H1 x_1 = ?H2) = (x_1 = ?H3)
[ "Set.empty", "Relation.Range" ]
[ "'a set", "('a \\<times> 'b) set \\<Rightarrow> 'b set" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "inductive_set Range :: \"('a \\<times> 'b) set \\<Rightarrow> 'b set\" for r :: \"('a \\<times> 'b) set\"\n where RangeI [intro]: \"(a, b) \\<in> r \\<Longrightarrow> b \\<in> Range r\"" ]
lemma_object
###symbols Set.empty :::: 'a set Relation.Range :::: ('a \<times> 'b) set \<Rightarrow> 'b set ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" inductive_set Range :: "('a \<times> 'b) set \<Rightarrow> 'b set" for r :: "('a \<times> 'b) set" where RangeI [intro]: "(a, b) \<in> r \<Longrightarrow> b \<in> Range r"
###output (Range ?r = {}) = (?r = {})###end
Q0_Metatheory/Boolean_Algebra
Boolean_Algebras.inf1E
null
(?A \<sqinter> ?B) ?x \<Longrightarrow> (?A ?x \<Longrightarrow> ?B ?x \<Longrightarrow> ?P) \<Longrightarrow> ?P
\<lbrakk> ?H1 x_1 x_2 x_3; \<lbrakk>x_1 x_3; x_2 x_3\<rbrakk> \<Longrightarrow> x_4\<rbrakk> \<Longrightarrow> x_4
[ "Lattices.inf_class.inf" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class inf =\n fixes inf :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"\\<sqinter>\" 70)" ]
lemma_object
###symbols Lattices.inf_class.inf :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class inf = fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70)
###output (?A \<sqinter> ?B) ?x \<Longrightarrow> (?A ?x \<Longrightarrow> ?B ?x \<Longrightarrow> ?P) \<Longrightarrow> ?P###end
Euler_Polyhedron_Formula/Euler_Formula
Euler_Formula.hyperplane_cellcomplex_diff
lemma hyperplane_cellcomplex_diff: "\<lbrakk>hyperplane_cellcomplex A S; hyperplane_cellcomplex A T\<rbrakk> \<Longrightarrow> hyperplane_cellcomplex A (S - T)"
hyperplane_cellcomplex ?A ?S \<Longrightarrow> hyperplane_cellcomplex ?A ?T \<Longrightarrow> hyperplane_cellcomplex ?A (?S - ?T)
\<lbrakk> ?H1 x_1 x_2; ?H1 x_1 x_3\<rbrakk> \<Longrightarrow> ?H1 x_1 (?H2 x_2 x_3)
[ "Groups.minus_class.minus", "Euler_Formula.hyperplane_cellcomplex" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "('a \\<times> real) set \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "definition hyperplane_cellcomplex \n where \"hyperplane_cellcomplex A S \\<equiv>\n \\<exists>\\<T>. (\\<forall>C \\<in> \\<T>. hyperplane_cell A C) \\<and> S = \\<Union>\\<T>\"" ]
lemma_object
###symbols Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Euler_Formula.hyperplane_cellcomplex :::: ('a \<times> real) set \<Rightarrow> 'a set \<Rightarrow> bool ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) definition hyperplane_cellcomplex where "hyperplane_cellcomplex A S \<equiv> \<exists>\<T>. (\<forall>C \<in> \<T>. hyperplane_cell A C) \<and> S = \<Union>\<T>"
###output hyperplane_cellcomplex ?A ?S \<Longrightarrow> hyperplane_cellcomplex ?A ?T \<Longrightarrow> hyperplane_cellcomplex ?A (?S - ?T)###end
Word_Lib/More_Word
More_Word.and_mask_eq_iff_le_mask
lemma and_mask_eq_iff_le_mask: \<open>w AND mask n = w \<longleftrightarrow> w \<le> mask n\<close> for w :: \<open>'a::len word\<close>
(and ?w (mask ?n) = ?w) = (?w \<le> mask ?n)
(?H1 x_1 (?H2 x_2) = x_1) = (x_1 \<le> ?H2 x_2)
[ "Bit_Operations.semiring_bit_operations_class.mask", "Bit_Operations.semiring_bit_operations_class.and" ]
[ "nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a" ]
[ "class semiring_bit_operations = semiring_bits +\n fixes \"and\" :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>AND\\<close> 64)\n and or :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>OR\\<close> 59)\n and xor :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>XOR\\<close> 59)\n and mask :: \\<open>nat \\<Rightarrow> 'a\\<close>\n and set_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and unset_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and flip_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and push_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and drop_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and take_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n assumes and_rec: \\<open>a AND b = of_bool (odd a \\<and> odd b) + 2 * ((a div 2) AND (b div 2))\\<close>\n and or_rec: \\<open>a OR b = of_bool (odd a \\<or> odd b) + 2 * ((a div 2) OR (b div 2))\\<close>\n and xor_rec: \\<open>a XOR b = of_bool (odd a \\<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\\<close>\n and mask_eq_exp_minus_1: \\<open>mask n = 2 ^ n - 1\\<close>\n and set_bit_eq_or: \\<open>set_bit n a = a OR push_bit n 1\\<close>\n and unset_bit_eq_or_xor: \\<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\\<close>\n and flip_bit_eq_xor: \\<open>flip_bit n a = a XOR push_bit n 1\\<close>\n and push_bit_eq_mult: \\<open>push_bit n a = a * 2 ^ n\\<close>\n and drop_bit_eq_div: \\<open>drop_bit n a = a div 2 ^ n\\<close>\n and take_bit_eq_mod: \\<open>take_bit n a = a mod 2 ^ n\\<close>\nbegin", "class semiring_bit_operations = semiring_bits +\n fixes \"and\" :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>AND\\<close> 64)\n and or :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>OR\\<close> 59)\n and xor :: \\<open>'a \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close> (infixr \\<open>XOR\\<close> 59)\n and mask :: \\<open>nat \\<Rightarrow> 'a\\<close>\n and set_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and unset_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and flip_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and push_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and drop_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n and take_bit :: \\<open>nat \\<Rightarrow> 'a \\<Rightarrow> 'a\\<close>\n assumes and_rec: \\<open>a AND b = of_bool (odd a \\<and> odd b) + 2 * ((a div 2) AND (b div 2))\\<close>\n and or_rec: \\<open>a OR b = of_bool (odd a \\<or> odd b) + 2 * ((a div 2) OR (b div 2))\\<close>\n and xor_rec: \\<open>a XOR b = of_bool (odd a \\<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\\<close>\n and mask_eq_exp_minus_1: \\<open>mask n = 2 ^ n - 1\\<close>\n and set_bit_eq_or: \\<open>set_bit n a = a OR push_bit n 1\\<close>\n and unset_bit_eq_or_xor: \\<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\\<close>\n and flip_bit_eq_xor: \\<open>flip_bit n a = a XOR push_bit n 1\\<close>\n and push_bit_eq_mult: \\<open>push_bit n a = a * 2 ^ n\\<close>\n and drop_bit_eq_div: \\<open>drop_bit n a = a div 2 ^ n\\<close>\n and take_bit_eq_mod: \\<open>take_bit n a = a mod 2 ^ n\\<close>\nbegin" ]
lemma_object
###symbols Bit_Operations.semiring_bit_operations_class.mask :::: nat \<Rightarrow> 'a Bit_Operations.semiring_bit_operations_class.and :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a ###defs class semiring_bit_operations = semiring_bits + fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>AND\<close> 64) and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>OR\<close> 59) and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>XOR\<close> 59) and mask :: \<open>nat \<Rightarrow> 'a\<close> and set_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and unset_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and push_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and drop_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> assumes and_rec: \<open>a AND b = of_bool (odd a \<and> odd b) + 2 * ((a div 2) AND (b div 2))\<close> and or_rec: \<open>a OR b = of_bool (odd a \<or> odd b) + 2 * ((a div 2) OR (b div 2))\<close> and xor_rec: \<open>a XOR b = of_bool (odd a \<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\<close> and mask_eq_exp_minus_1: \<open>mask n = 2 ^ n - 1\<close> and set_bit_eq_or: \<open>set_bit n a = a OR push_bit n 1\<close> and unset_bit_eq_or_xor: \<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\<close> and flip_bit_eq_xor: \<open>flip_bit n a = a XOR push_bit n 1\<close> and push_bit_eq_mult: \<open>push_bit n a = a * 2 ^ n\<close> and drop_bit_eq_div: \<open>drop_bit n a = a div 2 ^ n\<close> and take_bit_eq_mod: \<open>take_bit n a = a mod 2 ^ n\<close> begin class semiring_bit_operations = semiring_bits + fixes "and" :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>AND\<close> 64) and or :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>OR\<close> 59) and xor :: \<open>'a \<Rightarrow> 'a \<Rightarrow> 'a\<close> (infixr \<open>XOR\<close> 59) and mask :: \<open>nat \<Rightarrow> 'a\<close> and set_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and unset_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and flip_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and push_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and drop_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> and take_bit :: \<open>nat \<Rightarrow> 'a \<Rightarrow> 'a\<close> assumes and_rec: \<open>a AND b = of_bool (odd a \<and> odd b) + 2 * ((a div 2) AND (b div 2))\<close> and or_rec: \<open>a OR b = of_bool (odd a \<or> odd b) + 2 * ((a div 2) OR (b div 2))\<close> and xor_rec: \<open>a XOR b = of_bool (odd a \<noteq> odd b) + 2 * ((a div 2) XOR (b div 2))\<close> and mask_eq_exp_minus_1: \<open>mask n = 2 ^ n - 1\<close> and set_bit_eq_or: \<open>set_bit n a = a OR push_bit n 1\<close> and unset_bit_eq_or_xor: \<open>unset_bit n a = (a OR push_bit n 1) XOR push_bit n 1\<close> and flip_bit_eq_xor: \<open>flip_bit n a = a XOR push_bit n 1\<close> and push_bit_eq_mult: \<open>push_bit n a = a * 2 ^ n\<close> and drop_bit_eq_div: \<open>drop_bit n a = a div 2 ^ n\<close> and take_bit_eq_mod: \<open>take_bit n a = a mod 2 ^ n\<close> begin
###output (and ?w (mask ?n) = ?w) = (?w \<le> mask ?n)###end
Collections/ICF/CollectionsV1
CollectionsV1.ts_correct(31)
null
ts.invar ?s1.0 \<Longrightarrow> ts.invar ?s2.0 \<Longrightarrow> ts.disjoint_witness ?s1.0 ?s2.0 = None \<Longrightarrow> ts.\<alpha> ?s1.0 \<inter> ts.\<alpha> ?s2.0 = {}
\<lbrakk> ?H1 x_1; ?H1 x_2; ?H2 x_1 x_2 = ?H3\<rbrakk> \<Longrightarrow> ?H4 (?H5 x_1) (?H5 x_2) = ?H6
[ "Set.empty", "TrieSetImpl.ts.\\<alpha>", "Set.inter", "Option.option.None", "TrieSetImpl.ts.disjoint_witness", "TrieSetImpl.ts.invar" ]
[ "'a set", "('a, unit) trie \\<Rightarrow> 'a list set", "'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a option", "('a, unit) trie \\<Rightarrow> ('a, unit) trie \\<Rightarrow> 'a list option", "('a, unit) trie \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "abbreviation inter :: \"'a set \\<Rightarrow> 'a set \\<Rightarrow> 'a set\" (infixl \"\\<inter>\" 70)\n where \"(\\<inter>) \\<equiv> inf\"", "datatype 'a option =\n None\n | Some (the: 'a)" ]
lemma_object
###symbols Set.empty :::: 'a set TrieSetImpl.ts.\<alpha> :::: ('a, unit) trie \<Rightarrow> 'a list set Set.inter :::: 'a set \<Rightarrow> 'a set \<Rightarrow> 'a set Option.option.None :::: 'a option TrieSetImpl.ts.disjoint_witness :::: ('a, unit) trie \<Rightarrow> ('a, unit) trie \<Rightarrow> 'a list option TrieSetImpl.ts.invar :::: ('a, unit) trie \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70) where "(\<inter>) \<equiv> inf" datatype 'a option = None | Some (the: 'a)
###output ts.invar ?s1.0 \<Longrightarrow> ts.invar ?s2.0 \<Longrightarrow> ts.disjoint_witness ?s1.0 ?s2.0 = None \<Longrightarrow> ts.\<alpha> ?s1.0 \<inter> ts.\<alpha> ?s2.0 = {}###end
LTL3_Semantics/LTL3
LTL3.unroll_Union
lemma unroll_Union: \<open>\<Squnion> (range P) = P 0 \<squnion> (\<Squnion> (range (P \<circ> Suc)))\<close>
\<Squnion> (range ?P) = ?P 0 \<squnion> \<Squnion> (range (?P \<circ> Suc))
?H1 (?H2 x_1) = ?H3 (x_1 ?H4) (?H1 (?H2 (?H5 x_1 ?H6)))
[ "Nat.Suc", "Fun.comp", "Groups.zero_class.zero", "Traces.union_dset", "Set.range", "Traces.Union_cset" ]
[ "nat \\<Rightarrow> nat", "('a \\<Rightarrow> 'b) \\<Rightarrow> ('c \\<Rightarrow> 'a) \\<Rightarrow> 'c \\<Rightarrow> 'b", "'a", "'a dset \\<Rightarrow> 'a dset \\<Rightarrow> 'a dset", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set", "'a dset set \\<Rightarrow> 'a dset" ]
[ "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "definition comp :: \"('b \\<Rightarrow> 'c) \\<Rightarrow> ('a \\<Rightarrow> 'b) \\<Rightarrow> 'a \\<Rightarrow> 'c\" (infixl \"\\<circ>\" 55)\n where \"f \\<circ> g = (\\<lambda>x. f (g x))\"", "class zero =\n fixes zero :: 'a (\"0\")", "abbreviation union_dset :: \\<open>'a dset \\<Rightarrow> 'a dset \\<Rightarrow> 'a dset\\<close> (infixl \\<open>\\<squnion>\\<close> 65) where\n \\<open>X \\<squnion> Y \\<equiv> \\<Squnion> {X,Y}\\<close>", "abbreviation range :: \"('a \\<Rightarrow> 'b) \\<Rightarrow> 'b set\" \\<comment> \\<open>of function\\<close>\n where \"range f \\<equiv> f ` UNIV\"" ]
lemma_object
###symbols Nat.Suc :::: nat \<Rightarrow> nat Fun.comp :::: ('a \<Rightarrow> 'b) \<Rightarrow> ('c \<Rightarrow> 'a) \<Rightarrow> 'c \<Rightarrow> 'b Groups.zero_class.zero :::: 'a Traces.union_dset :::: 'a dset \<Rightarrow> 'a dset \<Rightarrow> 'a dset Set.range :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'b set Traces.Union_cset :::: 'a dset set \<Rightarrow> 'a dset ###defs definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>" 55) where "f \<circ> g = (\<lambda>x. f (g x))" class zero = fixes zero :: 'a ("0") abbreviation union_dset :: \<open>'a dset \<Rightarrow> 'a dset \<Rightarrow> 'a dset\<close> (infixl \<open>\<squnion>\<close> 65) where \<open>X \<squnion> Y \<equiv> \<Squnion> {X,Y}\<close> abbreviation range :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b set" \<comment> \<open>of function\<close> where "range f \<equiv> f ` UNIV"
###output \<Squnion> (range ?P) = ?P 0 \<squnion> \<Squnion> (range (?P \<circ> Suc))###end
Dirichlet_Series/Dirichlet_Product
Dirichlet_Product.of_int_dirichlet_inverse
lemma of_int_dirichlet_inverse: "of_int (dirichlet_inverse f i n) = dirichlet_inverse (\<lambda>n. of_int (f n)) (of_int i) n"
of_int (dirichlet_inverse ?f ?i ?n) = dirichlet_inverse (\<lambda>n. of_int (?f n)) (of_int ?i) ?n
?H1 (?H2 x_1 x_2 x_3) = ?H3 (\<lambda>y_0. ?H1 (x_1 y_0)) (?H1 x_2) x_3
[ "Dirichlet_Product.dirichlet_inverse", "Int.ring_1_class.of_int" ]
[ "(nat \\<Rightarrow> 'a) \\<Rightarrow> 'a \\<Rightarrow> nat \\<Rightarrow> 'a", "int \\<Rightarrow> 'a" ]
[ "fun dirichlet_inverse :: \"(nat \\<Rightarrow> 'a :: comm_ring_1) \\<Rightarrow> 'a \\<Rightarrow> nat \\<Rightarrow> 'a\" where\n \"dirichlet_inverse f i n = \n (if n = 0 then 0 else if n = 1 then i\n else -i * (\\<Sum>d | d dvd n \\<and> d < n. f (n div d) * dirichlet_inverse f i d))\"" ]
lemma_object
###symbols Dirichlet_Product.dirichlet_inverse :::: (nat \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a Int.ring_1_class.of_int :::: int \<Rightarrow> 'a ###defs fun dirichlet_inverse :: "(nat \<Rightarrow> 'a :: comm_ring_1) \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a" where "dirichlet_inverse f i n = (if n = 0 then 0 else if n = 1 then i else -i * (\<Sum>d | d dvd n \<and> d < n. f (n div d) * dirichlet_inverse f i d))"
###output of_int (dirichlet_inverse ?f ?i ?n) = dirichlet_inverse (\<lambda>n. of_int (?f n)) (of_int ?i) ?n###end
Containers/Compatibility_Containers_Regular_Sets
Compatibility_Containers_Regular_Sets.comparator_rexp_simps(14)
null
comparator_rexp ?comp\<^sub>'\<^sub>a (Atom ?x) One = Gt
?H1 x_1 (?H2 x_2) ?H3 = ?H4
[ "Comparator.order.Gt", "Regular_Exp.rexp.One", "Regular_Exp.rexp.Atom", "Compatibility_Containers_Regular_Sets.comparator_rexp" ]
[ "order", "'a rexp", "'a \\<Rightarrow> 'a rexp", "('a \\<Rightarrow> 'a \\<Rightarrow> order) \\<Rightarrow> 'a rexp \\<Rightarrow> 'a rexp \\<Rightarrow> order" ]
[ "datatype (atoms: 'a) rexp =\n is_Zero: Zero |\n is_One: One |\n Atom 'a |\n Plus \"('a rexp)\" \"('a rexp)\" |\n Times \"('a rexp)\" \"('a rexp)\" |\n Star \"('a rexp)\"", "datatype (atoms: 'a) rexp =\n is_Zero: Zero |\n is_One: One |\n Atom 'a |\n Plus \"('a rexp)\" \"('a rexp)\" |\n Times \"('a rexp)\" \"('a rexp)\" |\n Star \"('a rexp)\"" ]
lemma_object
###symbols Comparator.order.Gt :::: order Regular_Exp.rexp.One :::: 'a rexp Regular_Exp.rexp.Atom :::: 'a \<Rightarrow> 'a rexp Compatibility_Containers_Regular_Sets.comparator_rexp :::: ('a \<Rightarrow> 'a \<Rightarrow> order) \<Rightarrow> 'a rexp \<Rightarrow> 'a rexp \<Rightarrow> order ###defs datatype (atoms: 'a) rexp = is_Zero: Zero | is_One: One | Atom 'a | Plus "('a rexp)" "('a rexp)" | Times "('a rexp)" "('a rexp)" | Star "('a rexp)" datatype (atoms: 'a) rexp = is_Zero: Zero | is_One: One | Atom 'a | Plus "('a rexp)" "('a rexp)" | Times "('a rexp)" "('a rexp)" | Star "('a rexp)"
###output comparator_rexp ?comp\<^sub>'\<^sub>a (Atom ?x) One = Gt###end
List_Update/Prob_Theory
Prob_Theory.map_hd_list_pmf
lemma map_hd_list_pmf: "map_pmf hd (bv (Suc n)) = bernoulli_pmf (5 / 10)"
map_pmf hd (bv (Suc ?n)) = bernoulli_pmf (5 / 10)
?H1 ?H2 (?H3 (?H4 x_1)) = ?H5 (?H6 (?H7 (?H8 (?H9 ?H10))) (?H7 (?H9 (?H8 (?H9 ?H10)))))
[ "Num.num.One", "Num.num.Bit0", "Num.num.Bit1", "Num.numeral_class.numeral", "Fields.inverse_class.inverse_divide", "Probability_Mass_Function.bernoulli_pmf", "Nat.Suc", "Prob_Theory.bv", "List.list.hd", "Probability_Mass_Function.map_pmf" ]
[ "num", "num \\<Rightarrow> num", "num \\<Rightarrow> num", "num \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "real \\<Rightarrow> bool pmf", "nat \\<Rightarrow> nat", "nat \\<Rightarrow> bool list pmf", "'a list \\<Rightarrow> 'a", "('a \\<Rightarrow> 'b) \\<Rightarrow> 'a pmf \\<Rightarrow> 'b pmf" ]
[ "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "datatype num = One | Bit0 num | Bit1 num", "primrec numeral :: \"num \\<Rightarrow> 'a\"\n where\n numeral_One: \"numeral One = 1\"\n | numeral_Bit0: \"numeral (Bit0 n) = numeral n + numeral n\"\n | numeral_Bit1: \"numeral (Bit1 n) = numeral n + numeral n + 1\"", "class inverse = divide +\n fixes inverse :: \"'a \\<Rightarrow> 'a\"\nbegin", "definition Suc :: \"nat \\<Rightarrow> nat\"\n where \"Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))\"", "fun bv:: \"nat \\<Rightarrow> bool list pmf\" where\n \"bv 0 = return_pmf []\"\n| \"bv (Suc n) = do {\n (xs::bool list) \\<leftarrow> bv n;\n (x::bool) \\<leftarrow> (bernoulli_pmf 0.5);\n return_pmf (x#xs)\n }\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition \"map_pmf f M = bind_pmf M (\\<lambda>x. return_pmf (f x))\"" ]
lemma_object
###symbols Num.num.One :::: num Num.num.Bit0 :::: num \<Rightarrow> num Num.num.Bit1 :::: num \<Rightarrow> num Num.numeral_class.numeral :::: num \<Rightarrow> 'a Fields.inverse_class.inverse_divide :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Probability_Mass_Function.bernoulli_pmf :::: real \<Rightarrow> bool pmf Nat.Suc :::: nat \<Rightarrow> nat Prob_Theory.bv :::: nat \<Rightarrow> bool list pmf List.list.hd :::: 'a list \<Rightarrow> 'a Probability_Mass_Function.map_pmf :::: ('a \<Rightarrow> 'b) \<Rightarrow> 'a pmf \<Rightarrow> 'b pmf ###defs datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num datatype num = One | Bit0 num | Bit1 num primrec numeral :: "num \<Rightarrow> 'a" where numeral_One: "numeral One = 1" | numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" class inverse = divide + fixes inverse :: "'a \<Rightarrow> 'a" begin definition Suc :: "nat \<Rightarrow> nat" where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" fun bv:: "nat \<Rightarrow> bool list pmf" where "bv 0 = return_pmf []" | "bv (Suc n) = do { (xs::bool list) \<leftarrow> bv n; (x::bool) \<leftarrow> (bernoulli_pmf 0.5); return_pmf (x#xs) }" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition "map_pmf f M = bind_pmf M (\<lambda>x. return_pmf (f x))"
###output map_pmf hd (bv (Suc ?n)) = bernoulli_pmf (5 / 10)###end
ROBDD/Pointer_Map
Pointer_Map.pointermap_insert_in
lemma pointermap_insert_in: "u = (pointermap_insert a m) \<Longrightarrow> pm_pth u (the (getentry u a)) = a"
?u = pointermap_insert ?a ?m \<Longrightarrow> pm_pth ?u (the (getentry ?u ?a)) = ?a
x_1 = ?H1 x_2 x_3 \<Longrightarrow> ?H2 x_1 (?H3 (?H4 x_1 x_2)) = x_2
[ "Pointer_Map.pointermap.getentry", "Option.option.the", "Pointer_Map.pm_pth", "Pointer_Map.pointermap_insert" ]
[ "('a, 'b) pointermap_scheme \\<Rightarrow> 'a \\<Rightarrow> nat option", "'a option \\<Rightarrow> 'a", "('a, 'b) pointermap_scheme \\<Rightarrow> nat \\<Rightarrow> 'a", "'a \\<Rightarrow> ('a, 'b) pointermap_scheme \\<Rightarrow> 'a pointermap" ]
[ "datatype 'a option =\n None\n | Some (the: 'a)", "definition \"pm_pth m p \\<equiv> entries m ! p\"", "definition \"pointermap_insert a m \\<equiv> \\<lparr>entries = (entries m)@[a], getentry = (getentry m)(a \\<mapsto> length (entries m))\\<rparr>\"" ]
lemma_object
###symbols Pointer_Map.pointermap.getentry :::: ('a, 'b) pointermap_scheme \<Rightarrow> 'a \<Rightarrow> nat option Option.option.the :::: 'a option \<Rightarrow> 'a Pointer_Map.pm_pth :::: ('a, 'b) pointermap_scheme \<Rightarrow> nat \<Rightarrow> 'a Pointer_Map.pointermap_insert :::: 'a \<Rightarrow> ('a, 'b) pointermap_scheme \<Rightarrow> 'a pointermap ###defs datatype 'a option = None | Some (the: 'a) definition "pm_pth m p \<equiv> entries m ! p" definition "pointermap_insert a m \<equiv> \<lparr>entries = (entries m)@[a], getentry = (getentry m)(a \<mapsto> length (entries m))\<rparr>"
###output ?u = pointermap_insert ?a ?m \<Longrightarrow> pm_pth ?u (the (getentry ?u ?a)) = ?a###end
Higher_Order_Terms/Find_First
Find_First.find_first_none
lemma find_first_none: "x \<notin> set xs \<Longrightarrow> find_first x xs = None"
?x \<notin> set ?xs \<Longrightarrow> find_first ?x ?xs = None
?H1 x_1 (?H2 x_2) \<Longrightarrow> ?H3 x_1 x_2 = ?H4
[ "Option.option.None", "Find_First.find_first", "List.list.set", "Set.not_member" ]
[ "'a option", "'a \\<Rightarrow> 'a list \\<Rightarrow> nat option", "'a list \\<Rightarrow> 'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> bool" ]
[ "datatype 'a option =\n None\n | Some (the: 'a)", "fun find_first :: \"'a \\<Rightarrow> 'a list \\<Rightarrow> nat option\" where\n\"find_first _ [] = None\" |\n\"find_first x (y # ys) = (if x = y then Some 0 else map_option Suc (find_first x ys))\"", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "abbreviation not_member\n where \"not_member x A \\<equiv> \\<not> (x \\<in> A)\" \\<comment> \\<open>non-membership\\<close>" ]
lemma_object
###symbols Option.option.None :::: 'a option Find_First.find_first :::: 'a \<Rightarrow> 'a list \<Rightarrow> nat option List.list.set :::: 'a list \<Rightarrow> 'a set Set.not_member :::: 'a \<Rightarrow> 'a set \<Rightarrow> bool ###defs datatype 'a option = None | Some (the: 'a) fun find_first :: "'a \<Rightarrow> 'a list \<Rightarrow> nat option" where "find_first _ [] = None" | "find_first x (y # ys) = (if x = y then Some 0 else map_option Suc (find_first x ys))" datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" abbreviation not_member where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> \<open>non-membership\<close>
###output ?x \<notin> set ?xs \<Longrightarrow> find_first ?x ?xs = None###end
Jordan_Normal_Form/Jordan_Normal_Form
Jordan_Normal_Form.jordan_nf_matrix_poly_bound
lemma jordan_nf_matrix_poly_bound: fixes n_as :: "(nat \<times> 'a)list" assumes A: "A \<in> carrier_mat n n" and n_as: "\<And> n a. (n,a) \<in> set n_as \<Longrightarrow> n > 0 \<Longrightarrow> norm a \<le> 1" and N: "\<And> n a. (n,a) \<in> set n_as \<Longrightarrow> norm a = 1 \<Longrightarrow> n \<le> N" and jnf: "jordan_nf A n_as" shows "\<exists> c1 c2. \<forall> k. norm_bound (A ^\<^sub>m k) (c1 + c2 * of_nat k ^ (N - 1))"
?A \<in> carrier_mat ?n ?n \<Longrightarrow> (\<And>n a. (n, a) \<in> set ?n_as \<Longrightarrow> 0 < n \<Longrightarrow> norm a \<le> 1) \<Longrightarrow> (\<And>n a. (n, a) \<in> set ?n_as \<Longrightarrow> norm a = 1 \<Longrightarrow> n \<le> ?N) \<Longrightarrow> jordan_nf ?A ?n_as \<Longrightarrow> \<exists>c1 c2. \<forall>k. norm_bound (?A ^\<^sub>m k) (c1 + c2 * real k ^ (?N - 1))
\<lbrakk>x_1 \<in> ?H1 x_2 x_2; \<And>y_0 y_1. \<lbrakk>(y_0, y_1) \<in> ?H2 x_3; ?H3 < y_0\<rbrakk> \<Longrightarrow> ?H4 y_1 \<le> ?H5; \<And>y_2 y_3. \<lbrakk>(y_2, y_3) \<in> ?H2 x_3; ?H4 y_3 = ?H5\<rbrakk> \<Longrightarrow> y_2 \<le> x_4; ?H6 x_1 x_3\<rbrakk> \<Longrightarrow> \<exists>y_4 y_5. \<forall>y_6. ?H7 (?H8 x_1 y_6) (?H9 y_4 (?H10 y_5 (?H11 (?H12 y_6) (?H13 x_4 ?H14))))
[ "Groups.minus_class.minus", "Real.real", "Power.power_class.power", "Groups.times_class.times", "Groups.plus_class.plus", "Matrix.pow_mat", "Jordan_Normal_Form.norm_bound", "Jordan_Normal_Form.jordan_nf", "Groups.one_class.one", "Real_Vector_Spaces.norm_class.norm", "Groups.zero_class.zero", "List.list.set", "Matrix.carrier_mat" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "nat \\<Rightarrow> real", "'a \\<Rightarrow> nat \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a \\<Rightarrow> 'a \\<Rightarrow> 'a", "'a mat \\<Rightarrow> nat \\<Rightarrow> 'a mat", "'a mat \\<Rightarrow> real \\<Rightarrow> bool", "'a mat \\<Rightarrow> (nat \\<times> 'a) list \\<Rightarrow> bool", "'a", "'a \\<Rightarrow> real", "'a", "'a list \\<Rightarrow> 'a set", "nat \\<Rightarrow> nat \\<Rightarrow> 'a mat set" ]
[ "class minus =\n fixes minus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"-\" 65)", "abbreviation real :: \"nat \\<Rightarrow> real\"\n where \"real \\<equiv> of_nat\"", "primrec power :: \"'a \\<Rightarrow> nat \\<Rightarrow> 'a\" (infixr \"^\" 80)\n where\n power_0: \"a ^ 0 = 1\"\n | power_Suc: \"a ^ Suc n = a * a ^ n\"", "class times =\n fixes times :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"*\" 70)", "class plus =\n fixes plus :: \"'a \\<Rightarrow> 'a \\<Rightarrow> 'a\" (infixl \"+\" 65)", "fun pow_mat :: \"'a :: semiring_1 mat \\<Rightarrow> nat \\<Rightarrow> 'a mat\" (infixr \"^\\<^sub>m\" 75) where\n \"A ^\\<^sub>m 0 = 1\\<^sub>m (dim_row A)\"\n| \"A ^\\<^sub>m (Suc k) = A ^\\<^sub>m k * A\"", "definition norm_bound :: \"'a mat \\<Rightarrow> real \\<Rightarrow> bool\" where\n \"norm_bound A b \\<equiv> \\<forall> i j. i < dim_row A \\<longrightarrow> j < dim_col A \\<longrightarrow> norm (A $$ (i,j)) \\<le> b\"", "definition jordan_nf :: \"'a :: semiring_1 mat \\<Rightarrow> (nat \\<times> 'a)list \\<Rightarrow> bool\" where\n \"jordan_nf A n_as \\<equiv> (0 \\<notin> fst ` set n_as \\<and> similar_mat A (jordan_matrix n_as))\"", "class one =\n fixes one :: 'a (\"1\")", "class norm =\n fixes norm :: \"'a \\<Rightarrow> real\"", "class zero =\n fixes zero :: 'a (\"0\")", "datatype (set: 'a) list =\n Nil (\"[]\")\n | Cons (hd: 'a) (tl: \"'a list\") (infixr \"#\" 65)\nfor\n map: map\n rel: list_all2\n pred: list_all\nwhere\n \"tl [] = []\"", "definition carrier_mat :: \"nat \\<Rightarrow> nat \\<Rightarrow> 'a mat set\"\n where \"carrier_mat nr nc = { m . dim_row m = nr \\<and> dim_col m = nc}\"" ]
lemma_object
###symbols Groups.minus_class.minus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Real.real :::: nat \<Rightarrow> real Power.power_class.power :::: 'a \<Rightarrow> nat \<Rightarrow> 'a Groups.times_class.times :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Groups.plus_class.plus :::: 'a \<Rightarrow> 'a \<Rightarrow> 'a Matrix.pow_mat :::: 'a mat \<Rightarrow> nat \<Rightarrow> 'a mat Jordan_Normal_Form.norm_bound :::: 'a mat \<Rightarrow> real \<Rightarrow> bool Jordan_Normal_Form.jordan_nf :::: 'a mat \<Rightarrow> (nat \<times> 'a) list \<Rightarrow> bool Groups.one_class.one :::: 'a Real_Vector_Spaces.norm_class.norm :::: 'a \<Rightarrow> real Groups.zero_class.zero :::: 'a List.list.set :::: 'a list \<Rightarrow> 'a set Matrix.carrier_mat :::: nat \<Rightarrow> nat \<Rightarrow> 'a mat set ###defs class minus = fixes minus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "-" 65) abbreviation real :: "nat \<Rightarrow> real" where "real \<equiv> of_nat" primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where power_0: "a ^ 0 = 1" | power_Suc: "a ^ Suc n = a * a ^ n" class times = fixes times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "*" 70) class plus = fixes plus :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "+" 65) fun pow_mat :: "'a :: semiring_1 mat \<Rightarrow> nat \<Rightarrow> 'a mat" (infixr "^\<^sub>m" 75) where "A ^\<^sub>m 0 = 1\<^sub>m (dim_row A)" | "A ^\<^sub>m (Suc k) = A ^\<^sub>m k * A" definition norm_bound :: "'a mat \<Rightarrow> real \<Rightarrow> bool" where "norm_bound A b \<equiv> \<forall> i j. i < dim_row A \<longrightarrow> j < dim_col A \<longrightarrow> norm (A $$ (i,j)) \<le> b" definition jordan_nf :: "'a :: semiring_1 mat \<Rightarrow> (nat \<times> 'a)list \<Rightarrow> bool" where "jordan_nf A n_as \<equiv> (0 \<notin> fst ` set n_as \<and> similar_mat A (jordan_matrix n_as))" class one = fixes one :: 'a ("1") class norm = fixes norm :: "'a \<Rightarrow> real" class zero = fixes zero :: 'a ("0") datatype (set: 'a) list = Nil ("[]") | Cons (hd: 'a) (tl: "'a list") (infixr "#" 65) for map: map rel: list_all2 pred: list_all where "tl [] = []" definition carrier_mat :: "nat \<Rightarrow> nat \<Rightarrow> 'a mat set" where "carrier_mat nr nc = { m . dim_row m = nr \<and> dim_col m = nc}"
###output ?A \<in> carrier_mat ?n ?n \<Longrightarrow> (\<And>n a. (n, a) \<in> set ?n_as \<Longrightarrow> 0 < n \<Longrightarrow> norm a \<le> 1) \<Longrightarrow> (\<And>n a. (n, a) \<in> set ?n_as \<Longrightarrow> norm a = 1 \<Longrightarrow> n \<le> ?N) \<Longrightarrow> jordan_nf ?A ?n_as \<Longrightarrow> \<exists>c1 c2. \<forall>k. norm_bound (?A ^\<^sub>m k) (c1 + c2 * real k ^ (?N - 1))###end
Complex_Bounded_Operators/Complex_Bounded_Linear_Function
Complex_Bounded_Linear_Function.riesz_representation_cblinfun_existence
theorem riesz_representation_cblinfun_existence: \<comment> \<open>Theorem 3.4 in \<^cite>\<open>conway2013course\<close>\<close> fixes f::\<open>'a::chilbert_space \<Rightarrow>\<^sub>C\<^sub>L complex\<close> shows \<open>\<exists>t. \<forall>x. f *\<^sub>V x = (t \<bullet>\<^sub>C x)\<close>
\<exists>t. \<forall>x. cblinfun_apply ?f x = t \<bullet>\<^sub>C x
\<exists>y_0. \<forall>y_1. ?H1 x_1 y_1 = ?H2 y_0 y_1
[ "Complex_Inner_Product0.complex_inner_class.cinner", "Complex_Bounded_Linear_Function0.cblinfun.cblinfun_apply" ]
[ "'a \\<Rightarrow> 'a \\<Rightarrow> complex", "('a, 'b) cblinfun \\<Rightarrow> 'a \\<Rightarrow> 'b" ]
[ "class complex_inner = complex_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity +\n fixes cinner :: \"'a \\<Rightarrow> 'a \\<Rightarrow> complex\"\n assumes cinner_commute: \"cinner x y = cnj (cinner y x)\"\n and cinner_add_left: \"cinner (x + y) z = cinner x z + cinner y z\"\n and cinner_scaleC_left [simp]: \"cinner (scaleC r x) y = (cnj r) * (cinner x y)\"\n and cinner_ge_zero [simp]: \"0 \\<le> cinner x x\"\n and cinner_eq_zero_iff [simp]: \"cinner x x = 0 \\<longleftrightarrow> x = 0\"\n and norm_eq_sqrt_cinner: \"norm x = sqrt (cmod (cinner x x))\"\nbegin" ]
lemma_object
###symbols Complex_Inner_Product0.complex_inner_class.cinner :::: 'a \<Rightarrow> 'a \<Rightarrow> complex Complex_Bounded_Linear_Function0.cblinfun.cblinfun_apply :::: ('a, 'b) cblinfun \<Rightarrow> 'a \<Rightarrow> 'b ###defs class complex_inner = complex_vector + sgn_div_norm + dist_norm + uniformity_dist + open_uniformity + fixes cinner :: "'a \<Rightarrow> 'a \<Rightarrow> complex" assumes cinner_commute: "cinner x y = cnj (cinner y x)" and cinner_add_left: "cinner (x + y) z = cinner x z + cinner y z" and cinner_scaleC_left [simp]: "cinner (scaleC r x) y = (cnj r) * (cinner x y)" and cinner_ge_zero [simp]: "0 \<le> cinner x x" and cinner_eq_zero_iff [simp]: "cinner x x = 0 \<longleftrightarrow> x = 0" and norm_eq_sqrt_cinner: "norm x = sqrt (cmod (cinner x x))" begin
###output \<exists>t. \<forall>x. cblinfun_apply ?f x = t \<bullet>\<^sub>C x###end
HyperHoareLogic/Compositionality
Compositionality.not_fv_hyperE
lemma not_fv_hyperE: assumes "not_fv_hyper e I" and "same_mod_updates {e} S S'" and "I S" shows "I S'"
not_fv_hyper ?e ?I \<Longrightarrow> same_mod_updates { ?e} ?S ?S' \<Longrightarrow> ?I ?S \<Longrightarrow> ?I ?S'
\<lbrakk> ?H1 x_1 x_2; ?H2 (?H3 x_1 ?H4) x_3 x_4; x_2 x_3\<rbrakk> \<Longrightarrow> x_2 x_4
[ "Set.empty", "Set.insert", "Compositionality.same_mod_updates", "Compositionality.not_fv_hyper" ]
[ "'a set", "'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set", "'a set \\<Rightarrow> (('a \\<Rightarrow> 'b) \\<times> 'c) set \\<Rightarrow> (('a \\<Rightarrow> 'b) \\<times> 'c) set \\<Rightarrow> bool", "'a \\<Rightarrow> ((('a \\<Rightarrow> 'b) \\<times> 'c) set \\<Rightarrow> bool) \\<Rightarrow> bool" ]
[ "abbreviation empty :: \"'a set\" (\"{}\")\n where \"{} \\<equiv> bot\"", "definition insert :: \"'a \\<Rightarrow> 'a set \\<Rightarrow> 'a set\"\n where insert_compr: \"insert a B = {x. x = a \\<or> x \\<in> B}\"", "definition same_mod_updates where\n \"same_mod_updates vars S S' \\<longleftrightarrow> subset_mod_updates vars S S' \\<and> subset_mod_updates vars S' S\"", "definition not_fv_hyper where\n \"not_fv_hyper t A \\<longleftrightarrow> (\\<forall>S S'. same_mod_updates {t} S S' \\<and> A S \\<longrightarrow> A S')\"" ]
lemma_object
###symbols Set.empty :::: 'a set Set.insert :::: 'a \<Rightarrow> 'a set \<Rightarrow> 'a set Compositionality.same_mod_updates :::: 'a set \<Rightarrow> (('a \<Rightarrow> 'b) \<times> 'c) set \<Rightarrow> (('a \<Rightarrow> 'b) \<times> 'c) set \<Rightarrow> bool Compositionality.not_fv_hyper :::: 'a \<Rightarrow> ((('a \<Rightarrow> 'b) \<times> 'c) set \<Rightarrow> bool) \<Rightarrow> bool ###defs abbreviation empty :: "'a set" ("{}") where "{} \<equiv> bot" definition insert :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a set" where insert_compr: "insert a B = {x. x = a \<or> x \<in> B}" definition same_mod_updates where "same_mod_updates vars S S' \<longleftrightarrow> subset_mod_updates vars S S' \<and> subset_mod_updates vars S' S" definition not_fv_hyper where "not_fv_hyper t A \<longleftrightarrow> (\<forall>S S'. same_mod_updates {t} S S' \<and> A S \<longrightarrow> A S')"
###output not_fv_hyper ?e ?I \<Longrightarrow> same_mod_updates { ?e} ?S ?S' \<Longrightarrow> ?I ?S \<Longrightarrow> ?I ?S'###end
AOT/AOT_misc
AOT_misc.ConceptOfOrdinaryProperty
null
\<^bold>\<turnstile>\<^sub>\<box> H \<Rightarrow> O! \<rightarrow> [\<lambda>x ConceptOf(x,H)]\<down>
H1 x_1 (H2 (H3 (H4 x_2) H5) (H6 (H7 (\<lambda>y_0. H8 y_0 (H4 x_2)))))
[ "AOT_misc.conceptOf", "AOT_syntax.AOT_lambda", "AOT_syntax.AOT_denotes", "AOT_semantics.AOT_ordinary", "AOT_model.AOT_var.AOT_term_of_var", "AOT_misc.FimpG", "AOT_syntax.AOT_imp", "AOT_model.AOT_model_valid_in" ]
[ "\\<kappa> \\<Rightarrow> <\\<kappa>> \\<Rightarrow> \\<o>", "('a \\<Rightarrow> \\<o>) \\<Rightarrow> <'a>", "'a \\<Rightarrow> \\<o>", "<\\<kappa>>", "'a AOT_var \\<Rightarrow> 'a", "<\\<kappa>> \\<Rightarrow> <\\<kappa>> \\<Rightarrow> \\<o>", "\\<o> \\<Rightarrow> \\<o> \\<Rightarrow> \\<o>", "w \\<Rightarrow> \\<o> \\<Rightarrow> bool" ]
[ "consts AOT_denotes :: \\<open>'a::AOT_Term \\<Rightarrow> \\<o>\\<close>\n AOT_imp :: \\<open>[\\<o>, \\<o>] \\<Rightarrow> \\<o>\\<close>\n AOT_not :: \\<open>\\<o> \\<Rightarrow> \\<o>\\<close>\n AOT_box :: \\<open>\\<o> \\<Rightarrow> \\<o>\\<close>\n AOT_act :: \\<open>\\<o> \\<Rightarrow> \\<o>\\<close>\n AOT_forall :: \\<open>('a::AOT_Term \\<Rightarrow> \\<o>) \\<Rightarrow> \\<o>\\<close>\n AOT_eq :: \\<open>'a::AOT_Term \\<Rightarrow> 'a::AOT_Term \\<Rightarrow> \\<o>\\<close>\n AOT_desc :: \\<open>('a::AOT_UnaryIndividualTerm \\<Rightarrow> \\<o>) \\<Rightarrow> 'a\\<close>\n AOT_exe :: \\<open><'a::AOT_IndividualTerm> \\<Rightarrow> 'a \\<Rightarrow> \\<o>\\<close>\n AOT_lambda :: \\<open>('a::AOT_IndividualTerm \\<Rightarrow> \\<o>) \\<Rightarrow> <'a>\\<close>\n AOT_lambda0 :: \\<open>\\<o> \\<Rightarrow> \\<o>\\<close>\n AOT_concrete :: \\<open><'a::AOT_UnaryIndividualTerm> AOT_var\\<close>", "definition AOT_model_valid_in :: \\<open>w\\<Rightarrow>\\<o>\\<Rightarrow>bool\\<close> where\n \\<open>AOT_model_valid_in w \\<phi> \\<equiv> AOT_model_d\\<o> \\<phi> w\\<close>" ]
lemma_object
###symbols AOT_misc.conceptOf :::: \<kappa> \<Rightarrow> <\<kappa>> \<Rightarrow> \<o> AOT_syntax.AOT_lambda :::: ('a \<Rightarrow> \<o>) \<Rightarrow> <'a> AOT_syntax.AOT_denotes :::: 'a \<Rightarrow> \<o> AOT_semantics.AOT_ordinary :::: <\<kappa>> AOT_model.AOT_var.AOT_term_of_var :::: 'a AOT_var \<Rightarrow> 'a AOT_misc.FimpG :::: <\<kappa>> \<Rightarrow> <\<kappa>> \<Rightarrow> \<o> AOT_syntax.AOT_imp :::: \<o> \<Rightarrow> \<o> \<Rightarrow> \<o> AOT_model.AOT_model_valid_in :::: w \<Rightarrow> \<o> \<Rightarrow> bool ###defs consts AOT_denotes :: \<open>'a::AOT_Term \<Rightarrow> \<o>\<close> AOT_imp :: \<open>[\<o>, \<o>] \<Rightarrow> \<o>\<close> AOT_not :: \<open>\<o> \<Rightarrow> \<o>\<close> AOT_box :: \<open>\<o> \<Rightarrow> \<o>\<close> AOT_act :: \<open>\<o> \<Rightarrow> \<o>\<close> AOT_forall :: \<open>('a::AOT_Term \<Rightarrow> \<o>) \<Rightarrow> \<o>\<close> AOT_eq :: \<open>'a::AOT_Term \<Rightarrow> 'a::AOT_Term \<Rightarrow> \<o>\<close> AOT_desc :: \<open>('a::AOT_UnaryIndividualTerm \<Rightarrow> \<o>) \<Rightarrow> 'a\<close> AOT_exe :: \<open><'a::AOT_IndividualTerm> \<Rightarrow> 'a \<Rightarrow> \<o>\<close> AOT_lambda :: \<open>('a::AOT_IndividualTerm \<Rightarrow> \<o>) \<Rightarrow> <'a>\<close> AOT_lambda0 :: \<open>\<o> \<Rightarrow> \<o>\<close> AOT_concrete :: \<open><'a::AOT_UnaryIndividualTerm> AOT_var\<close> definition AOT_model_valid_in :: \<open>w\<Rightarrow>\<o>\<Rightarrow>bool\<close> where \<open>AOT_model_valid_in w \<phi> \<equiv> AOT_model_d\<o> \<phi> w\<close>
###output \<^bold>\<turnstile>\<^sub>\<box> H \<Rightarrow> O! \<rightarrow> [\<lambda>x ConceptOf(x,H)]\<down>###end
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
48