The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'video_total_duration'}) and 1 missing columns ({'video_total_duration.1'}). This happened while the csv dataset builder was generating data using hf://datasets/xxayt/MGSV-EC/dataset/MGSV-EC/test_data.csv (at revision 265d36b35890b31377b562be9914339dce5a91ae) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 623, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast video_id: int64 music_id: string video_start: double video_end: double music_start: double music_end: double music_total_duration: double video_segment_duration: double music_segment_duration: double music_path: string video_total_duration: double video_width: int64 video_height: int64 video_total_frames: int64 video_frame_rate: int64 video_category: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2297 to {'video_id': Value(dtype='int64', id=None), 'music_id': Value(dtype='string', id=None), 'video_start': Value(dtype='float64', id=None), 'video_end': Value(dtype='float64', id=None), 'music_start': Value(dtype='float64', id=None), 'music_end': Value(dtype='float64', id=None), 'music_total_duration': Value(dtype='float64', id=None), 'video_segment_duration': Value(dtype='float64', id=None), 'music_segment_duration': Value(dtype='float64', id=None), 'music_path': Value(dtype='string', id=None), 'video_total_duration.1': Value(dtype='float64', id=None), 'video_width': Value(dtype='int64', id=None), 'video_height': Value(dtype='int64', id=None), 'video_total_frames': Value(dtype='int64', id=None), 'video_frame_rate': Value(dtype='int64', id=None), 'video_category': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1438, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 1 new columns ({'video_total_duration'}) and 1 missing columns ({'video_total_duration.1'}). This happened while the csv dataset builder was generating data using hf://datasets/xxayt/MGSV-EC/dataset/MGSV-EC/test_data.csv (at revision 265d36b35890b31377b562be9914339dce5a91ae) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
video_id
int64 | music_id
string | video_start
float64 | video_end
float64 | music_start
float64 | music_end
float64 | music_total_duration
float64 | video_segment_duration
float64 | music_segment_duration
float64 | music_path
string | video_total_duration.1
float64 | video_width
int64 | video_height
int64 | video_total_frames
int64 | video_frame_rate
int64 | video_category
string |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
108,261,684,540 | 4+5xjuhip7mbywr3u | 0 | 22.759 | 0.644 | 23.403 | 144.382 | 22.759 | 22.759 | /Data/music/source_music/0/4+5xjuhip7mbywr3u+Redbone.mp3 | 22.867 | 1,080 | 1,440 | 1,372 | 60 | Games |
100,281,378,398 | 4+5xiyy3gqsw7uckq | 0 | 41.973 | 55.063 | 97.026 | 233.825 | 41.973 | 41.963 | /Data/music/source_music/0/4+5xiyy3gqsw7uckq+ไบบ้ด็็ซ.mp3 | 42.1 | 1,080 | 1,920 | 1,263 | 30 | Fashion |
95,943,631,201 | 4+5xmyukctubc95yg | 0 | 13.096 | 7.353 | 20.439 | 204.893 | 13.096 | 13.086 | /Data/music/source_music/0/4+5xmyukctubc95yg+็ฑๅฆ็ซ.mp3 | 13.1 | 2,160 | 3,840 | 786 | 60 | Fashion |
106,565,027,325 | 4+5xk5y8s2y332tfc | 0 | 21.2 | 16.995 | 38.195 | 210.605 | 21.2 | 21.2 | /Data/music/source_music/0/4+5xk5y8s2y332tfc+ไบบ้ดๆ็พ๏ผDJไฝ้น๏ผ.mp3 | 21.3 | 1,080 | 1,920 | 639 | 30 | Food |
97,569,578,112 | 4+5xhr3vrvmpmccn6 | 0 | 11.117 | 0 | 11.118 | 41.146 | 11.117 | 11.118 | /Data/music/source_music/0/4+5xhr3vrvmpmccn6+่ดไฝ ๏ผๅฅณๅฃฐ็๏ผ.mp3 | 11.133 | 1,920 | 1,080 | 334 | 30 | Beauty |
107,440,484,538 | 4+5xwjbpwhgxm6i79 | 0 | 40.921 | 47.964 | 88.885 | 146.1 | 40.921 | 40.921 | /Data/music/source_music/0/4+5xwjbpwhgxm6i79+HoldOn(DJ็).mp3 | 40.933 | 2,160 | 2,880 | 2,456 | 60 | Games |
98,353,229,803 | 4+5x9sdqe7u8ca3rk | 0 | 7.127 | 53.903 | 61.03 | 214.97 | 7.127 | 7.127 | /Data/music/source_music/0/4+5x9sdqe7u8ca3rk+็้จไบบ้ด.mp3 | 7.15 | 1,080 | 1,920 | 429 | 60 | Fashion |
111,283,717,770 | 4+5x2vv4s6ds8pyxs | 0 | 13.469 | 116 | 129.469 | 180.329 | 13.469 | 13.469 | /Data/music/source_music/1/4+5x2vv4s6ds8pyxs+ไธ่ฝๅน็ๅคๅคฉ.mp3 | 13.71 | 1,080 | 1,920 | 425 | 31 | Fashion |
103,332,014,484 | 4+5xwr9qb8ckbzppq | 0 | 17.312 | 2.409 | 19.721 | 151.115 | 17.312 | 17.312 | /Data/music/source_music/0/4+5xwr9qb8ckbzppq+ๅซ้่ฟ(DJ็).mp3 | 17.417 | 1,080 | 1,920 | 1,045 | 60 | Fashion |
110,699,325,311 | 4+5xdizyxcsx46fcu | 0 | 19.8 | 1.371 | 21.171 | 39.799 | 19.8 | 19.8 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 19.8 | 1,080 | 1,920 | 594 | 30 | Fashion |
101,040,722,756 | 4+5xiyy3gqsw7uckq | 0 | 9.877 | 55.063 | 64.939 | 233.825 | 9.877 | 9.876 | /Data/music/source_music/0/4+5xiyy3gqsw7uckq+ไบบ้ด็็ซ.mp3 | 9.883 | 1,080 | 1,920 | 593 | 60 | Fashion |
102,098,960,956 | 4+5xss2fk6acvr22a | 0 | 41.577 | 0 | 41.577 | 177.493 | 41.577 | 41.577 | /Data/music/source_music/0/4+5xss2fk6acvr22a+็ฑๆฏๆ ็็ๅ้ฉ.mp3 | 41.683 | 1,080 | 1,440 | 2,501 | 60 | Public News |
112,790,403,647 | 4+5xatvpn4zqcby5e | 0 | 16.868 | 0 | 16.868 | 127.338 | 16.868 | 16.868 | /Data/music/source_music/0/4+5xatvpn4zqcby5e+ๆดช่ไนๅ(DJ็).mp3 | 16.88 | 720 | 1,280 | 422 | 25 | Fashion |
107,532,939,299 | 4+5xdizyxcsx46fcu | 0 | 19.202 | 1.372 | 20.574 | 39.799 | 19.202 | 19.202 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 19.317 | 1,080 | 1,920 | 1,159 | 60 | Home Furnishings |
102,696,319,650 | 4+5xwr9qb8ckbzppq | 0 | 23.8 | 2.409 | 26.209 | 151.115 | 23.8 | 23.8 | /Data/music/source_music/0/4+5xwr9qb8ckbzppq+ๅซ้่ฟ(DJ็).mp3 | 23.8 | 1,080 | 1,920 | 714 | 30 | Fashion |
100,466,267,533 | 4+5xgwhjgt2vd58k6 | 0 | 14.427 | 0.65 | 15.077 | 45.65 | 14.427 | 14.427 | /Data/music/source_music/0/4+5xgwhjgt2vd58k6+็ฑ้ฝ็ฑไบ๏ผๅฅณ็๏ผ.mp3 | 14.452 | 1,080 | 1,920 | 448 | 31 | Fashion |
110,930,640,770 | 4+5xss2fk6acvr22a | 0 | 26.588 | 0 | 26.588 | 177.493 | 26.588 | 26.588 | /Data/music/source_music/0/4+5xss2fk6acvr22a+็ฑๆฏๆ ็็ๅ้ฉ.mp3 | 26.6 | 1,080 | 1,440 | 798 | 30 | Games |
103,837,474,389 | 4+5xwr9qb8ckbzppq | 0 | 14.487 | 2.409 | 16.896 | 151.115 | 14.487 | 14.487 | /Data/music/source_music/0/4+5xwr9qb8ckbzppq+ๅซ้่ฟ(DJ็).mp3 | 14.5 | 1,080 | 1,920 | 870 | 60 | Fashion |
99,781,026,430 | 4+5xmg5eujb4wdkx6 | 0 | 16.558 | 71.003 | 87.551 | 218.128 | 16.558 | 16.548 | /Data/music/source_music/0/4+5xmg5eujb4wdkx6+ๅฏ่ฝ.mp3 | 16.683 | 1,080 | 1,920 | 1,001 | 60 | Fashion |
98,296,594,438 | 7+5x4t2ahcrcnqf6u | 0 | 20.725 | 0 | 20.725 | 42.075 | 20.725 | 20.725 | /Data/music/source_music/0/7+5x4t2ahcrcnqf6u+ๅๅฏ็ฑๅค.mp3 | 20.833 | 1,080 | 1,920 | 1,250 | 60 | Agriculture |
99,919,806,803 | 4+5xwpb8u84y2d2em | 0 | 16.433 | 4.273 | 20.707 | 139.923 | 16.433 | 16.434 | /Data/music/source_music/0/4+5xwpb8u84y2d2em+ไธๅพไธ็ฑ๏ผ็ทๅฃฐ็๏ผ.mp3 | 16.533 | 1,080 | 1,920 | 496 | 30 | Beauty |
109,245,892,721 | 4+5xbaje8rpxwhk7w | 0 | 15.291 | 47.814 | 63.106 | 93.716 | 15.291 | 15.292 | /Data/music/source_music/1/4+5xbaje8rpxwhk7w+ๅฅณไบบไนๅพ้พ๏ผไธปๆญ็๏ผ.mp3 | 15.4 | 1,080 | 1,920 | 462 | 30 | Beauty |
100,298,707,711 | 4+5xmg5eujb4wdkx6 | 0 | 9.5 | 71 | 80.5 | 218.128 | 9.5 | 9.5 | /Data/music/source_music/0/4+5xmg5eujb4wdkx6+ๅฏ่ฝ.mp3 | 9.5 | 1,080 | 1,920 | 285 | 30 | Cars |
98,303,747,920 | 4+5xmg5eujb4wdkx6 | 0 | 12.842 | 71.009 | 83.85 | 218.128 | 12.842 | 12.841 | /Data/music/source_music/0/4+5xmg5eujb4wdkx6+ๅฏ่ฝ.mp3 | 12.85 | 1,080 | 1,920 | 771 | 60 | Home Furnishings |
107,964,431,224 | 4+5xmg5eujb4wdkx6 | 0 | 10.867 | 71.001 | 82.206 | 218.128 | 10.867 | 11.205 | /Data/music/source_music/0/4+5xmg5eujb4wdkx6+ๅฏ่ฝ.mp3 | 10.867 | 1,080 | 1,920 | 326 | 30 | Fashion |
108,023,526,962 | 4+5xiyy3gqsw7uckq | 0 | 5.765 | 55.059 | 60.824 | 233.825 | 5.765 | 5.765 | /Data/music/source_music/0/4+5xiyy3gqsw7uckq+ไบบ้ด็็ซ.mp3 | 5.871 | 1,080 | 1,920 | 182 | 31 | Fashion |
113,404,489,360 | 4+5x8mmu85bznbipw | 0 | 32.294 | 0 | 32.294 | 151.115 | 32.294 | 32.294 | /Data/music/source_music/0/4+5x8mmu85bznbipw+ๅบธๆ
ไฟ็ฑ๏ผไผดๅฅ๏ผ.mp3 | 32.4 | 1,080 | 1,920 | 972 | 30 | Cars |
106,615,886,511 | 4+5x2xcz2vxtcbxfw | 0 | 23.327 | 7.787 | 31.114 | 199.041 | 23.327 | 23.327 | /Data/music/source_music/0/4+5x2xcz2vxtcbxfw+้ฃๅนไธๅค.mp3 | 23.452 | 1,080 | 1,920 | 727 | 31 | Fashion |
111,204,148,404 | 4+5xss2fk6acvr22a | 0.135 | 20.532 | 4.835 | 25.232 | 177.493 | 20.397 | 20.397 | /Data/music/source_music/0/4+5xss2fk6acvr22a+็ฑๆฏๆ ็็ๅ้ฉ.mp3 | 20.583 | 1,080 | 1,920 | 1,235 | 60 | Games |
98,323,942,447 | 4+5xmg5eujb4wdkx6 | 0 | 15.9 | 71.008 | 86.908 | 218.128 | 15.9 | 15.9 | /Data/music/source_music/0/4+5xmg5eujb4wdkx6+ๅฏ่ฝ.mp3 | 16 | 1,080 | 1,920 | 480 | 30 | Fashion |
101,056,200,373 | 4+5x4uuv466u9gtqc | 0 | 11.235 | 57.552 | 68.776 | 191.893 | 11.235 | 11.224 | /Data/music/source_music/0/4+5x4uuv466u9gtqc+ไธ้ด็พๅฅฝไธไฝ ็ฏ็ฏ็ธๆฃ.mp3 | 11.25 | 1,080 | 1,920 | 675 | 60 | Fashion |
113,058,622,904 | 4+5x8mmu85bznbipw | 0 | 34.134 | 67.103 | 101.237 | 151.115 | 34.134 | 34.134 | /Data/music/source_music/0/4+5x8mmu85bznbipw+ๅบธๆ
ไฟ็ฑ๏ผไผดๅฅ๏ผ.mp3 | 34.258 | 1,080 | 1,920 | 1,062 | 31 | Beauty |
111,994,349,235 | 4+5xn684722zt272u | 0 | 13.096 | 47.02 | 60.116 | 233.175 | 13.096 | 13.096 | /Data/music/source_music/0/4+5xn684722zt272u+grace.mp3 | 13.1 | 1,080 | 1,920 | 786 | 60 | Games |
99,778,620,516 | 4+5xnadarkeuffy7i | 0 | 15.474 | 0 | 15.474 | 61.579 | 15.474 | 15.474 | /Data/music/source_music/0/4+5xnadarkeuffy7i+่ฑๆตท.mp3 | 15.567 | 1,080 | 1,920 | 934 | 60 | Agriculture |
105,456,802,227 | 4+5x3x7dqhzjih8vk | 0 | 9.875 | 54.181 | 64.055 | 183.902 | 9.875 | 9.874 | /Data/music/source_music/0/4+5x3x7dqhzjih8vk+ๆงๆขฆ๏ผDJ้ปๆถต็๏ผ.mp3 | 10 | 1,080 | 1,920 | 310 | 31 | Health |
107,945,943,174 | 4+5xe3fziu29nzw3a | 0 | 27.346 | 0 | 27.347 | 47.694 | 27.346 | 27.347 | /Data/music/source_music/0/4+5xe3fziu29nzw3a+ๅคๅคฉ๏ผๅช่พ็๏ผ.mp3 | 27.481 | 1,080 | 1,920 | 742 | 27 | Fashion |
106,154,208,773 | 4+5x3z5nshmyechag | 0 | 20.135 | 86.627 | 106.762 | 167.23 | 20.135 | 20.135 | /Data/music/source_music/0/4+5x3z5nshmyechag+่ฆไธ่ฆๅๆๅคๅฏน่ฑก(ไผดๅฅ).mp3 | 20.258 | 1,080 | 1,920 | 628 | 31 | Fashion |
107,039,461,914 | 4+5xn8giuipcacybi | 0 | 13.93 | 1.884 | 15.814 | 32.508 | 13.93 | 13.93 | /Data/music/source_music/2/4+5xn8giuipcacybi+ๆขฆๆณๅฎถ๏ผๅช่พ็๏ผ.mp3 | 14.032 | 1,080 | 1,920 | 435 | 31 | Beauty |
104,872,557,326 | 4+5xdizyxcsx46fcu | 0 | 24.744 | 1.372 | 26.116 | 39.799 | 24.744 | 24.744 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 26.759 | 1,080 | 1,920 | 776 | 29 | Health |
104,865,905,933 | 4+5xmg5eujb4wdkx6 | 0 | 18.388 | 71.001 | 89.388 | 218.128 | 18.388 | 18.387 | /Data/music/source_music/0/4+5xmg5eujb4wdkx6+ๅฏ่ฝ.mp3 | 18.4 | 1,080 | 1,920 | 460 | 25 | Home Furnishings |
105,524,245,232 | 4+5xdizyxcsx46fcu | 0 | 32.476 | 1.374 | 33.85 | 39.799 | 32.476 | 32.476 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 32.5 | 1,080 | 1,920 | 975 | 30 | Home Furnishings |
100,627,523,670 | 7+5x2f8hwk526fizi | 0 | 44.345 | 0 | 44.345 | 61.118 | 44.345 | 44.345 | /Data/music/source_music/0/7+5x2f8hwk526fizi+่ฟๅพ็็พๅฅฝ๏ผ่จๅ
ๆฏ็ฌๅฅๆฒ๏ผ.mp3 | 44.517 | 1,080 | 1,920 | 2,671 | 60 | Food |
112,558,278,596 | 7+5xjy4feg955aqug | 0 | 48.163 | 73.702 | 121.865 | 139.74 | 48.163 | 48.163 | /Data/music/source_music/0/7+5xjy4feg955aqug+ๆๆฒ.mp3 | 48.29 | 1,080 | 1,920 | 1,497 | 31 | Food |
98,863,511,416 | 4+5x4q3u59ev3c48y | 0 | 26.787 | 0.251 | 27.038 | 39.567 | 26.787 | 26.787 | /Data/music/source_music/0/4+5x4q3u59ev3c48y+่็ทๅญฉ๏ผๅฏๆญ็๏ผ.mp3 | 26.92 | 1,080 | 1,920 | 673 | 25 | Fashion |
101,014,708,067 | 4+5xmcxv8m6ci8nha | 0 | 19.695 | 4.044 | 23.738 | 170.574 | 19.695 | 19.694 | /Data/music/source_music/0/4+5xmcxv8m6ci8nha+ๆฌขๅๅฐฑๅฅฝ๏ผDJ็๏ผ.mp3 | 18.367 | 1,080 | 1,920 | 1,102 | 60 | Fashion |
110,407,655,322 | 4+5xss2fk6acvr22a | 0.11 | 21.632 | 4.835 | 26.357 | 177.493 | 21.522 | 21.522 | /Data/music/source_music/0/4+5xss2fk6acvr22a+็ฑๆฏๆ ็็ๅ้ฉ.mp3 | 21.667 | 1,080 | 1,920 | 1,300 | 60 | Games |
107,384,650,421 | 4+5xek7jneq548tiu | 0 | 13.208 | 0.233 | 13.441 | 35.201 | 13.208 | 13.208 | /Data/music/source_music/0/4+5xek7jneq548tiu+ๆฉๅฎ้ๅ.mp3 | 13.233 | 1,080 | 1,920 | 397 | 30 | Cars |
108,529,158,091 | 4+5xe3fziu29nzw3a | 0 | 11.868 | 0 | 11.859 | 47.694 | 11.868 | 11.859 | /Data/music/source_music/0/4+5xe3fziu29nzw3a+ๅคๅคฉ๏ผๅช่พ็๏ผ.mp3 | 12 | 1,080 | 1,920 | 360 | 30 | Fashion |
101,267,792,450 | 4+5xiyy3gqsw7uckq | 0 | 30.9 | 55.06 | 85.96 | 233.825 | 30.9 | 30.9 | /Data/music/source_music/0/4+5xiyy3gqsw7uckq+ไบบ้ด็็ซ.mp3 | 30.9 | 1,080 | 1,920 | 927 | 30 | Fashion |
105,380,923,856 | 4+5xqqbuc9dkn7w49 | 0 | 26.342 | 0 | 26.342 | 130.45 | 26.342 | 26.342 | /Data/music/source_music/0/4+5xqqbuc9dkn7w49+่ฟช่ฟฆ.mp3 | 26.346 | 480 | 854 | 685 | 26 | Games |
104,151,956,386 | 4+5xxi5y3srk4r8pa | 0 | 10.379 | 121.115 | 131.494 | 232.618 | 10.379 | 10.379 | /Data/music/source_music/0/4+5xxi5y3srk4r8pa+ไบบ็็้ๅบ.mp3 | 10.383 | 1,080 | 1,920 | 623 | 60 | Fashion |
111,598,990,739 | 4+5xumn7xt2yfnzgu | 0 | 19.478 | 0 | 19.478 | 135.14 | 19.478 | 19.478 | /Data/music/source_music/0/4+5xumn7xt2yfnzgu+้ฃ้ฉถ่ฟ็ๅฃฐ้ณๆฏ.mp3 | 19.583 | 2,160 | 2,878 | 1,175 | 60 | Games |
113,657,671,229 | 7+5x4mjjeiubm49fg | 0 | 42.464 | 85.802 | 128.266 | 224.633 | 42.464 | 42.464 | /Data/music/source_music/0/7+5x4mjjeiubm49fg+ๆๆ(ไผดๅฅ).mp3 | 42.467 | 982 | 1,746 | 1,274 | 30 | Beauty |
106,947,588,428 | 4+5x3nsiygpcpbb5g | 0 | 17.579 | 74.728 | 92.308 | 220.079 | 17.579 | 17.58 | /Data/music/source_music/0/4+5x3nsiygpcpbb5g+็ฑ่ฟๅฐฑๅฅฝ.mp3 | 17.683 | 1,080 | 1,920 | 1,061 | 60 | Home Furnishings |
108,758,252,410 | 4+5x6u3wyuwppmvty | 0 | 36.986 | 76.2 | 113.186 | 149.258 | 36.986 | 36.986 | /Data/music/source_music/0/4+5x6u3wyuwppmvty+ไบ็ธๆฆ่ฎฐ็ไธคไธชไบบไธไผ้่ฟ.mp3 | 37.093 | 2,160 | 2,878 | 2,003 | 54 | Games |
108,291,939,424 | 4+5xdizyxcsx46fcu | 0 | 38.425 | 1.374 | 39.799 | 39.799 | 38.425 | 38.425 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 52.667 | 1,080 | 1,920 | 1,580 | 30 | Fashion |
111,573,132,277 | 4+5xxi5y3srk4r8pa | 0 | 12.1 | 120.916 | 133.016 | 232.618 | 12.1 | 12.1 | /Data/music/source_music/0/4+5xxi5y3srk4r8pa+ไบบ็็้ๅบ.mp3 | 12.2 | 1,080 | 1,920 | 366 | 30 | Fashion |
105,430,197,074 | 4+5xigc4zmsbsmegu | 0 | 18.463 | 81.457 | 99.92 | 225.094 | 18.463 | 18.463 | /Data/music/source_music/0/4+5xigc4zmsbsmegu+ไบบ็ๅฆๆญ.mp3 | 18.581 | 1,080 | 1,920 | 576 | 31 | High-tech Gadgets |
101,051,127,623 | 4+5xiyy3gqsw7uckq | 0 | 21.944 | 55.057 | 76.991 | 233.825 | 21.944 | 21.934 | /Data/music/source_music/0/4+5xiyy3gqsw7uckq+ไบบ้ด็็ซ.mp3 | 21.967 | 1,080 | 1,920 | 659 | 30 | Fashion |
103,422,950,020 | 4+5xdizyxcsx46fcu | 0 | 37.628 | 1.372 | 39 | 39.799 | 37.628 | 37.628 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 50.833 | 720 | 1,280 | 1,525 | 30 | Health |
107,377,819,997 | 4+5xd35xt6g839btq | 0 | 28.667 | 0.052 | 28.719 | 34.691 | 28.667 | 28.667 | /Data/music/source_music/0/4+5xd35xt6g839btq+็ซฅ่ฏ๏ผไผคๆ็บฏ้ณไน๏ผ.mp3 | 28.767 | 2,160 | 2,880 | 1,726 | 60 | High-tech Gadgets |
104,785,314,367 | 4+5xgtmu2p2ii44k4 | 0 | 41.432 | 27.968 | 69.4 | 192.122 | 41.432 | 41.432 | /Data/music/source_music/0/4+5xgtmu2p2ii44k4+ๆๆไนๆฝๆดๆไนๆดป๏ผDJ้ปๆถต็๏ผ.mp3 | 41.433 | 672 | 1,280 | 1,243 | 30 | Relationships |
105,041,140,281 | 4+5xdizyxcsx46fcu | 0 | 38.423 | 1.372 | 39.795 | 39.799 | 38.423 | 38.423 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 47.375 | 2,160 | 3,840 | 1,137 | 24 | Beauty |
105,667,764,485 | 4+5xmg5eujb4wdkx6 | 0 | 46.489 | 71 | 117.489 | 218.128 | 46.489 | 46.489 | /Data/music/source_music/0/4+5xmg5eujb4wdkx6+ๅฏ่ฝ.mp3 | 46.6 | 1,080 | 1,920 | 2,796 | 60 | High-tech Gadgets |
111,669,470,488 | 4+5xu5qgcv6tqusx4 | 0 | 45.067 | 0 | 45.067 | 145.778 | 45.067 | 45.067 | /Data/music/source_music/0/4+5xu5qgcv6tqusx4+ๅๆฒไธค้พ.mp3 | 45.067 | 1,080 | 1,920 | 1,352 | 30 | Agriculture |
102,716,007,419 | 4+5xxi5y3srk4r8pa | 0 | 13.299 | 72.588 | 85.887 | 232.618 | 13.299 | 13.299 | /Data/music/source_music/0/4+5xxi5y3srk4r8pa+ไบบ็็้ๅบ.mp3 | 13.3 | 1,080 | 1,920 | 399 | 30 | Health |
103,050,115,213 | 4+5xdizyxcsx46fcu | 0 | 19.515 | 1.374 | 20.859 | 39.799 | 19.515 | 19.485 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 19.517 | 1,080 | 1,920 | 1,171 | 60 | Fashion |
108,232,390,540 | 4+5x4uuv466u9gtqc | 0 | 16.4 | 54.76 | 71.48 | 191.893 | 16.4 | 16.72 | /Data/music/source_music/0/4+5x4uuv466u9gtqc+ไธ้ด็พๅฅฝไธไฝ ็ฏ็ฏ็ธๆฃ.mp3 | 16.4 | 1,080 | 1,920 | 410 | 25 | Fashion |
103,832,590,404 | 4+5xwkbescja992xg | 0 | 9.012 | 10.249 | 19.261 | 218.593 | 9.012 | 9.012 | /Data/music/source_music/0/4+5xwkbescja992xg+็ช็ชไพ .mp3 | 9.083 | 1,080 | 1,920 | 545 | 60 | Parenting |
105,605,547,971 | 4+5xq4p37856bc7h4 | 0 | 30.583 | 129.03 | 159.613 | 196.487 | 30.583 | 30.583 | /Data/music/source_music/0/4+5xq4p37856bc7h4+tonight๏ผ้ๅ่ฅฟ้คๅ
ๆญๆพ็่ๆฏ่ฝป้ณไน๏ผ.mp3 | 30.6 | 720 | 1,280 | 765 | 25 | Food |
99,153,297,207 | 4+5xek7jneq548tiu | 0 | 13.352 | 0.231 | 13.583 | 35.201 | 13.352 | 13.352 | /Data/music/source_music/0/4+5xek7jneq548tiu+ๆฉๅฎ้ๅ.mp3 | 13.467 | 1,080 | 1,920 | 808 | 60 | Food |
106,437,925,629 | 4+5xdizyxcsx46fcu | 0 | 27.4 | 1.372 | 29.462 | 39.799 | 27.4 | 28.09 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 27.4 | 1,080 | 1,920 | 822 | 30 | Food |
113,768,551,586 | 4+5xq4c3uu4y8f5mg | 0 | 8.014 | 66.49 | 74.504 | 181.626 | 8.014 | 8.014 | /Data/music/source_music/0/4+5xq4c3uu4y8f5mg+็ช็ถ็่ชๆ๏ผๅฅณ็ๅฎๆด็๏ผ.mp3 | 8.133 | 1,080 | 1,920 | 244 | 30 | Fashion |
110,061,792,474 | 4+5xp59967a5kamn6 | 0 | 45.33 | 0 | 45.33 | 146.518 | 45.33 | 45.33 | /Data/music/source_music/0/4+5xp59967a5kamn6+Summer(่ๆฌก้็ๅคๅคฉๅขๅ็).mp3 | 45.333 | 1,080 | 1,920 | 1,360 | 30 | Beauty |
102,928,222,841 | 4+5xt8drafu6ahpay | 0 | 40.394 | 0 | 40.394 | 84.846 | 40.394 | 40.394 | /Data/music/source_music/0/4+5xt8drafu6ahpay+่ฟช่ฟฆๆๅพ.mp3 | 40.5 | 1,080 | 1,438 | 2,430 | 60 | Public News |
110,257,348,643 | 4+5xvhacsw442xkcg | 0 | 8.039 | 50.508 | 58.547 | 165.373 | 8.039 | 8.039 | /Data/music/source_music/1/4+5xvhacsw442xkcg+้ๆฉๆ๏ผDJ้ฟๅ็๏ผ.mp3 | 8.067 | 996 | 1,920 | 242 | 30 | Selfies |
99,322,535,510 | 7+5xpye9ftihpsfn4 | 0 | 42.727 | 0 | 42.727 | 76.069 | 42.727 | 42.727 | /Data/music/source_music/0/7+5xpye9ftihpsfn4+ๆฅ้.mp3 | 42.839 | 720 | 1,280 | 1,328 | 31 | Agriculture |
104,908,362,442 | 4+5xsf4fqr2bcxkea | 0 | 10.737 | 27.219 | 37.956 | 206.89 | 10.737 | 10.737 | /Data/music/source_music/0/4+5xsf4fqr2bcxkea+้ณๅ
ๅผๆๅคง็ทๅญฉ.mp3 | 10.867 | 1,080 | 1,920 | 326 | 30 | Fashion |
100,367,579,875 | 4+5xxt2uist2usiru | 0 | 27.32 | 0 | 27.32 | 50.805 | 27.32 | 27.32 | /Data/music/source_music/0/4+5xxt2uist2usiru+้กปๅฐฝๆฌข๏ผ้่ฐ็๏ผ๏ผๅช่พ็๏ผ.mp3 | 27.333 | 1,080 | 1,920 | 1,640 | 60 | Fashion |
106,326,912,880 | 7+5xem3wj3r8zwadq | 0 | 41 | 44.598 | 85.598 | 214.137 | 41 | 41 | /Data/music/source_music/0/7+5xem3wj3r8zwadq+้ฝ่ฏด๏ผDJไฝ้น็๏ผ.mp3 | 41.133 | 720 | 1,280 | 617 | 15 | Fashion |
104,152,212,861 | 4+5xmcxv8m6ci8nha | 0 | 21.833 | 4.042 | 25.875 | 170.574 | 21.833 | 21.833 | /Data/music/source_music/0/4+5xmcxv8m6ci8nha+ๆฌขๅๅฐฑๅฅฝ๏ผDJ็๏ผ.mp3 | 21.935 | 1,080 | 1,920 | 680 | 31 | Home Furnishings |
107,147,001,410 | 4+5xcvnutka7x6y4u | 0 | 19.412 | 0.041 | 19.453 | 35.155 | 19.412 | 19.412 | /Data/music/source_music/0/4+5xcvnutka7x6y4u+ๆๅบง็ฉ่ฏญ๏ผๅช่พ็๏ผ.mp3 | 19.516 | 1,080 | 1,920 | 605 | 31 | Home Furnishings |
110,442,192,399 | 4+5xg5jyviwpmtf6k | 0 | 37.78 | 85.342 | 123.122 | 156.038 | 37.78 | 37.78 | /Data/music/source_music/1/4+5xg5jyviwpmtf6k+้ๅซ(้ข็ด).mp3 | 37.783 | 2,160 | 3,840 | 2,267 | 60 | Home Furnishings |
112,099,291,488 | 4+5xvgk9tqtb4bj4y | 0 | 24.485 | 1.283 | 25.769 | 170.809 | 24.485 | 24.486 | /Data/music/source_music/0/4+5xvgk9tqtb4bj4y+ๅฅฝๆฅๅญ.mp3 | 24.5 | 1,080 | 1,920 | 735 | 30 | Agriculture |
112,552,442,527 | 4+5x59j3xidiik9mq | 0 | 41.542 | 0 | 41.542 | 60.14 | 41.542 | 41.542 | /Data/music/source_music/0/4+5x59j3xidiik9mq+ๅคชๆณๅฟต๏ผๅช่พ็๏ผ.mp3 | 41.66 | 912 | 1,622 | 2,083 | 50 | Fashion |
99,260,740,064 | 4+5x4b3rpj5hsyymc | 0.265 | 19.864 | 109.36 | 128.959 | 170.995 | 19.599 | 19.599 | /Data/music/source_music/0/4+5x4b3rpj5hsyymc+Letter๏ผๆน็๏ผ.mp3 | 19.968 | 1,080 | 1,920 | 619 | 31 | Beauty |
111,688,163,374 | 4+5xdizyxcsx46fcu | 0 | 6.212 | 1.371 | 7.582 | 39.799 | 6.212 | 6.211 | /Data/music/source_music/0/4+5xdizyxcsx46fcu+็ๆดป่ฆไนๅจๅ
ถไธญ๏ผๆ้ผๅช่พ็๏ผ.mp3 | 6.233 | 1,080 | 1,920 | 187 | 30 | Fashion |
109,491,882,706 | 4+5xizutqf6c2pqwk | 0 | 22.5 | 95.08 | 117.58 | 179.63 | 22.5 | 22.5 | /Data/music/source_music/0/4+5xizutqf6c2pqwk+ๆ้ช.mp3 | 24.52 | 2,160 | 3,840 | 1,226 | 50 | Beauty |
106,002,391,294 | 4+5xiyy3gqsw7uckq | 0 | 10.183 | 55.67 | 65.853 | 233.825 | 10.183 | 10.183 | /Data/music/source_music/0/4+5xiyy3gqsw7uckq+ไบบ้ด็็ซ.mp3 | 10.3 | 720 | 1,280 | 309 | 30 | Home Furnishings |
112,510,581,338 | 4+5xzze4gxnzpmfdu | 0 | 39.011 | 37.838 | 76.85 | 128.499 | 39.011 | 39.012 | /Data/music/source_music/0/4+5xzze4gxnzpmfdu+็บฆๅฎ.mp3 | 39.133 | 720 | 1,280 | 1,174 | 30 | Agriculture |
111,654,988,799 | 4+5xss2fk6acvr22a | 0.11 | 40.997 | 4.835 | 45.722 | 177.493 | 40.887 | 40.887 | /Data/music/source_music/0/4+5xss2fk6acvr22a+็ฑๆฏๆ ็็ๅ้ฉ.mp3 | 41.034 | 1,080 | 1,920 | 2,380 | 58 | Games |
98,645,689,842 | 4+5xek7jneq548tiu | 0 | 11.671 | 0.233 | 11.904 | 35.201 | 11.671 | 11.671 | /Data/music/source_music/0/4+5xek7jneq548tiu+ๆฉๅฎ้ๅ.mp3 | 11.7 | 1,080 | 1,920 | 351 | 30 | Cars |
105,017,329,411 | 4+5xxkfpjgeqjng3s | 0 | 45.156 | 71.001 | 116.157 | 238.518 | 45.156 | 45.156 | /Data/music/source_music/0/4+5xxkfpjgeqjng3s+ๅช่ฆๅนณๅก๏ผ็บฏ้ณไน๏ผ.mp3 | 45.267 | 1,080 | 1,920 | 1,358 | 30 | Food |
100,669,662,196 | 4+5xhvm4k8man7v26 | 0 | 32.356 | 10.311 | 42.667 | 189.614 | 32.356 | 32.356 | /Data/music/source_music/0/4+5xhvm4k8man7v26+ๆจฑ่ฑๆ ไธ็็บฆๅฎ.mp3 | 32.385 | 1,080 | 1,920 | 842 | 26 | Fashion |
110,315,658,396 | 4+5xtm2vh6i3vkxgu | 0 | 26.444 | 14.543 | 40.988 | 230.063 | 26.444 | 26.445 | /Data/music/source_music/0/4+5xtm2vh6i3vkxgu+ๅฐๅฅณๅญฉ็ๆธ
ๆฐ(ๅ็remix).mp3 | 26.56 | 1,080 | 1,920 | 1,328 | 50 | Fashion |
99,674,908,658 | 4+5x69bx29snc62hg | 0 | 29.6 | 0.206 | 29.806 | 30.325 | 29.6 | 29.6 | /Data/music/source_music/0/4+5x69bx29snc62hg+ๆงๆขฆ๏ผDJไธปๆญ็๏ผ.mp3 | 29.6 | 720 | 1,280 | 888 | 30 | Beauty |
99,688,690,702 | 4+5xna88c5veczyqu | 0 | 25.354 | 16.301 | 41.645 | 166.998 | 25.354 | 25.344 | /Data/music/source_music/0/4+5xna88c5veczyqu+ๆฝฎๆฑ๏ผๆๅพ๏ผ.mp3 | 25.46 | 1,080 | 1,920 | 1,273 | 50 | Fashion |
98,881,758,156 | 4+5xuvteyavf2qa5s | 0 | 8.632 | 32.479 | 41.111 | 227.881 | 8.632 | 8.632 | /Data/music/source_music/0/4+5xuvteyavf2qa5s+็่ๅนณๅก(Live).mp3 | 8.633 | 2,160 | 3,840 | 518 | 60 | Fashion |
101,837,615,593 | 4+5xss2fk6acvr22a | 0 | 33.306 | 0 | 33.306 | 177.493 | 33.306 | 33.306 | /Data/music/source_music/0/4+5xss2fk6acvr22a+็ฑๆฏๆ ็็ๅ้ฉ.mp3 | 33.417 | 1,080 | 1,438 | 2,005 | 60 | Games |
97,748,135,911 | 4+5xupeadcgzwnvcc | 0 | 21.06 | 1.928 | 22.988 | 187.06 | 21.06 | 21.06 | /Data/music/source_music/0/4+5xupeadcgzwnvcc+ๆ่ถ
ๅๆฌขไฝ .mp3 | 21.161 | 1,080 | 1,920 | 656 | 31 | Fashion |
Music Grounding by Short Video E-commerce (MGSV-EC) Dataset
๐ [Paper]
๐ฆ [Feature File] (or Baidu drive (P:5cbq) / Google drive)
๐ง [PyTorch Dataloader]
๐ Dataset Summary
MGSV-EC is a large-scale dataset for the new task of Music Grounding by Short Video (MGSV), which aims to localize a specific music segment that best serves as the background music (BGM) for a given query short video.
Unlike traditional video-to-music retrieval (V2MR), MGSV requires both identifying the relevant music track and pinpointing a precise moment from the track.
The dataset contains 53,194 short e-commerce videos paired with 35,393 music moments, all derived from 4,050 unique music tracks. It supports evaluation in two modes:
- Single-music Grounding (SmG): the relevant music track is known, and the task is to detect the correct segment.
- Music-set Grounding (MsG): the model must retrieve the correct music track and its corresponding segment.
๐ Evaluation Protocol
Mode | Sub-task | Metric |
---|---|---|
Single-music | Grounding (SmG) | mIoU |
Music-set | Video-to-Music Retrieval (V2MR) | Rk |
Music-set | Grounding (MsG) | MoRk |
๐ Dataset Statistics
Split | #Music Tracks | Avg. Music Duration(sec) | #Query Videos | Avg. Video Duration(sec) | #Moments |
---|---|---|---|---|---|
Total | 4,050 | 138.9 ยฑ 69.6 | 53,194 | 23.9 ยฑ 10.7 | 35,393 |
Train | 3,496 | 138.3 ยฑ 69.4 | 49,194 | 24.0 ยฑ 10.7 | 31,660 |
Val | 2,000 | 139.6 ยฑ 70.0 | 2,000 | 22.8 ยฑ 10.8 | 2,000 |
Test | 2,000 | 139.9 ยฑ 70.1 | 2,000 | 22.6 ยฑ 10.7 | 2,000 |
- ๐ต Music type ratio: ~60% songs, ~40% instrumental
- ๐น Frame rate: 34 FPS; resolution: 1080ร1920
๐ Data Format
Each row in the CSV file represents a query video paired with a music track and a localized music moment. The meaning of each column is as follows:
Column Name | Description |
---|---|
video_id | Unique identifier for the short query video. |
music_id | Unique identifier for the associated music track. |
video_start | Start time of the video segment in full video. |
video_end | End time of the video segment in full video. |
music_start | Start time of the music segment in full track. |
music_end | End time of the music segment in full track. |
music_total_duration | Total duration of the music track. |
video_segment_duration | Duration of the video segment. |
music_segment_duration | Duration of the music segment. |
music_path | Relative path to the music track file. |
video_total_duration | Total duration of the video. |
video_width | Width of the video frame. |
video_height | Height of the video frame. |
video_total_frames | Total number of frames in the video. |
video_frame_rate | Frame rate of the video. |
video_category | Category label of the video content (e.g., "Beauty", "Food"). |
๐งฉ Feature Directory Structure
For each video-music pair, we provide pre-extracted visual and audio features for efficient training in Baidu drive (P:5cbq) / Google drive / MGSV_feature.zip. The features are stored in the following directory structure:
[Your data feature path]
.
โโโ ast_feature2p5
โ โโโ ast_feature/ # Audio segment features extracted by AST (Audio Spectrogram Transformer)
โ โโโ ast_mask/ # Segment-level masks indicating valid audio positions
โโโ vit_feature1
โโโ vit_feature/ # Frame-level visual features extracted by CLIP-ViT (ViT-B/32)
โโโ vit_mask/ # Frame-level masks indicating valid visual positions
Each .pt file corresponds to a single sample and includes:
- frame_feats: shape
[B, max_v_frames, 512]
- frame_masks: shape
[B, max_v_frames]
, where 1 indicates valid frames, 0 for padding, used for padding control during batching - segment_feats: shape
[B, max_snippet_num, 768]
- segment_masks: shape
[B, max_snippet_num]
, indicating valid audio segments
๐ Demo Code for Loading
import os
import torch
import pandas as pd
def get_cw_propotion(gt_spans, max_m_duration):
"""
Calculate the center and width proportions based on gt_spans and maximum music duration.
Parameters:
gt_spans: torch.Tensor of shape [1, 2], representing the start and end times of a music segment.
max_m_duration: float, the maximum duration of the music.
Returns:
torch.Tensor of shape [1, 2], where the first column is the center proportion and the second is the width proportion.
"""
# Clamp the end time to the maximum music duration
gt_spans[:, 1] = torch.clamp(gt_spans[:, 1], max=max_m_duration)
center_propotion = (gt_spans[:, 0] + gt_spans[:, 1]) / 2.0 / max_m_duration
width_propotion = (gt_spans[:, 1] - gt_spans[:, 0]) / max_m_duration
return torch.stack([center_propotion, width_propotion], dim=-1)
def get_data(data_csv_path, max_m_duration=240, frame_frozen_feature_path=None, music_frozen_feature_path=None):
"""
Load CSV data and extract sample information.
Parameters:
data_csv_path: str, path to the CSV file.
max_m_duration: float, maximum duration of the music.
frame_frozen_feature_path: str, root directory for video features.
music_frozen_feature_path: str, root directory for music features.
Returns:
List of dictionaries, each containing:
- data_map: dict with loaded video and music features.
- meta_map: dict with metadata information.
- spans_target: torch.Tensor with target span proportions.
"""
csv_data = pd.read_csv(data_csv_path)
data_samples = []
for idx in range(len(csv_data)):
video_id = csv_data.loc[idx, 'video_id']
music_id = csv_data.loc[idx, 'music_id']
m_duration = float(csv_data.loc[idx, 'music_total_duration'])
video_start_time = csv_data.loc[idx, 'video_start']
video_end_time = csv_data.loc[idx, 'video_end']
music_start_time = csv_data.loc[idx, 'music_start']
music_end_time = csv_data.loc[idx, 'music_end']
# Construct gt_windows and convert to torch.Tensor
gt_windows = torch.tensor([[music_start_time, music_end_time]], dtype=torch.float)
# Construct meta_map information
meta_map = {
"video_id": str(video_id),
"music_id": str(music_id),
"v_duration": torch.tensor(video_end_time - video_start_time, dtype=torch.float),
"m_duration": torch.tensor(m_duration, dtype=torch.float),
"gt_moment": gt_windows,
}
# Compute target span proportions, ensuring original gt_windows remains unchanged
spans_target = get_cw_propotion(gt_windows.clone(), max_m_duration)
# Load video features
video_feature_path = os.path.join(frame_frozen_feature_path, 'vit_feature', f'{video_id}.pt')
video_mask_path = os.path.join(frame_frozen_feature_path, 'vit_mask', f'{video_id}.pt')
frame_feats = torch.load(video_feature_path, map_location='cpu')
frame_mask = torch.load(video_mask_path, map_location='cpu')
# Apply mask to zero out invalid regions
frame_feats = frame_feats.masked_fill(frame_mask.unsqueeze(-1) == 0, 0)
# Load music features
music_feature_path = os.path.join(music_frozen_feature_path, 'ast_feature', f'{music_id}.pt')
music_mask_path = os.path.join(music_frozen_feature_path, 'ast_mask', f'{music_id}.pt')
segment_feats = torch.load(music_feature_path, map_location='cpu')
segment_mask = torch.load(music_mask_path, map_location='cpu')
segment_feats = segment_feats.masked_fill(segment_mask.unsqueeze(-1) == 0, 0)
# Construct data_map information
data_map = {
"frame_feats": frame_feats,
"frame_mask": frame_mask,
"segment_feats": segment_feats,
"segment_mask": segment_mask,
}
data_samples.append({
"data_map": data_map,
"meta_map": meta_map,
"spans_target": spans_target
})
return data_samples
Note:
- These pre-extracted features are compatible with our released PyTorch dataloader, see more details in dataloader_MGSV_EC_feature.py.
- Feature file paths are not stored in the CSV. Instead, users should specify the base directories via the following arguments:
- frame_frozen_feature_path:
[Your data feature path]/vit_feature1
- music_frozen_feature_path:
[Your data feature path]/ast_feature2p5
- frame_frozen_feature_path:
๐ Citation
If you use this dataset in your research, please cite:
@article{xin2024mgsv,
title={Music Grounding by Short Video},
author={Xin, Zijie and Wang, Minquan and Liu, Jingyu and Chen, Quan and Ma, Ye and Jiang, Peng and Li, Xirong},
journal={arXiv preprint arXiv:2408.16990},
year={2024}
}
๐ License
License: CC BY-NC 4.0
It is intended for non-commercial academic research and educational purposes only.
For commercial licensing or any use beyond research, please contact the authors.
๐ฅ Raw Vidoes/Music-tracks Access
The raw video and music files are not publicly available due to copyright and privacy constraints.
Researchers interested in obtaining the full media content can contact Kuaishou Technology at: [email protected].
๐ฌ Contact for Issues For any dataset-related questions or problems (e.g., corrupted files or loading errors), please reach out to: [email protected]
- Downloads last month
- 61