id
stringlengths 24
27
| content
stringlengths 37
384k
| max_stars_repo_path
stringlengths 51
51
|
---|---|---|
condefects-python_data_2501
|
s = input()
if s.islower():
print("No")
exit()
for i in range(1, len(s) - 1):
if s[i].isupper():
print("No")
exit()
print("Yes")
s = input()
if s.islower():
print("No")
exit()
for i in range(1, len(s)):
if s[i].isupper():
print("No")
exit()
print("Yes")
|
ConDefects/ConDefects/Code/abc338_a/Python/54889106
|
condefects-python_data_2502
|
S = input()
C = S[0]
D = S[1:]
ans = True
if C.isupper() and D.islower() or len(S) == 1:
print("Yes")
else:
print("No")
S = input()
C = S[0]
D = S[1:]
ans = True
if C.isupper() and (len(S) == 1 or D.islower()):
print("Yes")
else:
print("No")
|
ConDefects/ConDefects/Code/abc338_a/Python/54630438
|
condefects-python_data_2503
|
S = input()
if S[0].isupper():
if (len(S)>= 2 and S[1:].islower()) or len(S) == 1:
print("Yes")
else:
print("No")
S = input()
if S[0].isupper():
if (len(S)>= 2 and S[1:].islower()) or len(S) == 1:
print("Yes")
else:
print("No")
else:
print("No")
|
ConDefects/ConDefects/Code/abc338_a/Python/55016820
|
condefects-python_data_2504
|
def remove_str(input_str):
result = input_str.replace('a', '').replace('e', '').replace('o', '')
return result
s = input()
s_result = remove_str(s)
print(s_result)
def remove_str(input_str):
result = input_str.replace('a', '').replace('e', '').replace('i', '').replace('o', '').replace('u', '')
return result
s = input()
s_result = remove_str(s)
print(s_result)
|
ConDefects/ConDefects/Code/abc315_a/Python/46129092
|
condefects-python_data_2505
|
S = input()
List = list(S)
result = [i for i in List if i != 'a' and i != 'i' and i != 'u' and i != 'e' and i != 'o']
print(result)
S = input()
List = list(S)
result = [i for i in List if i != 'a' and i != 'i' and i != 'u' and i != 'e' and i != 'o']
print(''.join(result))
|
ConDefects/ConDefects/Code/abc315_a/Python/46159521
|
condefects-python_data_2506
|
import re
re.sub("a|e|i|o|u", "", input())
import re
print(re.sub("a|e|i|o|u", "", input()))
|
ConDefects/ConDefects/Code/abc315_a/Python/46219249
|
condefects-python_data_2507
|
from collections import defaultdict
H, W = map(int, input().split())
C = [list(input()) for _ in range(H)]
G = defaultdict(list)
for i in range(H):
for j in range(W):
if C[i][j] == "." and i + 1 <= H - 1:
if C[i + 1][j] == ".":
G[(i, j)].append((i + 1, j))
if C[i][j] == "." and j + 1 <= W - 1:
if C[i][j + 1] == ".":
G[(i, j)].append((i, j + 1))
visited = set()
def dfs(p):
global visited
visited.add(p)
for next in G[p]:
if next not in visited:
dfs(next)
dfs((0, 0))
ans = 0
for v in visited:
ans = max(ans, v[0] + v[1])
print(ans)
from collections import defaultdict
H, W = map(int, input().split())
C = [list(input()) for _ in range(H)]
G = defaultdict(list)
for i in range(H):
for j in range(W):
if C[i][j] == "." and i + 1 <= H - 1:
if C[i + 1][j] == ".":
G[(i, j)].append((i + 1, j))
if C[i][j] == "." and j + 1 <= W - 1:
if C[i][j + 1] == ".":
G[(i, j)].append((i, j + 1))
visited = set()
def dfs(p):
global visited
visited.add(p)
for next in G[p]:
if next not in visited:
dfs(next)
dfs((0, 0))
ans = 0
for v in visited:
ans = max(ans, v[0] + v[1] + 1)
print(ans)
|
ConDefects/ConDefects/Code/abc232_d/Python/45343318
|
condefects-python_data_2508
|
h, w = map(int, input().split())
c = [input() for i in range(h)]
s = [[0] * w for i in range(h)]
s[0][0] = 1
ans = 1
for i in range(h):
for j in range(w):
if c[i][j] == '#' or i == j == 0:
continue
if i == 0 and j > 0:
s[i][j] = s[i][j-1]+1
elif i > 0 and j == 0:
s[i][j] = s[i-1][j]+1
else:
s[i][j] = max(s[i][j-1], s[i-1][j])+1
if s[i][j] == 1:
s[i][j] == 0
if ans < s[i][j]:
ans = s[i][j]
print(ans)
h, w = map(int, input().split())
c = [input() for i in range(h)]
s = [[0] * w for i in range(h)]
s[0][0] = 1
ans = 1
for i in range(h):
for j in range(w):
if c[i][j] == '#' or i == j == 0:
continue
if i == 0 and j > 0:
s[i][j] = s[i][j-1]+1
elif i > 0 and j == 0:
s[i][j] = s[i-1][j]+1
else:
s[i][j] = max(s[i][j-1], s[i-1][j])+1
if s[i][j] == 1:
s[i][j] = 0
if ans < s[i][j]:
ans = s[i][j]
print(ans)
|
ConDefects/ConDefects/Code/abc232_d/Python/44805380
|
condefects-python_data_2509
|
# -*- coding: utf-8 -*-
def main():
import sys
from collections import deque
from typing import Any, List, Tuple
input = sys.stdin.readline
h, w = map(int, input().split())
c = [list(input().rstrip()) for _ in range(h)]
sy, sx = 0, 0
def bfs_for_grid(
grid: List[List[Any]], h: int, w: int, sy: int = 0, sx: int = 0
) -> Tuple[List[List[bool]], List[List[int]]]:
d = deque()
d.append((sy, sx))
visited = [[False] * w for _ in range(h)]
pending = -1
dist = [[pending] * w for _ in range(h)]
dist[sy][sx] = 1 # Initialize
dxy = [(-1, 0), (1, 0), (0, -1), (0, 1)]
while d:
y, x = d.popleft()
if dist[y][x] == pending:
continue
if visited[y][x]:
continue
visited[y][x] = True
for dx, dy in dxy:
nx = x + dx
ny = y + dy
if nx < 0 or nx >= w or ny < 0 or ny >= h:
continue
if visited[ny][nx]:
continue
if grid[ny][nx] == "#":
continue
if dist[ny][nx] != pending and dist[ny][nx] <= dist[y][x]:
continue
dist[ny][nx] = dist[y][x] + 1 # Update ans
d.append((ny, nx))
return visited, dist
visited, dist = bfs_for_grid(grid=c, h=h, w=w, sy=sy, sx=sx)
# print(dist)
ans = 1
for i in range(h):
for j in range(w):
ans = max(ans, dist[i][j])
print(ans)
if __name__ == "__main__":
main()
# -*- coding: utf-8 -*-
def main():
import sys
from collections import deque
from typing import Any, List, Tuple
input = sys.stdin.readline
h, w = map(int, input().split())
c = [list(input().rstrip()) for _ in range(h)]
sy, sx = 0, 0
def bfs_for_grid(
grid: List[List[Any]], h: int, w: int, sy: int = 0, sx: int = 0
) -> Tuple[List[List[bool]], List[List[int]]]:
d = deque()
d.append((sy, sx))
visited = [[False] * w for _ in range(h)]
pending = -1
dist = [[pending] * w for _ in range(h)]
dist[sy][sx] = 1 # Initialize
dxy = [(1, 0), (0, 1)]
while d:
y, x = d.popleft()
if dist[y][x] == pending:
continue
if visited[y][x]:
continue
visited[y][x] = True
for dx, dy in dxy:
nx = x + dx
ny = y + dy
if nx < 0 or nx >= w or ny < 0 or ny >= h:
continue
if visited[ny][nx]:
continue
if grid[ny][nx] == "#":
continue
if dist[ny][nx] != pending and dist[ny][nx] <= dist[y][x]:
continue
dist[ny][nx] = dist[y][x] + 1 # Update ans
d.append((ny, nx))
return visited, dist
visited, dist = bfs_for_grid(grid=c, h=h, w=w, sy=sy, sx=sx)
# print(dist)
ans = 1
for i in range(h):
for j in range(w):
ans = max(ans, dist[i][j])
print(ans)
if __name__ == "__main__":
main()
|
ConDefects/ConDefects/Code/abc232_d/Python/45267327
|
condefects-python_data_2510
|
from collections import deque
h,w = map(int, input().split())
mp = [list(input()) for i in range(h)]
Q = deque()
root = [[-1]* w for i in range(h)]
dist = [(0, 1), (0, -1), (1, 0), (-1, 0)]
cnt = 0
Q.append((0,0))
root[0][0] = 0
while Q:
y, x = Q.popleft()
for dy, dx in dist:
y2 = y + dy
x2 = x + dx
if not (0 <= y2 < h and 0 <= x2 < w):
continue
if mp[y2][x2] == "#":
continue
if root[y2][x2] == -1:
root[y2][x2] = root[y][x] + 1
Q.append([y2, x2])
ans = sum(root,[])
print(max(ans) + 1)
from collections import deque
h,w = map(int, input().split())
mp = [list(input()) for i in range(h)]
Q = deque()
root = [[-1]* w for i in range(h)]
dist = [(0, 1),(1, 0)]
cnt = 0
Q.append((0,0))
root[0][0] = 0
while Q:
y, x = Q.popleft()
for dy, dx in dist:
y2 = y + dy
x2 = x + dx
if not (0 <= y2 < h and 0 <= x2 < w):
continue
if mp[y2][x2] == "#":
continue
if root[y2][x2] == -1:
root[y2][x2] = root[y][x] + 1
Q.append([y2, x2])
ans = sum(root,[])
print(max(ans) + 1)
|
ConDefects/ConDefects/Code/abc232_d/Python/45068396
|
condefects-python_data_2511
|
# import pypyjit;pypyjit.set_param("max_unroll_recursion=-1")
# from bisect import *
# from collections import *
# from heapq import *
# from itertools import *
# from math import *
# from datetime import *
# from decimal import * # PyPyだと遅い
# from string import ascii_lowercase,ascii_uppercase
# import numpy as np
import sys
# sys.setrecursionlimit(10**6) # PyPyだと遅い
INF = 1 << 61
MOD = 998244353
# MOD = 10**9 + 7
File = sys.stdin
def input():
return File.readline()[:-1]
# ///////////////////////////////////////////////////////////////////////////
H, W = map(int, input().split())
C = [list(input()) for _ in range(H)]
dp = [[0] * W for _ in range(H)]
dp[0][0] = 1
for i in range(H):
for j in range(W):
if j < W - 1 and C[i][j + 1] == ".":
dp[i][j + 1] = max(dp[i][j + 1], dp[i][j] + 1)
if i < H - 1 and C[i + 1][j] == ".":
dp[i + 1][j] = max(dp[i + 1][j], dp[i][j] + 1)
ans = 0
for i in range(H):
for j in range(W):
ans = max(ans, dp[i][j])
print(ans)
# import pypyjit;pypyjit.set_param("max_unroll_recursion=-1")
# from bisect import *
# from collections import *
# from heapq import *
# from itertools import *
# from math import *
# from datetime import *
# from decimal import * # PyPyだと遅い
# from string import ascii_lowercase,ascii_uppercase
# import numpy as np
import sys
# sys.setrecursionlimit(10**6) # PyPyだと遅い
INF = 1 << 61
MOD = 998244353
# MOD = 10**9 + 7
File = sys.stdin
def input():
return File.readline()[:-1]
# ///////////////////////////////////////////////////////////////////////////
H, W = map(int, input().split())
C = [list(input()) for _ in range(H)]
dp = [[0] * W for _ in range(H)]
dp[0][0] = 1
for i in range(H):
for j in range(W):
if dp[i][j] == 0:
continue
if j < W - 1 and C[i][j + 1] == ".":
dp[i][j + 1] = max(dp[i][j + 1], dp[i][j] + 1)
if i < H - 1 and C[i + 1][j] == ".":
dp[i + 1][j] = max(dp[i + 1][j], dp[i][j] + 1)
ans = 0
for i in range(H):
for j in range(W):
ans = max(ans, dp[i][j])
print(ans)
|
ConDefects/ConDefects/Code/abc232_d/Python/45266728
|
condefects-python_data_2512
|
H,W=map(int,input().split())
dp=[[-10**10]*W for i in range(H)]
S=[input() for i in range(H)]
dp[0][0]=1
for i in range(H):
for j in range(W):
if S[i][j]=='.':
dp[i][j]=max(dp[i][j],dp[i-1][j]+1,dp[i][j-1]+1)
result=0
for i in range(H):
w=max(dp[i])
result=max(result,w)
print(result)
H,W=map(int,input().split())
dp=[[-10**10]*W for i in range(H)]
S=[input() for i in range(H)]
dp[0][0]=1
for i in range(H):
for j in range(W):
if i==0 and j==0:
continue
if S[i][j]=='.':
dp[i][j]=max(dp[i][j],dp[i-1][j]+1,dp[i][j-1]+1)
result=0
for i in range(H):
w=max(dp[i])
result=max(result,w)
print(result)
|
ConDefects/ConDefects/Code/abc232_d/Python/45266729
|
condefects-python_data_2513
|
from collections import deque
H,W = map(int,input().split())
C = [input() for _ in range(H)]
dxs = [0,1]
dys = [1,0]
que = deque()
que.append((0,0))
dis = [[-1]*W for _ in range(H)]
dis[0][0]=1
ans = 0
while que:
y,x = que.popleft()
for dy,dx in zip(dys,dxs):
ny = y+dy
nx = x+dx
if ny>=H or nx>=W: continue
if C[ny][nx]=='.' and dis[ny][nx]==-1:
dis[ny][nx]=dis[y][x]+1
ans = max(ans,dis[ny][nx])
que.append((ny,nx))
print(ans)
from collections import deque
H,W = map(int,input().split())
C = [input() for _ in range(H)]
dxs = [0,1]
dys = [1,0]
que = deque()
que.append((0,0))
dis = [[-1]*W for _ in range(H)]
dis[0][0]=1
ans = 1
while que:
y,x = que.popleft()
for dy,dx in zip(dys,dxs):
ny = y+dy
nx = x+dx
if ny>=H or nx>=W: continue
if C[ny][nx]=='.' and dis[ny][nx]==-1:
dis[ny][nx]=dis[y][x]+1
ans = max(ans,dis[ny][nx])
que.append((ny,nx))
print(ans)
|
ConDefects/ConDefects/Code/abc232_d/Python/45499422
|
condefects-python_data_2514
|
N, M = map(int, input().split())
p = list(map(int, input().split())) if M > 0 else []
graph = ""
for i in range(1, N+1):
node = str(i)
graph += node + ("v" if i in p else ",")
result = []
for subgraph in graph.split(","):
result += sorted(subgraph.split("v"), reverse=True)
print(*result)
N, M = map(int, input().split())
p = list(map(int, input().split())) if M > 0 else []
graph = ""
for i in range(1, N+1):
node = str(i)
graph += node + ("v" if i in p else ",")
result = []
for subgraph in graph.split(","):
result += sorted(list(map(int, subgraph.split("v"))), reverse=True) if len(subgraph) > 0 else []
print(*result)
|
ConDefects/ConDefects/Code/abc289_b/Python/44836694
|
condefects-python_data_2515
|
# InlineImporter
import os as _os
import sys as _sys
from functools import lru_cache as _lru_cache
from importlib.abc import ExecutionLoader, MetaPathFinder
from importlib.machinery import ModuleSpec
class InlineImporter(ExecutionLoader, MetaPathFinder):
version = None
inlined_modules = {}
namespace_packages = False
@classmethod
def find_spec(cls, fullname, path=None, target=None):
"""Find a spec for a given module.
Because we only deal with our inlined module, we don't have to care about path or target.
The import machinery also takes care of fully resolving all names, so we just have to deal with the fullnames.
"""
if fullname in cls.inlined_modules:
# We have inlined this module, so return the spec
ms = ModuleSpec(fullname, cls, origin=cls.get_filename(fullname), is_package=cls.is_package(fullname))
ms.has_location = True
if cls.namespace_packages and ms.submodule_search_locations is not None:
for p in _sys.path:
ms.submodule_search_locations.append(_os.path.join(p, _os.path.dirname(ms.origin)))
return ms
return None
@staticmethod
def _call_with_frames_removed(f, *args, **kwds):
"""remove_importlib_frames in import.c will always remove sequences
of importlib frames that end with a call to this function
Use it instead of a normal call in places where including the importlib
frames introduces unwanted noise into the traceback (e.g. when executing
module code)
"""
return f(*args, **kwds)
@classmethod
def create_module(cls, spec):
"""Create a module using the default machinery."""
return None
@classmethod
def exec_module(cls, module):
"""Execute the module."""
code = cls.get_code(module.__name__)
if code is None:
raise ImportError("cannot load module {!r} when get_code() returns None".format(module.__name__))
cls._call_with_frames_removed(exec, code, module.__dict__)
@classmethod
@_lru_cache(maxsize=None)
def get_filename(cls, fullname):
"""Returns the
Raises ImportError if the module cannot be found.
"""
if fullname not in cls.inlined_modules:
raise ImportError
mod = cls.inlined_modules[fullname]
origin = fullname
if mod[0]:
origin = ".".join([origin, "__init__"])
origin = ".".join([origin.replace(".", "/"), "py"])
return origin
@classmethod
@_lru_cache(maxsize=None)
def is_package(cls, fullname):
if fullname not in cls.inlined_modules:
raise ImportError
return cls.inlined_modules[fullname][0]
@classmethod
def get_source(cls, fullname):
if fullname not in cls.inlined_modules:
raise ImportError
return cls.inlined_modules[fullname][1]
@classmethod
def get_code(cls, fullname):
"""Method to return the code object for fullname.
Should return None if not applicable (e.g. built-in module).
Raise ImportError if the module cannot be found.
"""
source = cls.get_source(fullname)
if source is None:
return None
try:
path = cls.get_filename(fullname)
except ImportError:
return cls.source_to_code(source)
else:
return cls.source_to_code(source, path)
InlineImporter.version = '0.0.4'
InlineImporter.inlined_modules = {
'lib.array2d': (False, "class Array2dView:\n def __init__(self, arr, i_indices, j_indices):\n self.arr = arr\n self.i_indices = i_indices\n self.j_indices = j_indices\n self.n = len(i_indices)\n self.m = len(j_indices)\n \n def _get_view(self, i, j):\n i = self.i_indices[i]\n j = self.j_indices[j]\n return Array2dView(self.arr, i, j)\n\n def get_ind(self, i, j):\n return self.i_indices[i]+self.j_indices[j]\n \n def __getitem__(self, index):\n i, j = index\n try:\n return self.arr[self.get_ind(i,j)]\n except TypeError:\n return self._get_view(i, j)\n \n def __setitem__(self, index, value):\n i, j = index\n try:\n self.arr[self.get_ind(i,j)] = value\n except TypeError:\n x = self._get_view(i, j)\n for i in x.i_indices:\n for j in x.j_indices:\n self.arr[i+j] = value\n \n def __iter__(self):\n for i in self.i_indices:\n for j in self.j_indices:\n yield self.arr[i+j]\n \n def __reversed__(self):\n for i in reversed(self.i_indices):\n for j in reversed(self.j_indices):\n yield self.arr[i+j]\n \n def __str__(self):\n m = max(len(str(v)) for v in self)\n res = ['']*len(self.i_indices)\n row = ['']*(len(self.j_indices)+2)\n for ri,i in enumerate(self.i_indices):\n if ri == 0:\n row[0] = '['\n else:\n row[0] = ' '\n if ri == len(self.i_indices)-1:\n row[-1] = ']\\n'\n for rj,j in enumerate(self.j_indices):\n row[rj+1] = f'{str(self.arr[i+j]):>{m+1}}'\n res[ri] = ''.join(row)\n return '\\n'.join(res)\n \n def copy(self):\n return Array2d(len(self.i_indices), len(self.j_indices), list(self))\n\n\nclass Array2d:\n def __init__(self, n, m, arr):\n self.n = n\n self.m = m\n self.arr = arr\n \n @classmethod\n def full(cls, n, m, fill_value):\n return cls(n, m, [fill_value]*(n*m))\n \n @classmethod\n def from_list(cls, lst):\n n,m = len(lst), len(lst[0])\n arr = [lst[0]]*(n*m)\n k = 0\n for row in lst:\n for v in row:\n arr[k] = v\n k += 1\n return cls(n, m, arr)\n \n def _get_view(self, i, j):\n i = tuple(range(0, self.n*self.m, self.m))[i]\n j = tuple(range(self.m))[j]\n return Array2dView(self.arr, i, j)\n\n def get_ind(self, i, j):\n return i*self.m+j\n\n def __getitem__(self, index):\n try:\n return self.arr[self.get_ind(*index)]\n except TypeError:\n return self._get_view(*index)\n \n def __setitem__(self, index, value):\n try:\n self.arr[self.get_ind(*index)] = value\n except TypeError:\n x = self._get_view(*index)\n for i in x.i_indices:\n for j in x.j_indices:\n self.arr[i+j] = value\n \n def __iter__(self):\n return iter(self.arr)\n \n def __reversed__(self):\n return reversed(self.arr)\n \n def __str__(self):\n m = max(len(str(v)) for v in self)\n res = ['']*self.n\n row = ['']*(self.m+2)\n for i in range(self.n):\n if i == 0:\n row[0] = '['\n else:\n row[0] = ' '\n if i == self.n-1:\n row[-1] = ']\\n'\n for j in range(self.m):\n row[j+1] = f'{str(self.arr[i*self.m+j]):>{m+1}}'\n res[i] = ''.join(row)\n return '\\n'.join(res)\n\n __repr__ = __str__\n\n def __eq__(self, other):\n return self.arr == other.arr\n\n def copy(self):\n return self.__class__(self.n, self.m, self.arr[:])\n\n @property\n def t(self):\n arr = [self.arr[0]]*(len(self.arr))\n x = 0\n for i in range(self.n):\n for j in range(self.m):\n arr[j*self.n + i] = self.arr[x]\n x += 1\n return self.__class__(self.m, self.n, arr)\n"),
'lib.array3d': (False, 'class Array3d(list):\n def __init__(self, n, m, p, arr):\n list.__init__(self, arr)\n self.n = n\n self.m = m\n self.p = p\n self.mp = m*p\n\n @classmethod\n def full(cls, n, m, p, fill_value):\n return cls(n, m, p, [fill_value] * (n * m * p))\n\n def get_ind(self, i, j, k):\n return i * self.mp + j * self.p + k\n\n def __getitem__(self, index):\n return list.__getitem__(self, self.get_ind(*index))\n\n def __setitem__(self, index, value):\n list.__setitem__(self, self.get_ind(*index), value)\n'),
'lib.benchmark': (False, '\nfrom time import perf_counter as timer\ndef simple_timeit(func, repeat=1000, warmup=100):\n for i in range(warmup):\n func(i)\n start = timer()\n for i in range(repeat):\n func(i)\n stop = timer()\n return stop-start\n'),
'lib.data_structure': (False, 'from typing import List, Any, TypeVar, Iterator\nfrom collections.abc import MutableSet\n\nclass DisjointSet:\n def __init__(self, parent):\n self.parent = parent\n\n @classmethod\n def empty(cls, size):\n return cls([-1]*size)\n\n def find(self, x):\n stack = []\n while self.parent[x] >= 0:\n stack.append(x)\n x = self.parent[x]\n for y in stack:\n self.parent[y] = x\n return x\n\n def union_reps(self, xr, yr):\n if xr == yr:\n return xr\n if self.parent[xr] > self.parent[yr]:\n xr, yr = yr, xr\n self.parent[xr] += self.parent[yr]\n self.parent[yr] = xr\n return xr\n\n def union(self, x, y):\n return self.union_reps(self.find(x), self.find(y))\n\n def group_size(self, x):\n return -self.parent[self.find(x)]\n\n def is_rep(self, x):\n return self.parent[x] < 0\n\n def copy(self):\n return DisjointSet(self.parent)\n\n\nclass SegmentTree:\n """\n ???????????????????????????????????\n ???????????????????????????(???????????)\n """\n\n @classmethod\n def all_identity(cls, operator, identity, size):\n return cls(operator, identity, [identity] * (2 << (size - 1).bit_length()))\n\n @classmethod\n def from_initial_data(cls, operator, identity, data):\n size = 1 << (len(data) - 1).bit_length()\n temp = [identity] * (2 * size)\n temp[size:size + len(data)] = data\n data = temp\n\n for i in reversed(range(size)):\n data[i] = operator(data[2 * i], data[2 * i + 1])\n return cls(operator, identity, data)\n\n # ??????????????????????\n def __init__(self, operator, identity, data):\n self.op = operator\n self.id = identity\n self.data = data\n self.size = len(data) // 2\n\n def reduce(self, l, r):\n l += self.size\n r += self.size\n vl = self.id\n vr = self.id\n\n while l < r:\n if l & 1:\n vl = self.op(vl, self.data[l])\n l += 1\n if r & 1:\n r -= 1\n vr = self.op(self.data[r], vr)\n l >>= 1\n r >>= 1\n return self.op(vl, vr)\n\n def elements(self, l, r):\n l += self.size\n r += self.size\n\n lefts = []\n rights = []\n\n while l < r:\n if l & 1:\n lefts.append(self.data[l])\n l += 1\n if r & 1:\n r -= 1\n rights.append(self.data[r])\n l >>= 1\n r >>= 1\n return lefts, rights\n\n def __getitem__(self, i):\n if isinstance(i, slice):\n return self.reduce(\n 0 if i.start is None else i.start,\n self.size if i.stop is None else i.stop)\n elif isinstance(i, int):\n return self.data[i + self.size]\n\n def __setitem__(self, i, v):\n i += self.size\n while i:\n self.data[i] = v\n v = self.op(self.data[i ^ 1], v) if i & 1 else self.op(v, self.data[i ^ 1])\n i >>= 1\n\n def __iter__(self):\n return iter(self.data[self.size:])\n\n\nclass LazySegmentTree:\n """\n op: ????????reduce?????????\n apply: ??????\n comp: ??????\n \n range_query: reduce(op, (apply(x,m) for x,m in zip(X,M)))\n \n ???????:\n \n ??X (??)\n op[+]: X,X -> X\n (X, op)?????\n \n ??M (???)\n comp[*]: M,M -> M\n (M, compose)?????\n \n apply[f(x,m,n)]: X,M,Z+ -> X\n (Z+????)\n \n f(x,e_M,n) = x\n f(x,m*n,p) = f(f(x,m,p),n,p)\n f(x,m,p)+f(y,m,q) = f(x+y,m,p+q)\n \n ??: https://algo-logic.info/segment-tree/#toc_id_3\n """\n\n @classmethod\n def all_identity(cls, op, op_e, comp, comp_e, apply, size):\n size = 1 << (size - 1).bit_length()\n return cls(\n op,\n op_e,\n comp,\n comp_e,\n apply,\n [op_e] * (2 * size),\n [comp_e] * size\n )\n\n @classmethod\n def from_initial_data(cls, op, op_e, comp, comp_e, apply, data):\n size = 1 << (len(data) - 1).bit_length()\n temp = [op_e] * (2 * size)\n temp[size:size + len(data)] = data\n\n for i in reversed(range(size)):\n temp[i] = op(temp[2 * i], temp[2 * i + 1])\n return cls(\n op,\n op_e,\n comp,\n comp_e,\n apply,\n temp,\n [comp_e] * size\n )\n\n # ??????????????????????\n def __init__(self, op, op_e, comp, comp_e, apply, data, lazy):\n self.op = op\n self.op_e = op_e\n self.comp = comp\n self.comp_e = comp_e\n self.apply = apply\n self.data = data\n self.lazy = lazy\n self.size = len(self.data) // 2\n self.depth = self.size.bit_length() - 1\n self._l_indices = [0] * self.depth\n self._r_indices = [0] * self.depth\n\n def _update_indices(self, i, l):\n m = i // (i & -i)\n i >>= 1\n for k in range(self.depth):\n l[k] = i if i < m else 0\n i >>= 1\n\n def _propagate_top_down(self):\n data = self.data\n lazy = self.lazy\n apply = self.apply\n comp = self.comp\n comp_e = self.comp_e\n k = self.size >> 1\n\n for i, j in zip(reversed(self._l_indices), reversed(self._r_indices)):\n if i > 0:\n temp = lazy[i]\n if temp != comp_e:\n lazy[i] = comp_e\n a = i << 1\n b = a | 1\n data[a] = apply(data[a], temp, k)\n data[b] = apply(data[b], temp, k)\n if k > 1:\n lazy[a] = comp(lazy[a], temp)\n lazy[b] = comp(lazy[b], temp)\n if i < j:\n temp = lazy[j]\n if temp != comp_e:\n lazy[j] = comp_e\n a = j << 1\n b = a | 1\n data[a] = apply(data[a], temp, k)\n data[b] = apply(data[b], temp, k)\n if k > 1:\n lazy[a] = comp(lazy[a], temp)\n lazy[b] = comp(lazy[b], temp)\n k >>= 1\n\n def _propagate_bottom_up(self):\n data = self.data\n op = self.op\n for i, j in zip(self._l_indices, self._r_indices):\n if i < j:\n data[j] = op(data[j << 1], data[j << 1 | 1])\n if i > 0:\n data[i] = op(data[i << 1], data[i << 1 | 1])\n\n def update_interval(self, l, r, m):\n lazy = self.lazy\n data = self.data\n comp = self.comp\n apply = self.apply\n\n l += self.size\n r += self.size\n self._update_indices(l, self._l_indices)\n self._update_indices(r, self._r_indices)\n self._propagate_top_down()\n k = 1\n while l < r:\n if l & 1:\n data[l] = apply(data[l], m, k)\n if k > 1:\n lazy[l] = comp(lazy[l], m)\n l += 1\n if r & 1:\n r -= 1\n data[r] = apply(data[r], m, k)\n if k > 1:\n lazy[r] = comp(lazy[r], m)\n l >>= 1\n r >>= 1\n k <<= 1\n self._propagate_bottom_up()\n\n def get_interval(self, l, r):\n data = self.data\n op = self.op\n\n l += self.size\n r += self.size\n self._update_indices(l, self._l_indices)\n self._update_indices(r, self._r_indices)\n self._propagate_top_down()\n\n lx = self.op_e\n rx = self.op_e\n while l < r:\n if l & 1:\n lx = op(lx, data[l])\n l += 1\n if r & 1:\n r -= 1\n rx = op(data[r], rx)\n l >>= 1\n r >>= 1\n return op(lx, rx)\n\n\nfrom operator import add, sub\n\n\nclass BinaryIndexedTree:\n def __init__(self, size, zero=0, operator=add, inv_operator=sub):\n self.zero = zero\n self.op = operator\n self.inv = inv_operator\n self.data = [zero] * (size + 1)\n self.msb = 1 << (size.bit_length() - 1)\n\n def _add(self, i, w):\n i += 1\n while i < len(self.data):\n self.data[i] = self.op(self.data[i], w)\n i += i & -i\n\n def _get_sum(self, i):\n res = self.zero\n while i > 0:\n res = self.op(res, self.data[i])\n i -= i & -i\n return res\n\n def __getitem__(self, i):\n """\n [0,i)\n """\n if isinstance(i, slice):\n a = self._get_sum(len(self.data) - 1 if i.stop is None else i.stop)\n b = self._get_sum(0 if i.start is None else i.start)\n return self.inv(a, b)\n else:\n return self.zero # fake value\n\n __setitem__ = _add\n\n def bisect_left(self, v):\n """\n return smallest i s.t v <= sum[:i+1]\n """\n i = 0\n k = self.msb\n l = len(self.data)\n while k > 0:\n i += k\n if i < l and self.data[i] < v:\n v -= self.data[i]\n else:\n i -= k\n k >>= 1\n return i\n\n def bisect_right(self, v):\n """\n return smallest i s.t v < sum[:i+1]\n """\n i = 0\n k = self.msb\n l = len(self.data)\n while k > 0:\n i += k\n if i < l and self.data[i] <= v:\n v -= self.data[i]\n else:\n i -= k\n k >>= 1\n return i\n\n bisect = bisect_right\n\n\nimport bisect\nT = TypeVar(\'T\')\n\n\nclass SortedList(MutableSet):\n\n def __init__(self, sorted_values: List[T]):\n self.i2v = sorted_values\n self.v2i = {v:i for i,v in enumerate(self.i2v)}\n self.fen = BinaryIndexedTree(len(self.i2v))\n self.n = 0\n\n def rank(self, x:T) -> int:\n \'\'\'\n x???????????\n\n :param x: ??????\n :return: x????????\n \'\'\'\n return self.fen[:bisect.bisect_left(self.i2v, x)]\n\n def get(self, rank: int) -> T:\n return self.i2v[self.fen.bisect_left(rank)]\n\n def lower_bound(self, x: T, k: int = 1) -> T:\n \'\'\'\n x???k????????????O(log N)\n\n :param x: ??????\n :param k: ?????????????????1?\n :return: x???k????????\n \'\'\'\n t = self.fen[:bisect.bisect(self.i2v, x)]-k\n if t < 0 or t >= self.n:\n raise IndexError\n return self.fen.bisect_left(t)\n\n def upper_bound(self, x: T, k: int = 1) -> T:\n \'\'\'\n x???k????????????O(log N)\n\n :param x: ??????\n :param k: ?????????????????1?\n :return: x???k????????\n \'\'\'\n t = self.fen[:bisect(self.i2v, x)-1]+k\n if t < 0 or t >= self.n:\n raise IndexError\n return self.fen.bisect_left(t)\n\n def add(self, value: T) -> None:\n pass\n\n def discard(self, value: T) -> None:\n pass\n\n def __contains__(self, x: Any) -> bool:\n pass\n\n def __len__(self) -> int:\n pass\n\n def __iter__(self) -> Iterator[T]:\n pass\n\n\n\nclass SlidingWindowAggregator:\n # ????????\n def __init__(self, op, identity):\n self.op = op\n self.identity = identity\n self.data = []\n self.front = [identity]\n self.back = [identity]\n\n def __len__(self):\n return len(self.front) + len(self.back) - 2\n\n def push(self, x):\n self.data.append(x)\n self.back.append(self.op(self.back[-1], x))\n\n def pop(self):\n if len(self.front) == 1:\n self.move()\n self.front.pop()\n\n def move(self):\n self.back = [self.identity]\n for x in reversed(self.data):\n self.front.append(self.op(x, self.front[-1]))\n self.data.clear()\n\n def get(self):\n return self.op(self.front[-1], self.back[-1])\n\n# bit = BinaryIndexedTree(4)\n# bit[1] += 1\n# bit[2] += 1\n# for i in range(5):\n# print(i, bit.bisect_left(i), bit.bisect_right(i))'),
'lib.graph': (False, 'import itertools\nimport heapq as hq\nfrom lib.misc import min2\nfrom lib.array2d import Array2d\nfrom collections import defaultdict\n\nfrom typing import *\n\nT = TypeVar(\'T\')\n\nINF = 2 ** 62\n\n\nclass BaseWeightedGraph:\n\n def __init__(self, n_vertices: int):\n self.n_vertices = n_vertices\n\n def wadj(self, v: int) -> Iterable[Tuple[int, Any]]:\n """\n Return an iterable of vertices adjacent to v and edge weight\n """\n raise NotImplementedError\n\n def adj(self, v: int) -> Iterable[int]:\n """\n Return an iterable of vertices adjacent to v\n """\n return (u for u, w in self.wadj(v))\n\n @property\n def wedges(self) -> Iterable[Tuple[int, int, Any]]:\n """\n Return an iterable of weighted edges (vertex_1, vertex_2, weight)\n """\n return ((v, u, w) for v in range(self.n_vertices) for u, w in self.wadj(v))\n\n @property\n def edges(self):\n return ((v, u) for v in range(self.n_vertices) for u in self.adj(v))\n\n def dist(self, s: int, t: int, inf=INF):\n return dijkstra(self, s, t, inf)[t]\n\n def warshall_floyd(self, inf=INF):\n dist = Array2d.full(self.n_vertices, self.n_vertices, inf)\n for u, v, w in self.wedges:\n dist[u, v] = w\n for i in range(self.n_vertices):\n dist[i, i] = 0\n for k in range(self.n_vertices):\n for i in range(self.n_vertices):\n for j in range(self.n_vertices):\n dist[i, j] = min2(dist[i, j], dist[i, k] + dist[k, j])\n return dist\n\n def to_wgraph(self) -> \'WeightedGraph\':\n return WeightedGraph.from_directed_edges(self.n_vertices, self.wedges)\n\n def to_reverse_wgraph(self) -> \'WeightedGraph\':\n return WeightedGraph.from_directed_edges(self.n_vertices, ((u, v, w) for v, u, w in self.wedges))\n\n def to_graph(self) -> \'Graph\':\n l = [[] for _ in range(self.n_vertices)]\n for u, v in self.edges:\n l[u].append(v)\n return Graph.from_lil_adj(self.n_vertices, l)\n\n def to_reverse_graph(self) -> \'Graph\':\n l = [[] for _ in range(self.n_vertices)]\n for u, v in self.edges:\n l[v].append(u)\n return Graph.from_lil_adj(self.n_vertices, l)\n\n\nclass WeightedGraph(BaseWeightedGraph):\n\n def __init__(self, n_vertices: int, adj: List[int], weight: List[Any], ind: List[int]):\n super().__init__(n_vertices)\n self._adj = adj\n self._weight = weight\n self._ind = ind\n\n @classmethod\n def from_lil_adj(cls, n_vertices: int, adj_list: Iterable[Sequence[Tuple[int, Any]]],\n n_edges: int) -> \'WeightedGraph\':\n adj = [0] * n_edges\n weight = [0] * n_edges\n ind = [0] * (n_vertices + 1)\n i = 0\n for u, l in enumerate(adj_list):\n ind[u] = i\n for v, w in l:\n adj[i] = v\n weight[i] = w\n i += 1\n ind[n_vertices] = i\n return cls(n_vertices, adj, weight, ind)\n\n @classmethod\n def from_directed_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int, int]]) -> \'WeightedGraph\':\n temp = [[] for _ in range(n_vertices)]\n n_edges = 0\n for u, v, w in edges:\n temp[u].append((v, w))\n n_edges += 1\n return cls.from_lil_adj(n_vertices, temp, n_edges)\n\n @classmethod\n def from_undirected_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int, int]]) -> \'WeightedGraph\':\n return cls.from_directed_edges(n_vertices, itertools.chain(edges, ((u, v, w) for v, u, w in edges)))\n\n def wadj(self, v: int) -> Iterable[Tuple[int, Any]]:\n i, j = self._ind[v], self._ind[v + 1]\n return ((self._adj[k], self._weight[k]) for k in range(i, j))\n\n\nclass ModifiableWeightedGraph(BaseWeightedGraph):\n\n def __init__(self, n_vertices: int, edges: MutableMapping[Tuple[int, int], Any]):\n super().__init__(n_vertices)\n self._edges = edges\n temp = [set() for _ in range(n_vertices)]\n for u, v, w in edges:\n temp[u].add((v, w))\n self._adj = temp\n\n @classmethod\n def from_directed_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int, Any]]) -> \'ModifiableWeightedGraph\':\n return cls(n_vertices, edges)\n\n @classmethod\n def from_undirected_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int, Any]]) -> \'ModifiableWeightedGraph\':\n return cls.from_directed_edges(n_vertices, itertools.chain(edges, ((u, v, w) for v, u, w in edges)))\n\n def wadj(self, v: int) -> Iterable[Tuple[int, Any]]:\n return self._adj[v]\n\n def update_edge(self, v: int, u: int, w: Any) -> None:\n try:\n w_old = self._edges[v, u]\n self._edges[v, u] = w\n self._adj[v].discard((u, w_old))\n self._adj[v].add((u, w))\n except KeyError:\n self._edges[v, u] = w\n self._adj[v].add((u, w))\n\n def delete_edge(self, v: int, u: int) -> None:\n try:\n w = self._edges[v, u]\n del self._edges[v, u]\n self._adj[v].discard((u, w))\n except KeyError:\n pass\n\n\nclass BaseGraph(BaseWeightedGraph):\n\n def adj(self, v):\n raise NotImplementedError\n\n def wadj(self, v):\n return ((u, 1) for u in self.adj(v))\n\n def dist(self, s: int, t: int, inf: Any = INF):\n d = self.bfs(s, t)[t]\n return inf if d == -1 else d\n\n def furthest_vertex(self, v0):\n """\n Returns a vertex that is furthest away from v0, and its distance from v0\n """\n q = [v0]\n visited = [0] * self.n_vertices\n visited[v0] = 1\n x = -1\n rd = 0\n for d in itertools.count():\n if not q:\n rd = d\n break\n x = q[0]\n nq = []\n for v in q:\n for u in self.adj(v):\n if not visited[u]:\n visited[u] = 1\n nq.append(u)\n q = nq\n return x, rd\n\n\nclass Graph(BaseGraph):\n\n def __init__(self, n_vertices: int, adj: List[int], ind: List[int]):\n super().__init__(n_vertices)\n self._adj = adj\n self._ind = ind\n\n @classmethod\n def from_lil_adj(cls, n_vertices: int, adj_list: Iterable[Sequence[int]]) -> \'Graph\':\n n_edges = sum(len(l) for l in adj_list)\n adj = [0] * n_edges\n ind = [0] * (n_vertices + 1)\n i = 0\n for u, l in enumerate(adj_list):\n ind[u] = i\n for v in l:\n adj[i] = v\n i += 1\n ind[n_vertices] = i\n return cls(n_vertices, adj, ind)\n\n @classmethod\n def from_directed_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int]]) -> \'Graph\':\n temp = [[] for _ in range(n_vertices)]\n for u, v in edges:\n temp[u].append(v)\n return cls.from_lil_adj(n_vertices, temp)\n\n @classmethod\n def from_undirected_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int]]) -> \'Graph\':\n temp = [[] for _ in range(n_vertices)]\n for u, v in edges:\n temp[u].append(v)\n temp[v].append(u)\n return cls.from_lil_adj(n_vertices, temp)\n\n def adj(self, v):\n return self._adj[self._ind[v]: self._ind[v + 1]]\n\n\nclass ModifiableGraph(BaseGraph):\n\n def __init__(self, n_vertices: int, adj: List[MutableSet[int]]):\n super().__init__(n_vertices)\n self._adj = adj\n\n @classmethod\n def from_directed_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int]]) -> \'ModifiableGraph\':\n temp = [set() for _ in range(n_vertices)]\n for u, v in edges:\n temp[u].add(v)\n return cls(n_vertices, temp)\n\n @classmethod\n def from_undirected_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int]]) -> \'ModifiableGraph\':\n return cls.from_directed_edges(n_vertices, itertools.chain(edges, ((u, v) for v, u in edges)))\n\n def adj(self, v: int) -> Iterable[int]:\n return self._adj[v]\n\n def add_edge(self, v: int, u: int) -> None:\n self._adj[v].add(u)\n\n def delete_edge(self, v: int, u: int) -> None:\n self._adj[v].discard(u)\n\n\nclass FunctionalGraph(BaseGraph):\n def __init__(self, n_vertices: int, func: List[int]):\n super().__init__(n_vertices)\n self.func = func\n\n def adj(self, v: int) -> Iterable[int]:\n yield self.func[v]\n\n def get_doubling(self, max_length: int) -> Array2d:\n k = max_length.bit_length()\n dbl = Array2d.full(k, self.n_vertices, 0)\n for v in range(self.n_vertices):\n dbl[0, v] = self.func[v]\n for t in range(1, k):\n for v in range(self.n_vertices):\n dbl[t, v] = dbl[t-1, dbl[t-1, v]]\n return dbl\n\n @staticmethod\n def apply_func(v: int, k: int, dbl: Array2d) -> int:\n assert k.bit_length() <= dbl.n\n\n for t in range(dbl.n):\n if k&1:\n v = dbl[t, v]\n k >>= 1\n return v\n\n\nclass Grid(BaseGraph):\n def __init__(self, grid):\n super().__init__(grid.n * grid.m)\n self.grid = grid\n\n def adj(self, v):\n if not self.grid.arr[v]:\n return\n i, j = divmod(v, self.grid.m)\n if i + 1 < self.grid.n and self.grid[i + 1, j]:\n yield v + self.grid.m\n if 0 <= i - 1 and self.grid[i - 1, j]:\n yield v - self.grid.m\n if j + 1 < self.grid.m and self.grid[i, j + 1]:\n yield v + 1\n if 0 <= j - 1 and self.grid[i, j - 1]:\n yield v - 1\n\n\ndef strongly_connected_components(graph: BaseWeightedGraph, rgraph: BaseWeightedGraph = None):\n if rgraph is None:\n rgraph = graph.to_reverse_graph()\n n = graph.n_vertices\n order = []\n color = [0] * n\n for v0 in range(n):\n if color[v0]:\n continue\n color[v0] = -1\n stack = [iter(graph.adj(v0))]\n path = [v0]\n while path:\n for u in stack[-1]:\n if color[u] == 0:\n color[u] = -1\n path.append(u)\n stack.append(iter(graph.adj(u)))\n break\n else:\n v = path.pop()\n order.append(v)\n stack.pop()\n\n label = 0\n for v0 in reversed(order):\n if color[v0] >= 0:\n continue\n color[v0] = label\n stack = [v0]\n while stack:\n v = stack.pop()\n for u in rgraph.adj(v):\n if color[u] < 0:\n color[u] = label\n stack.append(u)\n label += 1\n return label, color\n\n\ndef bfs(graph: BaseWeightedGraph, s: Union[int, Iterable[int]], t: Union[int, Iterable[int]] = -1) -> List[int]:\n """\n ?????????????????\n\n :param graph: ???\n :param s: ????\n :param t: ????\n :return: ?????(s??????????-1)\n """\n dist = [-1] * graph.n_vertices\n\n if isinstance(s, int):\n q = [s]\n dist[s] = 0\n else:\n q = list(s)\n for v in q:\n dist[v] = 0\n\n if isinstance(t, int):\n t = [t]\n else:\n t = list(t)\n if len(t) > 8:\n t = set(t)\n\n for d in range(1, graph.n_vertices):\n nq = []\n for v in q:\n for u in graph.adj(v):\n if dist[u] < 0:\n dist[u] = d\n nq.append(u)\n if u in t:\n return dist\n q = nq\n return dist\n\n\ndef dijkstra(graph: BaseWeightedGraph, s: Union[int, Iterable[int]], t: Union[int, Iterable[int]] = -1,\n inf: int = INF) -> List[int]:\n """\n Returns a list of distance. If starts contains more than one vertex, returns the shortest distance from any of them.\n """\n K = graph.n_vertices.bit_length()\n MASK = (1 << K) - 1\n dist = [inf] * graph.n_vertices\n\n if isinstance(s, int):\n q = [s]\n dist[s] = 0\n else:\n q = list(s)\n for v in q:\n dist[v] = 0\n if isinstance(t, int):\n if t < 0:\n t = []\n else:\n t = [t]\n else:\n t = set(t)\n\n while q:\n x = hq.heappop(q)\n d, v = x >> K, x & MASK\n if v in t:\n return dist\n if d > dist[v]:\n continue\n for u, w in graph.wadj(v):\n if dist[u] > d + w:\n dist[u] = d + w\n hq.heappush(q, ((d + w) << K) | u)\n return dist\n\n\ndef dijkstra_general(graph: BaseWeightedGraph, inf: T, zero: T, s: Union[int, Iterable[int]],\n t: Union[int, Iterable[int]] = -1) -> List[Any]:\n """\n Returns a list of distance. If starts contains more than one vertex, returns the shortest distance from any of them.\n """\n dist = [inf] * graph.n_vertices\n\n if isinstance(s, int):\n q = [(zero, s)]\n dist[s] = zero\n else:\n q = [(zero, v) for v in s]\n for d, v in q:\n dist[v] = zero\n if isinstance(t, int):\n if t < 0:\n t = []\n else:\n t = [t]\n else:\n t = set(t)\n\n while q:\n d, v = hq.heappop(q)\n if v in t:\n return dist\n if d > dist[v]:\n continue\n for u, w in graph.wadj(v):\n nw = d + w\n if dist[u] > nw:\n dist[u] = nw\n hq.heappush(q, (nw, u))\n return dist\n\n\ndef get_dual_graph(n_vertices: int, wedges: Iterable[Tuple[int, int, int]]) -> Tuple[\n List[int], List[int], List[int], List[int]]:\n """\n ?????????????????\n\n (u, v, cap) in E ??????????? (u, v, cap) ? (v, u, 0) ?????????????????????????\n\n :param n_vertices: ???\n :param wedges: ?????\n :return: (???????, ???index?????)\n """\n\n cap = defaultdict(int)\n for u, v, c in wedges:\n cap[(u, v)] += c\n cap[(v, u)] += 0\n temp: List[List[Tuple[int, int]]] = [[] for _ in range(n_vertices)]\n for (u, v), w in cap.items():\n temp[u].append((v, w))\n\n adj = [0] * len(cap)\n weight = [0] * len(cap)\n rev = [0] * len(cap)\n ind = [0] * (n_vertices + 1)\n\n i = 0\n for u, l in enumerate(temp):\n ind[u] = i\n for v, w in l:\n adj[i] = v\n weight[i] = w\n if u < v:\n cap[(v, u)] = i\n else:\n j = cap[(u, v)]\n rev[i] = j\n rev[j] = i\n i += 1\n ind[n_vertices] = i\n\n return adj, weight, ind, rev\n\n\ndef edmonds_karp(n_vertices: int, edges: Iterable[Tuple[int, int, int]], s: int, t: int):\n """\n ????????\n\n ???: ``O(VE^2)``\n\n :param n_vertices: ???\n :param edges: (??1, ??2, ??)?Iterable\n :param s: ??\n :param t: ??\n :return: (????, ?????, ?????)\n """\n\n adj, caps, ind, rev = get_dual_graph(n_vertices, edges)\n\n m0 = max(caps)\n bfs_memo = [0] * n_vertices\n pv = [-1] * n_vertices\n pe = [-1] * n_vertices\n bfs_memo[s] = n_vertices + 1\n offset = 0\n\n def find_path():\n nonlocal offset\n offset += 1\n q = [s]\n while q:\n nq = []\n for v in q:\n if v == t:\n return True\n for i in range(ind[v], ind[v + 1]):\n if caps[i] == 0:\n continue\n u = adj[i]\n if bfs_memo[u] < offset:\n bfs_memo[u] = offset\n pv[u] = v\n pe[u] = i\n nq.append(u)\n q = nq\n return False\n\n res = 0\n flag = find_path()\n while flag:\n v = t\n m = m0\n while pv[v] >= 0:\n e = pe[v]\n m = min2(m, caps[e])\n v = pv[v]\n v = t\n while pv[v] >= 0:\n e = pe[v]\n caps[e] -= m\n caps[rev[e]] += m\n v = pv[v]\n res += m\n flag = find_path()\n return res, WeightedGraph(n_vertices, adj, caps, ind), rev\n\n\ndef min_st_cut(n_vertices: int, edges: Iterable[Tuple[int, int, int]], s: int, t: int):\n """\n ?? ``st`` ?????????\n\n :param n_vertices: ???\n :param edges: ?\n :param s: ??\n :param t: ??\n :return: (?????, ???????(0-1??????), ?????, ?????)\n """\n flow, g, rev = edmonds_karp(n_vertices, edges, s, t)\n stack = [s]\n visited = [0] * n_vertices\n visited[s] = 1\n while stack:\n v = stack.pop()\n for u, w in g.wadj(v):\n if w > 0 and not visited[u]:\n stack.append(u)\n visited[u] = 1\n return flow, visited, g, rev\n\n\nclass MaxFlowGraph:\n class Edge(NamedTuple):\n src: int\n dst: int\n cap: int\n flow: int\n\n class _Edge:\n def __init__(self, dst: int, cap: int) -> None:\n self.dst = dst\n self.cap = cap\n self.rev: Optional[MaxFlowGraph._Edge] = None\n\n def __init__(self, n: int) -> None:\n self._n = n\n self._g: List[List[MaxFlowGraph._Edge]] = [[] for _ in range(n)]\n self._edges: List[MaxFlowGraph._Edge] = []\n\n def add_edge(self, src: int, dst: int, cap: int) -> int:\n assert 0 <= src < self._n\n assert 0 <= dst < self._n\n assert 0 <= cap\n m = len(self._edges)\n e = MaxFlowGraph._Edge(dst, cap)\n re = MaxFlowGraph._Edge(src, 0)\n e.rev = re\n re.rev = e\n self._g[src].append(e)\n self._g[dst].append(re)\n self._edges.append(e)\n return m\n\n def get_edge(self, i: int) -> Edge:\n assert 0 <= i < len(self._edges)\n e = self._edges[i]\n re = cast(MaxFlowGraph._Edge, e.rev)\n return MaxFlowGraph.Edge(\n re.dst,\n e.dst,\n e.cap + re.cap,\n re.cap\n )\n\n def edges(self) -> List[Edge]:\n return [self.get_edge(i) for i in range(len(self._edges))]\n\n def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:\n assert 0 <= i < len(self._edges)\n assert 0 <= new_flow <= new_cap\n e = self._edges[i]\n e.cap = new_cap - new_flow\n assert e.rev is not None\n e.rev.cap = new_flow\n\n def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:\n assert 0 <= s < self._n\n assert 0 <= t < self._n\n assert s != t\n if flow_limit is None:\n flow_limit = cast(int, sum(e.cap for e in self._g[s]))\n\n current_edge = [0] * self._n\n level = [0] * self._n\n\n def fill(arr: List[int], value: int) -> None:\n for i in range(len(arr)):\n arr[i] = value\n\n def bfs() -> bool:\n fill(level, self._n)\n queue = []\n q_front = 0\n queue.append(s)\n level[s] = 0\n while q_front < len(queue):\n v = queue[q_front]\n q_front += 1\n next_level = level[v] + 1\n for e in self._g[v]:\n if e.cap == 0 or level[e.dst] <= next_level:\n continue\n level[e.dst] = next_level\n if e.dst == t:\n return True\n queue.append(e.dst)\n return False\n\n def dfs(lim: int) -> int:\n stack = []\n edge_stack: List[MaxFlowGraph._Edge] = []\n stack.append(t)\n while stack:\n v = stack[-1]\n if v == s:\n flow = min(lim, min(e.cap for e in edge_stack))\n for e in edge_stack:\n e.cap -= flow\n assert e.rev is not None\n e.rev.cap += flow\n return flow\n next_level = level[v] - 1\n while current_edge[v] < len(self._g[v]):\n e = self._g[v][current_edge[v]]\n re = cast(MaxFlowGraph._Edge, e.rev)\n if level[e.dst] != next_level or re.cap == 0:\n current_edge[v] += 1\n continue\n stack.append(e.dst)\n edge_stack.append(re)\n break\n else:\n stack.pop()\n if edge_stack:\n edge_stack.pop()\n level[v] = self._n\n return 0\n\n flow = 0\n while flow < flow_limit:\n if not bfs():\n break\n fill(current_edge, 0)\n while flow < flow_limit:\n f = dfs(flow_limit - flow)\n flow += f\n if f == 0:\n break\n return flow\n\n def min_cut(self, s: int) -> List[bool]:\n visited = [False] * self._n\n stack = [s]\n visited[s] = True\n while stack:\n v = stack.pop()\n for e in self._g[v]:\n if e.cap > 0 and not visited[e.dst]:\n visited[e.dst] = True\n stack.append(e.dst)\n return visited\n\n\nclass MinCostFlowGraph:\n class Edge(NamedTuple):\n src: int\n dst: int\n cap: int\n flow: int\n cost: int\n\n class _Edge:\n def __init__(self, dst: int, cap: int, cost: int) -> None:\n self.dst = dst\n self.cap = cap\n self.cost = cost\n self.rev: Optional[MinCostFlowGraph._Edge] = None\n\n def __init__(self, n: int) -> None:\n self._n = n\n self._g: List[List[MinCostFlowGraph._Edge]] = [[] for _ in range(n)]\n self._edges: List[MinCostFlowGraph._Edge] = []\n\n def add_edge(self, src: int, dst: int, cap: int, cost: int) -> int:\n assert 0 <= src < self._n\n assert 0 <= dst < self._n\n assert 0 <= cap\n m = len(self._edges)\n e = MinCostFlowGraph._Edge(dst, cap, cost)\n re = MinCostFlowGraph._Edge(src, 0, -cost)\n e.rev = re\n re.rev = e\n self._g[src].append(e)\n self._g[dst].append(re)\n self._edges.append(e)\n return m\n\n def get_edge(self, i: int) -> Edge:\n assert 0 <= i < len(self._edges)\n e = self._edges[i]\n re = cast(MinCostFlowGraph._Edge, e.rev)\n return MinCostFlowGraph.Edge(\n re.dst,\n e.dst,\n e.cap + re.cap,\n re.cap,\n e.cost\n )\n\n def edges(self) -> List[Edge]:\n return [self.get_edge(i) for i in range(len(self._edges))]\n\n def flow(self, s: int, t: int,\n flow_limit: Optional[int] = None) -> Tuple[int, int]:\n return self.slope(s, t, flow_limit)[-1]\n\n def slope(self, s: int, t: int,\n flow_limit: Optional[int] = None) -> List[Tuple[int, int]]:\n assert 0 <= s < self._n\n assert 0 <= t < self._n\n assert s != t\n if flow_limit is None:\n flow_limit = cast(int, sum(e.cap for e in self._g[s]))\n\n dual = [0] * self._n\n prev: List[Optional[Tuple[int, MinCostFlowGraph._Edge]]] = [None] * self._n\n\n def refine_dual() -> bool:\n pq = [(0, s)]\n visited = [False] * self._n\n dist: List[Optional[int]] = [None] * self._n\n dist[s] = 0\n while pq:\n dist_v, v = hq.heappop(pq)\n if visited[v]:\n continue\n visited[v] = True\n if v == t:\n break\n dual_v = dual[v]\n for e in self._g[v]:\n w = e.dst\n if visited[w] or e.cap == 0:\n continue\n reduced_cost = e.cost - dual[w] + dual_v\n new_dist = dist_v + reduced_cost\n dist_w = dist[w]\n if dist_w is None or new_dist < dist_w:\n dist[w] = new_dist\n prev[w] = v, e\n hq.heappush(pq, (new_dist, w))\n else:\n return False\n dist_t = dist[t]\n for v in range(self._n):\n if visited[v]:\n dual[v] -= cast(int, dist_t) - cast(int, dist[v])\n return True\n\n flow = 0\n cost = 0\n prev_cost_per_flow: Optional[int] = None\n result = [(flow, cost)]\n while flow < flow_limit:\n if not refine_dual():\n break\n f = flow_limit - flow\n v = t\n while prev[v] is not None:\n u, e = cast(Tuple[int, MinCostFlowGraph._Edge], prev[v])\n f = min(f, e.cap)\n v = u\n v = t\n while prev[v] is not None:\n u, e = cast(Tuple[int, MinCostFlowGraph._Edge], prev[v])\n e.cap -= f\n assert e.rev is not None\n e.rev.cap += f\n v = u\n c = -dual[s]\n flow += f\n cost += f * c\n if c == prev_cost_per_flow:\n result.pop()\n result.append((flow, cost))\n prev_cost_per_flow = c\n return result'),
'lib.itertools': (False, "from itertools import chain, repeat, count, islice\nfrom collections import Counter\n\n\ndef repeat_chain(values, counts):\n return chain.from_iterable(map(repeat, values, counts))\n\n\ndef unique_combinations_from_value_counts(values, counts, r):\n n = len(counts)\n indices = list(islice(repeat_chain(count(), counts), r))\n if len(indices) < r:\n return\n while True:\n yield tuple(values[i] for i in indices)\n for i, j in zip(reversed(range(r)), repeat_chain(reversed(range(n)), reversed(counts))):\n if indices[i] != j:\n break\n else:\n return\n j = indices[i] + 1\n for i, j in zip(range(i, r), repeat_chain(count(j), counts[j:])):\n indices[i] = j\n\n\ndef unique_combinations(iterable, r):\n values, counts = zip(*Counter(iterable).items())\n return unique_combinations_from_value_counts(values, counts, r)\n\n\nclass UniqueCombinations:\n def __init__(self, values, counts, r):\n self.values = values\n self.counts = counts\n self.r = r\n\n # dp[i][k] := # of unique combinations of length k or shorter with elements values[i:]\n dp = [[1]*(r+1) for c in range(len(counts)+1)]\n for i in reversed(range(len(counts))):\n cnt = self.counts[i]\n for k in range(1, r+1):\n dp[i][k] = dp[i][k-1] + dp[i+1][k] - (dp[i+1][k-cnt-1] if k >= cnt+1 else 0)\n self.dp = dp\n\n def __getitem__(self, ind):\n res = []\n for i in range(len(self.counts)):\n for k in reversed(range(1, min(self.r-len(res), self.counts[i])+1)):\n t = self.dp[i+1][self.r - len(res) - k]-(self.dp[i+1][self.r - len(res)-k-1] if self.r - len(res) >= k+1 else 0)\n if ind < t:\n res.extend(self.values[i] for _ in range(k))\n break\n else:\n ind -= t\n return tuple(res)\n\n def __len__(self):\n return self.dp[0][self.r] - self.dp[0][self.r-1]\n\n\n\nif __name__ == '__main__':\n uc = UniqueCombinations([1,2,3], [5,3,1], 4)\n for i in range(len(uc)):\n print(uc[i])\n # print(list(unique_combinations([2, 2, 2, 2, 4], 4)))\n # print(list(unique_combinations_from_value_counts('abc', [1, 2, 3], 3)))\n"),
'lib.matrix': (False, "from lib.array2d import Array2d\n\n\ndef get_general_matrix(zero, one):\n class Matrix(Array2d):\n ZERO = zero\n ONE = one\n\n @classmethod\n def zeros(cls, n, m):\n return cls.full(n, m, cls.ZERO)\n\n @classmethod\n def ones(cls, n, m):\n return cls.full(n, m, cls.ONE)\n\n def __add__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot add matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n return Matrix(self.n, self.m, [x + y for x, y in zip(self.arr, other.arr)])\n\n def __iadd__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n for i, v in enumerate(other.arr):\n self.arr[i] += v\n return self\n\n def __sub__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot subtract matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n return Matrix(self.n, self.m, [x - y for x, y in zip(self.arr, other.arr)])\n\n def __isub__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n for i, v in enumerate(other.arr):\n self.arr[i] -= v\n return self\n\n def __mul__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n return Matrix(self.n, self.m, [x * y for x, y in zip(self.arr, other.arr)])\n\n def __imul__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n for i, v in enumerate(other.arr):\n self.arr[i] *= v\n return self\n\n def __truediv__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n return Matrix(self.n, self.m, [x / y for x, y in zip(self.arr, other.arr)])\n\n def __matmul__(self, other):\n if self.m != other.n:\n raise ValueError(f'Cannot dot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n\n res = self.full(self.n, other.m, self.ZERO)\n\n for i in range(self.n):\n for j in range(other.m):\n c = self.ZERO\n for k in range(self.m):\n c += self[i, k] * other[k, j]\n res[i, j] = c\n return res\n\n def __imatmul__(self, other):\n if self.m != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n if self is other or self.m != other.m:\n return self @ other\n\n row = [self.ZERO] * self.m\n for i in range(self.n):\n t = i * self.m\n for j in range(self.m):\n row[j] = self.arr[j + t]\n for j in range(other.m):\n c = self.ZERO\n for k in range(self.m):\n c += row[k] * other[k, j]\n self[i, j] = c\n return self\n\n def __pow__(self, power, modulo=None):\n if self.n != self.m:\n raise ValueError('pow is supported only for square matrix')\n k = self.n\n res = Matrix.full(k, k, self.ZERO)\n for i in range(k):\n res[i, i] = self.ONE\n\n m = self\n while power > 0:\n if power & 1:\n res @= m\n m @= m\n power >>= 1\n return res\n\n return Matrix\n\n\nIMatrix = get_general_matrix(0, 1)\nFMatrix = get_general_matrix(0.0, 1.0)\n\n\ndef accumulate(mat):\n res = mat.zeros(mat.n + 1, mat.m + 1)\n for i in range(mat.n):\n k = mat.ZERO\n for j in range(mat.m):\n k += mat[i, j]\n res[i + 1, j + 1] = k\n for j in range(1, mat.m + 1):\n k = mat.ZERO\n for i in range(1, mat.n + 1):\n k += res[i, j]\n res[i, j] = k\n return res\n\n\ndef accumulate_prod(mat):\n res = mat.ones(mat.n + 1, mat.m + 1)\n for i in range(mat.n):\n k = mat.ONE\n for j in range(mat.m):\n k *= mat[i, j]\n res[i + 1, j + 1] = k\n for j in range(1, mat.m + 1):\n k = mat.ONE\n for i in range(1, mat.n):\n k *= res[i, j]\n res[i, j] = k\n return res\n"),
'lib.mincostflow': (False, 'from typing import NamedTuple, Optional, List, Tuple, cast\nfrom heapq import heappush, heappop\n\nclass MFGraph:\n class Edge(NamedTuple):\n src: int\n dst: int\n cap: int\n flow: int\n\n class _Edge:\n def __init__(self, dst: int, cap: int) -> None:\n self.dst = dst\n self.cap = cap\n self.rev: Optional[MFGraph._Edge] = None\n\n def __init__(self, n: int) -> None:\n self._n = n\n self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)]\n self._edges: List[MFGraph._Edge] = []\n\n def add_edge(self, src: int, dst: int, cap: int) -> int:\n assert 0 <= src < self._n\n assert 0 <= dst < self._n\n assert 0 <= cap\n m = len(self._edges)\n e = MFGraph._Edge(dst, cap)\n re = MFGraph._Edge(src, 0)\n e.rev = re\n re.rev = e\n self._g[src].append(e)\n self._g[dst].append(re)\n self._edges.append(e)\n return m\n\n def get_edge(self, i: int) -> Edge:\n assert 0 <= i < len(self._edges)\n e = self._edges[i]\n re = cast(MFGraph._Edge, e.rev)\n return MFGraph.Edge(\n re.dst,\n e.dst,\n e.cap + re.cap,\n re.cap\n )\n\n def edges(self) -> List[Edge]:\n return [self.get_edge(i) for i in range(len(self._edges))]\n\n def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:\n assert 0 <= i < len(self._edges)\n assert 0 <= new_flow <= new_cap\n e = self._edges[i]\n e.cap = new_cap - new_flow\n assert e.rev is not None\n e.rev.cap = new_flow\n\n def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:\n assert 0 <= s < self._n\n assert 0 <= t < self._n\n assert s != t\n if flow_limit is None:\n flow_limit = cast(int, sum(e.cap for e in self._g[s]))\n\n current_edge = [0] * self._n\n level = [0] * self._n\n\n def fill(arr: List[int], value: int) -> None:\n for i in range(len(arr)):\n arr[i] = value\n\n def bfs() -> bool:\n fill(level, self._n)\n queue = []\n q_front = 0\n queue.append(s)\n level[s] = 0\n while q_front < len(queue):\n v = queue[q_front]\n q_front += 1\n next_level = level[v] + 1\n for e in self._g[v]:\n if e.cap == 0 or level[e.dst] <= next_level:\n continue\n level[e.dst] = next_level\n if e.dst == t:\n return True\n queue.append(e.dst)\n return False\n\n def dfs(lim: int) -> int:\n stack = []\n edge_stack: List[MFGraph._Edge] = []\n stack.append(t)\n while stack:\n v = stack[-1]\n if v == s:\n flow = min(lim, min(e.cap for e in edge_stack))\n for e in edge_stack:\n e.cap -= flow\n assert e.rev is not None\n e.rev.cap += flow\n return flow\n next_level = level[v] - 1\n while current_edge[v] < len(self._g[v]):\n e = self._g[v][current_edge[v]]\n re = cast(MFGraph._Edge, e.rev)\n if level[e.dst] != next_level or re.cap == 0:\n current_edge[v] += 1\n continue\n stack.append(e.dst)\n edge_stack.append(re)\n break\n else:\n stack.pop()\n if edge_stack:\n edge_stack.pop()\n level[v] = self._n\n return 0\n\n flow = 0\n while flow < flow_limit:\n if not bfs():\n break\n fill(current_edge, 0)\n while flow < flow_limit:\n f = dfs(flow_limit - flow)\n flow += f\n if f == 0:\n break\n return flow\n\n def min_cut(self, s: int) -> List[bool]:\n visited = [False] * self._n\n stack = [s]\n visited[s] = True\n while stack:\n v = stack.pop()\n for e in self._g[v]:\n if e.cap > 0 and not visited[e.dst]:\n visited[e.dst] = True\n stack.append(e.dst)\n return visited\n\nclass MCFGraph:\n class Edge(NamedTuple):\n src: int\n dst: int\n cap: int\n flow: int\n cost: int\n\n class _Edge:\n def __init__(self, dst: int, cap: int, cost: int) -> None:\n self.dst = dst\n self.cap = cap\n self.cost = cost\n self.rev: Optional[MCFGraph._Edge] = None\n\n def __init__(self, n: int) -> None:\n self._n = n\n self._g: List[List[MCFGraph._Edge]] = [[] for _ in range(n)]\n self._edges: List[MCFGraph._Edge] = []\n\n def add_edge(self, src: int, dst: int, cap: int, cost: int) -> int:\n assert 0 <= src < self._n\n assert 0 <= dst < self._n\n assert 0 <= cap\n m = len(self._edges)\n e = MCFGraph._Edge(dst, cap, cost)\n re = MCFGraph._Edge(src, 0, -cost)\n e.rev = re\n re.rev = e\n self._g[src].append(e)\n self._g[dst].append(re)\n self._edges.append(e)\n return m\n\n def get_edge(self, i: int) -> Edge:\n assert 0 <= i < len(self._edges)\n e = self._edges[i]\n re = cast(MCFGraph._Edge, e.rev)\n return MCFGraph.Edge(\n re.dst,\n e.dst,\n e.cap + re.cap,\n re.cap,\n e.cost\n )\n\n def edges(self) -> List[Edge]:\n return [self.get_edge(i) for i in range(len(self._edges))]\n\n def flow(self, s: int, t: int,\n flow_limit: Optional[int] = None) -> Tuple[int, int]:\n return self.slope(s, t, flow_limit)[-1]\n\n def slope(self, s: int, t: int,\n flow_limit: Optional[int] = None) -> List[Tuple[int, int]]:\n assert 0 <= s < self._n\n assert 0 <= t < self._n\n assert s != t\n if flow_limit is None:\n flow_limit = cast(int, sum(e.cap for e in self._g[s]))\n\n dual = [0] * self._n\n prev: List[Optional[Tuple[int, MCFGraph._Edge]]] = [None] * self._n\n\n def refine_dual() -> bool:\n pq = [(0, s)]\n visited = [False] * self._n\n dist: List[Optional[int]] = [None] * self._n\n dist[s] = 0\n while pq:\n dist_v, v = heappop(pq)\n if visited[v]:\n continue\n visited[v] = True\n if v == t:\n break\n dual_v = dual[v]\n for e in self._g[v]:\n w = e.dst\n if visited[w] or e.cap == 0:\n continue\n reduced_cost = e.cost - dual[w] + dual_v\n new_dist = dist_v + reduced_cost\n dist_w = dist[w]\n if dist_w is None or new_dist < dist_w:\n dist[w] = new_dist\n prev[w] = v, e\n heappush(pq, (new_dist, w))\n else:\n return False\n dist_t = dist[t]\n for v in range(self._n):\n if visited[v]:\n dual[v] -= cast(int, dist_t) - cast(int, dist[v])\n return True\n\n flow = 0\n cost = 0\n prev_cost_per_flow: Optional[int] = None\n result = [(flow, cost)]\n while flow < flow_limit:\n if not refine_dual():\n break\n f = flow_limit - flow\n v = t\n while prev[v] is not None:\n u, e = cast(Tuple[int, MCFGraph._Edge], prev[v])\n f = min(f, e.cap)\n v = u\n v = t\n while prev[v] is not None:\n u, e = cast(Tuple[int, MCFGraph._Edge], prev[v])\n e.cap -= f\n assert e.rev is not None\n e.rev.cap += f\n v = u\n c = -dual[s]\n flow += f\n cost += f * c\n if c == prev_cost_per_flow:\n result.pop()\n result.append((flow, cost))\n prev_cost_per_flow = c\n return result'),
'lib.misc': (False, 'from typing import List, Any, Callable, Sequence, Union, Tuple, TypeVar\nfrom numbers import Integral, Real\nimport sys\nfrom functools import reduce\nfrom itertools import accumulate\nfrom lib.data_structure import BinaryIndexedTree, DisjointSet\nimport bisect\nfrom lib.number_theory import modinv\nfrom collections import deque\n\nT = TypeVar(\'T\')\nM = TypeVar(\'M\')\nV = TypeVar(\'V\')\n\n\n\ndef general_bisect(ng: Integral, ok: Integral, judge: Callable[[Integral], bool]) -> Integral:\n """\n ???????????????????O(log L)??????\n\n :param ng: judge(ng)==False????\n :param ok: judge(ok)==True????\n :param judge: ??????????\n :return: judge(x)==True???????????\n """\n while abs(ng - ok) > 1:\n m = (ng + ok) // 2\n if judge(m):\n ok = m\n else:\n ng = m\n return ok\n\n\ndef general_bisect_float(ng: Real, ok: Real, judge: Callable[[Real], bool], tol: Real) -> Real:\n """\n ???????????????????O(log L)??????\n\n :param ng: judge(ng)==False????\n :param ok: judge(ok)==True????\n :param judge: ??????????\n :return: judge(x)==True???????????\n """\n while abs(ng - ok) > tol:\n m = (ng + ok) / 2\n if judge(m):\n ok = m\n else:\n ng = m\n return ok\n\n\ndef fibonacci_search(left: int, right: int, func: Union[Callable[[int], V], Sequence], inf: V = 2 ** 60) -> Tuple[\n V, int]:\n """\n ??????????????????????????????O(log L)??????\n ???(left, right)?????????\n\n :param left: ?????????????\n :param right: ?????????????\n :param func: ??????\n :param inf: func???\n :return: (func????, ????????func???)\n """\n try:\n func = func.__getitem__\n except AttributeError:\n pass\n f1, f2 = 1, 1\n while f1 + f2 < right - left:\n f1, f2 = f1 + f2, f1\n l = left\n m1 = func(l + f2)\n m2 = func(l + f1)\n while f1 > 2:\n f1, f2 = f2, f1 - f2\n if m1 > m2:\n l += f1\n m1 = m2\n m2 = func(l + f1) if l + f1 < right else inf\n else:\n m2 = m1\n m1 = func(l + f2)\n if m1 < m2:\n return m1, l + 1\n else:\n return m2, l + 2\n\n\ndef max2(x: V, y: V) -> V:\n return x if x > y else y\n\n\ndef min2(x: V, y: V) -> V:\n return x if x < y else y\n\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\n\n\ndef rerooting(rooted_tree, merge, identity, finalize):\n """\n merge: (T,T) -> T, (T, merge)?????\n identity: ???\n finalize: (T, V, V) -> T\n\n ????????dp?????\n dp[u,v] = finalize(merge(dp[v,k] for k in adj[v] if k != u), u, v)\n ???(u,v)?? u->v\n """\n N = rooted_tree.n_vertices\n parent = rooted_tree.parent\n children = rooted_tree.children\n order = rooted_tree.dfs_order\n\n # from leaf to parent\n dp_down = [None] * N\n for v in reversed(order):\n dp_down[v] = finalize(reduce(merge,\n (dp_down[c] for c in children[v]),\n identity), parent[v], v)\n\n # from parent to leaf\n dp_up = [None] * N\n dp_up[0] = identity\n for v in order:\n if len(children[v]) == 0:\n continue\n temp = (dp_up[v],) + tuple(dp_down[u] for u in children[v]) + (identity,)\n left = accumulate(temp[:-2], merge)\n right = tuple(accumulate(reversed(temp[2:]), merge))\n for u, l, r in zip(children[v], left, reversed(right)):\n dp_up[u] = finalize(merge(l, r), u, v)\n\n res = [None] * N\n for v, l in enumerate(children):\n res[v] = reduce(merge,\n (dp_down[u] for u in children[v]),\n identity)\n res[v] = merge(res[v], dp_up[v])\n return res, dp_up, dp_down\n\n\ndef rerooting_fast(rooted_tree, merge, identity, finalize):\n """\n merge: (T,T) -> T, (T, merge)?????\n identity: ???\n finalize: (T, V, V) -> T\n\n ????????dp?????\n dp[u,v] = finalize(merge(dp[v,k] for k in adj[v] if k != u), u, v)\n ???(u,v)??\n dp[u,v]: v?????u?????????????????\n """\n dp1 = [identity] * rooted_tree.n_vertices\n dp2 = [identity] * rooted_tree.n_vertices\n\n for v in rooted_tree.post_order:\n t = identity\n for u in rooted_tree.children(v):\n dp2[u] = t\n t = merge(t, finalize(dp1[u], v, u))\n t = identity\n for u in reversed(rooted_tree.children(v)):\n dp2[u] = merge(t, dp2[u])\n t = merge(t, finalize(dp1[u], v, u))\n dp1[v] = t\n for v in rooted_tree.pre_order:\n p = rooted_tree.parent(v)\n if p >= 0:\n dp2[v] = finalize(merge(dp2[v], dp2[p]), v, p)\n dp1[v] = merge(dp1[v], dp2[v])\n return dp1\n\n\ndef longest_increasing_sequence(l, inf, strict=True):\n if not l:\n return 0\n dp = [inf] * len(l)\n if strict:\n for i, v in enumerate(l):\n dp[bisect.bisect_left(dp, v)] = v\n else:\n for i, v in enumerate(l):\n dp[bisect.bisect_right(dp, v)] = v\n\n m = next(n for n in reversed(range(len(l))) if dp[n] < inf) + 1\n return m\n\n\n\n\ndef check_bipartiteness(n_vertices, edges):\n ds = DisjointSet.empty(2 * n_vertices)\n\n for a, b in edges:\n ds.union(a, b + n_vertices)\n ds.union(b, a + n_vertices)\n\n next_color = 0\n color = [-1] * (2 * n_vertices)\n for v in range(n_vertices):\n ra = ds.find(v)\n rb = ds.find(v + n_vertices)\n if ra == rb:\n return None\n if color[ra] < 0:\n color[ra] = next_color\n color[rb] = next_color + 1\n next_color += 2\n color[v] = color[ra]\n color[v + n_vertices] = color[rb]\n return color[:n_vertices]\n\n\ndef small_range_duplicate(a: List[int]) -> Tuple[List[int], List[int]]:\n MASK = (1 << 32) - 1\n n = len(a)\n left = [i - 1 for i in range(n + 1)]\n right = [i + 1 for i in range(n + 1)]\n\n sorted_ind = sorted((~v << 32) | i for i, v in enumerate(a))\n t = 0\n vi = sorted_ind[t]\n i = vi & MASK\n v = ~(vi >> 32)\n while t < n:\n j = i\n l = left[i]\n pi = l\n pv = v\n while v == pv and left[i] == pi:\n pi = i\n t += 1\n if t >= n:\n break\n vi = sorted_ind[t]\n i = vi & MASK\n v = ~(vi >> 32)\n r = right[pi]\n right[l] = r\n while j <= pi:\n nj = right[j]\n left[j] = l\n right[j] = r\n j = nj\n left[r] = l\n\n return left, right\n\n\ndef small_range(a: List[int]) -> Tuple[List[int], List[int]]:\n N = len(a)\n MASK = (1 << 32) - 1\n left = [i - 1 for i in range(N + 1)]\n right = [i + 1 for i in range(N + 1)]\n sorted_ind = sorted((~v << 32) | i for i, v in enumerate(a))\n for v in sorted_ind:\n i = v & MASK\n left[right[-i]] = left[-i]\n right[left[-i]] = right[-i]\n\n return left, right\n\n\ndef popcnt32(n: int) -> int:\n n = n - ((n >> 1) & 0x55555555)\n n = (n & 0x33333333) + ((n >> 2) & 0x33333333)\n return ((((n + (n >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24) & 0xff\n\n\ndef popcnt64(n: int) -> int:\n n = n - ((n >> 1) & 0x5555555555555555)\n n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333)\n n = (n + (n >> 4)) & 0x0f0f0f0f0f0f0f0f\n return ((((n + (n >> 32)) & 0xffffffff) * 0x01010101) >> 24) & 0xff\n\n\ndef popcnt(n: int) -> int:\n if n < 1 << 32:\n return popcnt32(n)\n elif n < 1 << 64:\n return popcnt64(n)\n else:\n return sum(c == \'1\' for c in bin(n))\n\n\ndef reverse_bits32(x: int):\n x = ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1)\n x = ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2)\n x = ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4)\n x = ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8)\n return ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16)\n\n\ndef count_inversions(l: List[Any]) -> int:\n """\n ?????????in-place????????\n\n :param l: ???\n :return: ???\n """\n bit = BinaryIndexedTree(len(l))\n res = 0\n for i, v in enumerate(l):\n bit[v] += 1\n res += bit[v + 1:]\n return res\n\n\ndef construct_xor_basis(iterable):\n """\n iterable??xor????????\n\n :param iterable: ?????????????\n :return: ?????int????\n """\n basis = []\n for e in iterable:\n for b in basis:\n e = min2(e, e ^ b)\n if e > 0:\n basis.append(e)\n return basis\n\n\ndef check_xor_span(basis, x):\n """\n x?basis???F2???????????????????\n basis????????????????????????\n\n :param basis: ??\n :param x: ?????\n :return: 0???????????????????????????????????\n """\n for b in basis:\n x = min2(x, x ^ b)\n return x\n\n\ndef get_rolling_hash(mods, bases):\n ib = [modinv(b, m) for b, m in zip(bases, mods)]\n k = len(mods)\n\n class RollingHash:\n """\n RollingHash object represents a hash of a sequence.\n O(1) to append/remove element from both front/end.\n\n """\n def __init__(self, hash, pb, l):\n self.hash = hash\n self.pb = pb\n self.l = l\n\n @classmethod\n def empty(cls):\n return cls([0]*k, [1]*k, 0)\n\n def _append_d(self, v):\n v += 1\n for i in range(k):\n self.hash[i] += v * self.pb[i]\n self.hash[i] %= mods[i]\n self.pb[i] = (self.pb[i]*bases[i]) % mods[i]\n self.l += 1\n\n def _appendleft_d(self, v):\n v += 1\n for i in range(k):\n self.hash[i] *= bases[i]\n self.hash[i] += v\n self.hash[i] %= mods[i]\n self.pb[i] = (self.pb[i]*bases[i]) % mods[i]\n self.l += 1\n\n def _pop_d(self, v):\n v += 1\n for i in range(k):\n self.pb[i] = (self.pb[i]*ib[i]) % mods[i]\n self.hash[i] -= v * self.pb[i]\n self.hash[i] %= mods[i]\n self.l -= 1\n\n def _popleft_d(self, v):\n v += 1\n for i in range(k):\n self.pb[i] = (self.pb[i]*ib[i]) % mods[i]\n self.hash[i] -= v\n self.hash[i] *= ib[i]\n self.hash[i] %= mods[i]\n self.l -= 1\n\n def append(self, v):\n h = self.copy()\n h._append_d(v)\n return h\n\n def appendleft(self, v):\n h = self.copy()\n h._appendleft_d(v)\n return h\n\n def pop(self, v):\n h = self.copy()\n h._pop_d(v)\n return h\n\n def popleft(self, v):\n h = self.copy()\n h._popleft_d(v)\n return h\n\n def __hash__(self):\n return hash(tuple(self.hash))\n\n def copy(self):\n return RollingHash(self.hash[:], self.pb[:], self.l)\n __copy__ = copy\n\n return RollingHash\n\n\ndef sliding_max(l, width):\n res = [0]*(len(l)-width+1)\n q = deque(maxlen=width+1)\n\n for i, v in enumerate(l):\n while q and l[q[0]] <= v:\n q.popleft()\n q.appendleft(i)\n while q[-1]+width <= i:\n q.pop()\n res[i-width+1] = l[q[-1]]\n return res\n\n'),
'lib.modint': (False, "from importlib.util import find_spec, module_from_spec\n\nmodints = {}\n\n\ndef get_modint(mod):\n try:\n return modints[mod]\n except KeyError:\n spec = find_spec('lib._modint')\n module = module_from_spec(spec)\n module.__dict__['MOD'] = mod\n spec.loader.exec_module(module)\n modints[mod] = module.ModInt\n return modints[mod]"),
'lib.number_theory': (False, 'from collections import Counter, defaultdict\nfrom math import sqrt, ceil, gcd\nfrom itertools import count\nfrom typing import *\n\n\ndef sign(x):\n return int(x > 0) - int(x < 0)\n\n\ndef egcd(a: int, b: int) -> Tuple[int, int, int]:\n """\n ?????????\n\n :param a: ??\n :param b: ??\n :return: (x, y, gcd(a,b)). x, y?ax+by=gcd(a,b)????\n """\n s, ps, r, pr = 0, 1, b, a\n while r != 0:\n q = pr // r\n pr, r = r, pr - q * r\n ps, s = s, ps - q * s\n t = (pr - ps * a) // b\n if pr > 0:\n return ps, t, pr\n return -ps, -t, -pr\n\n\ndef modinv(x: int, mod: int) -> int:\n """\n Z/(mod Z)???x???\n\n :param x: ??\n :param mod: ??\n :return: x * y % mod = 1????y\n """\n s, ps, r, pr = 0, 1, mod, x\n while r != 0:\n pr, (q, r) = r, divmod(pr, r)\n ps, s = s, ps - q * s\n if pr == 1:\n return ps if ps >= 0 else ps + mod\n raise ValueError("base is not invertible for the given modulus")\n\n\ndef modpow(x, k, mod):\n """\n Z/(mod Z)???x?k?\n\n :param x: ??\n :param k: ??\n :param mod: ??\n :return: x ** k % mod\n """\n if k < 0:\n x = modinv(x, mod)\n k = -k\n r = 1\n while k != 0:\n if k & 1:\n r = (r * x) % mod\n x = (x * x) % mod\n k >>= 1\n return r\n\n\n# ?????\ndef prime_factors(n):\n """\n n??????????\n\n :param n: ???\n :return: n????????????????generator\n """\n i = 2\n while i * i <= n:\n if n % i:\n i += 1\n else:\n n //= i\n yield i\n if n > 1:\n yield n\n\n\ndef int_product(iterable):\n x = 1\n for y in iterable:\n x *= y\n return x\n\n\n# ?????O(sqrt(n))????\ndef divisors(n):\n for i in range(1, ceil(sqrt(n)) + 1):\n j, r = divmod(n, i)\n if not r:\n yield i\n if i != j:\n yield j\n\n\n# ?????\ndef generate_primes():\n d = defaultdict(list)\n\n for q in count(2):\n if q in d:\n for p in d[q]:\n d[p + q].append(p)\n del d[q]\n else:\n yield q\n d[q * q].append(q)\n\n\ndef totient_factors(n):\n def it():\n prev = -1\n for p in prime_factors(n):\n if p == prev:\n yield p\n else:\n prev = p\n for q in prime_factors(p - 1):\n yield q\n return it()\n\n\ndef primitive_root(mod, phi_factors=None):\n if phi_factors is None:\n phi_factors = tuple(totient_factors(mod))\n phi = int_product(phi_factors)\n primes = set(phi_factors)\n for i in range(2, mod):\n for p in primes:\n if modpow(i, (phi // p), mod) == 1:\n break\n else:\n return i\n else:\n raise ValueError(f\'There is no primitive root for modulo {mod}\')\n\n\ndef lcm(nums: Iterable[int]) -> int:\n m = 1\n for n in nums:\n m *= n // gcd(m, n)\n return m\n\n\ndef chinese_remainder_theorem(reminders: List[int], mods: List[int], mods_lcm: int=-1) -> Tuple[int, int]:\n """\n returns x and lcm(reminders) s.t.\n all(x%m == r for r,m in zip(reminders,mods))\n """\n s = 0\n if mods_lcm < 0:\n mods_lcm = lcm(mods)\n for m, r in zip(mods, reminders):\n p = mods_lcm // m\n s += r * p * modinv(p, m)\n s %= mods_lcm\n return s, mods_lcm\n\n\ndef factorials_with_inv(k, mod):\n """\n 0! ... k! ?????mod????????\n """\n fac = [1] * (k + 1)\n inv = [1] * (k + 1)\n t = 1\n for i in range(1, k + 1):\n t = (t * i) % mod\n fac[i] = t\n t = modinv(t, mod)\n for i in reversed(range(1, k + 1)):\n inv[i] = t\n t = (t * i) % mod\n return fac, inv\n\n\ndef extended_lucas_theorem(mod):\n """\n Returns a function (n,m) -> C(n,m)%mod\n """\n factors = tuple((p, q, p ** q) for p, q in Counter(prime_factors(mod)).items())\n facs = [[0] * k for p, q, k in factors]\n invs = [[0] * k for p, q, k in factors]\n for (p, q, k), fac, inv in zip(factors, facs, invs):\n t = 1\n for n in range(k):\n if n % p != 0:\n t *= n\n t %= k\n fac[n] = t\n t = modinv(t, k)\n for n in reversed(range(k)):\n inv[n] = t\n if n % p != 0:\n t *= n\n t %= k\n\n def helper(n, m):\n l = n - m\n if l < 0:\n return 0\n\n def reminders():\n for (p, q, k), fac, inv in zip(factors, facs, invs):\n a, b, c, e0, eq, i, r = n, m, l, 0, -2, 1, 1\n while a > 0:\n r *= fac[a % k] * inv[b % k] * inv[c % k]\n r %= k\n a, b, c = a // p, b // p, c // p\n if i == q:\n eq = e0\n e0 += a - b - c\n i += 1\n if eq >= 0:\n eq += e0\n if e0 >= q:\n r = 0\n else:\n r *= p ** e0\n r %= k\n if not (p == 2 and q >= 3) and (eq % 2 == 1):\n r = -r\n yield r\n\n return chinese_remainder_theorem(reminders(), (m for _, _, m in factors), mod)[0]\n\n return helper\n\n\ndef lucas_theorem(m, n, mod, comb):\n cnt = 1\n while n > 0:\n m, mr = divmod(m, mod)\n n, nr = divmod(n, mod)\n if mr < nr:\n return 0\n cnt *= comb(mr, nr)\n cnt %= mod\n return cnt\n\n\n# C(n,m) is even iff (~n&m)\n\ndef floor_linear_sum(n, m, a, b):\n """\n returns sum((a*i+b)//m for i in range(n))\n """\n if b < 0:\n t = (-b - 1) // m + 1\n b += m * t\n res = -t * n\n else:\n res = 0\n while True:\n if a >= m:\n res += (n - 1) * n * (a // m) // 2\n a %= m\n if b >= m:\n res += n * (b // m)\n b %= m\n\n y_max = (a * n + b) // m\n if y_max == 0:\n return res\n nx_max = b - y_max * m\n res += (n + nx_max // a) * y_max\n n, m, a, b = y_max, a, m, nx_max % a\n\ndef get_sieve(n):\n sieve = [0]*(n+1)\n for i in range(2, len(sieve)):\n if sieve[i] > 0:\n continue\n sieve[i] = i\n for j in range(i*2, len(sieve), i):\n if sieve[j] == 0:\n sieve[j] = i\n return sieve\n\n\ndef divisors_from_sieve(n, sieve):\n res = [1]\n while n > 1:\n k = sieve[n]\n n //= k\n l = len(res)\n t = k\n res.extend(res[i]*t for i in range(l))\n while n > 1 and sieve[n] == k:\n t *= k\n res.extend(res[i]*t for i in range(l))\n n //= k\n return res\n\n\ndef factorize_from_sieve(n, sieve):\n while n > 1:\n yield sieve[n]\n n //= sieve[n]\n\n\ndef discrete_log(x: int, y: int, m: int) -> int:\n """\n x**k == y mod m ?????????k????\n\n :param x: ???????\n :param y: ??????????\n :param m: mod\n :return: ?????\n """\n\n x = int(x)\n y = int(y)\n m = int(m)\n if y >= m or y < 0:\n return -1\n if x == 0:\n if m == 1:\n return 0\n if y == 1:\n return 0\n if y == 0:\n return 1\n return -1\n p = 3\n tmp = x - 1\n cnt = 0\n primes = []\n counts = []\n ps = 0\n while tmp & 1:\n tmp >>= 1\n cnt += 1\n if cnt:\n primes.append(2)\n counts.append(cnt)\n ps += 1\n tmp += 1\n while tmp != 1:\n cnt = 0\n while tmp % p == 0:\n tmp //= p\n cnt += 1\n if cnt:\n primes.append(p)\n counts.append(cnt)\n ps += 1\n p += 2\n if tmp != 1 and p * p > x:\n primes.append(tmp)\n counts.append(1)\n ps += 1\n break\n tail = 0\n mp = m\n for i in range(ps):\n f = 0\n while mp % primes[i] == 0:\n mp //= primes[i]\n f += 1\n if tail < (f + counts[i] - 1) // counts[i]:\n tail = (f + counts[i] - 1) // counts[i]\n z = 1\n for i in range(tail):\n if z == y:\n return i\n z = z * x % m\n if y % gcd(z, m):\n return -1\n p = 3\n u = mp\n tmp = mp - 1\n if tmp & 1:\n u >>= 1\n while tmp & 1:\n tmp >>= 1\n tmp += 1\n while tmp != 1:\n if tmp % p == 0:\n u //= p\n u *= p - 1\n while tmp % p == 0:\n tmp //= p\n p += 2\n if tmp != 1 and p * p > mp:\n u //= tmp\n u *= tmp - 1\n break\n p = 1\n loop = u\n while p * p <= u:\n if u % p == 0:\n if z * modpow(x, p, m) % m == z:\n loop = p\n break\n ip = u // p\n if z * modpow(x, ip, m) % m == z:\n loop = ip\n p += 1\n l, r = 0, loop+1\n sq = (loop+1) >> 1\n while r - l > 1:\n if sq * sq <= loop:\n l = sq\n else:\n r = sq\n sq = (l + r) >> 1\n if sq * sq < loop:\n sq += 1\n b = modpow(modpow(x, loop-1, m), sq, m)\n d = {}\n f = z\n for i in range(sq):\n d[f] = i\n f = f * x % m\n g = y\n for i in range(sq):\n if g in d:\n return i*sq+d[g]+tail\n g = g * b % m\n return -1\n\n'),
'lib.online_sorted_list': (False, 'import sys\nimport traceback\n\nfrom bisect import bisect_left, bisect_right, insort\nfrom itertools import chain, repeat, starmap\nfrom math import log\nfrom operator import add, eq, ne, gt, ge, lt, le, iadd\nfrom textwrap import dedent\n\ntry:\n from collections.abc import Sequence, MutableSequence\nexcept ImportError:\n from collections import Sequence, MutableSequence\n\nfrom functools import wraps\nfrom sys import hexversion\n\nif hexversion < 0x03000000:\n try:\n from thread import get_ident\n except ImportError:\n from dummy_thread import get_ident\nelse:\n from functools import reduce\n\n try:\n from _thread import get_ident\n except ImportError:\n from _dummy_thread import get_ident\n\n\ndef recursive_repr(fillvalue=\'...\'):\n "Decorator to make a repr function return fillvalue for a recursive call."\n\n # pylint: disable=missing-docstring\n # Copied from reprlib in Python 3\n # https://hg.python.org/cpython/file/3.6/Lib/reprlib.py\n\n def decorating_function(user_function):\n repr_running = set()\n\n @wraps(user_function)\n def wrapper(self):\n key = id(self), get_ident()\n if key in repr_running:\n return fillvalue\n repr_running.add(key)\n try:\n result = user_function(self)\n finally:\n repr_running.discard(key)\n return result\n\n return wrapper\n\n return decorating_function\n\n\nclass OnlineSortedList(MutableSequence):\n """Sorted list is a sorted mutable sequence.\n\n Sorted list values are maintained in sorted order.\n\n Sorted list values must be comparable. The total ordering of values must\n not change while they are stored in the sorted list.\n\n Methods for adding values:\n\n * :func:`SortedList.add`\n * :func:`SortedList.update`\n * :func:`SortedList.__add__`\n * :func:`SortedList.__iadd__`\n * :func:`SortedList.__mul__`\n * :func:`SortedList.__imul__`\n\n Methods for removing values:\n\n * :func:`SortedList.clear`\n * :func:`SortedList.discard`\n * :func:`SortedList.remove`\n * :func:`SortedList.pop`\n * :func:`SortedList.__delitem__`\n\n Methods for looking up values:\n\n * :func:`SortedList.bisect_left`\n * :func:`SortedList.bisect_right`\n * :func:`SortedList.count`\n * :func:`SortedList.index`\n * :func:`SortedList.__contains__`\n * :func:`SortedList.__getitem__`\n\n Methods for iterating values:\n\n * :func:`SortedList.irange`\n * :func:`SortedList.islice`\n * :func:`SortedList.__iter__`\n * :func:`SortedList.__reversed__`\n\n Methods for miscellany:\n\n * :func:`SortedList.copy`\n * :func:`SortedList.__len__`\n * :func:`SortedList.__repr__`\n * :func:`SortedList._check`\n * :func:`SortedList._reset`\n\n Sorted lists use lexicographical ordering semantics when compared to other\n sequences.\n\n Some methods of mutable sequences are not supported and will raise\n not-implemented error.\n\n """\n DEFAULT_LOAD_FACTOR = 1000\n\n def __init__(self, iterable=None, key=None):\n """Initialize sorted list instance.\n\n Optional `iterable` argument provides an initial iterable of values to\n initialize the sorted list.\n\n Runtime complexity: `O(n*log(n))`\n\n >>> sl = SortedList()\n >>> sl\n SortedList([])\n >>> sl = SortedList([3, 1, 2, 5, 4])\n >>> sl\n SortedList([1, 2, 3, 4, 5])\n\n :param iterable: initial values (optional)\n\n """\n assert key is None\n self._len = 0\n self._load = self.DEFAULT_LOAD_FACTOR\n self._lists = []\n self._maxes = []\n self._index = []\n self._offset = 0\n\n if iterable is not None:\n self._update(iterable)\n\n def __new__(cls, iterable=None, key=None):\n """Create new sorted list or sorted-key list instance.\n\n Optional `key`-function argument will return an instance of subtype\n :class:`SortedKeyList`.\n\n >>> sl = SortedList()\n >>> isinstance(sl, SortedList)\n True\n >>> sl = SortedList(key=lambda x: -x)\n >>> isinstance(sl, SortedList)\n True\n >>> isinstance(sl, SortedKeyList)\n True\n\n :param iterable: initial values (optional)\n :param key: function used to extract comparison key (optional)\n :return: sorted list or sorted-key list instance\n\n """\n # pylint: disable=unused-argument\n if key is None:\n return object.__new__(cls)\n else:\n if cls is SortedList:\n return object.__new__(SortedKeyList)\n else:\n raise TypeError(\'inherit SortedKeyList for key argument\')\n\n @property\n def key(self): # pylint: disable=useless-return\n """Function used to extract comparison key from values.\n\n Sorted list compares values directly so the key function is none.\n\n """\n return None\n\n def _reset(self, load):\n """Reset sorted list load factor.\n\n The `load` specifies the load-factor of the list. The default load\n factor of 1000 works well for lists from tens to tens-of-millions of\n values. Good practice is to use a value that is the cube root of the\n list size. With billions of elements, the best load factor depends on\n your usage. It\'s best to leave the load factor at the default until you\n start benchmarking.\n\n See :doc:`implementation` and :doc:`performance-scale` for more\n information.\n\n Runtime complexity: `O(n)`\n\n :param int load: load-factor for sorted list sublists\n\n """\n values = reduce(iadd, self._lists, [])\n self._clear()\n self._load = load\n self._update(values)\n\n def clear(self):\n """Remove all values from sorted list.\n\n Runtime complexity: `O(n)`\n\n """\n self._len = 0\n del self._lists[:]\n del self._maxes[:]\n del self._index[:]\n self._offset = 0\n\n _clear = clear\n\n def add(self, value):\n """Add `value` to sorted list.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList()\n >>> sl.add(3)\n >>> sl.add(1)\n >>> sl.add(2)\n >>> sl\n SortedList([1, 2, 3])\n\n :param value: value to add to sorted list\n\n """\n _lists = self._lists\n _maxes = self._maxes\n\n if _maxes:\n pos = bisect_right(_maxes, value)\n\n if pos == len(_maxes):\n pos -= 1\n _lists[pos].append(value)\n _maxes[pos] = value\n else:\n insort(_lists[pos], value)\n\n self._expand(pos)\n else:\n _lists.append([value])\n _maxes.append(value)\n\n self._len += 1\n\n def _expand(self, pos):\n """Split sublists with length greater than double the load-factor.\n\n Updates the index when the sublist length is less than double the load\n level. This requires incrementing the nodes in a traversal from the\n leaf node to the root. For an example traversal see\n ``SortedList._loc``.\n\n """\n _load = self._load\n _lists = self._lists\n _index = self._index\n\n if len(_lists[pos]) > (_load << 1):\n _maxes = self._maxes\n\n _lists_pos = _lists[pos]\n half = _lists_pos[_load:]\n del _lists_pos[_load:]\n _maxes[pos] = _lists_pos[-1]\n\n _lists.insert(pos + 1, half)\n _maxes.insert(pos + 1, half[-1])\n\n del _index[:]\n else:\n if _index:\n child = self._offset + pos\n while child:\n _index[child] += 1\n child = (child - 1) >> 1\n _index[0] += 1\n\n def update(self, iterable):\n """Update sorted list by adding all values from `iterable`.\n\n Runtime complexity: `O(k*log(n))` -- approximate.\n\n >>> sl = SortedList()\n >>> sl.update([3, 1, 2])\n >>> sl\n SortedList([1, 2, 3])\n\n :param iterable: iterable of values to add\n\n """\n _lists = self._lists\n _maxes = self._maxes\n values = sorted(iterable)\n\n if _maxes:\n if len(values) * 4 >= self._len:\n _lists.append(values)\n values = reduce(iadd, _lists, [])\n values.sort()\n self._clear()\n else:\n _add = self.add\n for val in values:\n _add(val)\n return\n\n _load = self._load\n _lists.extend(values[pos:(pos + _load)]\n for pos in range(0, len(values), _load))\n _maxes.extend(sublist[-1] for sublist in _lists)\n self._len = len(values)\n del self._index[:]\n\n _update = update\n\n def __contains__(self, value):\n """Return true if `value` is an element of the sorted list.\n\n ``sl.__contains__(value)`` <==> ``value in sl``\n\n Runtime complexity: `O(log(n))`\n\n >>> sl = SortedList([1, 2, 3, 4, 5])\n >>> 3 in sl\n True\n\n :param value: search for value in sorted list\n :return: true if `value` in sorted list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return False\n\n pos = bisect_left(_maxes, value)\n\n if pos == len(_maxes):\n return False\n\n _lists = self._lists\n idx = bisect_left(_lists[pos], value)\n\n return _lists[pos][idx] == value\n\n def discard(self, value):\n """Remove `value` from sorted list if it is a member.\n\n If `value` is not a member, do nothing.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([1, 2, 3, 4, 5])\n >>> sl.discard(5)\n >>> sl.discard(0)\n >>> sl == [1, 2, 3, 4]\n True\n\n :param value: `value` to discard from sorted list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return\n\n pos = bisect_left(_maxes, value)\n\n if pos == len(_maxes):\n return\n\n _lists = self._lists\n idx = bisect_left(_lists[pos], value)\n\n if _lists[pos][idx] == value:\n self._delete(pos, idx)\n\n def remove(self, value):\n """Remove `value` from sorted list; `value` must be a member.\n\n If `value` is not a member, raise ValueError.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([1, 2, 3, 4, 5])\n >>> sl.remove(5)\n >>> sl == [1, 2, 3, 4]\n True\n >>> sl.remove(0)\n Traceback (most recent call last):\n ...\n ValueError: 0 not in list\n\n :param value: `value` to remove from sorted list\n :raises ValueError: if `value` is not in sorted list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n pos = bisect_left(_maxes, value)\n\n if pos == len(_maxes):\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n _lists = self._lists\n idx = bisect_left(_lists[pos], value)\n\n if _lists[pos][idx] == value:\n self._delete(pos, idx)\n else:\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n def _delete(self, pos, idx):\n """Delete value at the given `(pos, idx)`.\n\n Combines lists that are less than half the load level.\n\n Updates the index when the sublist length is more than half the load\n level. This requires decrementing the nodes in a traversal from the\n leaf node to the root. For an example traversal see\n ``SortedList._loc``.\n\n :param int pos: lists index\n :param int idx: sublist index\n\n """\n _lists = self._lists\n _maxes = self._maxes\n _index = self._index\n\n _lists_pos = _lists[pos]\n\n del _lists_pos[idx]\n self._len -= 1\n\n len_lists_pos = len(_lists_pos)\n\n if len_lists_pos > (self._load >> 1):\n _maxes[pos] = _lists_pos[-1]\n\n if _index:\n child = self._offset + pos\n while child > 0:\n _index[child] -= 1\n child = (child - 1) >> 1\n _index[0] -= 1\n elif len(_lists) > 1:\n if not pos:\n pos += 1\n\n prev = pos - 1\n _lists[prev].extend(_lists[pos])\n _maxes[prev] = _lists[prev][-1]\n\n del _lists[pos]\n del _maxes[pos]\n del _index[:]\n\n self._expand(prev)\n elif len_lists_pos:\n _maxes[pos] = _lists_pos[-1]\n else:\n del _lists[pos]\n del _maxes[pos]\n del _index[:]\n\n def _loc(self, pos, idx):\n """Convert an index pair (lists index, sublist index) into a single\n index number that corresponds to the position of the value in the\n sorted list.\n\n Many queries require the index be built. Details of the index are\n described in ``SortedList._build_index``.\n\n Indexing requires traversing the tree from a leaf node to the root. The\n parent of each node is easily computable at ``(pos - 1) // 2``.\n\n Left-child nodes are always at odd indices and right-child nodes are\n always at even indices.\n\n When traversing up from a right-child node, increment the total by the\n left-child node.\n\n The final index is the sum from traversal and the index in the sublist.\n\n For example, using the index from ``SortedList._build_index``::\n\n _index = 14 5 9 3 2 4 5\n _offset = 3\n\n Tree::\n\n 14\n 5 9\n 3 2 4 5\n\n Converting an index pair (2, 3) into a single index involves iterating\n like so:\n\n 1. Starting at the leaf node: offset + alpha = 3 + 2 = 5. We identify\n the node as a left-child node. At such nodes, we simply traverse to\n the parent.\n\n 2. At node 9, position 2, we recognize the node as a right-child node\n and accumulate the left-child in our total. Total is now 5 and we\n traverse to the parent at position 0.\n\n 3. Iteration ends at the root.\n\n The index is then the sum of the total and sublist index: 5 + 3 = 8.\n\n :param int pos: lists index\n :param int idx: sublist index\n :return: index in sorted list\n\n """\n if not pos:\n return idx\n\n _index = self._index\n\n if not _index:\n self._build_index()\n\n total = 0\n\n # Increment pos to point in the index to len(self._lists[pos]).\n\n pos += self._offset\n\n # Iterate until reaching the root of the index tree at pos = 0.\n\n while pos:\n\n # Right-child nodes are at odd indices. At such indices\n # account the total below the left child node.\n\n if not pos & 1:\n total += _index[pos - 1]\n\n # Advance pos to the parent node.\n\n pos = (pos - 1) >> 1\n\n return total + idx\n\n def _pos(self, idx):\n """Convert an index into an index pair (lists index, sublist index)\n that can be used to access the corresponding lists position.\n\n Many queries require the index be built. Details of the index are\n described in ``SortedList._build_index``.\n\n Indexing requires traversing the tree to a leaf node. Each node has two\n children which are easily computable. Given an index, pos, the\n left-child is at ``pos * 2 + 1`` and the right-child is at ``pos * 2 +\n 2``.\n\n When the index is less than the left-child, traversal moves to the\n left sub-tree. Otherwise, the index is decremented by the left-child\n and traversal moves to the right sub-tree.\n\n At a child node, the indexing pair is computed from the relative\n position of the child node as compared with the offset and the remaining\n index.\n\n For example, using the index from ``SortedList._build_index``::\n\n _index = 14 5 9 3 2 4 5\n _offset = 3\n\n Tree::\n\n 14\n 5 9\n 3 2 4 5\n\n Indexing position 8 involves iterating like so:\n\n 1. Starting at the root, position 0, 8 is compared with the left-child\n node (5) which it is greater than. When greater the index is\n decremented and the position is updated to the right child node.\n\n 2. At node 9 with index 3, we again compare the index to the left-child\n node with value 4. Because the index is the less than the left-child\n node, we simply traverse to the left.\n\n 3. At node 4 with index 3, we recognize that we are at a leaf node and\n stop iterating.\n\n 4. To compute the sublist index, we subtract the offset from the index\n of the leaf node: 5 - 3 = 2. To compute the index in the sublist, we\n simply use the index remaining from iteration. In this case, 3.\n\n The final index pair from our example is (2, 3) which corresponds to\n index 8 in the sorted list.\n\n :param int idx: index in sorted list\n :return: (lists index, sublist index) pair\n\n """\n if idx < 0:\n last_len = len(self._lists[-1])\n\n if (-idx) <= last_len:\n return len(self._lists) - 1, last_len + idx\n\n idx += self._len\n\n if idx < 0:\n raise IndexError(\'list index out of range\')\n elif idx >= self._len:\n raise IndexError(\'list index out of range\')\n\n if idx < len(self._lists[0]):\n return 0, idx\n\n _index = self._index\n\n if not _index:\n self._build_index()\n\n pos = 0\n child = 1\n len_index = len(_index)\n\n while child < len_index:\n index_child = _index[child]\n\n if idx < index_child:\n pos = child\n else:\n idx -= index_child\n pos = child + 1\n\n child = (pos << 1) + 1\n\n return (pos - self._offset, idx)\n\n def _build_index(self):\n """Build a positional index for indexing the sorted list.\n\n Indexes are represented as binary trees in a dense array notation\n similar to a binary heap.\n\n For example, given a lists representation storing integers::\n\n 0: [1, 2, 3]\n 1: [4, 5]\n 2: [6, 7, 8, 9]\n 3: [10, 11, 12, 13, 14]\n\n The first transformation maps the sub-lists by their length. The\n first row of the index is the length of the sub-lists::\n\n 0: [3, 2, 4, 5]\n\n Each row after that is the sum of consecutive pairs of the previous\n row::\n\n 1: [5, 9]\n 2: [14]\n\n Finally, the index is built by concatenating these lists together::\n\n _index = [14, 5, 9, 3, 2, 4, 5]\n\n An offset storing the start of the first row is also stored::\n\n _offset = 3\n\n When built, the index can be used for efficient indexing into the list.\n See the comment and notes on ``SortedList._pos`` for details.\n\n """\n row0 = list(map(len, self._lists))\n\n if len(row0) == 1:\n self._index[:] = row0\n self._offset = 0\n return\n\n head = iter(row0)\n tail = iter(head)\n row1 = list(starmap(add, zip(head, tail)))\n\n if len(row0) & 1:\n row1.append(row0[-1])\n\n if len(row1) == 1:\n self._index[:] = row1 + row0\n self._offset = 1\n return\n\n size = 2 ** (int(log(len(row1) - 1, 2)) + 1)\n row1.extend(repeat(0, size - len(row1)))\n tree = [row0, row1]\n\n while len(tree[-1]) > 1:\n head = iter(tree[-1])\n tail = iter(head)\n row = list(starmap(add, zip(head, tail)))\n tree.append(row)\n\n reduce(iadd, reversed(tree), self._index)\n self._offset = size * 2 - 1\n\n def __delitem__(self, index):\n """Remove value at `index` from sorted list.\n\n ``sl.__delitem__(index)`` <==> ``del sl[index]``\n\n Supports slicing.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList(\'abcde\')\n >>> del sl[2]\n >>> sl\n SortedList([\'a\', \'b\', \'d\', \'e\'])\n >>> del sl[:2]\n >>> sl\n SortedList([\'d\', \'e\'])\n\n :param index: integer or slice for indexing\n :raises IndexError: if index out of range\n\n """\n if isinstance(index, slice):\n start, stop, step = index.indices(self._len)\n\n if step == 1 and start < stop:\n if start == 0 and stop == self._len:\n return self._clear()\n elif self._len <= 8 * (stop - start):\n values = self._getitem(slice(None, start))\n if stop < self._len:\n values += self._getitem(slice(stop, None))\n self._clear()\n return self._update(values)\n\n indices = range(start, stop, step)\n\n # Delete items from greatest index to least so\n # that the indices remain valid throughout iteration.\n\n if step > 0:\n indices = reversed(indices)\n\n _pos, _delete = self._pos, self._delete\n\n for index in indices:\n pos, idx = _pos(index)\n _delete(pos, idx)\n else:\n pos, idx = self._pos(index)\n self._delete(pos, idx)\n\n def __getitem__(self, index):\n """Lookup value at `index` in sorted list.\n\n ``sl.__getitem__(index)`` <==> ``sl[index]``\n\n Supports slicing.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList(\'abcde\')\n >>> sl[1]\n \'b\'\n >>> sl[-1]\n \'e\'\n >>> sl[2:5]\n [\'c\', \'d\', \'e\']\n\n :param index: integer or slice for indexing\n :return: value or list of values\n :raises IndexError: if index out of range\n\n """\n _lists = self._lists\n\n if isinstance(index, slice):\n start, stop, step = index.indices(self._len)\n\n if step == 1 and start < stop:\n # Whole slice optimization: start to stop slices the whole\n # sorted list.\n\n if start == 0 and stop == self._len:\n return reduce(iadd, self._lists, [])\n\n start_pos, start_idx = self._pos(start)\n start_list = _lists[start_pos]\n stop_idx = start_idx + stop - start\n\n # Small slice optimization: start index and stop index are\n # within the start list.\n\n if len(start_list) >= stop_idx:\n return start_list[start_idx:stop_idx]\n\n if stop == self._len:\n stop_pos = len(_lists) - 1\n stop_idx = len(_lists[stop_pos])\n else:\n stop_pos, stop_idx = self._pos(stop)\n\n prefix = _lists[start_pos][start_idx:]\n middle = _lists[(start_pos + 1):stop_pos]\n result = reduce(iadd, middle, prefix)\n result += _lists[stop_pos][:stop_idx]\n\n return result\n\n if step == -1 and start > stop:\n result = self._getitem(slice(stop + 1, start + 1))\n result.reverse()\n return result\n\n # Return a list because a negative step could\n # reverse the order of the items and this could\n # be the desired behavior.\n\n indices = range(start, stop, step)\n return list(self._getitem(index) for index in indices)\n else:\n if self._len:\n if index == 0:\n return _lists[0][0]\n elif index == -1:\n return _lists[-1][-1]\n else:\n raise IndexError(\'list index out of range\')\n\n if 0 <= index < len(_lists[0]):\n return _lists[0][index]\n\n len_last = len(_lists[-1])\n\n if -len_last < index < 0:\n return _lists[-1][len_last + index]\n\n pos, idx = self._pos(index)\n return _lists[pos][idx]\n\n _getitem = __getitem__\n\n def __setitem__(self, index, value):\n """Raise not-implemented error.\n\n ``sl.__setitem__(index, value)`` <==> ``sl[index] = value``\n\n :raises NotImplementedError: use ``del sl[index]`` and\n ``sl.add(value)`` instead\n\n """\n message = \'use ``del sl[index]`` and ``sl.add(value)`` instead\'\n raise NotImplementedError(message)\n\n def __iter__(self):\n """Return an iterator over the sorted list.\n\n ``sl.__iter__()`` <==> ``iter(sl)``\n\n Iterating the sorted list while adding or deleting values may raise a\n :exc:`RuntimeError` or fail to iterate over all values.\n\n """\n return chain.from_iterable(self._lists)\n\n def __reversed__(self):\n """Return a reverse iterator over the sorted list.\n\n ``sl.__reversed__()`` <==> ``reversed(sl)``\n\n Iterating the sorted list while adding or deleting values may raise a\n :exc:`RuntimeError` or fail to iterate over all values.\n\n """\n return chain.from_iterable(map(reversed, reversed(self._lists)))\n\n def reverse(self):\n """Raise not-implemented error.\n\n Sorted list maintains values in ascending sort order. Values may not be\n reversed in-place.\n\n Use ``reversed(sl)`` for an iterator over values in descending sort\n order.\n\n Implemented to override `MutableSequence.reverse` which provides an\n erroneous default implementation.\n\n :raises NotImplementedError: use ``reversed(sl)`` instead\n\n """\n raise NotImplementedError(\'use ``reversed(sl)`` instead\')\n\n def islice(self, start=None, stop=None, reverse=False):\n """Return an iterator that slices sorted list from `start` to `stop`.\n\n The `start` and `stop` index are treated inclusive and exclusive,\n respectively.\n\n Both `start` and `stop` default to `None` which is automatically\n inclusive of the beginning and end of the sorted list.\n\n When `reverse` is `True` the values are yielded from the iterator in\n reverse order; `reverse` defaults to `False`.\n\n >>> sl = SortedList(\'abcdefghij\')\n >>> it = sl.islice(2, 6)\n >>> list(it)\n [\'c\', \'d\', \'e\', \'f\']\n\n :param int start: start index (inclusive)\n :param int stop: stop index (exclusive)\n :param bool reverse: yield values in reverse order\n :return: iterator\n\n """\n _len = self._len\n\n if not _len:\n return iter(())\n\n start, stop, _ = slice(start, stop).indices(self._len)\n\n if start >= stop:\n return iter(())\n\n _pos = self._pos\n\n min_pos, min_idx = _pos(start)\n\n if stop == _len:\n max_pos = len(self._lists) - 1\n max_idx = len(self._lists[-1])\n else:\n max_pos, max_idx = _pos(stop)\n\n return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)\n\n def _islice(self, min_pos, min_idx, max_pos, max_idx, reverse):\n """Return an iterator that slices sorted list using two index pairs.\n\n The index pairs are (min_pos, min_idx) and (max_pos, max_idx), the\n first inclusive and the latter exclusive. See `_pos` for details on how\n an index is converted to an index pair.\n\n When `reverse` is `True`, values are yielded from the iterator in\n reverse order.\n\n """\n _lists = self._lists\n\n if min_pos > max_pos:\n return iter(())\n\n if min_pos == max_pos:\n if reverse:\n indices = reversed(range(min_idx, max_idx))\n return map(_lists[min_pos].__getitem__, indices)\n\n indices = range(min_idx, max_idx)\n return map(_lists[min_pos].__getitem__, indices)\n\n next_pos = min_pos + 1\n\n if next_pos == max_pos:\n if reverse:\n min_indices = range(min_idx, len(_lists[min_pos]))\n max_indices = range(max_idx)\n return chain(\n map(_lists[max_pos].__getitem__, reversed(max_indices)),\n map(_lists[min_pos].__getitem__, reversed(min_indices)),\n )\n\n min_indices = range(min_idx, len(_lists[min_pos]))\n max_indices = range(max_idx)\n return chain(\n map(_lists[min_pos].__getitem__, min_indices),\n map(_lists[max_pos].__getitem__, max_indices),\n )\n\n if reverse:\n min_indices = range(min_idx, len(_lists[min_pos]))\n sublist_indices = range(next_pos, max_pos)\n sublists = map(_lists.__getitem__, reversed(sublist_indices))\n max_indices = range(max_idx)\n return chain(\n map(_lists[max_pos].__getitem__, reversed(max_indices)),\n chain.from_iterable(map(reversed, sublists)),\n map(_lists[min_pos].__getitem__, reversed(min_indices)),\n )\n\n min_indices = range(min_idx, len(_lists[min_pos]))\n sublist_indices = range(next_pos, max_pos)\n sublists = map(_lists.__getitem__, sublist_indices)\n max_indices = range(max_idx)\n return chain(\n map(_lists[min_pos].__getitem__, min_indices),\n chain.from_iterable(sublists),\n map(_lists[max_pos].__getitem__, max_indices),\n )\n\n def irange(self, minimum=None, maximum=None, inclusive=(True, True),\n reverse=False):\n """Create an iterator of values between `minimum` and `maximum`.\n\n Both `minimum` and `maximum` default to `None` which is automatically\n inclusive of the beginning and end of the sorted list.\n\n The argument `inclusive` is a pair of booleans that indicates whether\n the minimum and maximum ought to be included in the range,\n respectively. The default is ``(True, True)`` such that the range is\n inclusive of both minimum and maximum.\n\n When `reverse` is `True` the values are yielded from the iterator in\n reverse order; `reverse` defaults to `False`.\n\n >>> sl = SortedList(\'abcdefghij\')\n >>> it = sl.irange(\'c\', \'f\')\n >>> list(it)\n [\'c\', \'d\', \'e\', \'f\']\n\n :param minimum: minimum value to start iterating\n :param maximum: maximum value to stop iterating\n :param inclusive: pair of booleans\n :param bool reverse: yield values in reverse order\n :return: iterator\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return iter(())\n\n _lists = self._lists\n\n # Calculate the minimum (pos, idx) pair. By default this location\n # will be inclusive in our calculation.\n\n if minimum is None:\n min_pos = 0\n min_idx = 0\n else:\n if inclusive[0]:\n min_pos = bisect_left(_maxes, minimum)\n\n if min_pos == len(_maxes):\n return iter(())\n\n min_idx = bisect_left(_lists[min_pos], minimum)\n else:\n min_pos = bisect_right(_maxes, minimum)\n\n if min_pos == len(_maxes):\n return iter(())\n\n min_idx = bisect_right(_lists[min_pos], minimum)\n\n # Calculate the maximum (pos, idx) pair. By default this location\n # will be exclusive in our calculation.\n\n if maximum is None:\n max_pos = len(_maxes) - 1\n max_idx = len(_lists[max_pos])\n else:\n if inclusive[1]:\n max_pos = bisect_right(_maxes, maximum)\n\n if max_pos == len(_maxes):\n max_pos -= 1\n max_idx = len(_lists[max_pos])\n else:\n max_idx = bisect_right(_lists[max_pos], maximum)\n else:\n max_pos = bisect_left(_maxes, maximum)\n\n if max_pos == len(_maxes):\n max_pos -= 1\n max_idx = len(_lists[max_pos])\n else:\n max_idx = bisect_left(_lists[max_pos], maximum)\n\n return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)\n\n def __len__(self):\n """Return the size of the sorted list.\n\n ``sl.__len__()`` <==> ``len(sl)``\n\n :return: size of sorted list\n\n """\n return self._len\n\n def bisect_left(self, value):\n """Return an index to insert `value` in the sorted list.\n\n If the `value` is already present, the insertion point will be before\n (to the left of) any existing values.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([10, 11, 12, 13, 14])\n >>> sl.bisect_left(12)\n 2\n\n :param value: insertion index of value in sorted list\n :return: index\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos = bisect_left(_maxes, value)\n\n if pos == len(_maxes):\n return self._len\n\n idx = bisect_left(self._lists[pos], value)\n return self._loc(pos, idx)\n\n def bisect_right(self, value):\n """Return an index to insert `value` in the sorted list.\n\n Similar to `bisect_left`, but if `value` is already present, the\n insertion point will be after (to the right of) any existing values.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([10, 11, 12, 13, 14])\n >>> sl.bisect_right(12)\n 3\n\n :param value: insertion index of value in sorted list\n :return: index\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos = bisect_right(_maxes, value)\n\n if pos == len(_maxes):\n return self._len\n\n idx = bisect_right(self._lists[pos], value)\n return self._loc(pos, idx)\n\n bisect = bisect_right\n _bisect_right = bisect_right\n\n def upper_bound(self, x, equal=False):\n k = self.bisect_left(x + equal)\n if k:\n return self[k - 1]\n else:\n sys.stderr.write("upper_bound: no element smaller than {0} in this SortedList\\n".format(x))\n\n def lower_bound(self, x, equal=False):\n k = self.bisect_left(x + 1 - equal) + 1\n if k <= len(self):\n return self[k - 1]\n else:\n sys.stderr.write("lower_bound: no element larger than {0} in this SortedList\\n".format(x))\n\n def count(self, value):\n """Return number of occurrences of `value` in the sorted list.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])\n >>> sl.count(3)\n 3\n\n :param value: value to count in sorted list\n :return: count\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos_left = bisect_left(_maxes, value)\n\n if pos_left == len(_maxes):\n return 0\n\n _lists = self._lists\n idx_left = bisect_left(_lists[pos_left], value)\n pos_right = bisect_right(_maxes, value)\n\n if pos_right == len(_maxes):\n return self._len - self._loc(pos_left, idx_left)\n\n idx_right = bisect_right(_lists[pos_right], value)\n\n if pos_left == pos_right:\n return idx_right - idx_left\n\n right = self._loc(pos_right, idx_right)\n left = self._loc(pos_left, idx_left)\n return right - left\n\n def copy(self):\n """Return a shallow copy of the sorted list.\n\n Runtime complexity: `O(n)`\n\n :return: new sorted list\n\n """\n return self.__class__(self)\n\n __copy__ = copy\n\n def append(self, value):\n """Raise not-implemented error.\n\n Implemented to override `MutableSequence.append` which provides an\n erroneous default implementation.\n\n :raises NotImplementedError: use ``sl.add(value)`` instead\n\n """\n raise NotImplementedError(\'use ``sl.add(value)`` instead\')\n\n def extend(self, values):\n """Raise not-implemented error.\n\n Implemented to override `MutableSequence.extend` which provides an\n erroneous default implementation.\n\n :raises NotImplementedError: use ``sl.update(values)`` instead\n\n """\n raise NotImplementedError(\'use ``sl.update(values)`` instead\')\n\n def insert(self, index, value):\n """Raise not-implemented error.\n\n :raises NotImplementedError: use ``sl.add(value)`` instead\n\n """\n raise NotImplementedError(\'use ``sl.add(value)`` instead\')\n\n def pop(self, index=-1):\n """Remove and return value at `index` in sorted list.\n\n Raise :exc:`IndexError` if the sorted list is empty or index is out of\n range.\n\n Negative indices are supported.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList(\'abcde\')\n >>> sl.pop()\n \'e\'\n >>> sl.pop(2)\n \'c\'\n >>> sl\n SortedList([\'a\', \'b\', \'d\'])\n\n :param int index: index of value (default -1)\n :return: value\n :raises IndexError: if index is out of range\n\n """\n if not self._len:\n raise IndexError(\'pop index out of range\')\n\n _lists = self._lists\n\n if index == 0:\n val = _lists[0][0]\n self._delete(0, 0)\n return val\n\n if index == -1:\n pos = len(_lists) - 1\n loc = len(_lists[pos]) - 1\n val = _lists[pos][loc]\n self._delete(pos, loc)\n return val\n\n if 0 <= index < len(_lists[0]):\n val = _lists[0][index]\n self._delete(0, index)\n return val\n\n len_last = len(_lists[-1])\n\n if -len_last < index < 0:\n pos = len(_lists) - 1\n loc = len_last + index\n val = _lists[pos][loc]\n self._delete(pos, loc)\n return val\n\n pos, idx = self._pos(index)\n val = _lists[pos][idx]\n self._delete(pos, idx)\n return val\n\n def index(self, value, start=None, stop=None):\n """Return first index of value in sorted list.\n\n Raise ValueError if `value` is not present.\n\n Index must be between `start` and `stop` for the `value` to be\n considered present. The default value, None, for `start` and `stop`\n indicate the beginning and end of the sorted list.\n\n Negative indices are supported.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList(\'abcde\')\n >>> sl.index(\'d\')\n 3\n >>> sl.index(\'z\')\n Traceback (most recent call last):\n ...\n ValueError: \'z\' is not in list\n\n :param value: value in sorted list\n :param int start: start index (default None, start of sorted list)\n :param int stop: stop index (default None, end of sorted list)\n :return: index of value\n :raises ValueError: if value is not present\n\n """\n _len = self._len\n\n if not _len:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n if start is None:\n start = 0\n if start < 0:\n start += _len\n if start < 0:\n start = 0\n\n if stop is None:\n stop = _len\n if stop < 0:\n stop += _len\n if stop > _len:\n stop = _len\n\n if stop <= start:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n _maxes = self._maxes\n pos_left = bisect_left(_maxes, value)\n\n if pos_left == len(_maxes):\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n _lists = self._lists\n idx_left = bisect_left(_lists[pos_left], value)\n\n if _lists[pos_left][idx_left] != value:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n stop -= 1\n left = self._loc(pos_left, idx_left)\n\n if start <= left:\n if left <= stop:\n return left\n else:\n right = self._bisect_right(value) - 1\n\n if start <= right:\n return start\n\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n def __add__(self, other):\n """Return new sorted list containing all values in both sequences.\n\n ``sl.__add__(other)`` <==> ``sl + other``\n\n Values in `other` do not need to be in sorted order.\n\n Runtime complexity: `O(n*log(n))`\n\n >>> sl1 = SortedList(\'bat\')\n >>> sl2 = SortedList(\'cat\')\n >>> sl1 + sl2\n SortedList([\'a\', \'a\', \'b\', \'c\', \'t\', \'t\'])\n\n :param other: other iterable\n :return: new sorted list\n\n """\n values = reduce(iadd, self._lists, [])\n values.extend(other)\n return self.__class__(values)\n\n __radd__ = __add__\n\n def __iadd__(self, other):\n """Update sorted list with values from `other`.\n\n ``sl.__iadd__(other)`` <==> ``sl += other``\n\n Values in `other` do not need to be in sorted order.\n\n Runtime complexity: `O(k*log(n))` -- approximate.\n\n >>> sl = SortedList(\'bat\')\n >>> sl += \'cat\'\n >>> sl\n SortedList([\'a\', \'a\', \'b\', \'c\', \'t\', \'t\'])\n\n :param other: other iterable\n :return: existing sorted list\n\n """\n self._update(other)\n return self\n\n def __mul__(self, num):\n """Return new sorted list with `num` shallow copies of values.\n\n ``sl.__mul__(num)`` <==> ``sl * num``\n\n Runtime complexity: `O(n*log(n))`\n\n >>> sl = SortedList(\'abc\')\n >>> sl * 3\n SortedList([\'a\', \'a\', \'a\', \'b\', \'b\', \'b\', \'c\', \'c\', \'c\'])\n\n :param int num: count of shallow copies\n :return: new sorted list\n\n """\n values = reduce(iadd, self._lists, []) * num\n return self.__class__(values)\n\n __rmul__ = __mul__\n\n def __imul__(self, num):\n """Update the sorted list with `num` shallow copies of values.\n\n ``sl.__imul__(num)`` <==> ``sl *= num``\n\n Runtime complexity: `O(n*log(n))`\n\n >>> sl = SortedList(\'abc\')\n >>> sl *= 3\n >>> sl\n SortedList([\'a\', \'a\', \'a\', \'b\', \'b\', \'b\', \'c\', \'c\', \'c\'])\n\n :param int num: count of shallow copies\n :return: existing sorted list\n\n """\n values = reduce(iadd, self._lists, []) * num\n self._clear()\n self._update(values)\n return self\n\n def __make_cmp(seq_op, symbol, doc):\n "Make comparator method."\n\n def comparer(self, other):\n "Compare method for sorted list and sequence."\n if not isinstance(other, Sequence):\n return NotImplemented\n\n self_len = self._len\n len_other = len(other)\n\n if self_len != len_other:\n if seq_op is eq:\n return False\n if seq_op is ne:\n return True\n\n for alpha, beta in zip(self, other):\n if alpha != beta:\n return seq_op(alpha, beta)\n\n return seq_op(self_len, len_other)\n\n seq_op_name = seq_op.__name__\n comparer.__name__ = \'__{0}__\'.format(seq_op_name)\n doc_str = """Return true if and only if sorted list is {0} `other`.\n\n ``sl.__{1}__(other)`` <==> ``sl {2} other``\n\n Comparisons use lexicographical order as with sequences.\n\n Runtime complexity: `O(n)`\n\n :param other: `other` sequence\n :return: true if sorted list is {0} `other`\n\n """\n comparer.__doc__ = dedent(doc_str.format(doc, seq_op_name, symbol))\n return comparer\n\n __eq__ = __make_cmp(eq, \'==\', \'equal to\')\n __ne__ = __make_cmp(ne, \'!=\', \'not equal to\')\n __lt__ = __make_cmp(lt, \'<\', \'less than\')\n __gt__ = __make_cmp(gt, \'>\', \'greater than\')\n __le__ = __make_cmp(le, \'<=\', \'less than or equal to\')\n __ge__ = __make_cmp(ge, \'>=\', \'greater than or equal to\')\n __make_cmp = staticmethod(__make_cmp)\n\n def __reduce__(self):\n values = reduce(iadd, self._lists, [])\n return (type(self), (values,))\n\n @recursive_repr()\n def __repr__(self):\n """Return string representation of sorted list.\n\n ``sl.__repr__()`` <==> ``repr(sl)``\n\n :return: string representation\n\n """\n return \'{0}({1!r})\'.format(type(self).__name__, list(self))\n\n def _check(self):\n """Check invariants of sorted list.\n\n Runtime complexity: `O(n)`\n\n """\n try:\n assert self._load >= 4\n assert len(self._maxes) == len(self._lists)\n assert self._len == sum(len(sublist) for sublist in self._lists)\n\n # Check all sublists are sorted.\n\n for sublist in self._lists:\n for pos in range(1, len(sublist)):\n assert sublist[pos - 1] <= sublist[pos]\n\n # Check beginning/end of sublists are sorted.\n\n for pos in range(1, len(self._lists)):\n assert self._lists[pos - 1][-1] <= self._lists[pos][0]\n\n # Check _maxes index is the last value of each sublist.\n\n for pos in range(len(self._maxes)):\n assert self._maxes[pos] == self._lists[pos][-1]\n\n # Check sublist lengths are less than double load-factor.\n\n double = self._load << 1\n assert all(len(sublist) <= double for sublist in self._lists)\n\n # Check sublist lengths are greater than half load-factor for all\n # but the last sublist.\n\n half = self._load >> 1\n for pos in range(0, len(self._lists) - 1):\n assert len(self._lists[pos]) >= half\n\n if self._index:\n assert self._len == self._index[0]\n assert len(self._index) == self._offset + len(self._lists)\n\n # Check index leaf nodes equal length of sublists.\n\n for pos in range(len(self._lists)):\n leaf = self._index[self._offset + pos]\n assert leaf == len(self._lists[pos])\n\n # Check index branch nodes are the sum of their children.\n\n for pos in range(self._offset):\n child = (pos << 1) + 1\n if child >= len(self._index):\n assert self._index[pos] == 0\n elif child + 1 == len(self._index):\n assert self._index[pos] == self._index[child]\n else:\n child_sum = self._index[child] + self._index[child + 1]\n assert child_sum == self._index[pos]\n except:\n traceback.print_exc(file=sys.stdout)\n print(\'len\', self._len)\n print(\'load\', self._load)\n print(\'offset\', self._offset)\n print(\'len_index\', len(self._index))\n print(\'index\', self._index)\n print(\'len_maxes\', len(self._maxes))\n print(\'maxes\', self._maxes)\n print(\'len_lists\', len(self._lists))\n print(\'lists\', self._lists)\n raise\n\n\ndef identity(value):\n """Identity function."""\n return value\n\n\nclass OnlineSortedKeyList(OnlineSortedList):\n """Sorted-key list is a subtype of sorted list.\n\n The sorted-key list maintains values in comparison order based on the\n result of a key function applied to every value.\n\n All the same methods that are available in :class:`SortedList` are also\n available in :class:`SortedKeyList`.\n\n Additional methods provided:\n\n * :attr:`SortedKeyList.key`\n * :func:`SortedKeyList.bisect_key_left`\n * :func:`SortedKeyList.bisect_key_right`\n * :func:`SortedKeyList.irange_key`\n\n Some examples below use:\n\n >>> from operator import neg\n >>> neg\n <built-in function neg>\n >>> neg(1)\n -1\n\n """\n\n def __init__(self, iterable=None, key=identity):\n """Initialize sorted-key list instance.\n\n Optional `iterable` argument provides an initial iterable of values to\n initialize the sorted-key list.\n\n Optional `key` argument defines a callable that, like the `key`\n argument to Python\'s `sorted` function, extracts a comparison key from\n each value. The default is the identity function.\n\n Runtime complexity: `O(n*log(n))`\n\n >>> from operator import neg\n >>> skl = SortedKeyList(key=neg)\n >>> skl\n SortedKeyList([], key=<built-in function neg>)\n >>> skl = SortedKeyList([3, 1, 2], key=neg)\n >>> skl\n SortedKeyList([3, 2, 1], key=<built-in function neg>)\n\n :param iterable: initial values (optional)\n :param key: function used to extract comparison key (optional)\n\n """\n super().__init__()\n self._key = key\n self._len = 0\n self._load = self.DEFAULT_LOAD_FACTOR\n self._lists = []\n self._keys = []\n self._maxes = []\n self._index = []\n self._offset = 0\n\n if iterable is not None:\n self._update(iterable)\n\n def __new__(cls, iterable=None, key=identity):\n return object.__new__(cls)\n\n @property\n def key(self):\n "Function used to extract comparison key from values."\n return self._key\n\n def clear(self):\n """Remove all values from sorted-key list.\n\n Runtime complexity: `O(n)`\n\n """\n self._len = 0\n del self._lists[:]\n del self._keys[:]\n del self._maxes[:]\n del self._index[:]\n\n _clear = clear\n\n def add(self, value):\n """Add `value` to sorted-key list.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList(key=neg)\n >>> skl.add(3)\n >>> skl.add(1)\n >>> skl.add(2)\n >>> skl\n SortedKeyList([3, 2, 1], key=<built-in function neg>)\n\n :param value: value to add to sorted-key list\n\n """\n _lists = self._lists\n _keys = self._keys\n _maxes = self._maxes\n\n key = self._key(value)\n\n if _maxes:\n pos = bisect_right(_maxes, key)\n\n if pos == len(_maxes):\n pos -= 1\n _lists[pos].append(value)\n _keys[pos].append(key)\n _maxes[pos] = key\n else:\n idx = bisect_right(_keys[pos], key)\n _lists[pos].insert(idx, value)\n _keys[pos].insert(idx, key)\n\n self._expand(pos)\n else:\n _lists.append([value])\n _keys.append([key])\n _maxes.append(key)\n\n self._len += 1\n\n def _expand(self, pos):\n """Split sublists with length greater than double the load-factor.\n\n Updates the index when the sublist length is less than double the load\n level. This requires incrementing the nodes in a traversal from the\n leaf node to the root. For an example traversal see\n ``SortedList._loc``.\n\n """\n _lists = self._lists\n _keys = self._keys\n _index = self._index\n\n if len(_keys[pos]) > (self._load << 1):\n _maxes = self._maxes\n _load = self._load\n\n _lists_pos = _lists[pos]\n _keys_pos = _keys[pos]\n half = _lists_pos[_load:]\n half_keys = _keys_pos[_load:]\n del _lists_pos[_load:]\n del _keys_pos[_load:]\n _maxes[pos] = _keys_pos[-1]\n\n _lists.insert(pos + 1, half)\n _keys.insert(pos + 1, half_keys)\n _maxes.insert(pos + 1, half_keys[-1])\n\n del _index[:]\n else:\n if _index:\n child = self._offset + pos\n while child:\n _index[child] += 1\n child = (child - 1) >> 1\n _index[0] += 1\n\n def update(self, iterable):\n """Update sorted-key list by adding all values from `iterable`.\n\n Runtime complexity: `O(k*log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList(key=neg)\n >>> skl.update([3, 1, 2])\n >>> skl\n SortedKeyList([3, 2, 1], key=<built-in function neg>)\n\n :param iterable: iterable of values to add\n\n """\n _lists = self._lists\n _keys = self._keys\n _maxes = self._maxes\n values = sorted(iterable, key=self._key)\n\n if _maxes:\n if len(values) * 4 >= self._len:\n _lists.append(values)\n values = reduce(iadd, _lists, [])\n values.sort(key=self._key)\n self._clear()\n else:\n _add = self.add\n for val in values:\n _add(val)\n return\n\n _load = self._load\n _lists.extend(values[pos:(pos + _load)]\n for pos in range(0, len(values), _load))\n _keys.extend(list(map(self._key, _list)) for _list in _lists)\n _maxes.extend(sublist[-1] for sublist in _keys)\n self._len = len(values)\n del self._index[:]\n\n _update = update\n\n def __contains__(self, value):\n """Return true if `value` is an element of the sorted-key list.\n\n ``skl.__contains__(value)`` <==> ``value in skl``\n\n Runtime complexity: `O(log(n))`\n\n >>> from operator import neg\n >>> skl = SortedKeyList([1, 2, 3, 4, 5], key=neg)\n >>> 3 in skl\n True\n\n :param value: search for value in sorted-key list\n :return: true if `value` in sorted-key list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return False\n\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n return False\n\n _lists = self._lists\n _keys = self._keys\n\n idx = bisect_left(_keys[pos], key)\n\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n return False\n if _lists[pos][idx] == value:\n return True\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n return False\n len_sublist = len(_keys[pos])\n idx = 0\n\n def discard(self, value):\n """Remove `value` from sorted-key list if it is a member.\n\n If `value` is not a member, do nothing.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg)\n >>> skl.discard(1)\n >>> skl.discard(0)\n >>> skl == [5, 4, 3, 2]\n True\n\n :param value: `value` to discard from sorted-key list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return\n\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n return\n\n _lists = self._lists\n _keys = self._keys\n idx = bisect_left(_keys[pos], key)\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n return\n if _lists[pos][idx] == value:\n self._delete(pos, idx)\n return\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n return\n len_sublist = len(_keys[pos])\n idx = 0\n\n def remove(self, value):\n """Remove `value` from sorted-key list; `value` must be a member.\n\n If `value` is not a member, raise ValueError.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([1, 2, 3, 4, 5], key=neg)\n >>> skl.remove(5)\n >>> skl == [4, 3, 2, 1]\n True\n >>> skl.remove(0)\n Traceback (most recent call last):\n ...\n ValueError: 0 not in list\n\n :param value: `value` to remove from sorted-key list\n :raises ValueError: if `value` is not in sorted-key list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n _lists = self._lists\n _keys = self._keys\n idx = bisect_left(_keys[pos], key)\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n raise ValueError(\'{0!r} not in list\'.format(value))\n if _lists[pos][idx] == value:\n self._delete(pos, idx)\n return\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n raise ValueError(\'{0!r} not in list\'.format(value))\n len_sublist = len(_keys[pos])\n idx = 0\n\n def _delete(self, pos, idx):\n """Delete value at the given `(pos, idx)`.\n\n Combines lists that are less than half the load level.\n\n Updates the index when the sublist length is more than half the load\n level. This requires decrementing the nodes in a traversal from the\n leaf node to the root. For an example traversal see\n ``SortedList._loc``.\n\n :param int pos: lists index\n :param int idx: sublist index\n\n """\n _lists = self._lists\n _keys = self._keys\n _maxes = self._maxes\n _index = self._index\n keys_pos = _keys[pos]\n lists_pos = _lists[pos]\n\n del keys_pos[idx]\n del lists_pos[idx]\n self._len -= 1\n\n len_keys_pos = len(keys_pos)\n\n if len_keys_pos > (self._load >> 1):\n _maxes[pos] = keys_pos[-1]\n\n if _index:\n child = self._offset + pos\n while child > 0:\n _index[child] -= 1\n child = (child - 1) >> 1\n _index[0] -= 1\n elif len(_keys) > 1:\n if not pos:\n pos += 1\n\n prev = pos - 1\n _keys[prev].extend(_keys[pos])\n _lists[prev].extend(_lists[pos])\n _maxes[prev] = _keys[prev][-1]\n\n del _lists[pos]\n del _keys[pos]\n del _maxes[pos]\n del _index[:]\n\n self._expand(prev)\n elif len_keys_pos:\n _maxes[pos] = keys_pos[-1]\n else:\n del _lists[pos]\n del _keys[pos]\n del _maxes[pos]\n del _index[:]\n\n def irange(self, minimum=None, maximum=None, inclusive=(True, True),\n reverse=False):\n """Create an iterator of values between `minimum` and `maximum`.\n\n Both `minimum` and `maximum` default to `None` which is automatically\n inclusive of the beginning and end of the sorted-key list.\n\n The argument `inclusive` is a pair of booleans that indicates whether\n the minimum and maximum ought to be included in the range,\n respectively. The default is ``(True, True)`` such that the range is\n inclusive of both minimum and maximum.\n\n When `reverse` is `True` the values are yielded from the iterator in\n reverse order; `reverse` defaults to `False`.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([11, 12, 13, 14, 15], key=neg)\n >>> it = skl.irange(14.5, 11.5)\n >>> list(it)\n [14, 13, 12]\n\n :param minimum: minimum value to start iterating\n :param maximum: maximum value to stop iterating\n :param inclusive: pair of booleans\n :param bool reverse: yield values in reverse order\n :return: iterator\n\n """\n min_key = self._key(minimum) if minimum is not None else None\n max_key = self._key(maximum) if maximum is not None else None\n return self._irange_key(\n min_key=min_key, max_key=max_key,\n inclusive=inclusive, reverse=reverse,\n )\n\n def irange_key(self, min_key=None, max_key=None, inclusive=(True, True),\n reverse=False):\n """Create an iterator of values between `min_key` and `max_key`.\n\n Both `min_key` and `max_key` default to `None` which is automatically\n inclusive of the beginning and end of the sorted-key list.\n\n The argument `inclusive` is a pair of booleans that indicates whether\n the minimum and maximum ought to be included in the range,\n respectively. The default is ``(True, True)`` such that the range is\n inclusive of both minimum and maximum.\n\n When `reverse` is `True` the values are yielded from the iterator in\n reverse order; `reverse` defaults to `False`.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([11, 12, 13, 14, 15], key=neg)\n >>> it = skl.irange_key(-14, -12)\n >>> list(it)\n [14, 13, 12]\n\n :param min_key: minimum key to start iterating\n :param max_key: maximum key to stop iterating\n :param inclusive: pair of booleans\n :param bool reverse: yield values in reverse order\n :return: iterator\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return iter(())\n\n _keys = self._keys\n\n # Calculate the minimum (pos, idx) pair. By default this location\n # will be inclusive in our calculation.\n\n if min_key is None:\n min_pos = 0\n min_idx = 0\n else:\n if inclusive[0]:\n min_pos = bisect_left(_maxes, min_key)\n\n if min_pos == len(_maxes):\n return iter(())\n\n min_idx = bisect_left(_keys[min_pos], min_key)\n else:\n min_pos = bisect_right(_maxes, min_key)\n\n if min_pos == len(_maxes):\n return iter(())\n\n min_idx = bisect_right(_keys[min_pos], min_key)\n\n # Calculate the maximum (pos, idx) pair. By default this location\n # will be exclusive in our calculation.\n\n if max_key is None:\n max_pos = len(_maxes) - 1\n max_idx = len(_keys[max_pos])\n else:\n if inclusive[1]:\n max_pos = bisect_right(_maxes, max_key)\n\n if max_pos == len(_maxes):\n max_pos -= 1\n max_idx = len(_keys[max_pos])\n else:\n max_idx = bisect_right(_keys[max_pos], max_key)\n else:\n max_pos = bisect_left(_maxes, max_key)\n\n if max_pos == len(_maxes):\n max_pos -= 1\n max_idx = len(_keys[max_pos])\n else:\n max_idx = bisect_left(_keys[max_pos], max_key)\n\n return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)\n\n _irange_key = irange_key\n\n def bisect_left(self, value):\n """Return an index to insert `value` in the sorted-key list.\n\n If the `value` is already present, the insertion point will be before\n (to the left of) any existing values.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg)\n >>> skl.bisect_left(1)\n 4\n\n :param value: insertion index of value in sorted-key list\n :return: index\n\n """\n return self._bisect_key_left(self._key(value))\n\n def bisect_right(self, value):\n """Return an index to insert `value` in the sorted-key list.\n\n Similar to `bisect_left`, but if `value` is already present, the\n insertion point will be after (to the right of) any existing values.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedList([5, 4, 3, 2, 1], key=neg)\n >>> skl.bisect_right(1)\n 5\n\n :param value: insertion index of value in sorted-key list\n :return: index\n\n """\n return self._bisect_key_right(self._key(value))\n\n bisect = bisect_right\n\n def bisect_key_left(self, key):\n """Return an index to insert `key` in the sorted-key list.\n\n If the `key` is already present, the insertion point will be before (to\n the left of) any existing keys.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg)\n >>> skl.bisect_key_left(-1)\n 4\n\n :param key: insertion index of key in sorted-key list\n :return: index\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n return self._len\n\n idx = bisect_left(self._keys[pos], key)\n\n return self._loc(pos, idx)\n\n _bisect_key_left = bisect_key_left\n\n def bisect_key_right(self, key):\n """Return an index to insert `key` in the sorted-key list.\n\n Similar to `bisect_key_left`, but if `key` is already present, the\n insertion point will be after (to the right of) any existing keys.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedList([5, 4, 3, 2, 1], key=neg)\n >>> skl.bisect_key_right(-1)\n 5\n\n :param key: insertion index of key in sorted-key list\n :return: index\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos = bisect_right(_maxes, key)\n\n if pos == len(_maxes):\n return self._len\n\n idx = bisect_right(self._keys[pos], key)\n\n return self._loc(pos, idx)\n\n bisect_key = bisect_key_right\n _bisect_key_right = bisect_key_right\n\n def count(self, value):\n """Return number of occurrences of `value` in the sorted-key list.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([4, 4, 4, 4, 3, 3, 3, 2, 2, 1], key=neg)\n >>> skl.count(2)\n 2\n\n :param value: value to count in sorted-key list\n :return: count\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n return 0\n\n _lists = self._lists\n _keys = self._keys\n idx = bisect_left(_keys[pos], key)\n total = 0\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n return total\n if _lists[pos][idx] == value:\n total += 1\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n return total\n len_sublist = len(_keys[pos])\n idx = 0\n\n def copy(self):\n """Return a shallow copy of the sorted-key list.\n\n Runtime complexity: `O(n)`\n\n :return: new sorted-key list\n\n """\n return self.__class__(self, key=self._key)\n\n __copy__ = copy\n\n def index(self, value, start=None, stop=None):\n """Return first index of value in sorted-key list.\n\n Raise ValueError if `value` is not present.\n\n Index must be between `start` and `stop` for the `value` to be\n considered present. The default value, None, for `start` and `stop`\n indicate the beginning and end of the sorted-key list.\n\n Negative indices are supported.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg)\n >>> skl.index(2)\n 3\n >>> skl.index(0)\n Traceback (most recent call last):\n ...\n ValueError: 0 is not in list\n\n :param value: value in sorted-key list\n :param int start: start index (default None, start of sorted-key list)\n :param int stop: stop index (default None, end of sorted-key list)\n :return: index of value\n :raises ValueError: if value is not present\n\n """\n _len = self._len\n\n if not _len:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n if start is None:\n start = 0\n if start < 0:\n start += _len\n if start < 0:\n start = 0\n\n if stop is None:\n stop = _len\n if stop < 0:\n stop += _len\n if stop > _len:\n stop = _len\n\n if stop <= start:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n _maxes = self._maxes\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n stop -= 1\n _lists = self._lists\n _keys = self._keys\n idx = bisect_left(_keys[pos], key)\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n if _lists[pos][idx] == value:\n loc = self._loc(pos, idx)\n if start <= loc <= stop:\n return loc\n elif loc > stop:\n break\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n len_sublist = len(_keys[pos])\n idx = 0\n\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n def __add__(self, other):\n """Return new sorted-key list containing all values in both sequences.\n\n ``skl.__add__(other)`` <==> ``skl + other``\n\n Values in `other` do not need to be in sorted-key order.\n\n Runtime complexity: `O(n*log(n))`\n\n >>> from operator import neg\n >>> skl1 = SortedKeyList([5, 4, 3], key=neg)\n >>> skl2 = SortedKeyList([2, 1, 0], key=neg)\n >>> skl1 + skl2\n SortedKeyList([5, 4, 3, 2, 1, 0], key=<built-in function neg>)\n\n :param other: other iterable\n :return: new sorted-key list\n\n """\n values = reduce(iadd, self._lists, [])\n values.extend(other)\n return self.__class__(values, key=self._key)\n\n __radd__ = __add__\n\n def __mul__(self, num):\n """Return new sorted-key list with `num` shallow copies of values.\n\n ``skl.__mul__(num)`` <==> ``skl * num``\n\n Runtime complexity: `O(n*log(n))`\n\n >>> from operator import neg\n >>> skl = SortedKeyList([3, 2, 1], key=neg)\n >>> skl * 2\n SortedKeyList([3, 3, 2, 2, 1, 1], key=<built-in function neg>)\n\n :param int num: count of shallow copies\n :return: new sorted-key list\n\n """\n values = reduce(iadd, self._lists, []) * num\n return self.__class__(values, key=self._key)\n\n def __reduce__(self):\n values = reduce(iadd, self._lists, [])\n return (type(self), (values, self.key))\n\n @recursive_repr()\n def __repr__(self):\n """Return string representation of sorted-key list.\n\n ``skl.__repr__()`` <==> ``repr(skl)``\n\n :return: string representation\n\n """\n type_name = type(self).__name__\n return \'{0}({1!r}, key={2!r})\'.format(type_name, list(self), self._key)\n\n def _check(self):\n """Check invariants of sorted-key list.\n\n Runtime complexity: `O(n)`\n\n """\n try:\n assert self._load >= 4\n assert len(self._maxes) == len(self._lists) == len(self._keys)\n assert self._len == sum(len(sublist) for sublist in self._lists)\n\n # Check all sublists are sorted.\n\n for sublist in self._keys:\n for pos in range(1, len(sublist)):\n assert sublist[pos - 1] <= sublist[pos]\n\n # Check beginning/end of sublists are sorted.\n\n for pos in range(1, len(self._keys)):\n assert self._keys[pos - 1][-1] <= self._keys[pos][0]\n\n # Check _keys matches _key mapped to _lists.\n\n for val_sublist, key_sublist in zip(self._lists, self._keys):\n assert len(val_sublist) == len(key_sublist)\n for val, key in zip(val_sublist, key_sublist):\n assert self._key(val) == key\n\n # Check _maxes index is the last value of each sublist.\n\n for pos in range(len(self._maxes)):\n assert self._maxes[pos] == self._keys[pos][-1]\n\n # Check sublist lengths are less than double load-factor.\n\n double = self._load << 1\n assert all(len(sublist) <= double for sublist in self._lists)\n\n # Check sublist lengths are greater than half load-factor for all\n # but the last sublist.\n\n half = self._load >> 1\n for pos in range(0, len(self._lists) - 1):\n assert len(self._lists[pos]) >= half\n\n if self._index:\n assert self._len == self._index[0]\n assert len(self._index) == self._offset + len(self._lists)\n\n # Check index leaf nodes equal length of sublists.\n\n for pos in range(len(self._lists)):\n leaf = self._index[self._offset + pos]\n assert leaf == len(self._lists[pos])\n\n # Check index branch nodes are the sum of their children.\n\n for pos in range(self._offset):\n child = (pos << 1) + 1\n if child >= len(self._index):\n assert self._index[pos] == 0\n elif child + 1 == len(self._index):\n assert self._index[pos] == self._index[child]\n else:\n child_sum = self._index[child] + self._index[child + 1]\n assert child_sum == self._index[pos]\n except:\n traceback.print_exc(file=sys.stdout)\n print(\'len\', self._len)\n print(\'load\', self._load)\n print(\'offset\', self._offset)\n print(\'len_index\', len(self._index))\n print(\'index\', self._index)\n print(\'len_maxes\', len(self._maxes))\n print(\'maxes\', self._maxes)\n print(\'len_keys\', len(self._keys))\n print(\'keys\', self._keys)\n print(\'len_lists\', len(self._lists))\n print(\'lists\', self._lists)\n raise\n\n\n'),
'lib.string_search': (False, "import functools\nimport typing\n\n\ndef _sa_naive(s: typing.List[int]) -> typing.List[int]:\n sa = list(range(len(s)))\n return sorted(sa, key=lambda i: s[i:])\n\n\ndef _sa_doubling(s: typing.List[int]) -> typing.List[int]:\n n = len(s)\n sa = list(range(n))\n rnk = s.copy()\n tmp = [0] * n\n k = 1\n while k < n:\n def cmp(x: int, y: int) -> int:\n if rnk[x] != rnk[y]:\n return rnk[x] - rnk[y]\n rx = rnk[x + k] if x + k < n else -1\n ry = rnk[y + k] if y + k < n else -1\n return rx - ry\n sa.sort(key=functools.cmp_to_key(cmp))\n tmp[sa[0]] = 0\n for i in range(1, n):\n tmp[sa[i]] = tmp[sa[i - 1]] + (1 if cmp(sa[i - 1], sa[i]) else 0)\n tmp, rnk = rnk, tmp\n k *= 2\n return sa\n\n\ndef _sa_is(s: typing.List[int], upper: int) -> typing.List[int]:\n threshold_naive = 10\n threshold_doubling = 40\n\n n = len(s)\n\n if n == 0:\n return []\n if n == 1:\n return [0]\n if n == 2:\n if s[0] < s[1]:\n return [0, 1]\n else:\n return [1, 0]\n\n if n < threshold_naive:\n return _sa_naive(s)\n if n < threshold_doubling:\n return _sa_doubling(s)\n\n sa = [0] * n\n ls = [False] * n\n for i in range(n - 2, -1, -1):\n if s[i] == s[i + 1]:\n ls[i] = ls[i + 1]\n else:\n ls[i] = s[i] < s[i + 1]\n\n sum_l = [0] * (upper + 1)\n sum_s = [0] * (upper + 1)\n for i in range(n):\n if not ls[i]:\n sum_s[s[i]] += 1\n else:\n sum_l[s[i] + 1] += 1\n for i in range(upper + 1):\n sum_s[i] += sum_l[i]\n if i < upper:\n sum_l[i + 1] += sum_s[i]\n\n def induce(lms: typing.List[int]) -> None:\n nonlocal sa\n sa = [-1] * n\n\n buf = sum_s.copy()\n for d in lms:\n if d == n:\n continue\n sa[buf[s[d]]] = d\n buf[s[d]] += 1\n\n buf = sum_l.copy()\n sa[buf[s[n - 1]]] = n - 1\n buf[s[n - 1]] += 1\n for i in range(n):\n v = sa[i]\n if v >= 1 and not ls[v - 1]:\n sa[buf[s[v - 1]]] = v - 1\n buf[s[v - 1]] += 1\n\n buf = sum_l.copy()\n for i in range(n - 1, -1, -1):\n v = sa[i]\n if v >= 1 and ls[v - 1]:\n buf[s[v - 1] + 1] -= 1\n sa[buf[s[v - 1] + 1]] = v - 1\n\n lms_map = [-1] * (n + 1)\n m = 0\n for i in range(1, n):\n if not ls[i - 1] and ls[i]:\n lms_map[i] = m\n m += 1\n lms = []\n for i in range(1, n):\n if not ls[i - 1] and ls[i]:\n lms.append(i)\n\n induce(lms)\n\n if m:\n sorted_lms = []\n for v in sa:\n if lms_map[v] != -1:\n sorted_lms.append(v)\n rec_s = [0] * m\n rec_upper = 0\n rec_s[lms_map[sorted_lms[0]]] = 0\n for i in range(1, m):\n left = sorted_lms[i - 1]\n right = sorted_lms[i]\n if lms_map[left] + 1 < m:\n end_l = lms[lms_map[left] + 1]\n else:\n end_l = n\n if lms_map[right] + 1 < m:\n end_r = lms[lms_map[right] + 1]\n else:\n end_r = n\n\n same = True\n if end_l - left != end_r - right:\n same = False\n else:\n while left < end_l:\n if s[left] != s[right]:\n break\n left += 1\n right += 1\n if left == n or s[left] != s[right]:\n same = False\n\n if not same:\n rec_upper += 1\n rec_s[lms_map[sorted_lms[i]]] = rec_upper\n\n rec_sa = _sa_is(rec_s, rec_upper)\n\n for i in range(m):\n sorted_lms[i] = lms[rec_sa[i]]\n induce(sorted_lms)\n\n return sa\n\n\ndef suffix_array(s: typing.Union[str, typing.List[int]],\n upper: typing.Optional[int] = None) -> typing.List[int]:\n '''\n SA-IS, linear-time suffix array construction\n Reference:\n G. Nong, S. Zhang, and W. H. Chan,\n Two Efficient Algorithms for Linear Time Suffix Array Construction\n '''\n\n if isinstance(s, str):\n return _sa_is([ord(c) for c in s], 255)\n elif upper is None:\n n = len(s)\n idx = list(range(n))\n\n def cmp(left: int, right: int) -> int:\n return typing.cast(int, s[left]) - typing.cast(int, s[right])\n\n idx.sort(key=functools.cmp_to_key(cmp))\n s2 = [0] * n\n now = 0\n for i in range(n):\n if i and s[idx[i - 1]] != s[idx[i]]:\n now += 1\n s2[idx[i]] = now\n return _sa_is(s2, now)\n else:\n assert 0 <= upper\n for d in s:\n assert 0 <= d <= upper\n\n return _sa_is(s, upper)\n\n\ndef lcp_array(s: typing.Union[str, typing.List[int]],\n sa: typing.List[int]) -> typing.List[int]:\n '''\n Longest-Common-Prefix computation\n Reference:\n T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,\n Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its\n Applications\n '''\n\n if isinstance(s, str):\n s = [ord(c) for c in s]\n\n n = len(s)\n assert n >= 1\n\n rnk = [0] * n\n for i in range(n):\n rnk[sa[i]] = i\n\n lcp = [0] * (n - 1)\n h = 0\n for i in range(n):\n if h > 0:\n h -= 1\n if rnk[i] == 0:\n continue\n j = sa[rnk[i] - 1]\n while j + h < n and i + h < n:\n if s[j + h] != s[i + h]:\n break\n h += 1\n lcp[rnk[i] - 1] = h\n\n return lcp\n\n\ndef z_algorithm(s: typing.Union[str, typing.List[int]]) -> typing.List[int]:\n '''\n Z algorithm\n Reference:\n D. Gusfield,\n Algorithms on Strings, Trees, and Sequences: Computer Science and\n Computational Biology\n '''\n\n if isinstance(s, str):\n s = [ord(c) for c in s]\n\n n = len(s)\n if n == 0:\n return []\n\n z = [0] * n\n j = 0\n for i in range(1, n):\n z[i] = 0 if j + z[j] <= i else min(j + z[j] - i, z[i - j])\n while i + z[i] < n and s[z[i]] == s[i + z[i]]:\n z[i] += 1\n if j + z[j] < i + z[i]:\n j = i\n z[0] = n\n\n return z"),
'lib.transform': (False, 'from cmath import rect, pi\nfrom lib.misc import reverse_bits32\nfrom lib.number_theory import totient_factors, primitive_root, modinv, modpow\nfrom typing import List, TypeVar, Callable\n\nM = TypeVar(\'M\')\n\n\ndef fft(a: List[float], inverse=False):\n one = complex(1.0)\n n = (len(a) - 1).bit_length()\n m = 2 ** n\n a += [complex(0.0)] * (m - len(a))\n pows = [rect(1.0, (-pi if inverse else pi) / (2 ** (n - 1)))]\n for _ in range(n - 1):\n pows.append(pows[-1] ** 2)\n pows.reverse()\n\n shift = 32 - n\n for i in range(m):\n j = reverse_bits32(i) >> shift\n if i < j:\n a[i], a[j] = a[j], a[i]\n\n for i in range(m):\n b = 1\n for w1 in pows:\n if not i & b:\n break\n i ^= b\n w = one\n while not i & b:\n s = a[i]\n t = a[i | b] * w\n a[i] = s + t\n a[i | b] = s - t\n w *= w1\n i += 1\n i ^= b\n b <<= 1\n if inverse:\n c = 1 / m\n for i in range(m):\n a[i] *= c\n return a\n\n\ndef ntt(a: List[int], mod: int, inverse: bool = False):\n if type(a[0]) is not int:\n for i, v in enumerate(a):\n a[i] = int(v)\n n = (len(a) - 1).bit_length()\n d2 = 0\n r = 1\n phi_factors = tuple(totient_factors(mod))\n for p in phi_factors:\n if p == 2:\n d2 += 1\n else:\n r *= p\n if d2 < n:\n raise ValueError(f\'Given array is too long: modulo {mod} only support array length up to {2 ** d2}\')\n\n pr = primitive_root(mod, phi_factors)\n if inverse:\n pr = modinv(pr, mod)\n pows = [modpow(pr, r * 2 ** (d2 - n), mod)]\n for _ in range(n - 1):\n pows.append(pows[-1] ** 2 % mod)\n pows = tuple(reversed(pows))\n\n m = 2 ** n\n a.extend(0 for _ in range(m - len(a)))\n\n shift = 32 - n\n for i in range(m):\n j = reverse_bits32(i) >> shift\n if i < j:\n a[i], a[j] = a[j], a[i]\n\n for i in range(m):\n b = 1\n for w1 in pows:\n if not i & b:\n break\n i ^= b\n w = 1\n while not i & b:\n j = i | b\n s = a[i]\n t = a[j] * w\n a[i] = (s + t) % mod\n a[j] = (s - t) % mod\n w = (w * w1) % mod\n i += 1\n i ^= b\n b <<= 1\n\n if inverse:\n c = modinv(m, mod)\n for i, v in enumerate(a):\n a[i] = (v * c) % mod\n return a\n\n\ndef zeta(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``M`` ?????\n\n ``ouput[i] = sum(data[j] : i|j == i)``\n\n ???: ``O(N * log N)``\n\n ?:\n\n ``zeta(data, add)``: ???????????\n\n ``zeta(data, sub)``: ?????????????????\n\n ??->??->???: ``output[k] = sum(a[i]*b[j] : i|j == k)``\n """\n n = len(data)\n i = 1\n while i < n:\n for j in range(n):\n if j & i != 0:\n data[j] = operator(data[j], data[j ^ i])\n i <<= 1\n return data\n\n\ndef zeta_divisors(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``M`` ?????\n\n ``ouput[i] = sum(data[j] for j in range(N) if j?i???)``\n\n ???: ``O(N * log log N)``\n\n ?:\n\n ``zeta_divisors(data, add)``: ?????????\n\n ``mobius_divisors(data, sub)``: ???????????????\n\n ??->??->???: ``output[k] = sum(a[i]*b[j] : lcm(i,j) == k)``\n """\n n = len(data)\n sieve = [0] * len(data)\n for p in range(2, n):\n if not sieve[p]:\n for a, b in zip(range(1, n), range(p, n, p)):\n sieve[b] = 1\n data[b] = operator(data[b], data[a])\n return data\n\n\ndef mobius_divisors(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``zeta_divisors`` ????\n """\n n = len(data)\n sieve = [0] * len(data)\n for p in range(2, n):\n if not sieve[p]:\n t = (n - 1) // p\n for a, b in zip(range(t, 0, -1), range(t * p, 0, -p)):\n sieve[b] = 1\n data[b] = operator(data[b], data[a])\n return data\n\n\ndef zeta_multiples(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``M`` ?????\n\n ``ouput[i] = sum(data[j] for j in range(N) if j?i???)``\n\n ???: ``O(N * log log N)``\n\n ?:\n\n ``zeta_multiple(data, add)``: ?????????\n\n ``mobius_multiples(data, sub)``: ???????????????\n\n ??->??->???: ``output[k] = sum(a[i]*b[j] : gcd(i,j) == k)``\n """\n n = len(data)\n sieve = [0] * len(data)\n for p in range(2, n):\n if not sieve[p]:\n t = (n - 1) // p\n for a, b in zip(range(t, 0, -1), range(t * p, 0, -p)):\n sieve[b] = 1\n data[a] = operator(data[a], data[b])\n return data\n\n\ndef mobius_multiples(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``zeta_multiples`` ????\n """\n n = len(data)\n sieve = [0] * len(data)\n for p in range(2, n):\n if not sieve[p]:\n for a, b in zip(range(1, n), range(p, n, p)):\n sieve[b] = 1\n data[a] = operator(data[a], data[b])\n return data\n'),
'lib.tree': (False, 'from lib.graph import BaseGraph, Graph\nfrom typing import *\nimport itertools\nimport random\nfrom lib.array2d import Array2d\n\n\nT = TypeVar(\'T\')\n\n\nclass BaseRootedTree(BaseGraph):\n\n def __init__(self, n_vertices, root_vertex=0):\n super().__init__(n_vertices)\n self.root = root_vertex\n\n def parent(self, v: int) -> int:\n raise NotImplementedError\n\n def children(self, v: int) -> Iterable[int]:\n raise NotImplementedError\n\n def adj(self, v) -> Iterable[int]:\n if self.root == v:\n return self.children(v)\n return itertools.chain(self.children(v), (self.parent(v),))\n\n def post_order(self) -> Iterable[int]:\n """\n bottom vertices first\n """\n return (~v for v in self.prepost_order() if v < 0)\n\n def pre_order(self) -> Iterable[int]:\n """\n top vertices first\n """\n stack = [self.root]\n while stack:\n v = stack.pop()\n yield v\n for u in self.children(v):\n stack.append(u)\n\n def prepost_order(self) -> Iterable[int]:\n """\n if v >= 0: it\'s pre-order entry.\n\n otherwise: it\'s post-order entry.\n """\n stack = [~self.root, self.root]\n while stack:\n v = stack.pop()\n yield v\n if v >= 0:\n for u in self.children(v):\n stack.append(~u)\n stack.append(u)\n\n def prepost_indices(self, order=None) -> Tuple[List[int], List[int]]:\n if order is None:\n order = self.prepost_order()\n pre_ind = [0] * self.n_vertices\n post_ind = [0] * self.n_vertices\n for i, t in enumerate(order):\n if t >= 0:\n pre_ind[t] = i\n else:\n post_ind[~t] = i\n return pre_ind, post_ind\n\n def depth(self) -> List[int]:\n depth = [0] * self.n_vertices\n for v in self.pre_order():\n d = depth[v]\n for c in self.children(v):\n depth[c] = d + 1\n return depth\n\n def sort_edge_values(self, wedges: Iterable[Tuple[int, int, T]], default: Optional[T] = None) -> List[T]:\n memo = [default] * self.n_vertices\n for u, v, d in wedges:\n if self.parent(u) == v:\n memo[u] = d\n else:\n memo[v] = d\n return memo\n\n def height(self, depth_list: Optional[List[int]] = None) -> int:\n if depth_list is None:\n depth_list = self.depth()\n return max(depth_list) + 1\n\n def path_to_ancestor(self, v: int, k: int) -> List[int]:\n """\n ??v??k???????????.\n\n :param v: ??\n :param k: ??????????\n :return: ??\n """\n res = [-1] * (k + 1)\n for i in range(k + 1):\n res[i] = v\n v = self.parent(v)\n if v < 0:\n break\n return res\n\n def path(self, s: int, t: int, depth_list: Optional[List[int]] = None) -> List[int]:\n """\n ??s????t?????????\n\n :param s: ??\n :param t: ??\n :param depth_list: ?????????\u3000(optional)\n :return: ??\n """\n if s == t:\n return [s]\n if depth_list:\n d1 = depth_list[s]\n d2 = depth_list[t]\n else:\n d1 = 0\n v = s\n while v >= 0:\n v = self.parent(v)\n d1 += 1\n d2 = 0\n v = t\n while v >= 0:\n v = self.parent(v)\n d2 += 1\n p1 = [s]\n p2 = [t]\n if d1 > d2:\n for _ in range(d1 - d2):\n p1.append(self.parent(p1[-1]))\n else:\n for _ in range(d2 - d1):\n p2.append(self.parent(p2[-1]))\n while p1[-1] != p2[-1]:\n p1.append(self.parent(p1[-1]))\n p2.append(self.parent(p2[-1]))\n p2.pop()\n p1.extend(reversed(p2))\n return p1\n\n def aggregate_root_path(self, aggregate: Callable[[T, int], T], identity: T,\n pre_order: Optional[Iterable[int]] = None) -> List[T]:\n """\n ????????????dp??????.\n\n :param aggregate: (T, V) -> T\n :param identity: ???\n :param pre_order: pre_order????\n :return ?????????????dp?\n """\n if pre_order is None:\n pre_order = self.pre_order()\n\n dp = [identity] * self.n_vertices\n for v in pre_order:\n p = self.parent(v)\n if p >= 0:\n dp[v] = aggregate(dp[p], v)\n return dp\n\n def aggregate_subtree(self, merge: Callable[[int, Callable[[None], Iterator[T]]], T],\n post_order: Optional[Iterable[int]] = None) -> List[T]:\n """\n ???????????????dp??????.\n\n :param merge: (vertex, Iterable(T)) -> T, (T, merge)?????\n :param post_order: post_order????\n :return ???????????????????dp?\n """\n if post_order is None:\n post_order = self.post_order()\n\n dp = [None] * self.n_vertices\n for v in post_order:\n dp[v] = merge(v, lambda: (dp[u] for u in self.children(v)))\n return dp\n\n def solve_rerooting(self, merge: Callable[[T, T, int], T], identity: T, finalize: Callable[[T, int, int], T],\n pre_order: Optional[Iterable[int]] = None) -> List[T]:\n """\n ????dp????\n\n dp[u,v] = finalize(merge(dp[v,k] for k in adj[v] if k != u, v), u, v)\n\n (v?????u?????????????????)\n\n :param merge: (T, T, V) -> T, (T, merge)?????\n :param identity: ???\n :param finalize: (T, V, V) -> T\n :param pre_order: pre_order????\n :return ???????????????dp?\n """\n\n if pre_order is None:\n pre_order = list(self.pre_order())\n dp1 = [identity] * self.n_vertices\n dp2 = [identity] * self.n_vertices\n\n for v in reversed(pre_order):\n t = identity\n for u in self.children(v):\n dp2[u] = t\n t = merge(t, finalize(dp1[u], v, u), v)\n t = identity\n for u in reversed(list(self.children(v))):\n dp2[u] = merge(t, dp2[u], v)\n t = merge(t, finalize(dp1[u], v, u), v)\n dp1[v] = t\n for v in pre_order:\n if v == self.root:\n continue\n p = self.parent(v)\n dp2[v] = finalize(merge(dp2[v], dp2[p], v), v, p)\n dp1[v] = merge(dp1[v], dp2[v], v)\n return dp1\n\n def subtree_sizes(self, post_order: Optional[Iterable[int]] = None):\n def merge(v, values):\n return sum(values)+1\n return self.aggregate_subtree(merge, post_order)\n\n def get_doubling_strategy(self):\n return DoublingStrategy(self)\n\n\nclass DoublingStrategy:\n def __init__(self, tree: BaseRootedTree, depth=None, pre_order=None):\n if pre_order is None:\n pre_order = tree.pre_order()\n if depth is None:\n depth = tree.depth()\n self.depth = depth\n self.tree = tree\n d = (max(depth) + 1).bit_length()\n dbl = Array2d.full(tree.n_vertices, d, -1)\n for v in pre_order:\n u = tree.parent(v)\n dbl[v, 0] = u\n for i in range(d - 1):\n u = dbl[u, i]\n if u < 0:\n break\n dbl[v, i + 1] = u\n self.dbl = dbl\n\n def ancestor_of(self, v: int, k: int) -> int:\n if k > self.depth[v]:\n return -1\n i = 0\n while k:\n if k & 1:\n v = self.dbl[v, i]\n k //= 2\n i += 1\n return v\n\n def lca(self, u: int, v: int) -> int:\n lu, lv = self.depth[u], self.depth[v]\n if lu > lv:\n u = self.ancestor_of(u, lu - lv)\n else:\n v = self.ancestor_of(v, lv - lu)\n if u == v:\n return u\n\n i = self.dbl.m - 1\n while True:\n while i >= 0 and self.dbl[u, i] == self.dbl[v, i]:\n i -= 1\n if i < 0:\n return self.dbl[u, 0]\n u, v = self.dbl[u, i], self.dbl[v, i]\n\n def dist(self, u: int, v: int) -> int:\n return self.depth[u] + self.depth[v] - 2 * self.depth[self.lca(u, v)]\n\n\nclass RootedTree(BaseRootedTree):\n\n def __init__(self, parent: List[int], children: Graph, root_vertex: int):\n super().__init__(len(parent), root_vertex)\n self._parent = parent\n self._children = children\n\n @classmethod\n def from_edges(cls, edges, root_vertex=0):\n n = len(edges) + 1\n g = Graph.from_undirected_edges(n, edges)\n parent = [0] * n\n parent[root_vertex] = -1\n stack = [root_vertex]\n while stack:\n v = stack.pop()\n p = parent[v]\n for u in g.adj(v):\n if u != p:\n parent[u] = v\n stack.append(u)\n return cls.from_parent(parent, root_vertex)\n\n @classmethod\n def from_parent(cls, parent, root_vertex=0):\n return cls(parent,\n Graph.from_directed_edges(len(parent), ((p, v) for v, p in enumerate(parent) if p >= 0)),\n root_vertex)\n\n @classmethod\n def random(cls, n_vertices, root_vertex=0):\n parent = [-1] * n_vertices\n vertices = list(range(root_vertex)) + list(range(root_vertex + 1, n_vertices))\n random.shuffle(vertices)\n vertices.append(root_vertex)\n for i, v in zip(reversed(range(n_vertices)), vertices[-2::-1]):\n parent[v] = vertices[random.randrange(i, n_vertices)]\n return cls.from_parent(parent, root_vertex)\n\n def parent(self, v):\n return self._parent[v]\n\n def children(self, v):\n return self._children.adj(v)\n\n\nclass BinaryTrie:\n class Node:\n def __init__(self):\n self.zero = None\n self.one = None\n self.cnt = 0\n\n def __init__(self, bits):\n self.root = self.Node()\n self.bits = bits\n\n def add(self, v):\n n = self.root\n n.cnt += 1\n for d in reversed(range(self.bits)):\n if (v >> d) & 1:\n if not n.one:\n n.one = BinaryTrie.Node()\n n = n.one\n else:\n if not n.zero:\n n.zero = BinaryTrie.Node()\n n = n.zero\n n.cnt += 1\n return n\n\n def remove(self, v):\n n = self.root\n n.cnt -= 1\n for d in reversed(range(self.bits)):\n if (v >> d) & 1:\n n = n.one\n else:\n n = n.zero\n n.cnt -= 1\n return n\n\n def find_argminxor(self, v):\n n = self.root\n r = 0\n for d in reversed(range(self.bits)):\n if (v >> d) & 1:\n if n.one and n.one.cnt > 0:\n n = n.one\n r |= 1 << d\n else:\n n = n.zero\n else:\n if n.zero and n.zero.cnt > 0:\n n = n.zero\n else:\n n = n.one\n r |= 1 << d\n return r\n\n def find_nth(self):\n raise NotImplementedError\n\n def __contains__(self, v):\n n = self.root\n for d in reversed(range(self.bits)):\n if (v >> d) & 1:\n n = n.one\n else:\n n = n.zero\n if not n or n.cnt == 0:\n return False\n return True\n\n\nclass Trie(BaseRootedTree):\n\n def __init__(self, n_alphabets: int):\n super().__init__(1)\n self.n_alphabets = n_alphabets\n self._parent = [-1]\n self.end = [0]\n self._children = [[-1]*n_alphabets]\n\n def add(self, s):\n v = 0\n for c in s:\n u = self._children[v][c]\n if u < 0:\n self._parent.append(v)\n self.end.append(0)\n self._children[v][c] = self.n_vertices\n self._children.append([-1]*self.n_alphabets)\n self.n_vertices += 1\n v = self._children[v][c]\n self.end[v] = 1\n return v\n\n def parent(self, v: int) -> int:\n return self._parent[v]\n\n def children(self, v):\n return (self._children[v][c] for c in range(self.n_alphabets) if self._children[v][c] >= 0)'),
'lib._modint': (False, 'from lib.number_theory import modinv, modpow\n\nintadd = int.__add__\nintsub = int.__sub__\nintmul = int.__mul__\n\n\nclass ModInt(int):\n mod = MOD\n\n @classmethod\n def v(cls, v):\n return ModInt(v % MOD)\n\n def __neg__(self):\n return ModInt(intsub(MOD, self) if self != 0 else 0)\n\n def __add__(self, other):\n x = intadd(self, other)\n return ModInt(x if x < MOD else x - MOD)\n\n def __sub__(self, other):\n x = intsub(self, other)\n return ModInt(x if x >= 0 else x + MOD)\n\n def __rsub__(self, other):\n x = intsub(other, self)\n return ModInt(x if x >= 0 else x + MOD)\n\n def __mul__(self, other):\n return ModInt(intmul(self, other) % MOD)\n\n def __truediv__(self, other):\n return self * ModInt(other).inv\n\n def __rtruediv__(self, other):\n return self.inv * other\n\n __radd__ = __add__\n __rmul__ = __mul__\n __floordiv__ = __truediv__\n __rfloordiv__ = __rtruediv__\n\n def __pow__(self, other, **kwargs):\n return ModInt(modpow(int(self), int(other), MOD))\n\n @property\n def inv(self):\n return ModInt(modinv(int(self), MOD))\n\n @classmethod\n def sum(cls, iterable):\n r = 0\n for v in iterable:\n r += int(v)\n return ModInt(r)\n\n @classmethod\n def product(cls, iterable):\n r = ModInt(1)\n for v in iterable:\n r *= v\n return r\n'),
'lib': (True, ''),
}
_sys.meta_path.insert(2, InlineImporter)
# Entrypoint
from collections import defaultdict
from lib.data_structure import SegmentTree, BinaryIndexedTree
from lib.misc import min2
q = int(input())
queries = [tuple(map(int,input().split())) for _ in range(q)]
i2v = sorted(set(tokens[1] for tokens in queries if tokens[0] < 3))
v2i = {v:i for i,v in enumerate(i2v)}
bit = BinaryIndexedTree(len(i2v))
memo = defaultdict(int)
seg = SegmentTree.all_identity(min2, 2**30, len(i2v))
dup_cnt = 0
for tokens in queries:
if tokens[0] == 1:
x = tokens[1]
if memo[x] == 0:
i = v2i[x]
s = bit[:i]
l = bit.bisect_left(s)
if 0<=l:
seg[l] = i2v[l]^x
r = bit.bisect_right(s)
if r < len(i2v):
seg[i] = i2v[r]^x
bit[i] += 1
else:
dup_cnt += 1
memo[x] += 1
elif tokens[0] == 2:
x = tokens[1]
if memo[x] == 1:
i = v2i[x]
bit[i] -= 1
seg[i] = 2**30
s = bit[:i]
l = bit.bisect_left(s) if s > 0 else -1
r = bit.bisect_right(s)
if 0<=l:
if r < len(i2v):
seg[l] = i2v[l]^i2v[r]
else:
seg[l] = 2**30
elif memo[x] == 2:
dup_cnt -= 1
memo[x] -= 1
else:
print(seg[:] if dup_cnt == 0 else 0)
# InlineImporter
import os as _os
import sys as _sys
from functools import lru_cache as _lru_cache
from importlib.abc import ExecutionLoader, MetaPathFinder
from importlib.machinery import ModuleSpec
class InlineImporter(ExecutionLoader, MetaPathFinder):
version = None
inlined_modules = {}
namespace_packages = False
@classmethod
def find_spec(cls, fullname, path=None, target=None):
"""Find a spec for a given module.
Because we only deal with our inlined module, we don't have to care about path or target.
The import machinery also takes care of fully resolving all names, so we just have to deal with the fullnames.
"""
if fullname in cls.inlined_modules:
# We have inlined this module, so return the spec
ms = ModuleSpec(fullname, cls, origin=cls.get_filename(fullname), is_package=cls.is_package(fullname))
ms.has_location = True
if cls.namespace_packages and ms.submodule_search_locations is not None:
for p in _sys.path:
ms.submodule_search_locations.append(_os.path.join(p, _os.path.dirname(ms.origin)))
return ms
return None
@staticmethod
def _call_with_frames_removed(f, *args, **kwds):
"""remove_importlib_frames in import.c will always remove sequences
of importlib frames that end with a call to this function
Use it instead of a normal call in places where including the importlib
frames introduces unwanted noise into the traceback (e.g. when executing
module code)
"""
return f(*args, **kwds)
@classmethod
def create_module(cls, spec):
"""Create a module using the default machinery."""
return None
@classmethod
def exec_module(cls, module):
"""Execute the module."""
code = cls.get_code(module.__name__)
if code is None:
raise ImportError("cannot load module {!r} when get_code() returns None".format(module.__name__))
cls._call_with_frames_removed(exec, code, module.__dict__)
@classmethod
@_lru_cache(maxsize=None)
def get_filename(cls, fullname):
"""Returns the
Raises ImportError if the module cannot be found.
"""
if fullname not in cls.inlined_modules:
raise ImportError
mod = cls.inlined_modules[fullname]
origin = fullname
if mod[0]:
origin = ".".join([origin, "__init__"])
origin = ".".join([origin.replace(".", "/"), "py"])
return origin
@classmethod
@_lru_cache(maxsize=None)
def is_package(cls, fullname):
if fullname not in cls.inlined_modules:
raise ImportError
return cls.inlined_modules[fullname][0]
@classmethod
def get_source(cls, fullname):
if fullname not in cls.inlined_modules:
raise ImportError
return cls.inlined_modules[fullname][1]
@classmethod
def get_code(cls, fullname):
"""Method to return the code object for fullname.
Should return None if not applicable (e.g. built-in module).
Raise ImportError if the module cannot be found.
"""
source = cls.get_source(fullname)
if source is None:
return None
try:
path = cls.get_filename(fullname)
except ImportError:
return cls.source_to_code(source)
else:
return cls.source_to_code(source, path)
InlineImporter.version = '0.0.4'
InlineImporter.inlined_modules = {
'lib.array2d': (False, "class Array2dView:\n def __init__(self, arr, i_indices, j_indices):\n self.arr = arr\n self.i_indices = i_indices\n self.j_indices = j_indices\n self.n = len(i_indices)\n self.m = len(j_indices)\n \n def _get_view(self, i, j):\n i = self.i_indices[i]\n j = self.j_indices[j]\n return Array2dView(self.arr, i, j)\n\n def get_ind(self, i, j):\n return self.i_indices[i]+self.j_indices[j]\n \n def __getitem__(self, index):\n i, j = index\n try:\n return self.arr[self.get_ind(i,j)]\n except TypeError:\n return self._get_view(i, j)\n \n def __setitem__(self, index, value):\n i, j = index\n try:\n self.arr[self.get_ind(i,j)] = value\n except TypeError:\n x = self._get_view(i, j)\n for i in x.i_indices:\n for j in x.j_indices:\n self.arr[i+j] = value\n \n def __iter__(self):\n for i in self.i_indices:\n for j in self.j_indices:\n yield self.arr[i+j]\n \n def __reversed__(self):\n for i in reversed(self.i_indices):\n for j in reversed(self.j_indices):\n yield self.arr[i+j]\n \n def __str__(self):\n m = max(len(str(v)) for v in self)\n res = ['']*len(self.i_indices)\n row = ['']*(len(self.j_indices)+2)\n for ri,i in enumerate(self.i_indices):\n if ri == 0:\n row[0] = '['\n else:\n row[0] = ' '\n if ri == len(self.i_indices)-1:\n row[-1] = ']\\n'\n for rj,j in enumerate(self.j_indices):\n row[rj+1] = f'{str(self.arr[i+j]):>{m+1}}'\n res[ri] = ''.join(row)\n return '\\n'.join(res)\n \n def copy(self):\n return Array2d(len(self.i_indices), len(self.j_indices), list(self))\n\n\nclass Array2d:\n def __init__(self, n, m, arr):\n self.n = n\n self.m = m\n self.arr = arr\n \n @classmethod\n def full(cls, n, m, fill_value):\n return cls(n, m, [fill_value]*(n*m))\n \n @classmethod\n def from_list(cls, lst):\n n,m = len(lst), len(lst[0])\n arr = [lst[0]]*(n*m)\n k = 0\n for row in lst:\n for v in row:\n arr[k] = v\n k += 1\n return cls(n, m, arr)\n \n def _get_view(self, i, j):\n i = tuple(range(0, self.n*self.m, self.m))[i]\n j = tuple(range(self.m))[j]\n return Array2dView(self.arr, i, j)\n\n def get_ind(self, i, j):\n return i*self.m+j\n\n def __getitem__(self, index):\n try:\n return self.arr[self.get_ind(*index)]\n except TypeError:\n return self._get_view(*index)\n \n def __setitem__(self, index, value):\n try:\n self.arr[self.get_ind(*index)] = value\n except TypeError:\n x = self._get_view(*index)\n for i in x.i_indices:\n for j in x.j_indices:\n self.arr[i+j] = value\n \n def __iter__(self):\n return iter(self.arr)\n \n def __reversed__(self):\n return reversed(self.arr)\n \n def __str__(self):\n m = max(len(str(v)) for v in self)\n res = ['']*self.n\n row = ['']*(self.m+2)\n for i in range(self.n):\n if i == 0:\n row[0] = '['\n else:\n row[0] = ' '\n if i == self.n-1:\n row[-1] = ']\\n'\n for j in range(self.m):\n row[j+1] = f'{str(self.arr[i*self.m+j]):>{m+1}}'\n res[i] = ''.join(row)\n return '\\n'.join(res)\n\n __repr__ = __str__\n\n def __eq__(self, other):\n return self.arr == other.arr\n\n def copy(self):\n return self.__class__(self.n, self.m, self.arr[:])\n\n @property\n def t(self):\n arr = [self.arr[0]]*(len(self.arr))\n x = 0\n for i in range(self.n):\n for j in range(self.m):\n arr[j*self.n + i] = self.arr[x]\n x += 1\n return self.__class__(self.m, self.n, arr)\n"),
'lib.array3d': (False, 'class Array3d(list):\n def __init__(self, n, m, p, arr):\n list.__init__(self, arr)\n self.n = n\n self.m = m\n self.p = p\n self.mp = m*p\n\n @classmethod\n def full(cls, n, m, p, fill_value):\n return cls(n, m, p, [fill_value] * (n * m * p))\n\n def get_ind(self, i, j, k):\n return i * self.mp + j * self.p + k\n\n def __getitem__(self, index):\n return list.__getitem__(self, self.get_ind(*index))\n\n def __setitem__(self, index, value):\n list.__setitem__(self, self.get_ind(*index), value)\n'),
'lib.benchmark': (False, '\nfrom time import perf_counter as timer\ndef simple_timeit(func, repeat=1000, warmup=100):\n for i in range(warmup):\n func(i)\n start = timer()\n for i in range(repeat):\n func(i)\n stop = timer()\n return stop-start\n'),
'lib.data_structure': (False, 'from typing import List, Any, TypeVar, Iterator\nfrom collections.abc import MutableSet\n\nclass DisjointSet:\n def __init__(self, parent):\n self.parent = parent\n\n @classmethod\n def empty(cls, size):\n return cls([-1]*size)\n\n def find(self, x):\n stack = []\n while self.parent[x] >= 0:\n stack.append(x)\n x = self.parent[x]\n for y in stack:\n self.parent[y] = x\n return x\n\n def union_reps(self, xr, yr):\n if xr == yr:\n return xr\n if self.parent[xr] > self.parent[yr]:\n xr, yr = yr, xr\n self.parent[xr] += self.parent[yr]\n self.parent[yr] = xr\n return xr\n\n def union(self, x, y):\n return self.union_reps(self.find(x), self.find(y))\n\n def group_size(self, x):\n return -self.parent[self.find(x)]\n\n def is_rep(self, x):\n return self.parent[x] < 0\n\n def copy(self):\n return DisjointSet(self.parent)\n\n\nclass SegmentTree:\n """\n ???????????????????????????????????\n ???????????????????????????(???????????)\n """\n\n @classmethod\n def all_identity(cls, operator, identity, size):\n return cls(operator, identity, [identity] * (2 << (size - 1).bit_length()))\n\n @classmethod\n def from_initial_data(cls, operator, identity, data):\n size = 1 << (len(data) - 1).bit_length()\n temp = [identity] * (2 * size)\n temp[size:size + len(data)] = data\n data = temp\n\n for i in reversed(range(size)):\n data[i] = operator(data[2 * i], data[2 * i + 1])\n return cls(operator, identity, data)\n\n # ??????????????????????\n def __init__(self, operator, identity, data):\n self.op = operator\n self.id = identity\n self.data = data\n self.size = len(data) // 2\n\n def reduce(self, l, r):\n l += self.size\n r += self.size\n vl = self.id\n vr = self.id\n\n while l < r:\n if l & 1:\n vl = self.op(vl, self.data[l])\n l += 1\n if r & 1:\n r -= 1\n vr = self.op(self.data[r], vr)\n l >>= 1\n r >>= 1\n return self.op(vl, vr)\n\n def elements(self, l, r):\n l += self.size\n r += self.size\n\n lefts = []\n rights = []\n\n while l < r:\n if l & 1:\n lefts.append(self.data[l])\n l += 1\n if r & 1:\n r -= 1\n rights.append(self.data[r])\n l >>= 1\n r >>= 1\n return lefts, rights\n\n def __getitem__(self, i):\n if isinstance(i, slice):\n return self.reduce(\n 0 if i.start is None else i.start,\n self.size if i.stop is None else i.stop)\n elif isinstance(i, int):\n return self.data[i + self.size]\n\n def __setitem__(self, i, v):\n i += self.size\n while i:\n self.data[i] = v\n v = self.op(self.data[i ^ 1], v) if i & 1 else self.op(v, self.data[i ^ 1])\n i >>= 1\n\n def __iter__(self):\n return iter(self.data[self.size:])\n\n\nclass LazySegmentTree:\n """\n op: ????????reduce?????????\n apply: ??????\n comp: ??????\n \n range_query: reduce(op, (apply(x,m) for x,m in zip(X,M)))\n \n ???????:\n \n ??X (??)\n op[+]: X,X -> X\n (X, op)?????\n \n ??M (???)\n comp[*]: M,M -> M\n (M, compose)?????\n \n apply[f(x,m,n)]: X,M,Z+ -> X\n (Z+????)\n \n f(x,e_M,n) = x\n f(x,m*n,p) = f(f(x,m,p),n,p)\n f(x,m,p)+f(y,m,q) = f(x+y,m,p+q)\n \n ??: https://algo-logic.info/segment-tree/#toc_id_3\n """\n\n @classmethod\n def all_identity(cls, op, op_e, comp, comp_e, apply, size):\n size = 1 << (size - 1).bit_length()\n return cls(\n op,\n op_e,\n comp,\n comp_e,\n apply,\n [op_e] * (2 * size),\n [comp_e] * size\n )\n\n @classmethod\n def from_initial_data(cls, op, op_e, comp, comp_e, apply, data):\n size = 1 << (len(data) - 1).bit_length()\n temp = [op_e] * (2 * size)\n temp[size:size + len(data)] = data\n\n for i in reversed(range(size)):\n temp[i] = op(temp[2 * i], temp[2 * i + 1])\n return cls(\n op,\n op_e,\n comp,\n comp_e,\n apply,\n temp,\n [comp_e] * size\n )\n\n # ??????????????????????\n def __init__(self, op, op_e, comp, comp_e, apply, data, lazy):\n self.op = op\n self.op_e = op_e\n self.comp = comp\n self.comp_e = comp_e\n self.apply = apply\n self.data = data\n self.lazy = lazy\n self.size = len(self.data) // 2\n self.depth = self.size.bit_length() - 1\n self._l_indices = [0] * self.depth\n self._r_indices = [0] * self.depth\n\n def _update_indices(self, i, l):\n m = i // (i & -i)\n i >>= 1\n for k in range(self.depth):\n l[k] = i if i < m else 0\n i >>= 1\n\n def _propagate_top_down(self):\n data = self.data\n lazy = self.lazy\n apply = self.apply\n comp = self.comp\n comp_e = self.comp_e\n k = self.size >> 1\n\n for i, j in zip(reversed(self._l_indices), reversed(self._r_indices)):\n if i > 0:\n temp = lazy[i]\n if temp != comp_e:\n lazy[i] = comp_e\n a = i << 1\n b = a | 1\n data[a] = apply(data[a], temp, k)\n data[b] = apply(data[b], temp, k)\n if k > 1:\n lazy[a] = comp(lazy[a], temp)\n lazy[b] = comp(lazy[b], temp)\n if i < j:\n temp = lazy[j]\n if temp != comp_e:\n lazy[j] = comp_e\n a = j << 1\n b = a | 1\n data[a] = apply(data[a], temp, k)\n data[b] = apply(data[b], temp, k)\n if k > 1:\n lazy[a] = comp(lazy[a], temp)\n lazy[b] = comp(lazy[b], temp)\n k >>= 1\n\n def _propagate_bottom_up(self):\n data = self.data\n op = self.op\n for i, j in zip(self._l_indices, self._r_indices):\n if i < j:\n data[j] = op(data[j << 1], data[j << 1 | 1])\n if i > 0:\n data[i] = op(data[i << 1], data[i << 1 | 1])\n\n def update_interval(self, l, r, m):\n lazy = self.lazy\n data = self.data\n comp = self.comp\n apply = self.apply\n\n l += self.size\n r += self.size\n self._update_indices(l, self._l_indices)\n self._update_indices(r, self._r_indices)\n self._propagate_top_down()\n k = 1\n while l < r:\n if l & 1:\n data[l] = apply(data[l], m, k)\n if k > 1:\n lazy[l] = comp(lazy[l], m)\n l += 1\n if r & 1:\n r -= 1\n data[r] = apply(data[r], m, k)\n if k > 1:\n lazy[r] = comp(lazy[r], m)\n l >>= 1\n r >>= 1\n k <<= 1\n self._propagate_bottom_up()\n\n def get_interval(self, l, r):\n data = self.data\n op = self.op\n\n l += self.size\n r += self.size\n self._update_indices(l, self._l_indices)\n self._update_indices(r, self._r_indices)\n self._propagate_top_down()\n\n lx = self.op_e\n rx = self.op_e\n while l < r:\n if l & 1:\n lx = op(lx, data[l])\n l += 1\n if r & 1:\n r -= 1\n rx = op(data[r], rx)\n l >>= 1\n r >>= 1\n return op(lx, rx)\n\n\nfrom operator import add, sub\n\n\nclass BinaryIndexedTree:\n def __init__(self, size, zero=0, operator=add, inv_operator=sub):\n self.zero = zero\n self.op = operator\n self.inv = inv_operator\n self.data = [zero] * (size + 1)\n self.msb = 1 << (size.bit_length() - 1)\n\n def _add(self, i, w):\n i += 1\n while i < len(self.data):\n self.data[i] = self.op(self.data[i], w)\n i += i & -i\n\n def _get_sum(self, i):\n res = self.zero\n while i > 0:\n res = self.op(res, self.data[i])\n i -= i & -i\n return res\n\n def __getitem__(self, i):\n """\n [0,i)\n """\n if isinstance(i, slice):\n a = self._get_sum(len(self.data) - 1 if i.stop is None else i.stop)\n b = self._get_sum(0 if i.start is None else i.start)\n return self.inv(a, b)\n else:\n return self.zero # fake value\n\n __setitem__ = _add\n\n def bisect_left(self, v):\n """\n return smallest i s.t v <= sum[:i+1]\n """\n i = 0\n k = self.msb\n l = len(self.data)\n while k > 0:\n i += k\n if i < l and self.data[i] < v:\n v -= self.data[i]\n else:\n i -= k\n k >>= 1\n return i\n\n def bisect_right(self, v):\n """\n return smallest i s.t v < sum[:i+1]\n """\n i = 0\n k = self.msb\n l = len(self.data)\n while k > 0:\n i += k\n if i < l and self.data[i] <= v:\n v -= self.data[i]\n else:\n i -= k\n k >>= 1\n return i\n\n bisect = bisect_right\n\n\nimport bisect\nT = TypeVar(\'T\')\n\n\nclass SortedList(MutableSet):\n\n def __init__(self, sorted_values: List[T]):\n self.i2v = sorted_values\n self.v2i = {v:i for i,v in enumerate(self.i2v)}\n self.fen = BinaryIndexedTree(len(self.i2v))\n self.n = 0\n\n def rank(self, x:T) -> int:\n \'\'\'\n x???????????\n\n :param x: ??????\n :return: x????????\n \'\'\'\n return self.fen[:bisect.bisect_left(self.i2v, x)]\n\n def get(self, rank: int) -> T:\n return self.i2v[self.fen.bisect_left(rank)]\n\n def lower_bound(self, x: T, k: int = 1) -> T:\n \'\'\'\n x???k????????????O(log N)\n\n :param x: ??????\n :param k: ?????????????????1?\n :return: x???k????????\n \'\'\'\n t = self.fen[:bisect.bisect(self.i2v, x)]-k\n if t < 0 or t >= self.n:\n raise IndexError\n return self.fen.bisect_left(t)\n\n def upper_bound(self, x: T, k: int = 1) -> T:\n \'\'\'\n x???k????????????O(log N)\n\n :param x: ??????\n :param k: ?????????????????1?\n :return: x???k????????\n \'\'\'\n t = self.fen[:bisect(self.i2v, x)-1]+k\n if t < 0 or t >= self.n:\n raise IndexError\n return self.fen.bisect_left(t)\n\n def add(self, value: T) -> None:\n pass\n\n def discard(self, value: T) -> None:\n pass\n\n def __contains__(self, x: Any) -> bool:\n pass\n\n def __len__(self) -> int:\n pass\n\n def __iter__(self) -> Iterator[T]:\n pass\n\n\n\nclass SlidingWindowAggregator:\n # ????????\n def __init__(self, op, identity):\n self.op = op\n self.identity = identity\n self.data = []\n self.front = [identity]\n self.back = [identity]\n\n def __len__(self):\n return len(self.front) + len(self.back) - 2\n\n def push(self, x):\n self.data.append(x)\n self.back.append(self.op(self.back[-1], x))\n\n def pop(self):\n if len(self.front) == 1:\n self.move()\n self.front.pop()\n\n def move(self):\n self.back = [self.identity]\n for x in reversed(self.data):\n self.front.append(self.op(x, self.front[-1]))\n self.data.clear()\n\n def get(self):\n return self.op(self.front[-1], self.back[-1])\n\n# bit = BinaryIndexedTree(4)\n# bit[1] += 1\n# bit[2] += 1\n# for i in range(5):\n# print(i, bit.bisect_left(i), bit.bisect_right(i))'),
'lib.graph': (False, 'import itertools\nimport heapq as hq\nfrom lib.misc import min2\nfrom lib.array2d import Array2d\nfrom collections import defaultdict\n\nfrom typing import *\n\nT = TypeVar(\'T\')\n\nINF = 2 ** 62\n\n\nclass BaseWeightedGraph:\n\n def __init__(self, n_vertices: int):\n self.n_vertices = n_vertices\n\n def wadj(self, v: int) -> Iterable[Tuple[int, Any]]:\n """\n Return an iterable of vertices adjacent to v and edge weight\n """\n raise NotImplementedError\n\n def adj(self, v: int) -> Iterable[int]:\n """\n Return an iterable of vertices adjacent to v\n """\n return (u for u, w in self.wadj(v))\n\n @property\n def wedges(self) -> Iterable[Tuple[int, int, Any]]:\n """\n Return an iterable of weighted edges (vertex_1, vertex_2, weight)\n """\n return ((v, u, w) for v in range(self.n_vertices) for u, w in self.wadj(v))\n\n @property\n def edges(self):\n return ((v, u) for v in range(self.n_vertices) for u in self.adj(v))\n\n def dist(self, s: int, t: int, inf=INF):\n return dijkstra(self, s, t, inf)[t]\n\n def warshall_floyd(self, inf=INF):\n dist = Array2d.full(self.n_vertices, self.n_vertices, inf)\n for u, v, w in self.wedges:\n dist[u, v] = w\n for i in range(self.n_vertices):\n dist[i, i] = 0\n for k in range(self.n_vertices):\n for i in range(self.n_vertices):\n for j in range(self.n_vertices):\n dist[i, j] = min2(dist[i, j], dist[i, k] + dist[k, j])\n return dist\n\n def to_wgraph(self) -> \'WeightedGraph\':\n return WeightedGraph.from_directed_edges(self.n_vertices, self.wedges)\n\n def to_reverse_wgraph(self) -> \'WeightedGraph\':\n return WeightedGraph.from_directed_edges(self.n_vertices, ((u, v, w) for v, u, w in self.wedges))\n\n def to_graph(self) -> \'Graph\':\n l = [[] for _ in range(self.n_vertices)]\n for u, v in self.edges:\n l[u].append(v)\n return Graph.from_lil_adj(self.n_vertices, l)\n\n def to_reverse_graph(self) -> \'Graph\':\n l = [[] for _ in range(self.n_vertices)]\n for u, v in self.edges:\n l[v].append(u)\n return Graph.from_lil_adj(self.n_vertices, l)\n\n\nclass WeightedGraph(BaseWeightedGraph):\n\n def __init__(self, n_vertices: int, adj: List[int], weight: List[Any], ind: List[int]):\n super().__init__(n_vertices)\n self._adj = adj\n self._weight = weight\n self._ind = ind\n\n @classmethod\n def from_lil_adj(cls, n_vertices: int, adj_list: Iterable[Sequence[Tuple[int, Any]]],\n n_edges: int) -> \'WeightedGraph\':\n adj = [0] * n_edges\n weight = [0] * n_edges\n ind = [0] * (n_vertices + 1)\n i = 0\n for u, l in enumerate(adj_list):\n ind[u] = i\n for v, w in l:\n adj[i] = v\n weight[i] = w\n i += 1\n ind[n_vertices] = i\n return cls(n_vertices, adj, weight, ind)\n\n @classmethod\n def from_directed_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int, int]]) -> \'WeightedGraph\':\n temp = [[] for _ in range(n_vertices)]\n n_edges = 0\n for u, v, w in edges:\n temp[u].append((v, w))\n n_edges += 1\n return cls.from_lil_adj(n_vertices, temp, n_edges)\n\n @classmethod\n def from_undirected_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int, int]]) -> \'WeightedGraph\':\n return cls.from_directed_edges(n_vertices, itertools.chain(edges, ((u, v, w) for v, u, w in edges)))\n\n def wadj(self, v: int) -> Iterable[Tuple[int, Any]]:\n i, j = self._ind[v], self._ind[v + 1]\n return ((self._adj[k], self._weight[k]) for k in range(i, j))\n\n\nclass ModifiableWeightedGraph(BaseWeightedGraph):\n\n def __init__(self, n_vertices: int, edges: MutableMapping[Tuple[int, int], Any]):\n super().__init__(n_vertices)\n self._edges = edges\n temp = [set() for _ in range(n_vertices)]\n for u, v, w in edges:\n temp[u].add((v, w))\n self._adj = temp\n\n @classmethod\n def from_directed_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int, Any]]) -> \'ModifiableWeightedGraph\':\n return cls(n_vertices, edges)\n\n @classmethod\n def from_undirected_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int, Any]]) -> \'ModifiableWeightedGraph\':\n return cls.from_directed_edges(n_vertices, itertools.chain(edges, ((u, v, w) for v, u, w in edges)))\n\n def wadj(self, v: int) -> Iterable[Tuple[int, Any]]:\n return self._adj[v]\n\n def update_edge(self, v: int, u: int, w: Any) -> None:\n try:\n w_old = self._edges[v, u]\n self._edges[v, u] = w\n self._adj[v].discard((u, w_old))\n self._adj[v].add((u, w))\n except KeyError:\n self._edges[v, u] = w\n self._adj[v].add((u, w))\n\n def delete_edge(self, v: int, u: int) -> None:\n try:\n w = self._edges[v, u]\n del self._edges[v, u]\n self._adj[v].discard((u, w))\n except KeyError:\n pass\n\n\nclass BaseGraph(BaseWeightedGraph):\n\n def adj(self, v):\n raise NotImplementedError\n\n def wadj(self, v):\n return ((u, 1) for u in self.adj(v))\n\n def dist(self, s: int, t: int, inf: Any = INF):\n d = self.bfs(s, t)[t]\n return inf if d == -1 else d\n\n def furthest_vertex(self, v0):\n """\n Returns a vertex that is furthest away from v0, and its distance from v0\n """\n q = [v0]\n visited = [0] * self.n_vertices\n visited[v0] = 1\n x = -1\n rd = 0\n for d in itertools.count():\n if not q:\n rd = d\n break\n x = q[0]\n nq = []\n for v in q:\n for u in self.adj(v):\n if not visited[u]:\n visited[u] = 1\n nq.append(u)\n q = nq\n return x, rd\n\n\nclass Graph(BaseGraph):\n\n def __init__(self, n_vertices: int, adj: List[int], ind: List[int]):\n super().__init__(n_vertices)\n self._adj = adj\n self._ind = ind\n\n @classmethod\n def from_lil_adj(cls, n_vertices: int, adj_list: Iterable[Sequence[int]]) -> \'Graph\':\n n_edges = sum(len(l) for l in adj_list)\n adj = [0] * n_edges\n ind = [0] * (n_vertices + 1)\n i = 0\n for u, l in enumerate(adj_list):\n ind[u] = i\n for v in l:\n adj[i] = v\n i += 1\n ind[n_vertices] = i\n return cls(n_vertices, adj, ind)\n\n @classmethod\n def from_directed_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int]]) -> \'Graph\':\n temp = [[] for _ in range(n_vertices)]\n for u, v in edges:\n temp[u].append(v)\n return cls.from_lil_adj(n_vertices, temp)\n\n @classmethod\n def from_undirected_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int]]) -> \'Graph\':\n temp = [[] for _ in range(n_vertices)]\n for u, v in edges:\n temp[u].append(v)\n temp[v].append(u)\n return cls.from_lil_adj(n_vertices, temp)\n\n def adj(self, v):\n return self._adj[self._ind[v]: self._ind[v + 1]]\n\n\nclass ModifiableGraph(BaseGraph):\n\n def __init__(self, n_vertices: int, adj: List[MutableSet[int]]):\n super().__init__(n_vertices)\n self._adj = adj\n\n @classmethod\n def from_directed_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int]]) -> \'ModifiableGraph\':\n temp = [set() for _ in range(n_vertices)]\n for u, v in edges:\n temp[u].add(v)\n return cls(n_vertices, temp)\n\n @classmethod\n def from_undirected_edges(cls, n_vertices: int, edges: Iterable[Tuple[int, int]]) -> \'ModifiableGraph\':\n return cls.from_directed_edges(n_vertices, itertools.chain(edges, ((u, v) for v, u in edges)))\n\n def adj(self, v: int) -> Iterable[int]:\n return self._adj[v]\n\n def add_edge(self, v: int, u: int) -> None:\n self._adj[v].add(u)\n\n def delete_edge(self, v: int, u: int) -> None:\n self._adj[v].discard(u)\n\n\nclass FunctionalGraph(BaseGraph):\n def __init__(self, n_vertices: int, func: List[int]):\n super().__init__(n_vertices)\n self.func = func\n\n def adj(self, v: int) -> Iterable[int]:\n yield self.func[v]\n\n def get_doubling(self, max_length: int) -> Array2d:\n k = max_length.bit_length()\n dbl = Array2d.full(k, self.n_vertices, 0)\n for v in range(self.n_vertices):\n dbl[0, v] = self.func[v]\n for t in range(1, k):\n for v in range(self.n_vertices):\n dbl[t, v] = dbl[t-1, dbl[t-1, v]]\n return dbl\n\n @staticmethod\n def apply_func(v: int, k: int, dbl: Array2d) -> int:\n assert k.bit_length() <= dbl.n\n\n for t in range(dbl.n):\n if k&1:\n v = dbl[t, v]\n k >>= 1\n return v\n\n\nclass Grid(BaseGraph):\n def __init__(self, grid):\n super().__init__(grid.n * grid.m)\n self.grid = grid\n\n def adj(self, v):\n if not self.grid.arr[v]:\n return\n i, j = divmod(v, self.grid.m)\n if i + 1 < self.grid.n and self.grid[i + 1, j]:\n yield v + self.grid.m\n if 0 <= i - 1 and self.grid[i - 1, j]:\n yield v - self.grid.m\n if j + 1 < self.grid.m and self.grid[i, j + 1]:\n yield v + 1\n if 0 <= j - 1 and self.grid[i, j - 1]:\n yield v - 1\n\n\ndef strongly_connected_components(graph: BaseWeightedGraph, rgraph: BaseWeightedGraph = None):\n if rgraph is None:\n rgraph = graph.to_reverse_graph()\n n = graph.n_vertices\n order = []\n color = [0] * n\n for v0 in range(n):\n if color[v0]:\n continue\n color[v0] = -1\n stack = [iter(graph.adj(v0))]\n path = [v0]\n while path:\n for u in stack[-1]:\n if color[u] == 0:\n color[u] = -1\n path.append(u)\n stack.append(iter(graph.adj(u)))\n break\n else:\n v = path.pop()\n order.append(v)\n stack.pop()\n\n label = 0\n for v0 in reversed(order):\n if color[v0] >= 0:\n continue\n color[v0] = label\n stack = [v0]\n while stack:\n v = stack.pop()\n for u in rgraph.adj(v):\n if color[u] < 0:\n color[u] = label\n stack.append(u)\n label += 1\n return label, color\n\n\ndef bfs(graph: BaseWeightedGraph, s: Union[int, Iterable[int]], t: Union[int, Iterable[int]] = -1) -> List[int]:\n """\n ?????????????????\n\n :param graph: ???\n :param s: ????\n :param t: ????\n :return: ?????(s??????????-1)\n """\n dist = [-1] * graph.n_vertices\n\n if isinstance(s, int):\n q = [s]\n dist[s] = 0\n else:\n q = list(s)\n for v in q:\n dist[v] = 0\n\n if isinstance(t, int):\n t = [t]\n else:\n t = list(t)\n if len(t) > 8:\n t = set(t)\n\n for d in range(1, graph.n_vertices):\n nq = []\n for v in q:\n for u in graph.adj(v):\n if dist[u] < 0:\n dist[u] = d\n nq.append(u)\n if u in t:\n return dist\n q = nq\n return dist\n\n\ndef dijkstra(graph: BaseWeightedGraph, s: Union[int, Iterable[int]], t: Union[int, Iterable[int]] = -1,\n inf: int = INF) -> List[int]:\n """\n Returns a list of distance. If starts contains more than one vertex, returns the shortest distance from any of them.\n """\n K = graph.n_vertices.bit_length()\n MASK = (1 << K) - 1\n dist = [inf] * graph.n_vertices\n\n if isinstance(s, int):\n q = [s]\n dist[s] = 0\n else:\n q = list(s)\n for v in q:\n dist[v] = 0\n if isinstance(t, int):\n if t < 0:\n t = []\n else:\n t = [t]\n else:\n t = set(t)\n\n while q:\n x = hq.heappop(q)\n d, v = x >> K, x & MASK\n if v in t:\n return dist\n if d > dist[v]:\n continue\n for u, w in graph.wadj(v):\n if dist[u] > d + w:\n dist[u] = d + w\n hq.heappush(q, ((d + w) << K) | u)\n return dist\n\n\ndef dijkstra_general(graph: BaseWeightedGraph, inf: T, zero: T, s: Union[int, Iterable[int]],\n t: Union[int, Iterable[int]] = -1) -> List[Any]:\n """\n Returns a list of distance. If starts contains more than one vertex, returns the shortest distance from any of them.\n """\n dist = [inf] * graph.n_vertices\n\n if isinstance(s, int):\n q = [(zero, s)]\n dist[s] = zero\n else:\n q = [(zero, v) for v in s]\n for d, v in q:\n dist[v] = zero\n if isinstance(t, int):\n if t < 0:\n t = []\n else:\n t = [t]\n else:\n t = set(t)\n\n while q:\n d, v = hq.heappop(q)\n if v in t:\n return dist\n if d > dist[v]:\n continue\n for u, w in graph.wadj(v):\n nw = d + w\n if dist[u] > nw:\n dist[u] = nw\n hq.heappush(q, (nw, u))\n return dist\n\n\ndef get_dual_graph(n_vertices: int, wedges: Iterable[Tuple[int, int, int]]) -> Tuple[\n List[int], List[int], List[int], List[int]]:\n """\n ?????????????????\n\n (u, v, cap) in E ??????????? (u, v, cap) ? (v, u, 0) ?????????????????????????\n\n :param n_vertices: ???\n :param wedges: ?????\n :return: (???????, ???index?????)\n """\n\n cap = defaultdict(int)\n for u, v, c in wedges:\n cap[(u, v)] += c\n cap[(v, u)] += 0\n temp: List[List[Tuple[int, int]]] = [[] for _ in range(n_vertices)]\n for (u, v), w in cap.items():\n temp[u].append((v, w))\n\n adj = [0] * len(cap)\n weight = [0] * len(cap)\n rev = [0] * len(cap)\n ind = [0] * (n_vertices + 1)\n\n i = 0\n for u, l in enumerate(temp):\n ind[u] = i\n for v, w in l:\n adj[i] = v\n weight[i] = w\n if u < v:\n cap[(v, u)] = i\n else:\n j = cap[(u, v)]\n rev[i] = j\n rev[j] = i\n i += 1\n ind[n_vertices] = i\n\n return adj, weight, ind, rev\n\n\ndef edmonds_karp(n_vertices: int, edges: Iterable[Tuple[int, int, int]], s: int, t: int):\n """\n ????????\n\n ???: ``O(VE^2)``\n\n :param n_vertices: ???\n :param edges: (??1, ??2, ??)?Iterable\n :param s: ??\n :param t: ??\n :return: (????, ?????, ?????)\n """\n\n adj, caps, ind, rev = get_dual_graph(n_vertices, edges)\n\n m0 = max(caps)\n bfs_memo = [0] * n_vertices\n pv = [-1] * n_vertices\n pe = [-1] * n_vertices\n bfs_memo[s] = n_vertices + 1\n offset = 0\n\n def find_path():\n nonlocal offset\n offset += 1\n q = [s]\n while q:\n nq = []\n for v in q:\n if v == t:\n return True\n for i in range(ind[v], ind[v + 1]):\n if caps[i] == 0:\n continue\n u = adj[i]\n if bfs_memo[u] < offset:\n bfs_memo[u] = offset\n pv[u] = v\n pe[u] = i\n nq.append(u)\n q = nq\n return False\n\n res = 0\n flag = find_path()\n while flag:\n v = t\n m = m0\n while pv[v] >= 0:\n e = pe[v]\n m = min2(m, caps[e])\n v = pv[v]\n v = t\n while pv[v] >= 0:\n e = pe[v]\n caps[e] -= m\n caps[rev[e]] += m\n v = pv[v]\n res += m\n flag = find_path()\n return res, WeightedGraph(n_vertices, adj, caps, ind), rev\n\n\ndef min_st_cut(n_vertices: int, edges: Iterable[Tuple[int, int, int]], s: int, t: int):\n """\n ?? ``st`` ?????????\n\n :param n_vertices: ???\n :param edges: ?\n :param s: ??\n :param t: ??\n :return: (?????, ???????(0-1??????), ?????, ?????)\n """\n flow, g, rev = edmonds_karp(n_vertices, edges, s, t)\n stack = [s]\n visited = [0] * n_vertices\n visited[s] = 1\n while stack:\n v = stack.pop()\n for u, w in g.wadj(v):\n if w > 0 and not visited[u]:\n stack.append(u)\n visited[u] = 1\n return flow, visited, g, rev\n\n\nclass MaxFlowGraph:\n class Edge(NamedTuple):\n src: int\n dst: int\n cap: int\n flow: int\n\n class _Edge:\n def __init__(self, dst: int, cap: int) -> None:\n self.dst = dst\n self.cap = cap\n self.rev: Optional[MaxFlowGraph._Edge] = None\n\n def __init__(self, n: int) -> None:\n self._n = n\n self._g: List[List[MaxFlowGraph._Edge]] = [[] for _ in range(n)]\n self._edges: List[MaxFlowGraph._Edge] = []\n\n def add_edge(self, src: int, dst: int, cap: int) -> int:\n assert 0 <= src < self._n\n assert 0 <= dst < self._n\n assert 0 <= cap\n m = len(self._edges)\n e = MaxFlowGraph._Edge(dst, cap)\n re = MaxFlowGraph._Edge(src, 0)\n e.rev = re\n re.rev = e\n self._g[src].append(e)\n self._g[dst].append(re)\n self._edges.append(e)\n return m\n\n def get_edge(self, i: int) -> Edge:\n assert 0 <= i < len(self._edges)\n e = self._edges[i]\n re = cast(MaxFlowGraph._Edge, e.rev)\n return MaxFlowGraph.Edge(\n re.dst,\n e.dst,\n e.cap + re.cap,\n re.cap\n )\n\n def edges(self) -> List[Edge]:\n return [self.get_edge(i) for i in range(len(self._edges))]\n\n def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:\n assert 0 <= i < len(self._edges)\n assert 0 <= new_flow <= new_cap\n e = self._edges[i]\n e.cap = new_cap - new_flow\n assert e.rev is not None\n e.rev.cap = new_flow\n\n def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:\n assert 0 <= s < self._n\n assert 0 <= t < self._n\n assert s != t\n if flow_limit is None:\n flow_limit = cast(int, sum(e.cap for e in self._g[s]))\n\n current_edge = [0] * self._n\n level = [0] * self._n\n\n def fill(arr: List[int], value: int) -> None:\n for i in range(len(arr)):\n arr[i] = value\n\n def bfs() -> bool:\n fill(level, self._n)\n queue = []\n q_front = 0\n queue.append(s)\n level[s] = 0\n while q_front < len(queue):\n v = queue[q_front]\n q_front += 1\n next_level = level[v] + 1\n for e in self._g[v]:\n if e.cap == 0 or level[e.dst] <= next_level:\n continue\n level[e.dst] = next_level\n if e.dst == t:\n return True\n queue.append(e.dst)\n return False\n\n def dfs(lim: int) -> int:\n stack = []\n edge_stack: List[MaxFlowGraph._Edge] = []\n stack.append(t)\n while stack:\n v = stack[-1]\n if v == s:\n flow = min(lim, min(e.cap for e in edge_stack))\n for e in edge_stack:\n e.cap -= flow\n assert e.rev is not None\n e.rev.cap += flow\n return flow\n next_level = level[v] - 1\n while current_edge[v] < len(self._g[v]):\n e = self._g[v][current_edge[v]]\n re = cast(MaxFlowGraph._Edge, e.rev)\n if level[e.dst] != next_level or re.cap == 0:\n current_edge[v] += 1\n continue\n stack.append(e.dst)\n edge_stack.append(re)\n break\n else:\n stack.pop()\n if edge_stack:\n edge_stack.pop()\n level[v] = self._n\n return 0\n\n flow = 0\n while flow < flow_limit:\n if not bfs():\n break\n fill(current_edge, 0)\n while flow < flow_limit:\n f = dfs(flow_limit - flow)\n flow += f\n if f == 0:\n break\n return flow\n\n def min_cut(self, s: int) -> List[bool]:\n visited = [False] * self._n\n stack = [s]\n visited[s] = True\n while stack:\n v = stack.pop()\n for e in self._g[v]:\n if e.cap > 0 and not visited[e.dst]:\n visited[e.dst] = True\n stack.append(e.dst)\n return visited\n\n\nclass MinCostFlowGraph:\n class Edge(NamedTuple):\n src: int\n dst: int\n cap: int\n flow: int\n cost: int\n\n class _Edge:\n def __init__(self, dst: int, cap: int, cost: int) -> None:\n self.dst = dst\n self.cap = cap\n self.cost = cost\n self.rev: Optional[MinCostFlowGraph._Edge] = None\n\n def __init__(self, n: int) -> None:\n self._n = n\n self._g: List[List[MinCostFlowGraph._Edge]] = [[] for _ in range(n)]\n self._edges: List[MinCostFlowGraph._Edge] = []\n\n def add_edge(self, src: int, dst: int, cap: int, cost: int) -> int:\n assert 0 <= src < self._n\n assert 0 <= dst < self._n\n assert 0 <= cap\n m = len(self._edges)\n e = MinCostFlowGraph._Edge(dst, cap, cost)\n re = MinCostFlowGraph._Edge(src, 0, -cost)\n e.rev = re\n re.rev = e\n self._g[src].append(e)\n self._g[dst].append(re)\n self._edges.append(e)\n return m\n\n def get_edge(self, i: int) -> Edge:\n assert 0 <= i < len(self._edges)\n e = self._edges[i]\n re = cast(MinCostFlowGraph._Edge, e.rev)\n return MinCostFlowGraph.Edge(\n re.dst,\n e.dst,\n e.cap + re.cap,\n re.cap,\n e.cost\n )\n\n def edges(self) -> List[Edge]:\n return [self.get_edge(i) for i in range(len(self._edges))]\n\n def flow(self, s: int, t: int,\n flow_limit: Optional[int] = None) -> Tuple[int, int]:\n return self.slope(s, t, flow_limit)[-1]\n\n def slope(self, s: int, t: int,\n flow_limit: Optional[int] = None) -> List[Tuple[int, int]]:\n assert 0 <= s < self._n\n assert 0 <= t < self._n\n assert s != t\n if flow_limit is None:\n flow_limit = cast(int, sum(e.cap for e in self._g[s]))\n\n dual = [0] * self._n\n prev: List[Optional[Tuple[int, MinCostFlowGraph._Edge]]] = [None] * self._n\n\n def refine_dual() -> bool:\n pq = [(0, s)]\n visited = [False] * self._n\n dist: List[Optional[int]] = [None] * self._n\n dist[s] = 0\n while pq:\n dist_v, v = hq.heappop(pq)\n if visited[v]:\n continue\n visited[v] = True\n if v == t:\n break\n dual_v = dual[v]\n for e in self._g[v]:\n w = e.dst\n if visited[w] or e.cap == 0:\n continue\n reduced_cost = e.cost - dual[w] + dual_v\n new_dist = dist_v + reduced_cost\n dist_w = dist[w]\n if dist_w is None or new_dist < dist_w:\n dist[w] = new_dist\n prev[w] = v, e\n hq.heappush(pq, (new_dist, w))\n else:\n return False\n dist_t = dist[t]\n for v in range(self._n):\n if visited[v]:\n dual[v] -= cast(int, dist_t) - cast(int, dist[v])\n return True\n\n flow = 0\n cost = 0\n prev_cost_per_flow: Optional[int] = None\n result = [(flow, cost)]\n while flow < flow_limit:\n if not refine_dual():\n break\n f = flow_limit - flow\n v = t\n while prev[v] is not None:\n u, e = cast(Tuple[int, MinCostFlowGraph._Edge], prev[v])\n f = min(f, e.cap)\n v = u\n v = t\n while prev[v] is not None:\n u, e = cast(Tuple[int, MinCostFlowGraph._Edge], prev[v])\n e.cap -= f\n assert e.rev is not None\n e.rev.cap += f\n v = u\n c = -dual[s]\n flow += f\n cost += f * c\n if c == prev_cost_per_flow:\n result.pop()\n result.append((flow, cost))\n prev_cost_per_flow = c\n return result'),
'lib.itertools': (False, "from itertools import chain, repeat, count, islice\nfrom collections import Counter\n\n\ndef repeat_chain(values, counts):\n return chain.from_iterable(map(repeat, values, counts))\n\n\ndef unique_combinations_from_value_counts(values, counts, r):\n n = len(counts)\n indices = list(islice(repeat_chain(count(), counts), r))\n if len(indices) < r:\n return\n while True:\n yield tuple(values[i] for i in indices)\n for i, j in zip(reversed(range(r)), repeat_chain(reversed(range(n)), reversed(counts))):\n if indices[i] != j:\n break\n else:\n return\n j = indices[i] + 1\n for i, j in zip(range(i, r), repeat_chain(count(j), counts[j:])):\n indices[i] = j\n\n\ndef unique_combinations(iterable, r):\n values, counts = zip(*Counter(iterable).items())\n return unique_combinations_from_value_counts(values, counts, r)\n\n\nclass UniqueCombinations:\n def __init__(self, values, counts, r):\n self.values = values\n self.counts = counts\n self.r = r\n\n # dp[i][k] := # of unique combinations of length k or shorter with elements values[i:]\n dp = [[1]*(r+1) for c in range(len(counts)+1)]\n for i in reversed(range(len(counts))):\n cnt = self.counts[i]\n for k in range(1, r+1):\n dp[i][k] = dp[i][k-1] + dp[i+1][k] - (dp[i+1][k-cnt-1] if k >= cnt+1 else 0)\n self.dp = dp\n\n def __getitem__(self, ind):\n res = []\n for i in range(len(self.counts)):\n for k in reversed(range(1, min(self.r-len(res), self.counts[i])+1)):\n t = self.dp[i+1][self.r - len(res) - k]-(self.dp[i+1][self.r - len(res)-k-1] if self.r - len(res) >= k+1 else 0)\n if ind < t:\n res.extend(self.values[i] for _ in range(k))\n break\n else:\n ind -= t\n return tuple(res)\n\n def __len__(self):\n return self.dp[0][self.r] - self.dp[0][self.r-1]\n\n\n\nif __name__ == '__main__':\n uc = UniqueCombinations([1,2,3], [5,3,1], 4)\n for i in range(len(uc)):\n print(uc[i])\n # print(list(unique_combinations([2, 2, 2, 2, 4], 4)))\n # print(list(unique_combinations_from_value_counts('abc', [1, 2, 3], 3)))\n"),
'lib.matrix': (False, "from lib.array2d import Array2d\n\n\ndef get_general_matrix(zero, one):\n class Matrix(Array2d):\n ZERO = zero\n ONE = one\n\n @classmethod\n def zeros(cls, n, m):\n return cls.full(n, m, cls.ZERO)\n\n @classmethod\n def ones(cls, n, m):\n return cls.full(n, m, cls.ONE)\n\n def __add__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot add matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n return Matrix(self.n, self.m, [x + y for x, y in zip(self.arr, other.arr)])\n\n def __iadd__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n for i, v in enumerate(other.arr):\n self.arr[i] += v\n return self\n\n def __sub__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot subtract matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n return Matrix(self.n, self.m, [x - y for x, y in zip(self.arr, other.arr)])\n\n def __isub__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n for i, v in enumerate(other.arr):\n self.arr[i] -= v\n return self\n\n def __mul__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n return Matrix(self.n, self.m, [x * y for x, y in zip(self.arr, other.arr)])\n\n def __imul__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n for i, v in enumerate(other.arr):\n self.arr[i] *= v\n return self\n\n def __truediv__(self, other):\n if self.m != other.m or self.n != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n return Matrix(self.n, self.m, [x / y for x, y in zip(self.arr, other.arr)])\n\n def __matmul__(self, other):\n if self.m != other.n:\n raise ValueError(f'Cannot dot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n\n res = self.full(self.n, other.m, self.ZERO)\n\n for i in range(self.n):\n for j in range(other.m):\n c = self.ZERO\n for k in range(self.m):\n c += self[i, k] * other[k, j]\n res[i, j] = c\n return res\n\n def __imatmul__(self, other):\n if self.m != other.n:\n raise ValueError(f'Cannot multiply matrices ({self.n}, {self.m}) and ({other.n}, {other.m})')\n if self is other or self.m != other.m:\n return self @ other\n\n row = [self.ZERO] * self.m\n for i in range(self.n):\n t = i * self.m\n for j in range(self.m):\n row[j] = self.arr[j + t]\n for j in range(other.m):\n c = self.ZERO\n for k in range(self.m):\n c += row[k] * other[k, j]\n self[i, j] = c\n return self\n\n def __pow__(self, power, modulo=None):\n if self.n != self.m:\n raise ValueError('pow is supported only for square matrix')\n k = self.n\n res = Matrix.full(k, k, self.ZERO)\n for i in range(k):\n res[i, i] = self.ONE\n\n m = self\n while power > 0:\n if power & 1:\n res @= m\n m @= m\n power >>= 1\n return res\n\n return Matrix\n\n\nIMatrix = get_general_matrix(0, 1)\nFMatrix = get_general_matrix(0.0, 1.0)\n\n\ndef accumulate(mat):\n res = mat.zeros(mat.n + 1, mat.m + 1)\n for i in range(mat.n):\n k = mat.ZERO\n for j in range(mat.m):\n k += mat[i, j]\n res[i + 1, j + 1] = k\n for j in range(1, mat.m + 1):\n k = mat.ZERO\n for i in range(1, mat.n + 1):\n k += res[i, j]\n res[i, j] = k\n return res\n\n\ndef accumulate_prod(mat):\n res = mat.ones(mat.n + 1, mat.m + 1)\n for i in range(mat.n):\n k = mat.ONE\n for j in range(mat.m):\n k *= mat[i, j]\n res[i + 1, j + 1] = k\n for j in range(1, mat.m + 1):\n k = mat.ONE\n for i in range(1, mat.n):\n k *= res[i, j]\n res[i, j] = k\n return res\n"),
'lib.mincostflow': (False, 'from typing import NamedTuple, Optional, List, Tuple, cast\nfrom heapq import heappush, heappop\n\nclass MFGraph:\n class Edge(NamedTuple):\n src: int\n dst: int\n cap: int\n flow: int\n\n class _Edge:\n def __init__(self, dst: int, cap: int) -> None:\n self.dst = dst\n self.cap = cap\n self.rev: Optional[MFGraph._Edge] = None\n\n def __init__(self, n: int) -> None:\n self._n = n\n self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)]\n self._edges: List[MFGraph._Edge] = []\n\n def add_edge(self, src: int, dst: int, cap: int) -> int:\n assert 0 <= src < self._n\n assert 0 <= dst < self._n\n assert 0 <= cap\n m = len(self._edges)\n e = MFGraph._Edge(dst, cap)\n re = MFGraph._Edge(src, 0)\n e.rev = re\n re.rev = e\n self._g[src].append(e)\n self._g[dst].append(re)\n self._edges.append(e)\n return m\n\n def get_edge(self, i: int) -> Edge:\n assert 0 <= i < len(self._edges)\n e = self._edges[i]\n re = cast(MFGraph._Edge, e.rev)\n return MFGraph.Edge(\n re.dst,\n e.dst,\n e.cap + re.cap,\n re.cap\n )\n\n def edges(self) -> List[Edge]:\n return [self.get_edge(i) for i in range(len(self._edges))]\n\n def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:\n assert 0 <= i < len(self._edges)\n assert 0 <= new_flow <= new_cap\n e = self._edges[i]\n e.cap = new_cap - new_flow\n assert e.rev is not None\n e.rev.cap = new_flow\n\n def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:\n assert 0 <= s < self._n\n assert 0 <= t < self._n\n assert s != t\n if flow_limit is None:\n flow_limit = cast(int, sum(e.cap for e in self._g[s]))\n\n current_edge = [0] * self._n\n level = [0] * self._n\n\n def fill(arr: List[int], value: int) -> None:\n for i in range(len(arr)):\n arr[i] = value\n\n def bfs() -> bool:\n fill(level, self._n)\n queue = []\n q_front = 0\n queue.append(s)\n level[s] = 0\n while q_front < len(queue):\n v = queue[q_front]\n q_front += 1\n next_level = level[v] + 1\n for e in self._g[v]:\n if e.cap == 0 or level[e.dst] <= next_level:\n continue\n level[e.dst] = next_level\n if e.dst == t:\n return True\n queue.append(e.dst)\n return False\n\n def dfs(lim: int) -> int:\n stack = []\n edge_stack: List[MFGraph._Edge] = []\n stack.append(t)\n while stack:\n v = stack[-1]\n if v == s:\n flow = min(lim, min(e.cap for e in edge_stack))\n for e in edge_stack:\n e.cap -= flow\n assert e.rev is not None\n e.rev.cap += flow\n return flow\n next_level = level[v] - 1\n while current_edge[v] < len(self._g[v]):\n e = self._g[v][current_edge[v]]\n re = cast(MFGraph._Edge, e.rev)\n if level[e.dst] != next_level or re.cap == 0:\n current_edge[v] += 1\n continue\n stack.append(e.dst)\n edge_stack.append(re)\n break\n else:\n stack.pop()\n if edge_stack:\n edge_stack.pop()\n level[v] = self._n\n return 0\n\n flow = 0\n while flow < flow_limit:\n if not bfs():\n break\n fill(current_edge, 0)\n while flow < flow_limit:\n f = dfs(flow_limit - flow)\n flow += f\n if f == 0:\n break\n return flow\n\n def min_cut(self, s: int) -> List[bool]:\n visited = [False] * self._n\n stack = [s]\n visited[s] = True\n while stack:\n v = stack.pop()\n for e in self._g[v]:\n if e.cap > 0 and not visited[e.dst]:\n visited[e.dst] = True\n stack.append(e.dst)\n return visited\n\nclass MCFGraph:\n class Edge(NamedTuple):\n src: int\n dst: int\n cap: int\n flow: int\n cost: int\n\n class _Edge:\n def __init__(self, dst: int, cap: int, cost: int) -> None:\n self.dst = dst\n self.cap = cap\n self.cost = cost\n self.rev: Optional[MCFGraph._Edge] = None\n\n def __init__(self, n: int) -> None:\n self._n = n\n self._g: List[List[MCFGraph._Edge]] = [[] for _ in range(n)]\n self._edges: List[MCFGraph._Edge] = []\n\n def add_edge(self, src: int, dst: int, cap: int, cost: int) -> int:\n assert 0 <= src < self._n\n assert 0 <= dst < self._n\n assert 0 <= cap\n m = len(self._edges)\n e = MCFGraph._Edge(dst, cap, cost)\n re = MCFGraph._Edge(src, 0, -cost)\n e.rev = re\n re.rev = e\n self._g[src].append(e)\n self._g[dst].append(re)\n self._edges.append(e)\n return m\n\n def get_edge(self, i: int) -> Edge:\n assert 0 <= i < len(self._edges)\n e = self._edges[i]\n re = cast(MCFGraph._Edge, e.rev)\n return MCFGraph.Edge(\n re.dst,\n e.dst,\n e.cap + re.cap,\n re.cap,\n e.cost\n )\n\n def edges(self) -> List[Edge]:\n return [self.get_edge(i) for i in range(len(self._edges))]\n\n def flow(self, s: int, t: int,\n flow_limit: Optional[int] = None) -> Tuple[int, int]:\n return self.slope(s, t, flow_limit)[-1]\n\n def slope(self, s: int, t: int,\n flow_limit: Optional[int] = None) -> List[Tuple[int, int]]:\n assert 0 <= s < self._n\n assert 0 <= t < self._n\n assert s != t\n if flow_limit is None:\n flow_limit = cast(int, sum(e.cap for e in self._g[s]))\n\n dual = [0] * self._n\n prev: List[Optional[Tuple[int, MCFGraph._Edge]]] = [None] * self._n\n\n def refine_dual() -> bool:\n pq = [(0, s)]\n visited = [False] * self._n\n dist: List[Optional[int]] = [None] * self._n\n dist[s] = 0\n while pq:\n dist_v, v = heappop(pq)\n if visited[v]:\n continue\n visited[v] = True\n if v == t:\n break\n dual_v = dual[v]\n for e in self._g[v]:\n w = e.dst\n if visited[w] or e.cap == 0:\n continue\n reduced_cost = e.cost - dual[w] + dual_v\n new_dist = dist_v + reduced_cost\n dist_w = dist[w]\n if dist_w is None or new_dist < dist_w:\n dist[w] = new_dist\n prev[w] = v, e\n heappush(pq, (new_dist, w))\n else:\n return False\n dist_t = dist[t]\n for v in range(self._n):\n if visited[v]:\n dual[v] -= cast(int, dist_t) - cast(int, dist[v])\n return True\n\n flow = 0\n cost = 0\n prev_cost_per_flow: Optional[int] = None\n result = [(flow, cost)]\n while flow < flow_limit:\n if not refine_dual():\n break\n f = flow_limit - flow\n v = t\n while prev[v] is not None:\n u, e = cast(Tuple[int, MCFGraph._Edge], prev[v])\n f = min(f, e.cap)\n v = u\n v = t\n while prev[v] is not None:\n u, e = cast(Tuple[int, MCFGraph._Edge], prev[v])\n e.cap -= f\n assert e.rev is not None\n e.rev.cap += f\n v = u\n c = -dual[s]\n flow += f\n cost += f * c\n if c == prev_cost_per_flow:\n result.pop()\n result.append((flow, cost))\n prev_cost_per_flow = c\n return result'),
'lib.misc': (False, 'from typing import List, Any, Callable, Sequence, Union, Tuple, TypeVar\nfrom numbers import Integral, Real\nimport sys\nfrom functools import reduce\nfrom itertools import accumulate\nfrom lib.data_structure import BinaryIndexedTree, DisjointSet\nimport bisect\nfrom lib.number_theory import modinv\nfrom collections import deque\n\nT = TypeVar(\'T\')\nM = TypeVar(\'M\')\nV = TypeVar(\'V\')\n\n\n\ndef general_bisect(ng: Integral, ok: Integral, judge: Callable[[Integral], bool]) -> Integral:\n """\n ???????????????????O(log L)??????\n\n :param ng: judge(ng)==False????\n :param ok: judge(ok)==True????\n :param judge: ??????????\n :return: judge(x)==True???????????\n """\n while abs(ng - ok) > 1:\n m = (ng + ok) // 2\n if judge(m):\n ok = m\n else:\n ng = m\n return ok\n\n\ndef general_bisect_float(ng: Real, ok: Real, judge: Callable[[Real], bool], tol: Real) -> Real:\n """\n ???????????????????O(log L)??????\n\n :param ng: judge(ng)==False????\n :param ok: judge(ok)==True????\n :param judge: ??????????\n :return: judge(x)==True???????????\n """\n while abs(ng - ok) > tol:\n m = (ng + ok) / 2\n if judge(m):\n ok = m\n else:\n ng = m\n return ok\n\n\ndef fibonacci_search(left: int, right: int, func: Union[Callable[[int], V], Sequence], inf: V = 2 ** 60) -> Tuple[\n V, int]:\n """\n ??????????????????????????????O(log L)??????\n ???(left, right)?????????\n\n :param left: ?????????????\n :param right: ?????????????\n :param func: ??????\n :param inf: func???\n :return: (func????, ????????func???)\n """\n try:\n func = func.__getitem__\n except AttributeError:\n pass\n f1, f2 = 1, 1\n while f1 + f2 < right - left:\n f1, f2 = f1 + f2, f1\n l = left\n m1 = func(l + f2)\n m2 = func(l + f1)\n while f1 > 2:\n f1, f2 = f2, f1 - f2\n if m1 > m2:\n l += f1\n m1 = m2\n m2 = func(l + f1) if l + f1 < right else inf\n else:\n m2 = m1\n m1 = func(l + f2)\n if m1 < m2:\n return m1, l + 1\n else:\n return m2, l + 2\n\n\ndef max2(x: V, y: V) -> V:\n return x if x > y else y\n\n\ndef min2(x: V, y: V) -> V:\n return x if x < y else y\n\n\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\n\n\ndef rerooting(rooted_tree, merge, identity, finalize):\n """\n merge: (T,T) -> T, (T, merge)?????\n identity: ???\n finalize: (T, V, V) -> T\n\n ????????dp?????\n dp[u,v] = finalize(merge(dp[v,k] for k in adj[v] if k != u), u, v)\n ???(u,v)?? u->v\n """\n N = rooted_tree.n_vertices\n parent = rooted_tree.parent\n children = rooted_tree.children\n order = rooted_tree.dfs_order\n\n # from leaf to parent\n dp_down = [None] * N\n for v in reversed(order):\n dp_down[v] = finalize(reduce(merge,\n (dp_down[c] for c in children[v]),\n identity), parent[v], v)\n\n # from parent to leaf\n dp_up = [None] * N\n dp_up[0] = identity\n for v in order:\n if len(children[v]) == 0:\n continue\n temp = (dp_up[v],) + tuple(dp_down[u] for u in children[v]) + (identity,)\n left = accumulate(temp[:-2], merge)\n right = tuple(accumulate(reversed(temp[2:]), merge))\n for u, l, r in zip(children[v], left, reversed(right)):\n dp_up[u] = finalize(merge(l, r), u, v)\n\n res = [None] * N\n for v, l in enumerate(children):\n res[v] = reduce(merge,\n (dp_down[u] for u in children[v]),\n identity)\n res[v] = merge(res[v], dp_up[v])\n return res, dp_up, dp_down\n\n\ndef rerooting_fast(rooted_tree, merge, identity, finalize):\n """\n merge: (T,T) -> T, (T, merge)?????\n identity: ???\n finalize: (T, V, V) -> T\n\n ????????dp?????\n dp[u,v] = finalize(merge(dp[v,k] for k in adj[v] if k != u), u, v)\n ???(u,v)??\n dp[u,v]: v?????u?????????????????\n """\n dp1 = [identity] * rooted_tree.n_vertices\n dp2 = [identity] * rooted_tree.n_vertices\n\n for v in rooted_tree.post_order:\n t = identity\n for u in rooted_tree.children(v):\n dp2[u] = t\n t = merge(t, finalize(dp1[u], v, u))\n t = identity\n for u in reversed(rooted_tree.children(v)):\n dp2[u] = merge(t, dp2[u])\n t = merge(t, finalize(dp1[u], v, u))\n dp1[v] = t\n for v in rooted_tree.pre_order:\n p = rooted_tree.parent(v)\n if p >= 0:\n dp2[v] = finalize(merge(dp2[v], dp2[p]), v, p)\n dp1[v] = merge(dp1[v], dp2[v])\n return dp1\n\n\ndef longest_increasing_sequence(l, inf, strict=True):\n if not l:\n return 0\n dp = [inf] * len(l)\n if strict:\n for i, v in enumerate(l):\n dp[bisect.bisect_left(dp, v)] = v\n else:\n for i, v in enumerate(l):\n dp[bisect.bisect_right(dp, v)] = v\n\n m = next(n for n in reversed(range(len(l))) if dp[n] < inf) + 1\n return m\n\n\n\n\ndef check_bipartiteness(n_vertices, edges):\n ds = DisjointSet.empty(2 * n_vertices)\n\n for a, b in edges:\n ds.union(a, b + n_vertices)\n ds.union(b, a + n_vertices)\n\n next_color = 0\n color = [-1] * (2 * n_vertices)\n for v in range(n_vertices):\n ra = ds.find(v)\n rb = ds.find(v + n_vertices)\n if ra == rb:\n return None\n if color[ra] < 0:\n color[ra] = next_color\n color[rb] = next_color + 1\n next_color += 2\n color[v] = color[ra]\n color[v + n_vertices] = color[rb]\n return color[:n_vertices]\n\n\ndef small_range_duplicate(a: List[int]) -> Tuple[List[int], List[int]]:\n MASK = (1 << 32) - 1\n n = len(a)\n left = [i - 1 for i in range(n + 1)]\n right = [i + 1 for i in range(n + 1)]\n\n sorted_ind = sorted((~v << 32) | i for i, v in enumerate(a))\n t = 0\n vi = sorted_ind[t]\n i = vi & MASK\n v = ~(vi >> 32)\n while t < n:\n j = i\n l = left[i]\n pi = l\n pv = v\n while v == pv and left[i] == pi:\n pi = i\n t += 1\n if t >= n:\n break\n vi = sorted_ind[t]\n i = vi & MASK\n v = ~(vi >> 32)\n r = right[pi]\n right[l] = r\n while j <= pi:\n nj = right[j]\n left[j] = l\n right[j] = r\n j = nj\n left[r] = l\n\n return left, right\n\n\ndef small_range(a: List[int]) -> Tuple[List[int], List[int]]:\n N = len(a)\n MASK = (1 << 32) - 1\n left = [i - 1 for i in range(N + 1)]\n right = [i + 1 for i in range(N + 1)]\n sorted_ind = sorted((~v << 32) | i for i, v in enumerate(a))\n for v in sorted_ind:\n i = v & MASK\n left[right[-i]] = left[-i]\n right[left[-i]] = right[-i]\n\n return left, right\n\n\ndef popcnt32(n: int) -> int:\n n = n - ((n >> 1) & 0x55555555)\n n = (n & 0x33333333) + ((n >> 2) & 0x33333333)\n return ((((n + (n >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24) & 0xff\n\n\ndef popcnt64(n: int) -> int:\n n = n - ((n >> 1) & 0x5555555555555555)\n n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333)\n n = (n + (n >> 4)) & 0x0f0f0f0f0f0f0f0f\n return ((((n + (n >> 32)) & 0xffffffff) * 0x01010101) >> 24) & 0xff\n\n\ndef popcnt(n: int) -> int:\n if n < 1 << 32:\n return popcnt32(n)\n elif n < 1 << 64:\n return popcnt64(n)\n else:\n return sum(c == \'1\' for c in bin(n))\n\n\ndef reverse_bits32(x: int):\n x = ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1)\n x = ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2)\n x = ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4)\n x = ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8)\n return ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16)\n\n\ndef count_inversions(l: List[Any]) -> int:\n """\n ?????????in-place????????\n\n :param l: ???\n :return: ???\n """\n bit = BinaryIndexedTree(len(l))\n res = 0\n for i, v in enumerate(l):\n bit[v] += 1\n res += bit[v + 1:]\n return res\n\n\ndef construct_xor_basis(iterable):\n """\n iterable??xor????????\n\n :param iterable: ?????????????\n :return: ?????int????\n """\n basis = []\n for e in iterable:\n for b in basis:\n e = min2(e, e ^ b)\n if e > 0:\n basis.append(e)\n return basis\n\n\ndef check_xor_span(basis, x):\n """\n x?basis???F2???????????????????\n basis????????????????????????\n\n :param basis: ??\n :param x: ?????\n :return: 0???????????????????????????????????\n """\n for b in basis:\n x = min2(x, x ^ b)\n return x\n\n\ndef get_rolling_hash(mods, bases):\n ib = [modinv(b, m) for b, m in zip(bases, mods)]\n k = len(mods)\n\n class RollingHash:\n """\n RollingHash object represents a hash of a sequence.\n O(1) to append/remove element from both front/end.\n\n """\n def __init__(self, hash, pb, l):\n self.hash = hash\n self.pb = pb\n self.l = l\n\n @classmethod\n def empty(cls):\n return cls([0]*k, [1]*k, 0)\n\n def _append_d(self, v):\n v += 1\n for i in range(k):\n self.hash[i] += v * self.pb[i]\n self.hash[i] %= mods[i]\n self.pb[i] = (self.pb[i]*bases[i]) % mods[i]\n self.l += 1\n\n def _appendleft_d(self, v):\n v += 1\n for i in range(k):\n self.hash[i] *= bases[i]\n self.hash[i] += v\n self.hash[i] %= mods[i]\n self.pb[i] = (self.pb[i]*bases[i]) % mods[i]\n self.l += 1\n\n def _pop_d(self, v):\n v += 1\n for i in range(k):\n self.pb[i] = (self.pb[i]*ib[i]) % mods[i]\n self.hash[i] -= v * self.pb[i]\n self.hash[i] %= mods[i]\n self.l -= 1\n\n def _popleft_d(self, v):\n v += 1\n for i in range(k):\n self.pb[i] = (self.pb[i]*ib[i]) % mods[i]\n self.hash[i] -= v\n self.hash[i] *= ib[i]\n self.hash[i] %= mods[i]\n self.l -= 1\n\n def append(self, v):\n h = self.copy()\n h._append_d(v)\n return h\n\n def appendleft(self, v):\n h = self.copy()\n h._appendleft_d(v)\n return h\n\n def pop(self, v):\n h = self.copy()\n h._pop_d(v)\n return h\n\n def popleft(self, v):\n h = self.copy()\n h._popleft_d(v)\n return h\n\n def __hash__(self):\n return hash(tuple(self.hash))\n\n def copy(self):\n return RollingHash(self.hash[:], self.pb[:], self.l)\n __copy__ = copy\n\n return RollingHash\n\n\ndef sliding_max(l, width):\n res = [0]*(len(l)-width+1)\n q = deque(maxlen=width+1)\n\n for i, v in enumerate(l):\n while q and l[q[0]] <= v:\n q.popleft()\n q.appendleft(i)\n while q[-1]+width <= i:\n q.pop()\n res[i-width+1] = l[q[-1]]\n return res\n\n'),
'lib.modint': (False, "from importlib.util import find_spec, module_from_spec\n\nmodints = {}\n\n\ndef get_modint(mod):\n try:\n return modints[mod]\n except KeyError:\n spec = find_spec('lib._modint')\n module = module_from_spec(spec)\n module.__dict__['MOD'] = mod\n spec.loader.exec_module(module)\n modints[mod] = module.ModInt\n return modints[mod]"),
'lib.number_theory': (False, 'from collections import Counter, defaultdict\nfrom math import sqrt, ceil, gcd\nfrom itertools import count\nfrom typing import *\n\n\ndef sign(x):\n return int(x > 0) - int(x < 0)\n\n\ndef egcd(a: int, b: int) -> Tuple[int, int, int]:\n """\n ?????????\n\n :param a: ??\n :param b: ??\n :return: (x, y, gcd(a,b)). x, y?ax+by=gcd(a,b)????\n """\n s, ps, r, pr = 0, 1, b, a\n while r != 0:\n q = pr // r\n pr, r = r, pr - q * r\n ps, s = s, ps - q * s\n t = (pr - ps * a) // b\n if pr > 0:\n return ps, t, pr\n return -ps, -t, -pr\n\n\ndef modinv(x: int, mod: int) -> int:\n """\n Z/(mod Z)???x???\n\n :param x: ??\n :param mod: ??\n :return: x * y % mod = 1????y\n """\n s, ps, r, pr = 0, 1, mod, x\n while r != 0:\n pr, (q, r) = r, divmod(pr, r)\n ps, s = s, ps - q * s\n if pr == 1:\n return ps if ps >= 0 else ps + mod\n raise ValueError("base is not invertible for the given modulus")\n\n\ndef modpow(x, k, mod):\n """\n Z/(mod Z)???x?k?\n\n :param x: ??\n :param k: ??\n :param mod: ??\n :return: x ** k % mod\n """\n if k < 0:\n x = modinv(x, mod)\n k = -k\n r = 1\n while k != 0:\n if k & 1:\n r = (r * x) % mod\n x = (x * x) % mod\n k >>= 1\n return r\n\n\n# ?????\ndef prime_factors(n):\n """\n n??????????\n\n :param n: ???\n :return: n????????????????generator\n """\n i = 2\n while i * i <= n:\n if n % i:\n i += 1\n else:\n n //= i\n yield i\n if n > 1:\n yield n\n\n\ndef int_product(iterable):\n x = 1\n for y in iterable:\n x *= y\n return x\n\n\n# ?????O(sqrt(n))????\ndef divisors(n):\n for i in range(1, ceil(sqrt(n)) + 1):\n j, r = divmod(n, i)\n if not r:\n yield i\n if i != j:\n yield j\n\n\n# ?????\ndef generate_primes():\n d = defaultdict(list)\n\n for q in count(2):\n if q in d:\n for p in d[q]:\n d[p + q].append(p)\n del d[q]\n else:\n yield q\n d[q * q].append(q)\n\n\ndef totient_factors(n):\n def it():\n prev = -1\n for p in prime_factors(n):\n if p == prev:\n yield p\n else:\n prev = p\n for q in prime_factors(p - 1):\n yield q\n return it()\n\n\ndef primitive_root(mod, phi_factors=None):\n if phi_factors is None:\n phi_factors = tuple(totient_factors(mod))\n phi = int_product(phi_factors)\n primes = set(phi_factors)\n for i in range(2, mod):\n for p in primes:\n if modpow(i, (phi // p), mod) == 1:\n break\n else:\n return i\n else:\n raise ValueError(f\'There is no primitive root for modulo {mod}\')\n\n\ndef lcm(nums: Iterable[int]) -> int:\n m = 1\n for n in nums:\n m *= n // gcd(m, n)\n return m\n\n\ndef chinese_remainder_theorem(reminders: List[int], mods: List[int], mods_lcm: int=-1) -> Tuple[int, int]:\n """\n returns x and lcm(reminders) s.t.\n all(x%m == r for r,m in zip(reminders,mods))\n """\n s = 0\n if mods_lcm < 0:\n mods_lcm = lcm(mods)\n for m, r in zip(mods, reminders):\n p = mods_lcm // m\n s += r * p * modinv(p, m)\n s %= mods_lcm\n return s, mods_lcm\n\n\ndef factorials_with_inv(k, mod):\n """\n 0! ... k! ?????mod????????\n """\n fac = [1] * (k + 1)\n inv = [1] * (k + 1)\n t = 1\n for i in range(1, k + 1):\n t = (t * i) % mod\n fac[i] = t\n t = modinv(t, mod)\n for i in reversed(range(1, k + 1)):\n inv[i] = t\n t = (t * i) % mod\n return fac, inv\n\n\ndef extended_lucas_theorem(mod):\n """\n Returns a function (n,m) -> C(n,m)%mod\n """\n factors = tuple((p, q, p ** q) for p, q in Counter(prime_factors(mod)).items())\n facs = [[0] * k for p, q, k in factors]\n invs = [[0] * k for p, q, k in factors]\n for (p, q, k), fac, inv in zip(factors, facs, invs):\n t = 1\n for n in range(k):\n if n % p != 0:\n t *= n\n t %= k\n fac[n] = t\n t = modinv(t, k)\n for n in reversed(range(k)):\n inv[n] = t\n if n % p != 0:\n t *= n\n t %= k\n\n def helper(n, m):\n l = n - m\n if l < 0:\n return 0\n\n def reminders():\n for (p, q, k), fac, inv in zip(factors, facs, invs):\n a, b, c, e0, eq, i, r = n, m, l, 0, -2, 1, 1\n while a > 0:\n r *= fac[a % k] * inv[b % k] * inv[c % k]\n r %= k\n a, b, c = a // p, b // p, c // p\n if i == q:\n eq = e0\n e0 += a - b - c\n i += 1\n if eq >= 0:\n eq += e0\n if e0 >= q:\n r = 0\n else:\n r *= p ** e0\n r %= k\n if not (p == 2 and q >= 3) and (eq % 2 == 1):\n r = -r\n yield r\n\n return chinese_remainder_theorem(reminders(), (m for _, _, m in factors), mod)[0]\n\n return helper\n\n\ndef lucas_theorem(m, n, mod, comb):\n cnt = 1\n while n > 0:\n m, mr = divmod(m, mod)\n n, nr = divmod(n, mod)\n if mr < nr:\n return 0\n cnt *= comb(mr, nr)\n cnt %= mod\n return cnt\n\n\n# C(n,m) is even iff (~n&m)\n\ndef floor_linear_sum(n, m, a, b):\n """\n returns sum((a*i+b)//m for i in range(n))\n """\n if b < 0:\n t = (-b - 1) // m + 1\n b += m * t\n res = -t * n\n else:\n res = 0\n while True:\n if a >= m:\n res += (n - 1) * n * (a // m) // 2\n a %= m\n if b >= m:\n res += n * (b // m)\n b %= m\n\n y_max = (a * n + b) // m\n if y_max == 0:\n return res\n nx_max = b - y_max * m\n res += (n + nx_max // a) * y_max\n n, m, a, b = y_max, a, m, nx_max % a\n\ndef get_sieve(n):\n sieve = [0]*(n+1)\n for i in range(2, len(sieve)):\n if sieve[i] > 0:\n continue\n sieve[i] = i\n for j in range(i*2, len(sieve), i):\n if sieve[j] == 0:\n sieve[j] = i\n return sieve\n\n\ndef divisors_from_sieve(n, sieve):\n res = [1]\n while n > 1:\n k = sieve[n]\n n //= k\n l = len(res)\n t = k\n res.extend(res[i]*t for i in range(l))\n while n > 1 and sieve[n] == k:\n t *= k\n res.extend(res[i]*t for i in range(l))\n n //= k\n return res\n\n\ndef factorize_from_sieve(n, sieve):\n while n > 1:\n yield sieve[n]\n n //= sieve[n]\n\n\ndef discrete_log(x: int, y: int, m: int) -> int:\n """\n x**k == y mod m ?????????k????\n\n :param x: ???????\n :param y: ??????????\n :param m: mod\n :return: ?????\n """\n\n x = int(x)\n y = int(y)\n m = int(m)\n if y >= m or y < 0:\n return -1\n if x == 0:\n if m == 1:\n return 0\n if y == 1:\n return 0\n if y == 0:\n return 1\n return -1\n p = 3\n tmp = x - 1\n cnt = 0\n primes = []\n counts = []\n ps = 0\n while tmp & 1:\n tmp >>= 1\n cnt += 1\n if cnt:\n primes.append(2)\n counts.append(cnt)\n ps += 1\n tmp += 1\n while tmp != 1:\n cnt = 0\n while tmp % p == 0:\n tmp //= p\n cnt += 1\n if cnt:\n primes.append(p)\n counts.append(cnt)\n ps += 1\n p += 2\n if tmp != 1 and p * p > x:\n primes.append(tmp)\n counts.append(1)\n ps += 1\n break\n tail = 0\n mp = m\n for i in range(ps):\n f = 0\n while mp % primes[i] == 0:\n mp //= primes[i]\n f += 1\n if tail < (f + counts[i] - 1) // counts[i]:\n tail = (f + counts[i] - 1) // counts[i]\n z = 1\n for i in range(tail):\n if z == y:\n return i\n z = z * x % m\n if y % gcd(z, m):\n return -1\n p = 3\n u = mp\n tmp = mp - 1\n if tmp & 1:\n u >>= 1\n while tmp & 1:\n tmp >>= 1\n tmp += 1\n while tmp != 1:\n if tmp % p == 0:\n u //= p\n u *= p - 1\n while tmp % p == 0:\n tmp //= p\n p += 2\n if tmp != 1 and p * p > mp:\n u //= tmp\n u *= tmp - 1\n break\n p = 1\n loop = u\n while p * p <= u:\n if u % p == 0:\n if z * modpow(x, p, m) % m == z:\n loop = p\n break\n ip = u // p\n if z * modpow(x, ip, m) % m == z:\n loop = ip\n p += 1\n l, r = 0, loop+1\n sq = (loop+1) >> 1\n while r - l > 1:\n if sq * sq <= loop:\n l = sq\n else:\n r = sq\n sq = (l + r) >> 1\n if sq * sq < loop:\n sq += 1\n b = modpow(modpow(x, loop-1, m), sq, m)\n d = {}\n f = z\n for i in range(sq):\n d[f] = i\n f = f * x % m\n g = y\n for i in range(sq):\n if g in d:\n return i*sq+d[g]+tail\n g = g * b % m\n return -1\n\n'),
'lib.online_sorted_list': (False, 'import sys\nimport traceback\n\nfrom bisect import bisect_left, bisect_right, insort\nfrom itertools import chain, repeat, starmap\nfrom math import log\nfrom operator import add, eq, ne, gt, ge, lt, le, iadd\nfrom textwrap import dedent\n\ntry:\n from collections.abc import Sequence, MutableSequence\nexcept ImportError:\n from collections import Sequence, MutableSequence\n\nfrom functools import wraps\nfrom sys import hexversion\n\nif hexversion < 0x03000000:\n try:\n from thread import get_ident\n except ImportError:\n from dummy_thread import get_ident\nelse:\n from functools import reduce\n\n try:\n from _thread import get_ident\n except ImportError:\n from _dummy_thread import get_ident\n\n\ndef recursive_repr(fillvalue=\'...\'):\n "Decorator to make a repr function return fillvalue for a recursive call."\n\n # pylint: disable=missing-docstring\n # Copied from reprlib in Python 3\n # https://hg.python.org/cpython/file/3.6/Lib/reprlib.py\n\n def decorating_function(user_function):\n repr_running = set()\n\n @wraps(user_function)\n def wrapper(self):\n key = id(self), get_ident()\n if key in repr_running:\n return fillvalue\n repr_running.add(key)\n try:\n result = user_function(self)\n finally:\n repr_running.discard(key)\n return result\n\n return wrapper\n\n return decorating_function\n\n\nclass OnlineSortedList(MutableSequence):\n """Sorted list is a sorted mutable sequence.\n\n Sorted list values are maintained in sorted order.\n\n Sorted list values must be comparable. The total ordering of values must\n not change while they are stored in the sorted list.\n\n Methods for adding values:\n\n * :func:`SortedList.add`\n * :func:`SortedList.update`\n * :func:`SortedList.__add__`\n * :func:`SortedList.__iadd__`\n * :func:`SortedList.__mul__`\n * :func:`SortedList.__imul__`\n\n Methods for removing values:\n\n * :func:`SortedList.clear`\n * :func:`SortedList.discard`\n * :func:`SortedList.remove`\n * :func:`SortedList.pop`\n * :func:`SortedList.__delitem__`\n\n Methods for looking up values:\n\n * :func:`SortedList.bisect_left`\n * :func:`SortedList.bisect_right`\n * :func:`SortedList.count`\n * :func:`SortedList.index`\n * :func:`SortedList.__contains__`\n * :func:`SortedList.__getitem__`\n\n Methods for iterating values:\n\n * :func:`SortedList.irange`\n * :func:`SortedList.islice`\n * :func:`SortedList.__iter__`\n * :func:`SortedList.__reversed__`\n\n Methods for miscellany:\n\n * :func:`SortedList.copy`\n * :func:`SortedList.__len__`\n * :func:`SortedList.__repr__`\n * :func:`SortedList._check`\n * :func:`SortedList._reset`\n\n Sorted lists use lexicographical ordering semantics when compared to other\n sequences.\n\n Some methods of mutable sequences are not supported and will raise\n not-implemented error.\n\n """\n DEFAULT_LOAD_FACTOR = 1000\n\n def __init__(self, iterable=None, key=None):\n """Initialize sorted list instance.\n\n Optional `iterable` argument provides an initial iterable of values to\n initialize the sorted list.\n\n Runtime complexity: `O(n*log(n))`\n\n >>> sl = SortedList()\n >>> sl\n SortedList([])\n >>> sl = SortedList([3, 1, 2, 5, 4])\n >>> sl\n SortedList([1, 2, 3, 4, 5])\n\n :param iterable: initial values (optional)\n\n """\n assert key is None\n self._len = 0\n self._load = self.DEFAULT_LOAD_FACTOR\n self._lists = []\n self._maxes = []\n self._index = []\n self._offset = 0\n\n if iterable is not None:\n self._update(iterable)\n\n def __new__(cls, iterable=None, key=None):\n """Create new sorted list or sorted-key list instance.\n\n Optional `key`-function argument will return an instance of subtype\n :class:`SortedKeyList`.\n\n >>> sl = SortedList()\n >>> isinstance(sl, SortedList)\n True\n >>> sl = SortedList(key=lambda x: -x)\n >>> isinstance(sl, SortedList)\n True\n >>> isinstance(sl, SortedKeyList)\n True\n\n :param iterable: initial values (optional)\n :param key: function used to extract comparison key (optional)\n :return: sorted list or sorted-key list instance\n\n """\n # pylint: disable=unused-argument\n if key is None:\n return object.__new__(cls)\n else:\n if cls is SortedList:\n return object.__new__(SortedKeyList)\n else:\n raise TypeError(\'inherit SortedKeyList for key argument\')\n\n @property\n def key(self): # pylint: disable=useless-return\n """Function used to extract comparison key from values.\n\n Sorted list compares values directly so the key function is none.\n\n """\n return None\n\n def _reset(self, load):\n """Reset sorted list load factor.\n\n The `load` specifies the load-factor of the list. The default load\n factor of 1000 works well for lists from tens to tens-of-millions of\n values. Good practice is to use a value that is the cube root of the\n list size. With billions of elements, the best load factor depends on\n your usage. It\'s best to leave the load factor at the default until you\n start benchmarking.\n\n See :doc:`implementation` and :doc:`performance-scale` for more\n information.\n\n Runtime complexity: `O(n)`\n\n :param int load: load-factor for sorted list sublists\n\n """\n values = reduce(iadd, self._lists, [])\n self._clear()\n self._load = load\n self._update(values)\n\n def clear(self):\n """Remove all values from sorted list.\n\n Runtime complexity: `O(n)`\n\n """\n self._len = 0\n del self._lists[:]\n del self._maxes[:]\n del self._index[:]\n self._offset = 0\n\n _clear = clear\n\n def add(self, value):\n """Add `value` to sorted list.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList()\n >>> sl.add(3)\n >>> sl.add(1)\n >>> sl.add(2)\n >>> sl\n SortedList([1, 2, 3])\n\n :param value: value to add to sorted list\n\n """\n _lists = self._lists\n _maxes = self._maxes\n\n if _maxes:\n pos = bisect_right(_maxes, value)\n\n if pos == len(_maxes):\n pos -= 1\n _lists[pos].append(value)\n _maxes[pos] = value\n else:\n insort(_lists[pos], value)\n\n self._expand(pos)\n else:\n _lists.append([value])\n _maxes.append(value)\n\n self._len += 1\n\n def _expand(self, pos):\n """Split sublists with length greater than double the load-factor.\n\n Updates the index when the sublist length is less than double the load\n level. This requires incrementing the nodes in a traversal from the\n leaf node to the root. For an example traversal see\n ``SortedList._loc``.\n\n """\n _load = self._load\n _lists = self._lists\n _index = self._index\n\n if len(_lists[pos]) > (_load << 1):\n _maxes = self._maxes\n\n _lists_pos = _lists[pos]\n half = _lists_pos[_load:]\n del _lists_pos[_load:]\n _maxes[pos] = _lists_pos[-1]\n\n _lists.insert(pos + 1, half)\n _maxes.insert(pos + 1, half[-1])\n\n del _index[:]\n else:\n if _index:\n child = self._offset + pos\n while child:\n _index[child] += 1\n child = (child - 1) >> 1\n _index[0] += 1\n\n def update(self, iterable):\n """Update sorted list by adding all values from `iterable`.\n\n Runtime complexity: `O(k*log(n))` -- approximate.\n\n >>> sl = SortedList()\n >>> sl.update([3, 1, 2])\n >>> sl\n SortedList([1, 2, 3])\n\n :param iterable: iterable of values to add\n\n """\n _lists = self._lists\n _maxes = self._maxes\n values = sorted(iterable)\n\n if _maxes:\n if len(values) * 4 >= self._len:\n _lists.append(values)\n values = reduce(iadd, _lists, [])\n values.sort()\n self._clear()\n else:\n _add = self.add\n for val in values:\n _add(val)\n return\n\n _load = self._load\n _lists.extend(values[pos:(pos + _load)]\n for pos in range(0, len(values), _load))\n _maxes.extend(sublist[-1] for sublist in _lists)\n self._len = len(values)\n del self._index[:]\n\n _update = update\n\n def __contains__(self, value):\n """Return true if `value` is an element of the sorted list.\n\n ``sl.__contains__(value)`` <==> ``value in sl``\n\n Runtime complexity: `O(log(n))`\n\n >>> sl = SortedList([1, 2, 3, 4, 5])\n >>> 3 in sl\n True\n\n :param value: search for value in sorted list\n :return: true if `value` in sorted list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return False\n\n pos = bisect_left(_maxes, value)\n\n if pos == len(_maxes):\n return False\n\n _lists = self._lists\n idx = bisect_left(_lists[pos], value)\n\n return _lists[pos][idx] == value\n\n def discard(self, value):\n """Remove `value` from sorted list if it is a member.\n\n If `value` is not a member, do nothing.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([1, 2, 3, 4, 5])\n >>> sl.discard(5)\n >>> sl.discard(0)\n >>> sl == [1, 2, 3, 4]\n True\n\n :param value: `value` to discard from sorted list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return\n\n pos = bisect_left(_maxes, value)\n\n if pos == len(_maxes):\n return\n\n _lists = self._lists\n idx = bisect_left(_lists[pos], value)\n\n if _lists[pos][idx] == value:\n self._delete(pos, idx)\n\n def remove(self, value):\n """Remove `value` from sorted list; `value` must be a member.\n\n If `value` is not a member, raise ValueError.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([1, 2, 3, 4, 5])\n >>> sl.remove(5)\n >>> sl == [1, 2, 3, 4]\n True\n >>> sl.remove(0)\n Traceback (most recent call last):\n ...\n ValueError: 0 not in list\n\n :param value: `value` to remove from sorted list\n :raises ValueError: if `value` is not in sorted list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n pos = bisect_left(_maxes, value)\n\n if pos == len(_maxes):\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n _lists = self._lists\n idx = bisect_left(_lists[pos], value)\n\n if _lists[pos][idx] == value:\n self._delete(pos, idx)\n else:\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n def _delete(self, pos, idx):\n """Delete value at the given `(pos, idx)`.\n\n Combines lists that are less than half the load level.\n\n Updates the index when the sublist length is more than half the load\n level. This requires decrementing the nodes in a traversal from the\n leaf node to the root. For an example traversal see\n ``SortedList._loc``.\n\n :param int pos: lists index\n :param int idx: sublist index\n\n """\n _lists = self._lists\n _maxes = self._maxes\n _index = self._index\n\n _lists_pos = _lists[pos]\n\n del _lists_pos[idx]\n self._len -= 1\n\n len_lists_pos = len(_lists_pos)\n\n if len_lists_pos > (self._load >> 1):\n _maxes[pos] = _lists_pos[-1]\n\n if _index:\n child = self._offset + pos\n while child > 0:\n _index[child] -= 1\n child = (child - 1) >> 1\n _index[0] -= 1\n elif len(_lists) > 1:\n if not pos:\n pos += 1\n\n prev = pos - 1\n _lists[prev].extend(_lists[pos])\n _maxes[prev] = _lists[prev][-1]\n\n del _lists[pos]\n del _maxes[pos]\n del _index[:]\n\n self._expand(prev)\n elif len_lists_pos:\n _maxes[pos] = _lists_pos[-1]\n else:\n del _lists[pos]\n del _maxes[pos]\n del _index[:]\n\n def _loc(self, pos, idx):\n """Convert an index pair (lists index, sublist index) into a single\n index number that corresponds to the position of the value in the\n sorted list.\n\n Many queries require the index be built. Details of the index are\n described in ``SortedList._build_index``.\n\n Indexing requires traversing the tree from a leaf node to the root. The\n parent of each node is easily computable at ``(pos - 1) // 2``.\n\n Left-child nodes are always at odd indices and right-child nodes are\n always at even indices.\n\n When traversing up from a right-child node, increment the total by the\n left-child node.\n\n The final index is the sum from traversal and the index in the sublist.\n\n For example, using the index from ``SortedList._build_index``::\n\n _index = 14 5 9 3 2 4 5\n _offset = 3\n\n Tree::\n\n 14\n 5 9\n 3 2 4 5\n\n Converting an index pair (2, 3) into a single index involves iterating\n like so:\n\n 1. Starting at the leaf node: offset + alpha = 3 + 2 = 5. We identify\n the node as a left-child node. At such nodes, we simply traverse to\n the parent.\n\n 2. At node 9, position 2, we recognize the node as a right-child node\n and accumulate the left-child in our total. Total is now 5 and we\n traverse to the parent at position 0.\n\n 3. Iteration ends at the root.\n\n The index is then the sum of the total and sublist index: 5 + 3 = 8.\n\n :param int pos: lists index\n :param int idx: sublist index\n :return: index in sorted list\n\n """\n if not pos:\n return idx\n\n _index = self._index\n\n if not _index:\n self._build_index()\n\n total = 0\n\n # Increment pos to point in the index to len(self._lists[pos]).\n\n pos += self._offset\n\n # Iterate until reaching the root of the index tree at pos = 0.\n\n while pos:\n\n # Right-child nodes are at odd indices. At such indices\n # account the total below the left child node.\n\n if not pos & 1:\n total += _index[pos - 1]\n\n # Advance pos to the parent node.\n\n pos = (pos - 1) >> 1\n\n return total + idx\n\n def _pos(self, idx):\n """Convert an index into an index pair (lists index, sublist index)\n that can be used to access the corresponding lists position.\n\n Many queries require the index be built. Details of the index are\n described in ``SortedList._build_index``.\n\n Indexing requires traversing the tree to a leaf node. Each node has two\n children which are easily computable. Given an index, pos, the\n left-child is at ``pos * 2 + 1`` and the right-child is at ``pos * 2 +\n 2``.\n\n When the index is less than the left-child, traversal moves to the\n left sub-tree. Otherwise, the index is decremented by the left-child\n and traversal moves to the right sub-tree.\n\n At a child node, the indexing pair is computed from the relative\n position of the child node as compared with the offset and the remaining\n index.\n\n For example, using the index from ``SortedList._build_index``::\n\n _index = 14 5 9 3 2 4 5\n _offset = 3\n\n Tree::\n\n 14\n 5 9\n 3 2 4 5\n\n Indexing position 8 involves iterating like so:\n\n 1. Starting at the root, position 0, 8 is compared with the left-child\n node (5) which it is greater than. When greater the index is\n decremented and the position is updated to the right child node.\n\n 2. At node 9 with index 3, we again compare the index to the left-child\n node with value 4. Because the index is the less than the left-child\n node, we simply traverse to the left.\n\n 3. At node 4 with index 3, we recognize that we are at a leaf node and\n stop iterating.\n\n 4. To compute the sublist index, we subtract the offset from the index\n of the leaf node: 5 - 3 = 2. To compute the index in the sublist, we\n simply use the index remaining from iteration. In this case, 3.\n\n The final index pair from our example is (2, 3) which corresponds to\n index 8 in the sorted list.\n\n :param int idx: index in sorted list\n :return: (lists index, sublist index) pair\n\n """\n if idx < 0:\n last_len = len(self._lists[-1])\n\n if (-idx) <= last_len:\n return len(self._lists) - 1, last_len + idx\n\n idx += self._len\n\n if idx < 0:\n raise IndexError(\'list index out of range\')\n elif idx >= self._len:\n raise IndexError(\'list index out of range\')\n\n if idx < len(self._lists[0]):\n return 0, idx\n\n _index = self._index\n\n if not _index:\n self._build_index()\n\n pos = 0\n child = 1\n len_index = len(_index)\n\n while child < len_index:\n index_child = _index[child]\n\n if idx < index_child:\n pos = child\n else:\n idx -= index_child\n pos = child + 1\n\n child = (pos << 1) + 1\n\n return (pos - self._offset, idx)\n\n def _build_index(self):\n """Build a positional index for indexing the sorted list.\n\n Indexes are represented as binary trees in a dense array notation\n similar to a binary heap.\n\n For example, given a lists representation storing integers::\n\n 0: [1, 2, 3]\n 1: [4, 5]\n 2: [6, 7, 8, 9]\n 3: [10, 11, 12, 13, 14]\n\n The first transformation maps the sub-lists by their length. The\n first row of the index is the length of the sub-lists::\n\n 0: [3, 2, 4, 5]\n\n Each row after that is the sum of consecutive pairs of the previous\n row::\n\n 1: [5, 9]\n 2: [14]\n\n Finally, the index is built by concatenating these lists together::\n\n _index = [14, 5, 9, 3, 2, 4, 5]\n\n An offset storing the start of the first row is also stored::\n\n _offset = 3\n\n When built, the index can be used for efficient indexing into the list.\n See the comment and notes on ``SortedList._pos`` for details.\n\n """\n row0 = list(map(len, self._lists))\n\n if len(row0) == 1:\n self._index[:] = row0\n self._offset = 0\n return\n\n head = iter(row0)\n tail = iter(head)\n row1 = list(starmap(add, zip(head, tail)))\n\n if len(row0) & 1:\n row1.append(row0[-1])\n\n if len(row1) == 1:\n self._index[:] = row1 + row0\n self._offset = 1\n return\n\n size = 2 ** (int(log(len(row1) - 1, 2)) + 1)\n row1.extend(repeat(0, size - len(row1)))\n tree = [row0, row1]\n\n while len(tree[-1]) > 1:\n head = iter(tree[-1])\n tail = iter(head)\n row = list(starmap(add, zip(head, tail)))\n tree.append(row)\n\n reduce(iadd, reversed(tree), self._index)\n self._offset = size * 2 - 1\n\n def __delitem__(self, index):\n """Remove value at `index` from sorted list.\n\n ``sl.__delitem__(index)`` <==> ``del sl[index]``\n\n Supports slicing.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList(\'abcde\')\n >>> del sl[2]\n >>> sl\n SortedList([\'a\', \'b\', \'d\', \'e\'])\n >>> del sl[:2]\n >>> sl\n SortedList([\'d\', \'e\'])\n\n :param index: integer or slice for indexing\n :raises IndexError: if index out of range\n\n """\n if isinstance(index, slice):\n start, stop, step = index.indices(self._len)\n\n if step == 1 and start < stop:\n if start == 0 and stop == self._len:\n return self._clear()\n elif self._len <= 8 * (stop - start):\n values = self._getitem(slice(None, start))\n if stop < self._len:\n values += self._getitem(slice(stop, None))\n self._clear()\n return self._update(values)\n\n indices = range(start, stop, step)\n\n # Delete items from greatest index to least so\n # that the indices remain valid throughout iteration.\n\n if step > 0:\n indices = reversed(indices)\n\n _pos, _delete = self._pos, self._delete\n\n for index in indices:\n pos, idx = _pos(index)\n _delete(pos, idx)\n else:\n pos, idx = self._pos(index)\n self._delete(pos, idx)\n\n def __getitem__(self, index):\n """Lookup value at `index` in sorted list.\n\n ``sl.__getitem__(index)`` <==> ``sl[index]``\n\n Supports slicing.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList(\'abcde\')\n >>> sl[1]\n \'b\'\n >>> sl[-1]\n \'e\'\n >>> sl[2:5]\n [\'c\', \'d\', \'e\']\n\n :param index: integer or slice for indexing\n :return: value or list of values\n :raises IndexError: if index out of range\n\n """\n _lists = self._lists\n\n if isinstance(index, slice):\n start, stop, step = index.indices(self._len)\n\n if step == 1 and start < stop:\n # Whole slice optimization: start to stop slices the whole\n # sorted list.\n\n if start == 0 and stop == self._len:\n return reduce(iadd, self._lists, [])\n\n start_pos, start_idx = self._pos(start)\n start_list = _lists[start_pos]\n stop_idx = start_idx + stop - start\n\n # Small slice optimization: start index and stop index are\n # within the start list.\n\n if len(start_list) >= stop_idx:\n return start_list[start_idx:stop_idx]\n\n if stop == self._len:\n stop_pos = len(_lists) - 1\n stop_idx = len(_lists[stop_pos])\n else:\n stop_pos, stop_idx = self._pos(stop)\n\n prefix = _lists[start_pos][start_idx:]\n middle = _lists[(start_pos + 1):stop_pos]\n result = reduce(iadd, middle, prefix)\n result += _lists[stop_pos][:stop_idx]\n\n return result\n\n if step == -1 and start > stop:\n result = self._getitem(slice(stop + 1, start + 1))\n result.reverse()\n return result\n\n # Return a list because a negative step could\n # reverse the order of the items and this could\n # be the desired behavior.\n\n indices = range(start, stop, step)\n return list(self._getitem(index) for index in indices)\n else:\n if self._len:\n if index == 0:\n return _lists[0][0]\n elif index == -1:\n return _lists[-1][-1]\n else:\n raise IndexError(\'list index out of range\')\n\n if 0 <= index < len(_lists[0]):\n return _lists[0][index]\n\n len_last = len(_lists[-1])\n\n if -len_last < index < 0:\n return _lists[-1][len_last + index]\n\n pos, idx = self._pos(index)\n return _lists[pos][idx]\n\n _getitem = __getitem__\n\n def __setitem__(self, index, value):\n """Raise not-implemented error.\n\n ``sl.__setitem__(index, value)`` <==> ``sl[index] = value``\n\n :raises NotImplementedError: use ``del sl[index]`` and\n ``sl.add(value)`` instead\n\n """\n message = \'use ``del sl[index]`` and ``sl.add(value)`` instead\'\n raise NotImplementedError(message)\n\n def __iter__(self):\n """Return an iterator over the sorted list.\n\n ``sl.__iter__()`` <==> ``iter(sl)``\n\n Iterating the sorted list while adding or deleting values may raise a\n :exc:`RuntimeError` or fail to iterate over all values.\n\n """\n return chain.from_iterable(self._lists)\n\n def __reversed__(self):\n """Return a reverse iterator over the sorted list.\n\n ``sl.__reversed__()`` <==> ``reversed(sl)``\n\n Iterating the sorted list while adding or deleting values may raise a\n :exc:`RuntimeError` or fail to iterate over all values.\n\n """\n return chain.from_iterable(map(reversed, reversed(self._lists)))\n\n def reverse(self):\n """Raise not-implemented error.\n\n Sorted list maintains values in ascending sort order. Values may not be\n reversed in-place.\n\n Use ``reversed(sl)`` for an iterator over values in descending sort\n order.\n\n Implemented to override `MutableSequence.reverse` which provides an\n erroneous default implementation.\n\n :raises NotImplementedError: use ``reversed(sl)`` instead\n\n """\n raise NotImplementedError(\'use ``reversed(sl)`` instead\')\n\n def islice(self, start=None, stop=None, reverse=False):\n """Return an iterator that slices sorted list from `start` to `stop`.\n\n The `start` and `stop` index are treated inclusive and exclusive,\n respectively.\n\n Both `start` and `stop` default to `None` which is automatically\n inclusive of the beginning and end of the sorted list.\n\n When `reverse` is `True` the values are yielded from the iterator in\n reverse order; `reverse` defaults to `False`.\n\n >>> sl = SortedList(\'abcdefghij\')\n >>> it = sl.islice(2, 6)\n >>> list(it)\n [\'c\', \'d\', \'e\', \'f\']\n\n :param int start: start index (inclusive)\n :param int stop: stop index (exclusive)\n :param bool reverse: yield values in reverse order\n :return: iterator\n\n """\n _len = self._len\n\n if not _len:\n return iter(())\n\n start, stop, _ = slice(start, stop).indices(self._len)\n\n if start >= stop:\n return iter(())\n\n _pos = self._pos\n\n min_pos, min_idx = _pos(start)\n\n if stop == _len:\n max_pos = len(self._lists) - 1\n max_idx = len(self._lists[-1])\n else:\n max_pos, max_idx = _pos(stop)\n\n return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)\n\n def _islice(self, min_pos, min_idx, max_pos, max_idx, reverse):\n """Return an iterator that slices sorted list using two index pairs.\n\n The index pairs are (min_pos, min_idx) and (max_pos, max_idx), the\n first inclusive and the latter exclusive. See `_pos` for details on how\n an index is converted to an index pair.\n\n When `reverse` is `True`, values are yielded from the iterator in\n reverse order.\n\n """\n _lists = self._lists\n\n if min_pos > max_pos:\n return iter(())\n\n if min_pos == max_pos:\n if reverse:\n indices = reversed(range(min_idx, max_idx))\n return map(_lists[min_pos].__getitem__, indices)\n\n indices = range(min_idx, max_idx)\n return map(_lists[min_pos].__getitem__, indices)\n\n next_pos = min_pos + 1\n\n if next_pos == max_pos:\n if reverse:\n min_indices = range(min_idx, len(_lists[min_pos]))\n max_indices = range(max_idx)\n return chain(\n map(_lists[max_pos].__getitem__, reversed(max_indices)),\n map(_lists[min_pos].__getitem__, reversed(min_indices)),\n )\n\n min_indices = range(min_idx, len(_lists[min_pos]))\n max_indices = range(max_idx)\n return chain(\n map(_lists[min_pos].__getitem__, min_indices),\n map(_lists[max_pos].__getitem__, max_indices),\n )\n\n if reverse:\n min_indices = range(min_idx, len(_lists[min_pos]))\n sublist_indices = range(next_pos, max_pos)\n sublists = map(_lists.__getitem__, reversed(sublist_indices))\n max_indices = range(max_idx)\n return chain(\n map(_lists[max_pos].__getitem__, reversed(max_indices)),\n chain.from_iterable(map(reversed, sublists)),\n map(_lists[min_pos].__getitem__, reversed(min_indices)),\n )\n\n min_indices = range(min_idx, len(_lists[min_pos]))\n sublist_indices = range(next_pos, max_pos)\n sublists = map(_lists.__getitem__, sublist_indices)\n max_indices = range(max_idx)\n return chain(\n map(_lists[min_pos].__getitem__, min_indices),\n chain.from_iterable(sublists),\n map(_lists[max_pos].__getitem__, max_indices),\n )\n\n def irange(self, minimum=None, maximum=None, inclusive=(True, True),\n reverse=False):\n """Create an iterator of values between `minimum` and `maximum`.\n\n Both `minimum` and `maximum` default to `None` which is automatically\n inclusive of the beginning and end of the sorted list.\n\n The argument `inclusive` is a pair of booleans that indicates whether\n the minimum and maximum ought to be included in the range,\n respectively. The default is ``(True, True)`` such that the range is\n inclusive of both minimum and maximum.\n\n When `reverse` is `True` the values are yielded from the iterator in\n reverse order; `reverse` defaults to `False`.\n\n >>> sl = SortedList(\'abcdefghij\')\n >>> it = sl.irange(\'c\', \'f\')\n >>> list(it)\n [\'c\', \'d\', \'e\', \'f\']\n\n :param minimum: minimum value to start iterating\n :param maximum: maximum value to stop iterating\n :param inclusive: pair of booleans\n :param bool reverse: yield values in reverse order\n :return: iterator\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return iter(())\n\n _lists = self._lists\n\n # Calculate the minimum (pos, idx) pair. By default this location\n # will be inclusive in our calculation.\n\n if minimum is None:\n min_pos = 0\n min_idx = 0\n else:\n if inclusive[0]:\n min_pos = bisect_left(_maxes, minimum)\n\n if min_pos == len(_maxes):\n return iter(())\n\n min_idx = bisect_left(_lists[min_pos], minimum)\n else:\n min_pos = bisect_right(_maxes, minimum)\n\n if min_pos == len(_maxes):\n return iter(())\n\n min_idx = bisect_right(_lists[min_pos], minimum)\n\n # Calculate the maximum (pos, idx) pair. By default this location\n # will be exclusive in our calculation.\n\n if maximum is None:\n max_pos = len(_maxes) - 1\n max_idx = len(_lists[max_pos])\n else:\n if inclusive[1]:\n max_pos = bisect_right(_maxes, maximum)\n\n if max_pos == len(_maxes):\n max_pos -= 1\n max_idx = len(_lists[max_pos])\n else:\n max_idx = bisect_right(_lists[max_pos], maximum)\n else:\n max_pos = bisect_left(_maxes, maximum)\n\n if max_pos == len(_maxes):\n max_pos -= 1\n max_idx = len(_lists[max_pos])\n else:\n max_idx = bisect_left(_lists[max_pos], maximum)\n\n return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)\n\n def __len__(self):\n """Return the size of the sorted list.\n\n ``sl.__len__()`` <==> ``len(sl)``\n\n :return: size of sorted list\n\n """\n return self._len\n\n def bisect_left(self, value):\n """Return an index to insert `value` in the sorted list.\n\n If the `value` is already present, the insertion point will be before\n (to the left of) any existing values.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([10, 11, 12, 13, 14])\n >>> sl.bisect_left(12)\n 2\n\n :param value: insertion index of value in sorted list\n :return: index\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos = bisect_left(_maxes, value)\n\n if pos == len(_maxes):\n return self._len\n\n idx = bisect_left(self._lists[pos], value)\n return self._loc(pos, idx)\n\n def bisect_right(self, value):\n """Return an index to insert `value` in the sorted list.\n\n Similar to `bisect_left`, but if `value` is already present, the\n insertion point will be after (to the right of) any existing values.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([10, 11, 12, 13, 14])\n >>> sl.bisect_right(12)\n 3\n\n :param value: insertion index of value in sorted list\n :return: index\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos = bisect_right(_maxes, value)\n\n if pos == len(_maxes):\n return self._len\n\n idx = bisect_right(self._lists[pos], value)\n return self._loc(pos, idx)\n\n bisect = bisect_right\n _bisect_right = bisect_right\n\n def upper_bound(self, x, equal=False):\n k = self.bisect_left(x + equal)\n if k:\n return self[k - 1]\n else:\n sys.stderr.write("upper_bound: no element smaller than {0} in this SortedList\\n".format(x))\n\n def lower_bound(self, x, equal=False):\n k = self.bisect_left(x + 1 - equal) + 1\n if k <= len(self):\n return self[k - 1]\n else:\n sys.stderr.write("lower_bound: no element larger than {0} in this SortedList\\n".format(x))\n\n def count(self, value):\n """Return number of occurrences of `value` in the sorted list.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList([1, 2, 2, 3, 3, 3, 4, 4, 4, 4])\n >>> sl.count(3)\n 3\n\n :param value: value to count in sorted list\n :return: count\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos_left = bisect_left(_maxes, value)\n\n if pos_left == len(_maxes):\n return 0\n\n _lists = self._lists\n idx_left = bisect_left(_lists[pos_left], value)\n pos_right = bisect_right(_maxes, value)\n\n if pos_right == len(_maxes):\n return self._len - self._loc(pos_left, idx_left)\n\n idx_right = bisect_right(_lists[pos_right], value)\n\n if pos_left == pos_right:\n return idx_right - idx_left\n\n right = self._loc(pos_right, idx_right)\n left = self._loc(pos_left, idx_left)\n return right - left\n\n def copy(self):\n """Return a shallow copy of the sorted list.\n\n Runtime complexity: `O(n)`\n\n :return: new sorted list\n\n """\n return self.__class__(self)\n\n __copy__ = copy\n\n def append(self, value):\n """Raise not-implemented error.\n\n Implemented to override `MutableSequence.append` which provides an\n erroneous default implementation.\n\n :raises NotImplementedError: use ``sl.add(value)`` instead\n\n """\n raise NotImplementedError(\'use ``sl.add(value)`` instead\')\n\n def extend(self, values):\n """Raise not-implemented error.\n\n Implemented to override `MutableSequence.extend` which provides an\n erroneous default implementation.\n\n :raises NotImplementedError: use ``sl.update(values)`` instead\n\n """\n raise NotImplementedError(\'use ``sl.update(values)`` instead\')\n\n def insert(self, index, value):\n """Raise not-implemented error.\n\n :raises NotImplementedError: use ``sl.add(value)`` instead\n\n """\n raise NotImplementedError(\'use ``sl.add(value)`` instead\')\n\n def pop(self, index=-1):\n """Remove and return value at `index` in sorted list.\n\n Raise :exc:`IndexError` if the sorted list is empty or index is out of\n range.\n\n Negative indices are supported.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList(\'abcde\')\n >>> sl.pop()\n \'e\'\n >>> sl.pop(2)\n \'c\'\n >>> sl\n SortedList([\'a\', \'b\', \'d\'])\n\n :param int index: index of value (default -1)\n :return: value\n :raises IndexError: if index is out of range\n\n """\n if not self._len:\n raise IndexError(\'pop index out of range\')\n\n _lists = self._lists\n\n if index == 0:\n val = _lists[0][0]\n self._delete(0, 0)\n return val\n\n if index == -1:\n pos = len(_lists) - 1\n loc = len(_lists[pos]) - 1\n val = _lists[pos][loc]\n self._delete(pos, loc)\n return val\n\n if 0 <= index < len(_lists[0]):\n val = _lists[0][index]\n self._delete(0, index)\n return val\n\n len_last = len(_lists[-1])\n\n if -len_last < index < 0:\n pos = len(_lists) - 1\n loc = len_last + index\n val = _lists[pos][loc]\n self._delete(pos, loc)\n return val\n\n pos, idx = self._pos(index)\n val = _lists[pos][idx]\n self._delete(pos, idx)\n return val\n\n def index(self, value, start=None, stop=None):\n """Return first index of value in sorted list.\n\n Raise ValueError if `value` is not present.\n\n Index must be between `start` and `stop` for the `value` to be\n considered present. The default value, None, for `start` and `stop`\n indicate the beginning and end of the sorted list.\n\n Negative indices are supported.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> sl = SortedList(\'abcde\')\n >>> sl.index(\'d\')\n 3\n >>> sl.index(\'z\')\n Traceback (most recent call last):\n ...\n ValueError: \'z\' is not in list\n\n :param value: value in sorted list\n :param int start: start index (default None, start of sorted list)\n :param int stop: stop index (default None, end of sorted list)\n :return: index of value\n :raises ValueError: if value is not present\n\n """\n _len = self._len\n\n if not _len:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n if start is None:\n start = 0\n if start < 0:\n start += _len\n if start < 0:\n start = 0\n\n if stop is None:\n stop = _len\n if stop < 0:\n stop += _len\n if stop > _len:\n stop = _len\n\n if stop <= start:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n _maxes = self._maxes\n pos_left = bisect_left(_maxes, value)\n\n if pos_left == len(_maxes):\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n _lists = self._lists\n idx_left = bisect_left(_lists[pos_left], value)\n\n if _lists[pos_left][idx_left] != value:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n stop -= 1\n left = self._loc(pos_left, idx_left)\n\n if start <= left:\n if left <= stop:\n return left\n else:\n right = self._bisect_right(value) - 1\n\n if start <= right:\n return start\n\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n def __add__(self, other):\n """Return new sorted list containing all values in both sequences.\n\n ``sl.__add__(other)`` <==> ``sl + other``\n\n Values in `other` do not need to be in sorted order.\n\n Runtime complexity: `O(n*log(n))`\n\n >>> sl1 = SortedList(\'bat\')\n >>> sl2 = SortedList(\'cat\')\n >>> sl1 + sl2\n SortedList([\'a\', \'a\', \'b\', \'c\', \'t\', \'t\'])\n\n :param other: other iterable\n :return: new sorted list\n\n """\n values = reduce(iadd, self._lists, [])\n values.extend(other)\n return self.__class__(values)\n\n __radd__ = __add__\n\n def __iadd__(self, other):\n """Update sorted list with values from `other`.\n\n ``sl.__iadd__(other)`` <==> ``sl += other``\n\n Values in `other` do not need to be in sorted order.\n\n Runtime complexity: `O(k*log(n))` -- approximate.\n\n >>> sl = SortedList(\'bat\')\n >>> sl += \'cat\'\n >>> sl\n SortedList([\'a\', \'a\', \'b\', \'c\', \'t\', \'t\'])\n\n :param other: other iterable\n :return: existing sorted list\n\n """\n self._update(other)\n return self\n\n def __mul__(self, num):\n """Return new sorted list with `num` shallow copies of values.\n\n ``sl.__mul__(num)`` <==> ``sl * num``\n\n Runtime complexity: `O(n*log(n))`\n\n >>> sl = SortedList(\'abc\')\n >>> sl * 3\n SortedList([\'a\', \'a\', \'a\', \'b\', \'b\', \'b\', \'c\', \'c\', \'c\'])\n\n :param int num: count of shallow copies\n :return: new sorted list\n\n """\n values = reduce(iadd, self._lists, []) * num\n return self.__class__(values)\n\n __rmul__ = __mul__\n\n def __imul__(self, num):\n """Update the sorted list with `num` shallow copies of values.\n\n ``sl.__imul__(num)`` <==> ``sl *= num``\n\n Runtime complexity: `O(n*log(n))`\n\n >>> sl = SortedList(\'abc\')\n >>> sl *= 3\n >>> sl\n SortedList([\'a\', \'a\', \'a\', \'b\', \'b\', \'b\', \'c\', \'c\', \'c\'])\n\n :param int num: count of shallow copies\n :return: existing sorted list\n\n """\n values = reduce(iadd, self._lists, []) * num\n self._clear()\n self._update(values)\n return self\n\n def __make_cmp(seq_op, symbol, doc):\n "Make comparator method."\n\n def comparer(self, other):\n "Compare method for sorted list and sequence."\n if not isinstance(other, Sequence):\n return NotImplemented\n\n self_len = self._len\n len_other = len(other)\n\n if self_len != len_other:\n if seq_op is eq:\n return False\n if seq_op is ne:\n return True\n\n for alpha, beta in zip(self, other):\n if alpha != beta:\n return seq_op(alpha, beta)\n\n return seq_op(self_len, len_other)\n\n seq_op_name = seq_op.__name__\n comparer.__name__ = \'__{0}__\'.format(seq_op_name)\n doc_str = """Return true if and only if sorted list is {0} `other`.\n\n ``sl.__{1}__(other)`` <==> ``sl {2} other``\n\n Comparisons use lexicographical order as with sequences.\n\n Runtime complexity: `O(n)`\n\n :param other: `other` sequence\n :return: true if sorted list is {0} `other`\n\n """\n comparer.__doc__ = dedent(doc_str.format(doc, seq_op_name, symbol))\n return comparer\n\n __eq__ = __make_cmp(eq, \'==\', \'equal to\')\n __ne__ = __make_cmp(ne, \'!=\', \'not equal to\')\n __lt__ = __make_cmp(lt, \'<\', \'less than\')\n __gt__ = __make_cmp(gt, \'>\', \'greater than\')\n __le__ = __make_cmp(le, \'<=\', \'less than or equal to\')\n __ge__ = __make_cmp(ge, \'>=\', \'greater than or equal to\')\n __make_cmp = staticmethod(__make_cmp)\n\n def __reduce__(self):\n values = reduce(iadd, self._lists, [])\n return (type(self), (values,))\n\n @recursive_repr()\n def __repr__(self):\n """Return string representation of sorted list.\n\n ``sl.__repr__()`` <==> ``repr(sl)``\n\n :return: string representation\n\n """\n return \'{0}({1!r})\'.format(type(self).__name__, list(self))\n\n def _check(self):\n """Check invariants of sorted list.\n\n Runtime complexity: `O(n)`\n\n """\n try:\n assert self._load >= 4\n assert len(self._maxes) == len(self._lists)\n assert self._len == sum(len(sublist) for sublist in self._lists)\n\n # Check all sublists are sorted.\n\n for sublist in self._lists:\n for pos in range(1, len(sublist)):\n assert sublist[pos - 1] <= sublist[pos]\n\n # Check beginning/end of sublists are sorted.\n\n for pos in range(1, len(self._lists)):\n assert self._lists[pos - 1][-1] <= self._lists[pos][0]\n\n # Check _maxes index is the last value of each sublist.\n\n for pos in range(len(self._maxes)):\n assert self._maxes[pos] == self._lists[pos][-1]\n\n # Check sublist lengths are less than double load-factor.\n\n double = self._load << 1\n assert all(len(sublist) <= double for sublist in self._lists)\n\n # Check sublist lengths are greater than half load-factor for all\n # but the last sublist.\n\n half = self._load >> 1\n for pos in range(0, len(self._lists) - 1):\n assert len(self._lists[pos]) >= half\n\n if self._index:\n assert self._len == self._index[0]\n assert len(self._index) == self._offset + len(self._lists)\n\n # Check index leaf nodes equal length of sublists.\n\n for pos in range(len(self._lists)):\n leaf = self._index[self._offset + pos]\n assert leaf == len(self._lists[pos])\n\n # Check index branch nodes are the sum of their children.\n\n for pos in range(self._offset):\n child = (pos << 1) + 1\n if child >= len(self._index):\n assert self._index[pos] == 0\n elif child + 1 == len(self._index):\n assert self._index[pos] == self._index[child]\n else:\n child_sum = self._index[child] + self._index[child + 1]\n assert child_sum == self._index[pos]\n except:\n traceback.print_exc(file=sys.stdout)\n print(\'len\', self._len)\n print(\'load\', self._load)\n print(\'offset\', self._offset)\n print(\'len_index\', len(self._index))\n print(\'index\', self._index)\n print(\'len_maxes\', len(self._maxes))\n print(\'maxes\', self._maxes)\n print(\'len_lists\', len(self._lists))\n print(\'lists\', self._lists)\n raise\n\n\ndef identity(value):\n """Identity function."""\n return value\n\n\nclass OnlineSortedKeyList(OnlineSortedList):\n """Sorted-key list is a subtype of sorted list.\n\n The sorted-key list maintains values in comparison order based on the\n result of a key function applied to every value.\n\n All the same methods that are available in :class:`SortedList` are also\n available in :class:`SortedKeyList`.\n\n Additional methods provided:\n\n * :attr:`SortedKeyList.key`\n * :func:`SortedKeyList.bisect_key_left`\n * :func:`SortedKeyList.bisect_key_right`\n * :func:`SortedKeyList.irange_key`\n\n Some examples below use:\n\n >>> from operator import neg\n >>> neg\n <built-in function neg>\n >>> neg(1)\n -1\n\n """\n\n def __init__(self, iterable=None, key=identity):\n """Initialize sorted-key list instance.\n\n Optional `iterable` argument provides an initial iterable of values to\n initialize the sorted-key list.\n\n Optional `key` argument defines a callable that, like the `key`\n argument to Python\'s `sorted` function, extracts a comparison key from\n each value. The default is the identity function.\n\n Runtime complexity: `O(n*log(n))`\n\n >>> from operator import neg\n >>> skl = SortedKeyList(key=neg)\n >>> skl\n SortedKeyList([], key=<built-in function neg>)\n >>> skl = SortedKeyList([3, 1, 2], key=neg)\n >>> skl\n SortedKeyList([3, 2, 1], key=<built-in function neg>)\n\n :param iterable: initial values (optional)\n :param key: function used to extract comparison key (optional)\n\n """\n super().__init__()\n self._key = key\n self._len = 0\n self._load = self.DEFAULT_LOAD_FACTOR\n self._lists = []\n self._keys = []\n self._maxes = []\n self._index = []\n self._offset = 0\n\n if iterable is not None:\n self._update(iterable)\n\n def __new__(cls, iterable=None, key=identity):\n return object.__new__(cls)\n\n @property\n def key(self):\n "Function used to extract comparison key from values."\n return self._key\n\n def clear(self):\n """Remove all values from sorted-key list.\n\n Runtime complexity: `O(n)`\n\n """\n self._len = 0\n del self._lists[:]\n del self._keys[:]\n del self._maxes[:]\n del self._index[:]\n\n _clear = clear\n\n def add(self, value):\n """Add `value` to sorted-key list.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList(key=neg)\n >>> skl.add(3)\n >>> skl.add(1)\n >>> skl.add(2)\n >>> skl\n SortedKeyList([3, 2, 1], key=<built-in function neg>)\n\n :param value: value to add to sorted-key list\n\n """\n _lists = self._lists\n _keys = self._keys\n _maxes = self._maxes\n\n key = self._key(value)\n\n if _maxes:\n pos = bisect_right(_maxes, key)\n\n if pos == len(_maxes):\n pos -= 1\n _lists[pos].append(value)\n _keys[pos].append(key)\n _maxes[pos] = key\n else:\n idx = bisect_right(_keys[pos], key)\n _lists[pos].insert(idx, value)\n _keys[pos].insert(idx, key)\n\n self._expand(pos)\n else:\n _lists.append([value])\n _keys.append([key])\n _maxes.append(key)\n\n self._len += 1\n\n def _expand(self, pos):\n """Split sublists with length greater than double the load-factor.\n\n Updates the index when the sublist length is less than double the load\n level. This requires incrementing the nodes in a traversal from the\n leaf node to the root. For an example traversal see\n ``SortedList._loc``.\n\n """\n _lists = self._lists\n _keys = self._keys\n _index = self._index\n\n if len(_keys[pos]) > (self._load << 1):\n _maxes = self._maxes\n _load = self._load\n\n _lists_pos = _lists[pos]\n _keys_pos = _keys[pos]\n half = _lists_pos[_load:]\n half_keys = _keys_pos[_load:]\n del _lists_pos[_load:]\n del _keys_pos[_load:]\n _maxes[pos] = _keys_pos[-1]\n\n _lists.insert(pos + 1, half)\n _keys.insert(pos + 1, half_keys)\n _maxes.insert(pos + 1, half_keys[-1])\n\n del _index[:]\n else:\n if _index:\n child = self._offset + pos\n while child:\n _index[child] += 1\n child = (child - 1) >> 1\n _index[0] += 1\n\n def update(self, iterable):\n """Update sorted-key list by adding all values from `iterable`.\n\n Runtime complexity: `O(k*log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList(key=neg)\n >>> skl.update([3, 1, 2])\n >>> skl\n SortedKeyList([3, 2, 1], key=<built-in function neg>)\n\n :param iterable: iterable of values to add\n\n """\n _lists = self._lists\n _keys = self._keys\n _maxes = self._maxes\n values = sorted(iterable, key=self._key)\n\n if _maxes:\n if len(values) * 4 >= self._len:\n _lists.append(values)\n values = reduce(iadd, _lists, [])\n values.sort(key=self._key)\n self._clear()\n else:\n _add = self.add\n for val in values:\n _add(val)\n return\n\n _load = self._load\n _lists.extend(values[pos:(pos + _load)]\n for pos in range(0, len(values), _load))\n _keys.extend(list(map(self._key, _list)) for _list in _lists)\n _maxes.extend(sublist[-1] for sublist in _keys)\n self._len = len(values)\n del self._index[:]\n\n _update = update\n\n def __contains__(self, value):\n """Return true if `value` is an element of the sorted-key list.\n\n ``skl.__contains__(value)`` <==> ``value in skl``\n\n Runtime complexity: `O(log(n))`\n\n >>> from operator import neg\n >>> skl = SortedKeyList([1, 2, 3, 4, 5], key=neg)\n >>> 3 in skl\n True\n\n :param value: search for value in sorted-key list\n :return: true if `value` in sorted-key list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return False\n\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n return False\n\n _lists = self._lists\n _keys = self._keys\n\n idx = bisect_left(_keys[pos], key)\n\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n return False\n if _lists[pos][idx] == value:\n return True\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n return False\n len_sublist = len(_keys[pos])\n idx = 0\n\n def discard(self, value):\n """Remove `value` from sorted-key list if it is a member.\n\n If `value` is not a member, do nothing.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg)\n >>> skl.discard(1)\n >>> skl.discard(0)\n >>> skl == [5, 4, 3, 2]\n True\n\n :param value: `value` to discard from sorted-key list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return\n\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n return\n\n _lists = self._lists\n _keys = self._keys\n idx = bisect_left(_keys[pos], key)\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n return\n if _lists[pos][idx] == value:\n self._delete(pos, idx)\n return\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n return\n len_sublist = len(_keys[pos])\n idx = 0\n\n def remove(self, value):\n """Remove `value` from sorted-key list; `value` must be a member.\n\n If `value` is not a member, raise ValueError.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([1, 2, 3, 4, 5], key=neg)\n >>> skl.remove(5)\n >>> skl == [4, 3, 2, 1]\n True\n >>> skl.remove(0)\n Traceback (most recent call last):\n ...\n ValueError: 0 not in list\n\n :param value: `value` to remove from sorted-key list\n :raises ValueError: if `value` is not in sorted-key list\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n raise ValueError(\'{0!r} not in list\'.format(value))\n\n _lists = self._lists\n _keys = self._keys\n idx = bisect_left(_keys[pos], key)\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n raise ValueError(\'{0!r} not in list\'.format(value))\n if _lists[pos][idx] == value:\n self._delete(pos, idx)\n return\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n raise ValueError(\'{0!r} not in list\'.format(value))\n len_sublist = len(_keys[pos])\n idx = 0\n\n def _delete(self, pos, idx):\n """Delete value at the given `(pos, idx)`.\n\n Combines lists that are less than half the load level.\n\n Updates the index when the sublist length is more than half the load\n level. This requires decrementing the nodes in a traversal from the\n leaf node to the root. For an example traversal see\n ``SortedList._loc``.\n\n :param int pos: lists index\n :param int idx: sublist index\n\n """\n _lists = self._lists\n _keys = self._keys\n _maxes = self._maxes\n _index = self._index\n keys_pos = _keys[pos]\n lists_pos = _lists[pos]\n\n del keys_pos[idx]\n del lists_pos[idx]\n self._len -= 1\n\n len_keys_pos = len(keys_pos)\n\n if len_keys_pos > (self._load >> 1):\n _maxes[pos] = keys_pos[-1]\n\n if _index:\n child = self._offset + pos\n while child > 0:\n _index[child] -= 1\n child = (child - 1) >> 1\n _index[0] -= 1\n elif len(_keys) > 1:\n if not pos:\n pos += 1\n\n prev = pos - 1\n _keys[prev].extend(_keys[pos])\n _lists[prev].extend(_lists[pos])\n _maxes[prev] = _keys[prev][-1]\n\n del _lists[pos]\n del _keys[pos]\n del _maxes[pos]\n del _index[:]\n\n self._expand(prev)\n elif len_keys_pos:\n _maxes[pos] = keys_pos[-1]\n else:\n del _lists[pos]\n del _keys[pos]\n del _maxes[pos]\n del _index[:]\n\n def irange(self, minimum=None, maximum=None, inclusive=(True, True),\n reverse=False):\n """Create an iterator of values between `minimum` and `maximum`.\n\n Both `minimum` and `maximum` default to `None` which is automatically\n inclusive of the beginning and end of the sorted-key list.\n\n The argument `inclusive` is a pair of booleans that indicates whether\n the minimum and maximum ought to be included in the range,\n respectively. The default is ``(True, True)`` such that the range is\n inclusive of both minimum and maximum.\n\n When `reverse` is `True` the values are yielded from the iterator in\n reverse order; `reverse` defaults to `False`.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([11, 12, 13, 14, 15], key=neg)\n >>> it = skl.irange(14.5, 11.5)\n >>> list(it)\n [14, 13, 12]\n\n :param minimum: minimum value to start iterating\n :param maximum: maximum value to stop iterating\n :param inclusive: pair of booleans\n :param bool reverse: yield values in reverse order\n :return: iterator\n\n """\n min_key = self._key(minimum) if minimum is not None else None\n max_key = self._key(maximum) if maximum is not None else None\n return self._irange_key(\n min_key=min_key, max_key=max_key,\n inclusive=inclusive, reverse=reverse,\n )\n\n def irange_key(self, min_key=None, max_key=None, inclusive=(True, True),\n reverse=False):\n """Create an iterator of values between `min_key` and `max_key`.\n\n Both `min_key` and `max_key` default to `None` which is automatically\n inclusive of the beginning and end of the sorted-key list.\n\n The argument `inclusive` is a pair of booleans that indicates whether\n the minimum and maximum ought to be included in the range,\n respectively. The default is ``(True, True)`` such that the range is\n inclusive of both minimum and maximum.\n\n When `reverse` is `True` the values are yielded from the iterator in\n reverse order; `reverse` defaults to `False`.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([11, 12, 13, 14, 15], key=neg)\n >>> it = skl.irange_key(-14, -12)\n >>> list(it)\n [14, 13, 12]\n\n :param min_key: minimum key to start iterating\n :param max_key: maximum key to stop iterating\n :param inclusive: pair of booleans\n :param bool reverse: yield values in reverse order\n :return: iterator\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return iter(())\n\n _keys = self._keys\n\n # Calculate the minimum (pos, idx) pair. By default this location\n # will be inclusive in our calculation.\n\n if min_key is None:\n min_pos = 0\n min_idx = 0\n else:\n if inclusive[0]:\n min_pos = bisect_left(_maxes, min_key)\n\n if min_pos == len(_maxes):\n return iter(())\n\n min_idx = bisect_left(_keys[min_pos], min_key)\n else:\n min_pos = bisect_right(_maxes, min_key)\n\n if min_pos == len(_maxes):\n return iter(())\n\n min_idx = bisect_right(_keys[min_pos], min_key)\n\n # Calculate the maximum (pos, idx) pair. By default this location\n # will be exclusive in our calculation.\n\n if max_key is None:\n max_pos = len(_maxes) - 1\n max_idx = len(_keys[max_pos])\n else:\n if inclusive[1]:\n max_pos = bisect_right(_maxes, max_key)\n\n if max_pos == len(_maxes):\n max_pos -= 1\n max_idx = len(_keys[max_pos])\n else:\n max_idx = bisect_right(_keys[max_pos], max_key)\n else:\n max_pos = bisect_left(_maxes, max_key)\n\n if max_pos == len(_maxes):\n max_pos -= 1\n max_idx = len(_keys[max_pos])\n else:\n max_idx = bisect_left(_keys[max_pos], max_key)\n\n return self._islice(min_pos, min_idx, max_pos, max_idx, reverse)\n\n _irange_key = irange_key\n\n def bisect_left(self, value):\n """Return an index to insert `value` in the sorted-key list.\n\n If the `value` is already present, the insertion point will be before\n (to the left of) any existing values.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg)\n >>> skl.bisect_left(1)\n 4\n\n :param value: insertion index of value in sorted-key list\n :return: index\n\n """\n return self._bisect_key_left(self._key(value))\n\n def bisect_right(self, value):\n """Return an index to insert `value` in the sorted-key list.\n\n Similar to `bisect_left`, but if `value` is already present, the\n insertion point will be after (to the right of) any existing values.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedList([5, 4, 3, 2, 1], key=neg)\n >>> skl.bisect_right(1)\n 5\n\n :param value: insertion index of value in sorted-key list\n :return: index\n\n """\n return self._bisect_key_right(self._key(value))\n\n bisect = bisect_right\n\n def bisect_key_left(self, key):\n """Return an index to insert `key` in the sorted-key list.\n\n If the `key` is already present, the insertion point will be before (to\n the left of) any existing keys.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg)\n >>> skl.bisect_key_left(-1)\n 4\n\n :param key: insertion index of key in sorted-key list\n :return: index\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n return self._len\n\n idx = bisect_left(self._keys[pos], key)\n\n return self._loc(pos, idx)\n\n _bisect_key_left = bisect_key_left\n\n def bisect_key_right(self, key):\n """Return an index to insert `key` in the sorted-key list.\n\n Similar to `bisect_key_left`, but if `key` is already present, the\n insertion point will be after (to the right of) any existing keys.\n\n Similar to the `bisect` module in the standard library.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedList([5, 4, 3, 2, 1], key=neg)\n >>> skl.bisect_key_right(-1)\n 5\n\n :param key: insertion index of key in sorted-key list\n :return: index\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n pos = bisect_right(_maxes, key)\n\n if pos == len(_maxes):\n return self._len\n\n idx = bisect_right(self._keys[pos], key)\n\n return self._loc(pos, idx)\n\n bisect_key = bisect_key_right\n _bisect_key_right = bisect_key_right\n\n def count(self, value):\n """Return number of occurrences of `value` in the sorted-key list.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([4, 4, 4, 4, 3, 3, 3, 2, 2, 1], key=neg)\n >>> skl.count(2)\n 2\n\n :param value: value to count in sorted-key list\n :return: count\n\n """\n _maxes = self._maxes\n\n if not _maxes:\n return 0\n\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n return 0\n\n _lists = self._lists\n _keys = self._keys\n idx = bisect_left(_keys[pos], key)\n total = 0\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n return total\n if _lists[pos][idx] == value:\n total += 1\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n return total\n len_sublist = len(_keys[pos])\n idx = 0\n\n def copy(self):\n """Return a shallow copy of the sorted-key list.\n\n Runtime complexity: `O(n)`\n\n :return: new sorted-key list\n\n """\n return self.__class__(self, key=self._key)\n\n __copy__ = copy\n\n def index(self, value, start=None, stop=None):\n """Return first index of value in sorted-key list.\n\n Raise ValueError if `value` is not present.\n\n Index must be between `start` and `stop` for the `value` to be\n considered present. The default value, None, for `start` and `stop`\n indicate the beginning and end of the sorted-key list.\n\n Negative indices are supported.\n\n Runtime complexity: `O(log(n))` -- approximate.\n\n >>> from operator import neg\n >>> skl = SortedKeyList([5, 4, 3, 2, 1], key=neg)\n >>> skl.index(2)\n 3\n >>> skl.index(0)\n Traceback (most recent call last):\n ...\n ValueError: 0 is not in list\n\n :param value: value in sorted-key list\n :param int start: start index (default None, start of sorted-key list)\n :param int stop: stop index (default None, end of sorted-key list)\n :return: index of value\n :raises ValueError: if value is not present\n\n """\n _len = self._len\n\n if not _len:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n if start is None:\n start = 0\n if start < 0:\n start += _len\n if start < 0:\n start = 0\n\n if stop is None:\n stop = _len\n if stop < 0:\n stop += _len\n if stop > _len:\n stop = _len\n\n if stop <= start:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n _maxes = self._maxes\n key = self._key(value)\n pos = bisect_left(_maxes, key)\n\n if pos == len(_maxes):\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n stop -= 1\n _lists = self._lists\n _keys = self._keys\n idx = bisect_left(_keys[pos], key)\n len_keys = len(_keys)\n len_sublist = len(_keys[pos])\n\n while True:\n if _keys[pos][idx] != key:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n if _lists[pos][idx] == value:\n loc = self._loc(pos, idx)\n if start <= loc <= stop:\n return loc\n elif loc > stop:\n break\n idx += 1\n if idx == len_sublist:\n pos += 1\n if pos == len_keys:\n raise ValueError(\'{0!r} is not in list\'.format(value))\n len_sublist = len(_keys[pos])\n idx = 0\n\n raise ValueError(\'{0!r} is not in list\'.format(value))\n\n def __add__(self, other):\n """Return new sorted-key list containing all values in both sequences.\n\n ``skl.__add__(other)`` <==> ``skl + other``\n\n Values in `other` do not need to be in sorted-key order.\n\n Runtime complexity: `O(n*log(n))`\n\n >>> from operator import neg\n >>> skl1 = SortedKeyList([5, 4, 3], key=neg)\n >>> skl2 = SortedKeyList([2, 1, 0], key=neg)\n >>> skl1 + skl2\n SortedKeyList([5, 4, 3, 2, 1, 0], key=<built-in function neg>)\n\n :param other: other iterable\n :return: new sorted-key list\n\n """\n values = reduce(iadd, self._lists, [])\n values.extend(other)\n return self.__class__(values, key=self._key)\n\n __radd__ = __add__\n\n def __mul__(self, num):\n """Return new sorted-key list with `num` shallow copies of values.\n\n ``skl.__mul__(num)`` <==> ``skl * num``\n\n Runtime complexity: `O(n*log(n))`\n\n >>> from operator import neg\n >>> skl = SortedKeyList([3, 2, 1], key=neg)\n >>> skl * 2\n SortedKeyList([3, 3, 2, 2, 1, 1], key=<built-in function neg>)\n\n :param int num: count of shallow copies\n :return: new sorted-key list\n\n """\n values = reduce(iadd, self._lists, []) * num\n return self.__class__(values, key=self._key)\n\n def __reduce__(self):\n values = reduce(iadd, self._lists, [])\n return (type(self), (values, self.key))\n\n @recursive_repr()\n def __repr__(self):\n """Return string representation of sorted-key list.\n\n ``skl.__repr__()`` <==> ``repr(skl)``\n\n :return: string representation\n\n """\n type_name = type(self).__name__\n return \'{0}({1!r}, key={2!r})\'.format(type_name, list(self), self._key)\n\n def _check(self):\n """Check invariants of sorted-key list.\n\n Runtime complexity: `O(n)`\n\n """\n try:\n assert self._load >= 4\n assert len(self._maxes) == len(self._lists) == len(self._keys)\n assert self._len == sum(len(sublist) for sublist in self._lists)\n\n # Check all sublists are sorted.\n\n for sublist in self._keys:\n for pos in range(1, len(sublist)):\n assert sublist[pos - 1] <= sublist[pos]\n\n # Check beginning/end of sublists are sorted.\n\n for pos in range(1, len(self._keys)):\n assert self._keys[pos - 1][-1] <= self._keys[pos][0]\n\n # Check _keys matches _key mapped to _lists.\n\n for val_sublist, key_sublist in zip(self._lists, self._keys):\n assert len(val_sublist) == len(key_sublist)\n for val, key in zip(val_sublist, key_sublist):\n assert self._key(val) == key\n\n # Check _maxes index is the last value of each sublist.\n\n for pos in range(len(self._maxes)):\n assert self._maxes[pos] == self._keys[pos][-1]\n\n # Check sublist lengths are less than double load-factor.\n\n double = self._load << 1\n assert all(len(sublist) <= double for sublist in self._lists)\n\n # Check sublist lengths are greater than half load-factor for all\n # but the last sublist.\n\n half = self._load >> 1\n for pos in range(0, len(self._lists) - 1):\n assert len(self._lists[pos]) >= half\n\n if self._index:\n assert self._len == self._index[0]\n assert len(self._index) == self._offset + len(self._lists)\n\n # Check index leaf nodes equal length of sublists.\n\n for pos in range(len(self._lists)):\n leaf = self._index[self._offset + pos]\n assert leaf == len(self._lists[pos])\n\n # Check index branch nodes are the sum of their children.\n\n for pos in range(self._offset):\n child = (pos << 1) + 1\n if child >= len(self._index):\n assert self._index[pos] == 0\n elif child + 1 == len(self._index):\n assert self._index[pos] == self._index[child]\n else:\n child_sum = self._index[child] + self._index[child + 1]\n assert child_sum == self._index[pos]\n except:\n traceback.print_exc(file=sys.stdout)\n print(\'len\', self._len)\n print(\'load\', self._load)\n print(\'offset\', self._offset)\n print(\'len_index\', len(self._index))\n print(\'index\', self._index)\n print(\'len_maxes\', len(self._maxes))\n print(\'maxes\', self._maxes)\n print(\'len_keys\', len(self._keys))\n print(\'keys\', self._keys)\n print(\'len_lists\', len(self._lists))\n print(\'lists\', self._lists)\n raise\n\n\n'),
'lib.string_search': (False, "import functools\nimport typing\n\n\ndef _sa_naive(s: typing.List[int]) -> typing.List[int]:\n sa = list(range(len(s)))\n return sorted(sa, key=lambda i: s[i:])\n\n\ndef _sa_doubling(s: typing.List[int]) -> typing.List[int]:\n n = len(s)\n sa = list(range(n))\n rnk = s.copy()\n tmp = [0] * n\n k = 1\n while k < n:\n def cmp(x: int, y: int) -> int:\n if rnk[x] != rnk[y]:\n return rnk[x] - rnk[y]\n rx = rnk[x + k] if x + k < n else -1\n ry = rnk[y + k] if y + k < n else -1\n return rx - ry\n sa.sort(key=functools.cmp_to_key(cmp))\n tmp[sa[0]] = 0\n for i in range(1, n):\n tmp[sa[i]] = tmp[sa[i - 1]] + (1 if cmp(sa[i - 1], sa[i]) else 0)\n tmp, rnk = rnk, tmp\n k *= 2\n return sa\n\n\ndef _sa_is(s: typing.List[int], upper: int) -> typing.List[int]:\n threshold_naive = 10\n threshold_doubling = 40\n\n n = len(s)\n\n if n == 0:\n return []\n if n == 1:\n return [0]\n if n == 2:\n if s[0] < s[1]:\n return [0, 1]\n else:\n return [1, 0]\n\n if n < threshold_naive:\n return _sa_naive(s)\n if n < threshold_doubling:\n return _sa_doubling(s)\n\n sa = [0] * n\n ls = [False] * n\n for i in range(n - 2, -1, -1):\n if s[i] == s[i + 1]:\n ls[i] = ls[i + 1]\n else:\n ls[i] = s[i] < s[i + 1]\n\n sum_l = [0] * (upper + 1)\n sum_s = [0] * (upper + 1)\n for i in range(n):\n if not ls[i]:\n sum_s[s[i]] += 1\n else:\n sum_l[s[i] + 1] += 1\n for i in range(upper + 1):\n sum_s[i] += sum_l[i]\n if i < upper:\n sum_l[i + 1] += sum_s[i]\n\n def induce(lms: typing.List[int]) -> None:\n nonlocal sa\n sa = [-1] * n\n\n buf = sum_s.copy()\n for d in lms:\n if d == n:\n continue\n sa[buf[s[d]]] = d\n buf[s[d]] += 1\n\n buf = sum_l.copy()\n sa[buf[s[n - 1]]] = n - 1\n buf[s[n - 1]] += 1\n for i in range(n):\n v = sa[i]\n if v >= 1 and not ls[v - 1]:\n sa[buf[s[v - 1]]] = v - 1\n buf[s[v - 1]] += 1\n\n buf = sum_l.copy()\n for i in range(n - 1, -1, -1):\n v = sa[i]\n if v >= 1 and ls[v - 1]:\n buf[s[v - 1] + 1] -= 1\n sa[buf[s[v - 1] + 1]] = v - 1\n\n lms_map = [-1] * (n + 1)\n m = 0\n for i in range(1, n):\n if not ls[i - 1] and ls[i]:\n lms_map[i] = m\n m += 1\n lms = []\n for i in range(1, n):\n if not ls[i - 1] and ls[i]:\n lms.append(i)\n\n induce(lms)\n\n if m:\n sorted_lms = []\n for v in sa:\n if lms_map[v] != -1:\n sorted_lms.append(v)\n rec_s = [0] * m\n rec_upper = 0\n rec_s[lms_map[sorted_lms[0]]] = 0\n for i in range(1, m):\n left = sorted_lms[i - 1]\n right = sorted_lms[i]\n if lms_map[left] + 1 < m:\n end_l = lms[lms_map[left] + 1]\n else:\n end_l = n\n if lms_map[right] + 1 < m:\n end_r = lms[lms_map[right] + 1]\n else:\n end_r = n\n\n same = True\n if end_l - left != end_r - right:\n same = False\n else:\n while left < end_l:\n if s[left] != s[right]:\n break\n left += 1\n right += 1\n if left == n or s[left] != s[right]:\n same = False\n\n if not same:\n rec_upper += 1\n rec_s[lms_map[sorted_lms[i]]] = rec_upper\n\n rec_sa = _sa_is(rec_s, rec_upper)\n\n for i in range(m):\n sorted_lms[i] = lms[rec_sa[i]]\n induce(sorted_lms)\n\n return sa\n\n\ndef suffix_array(s: typing.Union[str, typing.List[int]],\n upper: typing.Optional[int] = None) -> typing.List[int]:\n '''\n SA-IS, linear-time suffix array construction\n Reference:\n G. Nong, S. Zhang, and W. H. Chan,\n Two Efficient Algorithms for Linear Time Suffix Array Construction\n '''\n\n if isinstance(s, str):\n return _sa_is([ord(c) for c in s], 255)\n elif upper is None:\n n = len(s)\n idx = list(range(n))\n\n def cmp(left: int, right: int) -> int:\n return typing.cast(int, s[left]) - typing.cast(int, s[right])\n\n idx.sort(key=functools.cmp_to_key(cmp))\n s2 = [0] * n\n now = 0\n for i in range(n):\n if i and s[idx[i - 1]] != s[idx[i]]:\n now += 1\n s2[idx[i]] = now\n return _sa_is(s2, now)\n else:\n assert 0 <= upper\n for d in s:\n assert 0 <= d <= upper\n\n return _sa_is(s, upper)\n\n\ndef lcp_array(s: typing.Union[str, typing.List[int]],\n sa: typing.List[int]) -> typing.List[int]:\n '''\n Longest-Common-Prefix computation\n Reference:\n T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,\n Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its\n Applications\n '''\n\n if isinstance(s, str):\n s = [ord(c) for c in s]\n\n n = len(s)\n assert n >= 1\n\n rnk = [0] * n\n for i in range(n):\n rnk[sa[i]] = i\n\n lcp = [0] * (n - 1)\n h = 0\n for i in range(n):\n if h > 0:\n h -= 1\n if rnk[i] == 0:\n continue\n j = sa[rnk[i] - 1]\n while j + h < n and i + h < n:\n if s[j + h] != s[i + h]:\n break\n h += 1\n lcp[rnk[i] - 1] = h\n\n return lcp\n\n\ndef z_algorithm(s: typing.Union[str, typing.List[int]]) -> typing.List[int]:\n '''\n Z algorithm\n Reference:\n D. Gusfield,\n Algorithms on Strings, Trees, and Sequences: Computer Science and\n Computational Biology\n '''\n\n if isinstance(s, str):\n s = [ord(c) for c in s]\n\n n = len(s)\n if n == 0:\n return []\n\n z = [0] * n\n j = 0\n for i in range(1, n):\n z[i] = 0 if j + z[j] <= i else min(j + z[j] - i, z[i - j])\n while i + z[i] < n and s[z[i]] == s[i + z[i]]:\n z[i] += 1\n if j + z[j] < i + z[i]:\n j = i\n z[0] = n\n\n return z"),
'lib.transform': (False, 'from cmath import rect, pi\nfrom lib.misc import reverse_bits32\nfrom lib.number_theory import totient_factors, primitive_root, modinv, modpow\nfrom typing import List, TypeVar, Callable\n\nM = TypeVar(\'M\')\n\n\ndef fft(a: List[float], inverse=False):\n one = complex(1.0)\n n = (len(a) - 1).bit_length()\n m = 2 ** n\n a += [complex(0.0)] * (m - len(a))\n pows = [rect(1.0, (-pi if inverse else pi) / (2 ** (n - 1)))]\n for _ in range(n - 1):\n pows.append(pows[-1] ** 2)\n pows.reverse()\n\n shift = 32 - n\n for i in range(m):\n j = reverse_bits32(i) >> shift\n if i < j:\n a[i], a[j] = a[j], a[i]\n\n for i in range(m):\n b = 1\n for w1 in pows:\n if not i & b:\n break\n i ^= b\n w = one\n while not i & b:\n s = a[i]\n t = a[i | b] * w\n a[i] = s + t\n a[i | b] = s - t\n w *= w1\n i += 1\n i ^= b\n b <<= 1\n if inverse:\n c = 1 / m\n for i in range(m):\n a[i] *= c\n return a\n\n\ndef ntt(a: List[int], mod: int, inverse: bool = False):\n if type(a[0]) is not int:\n for i, v in enumerate(a):\n a[i] = int(v)\n n = (len(a) - 1).bit_length()\n d2 = 0\n r = 1\n phi_factors = tuple(totient_factors(mod))\n for p in phi_factors:\n if p == 2:\n d2 += 1\n else:\n r *= p\n if d2 < n:\n raise ValueError(f\'Given array is too long: modulo {mod} only support array length up to {2 ** d2}\')\n\n pr = primitive_root(mod, phi_factors)\n if inverse:\n pr = modinv(pr, mod)\n pows = [modpow(pr, r * 2 ** (d2 - n), mod)]\n for _ in range(n - 1):\n pows.append(pows[-1] ** 2 % mod)\n pows = tuple(reversed(pows))\n\n m = 2 ** n\n a.extend(0 for _ in range(m - len(a)))\n\n shift = 32 - n\n for i in range(m):\n j = reverse_bits32(i) >> shift\n if i < j:\n a[i], a[j] = a[j], a[i]\n\n for i in range(m):\n b = 1\n for w1 in pows:\n if not i & b:\n break\n i ^= b\n w = 1\n while not i & b:\n j = i | b\n s = a[i]\n t = a[j] * w\n a[i] = (s + t) % mod\n a[j] = (s - t) % mod\n w = (w * w1) % mod\n i += 1\n i ^= b\n b <<= 1\n\n if inverse:\n c = modinv(m, mod)\n for i, v in enumerate(a):\n a[i] = (v * c) % mod\n return a\n\n\ndef zeta(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``M`` ?????\n\n ``ouput[i] = sum(data[j] : i|j == i)``\n\n ???: ``O(N * log N)``\n\n ?:\n\n ``zeta(data, add)``: ???????????\n\n ``zeta(data, sub)``: ?????????????????\n\n ??->??->???: ``output[k] = sum(a[i]*b[j] : i|j == k)``\n """\n n = len(data)\n i = 1\n while i < n:\n for j in range(n):\n if j & i != 0:\n data[j] = operator(data[j], data[j ^ i])\n i <<= 1\n return data\n\n\ndef zeta_divisors(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``M`` ?????\n\n ``ouput[i] = sum(data[j] for j in range(N) if j?i???)``\n\n ???: ``O(N * log log N)``\n\n ?:\n\n ``zeta_divisors(data, add)``: ?????????\n\n ``mobius_divisors(data, sub)``: ???????????????\n\n ??->??->???: ``output[k] = sum(a[i]*b[j] : lcm(i,j) == k)``\n """\n n = len(data)\n sieve = [0] * len(data)\n for p in range(2, n):\n if not sieve[p]:\n for a, b in zip(range(1, n), range(p, n, p)):\n sieve[b] = 1\n data[b] = operator(data[b], data[a])\n return data\n\n\ndef mobius_divisors(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``zeta_divisors`` ????\n """\n n = len(data)\n sieve = [0] * len(data)\n for p in range(2, n):\n if not sieve[p]:\n t = (n - 1) // p\n for a, b in zip(range(t, 0, -1), range(t * p, 0, -p)):\n sieve[b] = 1\n data[b] = operator(data[b], data[a])\n return data\n\n\ndef zeta_multiples(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``M`` ?????\n\n ``ouput[i] = sum(data[j] for j in range(N) if j?i???)``\n\n ???: ``O(N * log log N)``\n\n ?:\n\n ``zeta_multiple(data, add)``: ?????????\n\n ``mobius_multiples(data, sub)``: ???????????????\n\n ??->??->???: ``output[k] = sum(a[i]*b[j] : gcd(i,j) == k)``\n """\n n = len(data)\n sieve = [0] * len(data)\n for p in range(2, n):\n if not sieve[p]:\n t = (n - 1) // p\n for a, b in zip(range(t, 0, -1), range(t * p, 0, -p)):\n sieve[b] = 1\n data[a] = operator(data[a], data[b])\n return data\n\n\ndef mobius_multiples(data: List[M], operator: Callable[[M, M], M]) -> List[M]:\n r"""\n ??????data????????\n\n ``zeta_multiples`` ????\n """\n n = len(data)\n sieve = [0] * len(data)\n for p in range(2, n):\n if not sieve[p]:\n for a, b in zip(range(1, n), range(p, n, p)):\n sieve[b] = 1\n data[a] = operator(data[a], data[b])\n return data\n'),
'lib.tree': (False, 'from lib.graph import BaseGraph, Graph\nfrom typing import *\nimport itertools\nimport random\nfrom lib.array2d import Array2d\n\n\nT = TypeVar(\'T\')\n\n\nclass BaseRootedTree(BaseGraph):\n\n def __init__(self, n_vertices, root_vertex=0):\n super().__init__(n_vertices)\n self.root = root_vertex\n\n def parent(self, v: int) -> int:\n raise NotImplementedError\n\n def children(self, v: int) -> Iterable[int]:\n raise NotImplementedError\n\n def adj(self, v) -> Iterable[int]:\n if self.root == v:\n return self.children(v)\n return itertools.chain(self.children(v), (self.parent(v),))\n\n def post_order(self) -> Iterable[int]:\n """\n bottom vertices first\n """\n return (~v for v in self.prepost_order() if v < 0)\n\n def pre_order(self) -> Iterable[int]:\n """\n top vertices first\n """\n stack = [self.root]\n while stack:\n v = stack.pop()\n yield v\n for u in self.children(v):\n stack.append(u)\n\n def prepost_order(self) -> Iterable[int]:\n """\n if v >= 0: it\'s pre-order entry.\n\n otherwise: it\'s post-order entry.\n """\n stack = [~self.root, self.root]\n while stack:\n v = stack.pop()\n yield v\n if v >= 0:\n for u in self.children(v):\n stack.append(~u)\n stack.append(u)\n\n def prepost_indices(self, order=None) -> Tuple[List[int], List[int]]:\n if order is None:\n order = self.prepost_order()\n pre_ind = [0] * self.n_vertices\n post_ind = [0] * self.n_vertices\n for i, t in enumerate(order):\n if t >= 0:\n pre_ind[t] = i\n else:\n post_ind[~t] = i\n return pre_ind, post_ind\n\n def depth(self) -> List[int]:\n depth = [0] * self.n_vertices\n for v in self.pre_order():\n d = depth[v]\n for c in self.children(v):\n depth[c] = d + 1\n return depth\n\n def sort_edge_values(self, wedges: Iterable[Tuple[int, int, T]], default: Optional[T] = None) -> List[T]:\n memo = [default] * self.n_vertices\n for u, v, d in wedges:\n if self.parent(u) == v:\n memo[u] = d\n else:\n memo[v] = d\n return memo\n\n def height(self, depth_list: Optional[List[int]] = None) -> int:\n if depth_list is None:\n depth_list = self.depth()\n return max(depth_list) + 1\n\n def path_to_ancestor(self, v: int, k: int) -> List[int]:\n """\n ??v??k???????????.\n\n :param v: ??\n :param k: ??????????\n :return: ??\n """\n res = [-1] * (k + 1)\n for i in range(k + 1):\n res[i] = v\n v = self.parent(v)\n if v < 0:\n break\n return res\n\n def path(self, s: int, t: int, depth_list: Optional[List[int]] = None) -> List[int]:\n """\n ??s????t?????????\n\n :param s: ??\n :param t: ??\n :param depth_list: ?????????\u3000(optional)\n :return: ??\n """\n if s == t:\n return [s]\n if depth_list:\n d1 = depth_list[s]\n d2 = depth_list[t]\n else:\n d1 = 0\n v = s\n while v >= 0:\n v = self.parent(v)\n d1 += 1\n d2 = 0\n v = t\n while v >= 0:\n v = self.parent(v)\n d2 += 1\n p1 = [s]\n p2 = [t]\n if d1 > d2:\n for _ in range(d1 - d2):\n p1.append(self.parent(p1[-1]))\n else:\n for _ in range(d2 - d1):\n p2.append(self.parent(p2[-1]))\n while p1[-1] != p2[-1]:\n p1.append(self.parent(p1[-1]))\n p2.append(self.parent(p2[-1]))\n p2.pop()\n p1.extend(reversed(p2))\n return p1\n\n def aggregate_root_path(self, aggregate: Callable[[T, int], T], identity: T,\n pre_order: Optional[Iterable[int]] = None) -> List[T]:\n """\n ????????????dp??????.\n\n :param aggregate: (T, V) -> T\n :param identity: ???\n :param pre_order: pre_order????\n :return ?????????????dp?\n """\n if pre_order is None:\n pre_order = self.pre_order()\n\n dp = [identity] * self.n_vertices\n for v in pre_order:\n p = self.parent(v)\n if p >= 0:\n dp[v] = aggregate(dp[p], v)\n return dp\n\n def aggregate_subtree(self, merge: Callable[[int, Callable[[None], Iterator[T]]], T],\n post_order: Optional[Iterable[int]] = None) -> List[T]:\n """\n ???????????????dp??????.\n\n :param merge: (vertex, Iterable(T)) -> T, (T, merge)?????\n :param post_order: post_order????\n :return ???????????????????dp?\n """\n if post_order is None:\n post_order = self.post_order()\n\n dp = [None] * self.n_vertices\n for v in post_order:\n dp[v] = merge(v, lambda: (dp[u] for u in self.children(v)))\n return dp\n\n def solve_rerooting(self, merge: Callable[[T, T, int], T], identity: T, finalize: Callable[[T, int, int], T],\n pre_order: Optional[Iterable[int]] = None) -> List[T]:\n """\n ????dp????\n\n dp[u,v] = finalize(merge(dp[v,k] for k in adj[v] if k != u, v), u, v)\n\n (v?????u?????????????????)\n\n :param merge: (T, T, V) -> T, (T, merge)?????\n :param identity: ???\n :param finalize: (T, V, V) -> T\n :param pre_order: pre_order????\n :return ???????????????dp?\n """\n\n if pre_order is None:\n pre_order = list(self.pre_order())\n dp1 = [identity] * self.n_vertices\n dp2 = [identity] * self.n_vertices\n\n for v in reversed(pre_order):\n t = identity\n for u in self.children(v):\n dp2[u] = t\n t = merge(t, finalize(dp1[u], v, u), v)\n t = identity\n for u in reversed(list(self.children(v))):\n dp2[u] = merge(t, dp2[u], v)\n t = merge(t, finalize(dp1[u], v, u), v)\n dp1[v] = t\n for v in pre_order:\n if v == self.root:\n continue\n p = self.parent(v)\n dp2[v] = finalize(merge(dp2[v], dp2[p], v), v, p)\n dp1[v] = merge(dp1[v], dp2[v], v)\n return dp1\n\n def subtree_sizes(self, post_order: Optional[Iterable[int]] = None):\n def merge(v, values):\n return sum(values)+1\n return self.aggregate_subtree(merge, post_order)\n\n def get_doubling_strategy(self):\n return DoublingStrategy(self)\n\n\nclass DoublingStrategy:\n def __init__(self, tree: BaseRootedTree, depth=None, pre_order=None):\n if pre_order is None:\n pre_order = tree.pre_order()\n if depth is None:\n depth = tree.depth()\n self.depth = depth\n self.tree = tree\n d = (max(depth) + 1).bit_length()\n dbl = Array2d.full(tree.n_vertices, d, -1)\n for v in pre_order:\n u = tree.parent(v)\n dbl[v, 0] = u\n for i in range(d - 1):\n u = dbl[u, i]\n if u < 0:\n break\n dbl[v, i + 1] = u\n self.dbl = dbl\n\n def ancestor_of(self, v: int, k: int) -> int:\n if k > self.depth[v]:\n return -1\n i = 0\n while k:\n if k & 1:\n v = self.dbl[v, i]\n k //= 2\n i += 1\n return v\n\n def lca(self, u: int, v: int) -> int:\n lu, lv = self.depth[u], self.depth[v]\n if lu > lv:\n u = self.ancestor_of(u, lu - lv)\n else:\n v = self.ancestor_of(v, lv - lu)\n if u == v:\n return u\n\n i = self.dbl.m - 1\n while True:\n while i >= 0 and self.dbl[u, i] == self.dbl[v, i]:\n i -= 1\n if i < 0:\n return self.dbl[u, 0]\n u, v = self.dbl[u, i], self.dbl[v, i]\n\n def dist(self, u: int, v: int) -> int:\n return self.depth[u] + self.depth[v] - 2 * self.depth[self.lca(u, v)]\n\n\nclass RootedTree(BaseRootedTree):\n\n def __init__(self, parent: List[int], children: Graph, root_vertex: int):\n super().__init__(len(parent), root_vertex)\n self._parent = parent\n self._children = children\n\n @classmethod\n def from_edges(cls, edges, root_vertex=0):\n n = len(edges) + 1\n g = Graph.from_undirected_edges(n, edges)\n parent = [0] * n\n parent[root_vertex] = -1\n stack = [root_vertex]\n while stack:\n v = stack.pop()\n p = parent[v]\n for u in g.adj(v):\n if u != p:\n parent[u] = v\n stack.append(u)\n return cls.from_parent(parent, root_vertex)\n\n @classmethod\n def from_parent(cls, parent, root_vertex=0):\n return cls(parent,\n Graph.from_directed_edges(len(parent), ((p, v) for v, p in enumerate(parent) if p >= 0)),\n root_vertex)\n\n @classmethod\n def random(cls, n_vertices, root_vertex=0):\n parent = [-1] * n_vertices\n vertices = list(range(root_vertex)) + list(range(root_vertex + 1, n_vertices))\n random.shuffle(vertices)\n vertices.append(root_vertex)\n for i, v in zip(reversed(range(n_vertices)), vertices[-2::-1]):\n parent[v] = vertices[random.randrange(i, n_vertices)]\n return cls.from_parent(parent, root_vertex)\n\n def parent(self, v):\n return self._parent[v]\n\n def children(self, v):\n return self._children.adj(v)\n\n\nclass BinaryTrie:\n class Node:\n def __init__(self):\n self.zero = None\n self.one = None\n self.cnt = 0\n\n def __init__(self, bits):\n self.root = self.Node()\n self.bits = bits\n\n def add(self, v):\n n = self.root\n n.cnt += 1\n for d in reversed(range(self.bits)):\n if (v >> d) & 1:\n if not n.one:\n n.one = BinaryTrie.Node()\n n = n.one\n else:\n if not n.zero:\n n.zero = BinaryTrie.Node()\n n = n.zero\n n.cnt += 1\n return n\n\n def remove(self, v):\n n = self.root\n n.cnt -= 1\n for d in reversed(range(self.bits)):\n if (v >> d) & 1:\n n = n.one\n else:\n n = n.zero\n n.cnt -= 1\n return n\n\n def find_argminxor(self, v):\n n = self.root\n r = 0\n for d in reversed(range(self.bits)):\n if (v >> d) & 1:\n if n.one and n.one.cnt > 0:\n n = n.one\n r |= 1 << d\n else:\n n = n.zero\n else:\n if n.zero and n.zero.cnt > 0:\n n = n.zero\n else:\n n = n.one\n r |= 1 << d\n return r\n\n def find_nth(self):\n raise NotImplementedError\n\n def __contains__(self, v):\n n = self.root\n for d in reversed(range(self.bits)):\n if (v >> d) & 1:\n n = n.one\n else:\n n = n.zero\n if not n or n.cnt == 0:\n return False\n return True\n\n\nclass Trie(BaseRootedTree):\n\n def __init__(self, n_alphabets: int):\n super().__init__(1)\n self.n_alphabets = n_alphabets\n self._parent = [-1]\n self.end = [0]\n self._children = [[-1]*n_alphabets]\n\n def add(self, s):\n v = 0\n for c in s:\n u = self._children[v][c]\n if u < 0:\n self._parent.append(v)\n self.end.append(0)\n self._children[v][c] = self.n_vertices\n self._children.append([-1]*self.n_alphabets)\n self.n_vertices += 1\n v = self._children[v][c]\n self.end[v] = 1\n return v\n\n def parent(self, v: int) -> int:\n return self._parent[v]\n\n def children(self, v):\n return (self._children[v][c] for c in range(self.n_alphabets) if self._children[v][c] >= 0)'),
'lib._modint': (False, 'from lib.number_theory import modinv, modpow\n\nintadd = int.__add__\nintsub = int.__sub__\nintmul = int.__mul__\n\n\nclass ModInt(int):\n mod = MOD\n\n @classmethod\n def v(cls, v):\n return ModInt(v % MOD)\n\n def __neg__(self):\n return ModInt(intsub(MOD, self) if self != 0 else 0)\n\n def __add__(self, other):\n x = intadd(self, other)\n return ModInt(x if x < MOD else x - MOD)\n\n def __sub__(self, other):\n x = intsub(self, other)\n return ModInt(x if x >= 0 else x + MOD)\n\n def __rsub__(self, other):\n x = intsub(other, self)\n return ModInt(x if x >= 0 else x + MOD)\n\n def __mul__(self, other):\n return ModInt(intmul(self, other) % MOD)\n\n def __truediv__(self, other):\n return self * ModInt(other).inv\n\n def __rtruediv__(self, other):\n return self.inv * other\n\n __radd__ = __add__\n __rmul__ = __mul__\n __floordiv__ = __truediv__\n __rfloordiv__ = __rtruediv__\n\n def __pow__(self, other, **kwargs):\n return ModInt(modpow(int(self), int(other), MOD))\n\n @property\n def inv(self):\n return ModInt(modinv(int(self), MOD))\n\n @classmethod\n def sum(cls, iterable):\n r = 0\n for v in iterable:\n r += int(v)\n return ModInt(r)\n\n @classmethod\n def product(cls, iterable):\n r = ModInt(1)\n for v in iterable:\n r *= v\n return r\n'),
'lib': (True, ''),
}
_sys.meta_path.insert(2, InlineImporter)
# Entrypoint
from collections import defaultdict
from lib.data_structure import SegmentTree, BinaryIndexedTree
from lib.misc import min2
q = int(input())
queries = [tuple(map(int,input().split())) for _ in range(q)]
i2v = sorted(set(tokens[1] for tokens in queries if tokens[0] < 3))
v2i = {v:i for i,v in enumerate(i2v)}
bit = BinaryIndexedTree(len(i2v))
memo = defaultdict(int)
seg = SegmentTree.all_identity(min2, 2**30, len(i2v))
dup_cnt = 0
for tokens in queries:
if tokens[0] == 1:
x = tokens[1]
if memo[x] == 0:
i = v2i[x]
s = bit[:i]
l = bit.bisect_left(s) if s > 0 else -1
if 0<=l:
seg[l] = i2v[l]^x
r = bit.bisect_right(s)
if r < len(i2v):
seg[i] = i2v[r]^x
bit[i] += 1
else:
dup_cnt += 1
memo[x] += 1
elif tokens[0] == 2:
x = tokens[1]
if memo[x] == 1:
i = v2i[x]
bit[i] -= 1
seg[i] = 2**30
s = bit[:i]
l = bit.bisect_left(s) if s > 0 else -1
r = bit.bisect_right(s)
if 0<=l:
if r < len(i2v):
seg[l] = i2v[l]^i2v[r]
else:
seg[l] = 2**30
elif memo[x] == 2:
dup_cnt -= 1
memo[x] -= 1
else:
print(seg[:] if dup_cnt == 0 else 0)
|
ConDefects/ConDefects/Code/abc308_g/Python/43737866
|
condefects-python_data_2516
|
T = int(input())
INF = float("inf")
def check(a,b,c):
if abs(a-b) % 3 == 0:
d = abs(a-b) // 3
if d <= c:
return max(a,b)
return INF
for t in range(T):
R, G, B = map(int, input().split())
ans = []
if R==G or G==B or B==R:
rgb = sorted([R,G,B])
print(rgb[1])
else:
ans.append( check(R, G, B) )
ans.append( check(R, B, G) )
ans.append( check(B, G, R) )
#print(ans)
print(-1) if min(ans)==INF else print(min(ans))
T = int(input())
INF = float("inf")
def check(a,b,c):
if abs(a-b) % 3 == 0:
return max(a,b)
return INF
for t in range(T):
R, G, B = map(int, input().split())
ans = []
if R==G or G==B or B==R:
rgb = sorted([R,G,B])
print(rgb[1])
else:
ans.append( check(R, G, B) )
ans.append( check(R, B, G) )
ans.append( check(B, G, R) )
#print(ans)
print(-1) if min(ans)==INF else print(min(ans))
|
ConDefects/ConDefects/Code/arc128_b/Python/38862798
|
condefects-python_data_2517
|
# B - Balls of Three Colors
MAX = 10 ** 8
def solve(r, g, b):
def solve1(other1, other2):
diff = other1 - other2
if diff % 3 != 0:
return MAX
return other2 + diff
ans = MAX
ans = min(ans, solve1(max(g, b), min(g, b)))
ans = min(ans, solve1(max(r, b), min(r, b)))
ans = min(ans, solve1(max(g, r), min(g, r)))
return -1 if ans == MAX else ans
t = int(input())
for _ in range(t):
r, g, b = [int(e) for e in input().split()]
print(solve(r, g, b))
# B - Balls of Three Colors
MAX = 10 ** 8 + 1
def solve(r, g, b):
def solve1(other1, other2):
diff = other1 - other2
if diff % 3 != 0:
return MAX
return other2 + diff
ans = MAX
ans = min(ans, solve1(max(g, b), min(g, b)))
ans = min(ans, solve1(max(r, b), min(r, b)))
ans = min(ans, solve1(max(g, r), min(g, r)))
return -1 if ans == MAX else ans
t = int(input())
for _ in range(t):
r, g, b = [int(e) for e in input().split()]
print(solve(r, g, b))
|
ConDefects/ConDefects/Code/arc128_b/Python/42302488
|
condefects-python_data_2518
|
from math import gcd
import sys
input = sys.stdin.readline
inf = float('inf')
def read(dtype=int):
return list(map(dtype, input().split()))
t = int(input())
def diff(a):
return [a[1]-a[0], a[2]-a[1], a[0]-a[2]]
n = 3
for _ in range(t):
a = read()
ans = inf
for i in range(3):
x = (i-1) % n
y = (i+1) % n
c = min(a[x], a[y])
v = (max(a[y], a[x]) - c) // 3
if (max(a[y], a[x]) - c) % 3 == 0 and a[i] + c >= v:
ans = min(ans, c + v*3)
print(-1 if ans == inf else ans)
from math import gcd
import sys
input = sys.stdin.readline
inf = float('inf')
def read(dtype=int):
return list(map(dtype, input().split()))
t = int(input())
def diff(a):
return [a[1]-a[0], a[2]-a[1], a[0]-a[2]]
n = 3
for _ in range(t):
a = read()
ans = inf
for i in range(3):
x = (i-1) % n
y = (i+1) % n
c = min(a[x], a[y])
v = (max(a[y], a[x]) - c) // 3
if (max(a[y], a[x]) - c) % 3 == 0:
ans = min(ans, c + v*3)
print(-1 if ans == inf else ans)
|
ConDefects/ConDefects/Code/arc128_b/Python/40706832
|
condefects-python_data_2519
|
n = int(input())
for i in range(n):
l = list(map(int,input().split()))
if len(set(l)) <= 2:
if l.count(l[0]) != 1:
print(l[0])
elif l.count(l[1]) != 1:
print(l[1])
else:
lm = [min(l[0],l[1]),min(l[0],l[2]),min(l[2],l[1])]
ls = [abs(l[0]-l[1]),abs(l[0]-l[2]),abs(l[2]-l[1])]
lp = [i%3 for i in ls]
if 0 not in lp:
print(-1)
else:
ans = []
for i in range(3):
if lp[i] != 0:
continue
t = 2 - i
if l[t] < ls[i]//3:
continue
ans.append(ls[i]+lm[i])
if ans == []:
print(-1)
else:
print(min(ans))
n = int(input())
for i in range(n):
l = list(map(int,input().split()))
if len(set(l)) <= 2:
if l.count(l[0]) != 1:
print(l[0])
elif l.count(l[1]) != 1:
print(l[1])
else:
lm = [min(l[0],l[1]),min(l[0],l[2]),min(l[2],l[1])]
ls = [abs(l[0]-l[1]),abs(l[0]-l[2]),abs(l[2]-l[1])]
lp = [i%3 for i in ls]
if 0 not in lp:
print(-1)
else:
ans = []
for i in range(3):
if lp[i] != 0:
continue
t = 2 - i
ans.append(ls[i]+lm[i])
if ans == []:
print(-1)
else:
print(min(ans))
|
ConDefects/ConDefects/Code/arc128_b/Python/40552495
|
condefects-python_data_2520
|
T = int(input())
def calc(a,b,c):
a,b = max(a,b), min(a,b)
if a == b:
# 成功
return a
elif (a - b) % 3 == 0 and (a-b)//3 <= c:
return a
else:
return -1
for _ in range(T):
R, G, B = [int(x) for x in input().split()]
l = [
calc(R,G,B),
calc(R,B,G),
calc(G,B,R),
]
if len([x for x in l if x > -1]):
print(min([x for x in l if x > -1]))
else:
print(-1)
T = int(input())
def calc(a,b,c):
a,b = max(a,b), min(a,b)
if a == b:
# 成功
return a
elif (a - b) % 3 == 0:
return a
else:
return -1
for _ in range(T):
R, G, B = [int(x) for x in input().split()]
l = [
calc(R,G,B),
calc(R,B,G),
calc(G,B,R),
]
if len([x for x in l if x > -1]):
print(min([x for x in l if x > -1]))
else:
print(-1)
|
ConDefects/ConDefects/Code/arc128_b/Python/37620333
|
condefects-python_data_2521
|
import bisect
from collections import deque
def solveLIS(lst):
if lst == []:
return 0
LIS = [lst[0]]
ex = []
for i in range(len(lst)):
if lst[i] > LIS[-1]:
ex.append(len(LIS))
LIS.append(lst[i])
else:
x = bisect.bisect_left(LIS,lst[i])
LIS[x] = lst[i]
ex.append(x)
return LIS, ex
N = int(input())
A = list(map(int,input().split()))
LIS, ex = solveLIS(A)
LIS_size = len(LIS)
size = [deque() for _ in range(N)]
for i in range(N):
size[ex[i]].append(i)
def can_extend(A,N,LIS,size):
LIS_rev = [-A[-1]]
for i in reversed(range(N)):
if -A[i] > LIS_rev[-1]:
x = len(LIS_rev)
LIS_rev.append(-A[i])
else:
x = bisect.bisect_left(LIS_rev,-A[i])
LIS_rev[x] = -A[i]
while x > 0 and size[LIS_size - x - 2]:
j = size[LIS_size - x - 2].pop()
if i <= j+1:
continue
if A[j] < A[i]-1:
return True
else:
size[LIS_size - x - 2].append(j)
break
if len(solveLIS(A[:-1] + [10**10])[0]) > len(LIS):
return True
if len(solveLIS([0] + A[1:])[0]) > len(LIS):
return True
return False
if can_extend(A,N,LIS,size):
print(LIS_size+1)
else:
print(LIS_size)
import bisect
from collections import deque
def solveLIS(lst):
if lst == []:
return 0
LIS = [lst[0]]
ex = []
for i in range(len(lst)):
if lst[i] > LIS[-1]:
ex.append(len(LIS))
LIS.append(lst[i])
else:
x = bisect.bisect_left(LIS,lst[i])
LIS[x] = lst[i]
ex.append(x)
return LIS, ex
N = int(input())
A = list(map(int,input().split()))
LIS, ex = solveLIS(A)
LIS_size = len(LIS)
size = [deque() for _ in range(N)]
for i in range(N):
size[ex[i]].append(i)
def can_extend(A,N,LIS,size):
LIS_rev = [-A[-1]]
for i in reversed(range(N)):
if -A[i] > LIS_rev[-1]:
x = len(LIS_rev)
LIS_rev.append(-A[i])
else:
x = bisect.bisect_left(LIS_rev,-A[i])
LIS_rev[x] = -A[i]
while LIS_size - x > 1 and size[LIS_size - x - 2]:
j = size[LIS_size - x - 2].pop()
if i <= j+1:
continue
if A[j] < A[i]-1:
return True
else:
size[LIS_size - x - 2].append(j)
break
if len(solveLIS(A[:-1] + [10**10])[0]) > len(LIS):
return True
if len(solveLIS([0] + A[1:])[0]) > len(LIS):
return True
return False
if can_extend(A,N,LIS,size):
print(LIS_size+1)
else:
print(LIS_size)
|
ConDefects/ConDefects/Code/abc360_g/Python/55104573
|
condefects-python_data_2522
|
from bisect import*
B=bisect_left
N,*A=map(int,open(0).read().split())
o=[1]*N
F=1<<60
A=A+[-F]
for k in[-1,1]:
d=[F]*N
for i in range(N):o[i]+=B(d,A[i+k]-k);d[B(d,A[i])]=A[i]
o=o[::-1];A=[-e for e in A][~0:0:-1];A+=F,
print(max(o))
from bisect import*
B=bisect_left
N,*A=map(int,open(0).read().split())
o=[1]*N
F=1<<60
A=A+[-F]
for k in[-1,1]:
d=[F]*N
for i in range(N):o[i]+=B(d,A[i+k]-k);d[B(d,A[i])]=A[i]
o=o[::-1];A=[-e for e in A][::-1][1:];A+=F,
print(max(o))
|
ConDefects/ConDefects/Code/abc360_g/Python/55136355
|
condefects-python_data_2523
|
from atcoder.segtree import SegTree
n = int(input())
alist = list(map(int, input().split()))
se = set([0])
uplim = pow(10,9)
se.add(uplim)
for a in alist:
se.add(a)
# if a < uplim:
se.add(a+1)
# if a > 1:
# se.add(a-1)
so = sorted(se)
dic = {v:i for i,v in enumerate(so)}
zatu = [dic[a] for a in alist]
def op(a,b):
if a >= b:
return a
else:
return b
e = -10
seg0 = SegTree(op,e,[0 for i in range(len(so)+10)])
seg1 = SegTree(op,e,[0 for i in range(len(so)+10)])
# print(zatu)
cj = 0
cx = 1
for i in range(n):
a = zatu[i]
now0 = seg0.prod(0,a)
now1 = seg1.prod(0,a)
seg0.set(a, max(now0+1, seg0.get(a)))
seg1.set(a, max(now1+1, seg1.get(a)))
seg1.set(cj, cx)
cj = a+1
cx = now0+2
ans = seg1.all_prod()
print(ans)
from atcoder.segtree import SegTree
n = int(input())
alist = list(map(int, input().split()))
se = set([0])
uplim = pow(10,9)
se.add(uplim)
for a in alist:
se.add(a)
# if a < uplim:
se.add(a+1)
# if a > 1:
# se.add(a-1)
so = sorted(se)
dic = {v:i for i,v in enumerate(so)}
zatu = [dic[a] for a in alist]
def op(a,b):
if a >= b:
return a
else:
return b
e = -10
seg0 = SegTree(op,e,[0 for i in range(len(so)+10)])
seg1 = SegTree(op,e,[0 for i in range(len(so)+10)])
# print(zatu)
cj = 0
cx = 1
for i in range(n):
a = zatu[i]
now0 = seg0.prod(0,a)
now1 = seg1.prod(0,a)
seg0.set(a, max(now0+1, seg0.get(a)))
seg1.set(a, max(now1+1, seg1.get(a)))
seg1.set(cj, max(cx, seg1.get(cj)))
cj = a+1
cx = now0+2
ans = seg1.all_prod()
print(ans)
|
ConDefects/ConDefects/Code/abc360_g/Python/55112153
|
condefects-python_data_2524
|
import sys
readline = sys.stdin.readline
#n = int(readline())
#*a, = map(int,readline().split())
# b = [list(map(int,readline().split())) for _ in range()]
n = int(readline())
*a, = map(int,readline().split())
"""
dp[i] = a[i] の左隣に仕切りを入れたときの積の和
q に保持する情報:
(val, dp[prev])
"""
MOD = 998244353
qM = []
qm = []
m = M = 0
dp = [0]*(n+1)
dp[-1] = 1
for i in range(n)[::-1]:
c = dp[i+1]
while qM and qM[-1][0] <= a[i]:
v,x = qM.pop()
c += x
M += (a[i]-v)*x
M %= MOD
c %= MOD
qM.append((a[i], c))
M += a[i]*dp[i+1]%MOD
dp[i] += M
c = dp[i+1]
while qm and qm[-1][0] >= a[i]:
v,x = qm.pop()
c += x
m -= (v - a[i])*x
m %= MOD
c %= MOD
qm.append((a[i], c))
m += a[i]*dp[i+1]%MOD
dp[i] -= m
dp[i] %= MOD
print(dp[-1])
import sys
readline = sys.stdin.readline
#n = int(readline())
#*a, = map(int,readline().split())
# b = [list(map(int,readline().split())) for _ in range()]
n = int(readline())
*a, = map(int,readline().split())
"""
dp[i] = a[i] の左隣に仕切りを入れたときの積の和
q に保持する情報:
(val, dp[prev])
"""
MOD = 998244353
qM = []
qm = []
m = M = 0
dp = [0]*(n+1)
dp[-1] = 1
for i in range(n)[::-1]:
c = dp[i+1]
while qM and qM[-1][0] <= a[i]:
v,x = qM.pop()
c += x
M += (a[i]-v)*x
M %= MOD
c %= MOD
qM.append((a[i], c))
M += a[i]*dp[i+1]%MOD
dp[i] += M
c = dp[i+1]
while qm and qm[-1][0] >= a[i]:
v,x = qm.pop()
c += x
m -= (v - a[i])*x
m %= MOD
c %= MOD
qm.append((a[i], c))
m += a[i]*dp[i+1]%MOD
dp[i] -= m
dp[i] %= MOD
print(dp[0])
|
ConDefects/ConDefects/Code/abc234_g/Python/43173883
|
condefects-python_data_2525
|
t=int(input())
for i in range(t):
n=int(input())
s=list(map(str,input()))
cnt=0
adj=0
for i in range(n):
if(s[i]=='1'):
cnt+=1
if(s[i-1]=='1'):
adj=1
else:
adj=0
if(cnt%2==1):
print(-1)
else:
if(cnt==2 and adj==1):
if(n==2 or n==3):
print(-1)
else:
print(2)
else:
print(cnt//2)
t=int(input())
for i in range(t):
n=int(input())
s=list(map(str,input()))
cnt=0
adj=0
for i in range(n):
if(s[i]=='1'):
cnt+=1
if(s[i-1]=='1'):
adj=1
else:
adj=0
if(cnt%2==1):
print(-1)
else:
if(cnt==2 and adj==1):
if(n==2 or n==3):
print(-1)
elif(n==4 and s[0]=='0' and s[3]=='0'):
print(3)
else:
print(2)
else:
print(cnt//2)
|
ConDefects/ConDefects/Code/arc156_a/Python/45004259
|
condefects-python_data_2526
|
import sys
# from collections import deque
input = sys.stdin.readline
# sys.setrecursionlimit(10**6)
############ ---- Input Functions ---- ############
def inp():
return int(input())
def inlt():
return list(map(int, input().split()))
def insr():
s = input()
return list(s[: len(s) - 1])
def invr():
return map(int, input().split())
for _ in range(inp()):
n=inp()
s=insr()
if s.count("1")%2 or s=="011" or s=='110':
print(-1)
continue
if s=='0110':
print(3)
continue
if s.count('1')==2 and s.count('11')==1:
print(2)
continue
print(s.count('1')//2)
import sys
# from collections import deque
input = sys.stdin.readline
# sys.setrecursionlimit(10**6)
############ ---- Input Functions ---- ############
def inp():
return int(input())
def inlt():
return list(map(int, input().split()))
def insr():
s = input()
return list(s[: len(s) - 1])
def invr():
return map(int, input().split())
for _ in range(inp()):
n=inp()
s=insr()
s="".join(s)
# print(s)
if s.count("1")%2 or s=="011" or s=='110':
print(-1)
continue
if s=='0110':
print(3)
continue
if s.count('1')==2 and s.count('11')==1:
print(2)
continue
print(s.count('1')//2)
|
ConDefects/ConDefects/Code/arc156_a/Python/45086330
|
condefects-python_data_2527
|
t=int(input())
for _ in range(t):
n=int(input())
s=input()
L=[]
p=[]
w2=0
no_w2=0
num_1=0
for i in range(n):
if s[i]=="1":
p.append(1)
num_1+=1
else:
if len(p)==2:
L.append(p)
p=[]
w2+=1
if len(p)!=0:
L.append(p)
p=[]
no_w2+=1
if i==n-1:
if len(p)==2:
L.append(p)
p=[]
w2+=1
if len(p)!=0:
L.append(p)
p=[]
no_w2+=1
if num_1%2==1:
print(-1)
elif s=="011":
print(-1)
elif s=="110":
print(-1)
elif s=="0110":
print(3)
elif len(L)==0:
print(0)
elif w2==1:
print(num_1//2+1)
else:
print(num_1//2)
t=int(input())
for _ in range(t):
n=int(input())
s=input()
L=[]
p=[]
w2=0
no_w2=0
num_1=0
for i in range(n):
if s[i]=="1":
p.append(1)
num_1+=1
else:
if len(p)==2:
L.append(p)
p=[]
w2+=1
if len(p)!=0:
L.append(p)
p=[]
no_w2+=1
if i==n-1:
if len(p)==2:
L.append(p)
p=[]
w2+=1
if len(p)!=0:
L.append(p)
p=[]
no_w2+=1
if num_1%2==1:
print(-1)
elif s=="011":
print(-1)
elif s=="110":
print(-1)
elif s=="0110":
print(3)
elif len(L)==0:
print(0)
elif w2==1 and no_w2==0:
print(num_1//2+1)
else:
print(num_1//2)
|
ConDefects/ConDefects/Code/arc156_a/Python/43775294
|
condefects-python_data_2528
|
#コーディングはこのセルで
from collections import deque,defaultdict
from fractions import Fraction
from itertools import permutations
from functools import cmp_to_key
import math,sys,heapq,random,bisect,copy
def LMI() : return list(map(int,input().split()))
def LMS() : return list(map(str,input().split()))
def MI() : return map(int,input().split())
def LLI(N) : return [LMI() for _ in range(N)]
def LLS(N): return [LMS() for _ in range(N)]
def LS(N) : return [input() for _ in range(N)]
def LI(N) : return [int(input()) for _ in range(N)]
def II() : return int(input())
#入力
T=II()
for _ in range(T):
N=II()
S=input()
count=0
for i in range(N):
if S[i]=='1':
count+=1
if count%2==1:
print(-1)
else:
if count!=2:
print(count//2)
else:
flg=0
for i in range(N-1):
if S[i]=='1' and S[i+1]=='1':
flg=1
if flg:
if N==3:
print(-1)
elif N==4:
if S=='0110':
print(3)
else:
print(3)
else:
print(2)
else:
print(1)
#コーディングはこのセルで
from collections import deque,defaultdict
from fractions import Fraction
from itertools import permutations
from functools import cmp_to_key
import math,sys,heapq,random,bisect,copy
def LMI() : return list(map(int,input().split()))
def LMS() : return list(map(str,input().split()))
def MI() : return map(int,input().split())
def LLI(N) : return [LMI() for _ in range(N)]
def LLS(N): return [LMS() for _ in range(N)]
def LS(N) : return [input() for _ in range(N)]
def LI(N) : return [int(input()) for _ in range(N)]
def II() : return int(input())
#入力
T=II()
for _ in range(T):
N=II()
S=input()
count=0
for i in range(N):
if S[i]=='1':
count+=1
if count%2==1:
print(-1)
else:
if count!=2:
print(count//2)
else:
flg=0
for i in range(N-1):
if S[i]=='1' and S[i+1]=='1':
flg=1
if flg:
if N==3:
print(-1)
elif N==4:
if S=='0110':
print(3)
else:
print(2)
else:
print(2)
else:
print(1)
|
ConDefects/ConDefects/Code/arc156_a/Python/44009597
|
condefects-python_data_2529
|
n, k = map(int, input().split())
a = list(map(int, input().split()))
for i in range(n):
if a[i]%k==0:
print(a[i]/k, end=" ")
n, k = map(int, input().split())
a = list(map(int, input().split()))
for i in range(n):
if a[i]%k==0:
print(int(a[i]/k), end=" ")
|
ConDefects/ConDefects/Code/abc347_a/Python/54752692
|
condefects-python_data_2530
|
N,K = map(int,input().split())
A = list(map(int,input().split()))
for i in range(N):
if A[i]%K == 0:
print(A[i]/K)
N,K = map(int,input().split())
A = list(map(int,input().split()))
for i in range(N):
if A[i]%K == 0:
print(A[i]//K,end=" ")
|
ConDefects/ConDefects/Code/abc347_a/Python/55038235
|
condefects-python_data_2531
|
n, k = list(map(int, input().split()))
a = list(map(int, input().split()))
b = []
for i in range(n):
if a[i] % k == 0:
c = a[i] / k
b.append(c)
sorted_b = sorted(b)
print(" ".join(map(str, sorted_b)))
n, k = list(map(int, input().split()))
a = list(map(int, input().split()))
b = []
for i in range(n):
if a[i] % k == 0:
c = a[i] // k
b.append(c)
sorted_b = sorted(b)
print(" ".join(map(str, sorted_b)))
|
ConDefects/ConDefects/Code/abc347_a/Python/54976417
|
condefects-python_data_2532
|
N,K = map(int,input().split())
A = list(map(int,input().split()))
B = list()
for i in A:
if i%K==0:
B.append(i//K)
B.sort()
for i in B:
print(i,end="")
N,K = map(int,input().split())
A = list(map(int,input().split()))
B = list()
for i in A:
if i%K==0:
B.append(i//K)
B.sort()
for i in B:
print(i,end=" ")
|
ConDefects/ConDefects/Code/abc347_a/Python/54997243
|
condefects-python_data_2533
|
n, k = map(int, input().split())
a = list(map(int, input().split()))
ans = []
for i in range(n):
if a[i] % k == 0:
ans.append(a[i]//2)
print(*ans)
n, k = map(int, input().split())
a = list(map(int, input().split()))
ans = []
for i in range(n):
if a[i] % k == 0:
ans.append(a[i]//k)
print(*ans)
|
ConDefects/ConDefects/Code/abc347_a/Python/54768582
|
condefects-python_data_2534
|
n, k = map(int, input().split())
a = list(map(int, input().split()))
b = []
for i in range(n):
if a[i] % k == 0:
b.append(a[i] / k)
b.sort()
print(*b)
n, k = map(int, input().split())
a = list(map(int, input().split()))
b = []
for i in range(n):
if a[i] % k == 0:
b.append(a[i]//k)
b.sort()
print(*b)
|
ConDefects/ConDefects/Code/abc347_a/Python/54735895
|
condefects-python_data_2535
|
n,m=map(int,input().split())
A=list(map(int,input().split()))
li=list(sorted(A[2:]))
ans=10**18
for i in range(2,n-m+1):
ans=min(ans,max(0,A[0]-A[i])+max(0,A[i+m-1]-A[1]))
print(ans)
n,m=map(int,input().split())
A=list(map(int,input().split()))
li=list(sorted(A[2:]))
ans=10**18
for i in range(2,n-m+1):
ans=min(ans,max(0,A[0]-li[i-2])+max(0,li[i+m-3]-A[1]))
print(ans)
|
ConDefects/ConDefects/Code/arc163_b/Python/44451318
|
condefects-python_data_2536
|
#from collections import defaultdict
#d = defaultdict(int)
#from collections import deque
#import math
#import heapq
#from queue import Queue
#import numpy as np
#Mo=998244353
#t=input()
#n=int(input())
#l,r = list(input().split())
n,m=list(map(int, input().split()))
A = list(map(int, input().split()))
#a= [int(input()) for _ in range(n)]
an=10000000000000
amin = A[0]
amax = A[1]
B = []
for i in range(2,n):
B.append(A[i])
B.sort()
for i in range(n-2-m):
val = max(amin-B[i],0)+max(B[i+m-1]-amax,0)
if an >val:
an=val
print(an)
#print(1) if a+n <= m else print(0)
#print(' '.join(map(str,d)))
#print('Yes') if b else print('No')
#print('YES') if b else print('NO')
#from collections import defaultdict
#d = defaultdict(int)
#from collections import deque
#import math
#import heapq
#from queue import Queue
#import numpy as np
#Mo=998244353
#t=input()
#n=int(input())
#l,r = list(input().split())
n,m=list(map(int, input().split()))
A = list(map(int, input().split()))
#a= [int(input()) for _ in range(n)]
an=10000000000000
amin = A[0]
amax = A[1]
B = []
for i in range(2,n):
B.append(A[i])
B.sort()
for i in range(n-2-m+1):
val = max(amin-B[i],0)+max(B[i+m-1]-amax,0)
if an >val:
an=val
print(an)
#print(1) if a+n <= m else print(0)
#print(' '.join(map(str,d)))
#print('Yes') if b else print('No')
#print('YES') if b else print('NO')
|
ConDefects/ConDefects/Code/arc163_b/Python/43944210
|
condefects-python_data_2537
|
import sys
def favorite_game(N, M, A):
lower_start, upper_start = min(A[0], A[1]), max(A[0], A[1])
B = sorted(A[2:])
min_move = float("inf")
for left in range(len(B) - M + 1):
right = left + M - 1
lower = B[left]
upper = B[right]
move = 0
if lower < lower_start:
move += lower_start - lower
if upper_start < upper:
move += upper - upper_start
min_move = min(min_move, move)
return min_move
def resolve():
N, M = [int(e) for e in sys.stdin.readline().split()]
A = [int(e) for e in sys.stdin.readline().split()]
print(favorite_game(N, M, A))
resolve()
import sys
def favorite_game(N, M, A):
lower_start, upper_start = A[0], A[1]
B = sorted(A[2:])
min_move = float("inf")
for left in range(len(B) - M + 1):
right = left + M - 1
lower = B[left]
upper = B[right]
move = 0
if lower < lower_start:
move += lower_start - lower
if upper_start < upper:
move += upper - upper_start
min_move = min(min_move, move)
return min_move
def resolve():
N, M = [int(e) for e in sys.stdin.readline().split()]
A = [int(e) for e in sys.stdin.readline().split()]
print(favorite_game(N, M, A))
resolve()
|
ConDefects/ConDefects/Code/arc163_b/Python/43716281
|
condefects-python_data_2538
|
n, m = map(int, input().split())
a1, a2, *a = list(map(int, input().split()))
a.sort()
ans = 10**20
for i in range(n-2):
if i+m-1 > n-3:
break
pre = max((a1 - a[0]), 0) + max(a[i+m-1] - a2, 0)
ans = min(ans, pre)
print(ans)
n, m = map(int, input().split())
a1, a2, *a = list(map(int, input().split()))
a.sort()
ans = 10**20
for i in range(n-2):
if i+m-1 > n-3:
break
pre = max((a1 - a[i]), 0) + max(a[i+m-1] - a2, 0)
ans = min(ans, pre)
print(ans)
|
ConDefects/ConDefects/Code/arc163_b/Python/45704677
|
condefects-python_data_2539
|
ROOT = 3
MOD = 998244353
roots = [pow(ROOT,(MOD-1)>>i,MOD) for i in range(24)] # 1 の 2^i 乗根
iroots = [pow(x,MOD-2,MOD) for x in roots] # 1 の 2^i 乗根の逆元
def untt(a,n):
for i in range(n):
m = 1<<(n-i-1)
for s in range(1<<i):
w_N = 1
s *= m*2
for p in range(m):
a[s+p], a[s+p+m] = (a[s+p]+a[s+p+m])%MOD, (a[s+p]-a[s+p+m])*w_N%MOD
w_N = w_N*roots[n-i]%MOD
def iuntt(a,n):
for i in range(n):
m = 1<<i
for s in range(1<<(n-i-1)):
w_N = 1
s *= m*2
for p in range(m):
a[s+p], a[s+p+m] = (a[s+p]+a[s+p+m]*w_N)%MOD, (a[s+p]-a[s+p+m]*w_N)%MOD
w_N = w_N*iroots[i+1]%MOD
inv = pow((MOD+1)//2,n,MOD)
for i in range(1<<n):
a[i] = a[i]*inv%MOD
def convolution(a,b):
la = len(a)
lb = len(b)
if min(la, lb) <= 50:
if la < lb:
la,lb = lb,la
a,b = b,a
res = [0]*(la+lb-1)
for i in range(la):
for j in range(lb):
res[i+j] += a[i]*b[j]
res[i+j] %= MOD
return res
a = a[:]; b = b[:]
deg = la+lb-2
n = deg.bit_length()
N = 1<<n
a += [0]*(N-len(a))
b += [0]*(N-len(b))
untt(a,n)
untt(b,n)
for i in range(N):
a[i] = a[i]*b[i]%MOD
iuntt(a,n)
return a[:deg+1]
SIZE = 2*10**5
inv = [0]*SIZE # inv[j] = j^{-1} mod MOD
fac = [0]*SIZE # fac[j] = j! mod MOD
finv = [0]*SIZE # finv[j] = (j!)^{-1} mod MOD
fac[0] = fac[1] = 1
finv[0] = finv[1] = 1
for i in range(2,SIZE):
fac[i] = fac[i-1]*i%MOD
finv[-1] = pow(fac[-1],MOD-2,MOD)
for i in range(SIZE-1,0,-1):
finv[i-1] = finv[i]*i%MOD
inv[i] = finv[i]*fac[i-1]%MOD
def choose(n,r): # nCk mod MOD の計算
if 0 <= r <= n:
return (fac[n]*finv[r]%MOD)*finv[n-r]%MOD
else:
return 0
import sys
readline = sys.stdin.readline
#n = int(readline())
#*a, = map(int,readline().split())
# b = [list(map(int,readline().split())) for _ in range()]
"""
f_n: n で一致
g_n: n で 0 -> 0
h_n: n で初めて一致
g(x)h(x) = f(x) から h を求める
"""
*abc,T = map(int,readline().split())
a,b,c = sorted(abc)
inv2 = (MOD+1)//2
INV2 = [1]
for i in range(3*T+1):
INV2.append(INV2[-1]*inv2%MOD)
finv += [0]*(2*T)
def get(T,v1,v2):
f = [finv[k]*finv[k+v1]%MOD*finv[k+v2]%MOD for k in range(T+1)]
g = [finv[k]*finv[k-v1]%MOD*finv[k-v2]%MOD for k in range(T+1)]
h = convolution(f,g)[:T+1]
for i in range(T+1):
h[i] *= INV2[3*i]*pow(fac[i],3,MOD)%MOD
h[i] %= MOD
return h
v1,v2 = (b-a)//2,(c-a)//2
f = get(T,v1,v2)
g = get(T,0,0)
#print(f,g)
def fpsdiv(f,g,N):
assert g[0] != 0
lg = len(g)
if g[0] != 1:
a = pow(g[0],MOD-2,MOD)
for i in range(len(f)):
f[i] = f[i]*a%MOD
for i in range(lg):
g[i] = g[i]*a%MOD
f += [0]*max(0,N+1-len(f))
for i in range(N+1):
for j in range(1,min(i+1,lg)):
f[i] = (f[i] - g[j]*f[i-j])%MOD
return f
polymul = convolution
def fpsinv(f,N):
g = [pow(f[0],MOD-2,MOD)]
n = 1
while n <= N:
ng = [2*i for i in g]+[0]*n
fgg = polymul(polymul(g,g),f)
for i in range(min(len(fgg),2*n)):
ng[i] -= fgg[i]
ng[i] %= MOD
n *= 2
g = ng
return g[:N+1]
ginv = fpsinv(g,T+1)
ans = 0
for i in range(T+1):
ans += f[i]*ginv[T-i]
ans %= MOD
print(ans)
ROOT = 3
MOD = 998244353
roots = [pow(ROOT,(MOD-1)>>i,MOD) for i in range(24)] # 1 の 2^i 乗根
iroots = [pow(x,MOD-2,MOD) for x in roots] # 1 の 2^i 乗根の逆元
def untt(a,n):
for i in range(n):
m = 1<<(n-i-1)
for s in range(1<<i):
w_N = 1
s *= m*2
for p in range(m):
a[s+p], a[s+p+m] = (a[s+p]+a[s+p+m])%MOD, (a[s+p]-a[s+p+m])*w_N%MOD
w_N = w_N*roots[n-i]%MOD
def iuntt(a,n):
for i in range(n):
m = 1<<i
for s in range(1<<(n-i-1)):
w_N = 1
s *= m*2
for p in range(m):
a[s+p], a[s+p+m] = (a[s+p]+a[s+p+m]*w_N)%MOD, (a[s+p]-a[s+p+m]*w_N)%MOD
w_N = w_N*iroots[i+1]%MOD
inv = pow((MOD+1)//2,n,MOD)
for i in range(1<<n):
a[i] = a[i]*inv%MOD
def convolution(a,b):
la = len(a)
lb = len(b)
if min(la, lb) <= 50:
if la < lb:
la,lb = lb,la
a,b = b,a
res = [0]*(la+lb-1)
for i in range(la):
for j in range(lb):
res[i+j] += a[i]*b[j]
res[i+j] %= MOD
return res
a = a[:]; b = b[:]
deg = la+lb-2
n = deg.bit_length()
N = 1<<n
a += [0]*(N-len(a))
b += [0]*(N-len(b))
untt(a,n)
untt(b,n)
for i in range(N):
a[i] = a[i]*b[i]%MOD
iuntt(a,n)
return a[:deg+1]
SIZE = 2*10**5
inv = [0]*SIZE # inv[j] = j^{-1} mod MOD
fac = [0]*SIZE # fac[j] = j! mod MOD
finv = [0]*SIZE # finv[j] = (j!)^{-1} mod MOD
fac[0] = fac[1] = 1
finv[0] = finv[1] = 1
for i in range(2,SIZE):
fac[i] = fac[i-1]*i%MOD
finv[-1] = pow(fac[-1],MOD-2,MOD)
for i in range(SIZE-1,0,-1):
finv[i-1] = finv[i]*i%MOD
inv[i] = finv[i]*fac[i-1]%MOD
def choose(n,r): # nCk mod MOD の計算
if 0 <= r <= n:
return (fac[n]*finv[r]%MOD)*finv[n-r]%MOD
else:
return 0
import sys
readline = sys.stdin.readline
#n = int(readline())
#*a, = map(int,readline().split())
# b = [list(map(int,readline().split())) for _ in range()]
"""
f_n: n で一致
g_n: n で 0 -> 0
h_n: n で初めて一致
g(x)h(x) = f(x) から h を求める
"""
*abc,T = map(int,readline().split())
a,b,c = sorted(abc)
inv2 = (MOD+1)//2
INV2 = [1]
for i in range(3*T+1):
INV2.append(INV2[-1]*inv2%MOD)
finv += [0]*(2*10**5)
def get(T,v1,v2):
f = [finv[k]*finv[k+v1]%MOD*finv[k+v2]%MOD for k in range(T+1)]
g = [finv[k]*finv[k-v1]%MOD*finv[k-v2]%MOD for k in range(T+1)]
h = convolution(f,g)[:T+1]
for i in range(T+1):
h[i] *= INV2[3*i]*pow(fac[i],3,MOD)%MOD
h[i] %= MOD
return h
v1,v2 = (b-a)//2,(c-a)//2
f = get(T,v1,v2)
g = get(T,0,0)
#print(f,g)
def fpsdiv(f,g,N):
assert g[0] != 0
lg = len(g)
if g[0] != 1:
a = pow(g[0],MOD-2,MOD)
for i in range(len(f)):
f[i] = f[i]*a%MOD
for i in range(lg):
g[i] = g[i]*a%MOD
f += [0]*max(0,N+1-len(f))
for i in range(N+1):
for j in range(1,min(i+1,lg)):
f[i] = (f[i] - g[j]*f[i-j])%MOD
return f
polymul = convolution
def fpsinv(f,N):
g = [pow(f[0],MOD-2,MOD)]
n = 1
while n <= N:
ng = [2*i for i in g]+[0]*n
fgg = polymul(polymul(g,g),f)
for i in range(min(len(fgg),2*n)):
ng[i] -= fgg[i]
ng[i] %= MOD
n *= 2
g = ng
return g[:N+1]
ginv = fpsinv(g,T+1)
ans = 0
for i in range(T+1):
ans += f[i]*ginv[T-i]
ans %= MOD
print(ans)
|
ConDefects/ConDefects/Code/abc289_h/Python/43246591
|
condefects-python_data_2540
|
from atcoder.scc import*
N,*A=map(int,open(0).read().split())
G=SCCGraph(N)
for i in range(N):
G.add_edge(i,A[i]-1)
d=[0]*N
for g in G.scc()[::-1]:
for v in g:d[v]=len(g)*-~d[A[g[0]]-1]
print(sum(d))
from atcoder.scc import*
N,*A=map(int,open(0).read().split())
G=SCCGraph(N)
for i in range(N):
G.add_edge(i,A[i]-1)
d=[0]*N
for g in G.scc()[::-1]:
for v in g:d[v]=len(g)if len(g)>1else d[A[g[0]]-1]+1
print(sum(d))
|
ConDefects/ConDefects/Code/abc357_e/Python/54953956
|
condefects-python_data_2541
|
#!/usr/bin/env python
import os
import sys
from io import BytesIO, IOBase
def main():
n, m = map(int,input().split())
a = list(map(int,input().split()))
b = list(map(int,input().split()))
orientation = [None] * m
graph = [[] for _ in range(n)]
for i in range(m):
graph[a[i] - 1].append((b[i] - 1, i))
graph[b[i] - 1].append((a[i] - 1, i))
dist = [-1] * n
parent = [None] * n
parentEdge = [None] * n
for i in range(n):
if dist[i] != -1:
continue
stack = [i]
vertices = []
dist[i] = 0
while stack:
v = stack.pop()
if dist[v] != -1 and v != i:
continue
vertices.append(v)
if parentEdge[v] is not None:
orientation[parentEdge[v]] = (parent[v], v)
dist[v] = dist[parent[v]] + 1
for u, index in graph[v]:
if parent[v] == u:
continue
if dist[v] != -1:
stack.append(u)
parent[u] = v
parentEdge[u] = index
for v in vertices:
for u, index in graph[v]:
if orientation[index] is not None:
continue
orientation[index] = (u, v) if dist[u] > dist[v] else (v, u)
ans = []
for i in range(m):
if orientation[i][0] == a[i]:
ans.append("0")
else:
ans.append("1")
print("".join(ans))
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._file = file
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
main()
#!/usr/bin/env python
import os
import sys
from io import BytesIO, IOBase
def main():
n, m = map(int,input().split())
a = list(map(int,input().split()))
b = list(map(int,input().split()))
orientation = [None] * m
graph = [[] for _ in range(n)]
for i in range(m):
graph[a[i] - 1].append((b[i] - 1, i))
graph[b[i] - 1].append((a[i] - 1, i))
dist = [-1] * n
parent = [None] * n
parentEdge = [None] * n
for i in range(n):
if dist[i] != -1:
continue
stack = [i]
vertices = []
dist[i] = 0
while stack:
v = stack.pop()
if dist[v] != -1 and v != i:
continue
vertices.append(v)
if parentEdge[v] is not None:
orientation[parentEdge[v]] = (parent[v], v)
dist[v] = dist[parent[v]] + 1
for u, index in graph[v]:
if parent[v] == u:
continue
if dist[v] != -1:
stack.append(u)
parent[u] = v
parentEdge[u] = index
for v in vertices:
for u, index in graph[v]:
if orientation[index] is not None:
continue
orientation[index] = (u, v) if dist[u] > dist[v] else (v, u)
ans = []
for i in range(m):
if orientation[i][0] == a[i] - 1:
ans.append("0")
else:
ans.append("1")
print("".join(ans))
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._file = file
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
if __name__ == "__main__":
main()
|
ConDefects/ConDefects/Code/arc143_d/Python/32778317
|
condefects-python_data_2542
|
import sys
readline = sys.stdin.readline
#n = int(readline())
n,m = map(int,readline().split())
*a, = map(lambda x:int(x)-1,readline().split())
*b, = map(lambda x:int(x)-1,readline().split())
g = [[] for _ in range(n)]
for i in range(m):
ai = a[i]
bi = b[i]
g[ai].append((bi,i))
g[bi].append((ai,i))
def dfs(i):
st = [(i,-1)]
while st:
#print(st)
v,idx = st.pop()
#print(v,idx)
if used[v]:
#print(idx)
if a[idx] == v:
ans[idx] = 1
continue
if b[idx] == v:
ans[idx] = 1
used[v] = 1
for c,idx in g[v]:
if used[c] == 0:
st.append((c,idx))
parent[c] = v
ans = [0]*m
used = [0]*n
parent = [0]*n
for i in range(n):
if used[i]: continue
dfs(i)
r = "".join(map(str,ans))
print(r)
import sys
readline = sys.stdin.readline
#n = int(readline())
n,m = map(int,readline().split())
*a, = map(lambda x:int(x)-1,readline().split())
*b, = map(lambda x:int(x)-1,readline().split())
g = [[] for _ in range(n)]
for i in range(m):
ai = a[i]
bi = b[i]
g[ai].append((bi,i))
g[bi].append((ai,i))
def dfs(i):
st = [(i,-1)]
while st:
#print(st)
v,idx = st.pop()
#print(v,idx)
if used[v]:
#print(idx)
if a[idx] == v:
ans[idx] = 1
continue
if idx != -1 and b[idx] == v:
ans[idx] = 1
used[v] = 1
for c,idx in g[v]:
if used[c] == 0:
st.append((c,idx))
parent[c] = v
ans = [0]*m
used = [0]*n
parent = [0]*n
for i in range(n):
if used[i]: continue
dfs(i)
r = "".join(map(str,ans))
print(r)
|
ConDefects/ConDefects/Code/arc143_d/Python/32782351
|
condefects-python_data_2543
|
import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
import heapq
import random
from collections import defaultdict,deque
class Graph:
def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")):
self.V=V
self.directed=directed
self.weighted=weighted
self.inf=inf
if graph:
self.graph=graph
self.edges=[]
for i in range(self.V):
if self.weighted:
for j,d in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j,d))
else:
for j in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j))
else:
self.edges=edges
self.graph=[[] for i in range(self.V)]
if weighted:
for i,j,d in self.edges:
self.graph[i].append((j,d))
if not self.directed:
self.graph[j].append((i,d))
else:
for i,j in self.edges:
self.graph[i].append(j)
if not self.directed:
self.graph[j].append(i)
def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
finished=[False]*self.V
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if lowlink:
order=[None]*self.V
ll=[None]*self.V
idx=0
if parents or cycle_detection or lowlink or subtree_size:
ps=[None]*self.V
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
if subtree_size:
ss=[1]*self.V
if unweighted_dist or bipartite_graph:
uwd=[self.inf]*self.V
uwd[s]=0
if weighted_dist:
wd=[self.inf]*self.V
wd[s]=0
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc.append(x)
if lowlink:
order[x]=idx
ll[x]=idx
idx+=1
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if parents or cycle_detection or lowlink or subtree_size:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
elif not finished[y]:
if (directed_acyclic or cycle_detection or topological_sort) and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if lowlink:
bl=True
for y in self.graph[x]:
if self.weighted:
y,d=y
if ps[x]==y and bl:
bl=False
continue
ll[x]=min(ll[x],order[y])
if x!=s:
ll[ps[x]]=min(ll[ps[x]],ll[x])
if postorder or topological_sort:
post.append(x)
if subtree_size:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==ps[x]:
continue
ss[x]+=ss[y]
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
x,y=tpl[:2] if self.weighted else tpl
if uwd[x]==self.inf or uwd[y]==self.inf:
continue
if not uwd[x]%2^uwd[y]%2:
bg=False
break
else:
for x in range(self.V):
if uwd[x]==self.inf:
continue
bg[uwd[x]%2].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
retu+=(cd,)
if directed_acyclic:
retu+=(dag,)
if euler_tour:
retu+=(et,)
if linked_components:
retu+=(lc,)
if lowlink:
retu=(ll,)
if parents:
retu+=(ps,)
if postorder:
retu+=(post,)
if preorder:
retu+=(pre,)
if subtree_size:
retu+=(ss,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
retu+=(tp_sort,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def MIV_DFS(self,initial_vertices=None,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
if initial_vertices==None:
initial_vertices=[s for s in range(self.V)]
seen=[False]*self.V
finished=[False]*self.V
if bipartite_graph:
bg=[None]*self.V
cnt=-1
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if lowlink:
order=[None]*self.V
ll=[None]*self.V
idx=0
if parents or cycle_detection or lowlink or subtree_size:
ps=[None]*self.V
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
if subtree_size:
ss=[1]*self.V
if bipartite_graph or unweighted_dist:
uwd=[self.inf]*self.V
if weighted_dist:
wd=[self.inf]*self.V
for s in initial_vertices:
if seen[s]:
continue
if bipartite_graph:
cnt+=1
bg[s]=(cnt,0)
if linked_components:
lc.append([])
if bipartite_graph or unweighted_dist:
uwd[s]=0
if weighted_dist:
wd[s]=0
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc[-1].append(x)
if lowlink:
order[x]=idx
ll[x]=idx
idx+=1
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if bipartite_graph:
bg[y]=(cnt,bg[x][1]^1)
if parents or cycle_detection or lowlink or subtree_size:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
elif not finished[y]:
if directed_acyclic and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if lowlink:
bl=True
for y in self.graph[x]:
if self.weighted:
y,d=y
if ps[x]==y and bl:
bl=False
continue
ll[x]=min(ll[x],order[y])
if x!=s:
ll[ps[x]]=min(ll[ps[x]],ll[x])
if postorder or topological_sort:
post.append(x)
if subtree_size:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==ps[x]:
continue
ss[x]+=ss[y]
if bipartite_graph:
bg_=bg
bg=[[[],[]] for i in range(cnt+1)]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if not bg_[i][1]^bg_[j][1]:
bg[bg_[i][0]]=False
for x in range(self.V):
if bg[bg_[x][0]]:
bg[bg_[x][0]][bg_[x][1]].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
retu+=(cd,)
if directed_acyclic:
retu+=(dag,)
if euler_tour:
retu+=(et,)
if linked_components:
retu+=(lc,)
if lowlink:
retu=(ll,)
if parents:
retu+=(ps,)
if postorder:
retu+=(post,)
if preorder:
retu+=(pre,)
if subtree_size:
retu+=(ss,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
retu+=(tp_sort,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def SIV_BFS(self,s,bfs_tour=False,bipartite_graph=False,linked_components=False,parents=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
seen[s]=True
if bfs_tour:
bt=[s]
if linked_components:
lc=[s]
if parents:
ps=[None]*self.V
if unweighted_dist or bipartite_graph:
uwd=[self.inf]*self.V
uwd[s]=0
if weighted_dist:
wd=[self.inf]*self.V
wd[s]=0
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
if bfs_tour:
bt.append(y)
if linked_components:
lc.append(y)
if parents:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if uwd[i]==self.inf or uwd[j]==self.inf:
continue
if not uwd[i]%2^uwd[j]%2:
bg=False
break
else:
for x in range(self.V):
if uwd[x]==self.inf:
continue
bg[uwd[x]%2].append(x)
retu=()
if bfs_tour:
retu+=(bt,)
if bipartite_graph:
retu+=(bg,)
if linked_components:
retu+=(lc,)
if parents:
retu+=(ps,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def MIV_BFS(self,initial_vertices=None,bipartite_graph=False,linked_components=False,parents=False,unweighted_dist=False,weighted_dist=False):
if initial_vertices==None:
initial_vertices=[i for i in range(self.V)]
seen=[False]*self.V
if bipartite_graph:
bg=[None]*self.V
cnt=-1
if linked_components:
lc=[]
if parents:
ps=[None]*self.V
if unweighted_dist:
uwd=[self.inf]*self.V
if weighted_dist:
wd=[self.inf]*self.V
for s in initial_vertices:
if seen[s]:
continue
seen[s]=True
if bipartite_graph:
cnt+=1
bg[s]=(cnt,0)
if linked_components:
lc.append([s])
if unweighted_dist:
uwd[s]=0
if weighted_dist:
wd[s]=0
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
if bipartite_graph:
bg[y]=(cnt,bg[x][1]^1)
if linked_components:
lc[-1].append(y)
if parents:
ps[y]=x
if unweighted_dist:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
if bipartite_graph:
bg_=bg
bg=[[[],[]] for i in range(cnt+1)]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if not bg_[i][1]^bg_[j][1]:
bg[bg_[i][0]]=False
for x in range(self.V):
if bg[bg_[x][0]]:
bg[bg_[x][0]][bg_[x][1]].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if linked_components:
retu+=(lc,)
if parents:
retu=(ps,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def Tree_Diameter(self,weighted=False):
def Farthest_Point(u):
dist=self.SIV_BFS(u,weighted_dist=True) if weighted else self.SIV_BFS(u,unweighted_dist=True)
fp=0
for i in range(self.V):
if dist[fp]<dist[i]:
fp=i
return fp,dist[fp]
u,d=Farthest_Point(0)
v,d=Farthest_Point(u)
return u,v,d
def SCC(self):
reverse_graph=[[] for i in range(self.V)]
for tpl in self.edges:
u,v=tpl[:2] if self.weighted else tpl
reverse_graph[v].append(u)
postorder=self.MIV_DFS(postorder=True)
scc_points=[]
seen=[False]*self.V
for s in postorder[::-1]:
if seen[s]:
continue
queue=deque([s])
seen[s]=True
lst=[]
while queue:
x=queue.popleft()
lst.append(x)
for y in reverse_graph[x]:
if not seen[y]:
seen[y]=True
queue.append(y)
scc_points.append(lst)
l=len(scc_points)
idx=[None]*self.V
for i in range(l):
for x in scc_points[i]:
idx[x]=i
scc_edges=set()
for tpl in self.edges:
u,v=tpl[:2] if self.weighted else tpl
if idx[u]!=idx[v]:
scc_edges.add((idx[u],idx[v]))
scc_edges=list(scc_edges)
return scc_points,scc_edges
def Build_LCA(self,s,segment_tree=False):
self.lca_segment_tree=segment_tree
if self.lca_segment_tree:
self.lca_euler_tour,self.lca_parents,depth=self.SIV_DFS(s,euler_tour=True,parents=True,unweighted_dist=True)
self.lca_dfs_in_index=[None]*self.V
self.lca_dfs_out_index=[None]*self.V
for i,x in enumerate(self.lca_euler_tour):
if x>=0:
self.lca_dfs_in_index[x]=i
else:
self.lca_dfs_out_index[~x]=i
self.ST=Segment_Tree(2*self.V,lambda x,y:min(x,y),self.V)
lst=[None]*(2*self.V)
for i in range(2*self.V-1):
if self.lca_euler_tour[i]>=0:
lst[i]=depth[self.lca_euler_tour[i]]
else:
lst[i]=depth[self.lca_parents[~self.lca_euler_tour[i]]]
lst[2*self.V-1]=-1
self.ST.Build(lst)
else:
self.lca_parents,self.lca_depth=self.SIV_DFS(s,parents=True,unweighted_dist=True)
self.lca_parents[s]=s
self.lca_PD=Path_Doubling(self.V,self.lca_parents)
self.lca_PD.Build_Next(self.V)
def LCA(self,a,b):
if self.lca_segment_tree:
m=min(self.lca_dfs_in_index[a],self.lca_dfs_in_index[b])
M=max(self.lca_dfs_in_index[a],self.lca_dfs_in_index[b])
x=self.lca_euler_tour[self.ST.Fold_Index(m,M+1)]
if x>=0:
lca=x
else:
lca=self.lca_parents[~x]
else:
if self.lca_depth[a]>self.lca_depth[b]:
a,b=b,a
b=self.lca_PD.Permutation_Doubling(b,self.lca_depth[b]-self.lca_depth[a])
if a!=b:
for k in range(self.lca_PD.k-1,-1,-1):
if self.lca_PD.permutation_doubling[a][k]!=self.lca_PD.permutation_doubling[b][k]:
a,b=self.lca_PD.permutation_doubling[a][k],self.lca_PD.permutation_doubling[b][k]
a,b=self.lca_PD.permutation_doubling[a][0],self.lca_PD.permutation_doubling[b][0]
lca=a
return lca
def Build_HLD(self,s):
self.hld_parents,size,self.hld_depth=self.SIV_DFS(s,parents=True,subtree_size=True,unweighted_dist=True)
stack=[s]
self.hld_tour=[]
self.hld_path_parents=[None]*self.V
self.hld_path_parents[s]=s
while stack:
x=stack.pop()
self.hld_tour.append(x)
max_size=0
max_size_y=None
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==self.hld_parents[x]:
continue
if max_size<size[y]:
max_size=size[y]
max_size_y=y
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==self.hld_parents[x]:
continue
if y!=max_size_y:
stack.append(y)
self.hld_path_parents[y]=y
if max_size_y!=None:
stack.append(max_size_y)
self.hld_path_parents[max_size_y]=self.hld_path_parents[x]
self.hld_tour_idx=[None]*self.V
for i in range(self.V):
self.hld_tour_idx[self.hld_tour[i]]=i
def HLD(self,a,b,edge=False):
L,R=[],[]
while self.hld_path_parents[a]!=self.hld_path_parents[b]:
if self.hld_depth[self.hld_path_parents[a]]<self.hld_depth[self.hld_path_parents[b]]:
R.append((self.hld_tour_idx[self.hld_path_parents[b]],self.hld_tour_idx[b]+1))
b=self.hld_parents[self.hld_path_parents[b]]
else:
L.append((self.hld_tour_idx[a]+1,self.hld_tour_idx[self.hld_path_parents[a]]))
a=self.hld_parents[self.hld_path_parents[a]]
if edge:
if self.hld_depth[a]!=self.hld_depth[b]:
retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b]+1)]+R[::-1]
else:
retu=L+R[::-1]
else:
if self.hld_depth[a]<self.hld_depth[b]:
retu=L+[(self.hld_tour_idx[a],self.hld_tour_idx[b]+1)]+R[::-1]
else:
retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b])]+R[::-1]
return retu
def Build_Hash(self,s,random_number=False,mod=(1<<61)-1,rerooting=False):
self.lower_hash=[None]*self.V
if random_number:
self.hash_random_number=random_number
else:
self.hash_random_number=[random.randint(1,10**10) for i in range(self.V)]
self.hash_mod=mod
parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True)
for x in postorder:
level=0
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
h,l=self.lower_hash[y]
level=max(level,l+1)
ha=1
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
h,l=self.lower_hash[y]
ha*=h+self.hash_random_number[l]
ha%=self.hash_mod
self.lower_hash[x]=(ha,level)
if rerooting:
self.upper_hash=[None]*self.V
self.upper_hash[s]=(1,-1)
for x in preorder:
children=[y for y,d in self.graph[x] if y!=parents[x]] if self.weighted else [y for y in self.graph[x] if y!=parents[x]]
if children:
l=len(children)
l_lst,r_lst=[None]*(l+1),[None]*(l+1)
l_lst[0],r_lst[l]=(1,-1),(1,-1)
for i in range(1,l+1):
h0,l0=l_lst[i-1]
h1,l1=self.lower_hash[children[i-1]]
l_lst[i]=(h0*(h1+self.hash_random_number[l1])%self.hash_mod,max(l0,l1))
for i in range(l-1,-1,-1):
h0,l0=r_lst[i+1]
h1,l1=self.lower_hash[children[i]]
r_lst[i]=(h0*(h1+self.hash_random_number[l1])%self.hash_mod,max(l0,l1))
for i in range(l):
if x==s:
ha,level=1,0
else:
ha,level=self.upper_hash[x]
h0,l0=l_lst[i]
h1,l1=r_lst[i+1]
ha*=h0*h1
level=max(level,l0+1,l1+1)
ha+=self.hash_random_number[level]
ha%=self.hash_mod
level+=1
self.upper_hash[children[i]]=(ha,level)
return
def Hash(self,root,subtree=False):
if subtree:
ha,level=self.lower_hash[root]
ha+=self.hash_random_number[level]
ha%=self.hash_mod
else:
h0,l0=self.lower_hash[root]
h1,l1=self.upper_hash[root]
ha=(h0*h1+self.hash_random_number[max(l0,l1)])%self.hash_mod
level=max(l0,l1)
return ha,level
def Build_Rerooting(self,s,f_transition,f_merge):
self.rerooting_s=s
self.rerooting_f_transition=f_transition
self.rerooting_f_merge=f_merge
parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True)
self.rerooting_lower_dp=[None]*self.V
for x in postorder:
self.rerooting_lower_dp[x]=self.rerooting_f_merge([self.rerooting_f_transition(self.rerooting_lower_dp[y]) for y in G.graph[x] if y!=parents[x]])
self.rerooting_upper_dp=[None]*self.V
for x in preorder:
children=[y for y in self.graph[x] if y!=parents[x]]
left_accumule_f=[None]*(len(children)+1)
right_accumule_f=[None]*(len(children)+1)
left_accumule_f[0]=self.rerooting_f_merge([])
for i in range(1,len(children)+1):
left_accumule_f[i]=self.rerooting_f_merge([left_accumule_f[i-1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i-1]])])
right_accumule_f[len(children)]=self.rerooting_f_merge([])
for i in range(len(children)-1,-1,-1):
right_accumule_f[i]=self.rerooting_f_merge([right_accumule_f[i+1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i]])])
for i in range(len(children)):
if parents[x]!=None:
self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1],self.rerooting_f_transition(self.rerooting_upper_dp[x])])
else:
self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1]])
def Rerooting(self,x):
if x==self.rerooting_s:
retu=self.rerooting_lower_dp[x]
else:
retu=self.rerooting_f_merge([self.rerooting_lower_dp[x],self.rerooting_f_transition(self.rerooting_upper_dp[x])])
return retu
def Centroid(self,root=0):
x=root
parents,size=self.SIV_DFS(x,parents=True,subtree_size=True)
while True:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
if size[y]*2>size[root]:
x=y
break
else:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
if size[root]<=2*size[y]:
return x,y
return x,None
def Centroid_Decomposition(self,edge=False,linked_point=False,point=False,tree=False):
if edge:
cd_edges_lst=[None]*self.V
if linked_point:
cd_linked_points=[None]*self.V
if point:
cd_points_lst=[None]*self.V
if tree:
cd_tree=[]*self.V
edges=self.edges
points=[i for i in range(self.V)]
prev_centroid=None
stack=[(edges,points,None,prev_centroid)] if linked_point else [(edges,points,prev_centroid)]
while stack:
if linked_point:
edges,points,lp,prev_centroid=stack.pop()
else:
edges,points,prev_centroid=stack.pop()
if len(points)==1:
centroid=points[0]
if edge:
cd_edges_lst[centroid]=[]
if linked_point:
cd_linked_points[centroid]=lp
if point:
cd_points_lst[centroid]=[centroid]
if tree and prev_centroid!=None:
cd_tree.append((prev_centroid,centroid))
continue
G=Graph(len(points),edges=edges,weighted=self.weighted)
centroid,_=G.Centroid()
if tree and prev_centroid!=None:
cd_tree.append((prev_centroid,points[centroid]))
parents,tour=G.SIV_DFS(centroid,parents=True,preorder=True)
dp=[None]*len(points)
edges_lst=[]
points_lst=[]
if linked_point:
linked_points=[]
for i,x in enumerate(G.graph[centroid]):
if G.weighted:
x,d=x
dp[x]=(i,0)
edges_lst.append([])
points_lst.append([points[x]])
if linked_point:
linked_points.append(points[x])
for x in tour[1:]:
for y in G.graph[x]:
if G.weighted:
y,d=y
if y==parents[x]:
continue
i,j=dp[x]
jj=len(points_lst[i])
edges_lst[i].append((j,jj,d) if G.weighted else (j,jj))
points_lst[i].append(points[y])
dp[y]=(i,jj)
centroid=points[centroid]
if edge:
cd_edges_lst[centroid]=edges
if linked_point:
cd_linked_points[centroid]=lp
if point:
cd_points_lst[centroid]=points
if linked_point:
for edges,points,lp in zip(edges_lst,points_lst,linked_points):
stack.append((edges,points,lp,centroid))
else:
for edges,points in zip(edges_lst,points_lst):
stack.append((edges,points,centroid))
retu=()
if edge:
retu+=(cd_edges_lst,)
if linked_point:
retu+=(cd_linked_points,)
if point:
retu+=(cd_points_lst,)
if tree:
retu+=(cd_tree,)
if len(retu)==1:
retu=retu[0]
return retu
def Bridges(self):
lowlink,preorder=self.MIV_DFS(lowlink=True,preorder=True)
order=[None]*self.V
for x in range(self.V):
order[preorder[x]]=x
bridges=[]
for e in self.edges:
if self.weighted:
x,y,d=e
else:
x,y=e
if order[x]<lowlink[y] or order[y]<lowlink[x]:
bridges.append((x,y))
return bridges
def Articulation_Points(self):
lowlink,parents,preorder=self.MIV_DFS(lowlink=True,parents=True,preorder=True)
order=[None]*self.V
for x in range(self.V):
order[preorder[x]]=x
articulation_points=[]
for x in range(self.V):
if parents[x]==None:
if len({y for y in self.graph[x] if parents[y]==x})>=2:
articulation_points.append(x)
else:
for y in self.graph[x]:
if parents[y]!=x:
continue
if order[x]<=lowlink[y]:
articulation_points.append(x)
break
return articulation_points
def TECCD(self):
lowlink,preorder=self.MIV_DFS(lowlink=True,preorder=True)
order=[None]*self.V
for x in range(self.V):
order[preorder[x]]=x
edges=[]
for e in self.edges:
if self.weighted:
x,y,d=e
else:
x,y=e
if order[x]>=lowlink[y] and order[y]>=lowlink[x]:
edges.append((x,y))
teccd=Graph(self.V,edges=edges).MIV_DFS(linked_components=True)
return teccd
def LCD(self):
lcd_points=self.MIV_DFS(linked_components=True)
lcd_edges=[[] for i in range(len(lcd_points))]
idx=[None]*self.V
for i in range(len(lcd_points)):
for j in range(len(lcd_points[i])):
idx[lcd_points[i][j]]=(i,j)
for tpl in self.edges:
if self.weighted:
x,y,d=tpl
else:
x,y=tpl
i,j0=idx[x]
i,j1=idx[y]
if self.weighted:
lcd_edges[i].append((j0,j1,d))
else:
lcd_edges[i].append((j0,j1))
return lcd_points,lcd_edges
def Dijkstra(self,s,route_restoration=False):
dist=[self.inf]*self.V
dist[s]=0
hq=[(0,s)]
if route_restoration:
parents=[None]*self.V
while hq:
dx,x=heapq.heappop(hq)
if dist[x]<dx:
continue
for y,dy in self.graph[x]:
if dist[y]>dx+dy:
dist[y]=dx+dy
if route_restoration:
parents[y]=x
heapq.heappush(hq,(dist[y],y))
if route_restoration:
return dist,parents
else:
return dist
def Bellman_Ford(self,s,route_restoration=False):
dist=[self.inf]*self.V
dist[s]=0
if route_restoration:
parents=[None]*self.V
for _ in range(self.V-1):
for i,j,d in self.edges:
if dist[j]>dist[i]+d:
dist[j]=dist[i]+d
if route_restoration:
parents[j]=i
if not self.directed and dist[i]>dist[j]+d:
dist[i]=dist[j]+d
if route_restoration:
parents[i]=j
negative_cycle=[]
for i,j,d in self.edges:
if dist[j]>dist[i]+d:
negative_cycle.append(j)
if not self.directed and dist[i]>dist[j]+d:
negative_cycle.append(i)
if negative_cycle:
is_negative_cycle=[False]*self.V
for i in negative_cycle:
if is_negative_cycle[i]:
continue
else:
queue=[i]
is_negative_cycle[i]=True
while queue:
x=queue.popleft()
for y,d in self.graph[x]:
if not is_negative_cycle[y]:
queue.append(y)
is_negative_cycle[y]=True
if route_restoration:
parents[y]=x
for i in range(self.V):
if is_negative_cycle[i]:
dist[i]=-self.inf
if route_restoration:
return dist,parents
else:
return dist
def Warshall_Floyd(self,route_restoration=False):
dist=[[self.inf]*self.V for i in range(self.V)]
for i in range(self.V):
dist[i][i]=0
if route_restoration:
parents=[[j for j in range(self.V)] for i in range(self.V)]
for i,j,d in self.edges:
if i==j:
continue
if dist[i][j]>d:
dist[i][j]=d
if route_restoration:
parents[i][j]=i
if not self.directed and dist[j][i]>d:
dist[j][i]=d
if route_restoration:
parents[j][i]=j
for k in range(self.V):
for i in range(self.V):
for j in range(self.V):
if dist[i][j]>dist[i][k]+dist[k][j]:
dist[i][j]=dist[i][k]+dist[k][j]
if route_restoration:
parents[i][j]=parents[k][j]
for i in range(self.V):
if dist[i][i]<0:
for j in range(self.V):
if dist[i][j]!=self.inf:
dist[i][j]=-self.inf
if route_restoration:
for i in range(self.V):
if dist[i][i]==0:
parents[i][i]=None
return dist,parents
else:
return dist
def BFS_01(self,s,route_restoration=False):
queue=deque([s])
seen=[False]*self.V
dist=[self.inf]*self.V
dist[s]=0
if route_restoration:
parents=[None]*self.V
while queue:
x=queue.popleft()
if seen[x]:
continue
seen[x]=False
for y,d in self.graph[x]:
if dist[y]>dist[x]+d:
dist[y]=dist[x]+d
if route_restoration:
parents[y]=x
if d:
queue.append(y)
else:
queue.appendleft(y)
if route_restoration:
return dist,parents
else:
return dist
def Distance_Frequency(self):
mod=206158430209
cnt=[0]*self.V
cd_edges,cd_points,cd_tree=self.Centroid_Decomposition(edge=True,point=True,tree=True)
CD=Graph(self.V,edges=cd_tree)
parents,tour=CD.SIV_DFS(cd_tree[0][0],parents=True,postorder=True)
for x in tour:
C=[0]*(len(cd_points[x])+1)
for y in CD.graph[x]:
if y==parents[x]:
continue
depth=Graph(len(cd_points[y]),edges=cd_edges[y],weighted=self.weighted).SIV_DFS(0,unweighted_dist=True)
CC=[0]*(max(depth)+2)
for d in depth:
CC[d+1]+=1
cnt[d+1]+=2
C[d+1]+=1
poly=NTT_Pow(CC,2)
for d,c in enumerate(poly):
if d<self.V:
cnt[d]-=c
while C and C[-1]==0:
C.pop()
poly=NTT_Pow(C,2)
for d,c in enumerate(poly):
if d<N:
cnt[d]+=c
for i in range(self.V):
cnt[i]//=2
return cnt
def Shortest_Path_Count(self,s,dist,mod=0):
cnt=[0]*self.V
cnt[s]=1
for x in sorted([x for x in range(self.V)],key=lambda x:dist[x]):
for y in self.graph[x]:
if self.weighted:
y,d=y
else:
d=1
if dist[x]+d==dist[y]:
cnt[y]+=cnt[x]
if mod:
cnt[y]%=mod
return cnt
def K_Shortest_Path_Routing(self,s,t,K,edge_unicursal=False,point_unicursal=False):
if point_unicursal:
if self.weighted:
dist,parents=self.Dijkstra(s,route_restoration=True)
else:
parents,dist=self.SIV_BFS(s,parents=True,unweighted_dist=True)
route=tuple(self.Route_Restoration(s,t,parents))
queue=[(dist[t],route,[dist[x] for x in route])]
set_queue=set()
set_queue.add(route)
retu=[]
while queue and K:
d,route,route_dist=heapq.heappop(queue)
retu.append((d,route,route_dist))
K-=1
set_route=set()
for i in range(len(route)-1):
x=route[i]
set_route.add(x)
if self.weighted:
edges=[(v,u,d) for u,v,d in self.edges if not u in set_route and not v in set_route]
else:
edges=[(v,u) for u,v in self.edges if not u in set_route and not v in set_route]
G_rev=Graph(self.V,edges=edges,directed=self.directed,weighted=self.weighted,inf=self.inf)
if self.weighted:
dist_rev,parents_rev=G_rev.Dijkstra(t,route_restoration=True)
else:
parents_rev,dist_rev=G_rev.SIV_BFS(t,parents=True,unweighted_dist=True)
for y in self.graph[x]:
if self.weighted:
y,d=y
else:
d=1
if y==route[i+1]:
continue
if dist_rev[y]==self.inf:
continue
tpl=route[:i+1]+tuple(self.Route_Restoration(t,y,parents_rev)[::-1])
if not tpl in set_queue:
heapq.heappush(queue,(route_dist[i]+d+dist_rev[y],tpl,route_dist[:i+1]+[route_dist[i]+d+dist_rev[y]-dist_rev[z] for z in tpl[i+1:]]))
set_queue.add(tpl)
elif edge_unicursal:
if self.weighted:
dist,parents=self.Dijkstra(s,route_restoration=True)
else:
parents,dist=self.SIV_BFS(s,parents=True,unweighted_dist=True)
route=tuple(self.Route_Restoration(s,t,parents))
queue=[(dist[t],route,[dist[x] for x in route])]
set_queue=set()
set_queue.add(route)
retu=[]
while queue and K:
d,route,route_dist=heapq.heappop(queue)
retu.append((d,route,route_dist))
K-=1
set_route=set()
for i in range(len(route)-1):
x=route[i]
y=route[i+1]
set_route.add((x,y,route_dist[i+1]-route_dist[i]))
if not self.directed:
set_route.add((y,x,route_dist[i+1]-route_dist[i]))
if self.weighted:
edges=[(v,u,d) for u,v,d in self.edges if not (u,v,d) in set_route]
else:
edges=[(v,u) for u,v in self.edges if not (u,v,d) in set_route]
G_rev=Graph(self.V,edges=edges,directed=self.directed,weighted=self.weighted,inf=self.inf)
if self.weighted:
dist_rev,parents_rev=G_rev.Dijkstra(t,route_restoration=True)
else:
parents_rev,dist_rev=G_rev.SIV_BFS(t,parents=True,unweighted_dist=True)
for y in self.graph[x]:
if self.weighted:
y,d=y
else:
d=1
if y==route[i+1]:
continue
if dist_rev[y]==self.inf:
continue
tpl=route[:i+1]+tuple(self.Route_Restoration(t,y,parents_rev)[::-1])
if not tpl in set_queue:
heapq.heappush(queue,(route_dist[i]+d+dist_rev[y],tpl,route_dist[:i+1]+[route_dist[i]+d+dist_rev[y]-dist_rev[z] for z in tpl[i+1:]]))
set_queue.add(tpl)
else:
if self.weighted:
dist,parents=self.Dijkstra(s,route_restoration=True)
else:
parents,dist=self.SIV_BFS(s,parents=True,unweighted_dist=True)
if dist[t]==self.inf:
return False
route_lst=[tuple(self.Route_Restoration(s,x,parents)) for x in range(self.V)]
if self.weighted:
edges_rev=[(j,i,d) for i,j,d in self.edges]
else:
edges_rev=[(j,i) for i,j in self.edges]
G_rev=Graph(self.V,edges=edges_rev,weighted=self.weighted,directed=self.directed,inf=self.inf)
if self.weighted:
dist_rev,parents_rev=G_rev.Dijkstra(t,route_restoration=True)
else:
parents_rev,dist_rev=G_rev.SIV_BFS(t,parents=True,unweighted_dist=True)
route_rev_lst=[]
for x in range(self.V):
route_rev_lst.append(tuple(self.Route_Restoration(t,x,parents_rev)[::-1]))
route=route_lst[t]
queue=[(dist[t],route,[dist[x] for x in route])]
set_queue=set()
set_queue.add(route)
retu=[]
while queue and K:
d,route,route_dist=heapq.heappop(queue)
retu.append((d,route,route_dist))
K-=1
for i in range(len(route)):
x=route[i]
for y in self.graph[x]:
if self.weighted:
y,d=y
else:
d=1
if i!=len(route)-1 and y==route[i+1]:
continue
tpl=route[:i+1]+route_rev_lst[y]
if not tpl in set_queue:
heapq.heappush(queue,(route_dist[i]+d+dist_rev[y],tpl,route_dist[:i+1]+[route_dist[i]+d+dist_rev[y]-dist_rev[z] for z in route_rev_lst[y]]))
set_queue.add(tpl)
return retu
def Euler_Path(self,s=None,t=None):
if self.directed:
indegree=[0]*self.V
outdegree=[0]*self.V
graph=[[] for x in range(self.V)]
for tpl in self.edges:
if self.weighted:
u,v,d=tpl
else:
u,v=tpl
indegree[v]+=1
outdegree[u]+=1
graph[v].append(u)
for x in range(self.V):
if indegree[x]+1==outdegree[x]:
if s==None:
s=x
elif s!=x:
return False
elif indegree[x]==outdegree[x]+1:
if t==None:
t=x
elif t!=x:
return False
elif indegree[x]!=outdegree[x]:
return False
if (s,t)==(None,None):
for x in range(self.V):
if graph[x]:
s=x
t=x
break
elif s==None:
s=t
elif t==None:
t=s
elif s==t:
for x in range(self.V):
if indegree[x]!=outdegree[x]:
return False
queue=[t]
euler_path=[]
while queue:
while graph[queue[-1]]:
queue.append(graph[queue[-1]].pop())
x=queue.pop()
euler_path.append(x)
for x in range(self.V):
if graph[x]:
return False
else:
degree=[0]*self.V
graph=[[] for x in range(self.V)]
use_count=[defaultdict(int) for x in range(self.V)]
for tpl in self.edges:
if self.weighted:
u,v,d=tpl
else:
u,v=tpl
degree[v]+=1
degree[u]+=1
graph[u].append(v)
graph[v].append(u)
for x in range(self.V):
if degree[x]%2:
if s==None and t!=x:
s=x
elif t==None and s!=x:
t=x
elif not x in (s,t):
return False
if s==None and t==None:
for x in range(self.V):
if graph[x]:
s=x
t=x
break
else:
s,t=0,0
elif s==None:
s=t
elif t==None:
t=s
elif s!=t:
if degree[s]%2==0 or degree[t]%2==0:
return False
queue=[t]
euler_path=[]
while queue:
while graph[queue[-1]]:
if use_count[queue[-1]][graph[queue[-1]][-1]]:
use_count[queue[-1]][graph[queue[-1]][-1]]-=1
graph[queue[-1]].pop()
else:
queue.append(graph[queue[-1]].pop())
use_count[queue[-1]][queue[-2]]+=1
x=queue.pop()
euler_path.append(x)
for x in range(self.V):
if graph[x]:
return False
if euler_path[0]!=s:
return False
return euler_path
def Route_Restoration(self,s,g,parents):
route=[g]
while s!=g:
if parents[g]==None:
route=[]
break
g=parents[g]
route.append(g)
route=route[::-1]
return route
def Negative_Cycls(self):
dist=[0]*self.V
for _ in range(self.V-1):
for i,j,d in self.edges:
dist[j]=min(dist[j],dist[i]+d)
for i,j,d in self.edges:
if dist[j]>dist[i]+d:
return True
return False
def Kruskal(self,maximize=False):
UF=UnionFind(self.V)
sorted_edges=sorted(self.edges,key=lambda x:x[2],reverse=maximize)
spnning_tree=[]
for i,j,d in sorted_edges:
if not UF.Same(i,j):
UF.Union(i,j)
spnning_tree.append((i,j,d))
return spnning_tree
def Max_Clique(self):
graph=[[False]*self.V for x in range(self.V)]
for x in range(self.V):
for y in self.graph[x]:
if self.weighted:
y,d=y
graph[x][y]=True
N0,N1=self.V//2,self.V-self.V//2
pop_count=[sum(bit>>i&1 for i in range(N1)) for bit in range(1<<N1)]
is_clique0=[True]*(1<<N0)
for j in range(N0):
for i in range(j):
if not graph[i][j]:
is_clique0[1<<i|1<<j]=False
for i in range(N0):
for bit in range(1<<N0):
if bit&1<<i:
is_clique0[bit]=is_clique0[bit]&is_clique0[bit^1<<i]
is_clique1=[True]*(1<<N1)
for j in range(N1):
for i in range(j):
if not graph[i+N0][j+N0]:
is_clique1[1<<i|1<<j]=False
for i in range(N1):
for bit in range(1<<N1):
if bit&1<<i:
is_clique1[bit]=is_clique1[bit]&is_clique1[bit^1<<i]
max_clique_bit=[bit if is_clique0[bit] else 0 for bit in range(1<<N0)]
for i in range(N0):
for bit in range(1<<N0):
if bit&1<<i and pop_count[max_clique_bit[bit]]<pop_count[max_clique_bit[bit^1<<i]]:
max_clique_bit[bit]=max_clique_bit[bit^1<<i]
dp=[(1<<N0)-1]*(1<<N1)
for j in range(N1):
for i in range(N0):
if not graph[j+N0][i]:
dp[1<<j]^=1<<i
for i in range(N1):
for bit in range(1<<N1):
if bit&1<<i:
dp[bit]&=dp[bit^1<<i]
bit0,bit1=0,0
for bit in range(1<<N1):
if is_clique1[bit] and pop_count[max_clique_bit[dp[bit]]]+pop_count[bit]>pop_count[bit0]+pop_count[bit1]:
bit0=max_clique_bit[dp[bit]]
bit1=bit
max_clique=[i for i in range(N0) if bit0&1<<i]+[i+N0 for i in range(N1) if bit1&1<<i]
return max_clique
def Cliques(self):
graph=[[False]*self.V for x in range(self.V)]
for x in range(self.V):
for y in self.graph[x]:
if self.weighted:
y,d=y
graph[x][y]=True
cliques=[]
points=[x for x in range(self.V)]
while points:
l=len(points)
min_degree,min_degree_point=self.inf,None
sum_degree=0
for x in points:
s=sum(graph[x][y] for y in points)
sum_degree+=s
if s<min_degree:
min_degree=s
min_degree_point=x
if min_degree**2>=sum_degree:
lst=points
else:
lst=[x for x in points if x==min_degree_point or graph[min_degree_point][x]]
l=len(lst)
is_clique=[True]*(1<<l)
for j in range(l):
for i in range(j):
if not graph[lst[i]][lst[j]]:
is_clique[1<<i|1<<j]=False
for i in range(l):
for bit in range(1<<l):
if bit&1<<i:
is_clique[bit]=is_clique[bit]&is_clique[bit^1<<i]
if min_degree**2>=sum_degree:
for bit in range(1<<l):
if is_clique[bit]:
cliques.append([lst[i] for i in range(l) if bit&1<<i])
else:
idx=lst.index(min_degree_point)
for bit in range(1<<l):
if is_clique[bit] and bit&1<<idx:
cliques.append([lst[i] for i in range(l) if bit&1<<i])
if min_degree**2>=sum_degree:
points=[]
else:
points=[x for x in points if x!=min_degree_point]
return cliques
def Ford_Fulkerson(self,s,t):
max_flow=0
residual_graph=[defaultdict(int) for i in range(self.V)]
if self.weighted:
for i,j,d in self.edges:
if not d:
continue
residual_graph[i][j]+=d
if not self.directed:
residual_graph[j][i]+=d
else:
for i,j in self.edges:
residual_graph[i][j]+=1
if not self.directed:
residual_graph[j][i]+=1
while True:
parents=[None]*self.V
parents[s]=s
seen=[False]*self.V
seen[s]=True
queue=deque([s])
while queue:
x=queue.popleft()
for y in residual_graph[x].keys():
if not seen[y]:
seen[y]=True
queue.append(y)
parents[y]=x
if y==t:
tt=t
while tt!=s:
residual_graph[parents[tt]][tt]-=1
residual_graph[tt][parents[tt]]+=1
if not residual_graph[parents[tt]][tt]:
residual_graph[parents[tt]].pop(tt)
tt=parents[tt]
max_flow+=1
break
else:
continue
break
else:
break
return max_flow
def BFS(self,s):
seen=[False]*self.V
seen[s]=True
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
return
def DFS(self,s):
seen=[False]*self.V
finished=[False]*self.V
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
elif not finished[x]:
finished[x]=True
return
N,M=map(int,readline().split())
A=list(map(int,readline().split()))
B=list(map(int,readline().split()))
for i in range(M):
A[i]-=1
B[i]-=1
edges=[]
for a,b in zip(A,B):
edges.append((a,b))
seen=[False]*N
G=Graph(N,edges=edges)
parents,depth=G.SIV_DFS(0,parents=True,unweighted_dist=True)
ans_lst=[None]*M
for i,(a,b) in enumerate(zip(A,B)):
if parents[a]==b:
if seen[a]:
ans_lst[i]=1
else:
ans_lst[i]=0
seen[a]=True
elif parents[b]==a:
if seen[b]:
ans_lst[i]=0
else:
ans_lst[i]=1
seen[b]=True
elif depth[a]<depth[b]:
ans_lst[i]=0
else:
ans_lst[i]=1
print(*ans_lst,sep="")
import bisect
import copy
import decimal
import fractions
import heapq
import itertools
import math
import random
import sys
import time
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
import heapq
import random
from collections import defaultdict,deque
class Graph:
def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")):
self.V=V
self.directed=directed
self.weighted=weighted
self.inf=inf
if graph:
self.graph=graph
self.edges=[]
for i in range(self.V):
if self.weighted:
for j,d in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j,d))
else:
for j in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j))
else:
self.edges=edges
self.graph=[[] for i in range(self.V)]
if weighted:
for i,j,d in self.edges:
self.graph[i].append((j,d))
if not self.directed:
self.graph[j].append((i,d))
else:
for i,j in self.edges:
self.graph[i].append(j)
if not self.directed:
self.graph[j].append(i)
def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
finished=[False]*self.V
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if lowlink:
order=[None]*self.V
ll=[None]*self.V
idx=0
if parents or cycle_detection or lowlink or subtree_size:
ps=[None]*self.V
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
if subtree_size:
ss=[1]*self.V
if unweighted_dist or bipartite_graph:
uwd=[self.inf]*self.V
uwd[s]=0
if weighted_dist:
wd=[self.inf]*self.V
wd[s]=0
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc.append(x)
if lowlink:
order[x]=idx
ll[x]=idx
idx+=1
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if parents or cycle_detection or lowlink or subtree_size:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
elif not finished[y]:
if (directed_acyclic or cycle_detection or topological_sort) and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if lowlink:
bl=True
for y in self.graph[x]:
if self.weighted:
y,d=y
if ps[x]==y and bl:
bl=False
continue
ll[x]=min(ll[x],order[y])
if x!=s:
ll[ps[x]]=min(ll[ps[x]],ll[x])
if postorder or topological_sort:
post.append(x)
if subtree_size:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==ps[x]:
continue
ss[x]+=ss[y]
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
x,y=tpl[:2] if self.weighted else tpl
if uwd[x]==self.inf or uwd[y]==self.inf:
continue
if not uwd[x]%2^uwd[y]%2:
bg=False
break
else:
for x in range(self.V):
if uwd[x]==self.inf:
continue
bg[uwd[x]%2].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
retu+=(cd,)
if directed_acyclic:
retu+=(dag,)
if euler_tour:
retu+=(et,)
if linked_components:
retu+=(lc,)
if lowlink:
retu=(ll,)
if parents:
retu+=(ps,)
if postorder:
retu+=(post,)
if preorder:
retu+=(pre,)
if subtree_size:
retu+=(ss,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
retu+=(tp_sort,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def MIV_DFS(self,initial_vertices=None,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
if initial_vertices==None:
initial_vertices=[s for s in range(self.V)]
seen=[False]*self.V
finished=[False]*self.V
if bipartite_graph:
bg=[None]*self.V
cnt=-1
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if lowlink:
order=[None]*self.V
ll=[None]*self.V
idx=0
if parents or cycle_detection or lowlink or subtree_size:
ps=[None]*self.V
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
if subtree_size:
ss=[1]*self.V
if bipartite_graph or unweighted_dist:
uwd=[self.inf]*self.V
if weighted_dist:
wd=[self.inf]*self.V
for s in initial_vertices:
if seen[s]:
continue
if bipartite_graph:
cnt+=1
bg[s]=(cnt,0)
if linked_components:
lc.append([])
if bipartite_graph or unweighted_dist:
uwd[s]=0
if weighted_dist:
wd[s]=0
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc[-1].append(x)
if lowlink:
order[x]=idx
ll[x]=idx
idx+=1
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if bipartite_graph:
bg[y]=(cnt,bg[x][1]^1)
if parents or cycle_detection or lowlink or subtree_size:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
elif not finished[y]:
if directed_acyclic and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if lowlink:
bl=True
for y in self.graph[x]:
if self.weighted:
y,d=y
if ps[x]==y and bl:
bl=False
continue
ll[x]=min(ll[x],order[y])
if x!=s:
ll[ps[x]]=min(ll[ps[x]],ll[x])
if postorder or topological_sort:
post.append(x)
if subtree_size:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==ps[x]:
continue
ss[x]+=ss[y]
if bipartite_graph:
bg_=bg
bg=[[[],[]] for i in range(cnt+1)]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if not bg_[i][1]^bg_[j][1]:
bg[bg_[i][0]]=False
for x in range(self.V):
if bg[bg_[x][0]]:
bg[bg_[x][0]][bg_[x][1]].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
retu+=(cd,)
if directed_acyclic:
retu+=(dag,)
if euler_tour:
retu+=(et,)
if linked_components:
retu+=(lc,)
if lowlink:
retu=(ll,)
if parents:
retu+=(ps,)
if postorder:
retu+=(post,)
if preorder:
retu+=(pre,)
if subtree_size:
retu+=(ss,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
retu+=(tp_sort,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def SIV_BFS(self,s,bfs_tour=False,bipartite_graph=False,linked_components=False,parents=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
seen[s]=True
if bfs_tour:
bt=[s]
if linked_components:
lc=[s]
if parents:
ps=[None]*self.V
if unweighted_dist or bipartite_graph:
uwd=[self.inf]*self.V
uwd[s]=0
if weighted_dist:
wd=[self.inf]*self.V
wd[s]=0
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
if bfs_tour:
bt.append(y)
if linked_components:
lc.append(y)
if parents:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if uwd[i]==self.inf or uwd[j]==self.inf:
continue
if not uwd[i]%2^uwd[j]%2:
bg=False
break
else:
for x in range(self.V):
if uwd[x]==self.inf:
continue
bg[uwd[x]%2].append(x)
retu=()
if bfs_tour:
retu+=(bt,)
if bipartite_graph:
retu+=(bg,)
if linked_components:
retu+=(lc,)
if parents:
retu+=(ps,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def MIV_BFS(self,initial_vertices=None,bipartite_graph=False,linked_components=False,parents=False,unweighted_dist=False,weighted_dist=False):
if initial_vertices==None:
initial_vertices=[i for i in range(self.V)]
seen=[False]*self.V
if bipartite_graph:
bg=[None]*self.V
cnt=-1
if linked_components:
lc=[]
if parents:
ps=[None]*self.V
if unweighted_dist:
uwd=[self.inf]*self.V
if weighted_dist:
wd=[self.inf]*self.V
for s in initial_vertices:
if seen[s]:
continue
seen[s]=True
if bipartite_graph:
cnt+=1
bg[s]=(cnt,0)
if linked_components:
lc.append([s])
if unweighted_dist:
uwd[s]=0
if weighted_dist:
wd[s]=0
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
if bipartite_graph:
bg[y]=(cnt,bg[x][1]^1)
if linked_components:
lc[-1].append(y)
if parents:
ps[y]=x
if unweighted_dist:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
if bipartite_graph:
bg_=bg
bg=[[[],[]] for i in range(cnt+1)]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if not bg_[i][1]^bg_[j][1]:
bg[bg_[i][0]]=False
for x in range(self.V):
if bg[bg_[x][0]]:
bg[bg_[x][0]][bg_[x][1]].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if linked_components:
retu+=(lc,)
if parents:
retu=(ps,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def Tree_Diameter(self,weighted=False):
def Farthest_Point(u):
dist=self.SIV_BFS(u,weighted_dist=True) if weighted else self.SIV_BFS(u,unweighted_dist=True)
fp=0
for i in range(self.V):
if dist[fp]<dist[i]:
fp=i
return fp,dist[fp]
u,d=Farthest_Point(0)
v,d=Farthest_Point(u)
return u,v,d
def SCC(self):
reverse_graph=[[] for i in range(self.V)]
for tpl in self.edges:
u,v=tpl[:2] if self.weighted else tpl
reverse_graph[v].append(u)
postorder=self.MIV_DFS(postorder=True)
scc_points=[]
seen=[False]*self.V
for s in postorder[::-1]:
if seen[s]:
continue
queue=deque([s])
seen[s]=True
lst=[]
while queue:
x=queue.popleft()
lst.append(x)
for y in reverse_graph[x]:
if not seen[y]:
seen[y]=True
queue.append(y)
scc_points.append(lst)
l=len(scc_points)
idx=[None]*self.V
for i in range(l):
for x in scc_points[i]:
idx[x]=i
scc_edges=set()
for tpl in self.edges:
u,v=tpl[:2] if self.weighted else tpl
if idx[u]!=idx[v]:
scc_edges.add((idx[u],idx[v]))
scc_edges=list(scc_edges)
return scc_points,scc_edges
def Build_LCA(self,s,segment_tree=False):
self.lca_segment_tree=segment_tree
if self.lca_segment_tree:
self.lca_euler_tour,self.lca_parents,depth=self.SIV_DFS(s,euler_tour=True,parents=True,unweighted_dist=True)
self.lca_dfs_in_index=[None]*self.V
self.lca_dfs_out_index=[None]*self.V
for i,x in enumerate(self.lca_euler_tour):
if x>=0:
self.lca_dfs_in_index[x]=i
else:
self.lca_dfs_out_index[~x]=i
self.ST=Segment_Tree(2*self.V,lambda x,y:min(x,y),self.V)
lst=[None]*(2*self.V)
for i in range(2*self.V-1):
if self.lca_euler_tour[i]>=0:
lst[i]=depth[self.lca_euler_tour[i]]
else:
lst[i]=depth[self.lca_parents[~self.lca_euler_tour[i]]]
lst[2*self.V-1]=-1
self.ST.Build(lst)
else:
self.lca_parents,self.lca_depth=self.SIV_DFS(s,parents=True,unweighted_dist=True)
self.lca_parents[s]=s
self.lca_PD=Path_Doubling(self.V,self.lca_parents)
self.lca_PD.Build_Next(self.V)
def LCA(self,a,b):
if self.lca_segment_tree:
m=min(self.lca_dfs_in_index[a],self.lca_dfs_in_index[b])
M=max(self.lca_dfs_in_index[a],self.lca_dfs_in_index[b])
x=self.lca_euler_tour[self.ST.Fold_Index(m,M+1)]
if x>=0:
lca=x
else:
lca=self.lca_parents[~x]
else:
if self.lca_depth[a]>self.lca_depth[b]:
a,b=b,a
b=self.lca_PD.Permutation_Doubling(b,self.lca_depth[b]-self.lca_depth[a])
if a!=b:
for k in range(self.lca_PD.k-1,-1,-1):
if self.lca_PD.permutation_doubling[a][k]!=self.lca_PD.permutation_doubling[b][k]:
a,b=self.lca_PD.permutation_doubling[a][k],self.lca_PD.permutation_doubling[b][k]
a,b=self.lca_PD.permutation_doubling[a][0],self.lca_PD.permutation_doubling[b][0]
lca=a
return lca
def Build_HLD(self,s):
self.hld_parents,size,self.hld_depth=self.SIV_DFS(s,parents=True,subtree_size=True,unweighted_dist=True)
stack=[s]
self.hld_tour=[]
self.hld_path_parents=[None]*self.V
self.hld_path_parents[s]=s
while stack:
x=stack.pop()
self.hld_tour.append(x)
max_size=0
max_size_y=None
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==self.hld_parents[x]:
continue
if max_size<size[y]:
max_size=size[y]
max_size_y=y
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==self.hld_parents[x]:
continue
if y!=max_size_y:
stack.append(y)
self.hld_path_parents[y]=y
if max_size_y!=None:
stack.append(max_size_y)
self.hld_path_parents[max_size_y]=self.hld_path_parents[x]
self.hld_tour_idx=[None]*self.V
for i in range(self.V):
self.hld_tour_idx[self.hld_tour[i]]=i
def HLD(self,a,b,edge=False):
L,R=[],[]
while self.hld_path_parents[a]!=self.hld_path_parents[b]:
if self.hld_depth[self.hld_path_parents[a]]<self.hld_depth[self.hld_path_parents[b]]:
R.append((self.hld_tour_idx[self.hld_path_parents[b]],self.hld_tour_idx[b]+1))
b=self.hld_parents[self.hld_path_parents[b]]
else:
L.append((self.hld_tour_idx[a]+1,self.hld_tour_idx[self.hld_path_parents[a]]))
a=self.hld_parents[self.hld_path_parents[a]]
if edge:
if self.hld_depth[a]!=self.hld_depth[b]:
retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b]+1)]+R[::-1]
else:
retu=L+R[::-1]
else:
if self.hld_depth[a]<self.hld_depth[b]:
retu=L+[(self.hld_tour_idx[a],self.hld_tour_idx[b]+1)]+R[::-1]
else:
retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b])]+R[::-1]
return retu
def Build_Hash(self,s,random_number=False,mod=(1<<61)-1,rerooting=False):
self.lower_hash=[None]*self.V
if random_number:
self.hash_random_number=random_number
else:
self.hash_random_number=[random.randint(1,10**10) for i in range(self.V)]
self.hash_mod=mod
parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True)
for x in postorder:
level=0
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
h,l=self.lower_hash[y]
level=max(level,l+1)
ha=1
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
h,l=self.lower_hash[y]
ha*=h+self.hash_random_number[l]
ha%=self.hash_mod
self.lower_hash[x]=(ha,level)
if rerooting:
self.upper_hash=[None]*self.V
self.upper_hash[s]=(1,-1)
for x in preorder:
children=[y for y,d in self.graph[x] if y!=parents[x]] if self.weighted else [y for y in self.graph[x] if y!=parents[x]]
if children:
l=len(children)
l_lst,r_lst=[None]*(l+1),[None]*(l+1)
l_lst[0],r_lst[l]=(1,-1),(1,-1)
for i in range(1,l+1):
h0,l0=l_lst[i-1]
h1,l1=self.lower_hash[children[i-1]]
l_lst[i]=(h0*(h1+self.hash_random_number[l1])%self.hash_mod,max(l0,l1))
for i in range(l-1,-1,-1):
h0,l0=r_lst[i+1]
h1,l1=self.lower_hash[children[i]]
r_lst[i]=(h0*(h1+self.hash_random_number[l1])%self.hash_mod,max(l0,l1))
for i in range(l):
if x==s:
ha,level=1,0
else:
ha,level=self.upper_hash[x]
h0,l0=l_lst[i]
h1,l1=r_lst[i+1]
ha*=h0*h1
level=max(level,l0+1,l1+1)
ha+=self.hash_random_number[level]
ha%=self.hash_mod
level+=1
self.upper_hash[children[i]]=(ha,level)
return
def Hash(self,root,subtree=False):
if subtree:
ha,level=self.lower_hash[root]
ha+=self.hash_random_number[level]
ha%=self.hash_mod
else:
h0,l0=self.lower_hash[root]
h1,l1=self.upper_hash[root]
ha=(h0*h1+self.hash_random_number[max(l0,l1)])%self.hash_mod
level=max(l0,l1)
return ha,level
def Build_Rerooting(self,s,f_transition,f_merge):
self.rerooting_s=s
self.rerooting_f_transition=f_transition
self.rerooting_f_merge=f_merge
parents,postorder,preorder=self.SIV_DFS(s,parents=True,postorder=True,preorder=True)
self.rerooting_lower_dp=[None]*self.V
for x in postorder:
self.rerooting_lower_dp[x]=self.rerooting_f_merge([self.rerooting_f_transition(self.rerooting_lower_dp[y]) for y in G.graph[x] if y!=parents[x]])
self.rerooting_upper_dp=[None]*self.V
for x in preorder:
children=[y for y in self.graph[x] if y!=parents[x]]
left_accumule_f=[None]*(len(children)+1)
right_accumule_f=[None]*(len(children)+1)
left_accumule_f[0]=self.rerooting_f_merge([])
for i in range(1,len(children)+1):
left_accumule_f[i]=self.rerooting_f_merge([left_accumule_f[i-1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i-1]])])
right_accumule_f[len(children)]=self.rerooting_f_merge([])
for i in range(len(children)-1,-1,-1):
right_accumule_f[i]=self.rerooting_f_merge([right_accumule_f[i+1],self.rerooting_f_transition(self.rerooting_lower_dp[children[i]])])
for i in range(len(children)):
if parents[x]!=None:
self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1],self.rerooting_f_transition(self.rerooting_upper_dp[x])])
else:
self.rerooting_upper_dp[children[i]]=self.rerooting_f_merge([left_accumule_f[i],right_accumule_f[i+1]])
def Rerooting(self,x):
if x==self.rerooting_s:
retu=self.rerooting_lower_dp[x]
else:
retu=self.rerooting_f_merge([self.rerooting_lower_dp[x],self.rerooting_f_transition(self.rerooting_upper_dp[x])])
return retu
def Centroid(self,root=0):
x=root
parents,size=self.SIV_DFS(x,parents=True,subtree_size=True)
while True:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
if size[y]*2>size[root]:
x=y
break
else:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==parents[x]:
continue
if size[root]<=2*size[y]:
return x,y
return x,None
def Centroid_Decomposition(self,edge=False,linked_point=False,point=False,tree=False):
if edge:
cd_edges_lst=[None]*self.V
if linked_point:
cd_linked_points=[None]*self.V
if point:
cd_points_lst=[None]*self.V
if tree:
cd_tree=[]*self.V
edges=self.edges
points=[i for i in range(self.V)]
prev_centroid=None
stack=[(edges,points,None,prev_centroid)] if linked_point else [(edges,points,prev_centroid)]
while stack:
if linked_point:
edges,points,lp,prev_centroid=stack.pop()
else:
edges,points,prev_centroid=stack.pop()
if len(points)==1:
centroid=points[0]
if edge:
cd_edges_lst[centroid]=[]
if linked_point:
cd_linked_points[centroid]=lp
if point:
cd_points_lst[centroid]=[centroid]
if tree and prev_centroid!=None:
cd_tree.append((prev_centroid,centroid))
continue
G=Graph(len(points),edges=edges,weighted=self.weighted)
centroid,_=G.Centroid()
if tree and prev_centroid!=None:
cd_tree.append((prev_centroid,points[centroid]))
parents,tour=G.SIV_DFS(centroid,parents=True,preorder=True)
dp=[None]*len(points)
edges_lst=[]
points_lst=[]
if linked_point:
linked_points=[]
for i,x in enumerate(G.graph[centroid]):
if G.weighted:
x,d=x
dp[x]=(i,0)
edges_lst.append([])
points_lst.append([points[x]])
if linked_point:
linked_points.append(points[x])
for x in tour[1:]:
for y in G.graph[x]:
if G.weighted:
y,d=y
if y==parents[x]:
continue
i,j=dp[x]
jj=len(points_lst[i])
edges_lst[i].append((j,jj,d) if G.weighted else (j,jj))
points_lst[i].append(points[y])
dp[y]=(i,jj)
centroid=points[centroid]
if edge:
cd_edges_lst[centroid]=edges
if linked_point:
cd_linked_points[centroid]=lp
if point:
cd_points_lst[centroid]=points
if linked_point:
for edges,points,lp in zip(edges_lst,points_lst,linked_points):
stack.append((edges,points,lp,centroid))
else:
for edges,points in zip(edges_lst,points_lst):
stack.append((edges,points,centroid))
retu=()
if edge:
retu+=(cd_edges_lst,)
if linked_point:
retu+=(cd_linked_points,)
if point:
retu+=(cd_points_lst,)
if tree:
retu+=(cd_tree,)
if len(retu)==1:
retu=retu[0]
return retu
def Bridges(self):
lowlink,preorder=self.MIV_DFS(lowlink=True,preorder=True)
order=[None]*self.V
for x in range(self.V):
order[preorder[x]]=x
bridges=[]
for e in self.edges:
if self.weighted:
x,y,d=e
else:
x,y=e
if order[x]<lowlink[y] or order[y]<lowlink[x]:
bridges.append((x,y))
return bridges
def Articulation_Points(self):
lowlink,parents,preorder=self.MIV_DFS(lowlink=True,parents=True,preorder=True)
order=[None]*self.V
for x in range(self.V):
order[preorder[x]]=x
articulation_points=[]
for x in range(self.V):
if parents[x]==None:
if len({y for y in self.graph[x] if parents[y]==x})>=2:
articulation_points.append(x)
else:
for y in self.graph[x]:
if parents[y]!=x:
continue
if order[x]<=lowlink[y]:
articulation_points.append(x)
break
return articulation_points
def TECCD(self):
lowlink,preorder=self.MIV_DFS(lowlink=True,preorder=True)
order=[None]*self.V
for x in range(self.V):
order[preorder[x]]=x
edges=[]
for e in self.edges:
if self.weighted:
x,y,d=e
else:
x,y=e
if order[x]>=lowlink[y] and order[y]>=lowlink[x]:
edges.append((x,y))
teccd=Graph(self.V,edges=edges).MIV_DFS(linked_components=True)
return teccd
def LCD(self):
lcd_points=self.MIV_DFS(linked_components=True)
lcd_edges=[[] for i in range(len(lcd_points))]
idx=[None]*self.V
for i in range(len(lcd_points)):
for j in range(len(lcd_points[i])):
idx[lcd_points[i][j]]=(i,j)
for tpl in self.edges:
if self.weighted:
x,y,d=tpl
else:
x,y=tpl
i,j0=idx[x]
i,j1=idx[y]
if self.weighted:
lcd_edges[i].append((j0,j1,d))
else:
lcd_edges[i].append((j0,j1))
return lcd_points,lcd_edges
def Dijkstra(self,s,route_restoration=False):
dist=[self.inf]*self.V
dist[s]=0
hq=[(0,s)]
if route_restoration:
parents=[None]*self.V
while hq:
dx,x=heapq.heappop(hq)
if dist[x]<dx:
continue
for y,dy in self.graph[x]:
if dist[y]>dx+dy:
dist[y]=dx+dy
if route_restoration:
parents[y]=x
heapq.heappush(hq,(dist[y],y))
if route_restoration:
return dist,parents
else:
return dist
def Bellman_Ford(self,s,route_restoration=False):
dist=[self.inf]*self.V
dist[s]=0
if route_restoration:
parents=[None]*self.V
for _ in range(self.V-1):
for i,j,d in self.edges:
if dist[j]>dist[i]+d:
dist[j]=dist[i]+d
if route_restoration:
parents[j]=i
if not self.directed and dist[i]>dist[j]+d:
dist[i]=dist[j]+d
if route_restoration:
parents[i]=j
negative_cycle=[]
for i,j,d in self.edges:
if dist[j]>dist[i]+d:
negative_cycle.append(j)
if not self.directed and dist[i]>dist[j]+d:
negative_cycle.append(i)
if negative_cycle:
is_negative_cycle=[False]*self.V
for i in negative_cycle:
if is_negative_cycle[i]:
continue
else:
queue=[i]
is_negative_cycle[i]=True
while queue:
x=queue.popleft()
for y,d in self.graph[x]:
if not is_negative_cycle[y]:
queue.append(y)
is_negative_cycle[y]=True
if route_restoration:
parents[y]=x
for i in range(self.V):
if is_negative_cycle[i]:
dist[i]=-self.inf
if route_restoration:
return dist,parents
else:
return dist
def Warshall_Floyd(self,route_restoration=False):
dist=[[self.inf]*self.V for i in range(self.V)]
for i in range(self.V):
dist[i][i]=0
if route_restoration:
parents=[[j for j in range(self.V)] for i in range(self.V)]
for i,j,d in self.edges:
if i==j:
continue
if dist[i][j]>d:
dist[i][j]=d
if route_restoration:
parents[i][j]=i
if not self.directed and dist[j][i]>d:
dist[j][i]=d
if route_restoration:
parents[j][i]=j
for k in range(self.V):
for i in range(self.V):
for j in range(self.V):
if dist[i][j]>dist[i][k]+dist[k][j]:
dist[i][j]=dist[i][k]+dist[k][j]
if route_restoration:
parents[i][j]=parents[k][j]
for i in range(self.V):
if dist[i][i]<0:
for j in range(self.V):
if dist[i][j]!=self.inf:
dist[i][j]=-self.inf
if route_restoration:
for i in range(self.V):
if dist[i][i]==0:
parents[i][i]=None
return dist,parents
else:
return dist
def BFS_01(self,s,route_restoration=False):
queue=deque([s])
seen=[False]*self.V
dist=[self.inf]*self.V
dist[s]=0
if route_restoration:
parents=[None]*self.V
while queue:
x=queue.popleft()
if seen[x]:
continue
seen[x]=False
for y,d in self.graph[x]:
if dist[y]>dist[x]+d:
dist[y]=dist[x]+d
if route_restoration:
parents[y]=x
if d:
queue.append(y)
else:
queue.appendleft(y)
if route_restoration:
return dist,parents
else:
return dist
def Distance_Frequency(self):
mod=206158430209
cnt=[0]*self.V
cd_edges,cd_points,cd_tree=self.Centroid_Decomposition(edge=True,point=True,tree=True)
CD=Graph(self.V,edges=cd_tree)
parents,tour=CD.SIV_DFS(cd_tree[0][0],parents=True,postorder=True)
for x in tour:
C=[0]*(len(cd_points[x])+1)
for y in CD.graph[x]:
if y==parents[x]:
continue
depth=Graph(len(cd_points[y]),edges=cd_edges[y],weighted=self.weighted).SIV_DFS(0,unweighted_dist=True)
CC=[0]*(max(depth)+2)
for d in depth:
CC[d+1]+=1
cnt[d+1]+=2
C[d+1]+=1
poly=NTT_Pow(CC,2)
for d,c in enumerate(poly):
if d<self.V:
cnt[d]-=c
while C and C[-1]==0:
C.pop()
poly=NTT_Pow(C,2)
for d,c in enumerate(poly):
if d<N:
cnt[d]+=c
for i in range(self.V):
cnt[i]//=2
return cnt
def Shortest_Path_Count(self,s,dist,mod=0):
cnt=[0]*self.V
cnt[s]=1
for x in sorted([x for x in range(self.V)],key=lambda x:dist[x]):
for y in self.graph[x]:
if self.weighted:
y,d=y
else:
d=1
if dist[x]+d==dist[y]:
cnt[y]+=cnt[x]
if mod:
cnt[y]%=mod
return cnt
def K_Shortest_Path_Routing(self,s,t,K,edge_unicursal=False,point_unicursal=False):
if point_unicursal:
if self.weighted:
dist,parents=self.Dijkstra(s,route_restoration=True)
else:
parents,dist=self.SIV_BFS(s,parents=True,unweighted_dist=True)
route=tuple(self.Route_Restoration(s,t,parents))
queue=[(dist[t],route,[dist[x] for x in route])]
set_queue=set()
set_queue.add(route)
retu=[]
while queue and K:
d,route,route_dist=heapq.heappop(queue)
retu.append((d,route,route_dist))
K-=1
set_route=set()
for i in range(len(route)-1):
x=route[i]
set_route.add(x)
if self.weighted:
edges=[(v,u,d) for u,v,d in self.edges if not u in set_route and not v in set_route]
else:
edges=[(v,u) for u,v in self.edges if not u in set_route and not v in set_route]
G_rev=Graph(self.V,edges=edges,directed=self.directed,weighted=self.weighted,inf=self.inf)
if self.weighted:
dist_rev,parents_rev=G_rev.Dijkstra(t,route_restoration=True)
else:
parents_rev,dist_rev=G_rev.SIV_BFS(t,parents=True,unweighted_dist=True)
for y in self.graph[x]:
if self.weighted:
y,d=y
else:
d=1
if y==route[i+1]:
continue
if dist_rev[y]==self.inf:
continue
tpl=route[:i+1]+tuple(self.Route_Restoration(t,y,parents_rev)[::-1])
if not tpl in set_queue:
heapq.heappush(queue,(route_dist[i]+d+dist_rev[y],tpl,route_dist[:i+1]+[route_dist[i]+d+dist_rev[y]-dist_rev[z] for z in tpl[i+1:]]))
set_queue.add(tpl)
elif edge_unicursal:
if self.weighted:
dist,parents=self.Dijkstra(s,route_restoration=True)
else:
parents,dist=self.SIV_BFS(s,parents=True,unweighted_dist=True)
route=tuple(self.Route_Restoration(s,t,parents))
queue=[(dist[t],route,[dist[x] for x in route])]
set_queue=set()
set_queue.add(route)
retu=[]
while queue and K:
d,route,route_dist=heapq.heappop(queue)
retu.append((d,route,route_dist))
K-=1
set_route=set()
for i in range(len(route)-1):
x=route[i]
y=route[i+1]
set_route.add((x,y,route_dist[i+1]-route_dist[i]))
if not self.directed:
set_route.add((y,x,route_dist[i+1]-route_dist[i]))
if self.weighted:
edges=[(v,u,d) for u,v,d in self.edges if not (u,v,d) in set_route]
else:
edges=[(v,u) for u,v in self.edges if not (u,v,d) in set_route]
G_rev=Graph(self.V,edges=edges,directed=self.directed,weighted=self.weighted,inf=self.inf)
if self.weighted:
dist_rev,parents_rev=G_rev.Dijkstra(t,route_restoration=True)
else:
parents_rev,dist_rev=G_rev.SIV_BFS(t,parents=True,unweighted_dist=True)
for y in self.graph[x]:
if self.weighted:
y,d=y
else:
d=1
if y==route[i+1]:
continue
if dist_rev[y]==self.inf:
continue
tpl=route[:i+1]+tuple(self.Route_Restoration(t,y,parents_rev)[::-1])
if not tpl in set_queue:
heapq.heappush(queue,(route_dist[i]+d+dist_rev[y],tpl,route_dist[:i+1]+[route_dist[i]+d+dist_rev[y]-dist_rev[z] for z in tpl[i+1:]]))
set_queue.add(tpl)
else:
if self.weighted:
dist,parents=self.Dijkstra(s,route_restoration=True)
else:
parents,dist=self.SIV_BFS(s,parents=True,unweighted_dist=True)
if dist[t]==self.inf:
return False
route_lst=[tuple(self.Route_Restoration(s,x,parents)) for x in range(self.V)]
if self.weighted:
edges_rev=[(j,i,d) for i,j,d in self.edges]
else:
edges_rev=[(j,i) for i,j in self.edges]
G_rev=Graph(self.V,edges=edges_rev,weighted=self.weighted,directed=self.directed,inf=self.inf)
if self.weighted:
dist_rev,parents_rev=G_rev.Dijkstra(t,route_restoration=True)
else:
parents_rev,dist_rev=G_rev.SIV_BFS(t,parents=True,unweighted_dist=True)
route_rev_lst=[]
for x in range(self.V):
route_rev_lst.append(tuple(self.Route_Restoration(t,x,parents_rev)[::-1]))
route=route_lst[t]
queue=[(dist[t],route,[dist[x] for x in route])]
set_queue=set()
set_queue.add(route)
retu=[]
while queue and K:
d,route,route_dist=heapq.heappop(queue)
retu.append((d,route,route_dist))
K-=1
for i in range(len(route)):
x=route[i]
for y in self.graph[x]:
if self.weighted:
y,d=y
else:
d=1
if i!=len(route)-1 and y==route[i+1]:
continue
tpl=route[:i+1]+route_rev_lst[y]
if not tpl in set_queue:
heapq.heappush(queue,(route_dist[i]+d+dist_rev[y],tpl,route_dist[:i+1]+[route_dist[i]+d+dist_rev[y]-dist_rev[z] for z in route_rev_lst[y]]))
set_queue.add(tpl)
return retu
def Euler_Path(self,s=None,t=None):
if self.directed:
indegree=[0]*self.V
outdegree=[0]*self.V
graph=[[] for x in range(self.V)]
for tpl in self.edges:
if self.weighted:
u,v,d=tpl
else:
u,v=tpl
indegree[v]+=1
outdegree[u]+=1
graph[v].append(u)
for x in range(self.V):
if indegree[x]+1==outdegree[x]:
if s==None:
s=x
elif s!=x:
return False
elif indegree[x]==outdegree[x]+1:
if t==None:
t=x
elif t!=x:
return False
elif indegree[x]!=outdegree[x]:
return False
if (s,t)==(None,None):
for x in range(self.V):
if graph[x]:
s=x
t=x
break
elif s==None:
s=t
elif t==None:
t=s
elif s==t:
for x in range(self.V):
if indegree[x]!=outdegree[x]:
return False
queue=[t]
euler_path=[]
while queue:
while graph[queue[-1]]:
queue.append(graph[queue[-1]].pop())
x=queue.pop()
euler_path.append(x)
for x in range(self.V):
if graph[x]:
return False
else:
degree=[0]*self.V
graph=[[] for x in range(self.V)]
use_count=[defaultdict(int) for x in range(self.V)]
for tpl in self.edges:
if self.weighted:
u,v,d=tpl
else:
u,v=tpl
degree[v]+=1
degree[u]+=1
graph[u].append(v)
graph[v].append(u)
for x in range(self.V):
if degree[x]%2:
if s==None and t!=x:
s=x
elif t==None and s!=x:
t=x
elif not x in (s,t):
return False
if s==None and t==None:
for x in range(self.V):
if graph[x]:
s=x
t=x
break
else:
s,t=0,0
elif s==None:
s=t
elif t==None:
t=s
elif s!=t:
if degree[s]%2==0 or degree[t]%2==0:
return False
queue=[t]
euler_path=[]
while queue:
while graph[queue[-1]]:
if use_count[queue[-1]][graph[queue[-1]][-1]]:
use_count[queue[-1]][graph[queue[-1]][-1]]-=1
graph[queue[-1]].pop()
else:
queue.append(graph[queue[-1]].pop())
use_count[queue[-1]][queue[-2]]+=1
x=queue.pop()
euler_path.append(x)
for x in range(self.V):
if graph[x]:
return False
if euler_path[0]!=s:
return False
return euler_path
def Route_Restoration(self,s,g,parents):
route=[g]
while s!=g:
if parents[g]==None:
route=[]
break
g=parents[g]
route.append(g)
route=route[::-1]
return route
def Negative_Cycls(self):
dist=[0]*self.V
for _ in range(self.V-1):
for i,j,d in self.edges:
dist[j]=min(dist[j],dist[i]+d)
for i,j,d in self.edges:
if dist[j]>dist[i]+d:
return True
return False
def Kruskal(self,maximize=False):
UF=UnionFind(self.V)
sorted_edges=sorted(self.edges,key=lambda x:x[2],reverse=maximize)
spnning_tree=[]
for i,j,d in sorted_edges:
if not UF.Same(i,j):
UF.Union(i,j)
spnning_tree.append((i,j,d))
return spnning_tree
def Max_Clique(self):
graph=[[False]*self.V for x in range(self.V)]
for x in range(self.V):
for y in self.graph[x]:
if self.weighted:
y,d=y
graph[x][y]=True
N0,N1=self.V//2,self.V-self.V//2
pop_count=[sum(bit>>i&1 for i in range(N1)) for bit in range(1<<N1)]
is_clique0=[True]*(1<<N0)
for j in range(N0):
for i in range(j):
if not graph[i][j]:
is_clique0[1<<i|1<<j]=False
for i in range(N0):
for bit in range(1<<N0):
if bit&1<<i:
is_clique0[bit]=is_clique0[bit]&is_clique0[bit^1<<i]
is_clique1=[True]*(1<<N1)
for j in range(N1):
for i in range(j):
if not graph[i+N0][j+N0]:
is_clique1[1<<i|1<<j]=False
for i in range(N1):
for bit in range(1<<N1):
if bit&1<<i:
is_clique1[bit]=is_clique1[bit]&is_clique1[bit^1<<i]
max_clique_bit=[bit if is_clique0[bit] else 0 for bit in range(1<<N0)]
for i in range(N0):
for bit in range(1<<N0):
if bit&1<<i and pop_count[max_clique_bit[bit]]<pop_count[max_clique_bit[bit^1<<i]]:
max_clique_bit[bit]=max_clique_bit[bit^1<<i]
dp=[(1<<N0)-1]*(1<<N1)
for j in range(N1):
for i in range(N0):
if not graph[j+N0][i]:
dp[1<<j]^=1<<i
for i in range(N1):
for bit in range(1<<N1):
if bit&1<<i:
dp[bit]&=dp[bit^1<<i]
bit0,bit1=0,0
for bit in range(1<<N1):
if is_clique1[bit] and pop_count[max_clique_bit[dp[bit]]]+pop_count[bit]>pop_count[bit0]+pop_count[bit1]:
bit0=max_clique_bit[dp[bit]]
bit1=bit
max_clique=[i for i in range(N0) if bit0&1<<i]+[i+N0 for i in range(N1) if bit1&1<<i]
return max_clique
def Cliques(self):
graph=[[False]*self.V for x in range(self.V)]
for x in range(self.V):
for y in self.graph[x]:
if self.weighted:
y,d=y
graph[x][y]=True
cliques=[]
points=[x for x in range(self.V)]
while points:
l=len(points)
min_degree,min_degree_point=self.inf,None
sum_degree=0
for x in points:
s=sum(graph[x][y] for y in points)
sum_degree+=s
if s<min_degree:
min_degree=s
min_degree_point=x
if min_degree**2>=sum_degree:
lst=points
else:
lst=[x for x in points if x==min_degree_point or graph[min_degree_point][x]]
l=len(lst)
is_clique=[True]*(1<<l)
for j in range(l):
for i in range(j):
if not graph[lst[i]][lst[j]]:
is_clique[1<<i|1<<j]=False
for i in range(l):
for bit in range(1<<l):
if bit&1<<i:
is_clique[bit]=is_clique[bit]&is_clique[bit^1<<i]
if min_degree**2>=sum_degree:
for bit in range(1<<l):
if is_clique[bit]:
cliques.append([lst[i] for i in range(l) if bit&1<<i])
else:
idx=lst.index(min_degree_point)
for bit in range(1<<l):
if is_clique[bit] and bit&1<<idx:
cliques.append([lst[i] for i in range(l) if bit&1<<i])
if min_degree**2>=sum_degree:
points=[]
else:
points=[x for x in points if x!=min_degree_point]
return cliques
def Ford_Fulkerson(self,s,t):
max_flow=0
residual_graph=[defaultdict(int) for i in range(self.V)]
if self.weighted:
for i,j,d in self.edges:
if not d:
continue
residual_graph[i][j]+=d
if not self.directed:
residual_graph[j][i]+=d
else:
for i,j in self.edges:
residual_graph[i][j]+=1
if not self.directed:
residual_graph[j][i]+=1
while True:
parents=[None]*self.V
parents[s]=s
seen=[False]*self.V
seen[s]=True
queue=deque([s])
while queue:
x=queue.popleft()
for y in residual_graph[x].keys():
if not seen[y]:
seen[y]=True
queue.append(y)
parents[y]=x
if y==t:
tt=t
while tt!=s:
residual_graph[parents[tt]][tt]-=1
residual_graph[tt][parents[tt]]+=1
if not residual_graph[parents[tt]][tt]:
residual_graph[parents[tt]].pop(tt)
tt=parents[tt]
max_flow+=1
break
else:
continue
break
else:
break
return max_flow
def BFS(self,s):
seen=[False]*self.V
seen[s]=True
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
return
def DFS(self,s):
seen=[False]*self.V
finished=[False]*self.V
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
elif not finished[x]:
finished[x]=True
return
N,M=map(int,readline().split())
A=list(map(int,readline().split()))
B=list(map(int,readline().split()))
for i in range(M):
A[i]-=1
B[i]-=1
edges=[]
for a,b in zip(A,B):
edges.append((a,b))
seen=[False]*N
G=Graph(N,edges=edges)
parents,depth=G.MIV_DFS(parents=True,unweighted_dist=True)
ans_lst=[None]*M
for i,(a,b) in enumerate(zip(A,B)):
if parents[a]==b:
if seen[a]:
ans_lst[i]=1
else:
ans_lst[i]=0
seen[a]=True
elif parents[b]==a:
if seen[b]:
ans_lst[i]=0
else:
ans_lst[i]=1
seen[b]=True
elif depth[a]<depth[b]:
ans_lst[i]=0
else:
ans_lst[i]=1
print(*ans_lst,sep="")
|
ConDefects/ConDefects/Code/arc143_d/Python/32779304
|
condefects-python_data_2544
|
n, m = map(int, input().split())
a = [u - 1 for u in map(int, input().split())]
b = [u - 1 for u in map(int, input().split())]
edges = [[] for _ in range(n)]
for i in range(m):
edges[a[i]].append((b[i], i))
edges[b[i]].append((a[i], i))
# DFS
ans = [-1] * m
visited = [0] * n
for root in range(n):
if visited[root]:
continue
todo = [(root, -1)]
while todo:
u, i = todo.pop()
if visited[u]:
if u == a[i]:
ans[i] = 0
else:
ans[i] = 1
continue
visited[u] = 1
if i != -1:
if u == a[i]:
ans[i] = 1
else:
ans[i] = 0
for v, j in edges[u]:
if not visited[v]:
todo.append((v, j))
print(*ans, sep='')
n, m = map(int, input().split())
a = [u - 1 for u in map(int, input().split())]
b = [u - 1 for u in map(int, input().split())]
edges = [[] for _ in range(n)]
for i in range(m):
edges[a[i]].append((b[i], i))
edges[b[i]].append((a[i], i))
# DFS
ans = [0] * m
visited = [0] * n
for root in range(n):
if visited[root]:
continue
todo = [(root, -1)]
while todo:
u, i = todo.pop()
if visited[u]:
if u == a[i]:
ans[i] = 0
else:
ans[i] = 1
continue
visited[u] = 1
if i != -1:
if u == a[i]:
ans[i] = 1
else:
ans[i] = 0
for v, j in edges[u]:
if not visited[v]:
todo.append((v, j))
print(*ans, sep='')
|
ConDefects/ConDefects/Code/arc143_d/Python/34822438
|
condefects-python_data_2545
|
import sys
input = sys.stdin.readline
from collections import defaultdict
n,m = map(int,input().split())
a = list(map(int,input().split()))
b = list(map(int,input().split()))
ans = [-1 for i in range(m)]
graph = [[] for i in range(n+1)]
for i in range(m):
ax,bx = a[i],b[i]
graph[ax].append((bx,i,0))
graph[bx].append((ax,i,1))
dc = defaultdict(int)
dcc = defaultdict(int)
seen = [0 for i in range(n+1)]
for i in range(1,n+1):
if seen[i] == len(graph[i])-1:
continue
stack = [(i,-1,-1)]
while stack:
x,o,d = stack.pop()
if seen[x] == len(graph[x])-1:
continue
if ans[o] >= 0:
continue
if o >= 0:
ans[o] = d
seen[x] += 1
for y,o,d in graph[x]:
if ans[o] >= 0:
continue
if seen[y] < len(graph[y])-1:
if dc[(x,y)] <= 1:
stack.append((y,o,d))
dc[(x,y)] += 1
dcc[(x,y)] = d
else:
ans[o] = dcc[(x,y)]
for i in ans:
print(max(i,0),end="")
print()
import sys
input = sys.stdin.readline
from collections import defaultdict
n,m = map(int,input().split())
a = list(map(int,input().split()))
b = list(map(int,input().split()))
ans = [-1 for i in range(m)]
graph = [[] for i in range(n+1)]
for i in range(m):
ax,bx = a[i],b[i]
graph[ax].append((bx,i,0))
graph[bx].append((ax,i,1))
dc = defaultdict(int)
dcc = defaultdict(int)
seen = [0 for i in range(n+1)]
for i in range(1,n+1):
if seen[i] == len(graph[i])-1:
continue
stack = [(i,-1,-1)]
while stack:
x,o,d = stack.pop()
if seen[x] == len(graph[x])-1:
continue
if ans[o] >= 0:
continue
if o >= 0:
ans[o] = d
seen[x] += 1
for y,o,d in graph[x]:
if ans[o] >= 0:
continue
if seen[y] < len(graph[y])-1:
if dc[(x,y)] <= 10:
stack.append((y,o,d))
dc[(x,y)] += 1
dcc[(x,y)] = d
else:
ans[o] = dcc[(x,y)]
for i in ans:
print(max(i,0),end="")
print()
|
ConDefects/ConDefects/Code/arc143_d/Python/32833945
|
condefects-python_data_2546
|
from collections import defaultdict
def find_bridge(n, s, links, double_links, aaa, bbb, ans):
pre_order = 0
q = [s]
while q:
u = q[-1]
if status[u] < len(links[u]):
if pre[u] == -1:
pre[u] = low[u] = pre_order
pre_order += 1
v = links[u][status[u]]
status[u] += 1
if v == parents[u]:
continue
i = double_links[u][v][0]
if aaa[i] == v:
ans[i] = 1
if pre[v] != -1:
low[u] = min(low[u], low[v])
continue
q.append(v)
parents[v] = u
else:
q.pop()
p = parents[u]
if p != -1:
low[p] = min(low[p], low[u])
if pre[u] == low[u]:
if len(double_links[p][u]) > 1:
i, j = double_links[p][u][:2]
if aaa[i] == aaa[j]:
ans[i] = 0
ans[j] = 1
else:
ans[i] = 0
ans[j] = 0
n, m = map(int, input().split())
double_links = [defaultdict(list) for _ in range(n)]
aaa = [a - 1 for a in map(int, input().split())]
bbb = [b - 1 for b in map(int, input().split())]
for i in range(m):
a = aaa[i]
b = bbb[i]
double_links[a][b].append(i)
double_links[b][a].append(i)
links = []
for u in range(n):
links.append(list(double_links[u].keys()))
ans = [0] * m
pre = [-1] * n
low = [1 << 60] * n
status = [0] * n
parents = [-1] * n
for s in range(n):
if pre[s] != -1:
continue
find_bridge(n, s, links, double_links, aaa, bbb, ans)
print(''.join(map(str, ans)))
from collections import defaultdict
def find_bridge(n, s, links, double_links, aaa, bbb, ans):
pre_order = 0
q = [s]
while q:
u = q[-1]
if status[u] < len(links[u]):
if pre[u] == -1:
pre[u] = low[u] = pre_order
pre_order += 1
v = links[u][status[u]]
status[u] += 1
if v == parents[u]:
continue
if pre[u] < pre[v]:
continue
i = double_links[u][v][0]
if aaa[i] == v:
ans[i] = 1
if pre[v] != -1:
low[u] = min(low[u], low[v])
continue
q.append(v)
parents[v] = u
else:
q.pop()
p = parents[u]
if p != -1:
low[p] = min(low[p], low[u])
if pre[u] == low[u]:
if len(double_links[p][u]) > 1:
i, j = double_links[p][u][:2]
if aaa[i] == aaa[j]:
ans[i] = 0
ans[j] = 1
else:
ans[i] = 0
ans[j] = 0
n, m = map(int, input().split())
double_links = [defaultdict(list) for _ in range(n)]
aaa = [a - 1 for a in map(int, input().split())]
bbb = [b - 1 for b in map(int, input().split())]
for i in range(m):
a = aaa[i]
b = bbb[i]
double_links[a][b].append(i)
double_links[b][a].append(i)
links = []
for u in range(n):
links.append(list(double_links[u].keys()))
ans = [0] * m
pre = [-1] * n
low = [1 << 60] * n
status = [0] * n
parents = [-1] * n
for s in range(n):
if pre[s] != -1:
continue
find_bridge(n, s, links, double_links, aaa, bbb, ans)
print(''.join(map(str, ans)))
|
ConDefects/ConDefects/Code/arc143_d/Python/32782502
|
condefects-python_data_2547
|
H, W, N = (int(i) for i in input().split())
A = [int(i) for i in input().split()]
D = [0] * 26
for i in range(N):
D[A[i]] += 1
s = 0
for i in range(25, -1, -1):
d = (H // 2 ** i) * (W // 2 ** i)
if d - 4 * s < D[i]:
print('No')
exit()
s = D[i]
print('Yes')
H, W, N = (int(i) for i in input().split())
A = [int(i) for i in input().split()]
D = [0] * 26
for i in range(N):
D[A[i]] += 1
s = 0
for i in range(25, -1, -1):
d = (H // 2 ** i) * (W // 2 ** i)
if d - 4 * s < D[i]:
print('No')
exit()
s = D[i] + 4 * s
print('Yes')
|
ConDefects/ConDefects/Code/arc172_a/Python/54670313
|
condefects-python_data_2548
|
def check(i, total):
pos = H//pow(2,i) * W//pow(2,i) * pow(2,i*2)
if pos >= total:
return True
else:
return False
H, W, N = map(int,input().split())
A = list(map(int,input().split()))
cnt = [0] * 26
for a in A:
cnt[a] += 1
total = 0
for i in range(25, -1, -1):
total += cnt[i] * pow(2, i*2)
if not check(i, total):
print("No")
exit()
print("Yes")
def check(i, total):
pos = (H//pow(2,i)) * (W//pow(2,i)) * pow(2,i*2)
if pos >= total:
return True
else:
return False
H, W, N = map(int,input().split())
A = list(map(int,input().split()))
cnt = [0] * 26
for a in A:
cnt[a] += 1
total = 0
for i in range(25, -1, -1):
total += cnt[i] * pow(2, i*2)
if not check(i, total):
print("No")
exit()
print("Yes")
|
ConDefects/ConDefects/Code/arc172_a/Python/51434027
|
condefects-python_data_2549
|
ans = "Yes"
h,w,n = map(int,input().split())
a = list(map(int,input().split()))
a.sort()
a.reverse()
l =[[h,w]]
for i in range(n):
x = 2**a[i]
y = 2**a[i]
m = len(l)
for j in range(m):
s = l[j][0]
t = l[j][1]
f = 0
if x <= s and y <= t:
l.pop(j)
w1 = x
h1 = t - y
if 0 < h1:
p = [w1,h1]
p.sort()
l.append(p)
w2 = s - x
h2 = t
if 0 < w2:
q = [w2,h2]
q.sort()
l.append(q)
l.sort()
f = 1
break
if f == 0:
ans = "No"
print(ans)
ans = "Yes"
h,w,n = map(int,input().split())
a = list(map(int,input().split()))
a.sort()
a.reverse()
l =[[h,w]]
for i in range(n):
x = 2**a[i]
y = 2**a[i]
m = len(l)
if m == 0:
ans = "No"
for j in range(m):
s = l[j][0]
t = l[j][1]
f = 0
if x <= s and y <= t:
l.pop(j)
w1 = x
h1 = t - y
if 0 < h1:
p = [w1,h1]
p.sort()
l.append(p)
w2 = s - x
h2 = t
if 0 < w2:
q = [w2,h2]
q.sort()
l.append(q)
l.sort()
f = 1
break
if f == 0:
ans = "No"
print(ans)
|
ConDefects/ConDefects/Code/arc172_a/Python/52510372
|
condefects-python_data_2550
|
from collections import defaultdict
H,W,E=map(int,input().split())
A=list(map(int,input().split()))
D=defaultdict(int)
for a in A:
D[a]+=1
D=sorted(D.items(),reverse=True, key=lambda x: x[0])
#print(D)
flag=True
area=0
for a,n in D:
N=(H//(2**a))*(W//(2**a))
area+=(2**a)**2*n
#print(a,n,N,area)
if area>=(2**a)**2*N:
flag=False
if flag:
print("Yes")
else:
print("No")
from collections import defaultdict
H,W,E=map(int,input().split())
A=list(map(int,input().split()))
D=defaultdict(int)
for a in A:
D[a]+=1
D=sorted(D.items(),reverse=True, key=lambda x: x[0])
#print(D)
flag=True
area=0
for a,n in D:
N=(H//(2**a))*(W//(2**a))
area+=(2**a)**2*n
#print(a,n,N,area)
if area>(2**a)**2*N:
flag=False
if flag:
print("Yes")
else:
print("No")
|
ConDefects/ConDefects/Code/arc172_a/Python/51757032
|
condefects-python_data_2551
|
h,w,n = map(int,input().split())
a = list(map(int,input().split()))
l = [0 for i in range(26)]
for i in a:
l[i] += 1
now = 0
for i in range(24,-1,-1):
ii = 2**i
now += l[i]*(ii**2)
if now > (h//ii)*(w//ii)*(ii**2):
print("No")
exit()
print("Yes")
h,w,n = map(int,input().split())
a = list(map(int,input().split()))
l = [0 for i in range(26)]
for i in a:
l[i] += 1
now = 0
for i in range(25,-1,-1):
ii = 2**i
now += l[i]*(ii**2)
if now > (h//ii)*(w//ii)*(ii**2):
print("No")
exit()
print("Yes")
|
ConDefects/ConDefects/Code/arc172_a/Python/51114493
|
condefects-python_data_2552
|
N = int(input())
A = sorted(list(map(int, input().split())), reverse=True)
print('Alice' if A[0] > A[1] +
1 else ('Alice' if (A[N - 1] - N - 1) & 1 else 'Bob'))
N = int(input())
A = sorted(list(map(int, input().split())), reverse=True)
print('Alice' if A[0] > A[1] +
1 else ('Alice' if (A[0] - N - 1) & 1 else 'Bob'))
|
ConDefects/ConDefects/Code/arc137_c/Python/30750383
|
condefects-python_data_2553
|
n = int(input())
a = list(map(int, input().split()))
a = sorted(a)
max_n = a[-1]
max2_n = a[-2]
if max_n - max2_n >= 2:
print("Alice")
exit()
empty = 1 + max_n - n
if empty & 2 == 0:
print("Bob")
else:
print("Alice")
n = int(input())
a = list(map(int, input().split()))
a = sorted(a)
max_n = a[-1]
max2_n = a[-2]
if max_n - max2_n >= 2:
print("Alice")
exit()
empty = 1 + max_n - n
if empty % 2 == 0:
print("Bob")
else:
print("Alice")
|
ConDefects/ConDefects/Code/arc137_c/Python/33252696
|
condefects-python_data_2554
|
if __name__ == '__main__':
n = int(input())
a = list(map(int, input().split()))
x, y = a[n - 2], a[n - 1]
if x + 1 < y or (y - x) % 2 == 0:
print("Alice")
else:
print("Bob")
if __name__ == '__main__':
n = int(input())
a = list(map(int, input().split()))
x, y = a[n - 2], a[n - 1]
if x + 1 < y or (y - n) % 2 == 0:
print("Alice")
else:
print("Bob")
|
ConDefects/ConDefects/Code/arc137_c/Python/44903394
|
condefects-python_data_2555
|
import sys
sys.setrecursionlimit(500005)
input = sys.stdin.readline
read_str = lambda: input().strip()
read_num = lambda: int(input())
read_nums = lambda: map(int, input().split())
read_list = lambda: list(map(int, input().split()))
N = int(3e5) + 10
mod = 998244353
def solve():
n = read_num()
nums = read_list()
if nums[-1] == n - 1:
print('Bob')
elif nums[-2] + 1 < nums[-1]:
print('Alice')
elif nums[-1] % 2:
print('Alice')
else:
print('Bob')
return
solve()
import sys
sys.setrecursionlimit(500005)
input = sys.stdin.readline
read_str = lambda: input().strip()
read_num = lambda: int(input())
read_nums = lambda: map(int, input().split())
read_list = lambda: list(map(int, input().split()))
N = int(3e5) + 10
mod = 998244353
def solve():
n = read_num()
nums = read_list()
if nums[-1] == n - 1:
print('Bob')
elif nums[-2] + 1 < nums[-1]:
print('Alice')
elif (nums[-1] - n + 1) % 2:
print('Alice')
else:
print('Bob')
return
solve()
|
ConDefects/ConDefects/Code/arc137_c/Python/32337261
|
condefects-python_data_2556
|
N = int(input())
A = list(map(int,input().split()))
if A[N-1]-A[N-2] >=2:
print("Alice")
exit()
if N%2 == A[N-1]%2:
print("Bob")
else:
print("Alice")
N = int(input())
A = list(map(int,input().split()))
if A[N-1]-A[N-2] >=2:
print("Alice")
exit()
if (N-1)%2 == A[N-1]%2:
print("Bob")
else:
print("Alice")
|
ConDefects/ConDefects/Code/arc137_c/Python/30259633
|
condefects-python_data_2557
|
def find_winner(seq):
if (max(seq) - len(seq)) % 2 == 0:
return 'Alice'
else:
return 'Bob'
n = int(input())
seq = [int(num) for num in input().split()]
print(find_winner(seq))
def find_winner(seq):
if (seq[-1] - seq[-2]) >= 2:
return 'Alice'
if (max(seq) - len(seq)) % 2 == 0:
return 'Alice'
else:
return 'Bob'
n = int(input())
seq = [int(num) for num in input().split()]
print(find_winner(seq))
|
ConDefects/ConDefects/Code/arc137_c/Python/30509885
|
condefects-python_data_2558
|
n = int(input())
a = list(map(int, input().split()))
a.sort()
if a[-1] - a[-2] >= 2:
print("Alice")
else:
d = sum(t-s-1 for s,t in zip(a, a[1:]))
print("Bob" if d % 2 == 0 else "Alice")
n = int(input())
a = list(map(int, input().split()))
a.sort()
if a[-1] - a[-2] >= 2:
print("Alice")
else:
d = sum(t-s-1 for s,t in zip(a, a[1:])) + a[0]
print("Bob" if d % 2 == 0 else "Alice")
|
ConDefects/ConDefects/Code/arc137_c/Python/33142482
|
condefects-python_data_2559
|
n = int(input())
As = [int(x) for x in input().split()]
if As[-1]-As[-2] > 1:
print("Alice")
else:
if As[-1]-(n-1)%2==1:
print("Alice")
else:
print("Bob")
n = int(input())
As = [int(x) for x in input().split()]
if As[-1]-As[-2] > 1:
print("Alice")
else:
if (As[-1]-(n-1))%2==1:
print("Alice")
else:
print("Bob")
|
ConDefects/ConDefects/Code/arc137_c/Python/30317706
|
condefects-python_data_2560
|
S, T = map(str, input().split())
for w in range(1, len(S)):
S_cut = []
for i in range(w, len(S) + 1, w):
S_cut.append(S[i - w : i])
if i + w > len(S):
S_cut.append(S[i:])
# print(S_cut)
for c in range(w):
column = ""
for s in S_cut:
if c < len(s):
column += s[c]
# print(c, column)
if len(column) >= c and column == T:
print("Yes")
exit()
print("No")
S, T = map(str, input().split())
for w in range(1, len(S)):
S_cut = []
for i in range(w, len(S) + 1, w):
S_cut.append(S[i - w : i])
if i + w > len(S):
S_cut.append(S[i:])
# print(S_cut)
for c in range(w):
column = ""
for s in S_cut:
if c < len(s):
column += s[c]
# print(c, column)
if column == T:
print("Yes")
exit()
print("No")
|
ConDefects/ConDefects/Code/abc360_b/Python/55141723
|
condefects-python_data_2561
|
import math
s, t = input().split()
s, t = s.strip(), t.strip()
for w in range(1,len(s)):
ss = [s[w*i:w*i+w] for i in range(math.ceil(len(s)/w))]
ss[-1] += " " * (len(s) % w)
x = [*zip(*ss)]
for n in x:
if t == "".join(n).strip():
print("Yes")
exit(0)
print("No")
import math
s, t = input().split()
s, t = s.strip(), t.strip()
for w in range(1,len(s)):
ss = [s[w*i:w*i+w] for i in range(math.ceil(len(s)/w))]
ss[-1] += " " * (w - len(s) % w)
x = [*zip(*ss)]
for n in x:
if t == "".join(n).strip():
print("Yes")
exit(0)
print("No")
|
ConDefects/ConDefects/Code/abc360_b/Python/55142362
|
condefects-python_data_2562
|
import io
import sys
import itertools
import functools
import collections
import bisect
import operator
import threading
import math
import pprint
import heapq
import time
import decimal
import string
import random
sys.setrecursionlimit(3 * 10 ** 5)
INF = 10 ** 18 + 7
decimal.getcontext().prec = 18
# def testcase():
# with open("in.txt",mode="w") as input_file:
# testS = ''.join(random.choice(string.ascii_uppercase) for _ in range(random.randint(1, 10)))
# testT = ''.join(random.choice(string.ascii_uppercase) for _ in range(random.randint(1, 10)))
# input_file.write(f"{testS}\n{testT}")
# return
# _INPUT = """\
# 13 3 5
# """
# sys.stdin = io.StringIO(_INPUT)
# ------------------------------------------------
# ------------------------------------------------
N, H, X = map(int, input().split())
P = list(map(int, input().split()))
print(bisect.bisect_right(P, X - H) + 1)
import io
import sys
import itertools
import functools
import collections
import bisect
import operator
import threading
import math
import pprint
import heapq
import time
import decimal
import string
import random
sys.setrecursionlimit(3 * 10 ** 5)
INF = 10 ** 18 + 7
decimal.getcontext().prec = 18
# def testcase():
# with open("in.txt",mode="w") as input_file:
# testS = ''.join(random.choice(string.ascii_uppercase) for _ in range(random.randint(1, 10)))
# testT = ''.join(random.choice(string.ascii_uppercase) for _ in range(random.randint(1, 10)))
# input_file.write(f"{testS}\n{testT}")
# return
# _INPUT = """\
# 13 3 5
# """
# sys.stdin = io.StringIO(_INPUT)
# ------------------------------------------------
# ------------------------------------------------
N, H, X = map(int, input().split())
P = list(map(int, input().split()))
print(bisect.bisect_left(P, X - H) + 1)
|
ConDefects/ConDefects/Code/abc317_a/Python/54270366
|
condefects-python_data_2563
|
from bisect import bisect_left as bis
N, H, X = map(int, input().split())
P = tuple(map(int, input().split()))
print(P[bis(P, X-H)])
from bisect import bisect_left as bis
N, H, X = map(int, input().split())
P = tuple(map(int, input().split()))
print(bis(P, X-H) + 1)
|
ConDefects/ConDefects/Code/abc317_a/Python/54526177
|
condefects-python_data_2564
|
#0502
N, H, X = map(int, input().split())
P = list(map(int, input().split()))
for i in range(N):
if H + P[i] > X:
print(i + 1)
exit()
#0502
N, H, X = map(int, input().split())
P = list(map(int, input().split()))
for i in range(N):
if H + P[i] >= X:
print(i + 1)
exit()
|
ConDefects/ConDefects/Code/abc317_a/Python/54511982
|
condefects-python_data_2565
|
n,h,x = input().split()
p = input()
# print(n)
# print(h)
# print(x)
# print(p)
split_p = p.split()
list_p = list(split_p)
# print(list_p)
for i in range(0, int(n)):
# print(list_p[i])
if int(list_p[i]) >= int(x) - int(h):
print(list_p[i])
break
else:
continue
n,h,x = input().split()
p = input()
# print(n)
# print(h)
# print(x)
# print(p)
split_p = p.split()
list_p = list(split_p)
# print(list_p)
for i in range(0, int(n)):
# print(list_p[i])
if int(list_p[i]) >= int(x) - int(h):
print(i+1)
break
else:
continue
|
ConDefects/ConDefects/Code/abc317_a/Python/54442354
|
condefects-python_data_2566
|
N,H,X=map(int,input().split())
P=list(map(int,input().split()))
ans=1
for i in range(N):
if H+P[i]<=X:
ans+=1
print(ans)
N,H,X=map(int,input().split())
P=list(map(int,input().split()))
ans=1
for i in range(N):
if H+P[i]<X:
ans+=1
print(ans)
|
ConDefects/ConDefects/Code/abc317_a/Python/54312125
|
condefects-python_data_2567
|
N, H, X = map(int,input().split())
P = list(map(int,input().split()))
for i in range(N):
if X < H + P[i]:
print(i+1)
break
N, H, X = map(int,input().split())
P = list(map(int,input().split()))
for i in range(N):
if X <= H + P[i]:
print(i+1)
break
|
ConDefects/ConDefects/Code/abc317_a/Python/54736802
|
condefects-python_data_2568
|
n,h,x = map(int,input().split())
l = list(map(int,input().split()))
for i in range(n):
if x >= h + l[i]:
print(i+1)
exit()
n,h,x = map(int,input().split())
l = list(map(int,input().split()))
for i in range(n):
if h + l[i] >= x:
print(i+1)
exit()
|
ConDefects/ConDefects/Code/abc317_a/Python/54045407
|
condefects-python_data_2569
|
N,H,X = map(int,input().split())
P = input()
P = P.split()
for i in range(N) :
PP = int(P[i])
if (X - H) < PP :
print(i+1)
break
N,H,X = map(int,input().split())
P = input()
P = P.split()
for i in range(N) :
PP = int(P[i])
if (X - H) <= PP :
print(i+1)
break
|
ConDefects/ConDefects/Code/abc317_a/Python/54270630
|
condefects-python_data_2570
|
N, H, X = map(int, list(input().split()))
P = list(map(int, input().split()))
min_num = 999999
result = 0
for i in range(N):
if H + P[i] > X:
if min_num > H + P[i]:
min_num = H + P[i]
result = i + 1
print(result)
N, H, X = map(int, list(input().split()))
P = list(map(int, input().split()))
min_num = 999999
result = 0
for i in range(N):
if H + P[i] >= X:
if min_num > H + P[i]:
min_num = H + P[i]
result = i + 1
print(result)
|
ConDefects/ConDefects/Code/abc317_a/Python/54907933
|
condefects-python_data_2571
|
n, h, x = map(int, input().split())
p = list(map(int, input().split()))
for i in range(n):
if x < p[i]+h:
print(i+1)
break
n, h, x = map(int, input().split())
p = list(map(int, input().split()))
for i in range(n):
if x <= p[i]+h:
print(i+1)
break
|
ConDefects/ConDefects/Code/abc317_a/Python/54045054
|
condefects-python_data_2572
|
s = list(input())
ans = []
for i in range(len(s)):
ans.append(s[i:len(s)]+s[0:i])
print(min(ans))
print(max(ans))
s = input()
ans = []
for i in range(len(s)):
ans.append(s[i:len(s)]+s[0:i])
print(min(ans))
print(max(ans))
|
ConDefects/ConDefects/Code/abc223_b/Python/52785305
|
condefects-python_data_2573
|
S = input()
words = [S]
for i in range(len(S)-1):
words.append(S[i:] + S[:i])
words = sorted(words)
print(words[0])
print(words[-1])
S = input()
words = [S]
for i in range(len(S)):
words.append(S[i:] + S[:i])
words = sorted(words)
print(words[0])
print(words[-1])
|
ConDefects/ConDefects/Code/abc223_b/Python/53513467
|
condefects-python_data_2574
|
s = input()
min_,max_ = s,s
for i in range(1,len(s)):
if min_>s[i:]+s[:i]:
min_ = s[i:]+s[:i]
else:
max_ = s[i:]+s[:i]
print(min_)
print(max_)
s = input()
min_,max_ = s,s
for i in range(1,len(s)):
if min_>s[i:]+s[:i]:
min_ = s[i:]+s[:i]
if max_<s[i:]+s[:i]:
max_ = s[i:]+s[:i]
print(min_)
print(max_)
|
ConDefects/ConDefects/Code/abc223_b/Python/53267282
|
condefects-python_data_2575
|
N = int(input())
Arr = list(map(int, input().split()))
print([n for n in Arr if n % 2 == 0])
N = int(input())
Arr = list(map(int, input().split()))
print(" ".join([str(n) for n in Arr if n % 2 == 0]))
|
ConDefects/ConDefects/Code/abc294_a/Python/45787578
|
condefects-python_data_2576
|
n = int(input())
a = list(map(int,input().split()))
x = []
for i in range(n):
if a[i] % 2 ==0:
x.append(a[i])
print(x)
n = int(input())
a = list(map(int,input().split()))
x = []
for i in range(n):
if a[i] % 2 ==0:
x.append(a[i])
print(*x,sep = ' ')
|
ConDefects/ConDefects/Code/abc294_a/Python/45789682
|
condefects-python_data_2577
|
n = int(input())
carp = [["#"]]
for k in range(1, n + 1):
tmp = []
for _ in range(3):
for c in carp[k - 1]:
tmp.append(c * 3)
tmp = list(map(list, tmp))
cen = 3**k // 2
diff = 3 ** (k - 1) // 2
for i in range(3**k):
for j in range(3**k):
if cen - diff <= i <= cen + diff and cen - diff <= j <= cen + diff:
tmp[i][j] = "."
carp.append(tmp)
for c in carp[n]:
print(*c)
n = int(input())
carp = [["#"]]
for k in range(1, n + 1):
tmp = []
for _ in range(3):
for c in carp[k - 1]:
tmp.append(c * 3)
tmp = list(map(list, tmp))
cen = 3**k // 2
diff = 3 ** (k - 1) // 2
for i in range(3**k):
for j in range(3**k):
if cen - diff <= i <= cen + diff and cen - diff <= j <= cen + diff:
tmp[i][j] = "."
carp.append(tmp)
for c in carp[n]:
print(*c, sep="")
|
ConDefects/ConDefects/Code/abc357_c/Python/55043182
|
condefects-python_data_2578
|
import numpy as np
def center(size, l, x, y):
for i in range(size):
for j in range(size):
l[i+size+x][j+size+y] = '.'
n = int(input())
size = 3**n
size_low = 3**(n-1)
l0 = np.array([
['#', '#', '#'],
['#', '.', '#'],
['#', '#', '#']
])
lk = [['#' for i in range(size)] for j in range(size)]
if n == 0:
print('.')
elif n == 1:
for i in l0:
print(*i, sep='')
else:
for i in range(size):
for j in range(size):
if i % 3 == 1 and j % 3 == 1:
lk[i][j] = '.'
center(size_low, lk, 0, 0)
for i in range(3):
for j in range(3):
center(3**(n-2), lk, size_low*i, size_low*j)
if n > 3:
for i in range(3**(n-2)):
for j in range(3**(n-2)):
center(3, lk, 9*i, 9*j)
if n > 4:
for i in range(3**(n-3)):
for j in range(3**(n-3)):
center(9, lk, 27*i, 27*j)
if n > 5:
for i in range(3**(n-4)):
for j in range(3**(n-4)):
center(27, lk, 81*i, 81*j)
for i in lk:
print(*i,sep='')
import numpy as np
def center(size, l, x, y):
for i in range(size):
for j in range(size):
l[i+size+x][j+size+y] = '.'
n = int(input())
size = 3**n
size_low = 3**(n-1)
l0 = np.array([
['#', '#', '#'],
['#', '.', '#'],
['#', '#', '#']
])
lk = [['#' for i in range(size)] for j in range(size)]
if n == 0:
print('#')
elif n == 1:
for i in l0:
print(*i, sep='')
else:
for i in range(size):
for j in range(size):
if i % 3 == 1 and j % 3 == 1:
lk[i][j] = '.'
center(size_low, lk, 0, 0)
for i in range(3):
for j in range(3):
center(3**(n-2), lk, size_low*i, size_low*j)
if n > 3:
for i in range(3**(n-2)):
for j in range(3**(n-2)):
center(3, lk, 9*i, 9*j)
if n > 4:
for i in range(3**(n-3)):
for j in range(3**(n-3)):
center(9, lk, 27*i, 27*j)
if n > 5:
for i in range(3**(n-4)):
for j in range(3**(n-4)):
center(27, lk, 81*i, 81*j)
for i in lk:
print(*i,sep='')
|
ConDefects/ConDefects/Code/abc357_c/Python/55000126
|
condefects-python_data_2579
|
Datos = input()
Data = [int (num) for num in Datos.split()]
if Data[0]*2==Data[1] or (Data[1]*2)+1==Data[1]:
print("Yes")
else:
print("No")
Datos = input()
Data = [int (num) for num in Datos.split()]
if Data[0]*2==Data[1] or (Data[0]*2)+1==Data[1]:
print("Yes")
else:
print("No")
|
ConDefects/ConDefects/Code/abc285_a/Python/46015071
|
condefects-python_data_2580
|
a = input()
one = int(a.split()[0]);
two = int(a.split()[1]);
if two/2 == one:
print("Yes");
else:
print("No")
a = input()
one = int(a.split()[0]);
two = int(a.split()[1]);
if two//2 == one:
print("Yes");
else:
print("No")
|
ConDefects/ConDefects/Code/abc285_a/Python/45555418
|
condefects-python_data_2581
|
# a = int(input())
# b = input()
a, b = map(int, input().split())
# l = list(map(int, input().split()))
# l = [input() for _ in range(a)]
# l = [list(map(int, input().split())) for _ in range(a)]
if b % 2 <= 1:
print("Yes")
else:
print("No")
# a = int(input())
# b = input()
a, b = map(int, input().split())
# l = list(map(int, input().split()))
# l = [input() for _ in range(a)]
# l = [list(map(int, input().split())) for _ in range(a)]
if b==a*2 or b==a*2+1:
print("Yes")
else:
print("No")
|
ConDefects/ConDefects/Code/abc285_a/Python/45976942
|
condefects-python_data_2582
|
import sys
import heapq
input = sys.stdin.readline
def miss():
return map(int,input().split())
def lmiss():
return list(map(int,input().split()))
def ii():
return int(input())
def li():
return list(input())
N, K = miss()
A = lmiss()
A.sort()
ans = set()
next = A.copy()
flag = set()
heapq.heapify(next)
while len(ans) != K:
x = heapq.heappop(next)
if len(next) > 10**6:
break
for a in A:
if a+x in flag:
continue
flag.add(a+x)
heapq.heappush(next,a+x)
ans.add(x)
print(max(ans))
import sys
import heapq
input = sys.stdin.readline
def miss():
return map(int,input().split())
def lmiss():
return list(map(int,input().split()))
def ii():
return int(input())
def li():
return list(input())
N, K = miss()
A = lmiss()
A.sort()
ans = set()
next = A.copy()
flag = set()
heapq.heapify(next)
while len(ans) != K:
x = heapq.heappop(next)
for a in A:
if a+x in flag:
continue
flag.add(a+x)
heapq.heappush(next,a+x)
ans.add(x)
print(max(ans))
|
ConDefects/ConDefects/Code/abc297_e/Python/46054755
|
condefects-python_data_2583
|
from heapq import heappush, heappop
n, k = map(int,input().split())
A = list(map(int,input().split()))
hq = []
ans = set()
for a in A:
heappush(hq, a)
ans.add(a)
for _ in range(k):
u = heappop(hq)
print(u)
for a in A:
if u + a not in ans:
heappush(hq, u+a)
ans.add(u+a)
print(u)
from heapq import heappush, heappop
n, k = map(int,input().split())
A = list(map(int,input().split()))
A = list(set(A))
hq = []
ans = set()
for a in A:
heappush(hq, a)
ans.add(a)
for _ in range(k):
u = heappop(hq)
for a in A:
if u + a not in ans:
heappush(hq, u+a)
ans.add(u+a)
print(u)
|
ConDefects/ConDefects/Code/abc297_e/Python/46197532
|
condefects-python_data_2584
|
s = list(input())
big = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
small = "abcdefghijklmnopqrstuvwxyz"
isBig = False
isSmall = False
isDifferent = True
for i in range(len(s)):
if(s[i] in big):
isBig = True
if(s[i] in small):
isSmall = True
if(isBig and isSmall):
break
if(s.count(s[i]) > 1):
isDifferent = False
break
if(isBig == True and isSmall == True and isDifferent == True):
print("Yes")
else:
print("No")
s = list(input())
big = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
small = "abcdefghijklmnopqrstuvwxyz"
isBig = False
isSmall = False
isDifferent = True
for i in range(len(s)):
if(s[i] in big):
isBig = True
if(s[i] in small):
isSmall = True
if(s.count(s[i]) > 1):
isDifferent = False
break
if(isBig == True and isSmall == True and isDifferent == True):
print("Yes")
else:
print("No")
|
ConDefects/ConDefects/Code/abc249_b/Python/45657791
|
condefects-python_data_2585
|
S=input()
if S.upper()!=S and S.lower()!=S and set(list(S))==len(S):
print("Yes")
else:
print("No")
S=input()
if S.upper()!=S and S.lower()!=S and len(set(list(S)))==len(S):
print("Yes")
else:
print("No")
|
ConDefects/ConDefects/Code/abc249_b/Python/45037515
|
condefects-python_data_2586
|
n = int(input())
a = list(map(int,input().split()))
imos = [0]*(n+1)
for i in range(n):
imos[0] += a[i]
imos[i+1] -= a[i]
for i in range(n):
imos[i+1] += imos[i]
ans = [0]*n
if imos[0] != 0:
r = 0
for i in range(1,n):
r += imos[i]*abs(imos[0])
ans[i] = abs(imos[0])
ans[0] = -r//imos[0]
for i in range(n-1):
ans[i+1] += ans[i]
print("Yes")
print(*ans,sep=' ')
cal = 0
for i in range(n):
cal += a[i]*ans[i]
else:
x,y = -1,-1
s = 0
flag = True
for i in range(n):
if imos[i] > 0:
flag = False
if flag:
print("No")
exit()
flag = True
for i in range(n):
if imos[i] < 0:
flag = False
if flag:
print("No")
exit()
for i in range(1,n):
s += imos[i]
if imos[i] == -1 and x == -1:
x = i
elif imos[i] == 1:
y = i
ans = [0]*n
if s >= 0:
for i in range(n):
if i == x:
ans[i] = 1+s
else:
ans[i] = 1
else:
for i in range(n):
if i == y:
ans[i] = 1-s
else:
ans[i] = 1
for i in range(n-1):
ans[i] += ans[i]
print("Yes")
print(*ans,sep=' ')
n = int(input())
a = list(map(int,input().split()))
imos = [0]*(n+1)
for i in range(n):
imos[0] += a[i]
imos[i+1] -= a[i]
for i in range(n):
imos[i+1] += imos[i]
ans = [0]*n
if imos[0] != 0:
r = 0
for i in range(1,n):
r += imos[i]*abs(imos[0])
ans[i] = abs(imos[0])
ans[0] = -r//imos[0]
for i in range(n-1):
ans[i+1] += ans[i]
print("Yes")
print(*ans,sep=' ')
cal = 0
for i in range(n):
cal += a[i]*ans[i]
else:
x,y = -1,-1
s = 0
flag = True
for i in range(n):
if imos[i] > 0:
flag = False
if flag:
print("No")
exit()
flag = True
for i in range(n):
if imos[i] < 0:
flag = False
if flag:
print("No")
exit()
for i in range(1,n):
s += imos[i]
if imos[i] == -1 and x == -1:
x = i
elif imos[i] == 1:
y = i
ans = [0]*n
if s >= 0:
for i in range(n):
if i == x:
ans[i] = 1+s
else:
ans[i] = 1
else:
for i in range(n):
if i == y:
ans[i] = 1-s
else:
ans[i] = 1
for i in range(n-1):
ans[i+1] += ans[i]
print("Yes")
print(*ans,sep=' ')
|
ConDefects/ConDefects/Code/arc153_c/Python/41497158
|
condefects-python_data_2587
|
import re
import functools
import random
import sys
import os
import math
from collections import Counter, defaultdict, deque
from functools import lru_cache, reduce, cmp_to_key
from itertools import accumulate, combinations, permutations
from heapq import nsmallest, nlargest, heappushpop, heapify, heappop, heappush
from io import BytesIO, IOBase
from copy import deepcopy
import threading
from typing import *
from operator import add, xor, mul, ior, iand, itemgetter
import bisect
BUFSIZE = 4096
inf = float('inf')
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin = IOWrapper(sys.stdin)
sys.stdout = IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
def I():
return input()
def II():
return int(input())
def MII():
return map(int, input().split())
def LI():
return list(input().split())
def LII():
return list(map(int, input().split()))
def GMI():
return map(lambda x: int(x) - 1, input().split())
def LGMI():
return list(map(lambda x: int(x) - 1, input().split()))
def solve():
n = II()
nums = LII()
total = 0
for i in range(n):
total += nums[i]*i
ans = list(range(n))
if total == 0:
print('Yes')
print(*ans)
elif total > 0:
curr = 0
for i in range(n):
curr += nums[i]
if curr == 1:
for j in range(i+1):
ans[j] -= total
print('Yes')
print(*ans)
break
else:
curr = 0
for i in range(n-1, -1, -1):
curr += nums[i]
if curr == -1:
for j in range(i, n):
ans[j] += total
print('Yes')
print(*ans)
break
else:
print('No')
else:
curr = 0
for i in range(n-1, -1, -1):
curr += nums[i]
if curr == 1:
for j in range(i, n):
ans[j] += total
print('Yes')
print(*ans)
break
else:
curr = 0
for i in range(n):
curr += nums[i]
if curr == -1:
for j in range(i+1):
ans[j] += total
print('Yes')
print(*ans)
break
else:
print('No')
if __name__ == '__main__':
# t = II()
# for _ in range(t):
solve()
import re
import functools
import random
import sys
import os
import math
from collections import Counter, defaultdict, deque
from functools import lru_cache, reduce, cmp_to_key
from itertools import accumulate, combinations, permutations
from heapq import nsmallest, nlargest, heappushpop, heapify, heappop, heappush
from io import BytesIO, IOBase
from copy import deepcopy
import threading
from typing import *
from operator import add, xor, mul, ior, iand, itemgetter
import bisect
BUFSIZE = 4096
inf = float('inf')
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin = IOWrapper(sys.stdin)
sys.stdout = IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
def I():
return input()
def II():
return int(input())
def MII():
return map(int, input().split())
def LI():
return list(input().split())
def LII():
return list(map(int, input().split()))
def GMI():
return map(lambda x: int(x) - 1, input().split())
def LGMI():
return list(map(lambda x: int(x) - 1, input().split()))
def solve():
n = II()
nums = LII()
total = 0
for i in range(n):
total += nums[i]*i
ans = list(range(n))
if total == 0:
print('Yes')
print(*ans)
elif total > 0:
curr = 0
for i in range(n):
curr += nums[i]
if curr == 1:
for j in range(i+1):
ans[j] -= total
print('Yes')
print(*ans)
break
else:
curr = 0
for i in range(n-1, -1, -1):
curr += nums[i]
if curr == -1:
for j in range(i, n):
ans[j] += total
print('Yes')
print(*ans)
break
else:
print('No')
else:
curr = 0
for i in range(n-1, -1, -1):
curr += nums[i]
if curr == 1:
for j in range(i, n):
ans[j] -= total
print('Yes')
print(*ans)
break
else:
curr = 0
for i in range(n):
curr += nums[i]
if curr == -1:
for j in range(i+1):
ans[j] += total
print('Yes')
print(*ans)
break
else:
print('No')
if __name__ == '__main__':
# t = II()
# for _ in range(t):
solve()
|
ConDefects/ConDefects/Code/arc153_c/Python/38644891
|
condefects-python_data_2588
|
import sys
import itertools
def input():
return sys.stdin.readline().rstrip()
def main():
n = int(input())
a = list(map(int, input().split()))
b = list(range(n))
pre = list(itertools.accumulate(a, initial=0))
def success():
print("Yes")
print(*b)
total = sum(i*a[i] for i in range(n))
if total == 0:
success()
return
# make total > 0
if total < 0:
total = -total
a = [-x for x in a]
pre = [-x for x in pre]
for i in range(1, n+1):
if pre[i] == 1:
for j in range(i):
b[j] -= total
success()
return
for i in range(n-1, 0, -1):
if pre[-1] - pre[i] == -1:
for j in range(i, n):
b[j] += total
success()
return
print("No")
if __name__ == "__main__":
main()
import sys
import itertools
def input():
return sys.stdin.readline().rstrip()
def main():
n = int(input())
a = list(map(int, input().split()))
b = list(range(n))
pre = list(itertools.accumulate(a, initial=0))
def success():
print("Yes")
print(*b)
total = sum(i*a[i] for i in range(n))
if total == 0:
success()
return
# make total > 0
if total < 0:
total = -total
a = [-x for x in a]
pre = [-x for x in pre]
for i in range(1, n+1):
if pre[i] == 1:
for j in range(i):
b[j] -= total
success()
return
for i in range(n):
if pre[-1] - pre[i] == -1:
for j in range(i, n):
b[j] += total
success()
return
print("No")
if __name__ == "__main__":
main()
|
ConDefects/ConDefects/Code/arc153_c/Python/38524622
|
condefects-python_data_2589
|
from collections import deque, defaultdict, Counter
Q = int(input())
num = 1
dq = deque([1])
MOD = 998244353
ans = []
pow10 = []
p = 1
for i in range(600001):
pow10.append(p)
p = (p*10)%MOD
for _ in range(Q):
q = input().split()
if q[0]=="1":
t = int(q[1])
num = (num*10 + t) % MOD
dq.append(t)
elif q[0]=="2":
a = dq.popleft()
num -= (a * a*pow10[len(dq)])
num = (num+MOD) % MOD
elif q[0]=="3":
ans.append(num)
print(*ans ,sep='\n')
from collections import deque, defaultdict, Counter
Q = int(input())
num = 1
dq = deque([1])
MOD = 998244353
ans = []
pow10 = []
p = 1
for i in range(600001):
pow10.append(p)
p = (p*10)%MOD
for _ in range(Q):
q = input().split()
if q[0]=="1":
t = int(q[1])
num = (num*10 + t) % MOD
dq.append(t)
elif q[0]=="2":
a = dq.popleft()
num -= (a*pow10[len(dq)])
num = (num+MOD) % MOD
elif q[0]=="3":
ans.append(num)
print(*ans ,sep='\n')
|
ConDefects/ConDefects/Code/abc298_d/Python/45550904
|
condefects-python_data_2590
|
from collections import deque
Q = int(input())
q = [list(map(int, input().split())) for _ in range(Q)]
MOD = 998244353
def mod_pow(x, n, mod):
result = 1
base = x
while n > 0:
if n % 2 == 1:
result = (result * base) % mod
base = (base * base) % mod
n = n // 2
return result
pos = 0
queue = deque([1])
ans = 1
for d in q:
if d[0] == 1:
queue.append(d[1])
ans = (ans * 10 + d[1]) % MOD
elif d[0] == 2:
front = queue.popleft()
ans = (ans - front * mod_pow(10, len(queue)-1, MOD)) % MOD
elif d[0] == 3:
print(ans)
from collections import deque
Q = int(input())
q = [list(map(int, input().split())) for _ in range(Q)]
MOD = 998244353
def mod_pow(x, n, mod):
result = 1
base = x
while n > 0:
if n % 2 == 1:
result = (result * base) % mod
base = (base * base) % mod
n = n // 2
return result
pos = 0
queue = deque([1])
ans = 1
for d in q:
if d[0] == 1:
queue.append(d[1])
ans = (ans * 10 + d[1]) % MOD
elif d[0] == 2:
front = queue.popleft()
ans = (ans - front * mod_pow(10, len(queue), MOD)) % MOD
elif d[0] == 3:
print(ans)
|
ConDefects/ConDefects/Code/abc298_d/Python/45710768
|
condefects-python_data_2591
|
X = int(input())
if X == 0:
print("No")
elif X < 100:
print("No")
elif X%100 == 0:
print("Yes")
X = int(input())
if X == 0:
print("No")
elif X < 100:
print("No")
elif X%100 != 0:
print("No")
elif X%100 == 0:
print("Yes")
|
ConDefects/ConDefects/Code/abc223_a/Python/45815037
|
condefects-python_data_2592
|
n=int(input())
if n<100:
print("No")
else:
print("Yes")
n=int(input())
if n<100 or n%100!=0:
print("No")
else:
print("Yes")
|
ConDefects/ConDefects/Code/abc223_a/Python/45813374
|
condefects-python_data_2593
|
x = int(input())
print('Yes' if x%100==0 else 'No')
x = int(input())
print('Yes' if x%100==0 and x!=0 else 'No')
|
ConDefects/ConDefects/Code/abc223_a/Python/45714918
|
condefects-python_data_2594
|
import heapq
N = int(input())
Vs = list()
Es = list()
inf = 10 **10
for i in range(1, N):
Vs.append([i, inf])
Ai, Bi, Xi = map(int, input().split())
Es.append([i+i, Ai, Xi, Bi])
Vs.append([N, inf])
Vs[0][1] = 0
U = []
heapq.heappush(U, (Vs[0][1], Vs[0]))
now = heapq.heappop(U)[1]
while now[0] != N:
i = Es[now[0]-1][0]
A = Es[now[0]-1][1]
X = Es[now[0]-1][2]
B = Es[now[0]-1][3]
if Vs[now[0]][1] == inf:
Vs[now[0]][1] = now[1] + A
heapq.heappush(U, (Vs[now[0]][1], Vs[now[0]]))
elif Vs[now[0]][1] > now[1] + A:
Vs[now[0]][1] = now[1] + A
if Vs[X-1][1] == inf:
Vs[X-1][1] = now[1] + B
heapq.heappush(U, (Vs[X-1][1], Vs[X-1]))
elif Vs[X-1][1] > now[1] + B:
Vs[X-1][1] = now[1] + B
now = heapq.heappop(U)[1]
print(Vs[N-1][1])
import heapq
N = int(input())
Vs = list()
Es = list()
inf = 10 **10
for i in range(1, N):
Vs.append([i, inf])
Ai, Bi, Xi = map(int, input().split())
Es.append([i+i, Ai, Xi, Bi])
Vs.append([N, inf])
Vs[0][1] = 0
U = []
heapq.heappush(U, (Vs[0][1], Vs[0]))
now = heapq.heappop(U)[1]
while now[0] != N:
i = Es[now[0]-1][0]
A = Es[now[0]-1][1]
X = Es[now[0]-1][2]
B = Es[now[0]-1][3]
if Vs[now[0]][1] == inf:
Vs[now[0]][1] = now[1] + A
heapq.heappush(U, (Vs[now[0]][1], Vs[now[0]]))
elif Vs[now[0]][1] > now[1] + A:
Vs[now[0]][1] = now[1] + A
heapq.heappush(U, (Vs[now[0]][1], Vs[now[0]]))
if Vs[X-1][1] == inf:
Vs[X-1][1] = now[1] + B
heapq.heappush(U, (Vs[X-1][1], Vs[X-1]))
elif Vs[X-1][1] > now[1] + B:
Vs[X-1][1] = now[1] + B
heapq.heappush(U, (Vs[X-1][1], Vs[X-1]))
now = heapq.heappop(U)[1]
print(Vs[N-1][1])
|
ConDefects/ConDefects/Code/abc340_d/Python/54249756
|
condefects-python_data_2595
|
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')
# import sys
# sys.setrecursionlimit(10**7)
import re
# import more_itertools
import functools
import sys
import bisect
import math
import itertools
from collections import deque
from collections import defaultdict
from collections import Counter
from copy import copy, deepcopy
from heapq import heapify, heappush, heappop, heappushpop, heapreplace
from functools import cmp_to_key as cmpk
al = "abcdefghijklmnopqrstuvwxyz"
au = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# io
# begin fastio
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin = IOWrapper(sys.stdin)
# sys.stdout = IOWrapper(sys.stdout)
_log = True # if False, perr() do notiong
import sys
import itertools
def ii(): return int(sys.stdin.readline().rstrip())
def gl(): return list(map(int, sys.stdin.readline().split()))
def gs(): return list(input().split())
def gr(l):
res = itertools.groupby(l)
return list([(key, len(list(v))) for key, v in res])
def glm(h,w):
a = []
for i in range(h):
a.append(gl())
return a
def gsm(h):
a = []
for i in range(h):
a.append(input().split())
return a
def perr(*l):
if _log:
print('\033[33m', end = '', file = sys.stderr)
print(*l, '\033[0m', file=sys.stderr)
def pex(con):
pyn(con)
exit()
def pyn(con, yes = 'Yes', no = 'No'):
if con:
print(yes)
else:
print(no)
def py(yes = 'Yes'):
print(yes)
def pn(no = 'No'):
print(no)
def putedges(g, idx = 0):
n = len(g)
e = []
cnt2 = 0
for i in range(n):
for j in g[i]:
cnt2 += 1
e.append((i, j))
m = len(g)
print(n, cnt2)
for i in e:
if idx == 0:
print(*[i[0], i[1]])
else:
print(*[i[0] + 1, i[1] + 1])
# end io
class UnionFind():
def __init__(self, n):
self.n = n
self.parents = [-1] * n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
if self.parents[x] > self.parents[y]:
x, y = y, x
self.parents[x] += self.parents[y]
self.parents[y] = x
def size(self, x):
return -self.parents[self.find(x)]
def same(self, x, y):
return self.find(x) == self.find(y)
def members(self, x):
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
return len(self.roots())
def all_group_members(self):
group_members = defaultdict(list)
for member in range(self.n):
group_members[self.find(member)].append(member)
# return group_members
return dict(group_members)
def __str__(self):
return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items())
# begin util/util
def rev(a):
a = a[:]
return list(reversed(a))
def drev(d):
newd = {}
for k in rev(list(d.keys())):
newd[k] = d[k]
return newd
def dvsort(d):
return dict(sorted(d.items(), key = lambda x: x[1]))
def dksort(d):
return dict(sorted(d.items()))
def yn(con, yes = 'Yes', no = 'No'):
if con:
return yes
else:
return no
def kiriage(n, r):
if n % r == 0:
return n // r
else:
return (n // r) + 1
def ketawa(n):
ans = 0
s = str(n)
for i in s:
ans += int(i)
return ans
def sinhen(n, l):
if n < l:
return [n]
else:
return sinhen(n // l, l) + [n % l]
import re
def search(q, b):
return re.search(b, q)
def cut_yoko(a, y):
a_copy = deepcopy(a)
res = []
for x in range(len(a[0])):
res.append(a_copy[y][x])
return res
def cut_tate(a, x):
a_copy = deepcopy(a)
res = []
for y in range(len(a)):
res.append(a_copy[y][x])
return res
def rmwh(a):
s = set([len(e) for e in a])
assert len(s) == 1
while not '#' in a[0]:
a = a[1:]
while not '#' in a[-1]:
a = a[:-1]
ok = True
while True:
for y in range(len(a)):
if a[y][0] == '#':
ok = False
if ok:
for y in range(len(a)):
a[y] = a[y][1:]
else:
break
ok = True
while True:
for y in range(len(a)):
if a[y][-1] == '#':
ok = False
if ok:
for y in range(len(a)):
a[y] = a[y][:-1]
else:
break
return a
def cntsep(a, b, k):
r = a % k
m = a - r
ans = (b - m) // (k+1)
if r > 0:
ans -= 1
return ans
def compress(a, base = 1):
s = set()
for e in a:
s.add(e)
s = list(sorted(s))
d = {}
for i in range(len(s)):
d[s[i]] = i
b = []
for e in a:
b.append(d[e] + base)
return b
# from decimal import *
def myround(x, k):
if k < 0:
return float(Decimal(str(x)).quantize(Decimal('1E' + str(k+1)), rounding = ROUND_HALF_UP))
else:
return int(Decimal(str(x)).quantize(Decimal('1E' + str(k+1)), rounding = ROUND_HALF_UP))
def rp(s, d):
return s.translate(str.maketrans(d))
def tr(s, a, b):
assert len(a) == len(b)
res = []
d = {}
for i in len(a):
d[a] = b[b]
return ''.join([d[e] for e in s])# ned
# end util/util
# begin permutation
# https://strangerxxx.hateblo.jp/entry/20220201/1643705539
def next_permutation(a, l = 0, r = None):
if r is None:
r = len(a)
for i in range(r - 2, l - 1, -1):
if a[i] < a[i + 1]:
for j in range(r - 1, i, -1):
if a[i] < a[j]:
a[i], a[j] = a[j], a[i]
p, q = i + 1, r - 1
while p < q:
a[p], a[q] = a[q], a[p]
p += 1
q -= 1
return True
return False
def prev_permutation(a, l = 0, r = None):
if r is None:
r = len(a)
for i in range(r - 2, l - 1, -1):
if a[i] > a[i + 1]:
for j in range(r - 1, i, -1):
if a[i] > a[j]:
a[i], a[j] = a[j], a[i]
p, q = i + 1, r - 1
while p < q:
a[p], a[q] = a[q], a[p]
p += 1
q -= 1
return True
return False
# end permutation
# begin math/gcd
def lcm2(x, y):
return (x * y) // math.gcd(x, y)
def lcm3(*ints):
return functools.reduce(lcm2, ints)
def gcd(*ints):
return math.gcd(*ints)
# end math/gcd
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
n = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
if any(a[i] >= a[i + 1] for i in range(n - 1)):
a, b = [], a
for x in b:
if not a or a[-1] != x:
a.append(x)
n = self.size = len(a)
num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int, int]:
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a, b, i = self._position(x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b+1] = [a[:mid], a[mid:]]
return True
def _pop(self, a: List[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedMultiset(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
a = list(a)
n = self.size = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedMultiset" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int, int]:
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def count(self, x: T) -> int:
"Count the number of x."
return self.index_right(x) - self.index(x)
def add(self, x: T) -> None:
"Add an element. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return
a, b, i = self._position(x)
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b+1] = [a[:mid], a[mid:]]
def _pop(self, a: List[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
# https://stackoverflow.com/questions/2501457/what-do-i-use-for-a-max-heap-implementation-in-python#answer-40455775
class Heapq():
# def __init__(self, arr = []):
# self.hq = arr
# heapify(self.hq)
def __init__(self, arr = None):
if arr == None:
arr = []
self.hq = arr
heapify(self.hq)
def pop(self): return heappop(self.hq)
def append(self, a): heappush(self.hq, a)
def __len__(self): return len(self.hq)
def __getitem__(self, idx): return self.hq[idx]
def __repr__(self): return str(self.hq)
class _MaxHeapObj(object):
def __init__(self, val): self.val = val
def __lt__(self, other): return self.val > other.val
def __eq__(self, other): return self.val == other.val
def __str__(self): return str(self.val)
class Maxheapq():
def __init__(self, arr = []):
self.hq = [_MaxHeapObj(e) for e in arr]
heapify(self.hq)
def pop(self): return heappop(self.hq).val
def append(self, a): heappush(self.hq, _MaxHeapObj(a))
def __len__(self): return len(self.hq)
def __getitem__(self, idx): return self.hq[idx].val
def __repr__(self): return str([e.val for e in self.hq])
def dijkstra(g, st):
h = Heapq()
h.append((0, st))
vi = set()
res = [inf for i in range(len(g))]
while len(vi) != n and len(h) != 0:
d, now = h.pop()
if now in vi:
continue
vi.add(now)
res[now] = d
for to in g[now]:
if not to in vi:
h.append((d + g[now][to], to))
return res
def tarjan(g):
n = len(g)
scc, s, p = [], [], []
q = [i for i in range(n)]
state = [0] * n
while q:
node = q.pop()
if node < 0:
d = state[~node] - 1
if p[-1] > d:
scc.append(s[d:])
del s[d:]
p.pop()
for v in scc[-1]:
state[v] = -1
elif state[node] > 0:
while p[-1] > state[node]:
p.pop()
elif state[node] == 0:
s.append(node)
p.append(len(s))
state[node] = len(s)
q.append(~node)
q.extend(g[node])
return scc
def top_sort(g):
res = []
vi = set()
q = deque()
din = [0 for i in range(len(g))]
for i in range(len(g)):
for e in g[i]:
din[e] += 1
for i in range(len(din)):
if din[i] == 0:
q.append(i)
while len(q) != 0:
st = q.popleft()
res.append(st)
for to in g[st]:
din[to] -= 1
if din[to] == 0:
q.append(to)
return res
# begin combination
# https://rin204.github.io/Library-Python/expansion/math/Combination.py
import math
class Combination:
def __init__(self, n, MOD=998244353):
n = min(n, MOD - 1)
self.fact = [1] * (n + 1)
self.invfact = [1] * (n + 1)
self.MOD = MOD
for i in range(1, n + 1):
self.fact[i] = self.fact[i - 1] * i % MOD
self.invfact[n] = pow(self.fact[n], MOD - 2, MOD)
for i in range(n - 1, -1, -1):
self.invfact[i] = self.invfact[i + 1] * (i + 1) % MOD
def extend(self, n):
le = len(self.fact)
if n < le:
return
self.fact.extend([1] * (n - le + 1))
self.invfact.extend([1] * (n - le + 1))
for i in range(le, n + 1):
self.fact[i] = self.fact[i - 1] * i % self.MOD
self.invfact[n] = pow(self.fact[n], self.MOD - 2, self.MOD)
for i in range(n - 1, le - 1, -1):
self.invfact[i] = self.invfact[i + 1] * (i + 1) % self.MOD
def nPk(self, n, k):
if k < 0 or n < k:
return 0
if n >= len(self.fact):
self.extend(n)
return self.fact[n] * self.invfact[n - k] % self.MOD
def nCk(self, n, k):
if k < 0 or n < k:
return 0
if n >= len(self.fact):
self.extend(n)
return (self.fact[n] * self.invfact[n - k] % self.MOD) * self.invfact[k] % self.MOD
def nHk(self, n, k):
if n == 0 and k == 0:
return 1
return self.nCk(n + k - 1, k)
def Catalan(self, n):
return (self.nCk(2 * n, n) - self.nCk(2 * n, n - 1)) % self.MOD
def nCk(n, k):
return math.comb(n, k)
def nCk_mod(n, k, mod = 998244353):
if k < 0 or n < k:
return 0
res = 1
for i in range(k):
res *= (n - i)
res %= mod
res *= pow((k - i), -1, mod)
res %= mod
return res
# end combination
def mbs(a, key):
ng = -1
ok = len(a)
while abs(ok - ng) > 1:
mid = (ok + ng) // 2
if a[mid] >= key:
ok = mid
else:
ng = mid
return ok
def satlow(f, lower = 0, upper = 10**9):
ng = lower
ok = upper
while abs(ok - ng) > 1:
mid = (ok + ng) // 2
if f(mid):
ok = mid
else:
ng = mid
return ok
def listsatlow(a, f):
ng = -1
ok = len(a)
while abs(ok - ng) > 1:
mid = (ok + ng) // 2
if f(a[mid]):
ok = mid
else:
ng = mid
return ok
_log=True
def pex(con):
pyn(con)
exit()
def yn(con, yes = 'Yes', no = 'No'):
if con:
return yes
else:
return no
def pp(con, yes = 'Yes', no = 'No'):
if con:
print(yes)
else:
print(no)
def pyn(con, yes = 'Yes', no = 'No'):
if con:
print(yes)
else:
print(no)
def py(yes = 'Yes'):
print(yes)
def pn(no = 'No'):
print(no)
yes='Yes'
no='No'
v4 = [[-1, 0], [0, -1], [0, 1], [1, 0]]
inf = float('inf')
ans = inf
cnt=0
#main
n = ii()
a = glm(n-1, 3)
h = Heapq()
h.append((0, 0))
vi = set()
while len(h) != 0:
while len(h) > 0 and h[0][1] in vi:
h.pop()
(now, st) = h.pop()
vi.add(st)
if st == n-1:
print(now)
exit()
if not st + 1 in vi:
h.append((now + a[st][0], st+1))
if not (st + a[st][1]) in vi:
h.append((now + a[st][1], a[st][2] - 1))
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')
# import sys
# sys.setrecursionlimit(10**7)
import re
# import more_itertools
import functools
import sys
import bisect
import math
import itertools
from collections import deque
from collections import defaultdict
from collections import Counter
from copy import copy, deepcopy
from heapq import heapify, heappush, heappop, heappushpop, heapreplace
from functools import cmp_to_key as cmpk
al = "abcdefghijklmnopqrstuvwxyz"
au = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
# io
# begin fastio
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin = IOWrapper(sys.stdin)
# sys.stdout = IOWrapper(sys.stdout)
_log = True # if False, perr() do notiong
import sys
import itertools
def ii(): return int(sys.stdin.readline().rstrip())
def gl(): return list(map(int, sys.stdin.readline().split()))
def gs(): return list(input().split())
def gr(l):
res = itertools.groupby(l)
return list([(key, len(list(v))) for key, v in res])
def glm(h,w):
a = []
for i in range(h):
a.append(gl())
return a
def gsm(h):
a = []
for i in range(h):
a.append(input().split())
return a
def perr(*l):
if _log:
print('\033[33m', end = '', file = sys.stderr)
print(*l, '\033[0m', file=sys.stderr)
def pex(con):
pyn(con)
exit()
def pyn(con, yes = 'Yes', no = 'No'):
if con:
print(yes)
else:
print(no)
def py(yes = 'Yes'):
print(yes)
def pn(no = 'No'):
print(no)
def putedges(g, idx = 0):
n = len(g)
e = []
cnt2 = 0
for i in range(n):
for j in g[i]:
cnt2 += 1
e.append((i, j))
m = len(g)
print(n, cnt2)
for i in e:
if idx == 0:
print(*[i[0], i[1]])
else:
print(*[i[0] + 1, i[1] + 1])
# end io
class UnionFind():
def __init__(self, n):
self.n = n
self.parents = [-1] * n
def find(self, x):
if self.parents[x] < 0:
return x
else:
self.parents[x] = self.find(self.parents[x])
return self.parents[x]
def union(self, x, y):
x = self.find(x)
y = self.find(y)
if x == y:
return
if self.parents[x] > self.parents[y]:
x, y = y, x
self.parents[x] += self.parents[y]
self.parents[y] = x
def size(self, x):
return -self.parents[self.find(x)]
def same(self, x, y):
return self.find(x) == self.find(y)
def members(self, x):
root = self.find(x)
return [i for i in range(self.n) if self.find(i) == root]
def roots(self):
return [i for i, x in enumerate(self.parents) if x < 0]
def group_count(self):
return len(self.roots())
def all_group_members(self):
group_members = defaultdict(list)
for member in range(self.n):
group_members[self.find(member)].append(member)
# return group_members
return dict(group_members)
def __str__(self):
return '\n'.join(f'{r}: {m}' for r, m in self.all_group_members().items())
# begin util/util
def rev(a):
a = a[:]
return list(reversed(a))
def drev(d):
newd = {}
for k in rev(list(d.keys())):
newd[k] = d[k]
return newd
def dvsort(d):
return dict(sorted(d.items(), key = lambda x: x[1]))
def dksort(d):
return dict(sorted(d.items()))
def yn(con, yes = 'Yes', no = 'No'):
if con:
return yes
else:
return no
def kiriage(n, r):
if n % r == 0:
return n // r
else:
return (n // r) + 1
def ketawa(n):
ans = 0
s = str(n)
for i in s:
ans += int(i)
return ans
def sinhen(n, l):
if n < l:
return [n]
else:
return sinhen(n // l, l) + [n % l]
import re
def search(q, b):
return re.search(b, q)
def cut_yoko(a, y):
a_copy = deepcopy(a)
res = []
for x in range(len(a[0])):
res.append(a_copy[y][x])
return res
def cut_tate(a, x):
a_copy = deepcopy(a)
res = []
for y in range(len(a)):
res.append(a_copy[y][x])
return res
def rmwh(a):
s = set([len(e) for e in a])
assert len(s) == 1
while not '#' in a[0]:
a = a[1:]
while not '#' in a[-1]:
a = a[:-1]
ok = True
while True:
for y in range(len(a)):
if a[y][0] == '#':
ok = False
if ok:
for y in range(len(a)):
a[y] = a[y][1:]
else:
break
ok = True
while True:
for y in range(len(a)):
if a[y][-1] == '#':
ok = False
if ok:
for y in range(len(a)):
a[y] = a[y][:-1]
else:
break
return a
def cntsep(a, b, k):
r = a % k
m = a - r
ans = (b - m) // (k+1)
if r > 0:
ans -= 1
return ans
def compress(a, base = 1):
s = set()
for e in a:
s.add(e)
s = list(sorted(s))
d = {}
for i in range(len(s)):
d[s[i]] = i
b = []
for e in a:
b.append(d[e] + base)
return b
# from decimal import *
def myround(x, k):
if k < 0:
return float(Decimal(str(x)).quantize(Decimal('1E' + str(k+1)), rounding = ROUND_HALF_UP))
else:
return int(Decimal(str(x)).quantize(Decimal('1E' + str(k+1)), rounding = ROUND_HALF_UP))
def rp(s, d):
return s.translate(str.maketrans(d))
def tr(s, a, b):
assert len(a) == len(b)
res = []
d = {}
for i in len(a):
d[a] = b[b]
return ''.join([d[e] for e in s])# ned
# end util/util
# begin permutation
# https://strangerxxx.hateblo.jp/entry/20220201/1643705539
def next_permutation(a, l = 0, r = None):
if r is None:
r = len(a)
for i in range(r - 2, l - 1, -1):
if a[i] < a[i + 1]:
for j in range(r - 1, i, -1):
if a[i] < a[j]:
a[i], a[j] = a[j], a[i]
p, q = i + 1, r - 1
while p < q:
a[p], a[q] = a[q], a[p]
p += 1
q -= 1
return True
return False
def prev_permutation(a, l = 0, r = None):
if r is None:
r = len(a)
for i in range(r - 2, l - 1, -1):
if a[i] > a[i + 1]:
for j in range(r - 1, i, -1):
if a[i] > a[j]:
a[i], a[j] = a[j], a[i]
p, q = i + 1, r - 1
while p < q:
a[p], a[q] = a[q], a[p]
p += 1
q -= 1
return True
return False
# end permutation
# begin math/gcd
def lcm2(x, y):
return (x * y) // math.gcd(x, y)
def lcm3(*ints):
return functools.reduce(lcm2, ints)
def gcd(*ints):
return math.gcd(*ints)
# end math/gcd
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
n = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
if any(a[i] >= a[i + 1] for i in range(n - 1)):
a, b = [], a
for x in b:
if not a or a[-1] != x:
a.append(x)
n = self.size = len(a)
num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int, int]:
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a, b, i = self._position(x)
if i != len(a) and a[i] == x: return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b+1] = [a[:mid], a[mid:]]
return True
def _pop(self, a: List[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedMultiset.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedMultiset(Generic[T]):
BUCKET_RATIO = 16
SPLIT_RATIO = 24
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
a = list(a)
n = self.size = len(a)
if any(a[i] > a[i + 1] for i in range(n - 1)):
a.sort()
num_bucket = int(math.ceil(math.sqrt(n / self.BUCKET_RATIO)))
self.a = [a[n * i // num_bucket : n * (i + 1) // num_bucket] for i in range(num_bucket)]
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i: yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i): yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedMultiset" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1 : len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int, int]:
"return the bucket, index of the bucket and position in which x should be. self must not be empty."
for i, a in enumerate(self.a):
if x <= a[-1]: break
return (a, i, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0: return False
a, _, i = self._position(x)
return i != len(a) and a[i] == x
def count(self, x: T) -> int:
"Count the number of x."
return self.index_right(x) - self.index(x)
def add(self, x: T) -> None:
"Add an element. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return
a, b, i = self._position(x)
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.SPLIT_RATIO:
mid = len(a) >> 1
self.a[b:b+1] = [a[:mid], a[mid:]]
def _pop(self, a: List[T], b: int, i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a: del self.a[b]
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0: return False
a, b, i = self._position(x)
if i == len(a) or a[i] != x: return False
self._pop(a, b, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0: return a[i]
else:
for a in self.a:
if i < len(a): return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for b, a in enumerate(reversed(self.a)):
i += len(a)
if i >= 0: return self._pop(a, ~b, i)
else:
for b, a in enumerate(self.a):
if i < len(a): return self._pop(a, b, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
# https://stackoverflow.com/questions/2501457/what-do-i-use-for-a-max-heap-implementation-in-python#answer-40455775
class Heapq():
# def __init__(self, arr = []):
# self.hq = arr
# heapify(self.hq)
def __init__(self, arr = None):
if arr == None:
arr = []
self.hq = arr
heapify(self.hq)
def pop(self): return heappop(self.hq)
def append(self, a): heappush(self.hq, a)
def __len__(self): return len(self.hq)
def __getitem__(self, idx): return self.hq[idx]
def __repr__(self): return str(self.hq)
class _MaxHeapObj(object):
def __init__(self, val): self.val = val
def __lt__(self, other): return self.val > other.val
def __eq__(self, other): return self.val == other.val
def __str__(self): return str(self.val)
class Maxheapq():
def __init__(self, arr = []):
self.hq = [_MaxHeapObj(e) for e in arr]
heapify(self.hq)
def pop(self): return heappop(self.hq).val
def append(self, a): heappush(self.hq, _MaxHeapObj(a))
def __len__(self): return len(self.hq)
def __getitem__(self, idx): return self.hq[idx].val
def __repr__(self): return str([e.val for e in self.hq])
def dijkstra(g, st):
h = Heapq()
h.append((0, st))
vi = set()
res = [inf for i in range(len(g))]
while len(vi) != n and len(h) != 0:
d, now = h.pop()
if now in vi:
continue
vi.add(now)
res[now] = d
for to in g[now]:
if not to in vi:
h.append((d + g[now][to], to))
return res
def tarjan(g):
n = len(g)
scc, s, p = [], [], []
q = [i for i in range(n)]
state = [0] * n
while q:
node = q.pop()
if node < 0:
d = state[~node] - 1
if p[-1] > d:
scc.append(s[d:])
del s[d:]
p.pop()
for v in scc[-1]:
state[v] = -1
elif state[node] > 0:
while p[-1] > state[node]:
p.pop()
elif state[node] == 0:
s.append(node)
p.append(len(s))
state[node] = len(s)
q.append(~node)
q.extend(g[node])
return scc
def top_sort(g):
res = []
vi = set()
q = deque()
din = [0 for i in range(len(g))]
for i in range(len(g)):
for e in g[i]:
din[e] += 1
for i in range(len(din)):
if din[i] == 0:
q.append(i)
while len(q) != 0:
st = q.popleft()
res.append(st)
for to in g[st]:
din[to] -= 1
if din[to] == 0:
q.append(to)
return res
# begin combination
# https://rin204.github.io/Library-Python/expansion/math/Combination.py
import math
class Combination:
def __init__(self, n, MOD=998244353):
n = min(n, MOD - 1)
self.fact = [1] * (n + 1)
self.invfact = [1] * (n + 1)
self.MOD = MOD
for i in range(1, n + 1):
self.fact[i] = self.fact[i - 1] * i % MOD
self.invfact[n] = pow(self.fact[n], MOD - 2, MOD)
for i in range(n - 1, -1, -1):
self.invfact[i] = self.invfact[i + 1] * (i + 1) % MOD
def extend(self, n):
le = len(self.fact)
if n < le:
return
self.fact.extend([1] * (n - le + 1))
self.invfact.extend([1] * (n - le + 1))
for i in range(le, n + 1):
self.fact[i] = self.fact[i - 1] * i % self.MOD
self.invfact[n] = pow(self.fact[n], self.MOD - 2, self.MOD)
for i in range(n - 1, le - 1, -1):
self.invfact[i] = self.invfact[i + 1] * (i + 1) % self.MOD
def nPk(self, n, k):
if k < 0 or n < k:
return 0
if n >= len(self.fact):
self.extend(n)
return self.fact[n] * self.invfact[n - k] % self.MOD
def nCk(self, n, k):
if k < 0 or n < k:
return 0
if n >= len(self.fact):
self.extend(n)
return (self.fact[n] * self.invfact[n - k] % self.MOD) * self.invfact[k] % self.MOD
def nHk(self, n, k):
if n == 0 and k == 0:
return 1
return self.nCk(n + k - 1, k)
def Catalan(self, n):
return (self.nCk(2 * n, n) - self.nCk(2 * n, n - 1)) % self.MOD
def nCk(n, k):
return math.comb(n, k)
def nCk_mod(n, k, mod = 998244353):
if k < 0 or n < k:
return 0
res = 1
for i in range(k):
res *= (n - i)
res %= mod
res *= pow((k - i), -1, mod)
res %= mod
return res
# end combination
def mbs(a, key):
ng = -1
ok = len(a)
while abs(ok - ng) > 1:
mid = (ok + ng) // 2
if a[mid] >= key:
ok = mid
else:
ng = mid
return ok
def satlow(f, lower = 0, upper = 10**9):
ng = lower
ok = upper
while abs(ok - ng) > 1:
mid = (ok + ng) // 2
if f(mid):
ok = mid
else:
ng = mid
return ok
def listsatlow(a, f):
ng = -1
ok = len(a)
while abs(ok - ng) > 1:
mid = (ok + ng) // 2
if f(a[mid]):
ok = mid
else:
ng = mid
return ok
_log=True
def pex(con):
pyn(con)
exit()
def yn(con, yes = 'Yes', no = 'No'):
if con:
return yes
else:
return no
def pp(con, yes = 'Yes', no = 'No'):
if con:
print(yes)
else:
print(no)
def pyn(con, yes = 'Yes', no = 'No'):
if con:
print(yes)
else:
print(no)
def py(yes = 'Yes'):
print(yes)
def pn(no = 'No'):
print(no)
yes='Yes'
no='No'
v4 = [[-1, 0], [0, -1], [0, 1], [1, 0]]
inf = float('inf')
ans = inf
cnt=0
#main
n = ii()
a = glm(n-1, 3)
h = Heapq()
h.append((0, 0))
vi = set()
while len(h) != 0:
while len(h) > 0 and h[0][1] in vi:
h.pop()
(now, st) = h.pop()
vi.add(st)
if st == n-1:
print(now)
exit()
if not st + 1 in vi:
h.append((now + a[st][0], st+1))
if not (a[st][2] - 1) in vi:
h.append((now + a[st][1], a[st][2] - 1))
|
ConDefects/ConDefects/Code/abc340_d/Python/54442427
|
condefects-python_data_2596
|
from collections import defaultdict
import heapq
N = int(input())
G = defaultdict(list)
for i in range(1,N):
a,b,x = map(int,input().split())
G[i].append((i+1,a))
G[i].append((x,b))
seen = [False] * (N+1)
dist = [10**10] * (N+1)
dist[1] = 0
q = [(0,1)]
heapq.heapify(q)
while(len(q)>0):
v = heapq.heappop(q)[1]
"""
E-TrainではこれをつけてTLE改善
if seen[v] == True:
continue
"""
seen[v] = True
for next in G[v]:
if not seen[next[0]] and dist[next[0]] > dist[v] + next[1]:
dist[next[0]] = dist[v] + next[1]
heapq.heappush(q,(dist[next[0]],next[0]))
print(dist[N])
from collections import defaultdict
import heapq
N = int(input())
G = defaultdict(list)
for i in range(1,N):
a,b,x = map(int,input().split())
G[i].append((i+1,a))
G[i].append((x,b))
seen = [False] * (N+1)
dist = [10**15] * (N+1)
dist[1] = 0
q = [(0,1)]
heapq.heapify(q)
while(len(q)>0):
v = heapq.heappop(q)[1]
"""
E-TrainではこれをつけてTLE改善
if seen[v] == True:
continue
"""
seen[v] = True
for next in G[v]:
if not seen[next[0]] and dist[next[0]] > dist[v] + next[1]:
dist[next[0]] = dist[v] + next[1]
heapq.heappush(q,(dist[next[0]],next[0]))
print(dist[N])
|
ConDefects/ConDefects/Code/abc340_d/Python/55038628
|
condefects-python_data_2597
|
n=int(input())
p=[tuple(map(int,input().split())) for i in range(n)]
l=[p[i-1]+p[i] for i in range(n)]
s=tuple(map(int,input().split()))
g=tuple(map(int,input().split()))
p+=[s]
p+=[g]
p.sort()
def calc(a,c,b):
ax,ay=a
bx,by=b
cx,cy=c
return (ax-cx)*(by-cy)-(ay-cy)*(bx-cx)
c1=[]
for i in range(len(p)):
while len(c1)>=2 and calc(p[i],c1[-1],c1[-2])>=0:
c1.pop()
c1+=[p[i]]
c2=[]
for i in range(len(p)):
while len(c2)>=2 and calc(p[i],c2[-1],c2[-2])<=0:
c2.pop()
c2+=[p[i]]
def dist(a,b):
ax,ay=a
bx,by=b
return ((ax-bx)**2+(ay-by)**2)**0.5
c=c1[:len(c1)-1]+c2[::-1]
if (c not in s) or (c not in g):
print(dist(s,g))
exit()
d=[0]*len(c)
for i in range(len(c)-1):
p1=c[i]
p2=c[i+1]
d[i]=dist(p1,p2)
d[i]+=d[i-1]
l=min(c.index(s),c.index(g))
r=max(c.index(s),c.index(g))
print(min(d[-2]-d[r-1]+d[l-1],d[r-1]-d[l-1]))
n=int(input())
p=[tuple(map(int,input().split())) for i in range(n)]
l=[p[i-1]+p[i] for i in range(n)]
s=tuple(map(int,input().split()))
g=tuple(map(int,input().split()))
p+=[s]
p+=[g]
p.sort()
def calc(a,c,b):
ax,ay=a
bx,by=b
cx,cy=c
return (ax-cx)*(by-cy)-(ay-cy)*(bx-cx)
c1=[]
for i in range(len(p)):
while len(c1)>=2 and calc(p[i],c1[-1],c1[-2])>=0:
c1.pop()
c1+=[p[i]]
c2=[]
for i in range(len(p)):
while len(c2)>=2 and calc(p[i],c2[-1],c2[-2])<=0:
c2.pop()
c2+=[p[i]]
def dist(a,b):
ax,ay=a
bx,by=b
return ((ax-bx)**2+(ay-by)**2)**0.5
c=c1[:len(c1)-1]+c2[::-1]
if (s not in c) or (g not in c):
print(dist(s,g))
exit()
d=[0]*len(c)
for i in range(len(c)-1):
p1=c[i]
p2=c[i+1]
d[i]=dist(p1,p2)
d[i]+=d[i-1]
l=min(c.index(s),c.index(g))
r=max(c.index(s),c.index(g))
print(min(d[-2]-d[r-1]+d[l-1],d[r-1]-d[l-1]))
|
ConDefects/ConDefects/Code/abc286_h/Python/46785855
|
condefects-python_data_2598
|
def resolve():
import sys
input = sys.stdin.readline
MOD = 998244353
INF = float("inf")
n = int(input())
points = [tuple(map(int, input().split())) for _ in range(n)]
s = tuple(map(int, input().split()))
t = tuple(map(int, input().split()))
edges = [[] for _ in range(n + 2)]
is_direct = True
for i in range(n):
j = (i + 1) % n
d = distance(points[j], points[i])
edges[i].append((j, d))
edges[j].append((i, d))
for i in range(-1, n - 1):
if not intersect(s, points[i], points[i - 1], points[i + 1]):
edges[n].append((i % n, distance(s, points[i])))
if not intersect(t, points[i], points[i - 1], points[i + 1]):
edges[i % n].append((n + 1, distance(t, points[i])))
if is_direct and intersect_seg(s, t, points[i - 1], points[i]):
is_direct = False
if is_direct:
print(distance(s, t))
return
import heapq
q = [(0.0, n)]
reached = [False] * (n + 2)
while q:
d, i = heapq.heappop(q)
if reached[i]:
continue
if i == n + 1:
print(d)
return
reached[i] = True
for j, k in edges[i]:
if reached[j]:
continue
heapq.heappush(q, (d + k, j))
def distance(a, b) -> float:
# 2点間のユークリッド距離
return sum((i - j) ** 2 for i, j in zip(a, b)) ** 0.5
def intersect(p1, p2, p3, p4):
# 直線p1p2と線分p3p4が重なっているか判定
tc1 = (p1[0] - p2[0]) * (p3[1] - p1[1]) + (p1[1] - p2[1]) * (p1[0] - p3[0])
tc2 = (p1[0] - p2[0]) * (p4[1] - p1[1]) + (p1[1] - p2[1]) * (p1[0] - p4[0])
td1 = (p3[0] - p4[0]) * (p1[1] - p3[1]) + (p3[1] - p4[1]) * (p3[0] - p1[0])
td2 = (p3[0] - p4[0]) * (p2[1] - p3[1]) + (p3[1] - p4[1]) * (p3[0] - p2[0])
return tc1 * tc2 < 0 and td1 * td2 < 0
def intersect_seg(p1, p2, p3, p4):
# 線分p1p2と線分p3p4が重なっているか判定
return intersect(p1, p2, p3, p4) and intersect(p3, p4, p1, p2)
if __name__ == "__main__":
resolve()
def resolve():
import sys
input = sys.stdin.readline
MOD = 998244353
INF = float("inf")
n = int(input())
points = [tuple(map(int, input().split())) for _ in range(n)]
s = tuple(map(int, input().split()))
t = tuple(map(int, input().split()))
edges = [[] for _ in range(n + 2)]
is_direct = True
for i in range(n):
j = (i + 1) % n
d = distance(points[j], points[i])
edges[i].append((j, d))
edges[j].append((i, d))
for i in range(-1, n - 1):
if not intersect(s, points[i], points[i - 1], points[i + 1]):
edges[n].append((i % n, distance(s, points[i])))
if not intersect(t, points[i], points[i - 1], points[i + 1]):
edges[i % n].append((n + 1, distance(t, points[i])))
if is_direct and intersect_seg(s, t, points[i - 1], points[i]):
is_direct = False
if is_direct:
print(distance(s, t))
return
import heapq
q = [(0.0, n)]
reached = [False] * (n + 2)
while q:
d, i = heapq.heappop(q)
if reached[i]:
continue
if i == n + 1:
print(d)
return
reached[i] = True
for j, k in edges[i]:
if reached[j]:
continue
heapq.heappush(q, (d + k, j))
def distance(a, b) -> float:
# 2点間のユークリッド距離
return sum((i - j) ** 2 for i, j in zip(a, b)) ** 0.5
def intersect(p1, p2, p3, p4):
# 直線p1p2と線分p3p4が重なっているか判定
tc1 = (p1[0] - p2[0]) * (p3[1] - p1[1]) + (p1[1] - p2[1]) * (p1[0] - p3[0])
tc2 = (p1[0] - p2[0]) * (p4[1] - p1[1]) + (p1[1] - p2[1]) * (p1[0] - p4[0])
td1 = (p3[0] - p4[0]) * (p1[1] - p3[1]) + (p3[1] - p4[1]) * (p3[0] - p1[0])
td2 = (p3[0] - p4[0]) * (p2[1] - p3[1]) + (p3[1] - p4[1]) * (p3[0] - p2[0])
return tc1 * tc2 <= 0 and td1 * td2 <= 0
def intersect_seg(p1, p2, p3, p4):
# 線分p1p2と線分p3p4が重なっているか判定
return intersect(p1, p2, p3, p4) and intersect(p3, p4, p1, p2)
if __name__ == "__main__":
resolve()
|
ConDefects/ConDefects/Code/abc286_h/Python/38346885
|
condefects-python_data_2599
|
print("ABCDEFGHIJKLMNOPQRSTUVWZ"[:int(input())])
print("ABCDEFGHIJKLMNOPQRSTUVWXYZ"[:int(input())])
|
ConDefects/ConDefects/Code/abc282_a/Python/45264195
|
condefects-python_data_2600
|
k = input()
a = "ABCDEFG"
s = a[:int(k)]
print(s)
k = input()
a = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
s = a[:int(k)]
print(s)
|
ConDefects/ConDefects/Code/abc282_a/Python/45920464
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.