id
stringlengths
10
18
content
stringlengths
4
768k
max_stars_repo_path
stringlengths
115
237
pandas-bug-163
""" Provide a generic structure to support window functions, similar to how we have a Groupby object. """ from collections import defaultdict from datetime import timedelta from textwrap import dedent from typing import Callable, List, Optional, Set, Union import warnings import numpy as np import pandas._libs.window as libwindow from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes.common import ( ensure_float64, is_bool, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDateOffset, ABCDatetimeIndex, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas._typing import Axis, FrameOrSeries, Scalar from pandas.core.base import DataError, PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.generic import _shared_docs from pandas.core.groupby.base import GroupByMixin from pandas.core.index import Index, MultiIndex, ensure_index _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ class _Window(PandasObject, SelectionMixin): _attributes = [ "window", "min_periods", "center", "win_type", "axis", "on", "closed", ] # type: List[str] exclusions = set() # type: Set[str] def __init__( self, obj, window=None, min_periods: Optional[int] = None, center: Optional[bool] = False, win_type: Optional[str] = None, axis: Axis = 0, on: Optional[str] = None, closed: Optional[str] = None, **kwargs ): self.__dict__.update(kwargs) self.obj = obj self.on = on self.closed = closed self.window = window self.min_periods = min_periods self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._get_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self) -> Optional[bool]: return None @property def _on(self): return None @property def is_freq_type(self) -> bool: return self.win_type == "freq" def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.min_periods is not None and not is_integer(self.min_periods): raise ValueError("min_periods must be an integer") if self.closed is not None and self.closed not in [ "right", "both", "left", "neither", ]: raise ValueError("closed must be 'right', 'left', 'both' or 'neither'") def _create_blocks(self): """ Split data into blocks & return conformed data. """ obj = self._selected_obj # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) blocks = obj._to_dict_of_blocks(copy=False).values() return blocks, obj def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : str / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shallow_copy(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( "%r object has no attribute %r" % (type(self).__name__, attr) ) def _dir_additions(self): return self.obj._dir_additions() def _get_window(self, other=None, **kwargs) -> int: """ Returns window length Parameters ---------- other: ignored, exists for compatibility Returns ------- window : int """ return self.window @property def _window_type(self) -> str: return self.__class__.__name__ def __repr__(self) -> str: """ Provide a nice str repr of our rolling object. """ attrs = ( "{k}={v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None ) return "{klass} [{attrs}]".format( klass=self._window_type, attrs=",".join(attrs) ) def __iter__(self): url = "https://github.com/pandas-dev/pandas/issues/11704" raise NotImplementedError("See issue #11704 {url}".format(url=url)) def _get_index(self) -> Optional[np.ndarray]: """ Return integer representations as an ndarray if index is frequency. Returns ------- None or ndarray """ if self.is_freq_type: return self._on.asi8 return None def _prep_values(self, values: Optional[np.ndarray] = None) -> np.ndarray: """Convert input to numpy arrays for Cython routines""" if values is None: values = getattr(self._selected_obj, "values", self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values.dtype): values = ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError( "ops for {action} for this " "dtype {dtype} are not " "implemented".format(action=self._window_type, dtype=values.dtype) ) else: try: values = ensure_float64(values) except (ValueError, TypeError): raise TypeError("cannot handle this type -> {0}".format(values.dtype)) # Always convert inf to nan values[np.isinf(values)] = np.NaN return values def _wrap_result(self, result, block=None, obj=None): """ Wrap a single result. """ if obj is None: obj = self._selected_obj index = obj.index if isinstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): # TODO: do we know what result.dtype is at this point? # i.e. can we just do an astype? from pandas import to_timedelta result = to_timedelta(result.ravel(), unit="ns").values.reshape( result.shape ) if result.ndim == 1: from pandas import Series return Series(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj, exclude=None) -> FrameOrSeries: """ Wrap the results. Parameters ---------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resampled) exclude: list of columns to exclude, default to None """ from pandas import Series, concat final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.append(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.append(Series(self._on, index=obj.index, name=name)) if self._selection is not None: selection = ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.get_indexer(selection.tolist() + [name]) columns = columns.take(sorted(indexer)) # exclude nuisance columns so that they are not reindexed if exclude is not None and exclude: columns = [c for c in columns if c not in exclude] if not columns: raise DataError("No numeric types to aggregate") if not len(final): return obj.astype("float64") return concat(final, axis=1).reindex(columns=columns, copy=False) def _center_window(self, result, window) -> np.ndarray: """ Center the result in the window. """ if self.axis > result.ndim - 1: raise ValueError("Requested axis is larger then no. of argument dimensions") offset = _offset(window, True) if offset > 0: if isinstance(result, (ABCSeries, ABCDataFrame)): result = result.slice_shift(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.copy(result[tuple(lead_indexer)]) return result def _get_roll_func( self, cfunc: Callable, check_minp: Callable, index: np.ndarray, **kwargs ) -> Callable: """ Wrap rolling function to check values passed. Parameters ---------- cfunc : callable Cython function used to calculate rolling statistics check_minp : callable function to check minimum period parameter index : ndarray used for variable window Returns ------- func : callable """ def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, window) return cfunc(arg, window, minp, index, closed, **kwargs) return func def _apply( self, func: Union[str, Callable], name: Optional[str] = None, window: Optional[Union[int, str]] = None, center: Optional[bool] = None, check_minp: Optional[Callable] = None, **kwargs ): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : str/callable to apply name : str, optional name of this function window : int/str, default to _get_window() window length or offset center : bool, default to self.center check_minp : function, default to _use_window **kwargs additional arguments for rolling function and window function Returns ------- y : type of input """ if center is None: center = self.center if check_minp is None: check_minp = _use_window if window is None: window = self._get_window(**kwargs) blocks, obj = self._create_blocks() block_list = list(blocks) index_as_array = self._get_index() results = [] exclude = [] # type: List[Scalar] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, str): cfunc = getattr(libwindow, func, None) if cfunc is None: raise ValueError( "we do not support this function " "in libwindow.{func}".format(func=func) ) func = self._get_roll_func(cfunc, check_minp, index_as_array, **kwargs) # calculation function if center: offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def calc(x): return func( np.concatenate((x, additional_nans)), window, min_periods=self.min_periods, closed=self.closed, ) else: def calc(x): return func( x, window, min_periods=self.min_periods, closed=self.closed ) with np.errstate(all="ignore"): if values.ndim > 1: result = np.apply_along_axis(calc, self.axis, values) else: result = calc(values) result = np.asarray(result) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) def aggregate(self, func, *args, **kwargs): result, how = self._aggregate(func, *args, **kwargs) if result is None: return self.apply(func, raw=False, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs["sum"] = dedent( """ Calculate %(name)s sum of given DataFrame or Series. Parameters ---------- *args, **kwargs For compatibility with other %(name)s methods. Has no effect on the computed value. Returns ------- Series or DataFrame Same type as the input, with the same index, containing the %(name)s sum. See Also -------- Series.sum : Reducing sum for Series. DataFrame.sum : Reducing sum for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64 >>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64 >>> s.expanding(3).sum() 0 NaN 1 NaN 2 6.0 3 10.0 4 15.0 dtype: float64 >>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64 For DataFrame, each %(name)s sum is computed column-wise. >>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25 >>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0 """ ) _shared_docs["mean"] = dedent( """ Calculate the %(name)s mean of the values. Parameters ---------- *args Under Review. **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.mean : Equivalent method for Series. DataFrame.mean : Equivalent method for DataFrame. Examples -------- The below examples will show rolling mean calculations with window sizes of two and three, respectively. >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 >>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64 """ ) class Window(_Window): """ Provide rolling window calculations. Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, `min_periods` will default to 1. Otherwise, `min_periods` will default to the size of the window. center : bool, default False Set the labels at the center of the window. win_type : str, default None Provide a window type. If ``None``, all points are evenly weighted. See the notes below for further information. on : str, optional For a DataFrame, a datetime-like column on which to calculate the rolling window, rather than the DataFrame's index. Provided integer column is ignored and excluded from result since an integer index is not used to calculate the rolling window. axis : int or str, default 0 closed : str, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 Returns ------- a Window or Rolling sub-classed for the particular operation See Also -------- expanding : Provides expanding transformations. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. To learn more about the offsets & frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width) * ``exponential`` (needs tau), center is set to None. If ``win_type=None`` all points are evenly weighted. To learn more about different window types see `scipy.signal window functions <https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions>`__. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling sum with a window length of 2, using the 'triang' window type. >>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 0.5 2 1.5 3 NaN 4 NaN Rolling sum with a window length of 2, min_periods defaults to the window length. >>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicitly set the min_periods >>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (meaning not-a-regular frequency), time-indexed DataFrame >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ... index = [pd.Timestamp('20130101 09:00:00'), ... pd.Timestamp('20130101 09:00:02'), ... pd.Timestamp('20130101 09:00:03'), ... pd.Timestamp('20130101 09:00:05'), ... pd.Timestamp('20130101 09:00:06')]) >>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1. >>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 """ def validate(self): super().validate() window = self.window if isinstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window <= 0: raise ValueError("window must be > 0 ") import_optional_dependency( "scipy", extra="Scipy is required to generate window weight." ) import scipy.signal as sig if not isinstance(self.win_type, str): raise ValueError("Invalid win_type {0}".format(self.win_type)) if getattr(sig, self.win_type, None) is None: raise ValueError("Invalid win_type {0}".format(self.win_type)) else: raise ValueError("Invalid window {0}".format(window)) def _get_window(self, other=None, **kwargs) -> np.ndarray: """ Provide validation for the window type, return the window which has already been validated. Parameters ---------- other: ignored, exists for compatibility Returns ------- window : ndarray the window, weights """ window = self.window if isinstance(window, (list, tuple, np.ndarray)): return com.asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = { "kaiser": ["beta"], "gaussian": ["std"], "general_gaussian": ["power", "width"], "slepian": ["width"], "exponential": ["tau"], } if win_type in arg_map: win_args = _pop_args(win_type, arg_map[win_type], kwargs) if win_type == "exponential": # exponential window requires the first arg (center) # to be set to None (necessary for symmetric window) win_args.insert(0, None) return tuple([win_type] + win_args) return win_type def _pop_args(win_type, arg_names, kwargs): msg = "%s window requires %%s" % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float) def _get_roll_func( self, cfunc: Callable, check_minp: Callable, index: np.ndarray, **kwargs ) -> Callable: def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, len(window)) return cfunc(arg, window, minp) return func _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3, win_type='boxcar').agg('mean') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must apply directly result = arg(self) return result agg = aggregate @Substitution(name="window") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply("roll_weighted_sum", **kwargs) @Substitution(name="window") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply("roll_weighted_mean", **kwargs) class _GroupByMixin(GroupByMixin): """ Provide the groupby facilities. """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop("parent", None) # noqa groupby = kwargs.pop("groupby", None) if groupby is None: groupby, obj = obj, obj.obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True super().__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch("count") corr = GroupByMixin._dispatch("corr", other=None, pairwise=None) cov = GroupByMixin._dispatch("cov", other=None, pairwise=None) def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Dispatch to apply; we are stripping all of the _apply kwargs and performing the original function call on the grouped object. """ def f(x, name=name, *args): x = self._shallow_copy(x) if isinstance(name, str): return getattr(x, name)(*args, **kwargs) return x.apply(name, *args, **kwargs) return self._groupby.apply(f) class _Rolling(_Window): @property def _constructor(self): return Rolling class _Rolling_and_Expanding(_Rolling): _shared_docs["count"] = dedent( r""" The %(name)s count of any non-NaN observations inside the window. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. DataFrame.count : Count of the full DataFrame. Examples -------- >>> s = pd.Series([2, 3, np.nan, 10]) >>> s.rolling(2).count() 0 1.0 1 2.0 2 1.0 3 1.0 dtype: float64 >>> s.rolling(3).count() 0 1.0 1 2.0 2 2.0 3 2.0 dtype: float64 >>> s.rolling(4).count() 0 1.0 1 2.0 2 2.0 3 3.0 dtype: float64 """ ) def count(self): blocks, obj = self._create_blocks() # Validate the index self._get_index() window = self._get_window() window = min(window, len(obj)) if not self.center else window results = [] for b in blocks: result = b.notna().astype(int) result = self._constructor( result, window=window, min_periods=0, center=self.center, axis=self.axis, closed=self.closed, ).sum() results.append(result) return self._wrap_results(results, blocks, obj) _shared_docs["apply"] = dedent( r""" The %(name)s function's apply function. Parameters ---------- func : function Must produce a single value from an ndarray input if ``raw=True`` or a single value from a Series if ``raw=False``. raw : bool, default None * ``False`` : passes each row or column as a Series to the function. * ``True`` or ``None`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. The `raw` parameter is required and will show a FutureWarning if not passed. In the future `raw` will default to False. .. versionadded:: 0.23.0 *args, **kwargs Arguments and keyword arguments to be passed into func. Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ ) def apply(self, func, raw=None, args=(), kwargs={}): from pandas import Series kwargs.pop("_level", None) window = self._get_window() offset = _offset(window, self.center) index_as_array = self._get_index() # TODO: default is for backward compat # change to False in the future if raw is None: warnings.warn( "Currently, 'apply' passes the values as ndarrays to the " "applied function. In the future, this will change to passing " "it as Series objects. You need to specify 'raw=True' to keep " "the current behaviour, and you can pass 'raw=False' to " "silence this warning", FutureWarning, stacklevel=3, ) raw = True def f(arg, window, min_periods, closed): minp = _use_window(min_periods, window) if not raw: arg = Series(arg, index=self.obj.index) return libwindow.roll_generic( arg, window, minp, index_as_array, closed, offset, func, raw, args, kwargs, ) return self._apply(f, func, args=args, kwargs=kwargs, center=False, raw=raw) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply("roll_sum", "sum", **kwargs) _shared_docs["max"] = dedent( """ Calculate the %(name)s maximum. Parameters ---------- *args, **kwargs Arguments and keyword arguments to be passed into func. """ ) def max(self, *args, **kwargs): nv.validate_window_func("max", args, kwargs) return self._apply("roll_max", "max", **kwargs) _shared_docs["min"] = dedent( """ Calculate the %(name)s minimum. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with a Series. DataFrame.%(name)s : Calling object with a DataFrame. Series.min : Similar method for Series. DataFrame.min : Similar method for DataFrame. Examples -------- Performing a rolling minimum with a window size of 3. >>> s = pd.Series([4, 3, 5, 2, 6]) >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64 """ ) def min(self, *args, **kwargs): nv.validate_window_func("min", args, kwargs) return self._apply("roll_min", "min", **kwargs) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply("roll_mean", "mean", **kwargs) _shared_docs["median"] = dedent( """ Calculate the %(name)s median. Parameters ---------- **kwargs For compatibility with other %(name)s methods. Has no effect on the computed median. Returns ------- Series or DataFrame Returned type is the same as the original object. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.median : Equivalent method for Series. DataFrame.median : Equivalent method for DataFrame. Examples -------- Compute the rolling median of a series with a window size of 3. >>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.rolling(3).median() 0 NaN 1 NaN 2 1.0 3 2.0 4 3.0 dtype: float64 """ ) def median(self, **kwargs): return self._apply("roll_median_c", "median", **kwargs) _shared_docs["std"] = dedent( """ Calculate %(name)s standard deviation. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.std : Equivalent method for Series. DataFrame.std : Equivalent method for DataFrame. numpy.std : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in Series.std is different than the default `ddof` of 0 in numpy.std. A minimum of one period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).std() 0 NaN 1 NaN 2 0.577350 3 1.000000 4 1.000000 5 1.154701 6 0.000000 dtype: float64 >>> s.expanding(3).std() 0 NaN 1 NaN 2 0.577350 3 0.957427 4 0.894427 5 0.836660 6 0.786796 dtype: float64 """ ) def std(self, ddof=1, *args, **kwargs): nv.validate_window_func("std", args, kwargs) window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _require_min_periods(1)(self.min_periods, window) return _zsqrt( libwindow.roll_var(arg, window, minp, index_as_array, self.closed, ddof) ) return self._apply( f, "std", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs["var"] = dedent( """ Calculate unbiased %(name)s variance. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.var : Equivalent method for Series. DataFrame.var : Equivalent method for DataFrame. numpy.var : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in :meth:`Series.var` is different than the default `ddof` of 0 in :func:`numpy.var`. A minimum of 1 period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).var() 0 NaN 1 NaN 2 0.333333 3 1.000000 4 1.000000 5 1.333333 6 0.000000 dtype: float64 >>> s.expanding(3).var() 0 NaN 1 NaN 2 0.333333 3 0.916667 4 0.800000 5 0.700000 6 0.619048 dtype: float64 """ ) def var(self, ddof=1, *args, **kwargs): nv.validate_window_func("var", args, kwargs) return self._apply( "roll_var", "var", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs[ "skew" ] = """ Unbiased %(name)s skewness. Parameters ---------- **kwargs Keyword arguments to be passed into func. """ def skew(self, **kwargs): return self._apply( "roll_skew", "skew", check_minp=_require_min_periods(3), **kwargs ) _shared_docs["kurt"] = dedent( """ Calculate unbiased %(name)s kurtosis. This function uses Fisher's definition of kurtosis without bias. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.kurt : Equivalent method for Series. DataFrame.kurt : Equivalent method for DataFrame. scipy.stats.skew : Third moment of a probability density. scipy.stats.kurtosis : Reference SciPy method. Notes ----- A minimum of 4 periods is required for the %(name)s calculation. """ ) def kurt(self, **kwargs): return self._apply( "roll_kurt", "kurt", check_minp=_require_min_periods(4), **kwargs ) _shared_docs["quantile"] = dedent( """ Calculate the %(name)s quantile. Parameters ---------- quantile : float Quantile to compute. 0 <= quantile <= 1. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.23.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. **kwargs: For compatibility with other %(name)s methods. Has no effect on the result. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.quantile : Computes value at the given quantile over all data in Series. DataFrame.quantile : Computes values at the given quantile over requested axis in DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).quantile(.4, interpolation='lower') 0 NaN 1 1.0 2 2.0 3 3.0 dtype: float64 >>> s.rolling(2).quantile(.4, interpolation='midpoint') 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 """ ) def quantile(self, quantile, interpolation="linear", **kwargs): window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, window) if quantile == 1.0: return libwindow.roll_max( arg, window, minp, index_as_array, self.closed ) elif quantile == 0.0: return libwindow.roll_min( arg, window, minp, index_as_array, self.closed ) else: return libwindow.roll_quantile( arg, window, minp, index_as_array, self.closed, quantile, interpolation, ) return self._apply(f, "quantile", quantile=quantile, **kwargs) _shared_docs[ "cov" ] = """ Calculate the %(name)s sample covariance. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self and produce pairwise output. pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. **kwargs Keyword arguments to be passed into func. """ def cov(self, other=None, pairwise=None, ddof=1, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) # GH 16058: offset window if self.is_freq_type: window = self.win_freq else: window = self._get_window(other) def _get_cov(X, Y): # GH #12373 : rolling functions error on float32 data # to avoid potential overflow, cast the data to float64 X = X.astype("float64") Y = Y.astype("float64") mean = lambda x: x.rolling( window, self.min_periods, center=self.center ).mean(**kwargs) count = (X + Y).rolling(window=window, center=self.center).count(**kwargs) bias_adj = count / (count - ddof) return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise) ) _shared_docs["corr"] = dedent( """ Calculate %(name)s correlation. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self. pairwise : bool, default None Calculate pairwise combinations of columns within a DataFrame. If `other` is not specified, defaults to `True`, otherwise defaults to `False`. Not relevant for :class:`~pandas.Series`. **kwargs Unused. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.corr : Equivalent method for Series. DataFrame.corr : Equivalent method for DataFrame. %(name)s.cov : Similar method to calculate covariance. numpy.corrcoef : NumPy Pearson's correlation calculation. Notes ----- This function uses Pearson's definition of correlation (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). When `other` is not specified, the output will be self correlation (e.g. all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise` set to `True`. Function will return ``NaN`` for correlations of equal valued sequences; this is the result of a 0/0 division error. When `pairwise` is set to `False`, only matching columns between `self` and `other` will be used. When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame with the original index on the first level, and the `other` DataFrame columns on the second level. In the case of missing elements, only complete pairwise observations will be used. Examples -------- The below example shows a rolling calculation with a window size of four matching the equivalent function call using :meth:`numpy.corrcoef`. >>> v1 = [3, 3, 3, 5, 8] >>> v2 = [3, 4, 4, 4, 8] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> # numpy returns a 2X2 array, the correlation coefficient >>> # is the number at entry [0][1] >>> print(fmt.format(np.corrcoef(v1[:-1], v2[:-1])[0][1])) 0.333333 >>> print(fmt.format(np.corrcoef(v1[1:], v2[1:])[0][1])) 0.916949 >>> s1 = pd.Series(v1) >>> s2 = pd.Series(v2) >>> s1.rolling(4).corr(s2) 0 NaN 1 NaN 2 NaN 3 0.333333 4 0.916949 dtype: float64 The below example shows a similar rolling calculation on a DataFrame using the pairwise option. >>> matrix = np.array([[51., 35.], [49., 30.], [47., 32.],\ [46., 31.], [50., 36.]]) >>> print(np.corrcoef(matrix[:-1,0], matrix[:-1,1]).round(7)) [[1. 0.6263001] [0.6263001 1. ]] >>> print(np.corrcoef(matrix[1:,0], matrix[1:,1]).round(7)) [[1. 0.5553681] [0.5553681 1. ]] >>> df = pd.DataFrame(matrix, columns=['X','Y']) >>> df X Y 0 51.0 35.0 1 49.0 30.0 2 47.0 32.0 3 46.0 31.0 4 50.0 36.0 >>> df.rolling(4).corr(pairwise=True) X Y 0 X NaN NaN Y NaN NaN 1 X NaN NaN Y NaN NaN 2 X NaN NaN Y NaN NaN 3 X 1.000000 0.626300 Y 0.626300 1.000000 4 X 1.000000 0.555368 Y 0.555368 1.000000 """ ) def corr(self, other=None, pairwise=None, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) window = self._get_window(other) def _get_corr(a, b): a = a.rolling( window=window, min_periods=self.min_periods, center=self.center ) b = b.rolling( window=window, min_periods=self.min_periods, center=self.center ) return a.cov(b, **kwargs) / (a.std(**kwargs) * b.std(**kwargs)) return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise) ) class Rolling(_Rolling_and_Expanding): @cache_readonly def is_datetimelike(self): return isinstance( self._on, (ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex) ) @cache_readonly def _on(self): if self.on is None: return self.obj.index elif isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns: return Index(self.obj[self.on]) else: raise ValueError( "invalid on specified as {0}, " "must be a column (if DataFrame) " "or None".format(self.on) ) def validate(self): super().validate() # we allow rolling on a datetimelike index if (self.obj.empty or self.is_datetimelike) and isinstance( self.window, (str, ABCDateOffset, timedelta) ): self._validate_monotonic() freq = self._validate_freq() # we don't allow center if self.center: raise NotImplementedError( "center is not implemented " "for datetimelike and offset " "based windows" ) # this will raise ValueError on non-fixed freqs self.win_freq = self.window self.window = freq.nanos self.win_type = "freq" # min_periods must be an integer if self.min_periods is None: self.min_periods = 1 elif not is_integer(self.window): raise ValueError("window must be an integer") elif self.window < 0: raise ValueError("window must be non-negative") if not self.is_datetimelike and self.closed is not None: raise ValueError( "closed only implemented for datetimelike and offset based windows" ) def _validate_monotonic(self): """ Validate on is_monotonic. """ if not self._on.is_monotonic: formatted = self.on or "index" raise ValueError("{0} must be monotonic".format(formatted)) def _validate_freq(self): """ Validate & return window frequency. """ from pandas.tseries.frequencies import to_offset try: return to_offset(self.window) except (TypeError, ValueError): raise ValueError( "passed window {0} is not " "compatible with a datetimelike " "index".format(self.window) ) _agg_see_also_doc = dedent( """ See Also -------- Series.rolling DataFrame.rolling """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3).sum() A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -2.655105 0.637799 -2.135068 3 -0.971785 -0.600366 -3.280224 4 -0.214334 -1.294599 -3.227500 5 1.514216 2.028250 -2.989060 6 1.074618 5.709767 -2.322600 7 2.718061 3.850718 0.256446 8 -0.289082 2.454418 1.416871 9 0.212668 0.403198 -0.093924 >>> df.rolling(3).agg({'A':'sum', 'B':'min'}) A B 0 NaN NaN 1 NaN NaN 2 -2.655105 -0.165272 3 -0.971785 -1.340923 4 -0.214334 -1.340923 5 1.514216 -1.340923 6 1.074618 0.211596 7 2.718061 -1.647453 8 -0.289082 -1.647453 9 0.212668 -1.647453 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name="rolling") @Appender(_shared_docs["count"]) def count(self): # different impl for freq counting if self.is_freq_type: return self._apply("roll_count", "count") return super().count() @Substitution(name="rolling") @Appender(_shared_docs["apply"]) def apply(self, func, raw=None, args=(), kwargs={}): return super().apply(func, raw=raw, args=args, kwargs=kwargs) @Substitution(name="rolling") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_rolling_func("sum", args, kwargs) return super().sum(*args, **kwargs) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["max"]) def max(self, *args, **kwargs): nv.validate_rolling_func("max", args, kwargs) return super().max(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["min"]) def min(self, *args, **kwargs): nv.validate_rolling_func("min", args, kwargs) return super().min(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_rolling_func("mean", args, kwargs) return super().mean(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["median"]) def median(self, **kwargs): return super().median(**kwargs) @Substitution(name="rolling") @Appender(_shared_docs["std"]) def std(self, ddof=1, *args, **kwargs): nv.validate_rolling_func("std", args, kwargs) return super().std(ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["var"]) def var(self, ddof=1, *args, **kwargs): nv.validate_rolling_func("var", args, kwargs) return super().var(ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["skew"]) def skew(self, **kwargs): return super().skew(**kwargs) _agg_doc = dedent( """ Examples -------- The example below will show a rolling calculation with a window size of four matching the equivalent function call using `scipy.stats`. >>> arr = [1, 2, 3, 4, 999] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> import scipy.stats >>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False))) -1.200000 >>> print(fmt.format(scipy.stats.kurtosis(arr[1:], bias=False))) 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64 """ ) @Appender(_agg_doc) @Substitution(name="rolling") @Appender(_shared_docs["kurt"]) def kurt(self, **kwargs): return super().kurt(**kwargs) @Substitution(name="rolling") @Appender(_shared_docs["quantile"]) def quantile(self, quantile, interpolation="linear", **kwargs): return super().quantile( quantile=quantile, interpolation=interpolation, **kwargs ) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["cov"]) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super().cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["corr"]) def corr(self, other=None, pairwise=None, **kwargs): return super().corr(other=other, pairwise=pairwise, **kwargs) class RollingGroupby(_GroupByMixin, Rolling): """ Provide a rolling groupby implementation. """ @property def _constructor(self): return Rolling def _gotitem(self, key, ndim, subset=None): # we are setting the index on the actual object # here so our index is carried thru to the selected obj # when we do the splitting for the groupby if self.on is not None: self._groupby.obj = self._groupby.obj.set_index(self._on) self.on = None return super()._gotitem(key, ndim, subset=subset) def _validate_monotonic(self): """ Validate that on is monotonic; we don't care for groupby.rolling because we have already validated at a higher level. """ pass class Expanding(_Rolling_and_Expanding): """ Provide expanding transformations. Parameters ---------- min_periods : int, default 1 Minimum number of observations in window required to have a value (otherwise result is NA). center : bool, default False Set the labels at the center of the window. axis : int or str, default 0 Returns ------- a Window sub-classed for the particular operation See Also -------- rolling : Provides rolling window calculations. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.expanding(2).sum() B 0 NaN 1 1.0 2 3.0 3 3.0 4 7.0 """ _attributes = ["min_periods", "center", "axis"] def __init__(self, obj, min_periods=1, center=False, axis=0, **kwargs): super().__init__(obj=obj, min_periods=min_periods, center=center, axis=axis) @property def _constructor(self): return Expanding def _get_window(self, other=None, **kwargs): """ Get the window length over which to perform some operation. Parameters ---------- other : object, default None The other object that is involved in the operation. Such an object is involved for operations like covariance. Returns ------- window : int The window length. """ axis = self.obj._get_axis(self.axis) length = len(axis) + (other is not None) * len(axis) other = self.min_periods or -1 return max(length, other) _agg_see_also_doc = dedent( """ See Also -------- DataFrame.expanding.aggregate DataFrame.rolling.aggregate DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name="expanding") @Appender(_shared_docs["count"]) def count(self, **kwargs): return super().count(**kwargs) @Substitution(name="expanding") @Appender(_shared_docs["apply"]) def apply(self, func, raw=None, args=(), kwargs={}): return super().apply(func, raw=raw, args=args, kwargs=kwargs) @Substitution(name="expanding") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_expanding_func("sum", args, kwargs) return super().sum(*args, **kwargs) @Substitution(name="expanding") @Appender(_doc_template) @Appender(_shared_docs["max"]) def max(self, *args, **kwargs): nv.validate_expanding_func("max", args, kwargs) return super().max(*args, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["min"]) def min(self, *args, **kwargs): nv.validate_expanding_func("min", args, kwargs) return super().min(*args, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_expanding_func("mean", args, kwargs) return super().mean(*args, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["median"]) def median(self, **kwargs): return super().median(**kwargs) @Substitution(name="expanding") @Appender(_shared_docs["std"]) def std(self, ddof=1, *args, **kwargs): nv.validate_expanding_func("std", args, kwargs) return super().std(ddof=ddof, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["var"]) def var(self, ddof=1, *args, **kwargs): nv.validate_expanding_func("var", args, kwargs) return super().var(ddof=ddof, **kwargs) @Substitution(name="expanding") @Appender(_doc_template) @Appender(_shared_docs["skew"]) def skew(self, **kwargs): return super().skew(**kwargs) _agg_doc = dedent( """ Examples -------- The example below will show an expanding calculation with a window size of four matching the equivalent function call using `scipy.stats`. >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False))) -1.200000 >>> print(fmt.format(scipy.stats.kurtosis(arr, bias=False))) 4.999874 >>> s = pd.Series(arr) >>> s.expanding(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 4.999874 dtype: float64 """ ) @Appender(_agg_doc) @Substitution(name="expanding") @Appender(_shared_docs["kurt"]) def kurt(self, **kwargs): return super().kurt(**kwargs) @Substitution(name="expanding") @Appender(_shared_docs["quantile"]) def quantile(self, quantile, interpolation="linear", **kwargs): return super().quantile( quantile=quantile, interpolation=interpolation, **kwargs ) @Substitution(name="expanding") @Appender(_doc_template) @Appender(_shared_docs["cov"]) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super().cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["corr"]) def corr(self, other=None, pairwise=None, **kwargs): return super().corr(other=other, pairwise=pairwise, **kwargs) class ExpandingGroupby(_GroupByMixin, Expanding): """ Provide a expanding groupby implementation. """ @property def _constructor(self): return Expanding _bias_template = """ Parameters ---------- bias : bool, default False Use a standard estimation bias correction. *args, **kwargs Arguments and keyword arguments to be passed into func. """ _pairwise_template = """ Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self and produce pairwise output. pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. bias : bool, default False Use a standard estimation bias correction. **kwargs Keyword arguments to be passed into func. """ class EWM(_Rolling): r""" Provide exponential weighted functions. Parameters ---------- com : float, optional Specify decay in terms of center of mass, :math:`\alpha = 1 / (1 + com),\text{ for } com \geq 0`. span : float, optional Specify decay in terms of span, :math:`\alpha = 2 / (span + 1),\text{ for } span \geq 1`. halflife : float, optional Specify decay in terms of half-life, :math:`\alpha = 1 - exp(log(0.5) / halflife),\text{for} halflife > 0`. alpha : float, optional Specify smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1`. min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). adjust : bool, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average). ignore_na : bool, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. The value 0 identifies the rows, and 1 identifies the columns. Returns ------- DataFrame A Window sub-classed for the particular operation. See Also -------- rolling : Provides rolling window calculations. expanding : Provides expanding transformations. Notes ----- Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation. When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). More details can be found at http://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#exponentially-weighted-windows Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 """ _attributes = ["com", "min_periods", "adjust", "ignore_na", "axis"] def __init__( self, obj, com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0, ): self.obj = obj self.com = _get_center_of_mass(com, span, halflife, alpha) self.min_periods = min_periods self.adjust = adjust self.ignore_na = ignore_na self.axis = axis self.on = None @property def _constructor(self): return EWM _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.rolling.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate def _apply(self, func, **kwargs): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : str/callable to apply Returns ------- y : same type as input argument """ blocks, obj = self._create_blocks() block_list = list(blocks) results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, str): cfunc = getattr(libwindow, func, None) if cfunc is None: raise ValueError( "we do not support this function " "in libwindow.{func}".format(func=func) ) def func(arg): return cfunc( arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), ) results.append(np.apply_along_axis(func, self.axis, values)) return self._wrap_results(results, block_list, obj, exclude) @Substitution(name="ewm") @Appender(_doc_template) def mean(self, *args, **kwargs): """ Exponential weighted moving average. Parameters ---------- *args, **kwargs Arguments and keyword arguments to be passed into func. """ nv.validate_window_func("mean", args, kwargs) return self._apply("ewma", **kwargs) @Substitution(name="ewm") @Appender(_doc_template) @Appender(_bias_template) def std(self, bias=False, *args, **kwargs): """ Exponential weighted moving stddev. """ nv.validate_window_func("std", args, kwargs) return _zsqrt(self.var(bias=bias, **kwargs)) vol = std @Substitution(name="ewm") @Appender(_doc_template) @Appender(_bias_template) def var(self, bias=False, *args, **kwargs): """ Exponential weighted moving variance. """ nv.validate_window_func("var", args, kwargs) def f(arg): return libwindow.ewmcov( arg, arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias), ) return self._apply(f, **kwargs) @Substitution(name="ewm") @Appender(_doc_template) @Appender(_pairwise_template) def cov(self, other=None, pairwise=None, bias=False, **kwargs): """ Exponential weighted sample covariance. """ if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_cov(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) cov = libwindow.ewmcov( X._prep_values(), Y._prep_values(), self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias), ) return X._wrap_result(cov) return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise) ) @Substitution(name="ewm") @Appender(_doc_template) @Appender(_pairwise_template) def corr(self, other=None, pairwise=None, **kwargs): """ Exponential weighted sample correlation. """ if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_corr(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) def _cov(x, y): return libwindow.ewmcov( x, y, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), 1, ) x_values = X._prep_values() y_values = Y._prep_values() with np.errstate(all="ignore"): cov = _cov(x_values, y_values) x_var = _cov(x_values, x_values) y_var = _cov(y_values, y_values) corr = cov / _zsqrt(x_var * y_var) return X._wrap_result(corr) return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise) ) # Helper Funcs def _flex_binary_moment(arg1, arg2, f, pairwise=False): if not ( isinstance(arg1, (np.ndarray, ABCSeries, ABCDataFrame)) and isinstance(arg2, (np.ndarray, ABCSeries, ABCDataFrame)) ): raise TypeError( "arguments to moment function must be of type " "np.ndarray/Series/DataFrame" ) if isinstance(arg1, (np.ndarray, ABCSeries)) and isinstance( arg2, (np.ndarray, ABCSeries) ): X, Y = _prep_binary(arg1, arg2) return f(X, Y) elif isinstance(arg1, ABCDataFrame): from pandas import DataFrame def dataframe_from_int_dict(data, frame_template): result = DataFrame(data, index=frame_template.index) if len(result.columns) > 0: result.columns = frame_template.columns[result.columns] return result results = {} if isinstance(arg2, ABCDataFrame): if pairwise is False: if arg1 is arg2: # special case in order to handle duplicate column names for i, col in enumerate(arg1.columns): results[i] = f(arg1.iloc[:, i], arg2.iloc[:, i]) return dataframe_from_int_dict(results, arg1) else: if not arg1.columns.is_unique: raise ValueError("'arg1' columns are not unique") if not arg2.columns.is_unique: raise ValueError("'arg2' columns are not unique") with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) X, Y = arg1.align(arg2, join="outer") X = X + 0 * Y Y = Y + 0 * X with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) res_columns = arg1.columns.union(arg2.columns) for col in res_columns: if col in X and col in Y: results[col] = f(X[col], Y[col]) return DataFrame(results, index=X.index, columns=res_columns) elif pairwise is True: results = defaultdict(dict) for i, k1 in enumerate(arg1.columns): for j, k2 in enumerate(arg2.columns): if j < i and arg2 is arg1: # Symmetric case results[i][j] = results[j][i] else: results[i][j] = f( *_prep_binary(arg1.iloc[:, i], arg2.iloc[:, j]) ) from pandas import concat result_index = arg1.index.union(arg2.index) if len(result_index): # construct result frame result = concat( [ concat( [results[i][j] for j, c in enumerate(arg2.columns)], ignore_index=True, ) for i, c in enumerate(arg1.columns) ], ignore_index=True, axis=1, ) result.columns = arg1.columns # set the index and reorder if arg2.columns.nlevels > 1: result.index = MultiIndex.from_product( arg2.columns.levels + [result_index] ) result = result.reorder_levels([2, 0, 1]).sort_index() else: result.index = MultiIndex.from_product( [range(len(arg2.columns)), range(len(result_index))] ) result = result.swaplevel(1, 0).sort_index() result.index = MultiIndex.from_product( [result_index] + [arg2.columns] ) else: # empty result result = DataFrame( index=MultiIndex( levels=[arg1.index, arg2.columns], codes=[[], []] ), columns=arg2.columns, dtype="float64", ) # reset our index names to arg1 names # reset our column names to arg2 names # careful not to mutate the original names result.columns = result.columns.set_names(arg1.columns.names) result.index = result.index.set_names( result_index.names + arg2.columns.names ) return result else: raise ValueError("'pairwise' is not True/False") else: results = { i: f(*_prep_binary(arg1.iloc[:, i], arg2)) for i, col in enumerate(arg1.columns) } return dataframe_from_int_dict(results, arg1) else: return _flex_binary_moment(arg2, arg1, f) def _get_center_of_mass(comass, span, halflife, alpha): valid_count = com.count_not_none(comass, span, halflife, alpha) if valid_count > 1: raise ValueError("comass, span, halflife, and alpha are mutually exclusive") # Convert to center of mass; domain checks ensure 0 < alpha <= 1 if comass is not None: if comass < 0: raise ValueError("comass must satisfy: comass >= 0") elif span is not None: if span < 1: raise ValueError("span must satisfy: span >= 1") comass = (span - 1) / 2.0 elif halflife is not None: if halflife <= 0: raise ValueError("halflife must satisfy: halflife > 0") decay = 1 - np.exp(np.log(0.5) / halflife) comass = 1 / decay - 1 elif alpha is not None: if alpha <= 0 or alpha > 1: raise ValueError("alpha must satisfy: 0 < alpha <= 1") comass = (1.0 - alpha) / alpha else: raise ValueError("Must pass one of comass, span, halflife, or alpha") return float(comass) def _offset(window, center): if not is_integer(window): window = len(window) offset = (window - 1) / 2.0 if center else 0 try: return int(offset) except TypeError: return offset.astype(int) def _require_min_periods(p): def _check_func(minp, window): if minp is None: return window else: return max(p, minp) return _check_func def _use_window(minp, window): if minp is None: return window else: return minp def _zsqrt(x): with np.errstate(all="ignore"): result = np.sqrt(x) mask = x < 0 if isinstance(x, ABCDataFrame): if mask.values.any(): result[mask] = 0 else: if mask.any(): result[mask] = 0 return result def _prep_binary(arg1, arg2): if not isinstance(arg2, type(arg1)): raise Exception("Input arrays must be of the same type!") # mask out values, this also makes a common index... X = arg1 + 0 * arg2 Y = arg2 + 0 * arg1 return X, Y # Top-level exports def rolling(obj, win_type=None, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError("invalid type: %s" % type(obj)) if win_type is not None: return Window(obj, win_type=win_type, **kwds) return Rolling(obj, **kwds) rolling.__doc__ = Window.__doc__ def expanding(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError("invalid type: %s" % type(obj)) return Expanding(obj, **kwds) expanding.__doc__ = Expanding.__doc__ def ewm(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError("invalid type: %s" % type(obj)) return EWM(obj, **kwds) ewm.__doc__ = EWM.__doc__ """ Provide a generic structure to support window functions, similar to how we have a Groupby object. """ from collections import defaultdict from datetime import timedelta from textwrap import dedent from typing import Callable, List, Optional, Set, Union import warnings import numpy as np import pandas._libs.window as libwindow from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes.common import ( ensure_float64, is_bool, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_scalar, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDateOffset, ABCDatetimeIndex, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas._typing import Axis, FrameOrSeries, Scalar from pandas.core.base import DataError, PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.generic import _shared_docs from pandas.core.groupby.base import GroupByMixin from pandas.core.index import Index, MultiIndex, ensure_index _shared_docs = dict(**_shared_docs) _doc_template = """ Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ class _Window(PandasObject, SelectionMixin): _attributes = [ "window", "min_periods", "center", "win_type", "axis", "on", "closed", ] # type: List[str] exclusions = set() # type: Set[str] def __init__( self, obj, window=None, min_periods: Optional[int] = None, center: Optional[bool] = False, win_type: Optional[str] = None, axis: Axis = 0, on: Optional[str] = None, closed: Optional[str] = None, **kwargs ): self.__dict__.update(kwargs) self.obj = obj self.on = on self.closed = closed self.window = window self.min_periods = min_periods self.center = center self.win_type = win_type self.win_freq = None self.axis = obj._get_axis_number(axis) if axis is not None else None self.validate() @property def _constructor(self): return Window @property def is_datetimelike(self) -> Optional[bool]: return None @property def _on(self): return None @property def is_freq_type(self) -> bool: return self.win_type == "freq" def validate(self): if self.center is not None and not is_bool(self.center): raise ValueError("center must be a boolean") if self.min_periods is not None and not is_integer(self.min_periods): raise ValueError("min_periods must be an integer") if self.closed is not None and self.closed not in [ "right", "both", "left", "neither", ]: raise ValueError("closed must be 'right', 'left', 'both' or 'neither'") def _create_blocks(self): """ Split data into blocks & return conformed data. """ obj = self._selected_obj # filter out the on from the object if self.on is not None: if obj.ndim == 2: obj = obj.reindex(columns=obj.columns.difference([self.on]), copy=False) blocks = obj._to_dict_of_blocks(copy=False).values() return blocks, obj def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : str / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ # create a new object to prevent aliasing if subset is None: subset = self.obj self = self._shallow_copy(subset) self._reset_cache() if subset.ndim == 2: if is_scalar(key) and key in subset or is_list_like(key): self._selection = key return self def __getattr__(self, attr): if attr in self._internal_names_set: return object.__getattribute__(self, attr) if attr in self.obj: return self[attr] raise AttributeError( "%r object has no attribute %r" % (type(self).__name__, attr) ) def _dir_additions(self): return self.obj._dir_additions() def _get_window(self, other=None, **kwargs) -> int: """ Returns window length Parameters ---------- other: ignored, exists for compatibility Returns ------- window : int """ return self.window @property def _window_type(self) -> str: return self.__class__.__name__ def __repr__(self) -> str: """ Provide a nice str repr of our rolling object. """ attrs = ( "{k}={v}".format(k=k, v=getattr(self, k)) for k in self._attributes if getattr(self, k, None) is not None ) return "{klass} [{attrs}]".format( klass=self._window_type, attrs=",".join(attrs) ) def __iter__(self): url = "https://github.com/pandas-dev/pandas/issues/11704" raise NotImplementedError("See issue #11704 {url}".format(url=url)) def _get_index(self) -> Optional[np.ndarray]: """ Return integer representations as an ndarray if index is frequency. Returns ------- None or ndarray """ if self.is_freq_type: return self._on.asi8 return None def _prep_values(self, values: Optional[np.ndarray] = None) -> np.ndarray: """Convert input to numpy arrays for Cython routines""" if values is None: values = getattr(self._selected_obj, "values", self._selected_obj) # GH #12373 : rolling functions error on float32 data # make sure the data is coerced to float64 if is_float_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values.dtype): values = ensure_float64(values) elif needs_i8_conversion(values.dtype): raise NotImplementedError( "ops for {action} for this " "dtype {dtype} are not " "implemented".format(action=self._window_type, dtype=values.dtype) ) else: try: values = ensure_float64(values) except (ValueError, TypeError): raise TypeError("cannot handle this type -> {0}".format(values.dtype)) # Convert inf to nan for C funcs inf = np.isinf(values) if inf.any(): values = np.where(inf, np.nan, values) return values def _wrap_result(self, result, block=None, obj=None): """ Wrap a single result. """ if obj is None: obj = self._selected_obj index = obj.index if isinstance(result, np.ndarray): # coerce if necessary if block is not None: if is_timedelta64_dtype(block.values.dtype): # TODO: do we know what result.dtype is at this point? # i.e. can we just do an astype? from pandas import to_timedelta result = to_timedelta(result.ravel(), unit="ns").values.reshape( result.shape ) if result.ndim == 1: from pandas import Series return Series(result, index, name=obj.name) return type(obj)(result, index=index, columns=block.columns) return result def _wrap_results(self, results, blocks, obj, exclude=None) -> FrameOrSeries: """ Wrap the results. Parameters ---------- results : list of ndarrays blocks : list of blocks obj : conformed data (may be resampled) exclude: list of columns to exclude, default to None """ from pandas import Series, concat final = [] for result, block in zip(results, blocks): result = self._wrap_result(result, block=block, obj=obj) if result.ndim == 1: return result final.append(result) # if we have an 'on' column # we want to put it back into the results # in the same location columns = self._selected_obj.columns if self.on is not None and not self._on.equals(obj.index): name = self._on.name final.append(Series(self._on, index=obj.index, name=name)) if self._selection is not None: selection = ensure_index(self._selection) # need to reorder to include original location of # the on column (if its not already there) if name not in selection: columns = self.obj.columns indexer = columns.get_indexer(selection.tolist() + [name]) columns = columns.take(sorted(indexer)) # exclude nuisance columns so that they are not reindexed if exclude is not None and exclude: columns = [c for c in columns if c not in exclude] if not columns: raise DataError("No numeric types to aggregate") if not len(final): return obj.astype("float64") return concat(final, axis=1).reindex(columns=columns, copy=False) def _center_window(self, result, window) -> np.ndarray: """ Center the result in the window. """ if self.axis > result.ndim - 1: raise ValueError("Requested axis is larger then no. of argument dimensions") offset = _offset(window, True) if offset > 0: if isinstance(result, (ABCSeries, ABCDataFrame)): result = result.slice_shift(-offset, axis=self.axis) else: lead_indexer = [slice(None)] * result.ndim lead_indexer[self.axis] = slice(offset, None) result = np.copy(result[tuple(lead_indexer)]) return result def _get_roll_func( self, cfunc: Callable, check_minp: Callable, index: np.ndarray, **kwargs ) -> Callable: """ Wrap rolling function to check values passed. Parameters ---------- cfunc : callable Cython function used to calculate rolling statistics check_minp : callable function to check minimum period parameter index : ndarray used for variable window Returns ------- func : callable """ def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, window) return cfunc(arg, window, minp, index, closed, **kwargs) return func def _apply( self, func: Union[str, Callable], name: Optional[str] = None, window: Optional[Union[int, str]] = None, center: Optional[bool] = None, check_minp: Optional[Callable] = None, **kwargs ): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : str/callable to apply name : str, optional name of this function window : int/str, default to _get_window() window length or offset center : bool, default to self.center check_minp : function, default to _use_window **kwargs additional arguments for rolling function and window function Returns ------- y : type of input """ if center is None: center = self.center if check_minp is None: check_minp = _use_window if window is None: window = self._get_window(**kwargs) blocks, obj = self._create_blocks() block_list = list(blocks) index_as_array = self._get_index() results = [] exclude = [] # type: List[Scalar] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, str): cfunc = getattr(libwindow, func, None) if cfunc is None: raise ValueError( "we do not support this function " "in libwindow.{func}".format(func=func) ) func = self._get_roll_func(cfunc, check_minp, index_as_array, **kwargs) # calculation function if center: offset = _offset(window, center) additional_nans = np.array([np.NaN] * offset) def calc(x): return func( np.concatenate((x, additional_nans)), window, min_periods=self.min_periods, closed=self.closed, ) else: def calc(x): return func( x, window, min_periods=self.min_periods, closed=self.closed ) with np.errstate(all="ignore"): if values.ndim > 1: result = np.apply_along_axis(calc, self.axis, values) else: result = calc(values) result = np.asarray(result) if center: result = self._center_window(result, window) results.append(result) return self._wrap_results(results, block_list, obj, exclude) def aggregate(self, func, *args, **kwargs): result, how = self._aggregate(func, *args, **kwargs) if result is None: return self.apply(func, raw=False, args=args, kwargs=kwargs) return result agg = aggregate _shared_docs["sum"] = dedent( """ Calculate %(name)s sum of given DataFrame or Series. Parameters ---------- *args, **kwargs For compatibility with other %(name)s methods. Has no effect on the computed value. Returns ------- Series or DataFrame Same type as the input, with the same index, containing the %(name)s sum. See Also -------- Series.sum : Reducing sum for Series. DataFrame.sum : Reducing sum for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4, 5]) >>> s 0 1 1 2 2 3 3 4 4 5 dtype: int64 >>> s.rolling(3).sum() 0 NaN 1 NaN 2 6.0 3 9.0 4 12.0 dtype: float64 >>> s.expanding(3).sum() 0 NaN 1 NaN 2 6.0 3 10.0 4 15.0 dtype: float64 >>> s.rolling(3, center=True).sum() 0 NaN 1 6.0 2 9.0 3 12.0 4 NaN dtype: float64 For DataFrame, each %(name)s sum is computed column-wise. >>> df = pd.DataFrame({"A": s, "B": s ** 2}) >>> df A B 0 1 1 1 2 4 2 3 9 3 4 16 4 5 25 >>> df.rolling(3).sum() A B 0 NaN NaN 1 NaN NaN 2 6.0 14.0 3 9.0 29.0 4 12.0 50.0 """ ) _shared_docs["mean"] = dedent( """ Calculate the %(name)s mean of the values. Parameters ---------- *args Under Review. **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.mean : Equivalent method for Series. DataFrame.mean : Equivalent method for DataFrame. Examples -------- The below examples will show rolling mean calculations with window sizes of two and three, respectively. >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 >>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64 """ ) class Window(_Window): """ Provide rolling window calculations. Parameters ---------- window : int, or offset Size of the moving window. This is the number of observations used for calculating the statistic. Each window will be a fixed size. If its an offset then this will be the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetimelike indexes. min_periods : int, default None Minimum number of observations in window required to have a value (otherwise result is NA). For a window that is specified by an offset, `min_periods` will default to 1. Otherwise, `min_periods` will default to the size of the window. center : bool, default False Set the labels at the center of the window. win_type : str, default None Provide a window type. If ``None``, all points are evenly weighted. See the notes below for further information. on : str, optional For a DataFrame, a datetime-like column on which to calculate the rolling window, rather than the DataFrame's index. Provided integer column is ignored and excluded from result since an integer index is not used to calculate the rolling window. axis : int or str, default 0 closed : str, default None Make the interval closed on the 'right', 'left', 'both' or 'neither' endpoints. For offset-based windows, it defaults to 'right'. For fixed windows, defaults to 'both'. Remaining cases not implemented for fixed windows. .. versionadded:: 0.20.0 Returns ------- a Window or Rolling sub-classed for the particular operation See Also -------- expanding : Provides expanding transformations. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. To learn more about the offsets & frequency strings, please see `this link <http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. The recognized win_types are: * ``boxcar`` * ``triang`` * ``blackman`` * ``hamming`` * ``bartlett`` * ``parzen`` * ``bohman`` * ``blackmanharris`` * ``nuttall`` * ``barthann`` * ``kaiser`` (needs beta) * ``gaussian`` (needs std) * ``general_gaussian`` (needs power, width) * ``slepian`` (needs width) * ``exponential`` (needs tau), center is set to None. If ``win_type=None`` all points are evenly weighted. To learn more about different window types see `scipy.signal window functions <https://docs.scipy.org/doc/scipy/reference/signal.html#window-functions>`__. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 Rolling sum with a window length of 2, using the 'triang' window type. >>> df.rolling(2, win_type='triang').sum() B 0 NaN 1 0.5 2 1.5 3 NaN 4 NaN Rolling sum with a window length of 2, min_periods defaults to the window length. >>> df.rolling(2).sum() B 0 NaN 1 1.0 2 3.0 3 NaN 4 NaN Same as above, but explicitly set the min_periods >>> df.rolling(2, min_periods=1).sum() B 0 0.0 1 1.0 2 3.0 3 2.0 4 4.0 A ragged (meaning not-a-regular frequency), time-indexed DataFrame >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}, ... index = [pd.Timestamp('20130101 09:00:00'), ... pd.Timestamp('20130101 09:00:02'), ... pd.Timestamp('20130101 09:00:03'), ... pd.Timestamp('20130101 09:00:05'), ... pd.Timestamp('20130101 09:00:06')]) >>> df B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 2.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 Contrasting to an integer rolling window, this will roll a variable length window corresponding to the time period. The default for min_periods is 1. >>> df.rolling('2s').sum() B 2013-01-01 09:00:00 0.0 2013-01-01 09:00:02 1.0 2013-01-01 09:00:03 3.0 2013-01-01 09:00:05 NaN 2013-01-01 09:00:06 4.0 """ def validate(self): super().validate() window = self.window if isinstance(window, (list, tuple, np.ndarray)): pass elif is_integer(window): if window <= 0: raise ValueError("window must be > 0 ") import_optional_dependency( "scipy", extra="Scipy is required to generate window weight." ) import scipy.signal as sig if not isinstance(self.win_type, str): raise ValueError("Invalid win_type {0}".format(self.win_type)) if getattr(sig, self.win_type, None) is None: raise ValueError("Invalid win_type {0}".format(self.win_type)) else: raise ValueError("Invalid window {0}".format(window)) def _get_window(self, other=None, **kwargs) -> np.ndarray: """ Provide validation for the window type, return the window which has already been validated. Parameters ---------- other: ignored, exists for compatibility Returns ------- window : ndarray the window, weights """ window = self.window if isinstance(window, (list, tuple, np.ndarray)): return com.asarray_tuplesafe(window).astype(float) elif is_integer(window): import scipy.signal as sig # the below may pop from kwargs def _validate_win_type(win_type, kwargs): arg_map = { "kaiser": ["beta"], "gaussian": ["std"], "general_gaussian": ["power", "width"], "slepian": ["width"], "exponential": ["tau"], } if win_type in arg_map: win_args = _pop_args(win_type, arg_map[win_type], kwargs) if win_type == "exponential": # exponential window requires the first arg (center) # to be set to None (necessary for symmetric window) win_args.insert(0, None) return tuple([win_type] + win_args) return win_type def _pop_args(win_type, arg_names, kwargs): msg = "%s window requires %%s" % win_type all_args = [] for n in arg_names: if n not in kwargs: raise ValueError(msg % n) all_args.append(kwargs.pop(n)) return all_args win_type = _validate_win_type(self.win_type, kwargs) # GH #15662. `False` makes symmetric window, rather than periodic. return sig.get_window(win_type, window, False).astype(float) def _get_roll_func( self, cfunc: Callable, check_minp: Callable, index: np.ndarray, **kwargs ) -> Callable: def func(arg, window, min_periods=None, closed=None): minp = check_minp(min_periods, len(window)) return cfunc(arg, window, minp) return func _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.rolling.aggregate pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3, win_type='boxcar').agg('mean') A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -0.885035 0.212600 -0.711689 3 -0.323928 -0.200122 -1.093408 4 -0.071445 -0.431533 -1.075833 5 0.504739 0.676083 -0.996353 6 0.358206 1.903256 -0.774200 7 0.906020 1.283573 0.085482 8 -0.096361 0.818139 0.472290 9 0.070889 0.134399 -0.031308 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): result, how = self._aggregate(arg, *args, **kwargs) if result is None: # these must apply directly result = arg(self) return result agg = aggregate @Substitution(name="window") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply("roll_weighted_sum", **kwargs) @Substitution(name="window") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply("roll_weighted_mean", **kwargs) class _GroupByMixin(GroupByMixin): """ Provide the groupby facilities. """ def __init__(self, obj, *args, **kwargs): parent = kwargs.pop("parent", None) # noqa groupby = kwargs.pop("groupby", None) if groupby is None: groupby, obj = obj, obj.obj self._groupby = groupby self._groupby.mutated = True self._groupby.grouper.mutated = True super().__init__(obj, *args, **kwargs) count = GroupByMixin._dispatch("count") corr = GroupByMixin._dispatch("corr", other=None, pairwise=None) cov = GroupByMixin._dispatch("cov", other=None, pairwise=None) def _apply( self, func, name=None, window=None, center=None, check_minp=None, **kwargs ): """ Dispatch to apply; we are stripping all of the _apply kwargs and performing the original function call on the grouped object. """ def f(x, name=name, *args): x = self._shallow_copy(x) if isinstance(name, str): return getattr(x, name)(*args, **kwargs) return x.apply(name, *args, **kwargs) return self._groupby.apply(f) class _Rolling(_Window): @property def _constructor(self): return Rolling class _Rolling_and_Expanding(_Rolling): _shared_docs["count"] = dedent( r""" The %(name)s count of any non-NaN observations inside the window. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. DataFrame.count : Count of the full DataFrame. Examples -------- >>> s = pd.Series([2, 3, np.nan, 10]) >>> s.rolling(2).count() 0 1.0 1 2.0 2 1.0 3 1.0 dtype: float64 >>> s.rolling(3).count() 0 1.0 1 2.0 2 2.0 3 2.0 dtype: float64 >>> s.rolling(4).count() 0 1.0 1 2.0 2 2.0 3 3.0 dtype: float64 """ ) def count(self): blocks, obj = self._create_blocks() # Validate the index self._get_index() window = self._get_window() window = min(window, len(obj)) if not self.center else window results = [] for b in blocks: result = b.notna().astype(int) result = self._constructor( result, window=window, min_periods=0, center=self.center, axis=self.axis, closed=self.closed, ).sum() results.append(result) return self._wrap_results(results, blocks, obj) _shared_docs["apply"] = dedent( r""" The %(name)s function's apply function. Parameters ---------- func : function Must produce a single value from an ndarray input if ``raw=True`` or a single value from a Series if ``raw=False``. raw : bool, default None * ``False`` : passes each row or column as a Series to the function. * ``True`` or ``None`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. The `raw` parameter is required and will show a FutureWarning if not passed. In the future `raw` will default to False. .. versionadded:: 0.23.0 *args, **kwargs Arguments and keyword arguments to be passed into func. Returns ------- Series or DataFrame Return type is determined by the caller. See Also -------- Series.%(name)s : Series %(name)s. DataFrame.%(name)s : DataFrame %(name)s. """ ) def apply(self, func, raw=None, args=(), kwargs={}): from pandas import Series kwargs.pop("_level", None) window = self._get_window() offset = _offset(window, self.center) index_as_array = self._get_index() # TODO: default is for backward compat # change to False in the future if raw is None: warnings.warn( "Currently, 'apply' passes the values as ndarrays to the " "applied function. In the future, this will change to passing " "it as Series objects. You need to specify 'raw=True' to keep " "the current behaviour, and you can pass 'raw=False' to " "silence this warning", FutureWarning, stacklevel=3, ) raw = True def f(arg, window, min_periods, closed): minp = _use_window(min_periods, window) if not raw: arg = Series(arg, index=self.obj.index) return libwindow.roll_generic( arg, window, minp, index_as_array, closed, offset, func, raw, args, kwargs, ) return self._apply(f, func, args=args, kwargs=kwargs, center=False, raw=raw) def sum(self, *args, **kwargs): nv.validate_window_func("sum", args, kwargs) return self._apply("roll_sum", "sum", **kwargs) _shared_docs["max"] = dedent( """ Calculate the %(name)s maximum. Parameters ---------- *args, **kwargs Arguments and keyword arguments to be passed into func. """ ) def max(self, *args, **kwargs): nv.validate_window_func("max", args, kwargs) return self._apply("roll_max", "max", **kwargs) _shared_docs["min"] = dedent( """ Calculate the %(name)s minimum. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with a Series. DataFrame.%(name)s : Calling object with a DataFrame. Series.min : Similar method for Series. DataFrame.min : Similar method for DataFrame. Examples -------- Performing a rolling minimum with a window size of 3. >>> s = pd.Series([4, 3, 5, 2, 6]) >>> s.rolling(3).min() 0 NaN 1 NaN 2 3.0 3 2.0 4 2.0 dtype: float64 """ ) def min(self, *args, **kwargs): nv.validate_window_func("min", args, kwargs) return self._apply("roll_min", "min", **kwargs) def mean(self, *args, **kwargs): nv.validate_window_func("mean", args, kwargs) return self._apply("roll_mean", "mean", **kwargs) _shared_docs["median"] = dedent( """ Calculate the %(name)s median. Parameters ---------- **kwargs For compatibility with other %(name)s methods. Has no effect on the computed median. Returns ------- Series or DataFrame Returned type is the same as the original object. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.median : Equivalent method for Series. DataFrame.median : Equivalent method for DataFrame. Examples -------- Compute the rolling median of a series with a window size of 3. >>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.rolling(3).median() 0 NaN 1 NaN 2 1.0 3 2.0 4 3.0 dtype: float64 """ ) def median(self, **kwargs): return self._apply("roll_median_c", "median", **kwargs) _shared_docs["std"] = dedent( """ Calculate %(name)s standard deviation. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.std : Equivalent method for Series. DataFrame.std : Equivalent method for DataFrame. numpy.std : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in Series.std is different than the default `ddof` of 0 in numpy.std. A minimum of one period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).std() 0 NaN 1 NaN 2 0.577350 3 1.000000 4 1.000000 5 1.154701 6 0.000000 dtype: float64 >>> s.expanding(3).std() 0 NaN 1 NaN 2 0.577350 3 0.957427 4 0.894427 5 0.836660 6 0.786796 dtype: float64 """ ) def std(self, ddof=1, *args, **kwargs): nv.validate_window_func("std", args, kwargs) window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _require_min_periods(1)(self.min_periods, window) return _zsqrt( libwindow.roll_var(arg, window, minp, index_as_array, self.closed, ddof) ) return self._apply( f, "std", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs["var"] = dedent( """ Calculate unbiased %(name)s variance. Normalized by N-1 by default. This can be changed using the `ddof` argument. Parameters ---------- ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. *args, **kwargs For NumPy compatibility. No additional arguments are used. Returns ------- Series or DataFrame Returns the same object type as the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.var : Equivalent method for Series. DataFrame.var : Equivalent method for DataFrame. numpy.var : Equivalent method for Numpy array. Notes ----- The default `ddof` of 1 used in :meth:`Series.var` is different than the default `ddof` of 0 in :func:`numpy.var`. A minimum of 1 period is required for the rolling calculation. Examples -------- >>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).var() 0 NaN 1 NaN 2 0.333333 3 1.000000 4 1.000000 5 1.333333 6 0.000000 dtype: float64 >>> s.expanding(3).var() 0 NaN 1 NaN 2 0.333333 3 0.916667 4 0.800000 5 0.700000 6 0.619048 dtype: float64 """ ) def var(self, ddof=1, *args, **kwargs): nv.validate_window_func("var", args, kwargs) return self._apply( "roll_var", "var", check_minp=_require_min_periods(1), ddof=ddof, **kwargs ) _shared_docs[ "skew" ] = """ Unbiased %(name)s skewness. Parameters ---------- **kwargs Keyword arguments to be passed into func. """ def skew(self, **kwargs): return self._apply( "roll_skew", "skew", check_minp=_require_min_periods(3), **kwargs ) _shared_docs["kurt"] = dedent( """ Calculate unbiased %(name)s kurtosis. This function uses Fisher's definition of kurtosis without bias. Parameters ---------- **kwargs Under Review. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.kurt : Equivalent method for Series. DataFrame.kurt : Equivalent method for DataFrame. scipy.stats.skew : Third moment of a probability density. scipy.stats.kurtosis : Reference SciPy method. Notes ----- A minimum of 4 periods is required for the %(name)s calculation. """ ) def kurt(self, **kwargs): return self._apply( "roll_kurt", "kurt", check_minp=_require_min_periods(4), **kwargs ) _shared_docs["quantile"] = dedent( """ Calculate the %(name)s quantile. Parameters ---------- quantile : float Quantile to compute. 0 <= quantile <= 1. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.23.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. **kwargs: For compatibility with other %(name)s methods. Has no effect on the result. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.quantile : Computes value at the given quantile over all data in Series. DataFrame.quantile : Computes values at the given quantile over requested axis in DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).quantile(.4, interpolation='lower') 0 NaN 1 1.0 2 2.0 3 3.0 dtype: float64 >>> s.rolling(2).quantile(.4, interpolation='midpoint') 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64 """ ) def quantile(self, quantile, interpolation="linear", **kwargs): window = self._get_window() index_as_array = self._get_index() def f(arg, *args, **kwargs): minp = _use_window(self.min_periods, window) if quantile == 1.0: return libwindow.roll_max( arg, window, minp, index_as_array, self.closed ) elif quantile == 0.0: return libwindow.roll_min( arg, window, minp, index_as_array, self.closed ) else: return libwindow.roll_quantile( arg, window, minp, index_as_array, self.closed, quantile, interpolation, ) return self._apply(f, "quantile", quantile=quantile, **kwargs) _shared_docs[ "cov" ] = """ Calculate the %(name)s sample covariance. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self and produce pairwise output. pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndexed DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. **kwargs Keyword arguments to be passed into func. """ def cov(self, other=None, pairwise=None, ddof=1, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) # GH 16058: offset window if self.is_freq_type: window = self.win_freq else: window = self._get_window(other) def _get_cov(X, Y): # GH #12373 : rolling functions error on float32 data # to avoid potential overflow, cast the data to float64 X = X.astype("float64") Y = Y.astype("float64") mean = lambda x: x.rolling( window, self.min_periods, center=self.center ).mean(**kwargs) count = (X + Y).rolling(window=window, center=self.center).count(**kwargs) bias_adj = count / (count - ddof) return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise) ) _shared_docs["corr"] = dedent( """ Calculate %(name)s correlation. Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self. pairwise : bool, default None Calculate pairwise combinations of columns within a DataFrame. If `other` is not specified, defaults to `True`, otherwise defaults to `False`. Not relevant for :class:`~pandas.Series`. **kwargs Unused. Returns ------- Series or DataFrame Returned object type is determined by the caller of the %(name)s calculation. See Also -------- Series.%(name)s : Calling object with Series data. DataFrame.%(name)s : Calling object with DataFrames. Series.corr : Equivalent method for Series. DataFrame.corr : Equivalent method for DataFrame. %(name)s.cov : Similar method to calculate covariance. numpy.corrcoef : NumPy Pearson's correlation calculation. Notes ----- This function uses Pearson's definition of correlation (https://en.wikipedia.org/wiki/Pearson_correlation_coefficient). When `other` is not specified, the output will be self correlation (e.g. all 1's), except for :class:`~pandas.DataFrame` inputs with `pairwise` set to `True`. Function will return ``NaN`` for correlations of equal valued sequences; this is the result of a 0/0 division error. When `pairwise` is set to `False`, only matching columns between `self` and `other` will be used. When `pairwise` is set to `True`, the output will be a MultiIndex DataFrame with the original index on the first level, and the `other` DataFrame columns on the second level. In the case of missing elements, only complete pairwise observations will be used. Examples -------- The below example shows a rolling calculation with a window size of four matching the equivalent function call using :meth:`numpy.corrcoef`. >>> v1 = [3, 3, 3, 5, 8] >>> v2 = [3, 4, 4, 4, 8] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> # numpy returns a 2X2 array, the correlation coefficient >>> # is the number at entry [0][1] >>> print(fmt.format(np.corrcoef(v1[:-1], v2[:-1])[0][1])) 0.333333 >>> print(fmt.format(np.corrcoef(v1[1:], v2[1:])[0][1])) 0.916949 >>> s1 = pd.Series(v1) >>> s2 = pd.Series(v2) >>> s1.rolling(4).corr(s2) 0 NaN 1 NaN 2 NaN 3 0.333333 4 0.916949 dtype: float64 The below example shows a similar rolling calculation on a DataFrame using the pairwise option. >>> matrix = np.array([[51., 35.], [49., 30.], [47., 32.],\ [46., 31.], [50., 36.]]) >>> print(np.corrcoef(matrix[:-1,0], matrix[:-1,1]).round(7)) [[1. 0.6263001] [0.6263001 1. ]] >>> print(np.corrcoef(matrix[1:,0], matrix[1:,1]).round(7)) [[1. 0.5553681] [0.5553681 1. ]] >>> df = pd.DataFrame(matrix, columns=['X','Y']) >>> df X Y 0 51.0 35.0 1 49.0 30.0 2 47.0 32.0 3 46.0 31.0 4 50.0 36.0 >>> df.rolling(4).corr(pairwise=True) X Y 0 X NaN NaN Y NaN NaN 1 X NaN NaN Y NaN NaN 2 X NaN NaN Y NaN NaN 3 X 1.000000 0.626300 Y 0.626300 1.000000 4 X 1.000000 0.555368 Y 0.555368 1.000000 """ ) def corr(self, other=None, pairwise=None, **kwargs): if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) window = self._get_window(other) def _get_corr(a, b): a = a.rolling( window=window, min_periods=self.min_periods, center=self.center ) b = b.rolling( window=window, min_periods=self.min_periods, center=self.center ) return a.cov(b, **kwargs) / (a.std(**kwargs) * b.std(**kwargs)) return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise) ) class Rolling(_Rolling_and_Expanding): @cache_readonly def is_datetimelike(self): return isinstance( self._on, (ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex) ) @cache_readonly def _on(self): if self.on is None: return self.obj.index elif isinstance(self.obj, ABCDataFrame) and self.on in self.obj.columns: return Index(self.obj[self.on]) else: raise ValueError( "invalid on specified as {0}, " "must be a column (if DataFrame) " "or None".format(self.on) ) def validate(self): super().validate() # we allow rolling on a datetimelike index if (self.obj.empty or self.is_datetimelike) and isinstance( self.window, (str, ABCDateOffset, timedelta) ): self._validate_monotonic() freq = self._validate_freq() # we don't allow center if self.center: raise NotImplementedError( "center is not implemented " "for datetimelike and offset " "based windows" ) # this will raise ValueError on non-fixed freqs self.win_freq = self.window self.window = freq.nanos self.win_type = "freq" # min_periods must be an integer if self.min_periods is None: self.min_periods = 1 elif not is_integer(self.window): raise ValueError("window must be an integer") elif self.window < 0: raise ValueError("window must be non-negative") if not self.is_datetimelike and self.closed is not None: raise ValueError( "closed only implemented for datetimelike and offset based windows" ) def _validate_monotonic(self): """ Validate on is_monotonic. """ if not self._on.is_monotonic: formatted = self.on or "index" raise ValueError("{0} must be monotonic".format(formatted)) def _validate_freq(self): """ Validate & return window frequency. """ from pandas.tseries.frequencies import to_offset try: return to_offset(self.window) except (TypeError, ValueError): raise ValueError( "passed window {0} is not " "compatible with a datetimelike " "index".format(self.window) ) _agg_see_also_doc = dedent( """ See Also -------- Series.rolling DataFrame.rolling """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.rolling(3).sum() A B C 0 NaN NaN NaN 1 NaN NaN NaN 2 -2.655105 0.637799 -2.135068 3 -0.971785 -0.600366 -3.280224 4 -0.214334 -1.294599 -3.227500 5 1.514216 2.028250 -2.989060 6 1.074618 5.709767 -2.322600 7 2.718061 3.850718 0.256446 8 -0.289082 2.454418 1.416871 9 0.212668 0.403198 -0.093924 >>> df.rolling(3).agg({'A':'sum', 'B':'min'}) A B 0 NaN NaN 1 NaN NaN 2 -2.655105 -0.165272 3 -0.971785 -1.340923 4 -0.214334 -1.340923 5 1.514216 -1.340923 6 1.074618 0.211596 7 2.718061 -1.647453 8 -0.289082 -1.647453 9 0.212668 -1.647453 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name="rolling") @Appender(_shared_docs["count"]) def count(self): # different impl for freq counting if self.is_freq_type: return self._apply("roll_count", "count") return super().count() @Substitution(name="rolling") @Appender(_shared_docs["apply"]) def apply(self, func, raw=None, args=(), kwargs={}): return super().apply(func, raw=raw, args=args, kwargs=kwargs) @Substitution(name="rolling") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_rolling_func("sum", args, kwargs) return super().sum(*args, **kwargs) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["max"]) def max(self, *args, **kwargs): nv.validate_rolling_func("max", args, kwargs) return super().max(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["min"]) def min(self, *args, **kwargs): nv.validate_rolling_func("min", args, kwargs) return super().min(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_rolling_func("mean", args, kwargs) return super().mean(*args, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["median"]) def median(self, **kwargs): return super().median(**kwargs) @Substitution(name="rolling") @Appender(_shared_docs["std"]) def std(self, ddof=1, *args, **kwargs): nv.validate_rolling_func("std", args, kwargs) return super().std(ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["var"]) def var(self, ddof=1, *args, **kwargs): nv.validate_rolling_func("var", args, kwargs) return super().var(ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["skew"]) def skew(self, **kwargs): return super().skew(**kwargs) _agg_doc = dedent( """ Examples -------- The example below will show a rolling calculation with a window size of four matching the equivalent function call using `scipy.stats`. >>> arr = [1, 2, 3, 4, 999] >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> import scipy.stats >>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False))) -1.200000 >>> print(fmt.format(scipy.stats.kurtosis(arr[1:], bias=False))) 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64 """ ) @Appender(_agg_doc) @Substitution(name="rolling") @Appender(_shared_docs["kurt"]) def kurt(self, **kwargs): return super().kurt(**kwargs) @Substitution(name="rolling") @Appender(_shared_docs["quantile"]) def quantile(self, quantile, interpolation="linear", **kwargs): return super().quantile( quantile=quantile, interpolation=interpolation, **kwargs ) @Substitution(name="rolling") @Appender(_doc_template) @Appender(_shared_docs["cov"]) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super().cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name="rolling") @Appender(_shared_docs["corr"]) def corr(self, other=None, pairwise=None, **kwargs): return super().corr(other=other, pairwise=pairwise, **kwargs) class RollingGroupby(_GroupByMixin, Rolling): """ Provide a rolling groupby implementation. """ @property def _constructor(self): return Rolling def _gotitem(self, key, ndim, subset=None): # we are setting the index on the actual object # here so our index is carried thru to the selected obj # when we do the splitting for the groupby if self.on is not None: self._groupby.obj = self._groupby.obj.set_index(self._on) self.on = None return super()._gotitem(key, ndim, subset=subset) def _validate_monotonic(self): """ Validate that on is monotonic; we don't care for groupby.rolling because we have already validated at a higher level. """ pass class Expanding(_Rolling_and_Expanding): """ Provide expanding transformations. Parameters ---------- min_periods : int, default 1 Minimum number of observations in window required to have a value (otherwise result is NA). center : bool, default False Set the labels at the center of the window. axis : int or str, default 0 Returns ------- a Window sub-classed for the particular operation See Also -------- rolling : Provides rolling window calculations. ewm : Provides exponential weighted functions. Notes ----- By default, the result is set to the right edge of the window. This can be changed to the center of the window by setting ``center=True``. Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.expanding(2).sum() B 0 NaN 1 1.0 2 3.0 3 3.0 4 7.0 """ _attributes = ["min_periods", "center", "axis"] def __init__(self, obj, min_periods=1, center=False, axis=0, **kwargs): super().__init__(obj=obj, min_periods=min_periods, center=center, axis=axis) @property def _constructor(self): return Expanding def _get_window(self, other=None, **kwargs): """ Get the window length over which to perform some operation. Parameters ---------- other : object, default None The other object that is involved in the operation. Such an object is involved for operations like covariance. Returns ------- window : int The window length. """ axis = self.obj._get_axis(self.axis) length = len(axis) + (other is not None) * len(axis) other = self.min_periods or -1 return max(length, other) _agg_see_also_doc = dedent( """ See Also -------- DataFrame.expanding.aggregate DataFrame.rolling.aggregate DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate @Substitution(name="expanding") @Appender(_shared_docs["count"]) def count(self, **kwargs): return super().count(**kwargs) @Substitution(name="expanding") @Appender(_shared_docs["apply"]) def apply(self, func, raw=None, args=(), kwargs={}): return super().apply(func, raw=raw, args=args, kwargs=kwargs) @Substitution(name="expanding") @Appender(_shared_docs["sum"]) def sum(self, *args, **kwargs): nv.validate_expanding_func("sum", args, kwargs) return super().sum(*args, **kwargs) @Substitution(name="expanding") @Appender(_doc_template) @Appender(_shared_docs["max"]) def max(self, *args, **kwargs): nv.validate_expanding_func("max", args, kwargs) return super().max(*args, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["min"]) def min(self, *args, **kwargs): nv.validate_expanding_func("min", args, kwargs) return super().min(*args, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["mean"]) def mean(self, *args, **kwargs): nv.validate_expanding_func("mean", args, kwargs) return super().mean(*args, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["median"]) def median(self, **kwargs): return super().median(**kwargs) @Substitution(name="expanding") @Appender(_shared_docs["std"]) def std(self, ddof=1, *args, **kwargs): nv.validate_expanding_func("std", args, kwargs) return super().std(ddof=ddof, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["var"]) def var(self, ddof=1, *args, **kwargs): nv.validate_expanding_func("var", args, kwargs) return super().var(ddof=ddof, **kwargs) @Substitution(name="expanding") @Appender(_doc_template) @Appender(_shared_docs["skew"]) def skew(self, **kwargs): return super().skew(**kwargs) _agg_doc = dedent( """ Examples -------- The example below will show an expanding calculation with a window size of four matching the equivalent function call using `scipy.stats`. >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False))) -1.200000 >>> print(fmt.format(scipy.stats.kurtosis(arr, bias=False))) 4.999874 >>> s = pd.Series(arr) >>> s.expanding(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 4.999874 dtype: float64 """ ) @Appender(_agg_doc) @Substitution(name="expanding") @Appender(_shared_docs["kurt"]) def kurt(self, **kwargs): return super().kurt(**kwargs) @Substitution(name="expanding") @Appender(_shared_docs["quantile"]) def quantile(self, quantile, interpolation="linear", **kwargs): return super().quantile( quantile=quantile, interpolation=interpolation, **kwargs ) @Substitution(name="expanding") @Appender(_doc_template) @Appender(_shared_docs["cov"]) def cov(self, other=None, pairwise=None, ddof=1, **kwargs): return super().cov(other=other, pairwise=pairwise, ddof=ddof, **kwargs) @Substitution(name="expanding") @Appender(_shared_docs["corr"]) def corr(self, other=None, pairwise=None, **kwargs): return super().corr(other=other, pairwise=pairwise, **kwargs) class ExpandingGroupby(_GroupByMixin, Expanding): """ Provide a expanding groupby implementation. """ @property def _constructor(self): return Expanding _bias_template = """ Parameters ---------- bias : bool, default False Use a standard estimation bias correction. *args, **kwargs Arguments and keyword arguments to be passed into func. """ _pairwise_template = """ Parameters ---------- other : Series, DataFrame, or ndarray, optional If not supplied then will default to self and produce pairwise output. pairwise : bool, default None If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used. bias : bool, default False Use a standard estimation bias correction. **kwargs Keyword arguments to be passed into func. """ class EWM(_Rolling): r""" Provide exponential weighted functions. Parameters ---------- com : float, optional Specify decay in terms of center of mass, :math:`\alpha = 1 / (1 + com),\text{ for } com \geq 0`. span : float, optional Specify decay in terms of span, :math:`\alpha = 2 / (span + 1),\text{ for } span \geq 1`. halflife : float, optional Specify decay in terms of half-life, :math:`\alpha = 1 - exp(log(0.5) / halflife),\text{for} halflife > 0`. alpha : float, optional Specify smoothing factor :math:`\alpha` directly, :math:`0 < \alpha \leq 1`. min_periods : int, default 0 Minimum number of observations in window required to have a value (otherwise result is NA). adjust : bool, default True Divide by decaying adjustment factor in beginning periods to account for imbalance in relative weightings (viewing EWMA as a moving average). ignore_na : bool, default False Ignore missing values when calculating weights; specify True to reproduce pre-0.15.0 behavior. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. The value 0 identifies the rows, and 1 identifies the columns. Returns ------- DataFrame A Window sub-classed for the particular operation. See Also -------- rolling : Provides rolling window calculations. expanding : Provides expanding transformations. Notes ----- Exactly one of center of mass, span, half-life, and alpha must be provided. Allowed values and relationship between the parameters are specified in the parameter descriptions above; see the link at the end of this section for a detailed explanation. When adjust is True (default), weighted averages are calculated using weights (1-alpha)**(n-1), (1-alpha)**(n-2), ..., 1-alpha, 1. When adjust is False, weighted averages are calculated recursively as: weighted_average[0] = arg[0]; weighted_average[i] = (1-alpha)*weighted_average[i-1] + alpha*arg[i]. When ignore_na is False (default), weights are based on absolute positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are (1-alpha)**2 and 1 (if adjust is True), and (1-alpha)**2 and alpha (if adjust is False). When ignore_na is True (reproducing pre-0.15.0 behavior), weights are based on relative positions. For example, the weights of x and y used in calculating the final weighted average of [x, None, y] are 1-alpha and 1 (if adjust is True), and 1-alpha and alpha (if adjust is False). More details can be found at http://pandas.pydata.org/pandas-docs/stable/user_guide/computation.html#exponentially-weighted-windows Examples -------- >>> df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0 >>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213 """ _attributes = ["com", "min_periods", "adjust", "ignore_na", "axis"] def __init__( self, obj, com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0, ): self.obj = obj self.com = _get_center_of_mass(com, span, halflife, alpha) self.min_periods = min_periods self.adjust = adjust self.ignore_na = ignore_na self.axis = axis self.on = None @property def _constructor(self): return EWM _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.rolling.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame(np.random.randn(10, 3), columns=['A', 'B', 'C']) >>> df A B C 0 -2.385977 -0.102758 0.438822 1 -1.004295 0.905829 -0.954544 2 0.735167 -0.165272 -1.619346 3 -0.702657 -1.340923 -0.706334 4 -0.246845 0.211596 -0.901819 5 2.463718 3.157577 -1.380906 6 -1.142255 2.340594 -0.039875 7 1.396598 -1.647453 1.677227 8 -0.543425 1.761277 -0.220481 9 -0.640505 0.289374 -1.550670 >>> df.ewm(alpha=0.5).mean() A B C 0 -2.385977 -0.102758 0.438822 1 -1.464856 0.569633 -0.490089 2 -0.207700 0.149687 -1.135379 3 -0.471677 -0.645305 -0.906555 4 -0.355635 -0.203033 -0.904111 5 1.076417 1.503943 -1.146293 6 -0.041654 1.925562 -0.588728 7 0.680292 0.132049 0.548693 8 0.067236 0.948257 0.163353 9 -0.286980 0.618493 -0.694496 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series/Dataframe", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, arg, *args, **kwargs): return super().aggregate(arg, *args, **kwargs) agg = aggregate def _apply(self, func, **kwargs): """ Rolling statistical measure using supplied function. Designed to be used with passed-in Cython array-based functions. Parameters ---------- func : str/callable to apply Returns ------- y : same type as input argument """ blocks, obj = self._create_blocks() block_list = list(blocks) results = [] exclude = [] for i, b in enumerate(blocks): try: values = self._prep_values(b.values) except (TypeError, NotImplementedError): if isinstance(obj, ABCDataFrame): exclude.extend(b.columns) del block_list[i] continue else: raise DataError("No numeric types to aggregate") if values.size == 0: results.append(values.copy()) continue # if we have a string function name, wrap it if isinstance(func, str): cfunc = getattr(libwindow, func, None) if cfunc is None: raise ValueError( "we do not support this function " "in libwindow.{func}".format(func=func) ) def func(arg): return cfunc( arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), ) results.append(np.apply_along_axis(func, self.axis, values)) return self._wrap_results(results, block_list, obj, exclude) @Substitution(name="ewm") @Appender(_doc_template) def mean(self, *args, **kwargs): """ Exponential weighted moving average. Parameters ---------- *args, **kwargs Arguments and keyword arguments to be passed into func. """ nv.validate_window_func("mean", args, kwargs) return self._apply("ewma", **kwargs) @Substitution(name="ewm") @Appender(_doc_template) @Appender(_bias_template) def std(self, bias=False, *args, **kwargs): """ Exponential weighted moving stddev. """ nv.validate_window_func("std", args, kwargs) return _zsqrt(self.var(bias=bias, **kwargs)) vol = std @Substitution(name="ewm") @Appender(_doc_template) @Appender(_bias_template) def var(self, bias=False, *args, **kwargs): """ Exponential weighted moving variance. """ nv.validate_window_func("var", args, kwargs) def f(arg): return libwindow.ewmcov( arg, arg, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias), ) return self._apply(f, **kwargs) @Substitution(name="ewm") @Appender(_doc_template) @Appender(_pairwise_template) def cov(self, other=None, pairwise=None, bias=False, **kwargs): """ Exponential weighted sample covariance. """ if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_cov(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) cov = libwindow.ewmcov( X._prep_values(), Y._prep_values(), self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), int(bias), ) return X._wrap_result(cov) return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_cov, pairwise=bool(pairwise) ) @Substitution(name="ewm") @Appender(_doc_template) @Appender(_pairwise_template) def corr(self, other=None, pairwise=None, **kwargs): """ Exponential weighted sample correlation. """ if other is None: other = self._selected_obj # only default unset pairwise = True if pairwise is None else pairwise other = self._shallow_copy(other) def _get_corr(X, Y): X = self._shallow_copy(X) Y = self._shallow_copy(Y) def _cov(x, y): return libwindow.ewmcov( x, y, self.com, int(self.adjust), int(self.ignore_na), int(self.min_periods), 1, ) x_values = X._prep_values() y_values = Y._prep_values() with np.errstate(all="ignore"): cov = _cov(x_values, y_values) x_var = _cov(x_values, x_values) y_var = _cov(y_values, y_values) corr = cov / _zsqrt(x_var * y_var) return X._wrap_result(corr) return _flex_binary_moment( self._selected_obj, other._selected_obj, _get_corr, pairwise=bool(pairwise) ) # Helper Funcs def _flex_binary_moment(arg1, arg2, f, pairwise=False): if not ( isinstance(arg1, (np.ndarray, ABCSeries, ABCDataFrame)) and isinstance(arg2, (np.ndarray, ABCSeries, ABCDataFrame)) ): raise TypeError( "arguments to moment function must be of type " "np.ndarray/Series/DataFrame" ) if isinstance(arg1, (np.ndarray, ABCSeries)) and isinstance( arg2, (np.ndarray, ABCSeries) ): X, Y = _prep_binary(arg1, arg2) return f(X, Y) elif isinstance(arg1, ABCDataFrame): from pandas import DataFrame def dataframe_from_int_dict(data, frame_template): result = DataFrame(data, index=frame_template.index) if len(result.columns) > 0: result.columns = frame_template.columns[result.columns] return result results = {} if isinstance(arg2, ABCDataFrame): if pairwise is False: if arg1 is arg2: # special case in order to handle duplicate column names for i, col in enumerate(arg1.columns): results[i] = f(arg1.iloc[:, i], arg2.iloc[:, i]) return dataframe_from_int_dict(results, arg1) else: if not arg1.columns.is_unique: raise ValueError("'arg1' columns are not unique") if not arg2.columns.is_unique: raise ValueError("'arg2' columns are not unique") with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) X, Y = arg1.align(arg2, join="outer") X = X + 0 * Y Y = Y + 0 * X with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) res_columns = arg1.columns.union(arg2.columns) for col in res_columns: if col in X and col in Y: results[col] = f(X[col], Y[col]) return DataFrame(results, index=X.index, columns=res_columns) elif pairwise is True: results = defaultdict(dict) for i, k1 in enumerate(arg1.columns): for j, k2 in enumerate(arg2.columns): if j < i and arg2 is arg1: # Symmetric case results[i][j] = results[j][i] else: results[i][j] = f( *_prep_binary(arg1.iloc[:, i], arg2.iloc[:, j]) ) from pandas import concat result_index = arg1.index.union(arg2.index) if len(result_index): # construct result frame result = concat( [ concat( [results[i][j] for j, c in enumerate(arg2.columns)], ignore_index=True, ) for i, c in enumerate(arg1.columns) ], ignore_index=True, axis=1, ) result.columns = arg1.columns # set the index and reorder if arg2.columns.nlevels > 1: result.index = MultiIndex.from_product( arg2.columns.levels + [result_index] ) result = result.reorder_levels([2, 0, 1]).sort_index() else: result.index = MultiIndex.from_product( [range(len(arg2.columns)), range(len(result_index))] ) result = result.swaplevel(1, 0).sort_index() result.index = MultiIndex.from_product( [result_index] + [arg2.columns] ) else: # empty result result = DataFrame( index=MultiIndex( levels=[arg1.index, arg2.columns], codes=[[], []] ), columns=arg2.columns, dtype="float64", ) # reset our index names to arg1 names # reset our column names to arg2 names # careful not to mutate the original names result.columns = result.columns.set_names(arg1.columns.names) result.index = result.index.set_names( result_index.names + arg2.columns.names ) return result else: raise ValueError("'pairwise' is not True/False") else: results = { i: f(*_prep_binary(arg1.iloc[:, i], arg2)) for i, col in enumerate(arg1.columns) } return dataframe_from_int_dict(results, arg1) else: return _flex_binary_moment(arg2, arg1, f) def _get_center_of_mass(comass, span, halflife, alpha): valid_count = com.count_not_none(comass, span, halflife, alpha) if valid_count > 1: raise ValueError("comass, span, halflife, and alpha are mutually exclusive") # Convert to center of mass; domain checks ensure 0 < alpha <= 1 if comass is not None: if comass < 0: raise ValueError("comass must satisfy: comass >= 0") elif span is not None: if span < 1: raise ValueError("span must satisfy: span >= 1") comass = (span - 1) / 2.0 elif halflife is not None: if halflife <= 0: raise ValueError("halflife must satisfy: halflife > 0") decay = 1 - np.exp(np.log(0.5) / halflife) comass = 1 / decay - 1 elif alpha is not None: if alpha <= 0 or alpha > 1: raise ValueError("alpha must satisfy: 0 < alpha <= 1") comass = (1.0 - alpha) / alpha else: raise ValueError("Must pass one of comass, span, halflife, or alpha") return float(comass) def _offset(window, center): if not is_integer(window): window = len(window) offset = (window - 1) / 2.0 if center else 0 try: return int(offset) except TypeError: return offset.astype(int) def _require_min_periods(p): def _check_func(minp, window): if minp is None: return window else: return max(p, minp) return _check_func def _use_window(minp, window): if minp is None: return window else: return minp def _zsqrt(x): with np.errstate(all="ignore"): result = np.sqrt(x) mask = x < 0 if isinstance(x, ABCDataFrame): if mask.values.any(): result[mask] = 0 else: if mask.any(): result[mask] = 0 return result def _prep_binary(arg1, arg2): if not isinstance(arg2, type(arg1)): raise Exception("Input arrays must be of the same type!") # mask out values, this also makes a common index... X = arg1 + 0 * arg2 Y = arg2 + 0 * arg1 return X, Y # Top-level exports def rolling(obj, win_type=None, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError("invalid type: %s" % type(obj)) if win_type is not None: return Window(obj, win_type=win_type, **kwds) return Rolling(obj, **kwds) rolling.__doc__ = Window.__doc__ def expanding(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError("invalid type: %s" % type(obj)) return Expanding(obj, **kwds) expanding.__doc__ = Expanding.__doc__ def ewm(obj, **kwds): if not isinstance(obj, (ABCSeries, ABCDataFrame)): raise TypeError("invalid type: %s" % type(obj)) return EWM(obj, **kwds) ewm.__doc__ = EWM.__doc__
BugsInPy/BugsInPy/temp/projects/pandas/bug-163-fixed/pandas/pandas/core/window.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-163-buggy/pandas/pandas/core/window.py
pandas-bug-125
import operator from shutil import get_terminal_size import textwrap from typing import Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import coerce_indexer_dtype, maybe_infer_to_datetimelike from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas._typing import ArrayLike, Dtype, Ordered from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console from .base import ExtensionArray, _extension_array_shared_docs, try_cast_to_ea _take_msg = textwrap.dedent( """\ Interpreting negative values in 'indexer' as missing values. In the future, this will change to meaning positional indices from the right. Use 'allow_fill=True' to retain the previous behavior and silence this warning. Use 'allow_fill=False' to accept the new behavior.""" ) def _cat_compare_op(op): opname = "__{op}__".format(op=op.__name__) @unpack_zerodim_and_defer(opname) def f(self, other): # On python2, you can usually compare any type to any type, and # Categoricals can be seen as a custom type, but having different # results depending whether categories are the same or not is kind of # insane, so be a bit stricter here and use the python3 idea of # comparing only things of equal type. if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes mask = (self._codes == -1) | (other_codes == -1) f = getattr(self._codes, opname) ret = f(other_codes) if mask.any(): # In other series, the leads to False, so do that here too ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) # check for NaN in self mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.repeat(False, len(self)) elif opname == "__ne__": return np.repeat(True, len(self)) else: msg = ( "Cannot compare a Categorical for op {op} with a " "scalar, which is not a category." ) raise TypeError(msg.format(op=opname)) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) msg = ( "Cannot compare a Categorical for op {op} with type {typ}." "\nIf you want to compare values, use 'np.asarray(cat) " "<op> other'." ) raise TypeError(msg.format(op=opname, typ=type(other))) f.__name__ = opname return f def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical .. versionadded:: 0.21.0 Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. .. versionadded:: 0.21.0 Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset( ["tolist", "itemsize", "get_values"] ) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype._ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: if len(values) == 0: sanitize_dtype = "object" else: sanitize_dtype = None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError: codes, categories = factorize(values, sort=False) if dtype._ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) except ValueError: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) # we're inferring from values dtype = CategoricalDtype(categories, dtype._ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = _recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype._ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _ndarray_values(self) -> np.ndarray: return self.codes @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): msg = "Cannot convert float NaN to integer" raise ValueError(msg) return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ return the len of myself """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> list: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @property def base(self) -> None: """ compat, we are always our own object """ return None @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = _recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = _recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) codes = np.asarray(codes) # #21767 if len(codes) and not is_integer_dtype(codes): msg = "codes need to be array-like integers" if is_float_dtype(codes): icodes = codes.astype("i8") if (icodes == codes).all(): msg = None codes = icodes warn( ( "float codes will be disallowed in the future and " "raise a ValueError" ), FutureWarning, stacklevel=2, ) if msg: raise ValueError(msg) if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = _recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype._ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = _recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. .. versionadded:: 0.21.0. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories add_categories remove_categories remove_unused_categories set_categories Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories add_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories reorder_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: msg = ( "new categories must not include old categories: " "{already_included!s}" ) raise ValueError(msg.format(already_included=already_included)) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories reorder_categories add_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: msg = "removals must all be in old categories: {not_included!s}" raise ValueError(msg.format(not_included=not_included)) return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( "'fill_value={}' is not present " "in this Categorical's " "categories".format(fill_value) ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None): """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( "Object with dtype {dtype} cannot perform " "the numpy op {op}".format(dtype=self.dtype, op=ufunc.__name__) ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") # compat with pre 0.21.0 CategoricalDtype change if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self): """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @Substitution(klass="Categorical") @Appender(_shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def put(self, *args, **kwargs): """ Replace specific elements in the Categorical with given values. """ raise NotImplementedError(("'put' is not yet implemented for Categorical")) def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def get_values(self): """ Return the values. .. deprecated:: 0.25.0 For internal compatibility with pandas formatting. Returns ------- numpy.array A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ warn( "The 'get_values' method is deprecated and will be removed in a " "future version", FutureWarning, stacklevel=2, ) return self._internal_get_values() def _internal_get_values(self): # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( "Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n".format(op=op) ) def _values_for_argsort(self): return self._codes.copy() def argsort(self, ascending=True, kind="quicksort", *args, **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. *args, **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, *args, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2.0, 2.0, NaN, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values() [2.0, 2.0, 5.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5.0, 2.0, 2.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2.0, 2.0, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5.0, 2.0, 2.0] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: msg = "invalid na_position: {na_position!r}" raise ValueError(msg.format(na_position=na_position)) sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def ravel(self, order="C"): """ Return a flattened (numpy) array. For internal compatibility with numpy arrays. Returns ------- numpy.array """ warn( "Categorical.ravel will return a Categorical object instead " "of an ndarray in a future version.", FutureWarning, stacklevel=2, ) return np.array(self) def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ return np.asarray(self) @deprecate_kwarg(old_arg_name="fill_value", new_arg_name="value") def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: values = self.to_dense().reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, ABCSeries): if not value[~value.isin(self.categories)].isna().all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( '"value" parameter must be a scalar, dict ' "or Series, but you passed a " '"{0}"'.format(type(value).__name__) ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take_nd(self, indexer, allow_fill=None, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default None How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 0.23.0 Deprecated the default value of `allow_fill`. The deprecated default is ``True``. In the future, this will change to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (3, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) if allow_fill is None: if (indexer < 0).any(): warn(_take_msg, FutureWarning, stacklevel=2) allow_fill = True dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = "'fill_value' ('{}') is not in this Categorical's categories." raise TypeError(msg.format(fill_value)) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result take = take_nd def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key): """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True): """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = "{head}, ..., {tail}".format(head=head[:-1], tail=tail[1:]) if footer: result = "{result}\n{footer}".format( result=result, footer=self._repr_footer() ) return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self): """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = "Categories ({length}, {dtype}): ".format( length=len(self.categories), dtype=dtype ) width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self): return "Length: {length}\n{info}".format( length=len(self), info=self._repr_categories_info() ) def _get_repr(self, length=True, na_rep="NaN", footer=True): from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = "[], {repr_msg}".format(repr_msg=msg) return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] else: return self._constructor( values=self._codes[key], dtype=self.dtype, fastpath=True ) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = _recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) self._codes[key] = lindexer def _reverse_indexer(self): """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: msg = "Categorical cannot perform the operation {op}" raise TypeError(msg.format(op=name)) return func(**kwargs) def min(self, numeric_only=None, **kwargs): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if numeric_only: good = self._codes != -1 pointer = self._codes[good].min(**kwargs) else: pointer = self._codes.min(**kwargs) if pointer == -1: return np.nan else: return self.categories[pointer] def max(self, numeric_only=None, **kwargs): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if numeric_only: good = self._codes != -1 pointer = self._codes[good].max(**kwargs) else: pointer = self._codes.max(**kwargs) if pointer == -1: return np.nan else: return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list('baabc')) [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list('baabc'), categories=list('abc')) [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical(list('baabc'), ... categories=list('abc'), ... ordered=True) [b, a, c] Categories (3, object): [a < b < c] See Also -------- unique CategoricalIndex.unique Series.unique """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = _recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed" " to isin(), you passed a [{values_type}]".format( values_type=type(values).__name__ ) ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s.cat.categories >>> s.cat.categories = list('abc') >>> s.cat.rename_categories(list('cab')) >>> s.cat.reorder_categories(list('cab')) >>> s.cat.add_categories(['d','e']) >>> s.cat.remove_categories(['d']) >>> s.cat.remove_unused_categories() >>> s.cat.set_categories(list('abcde')) >>> s.cat.as_ordered() >>> s.cat.as_unordered() """ _deprecations = PandasObject._deprecations | frozenset( ["categorical", "index", "name"] ) def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) @property def categorical(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `categorical` will need to be removed from # `ok_for_cat`. warn( "`Series.cat.categorical` has been deprecated. Use the " "attributes on 'Series.cat' directly instead.", FutureWarning, stacklevel=2, ) return self._parent @property def name(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `name` will need to be removed from # `ok_for_cat`. warn( "`Series.cat.name` has been deprecated. Use `Series.name` instead.", FutureWarning, stacklevel=2, ) return self._name @property def index(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `index` will need to be removed from # ok_for_cat`. warn( "`Series.cat.index` has been deprecated. Use `Series.index` instead.", FutureWarning, stacklevel=2, ) return self._index # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, "_ndarray_values", values) categories = getattr(categories, "_ndarray_values", categories) elif is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = try_cast_to_ea(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def _recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables))) import operator from shutil import get_terminal_size import textwrap from typing import Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import coerce_indexer_dtype, maybe_infer_to_datetimelike from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas._typing import ArrayLike, Dtype, Ordered from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console from .base import ExtensionArray, _extension_array_shared_docs, try_cast_to_ea _take_msg = textwrap.dedent( """\ Interpreting negative values in 'indexer' as missing values. In the future, this will change to meaning positional indices from the right. Use 'allow_fill=True' to retain the previous behavior and silence this warning. Use 'allow_fill=False' to accept the new behavior.""" ) def _cat_compare_op(op): opname = "__{op}__".format(op=op.__name__) @unpack_zerodim_and_defer(opname) def f(self, other): # On python2, you can usually compare any type to any type, and # Categoricals can be seen as a custom type, but having different # results depending whether categories are the same or not is kind of # insane, so be a bit stricter here and use the python3 idea of # comparing only things of equal type. if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes mask = (self._codes == -1) | (other_codes == -1) f = getattr(self._codes, opname) ret = f(other_codes) if mask.any(): # In other series, the leads to False, so do that here too ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) # check for NaN in self mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.repeat(False, len(self)) elif opname == "__ne__": return np.repeat(True, len(self)) else: msg = ( "Cannot compare a Categorical for op {op} with a " "scalar, which is not a category." ) raise TypeError(msg.format(op=opname)) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) msg = ( "Cannot compare a Categorical for op {op} with type {typ}." "\nIf you want to compare values, use 'np.asarray(cat) " "<op> other'." ) raise TypeError(msg.format(op=opname, typ=type(other))) f.__name__ = opname return f def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical .. versionadded:: 0.21.0 Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. .. versionadded:: 0.21.0 Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset( ["tolist", "itemsize", "get_values"] ) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype._ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: if len(values) == 0: sanitize_dtype = "object" else: sanitize_dtype = None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError: codes, categories = factorize(values, sort=False) if dtype._ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) except ValueError: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) # we're inferring from values dtype = CategoricalDtype(categories, dtype._ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = _recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype._ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _ndarray_values(self) -> np.ndarray: return self.codes @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): msg = "Cannot convert float NaN to integer" raise ValueError(msg) return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ return the len of myself """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> list: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @property def base(self) -> None: """ compat, we are always our own object """ return None @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = _recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = _recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) codes = np.asarray(codes) # #21767 if len(codes) and not is_integer_dtype(codes): msg = "codes need to be array-like integers" if is_float_dtype(codes): icodes = codes.astype("i8") if (icodes == codes).all(): msg = None codes = icodes warn( ( "float codes will be disallowed in the future and " "raise a ValueError" ), FutureWarning, stacklevel=2, ) if msg: raise ValueError(msg) if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = _recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype._ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = _recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. .. versionadded:: 0.21.0. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories add_categories remove_categories remove_unused_categories set_categories Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories add_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories reorder_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: msg = ( "new categories must not include old categories: " "{already_included!s}" ) raise ValueError(msg.format(already_included=already_included)) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories reorder_categories add_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: msg = "removals must all be in old categories: {not_included!s}" raise ValueError(msg.format(not_included=not_included)) return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( "'fill_value={}' is not present " "in this Categorical's " "categories".format(fill_value) ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None): """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( "Object with dtype {dtype} cannot perform " "the numpy op {op}".format(dtype=self.dtype, op=ufunc.__name__) ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") # compat with pre 0.21.0 CategoricalDtype change if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self): """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @Substitution(klass="Categorical") @Appender(_shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def put(self, *args, **kwargs): """ Replace specific elements in the Categorical with given values. """ raise NotImplementedError(("'put' is not yet implemented for Categorical")) def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def get_values(self): """ Return the values. .. deprecated:: 0.25.0 For internal compatibility with pandas formatting. Returns ------- numpy.array A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ warn( "The 'get_values' method is deprecated and will be removed in a " "future version", FutureWarning, stacklevel=2, ) return self._internal_get_values() def _internal_get_values(self): # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( "Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n".format(op=op) ) def _values_for_argsort(self): return self._codes.copy() def argsort(self, ascending=True, kind="quicksort", *args, **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. *args, **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, *args, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2.0, 2.0, NaN, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values() [2.0, 2.0, 5.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5.0, 2.0, 2.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2.0, 2.0, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5.0, 2.0, 2.0] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: msg = "invalid na_position: {na_position!r}" raise ValueError(msg.format(na_position=na_position)) sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def ravel(self, order="C"): """ Return a flattened (numpy) array. For internal compatibility with numpy arrays. Returns ------- numpy.array """ warn( "Categorical.ravel will return a Categorical object instead " "of an ndarray in a future version.", FutureWarning, stacklevel=2, ) return np.array(self) def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ return np.asarray(self) @deprecate_kwarg(old_arg_name="fill_value", new_arg_name="value") def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: values = self.to_dense().reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, ABCSeries): if not value[~value.isin(self.categories)].isna().all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( '"value" parameter must be a scalar, dict ' "or Series, but you passed a " '"{0}"'.format(type(value).__name__) ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take_nd(self, indexer, allow_fill=None, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default None How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 0.23.0 Deprecated the default value of `allow_fill`. The deprecated default is ``True``. In the future, this will change to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (3, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) if allow_fill is None: if (indexer < 0).any(): warn(_take_msg, FutureWarning, stacklevel=2) allow_fill = True dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = "'fill_value' ('{}') is not in this Categorical's categories." raise TypeError(msg.format(fill_value)) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result take = take_nd def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key): """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True): """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = "{head}, ..., {tail}".format(head=head[:-1], tail=tail[1:]) if footer: result = "{result}\n{footer}".format( result=result, footer=self._repr_footer() ) return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self): """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = "Categories ({length}, {dtype}): ".format( length=len(self.categories), dtype=dtype ) width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self): return "Length: {length}\n{info}".format( length=len(self), info=self._repr_categories_info() ) def _get_repr(self, length=True, na_rep="NaN", footer=True): from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = "[], {repr_msg}".format(repr_msg=msg) return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] else: return self._constructor( values=self._codes[key], dtype=self.dtype, fastpath=True ) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = _recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) self._codes[key] = lindexer def _reverse_indexer(self): """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: msg = "Categorical cannot perform the operation {op}" raise TypeError(msg.format(op=name)) return func(**kwargs) def min(self, numeric_only=None, **kwargs): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if numeric_only: good = self._codes != -1 pointer = self._codes[good].min(**kwargs) else: pointer = self._codes.min(**kwargs) if pointer == -1: return np.nan else: return self.categories[pointer] def max(self, numeric_only=None, **kwargs): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if numeric_only: good = self._codes != -1 pointer = self._codes[good].max(**kwargs) else: pointer = self._codes.max(**kwargs) if pointer == -1: return np.nan else: return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list('baabc')) [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list('baabc'), categories=list('abc')) [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical(list('baabc'), ... categories=list('abc'), ... ordered=True) [b, a, c] Categories (3, object): [a < b < c] See Also -------- unique CategoricalIndex.unique Series.unique """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = _recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed" " to isin(), you passed a [{values_type}]".format( values_type=type(values).__name__ ) ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 3, 2, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if to_replace in cat.categories: if isna(value): cat.remove_categories(to_replace, inplace=True) else: categories = cat.categories.tolist() index = categories.index(to_replace) if value in cat.categories: value_index = categories.index(value) cat._codes[cat._codes == index] = value_index cat.remove_categories(to_replace, inplace=True) else: categories[index] = value cat.rename_categories(categories, inplace=True) if not inplace: return cat # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s.cat.categories >>> s.cat.categories = list('abc') >>> s.cat.rename_categories(list('cab')) >>> s.cat.reorder_categories(list('cab')) >>> s.cat.add_categories(['d','e']) >>> s.cat.remove_categories(['d']) >>> s.cat.remove_unused_categories() >>> s.cat.set_categories(list('abcde')) >>> s.cat.as_ordered() >>> s.cat.as_unordered() """ _deprecations = PandasObject._deprecations | frozenset( ["categorical", "index", "name"] ) def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) @property def categorical(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `categorical` will need to be removed from # `ok_for_cat`. warn( "`Series.cat.categorical` has been deprecated. Use the " "attributes on 'Series.cat' directly instead.", FutureWarning, stacklevel=2, ) return self._parent @property def name(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `name` will need to be removed from # `ok_for_cat`. warn( "`Series.cat.name` has been deprecated. Use `Series.name` instead.", FutureWarning, stacklevel=2, ) return self._name @property def index(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `index` will need to be removed from # ok_for_cat`. warn( "`Series.cat.index` has been deprecated. Use `Series.index` instead.", FutureWarning, stacklevel=2, ) return self._index # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, "_ndarray_values", values) categories = getattr(categories, "_ndarray_values", categories) elif is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = try_cast_to_ea(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def _recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables)))
BugsInPy/BugsInPy/temp/projects/pandas/bug-125-fixed/pandas/pandas/core/arrays/categorical.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-125-buggy/pandas/pandas/core/arrays/categorical.py
pandas-bug-144
import re from typing import Optional import warnings import numpy as np from pandas._config import get_option from pandas.errors import AbstractMethodError from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( is_hashable, is_integer, is_iterator, is_list_like, is_number, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna import pandas.core.common as com from pandas.io.formats.printing import pprint_thing from pandas.plotting._matplotlib import converter from pandas.plotting._matplotlib.compat import _mpl_ge_3_0_0 from pandas.plotting._matplotlib.style import _get_standard_colors from pandas.plotting._matplotlib.tools import ( _flatten, _get_all_lines, _get_xlim, _handle_shared_axes, _subplots, format_date_labels, table, ) if get_option("plotting.matplotlib.register_converters"): converter.register(explicit=False) class MPLPlot: """ Base class for assembling a pandas plot using matplotlib Parameters ---------- data : """ @property def _kind(self): """Specify kind str. Must be overridden in child class""" raise NotImplementedError _layout_type = "vertical" _default_rot = 0 orientation = None # type: Optional[str] _pop_attributes = [ "label", "style", "logy", "logx", "loglog", "mark_right", "stacked", ] _attr_defaults = { "logy": False, "logx": False, "loglog": False, "mark_right": True, "stacked": False, } def __init__( self, data, kind=None, by=None, subplots=False, sharex=None, sharey=False, use_index=True, figsize=None, grid=None, legend=True, rot=None, ax=None, fig=None, title=None, xlim=None, ylim=None, xticks=None, yticks=None, sort_columns=False, fontsize=None, secondary_y=False, colormap=None, table=False, layout=None, include_bool=False, **kwds ): import matplotlib.pyplot as plt converter._WARN = False # no warning for pandas plots self.data = data self.by = by self.kind = kind self.sort_columns = sort_columns self.subplots = subplots if sharex is None: if ax is None: self.sharex = True else: # if we get an axis, the users should do the visibility # setting... self.sharex = False else: self.sharex = sharex self.sharey = sharey self.figsize = figsize self.layout = layout self.xticks = xticks self.yticks = yticks self.xlim = xlim self.ylim = ylim self.title = title self.use_index = use_index self.fontsize = fontsize if rot is not None: self.rot = rot # need to know for format_date_labels since it's rotated to 30 by # default self._rot_set = True else: self._rot_set = False self.rot = self._default_rot if grid is None: grid = False if secondary_y else plt.rcParams["axes.grid"] self.grid = grid self.legend = legend self.legend_handles = [] self.legend_labels = [] for attr in self._pop_attributes: value = kwds.pop(attr, self._attr_defaults.get(attr, None)) setattr(self, attr, value) self.ax = ax self.fig = fig self.axes = None # parse errorbar input if given xerr = kwds.pop("xerr", None) yerr = kwds.pop("yerr", None) self.errors = { kw: self._parse_errorbars(kw, err) for kw, err in zip(["xerr", "yerr"], [xerr, yerr]) } if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, ABCIndexClass)): secondary_y = [secondary_y] self.secondary_y = secondary_y # ugly TypeError if user passes matplotlib's `cmap` name. # Probably better to accept either. if "cmap" in kwds and colormap: raise TypeError("Only specify one of `cmap` and `colormap`.") elif "cmap" in kwds: self.colormap = kwds.pop("cmap") else: self.colormap = colormap self.table = table self.include_bool = include_bool self.kwds = kwds self._validate_color_args() def _validate_color_args(self): if "color" not in self.kwds and "colors" in self.kwds: warnings.warn( ( "'colors' is being deprecated. Please use 'color'" "instead of 'colors'" ) ) colors = self.kwds.pop("colors") self.kwds["color"] = colors if ( "color" in self.kwds and self.nseries == 1 and not is_list_like(self.kwds["color"]) ): # support series.plot(color='green') self.kwds["color"] = [self.kwds["color"]] if ( "color" in self.kwds and isinstance(self.kwds["color"], tuple) and self.nseries == 1 and len(self.kwds["color"]) in (3, 4) ): # support RGB and RGBA tuples in series plot self.kwds["color"] = [self.kwds["color"]] if ( "color" in self.kwds or "colors" in self.kwds ) and self.colormap is not None: warnings.warn( "'color' and 'colormap' cannot be used " "simultaneously. Using 'color'" ) if "color" in self.kwds and self.style is not None: if is_list_like(self.style): styles = self.style else: styles = [self.style] # need only a single match for s in styles: if re.match("^[a-z]+?", s) is not None: raise ValueError( "Cannot pass 'style' string with a color " "symbol and 'color' keyword argument. Please" " use one or the other or pass 'style' " "without a color symbol" ) def _iter_data(self, data=None, keep_index=False, fillna=None): if data is None: data = self.data if fillna is not None: data = data.fillna(fillna) # TODO: unused? # if self.sort_columns: # columns = com.try_sort(data.columns) # else: # columns = data.columns for col, values in data.items(): if keep_index is True: yield col, values else: yield col, values.values @property def nseries(self): if self.data.ndim == 1: return 1 else: return self.data.shape[1] def draw(self): self.plt.draw_if_interactive() def generate(self): self._args_adjust() self._compute_plot_data() self._setup_subplots() self._make_plot() self._add_table() self._make_legend() self._adorn_subplots() for ax in self.axes: self._post_plot_logic_common(ax, self.data) self._post_plot_logic(ax, self.data) def _args_adjust(self): pass def _has_plotted_object(self, ax): """check whether ax has data""" return len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0 def _maybe_right_yaxis(self, ax, axes_num): if not self.on_right(axes_num): # secondary axes may be passed via ax kw return self._get_ax_layer(ax) if hasattr(ax, "right_ax"): # if it has right_ax proparty, ``ax`` must be left axes return ax.right_ax elif hasattr(ax, "left_ax"): # if it has left_ax proparty, ``ax`` must be right axes return ax else: # otherwise, create twin axes orig_ax, new_ax = ax, ax.twinx() # TODO: use Matplotlib public API when available new_ax._get_lines = orig_ax._get_lines new_ax._get_patches_for_fill = orig_ax._get_patches_for_fill orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax if not self._has_plotted_object(orig_ax): # no data on left y orig_ax.get_yaxis().set_visible(False) if self.logy is True or self.loglog is True: new_ax.set_yscale("log") elif self.logy == "sym" or self.loglog == "sym": new_ax.set_yscale("symlog") return new_ax def _setup_subplots(self): if self.subplots: fig, axes = _subplots( naxes=self.nseries, sharex=self.sharex, sharey=self.sharey, figsize=self.figsize, ax=self.ax, layout=self.layout, layout_type=self._layout_type, ) else: if self.ax is None: fig = self.plt.figure(figsize=self.figsize) axes = fig.add_subplot(111) else: fig = self.ax.get_figure() if self.figsize is not None: fig.set_size_inches(self.figsize) axes = self.ax axes = _flatten(axes) valid_log = {False, True, "sym", None} input_log = {self.logx, self.logy, self.loglog} if input_log - valid_log: invalid_log = next(iter((input_log - valid_log))) raise ValueError( "Boolean, None and 'sym' are valid options," " '{}' is given.".format(invalid_log) ) if self.logx is True or self.loglog is True: [a.set_xscale("log") for a in axes] elif self.logx == "sym" or self.loglog == "sym": [a.set_xscale("symlog") for a in axes] if self.logy is True or self.loglog is True: [a.set_yscale("log") for a in axes] elif self.logy == "sym" or self.loglog == "sym": [a.set_yscale("symlog") for a in axes] self.fig = fig self.axes = axes @property def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not is_list_like(self.ax): return self.axes.reshape(*self.layout) else: return self.axes else: sec_true = isinstance(self.secondary_y, bool) and self.secondary_y all_sec = ( is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries ) if sec_true or all_sec: # if all data is plotted on secondary, return right axes return self._get_ax_layer(self.axes[0], primary=False) else: return self.axes[0] def _compute_plot_data(self): data = self.data if isinstance(data, ABCSeries): label = self.label if label is None and data.name is None: label = "None" data = data.to_frame(name=label) # GH16953, _convert is needed as fallback, for ``Series`` # with ``dtype == object`` data = data._convert(datetime=True, timedelta=True) include_type = [np.number, "datetime", "datetimetz", "timedelta"] # GH23719, allow plotting boolean if self.include_bool is True: include_type.append(np.bool_) # GH22799, exclude datatime-like type for boxplot exclude_type = None if self._kind == "box": # TODO: change after solving issue 27881 include_type = [np.number] exclude_type = ["timedelta"] numeric_data = data.select_dtypes(include=include_type, exclude=exclude_type) try: is_empty = numeric_data.columns.empty except AttributeError: is_empty = not len(numeric_data) # no non-numeric frames or series allowed if is_empty: raise TypeError("no numeric data to plot") # GH25587: cast ExtensionArray of pandas (IntegerArray, etc.) to # np.ndarray before plot. numeric_data = numeric_data.copy() for col in numeric_data: numeric_data[col] = np.asarray(numeric_data[col]) self.data = numeric_data def _make_plot(self): raise AbstractMethodError(self) def _add_table(self): if self.table is False: return elif self.table is True: data = self.data.transpose() else: data = self.table ax = self._get_ax(0) table(ax, data) def _post_plot_logic_common(self, ax, data): """Common post process for each axes""" if self.orientation == "vertical" or self.orientation is None: self._apply_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.yaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) elif self.orientation == "horizontal": self._apply_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.xaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) else: # pragma no cover raise ValueError def _post_plot_logic(self, ax, data): """Post process for each axes. Overridden in child classes""" pass def _adorn_subplots(self): """Common post process unrelated to data""" if len(self.axes) > 0: all_axes = self._get_subplots() nrows, ncols = self._get_axes_layout() _handle_shared_axes( axarr=all_axes, nplots=len(all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey, ) for ax in self.axes: if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) ax.grid(self.grid) if self.title: if self.subplots: if is_list_like(self.title): if len(self.title) != self.nseries: msg = ( "The length of `title` must equal the number " "of columns if using `title` of type `list` " "and `subplots=True`.\n" "length of title = {}\n" "number of columns = {}" ).format(len(self.title), self.nseries) raise ValueError(msg) for (ax, title) in zip(self.axes, self.title): ax.set_title(title) else: self.fig.suptitle(self.title) else: if is_list_like(self.title): msg = ( "Using `title` of type `list` is not supported " "unless `subplots=True` is passed" ) raise ValueError(msg) self.axes[0].set_title(self.title) def _apply_axis_properties(self, axis, rot=None, fontsize=None): """ Tick creation within matplotlib is reasonably expensive and is internally deferred until accessed as Ticks are created/destroyed multiple times per draw. It's therefore beneficial for us to avoid accessing unless we will act on the Tick. """ if rot is not None or fontsize is not None: # rot=0 is a valid setting, hence the explicit None check labels = axis.get_majorticklabels() + axis.get_minorticklabels() for label in labels: if rot is not None: label.set_rotation(rot) if fontsize is not None: label.set_fontsize(fontsize) @property def legend_title(self): if not isinstance(self.data.columns, ABCMultiIndex): name = self.data.columns.name if name is not None: name = pprint_thing(name) return name else: stringified = map(pprint_thing, self.data.columns.names) return ",".join(stringified) def _add_legend_handle(self, handle, label, index=None): if label is not None: if self.mark_right and index is not None: if self.on_right(index): label = label + " (right)" self.legend_handles.append(handle) self.legend_labels.append(label) def _make_legend(self): ax, leg, handle = self._get_ax_legend_handle(self.axes[0]) handles = [] labels = [] title = "" if not self.subplots: if leg is not None: title = leg.get_title().get_text() # Replace leg.LegendHandles because it misses marker info handles.extend(handle) labels = [x.get_text() for x in leg.get_texts()] if self.legend: if self.legend == "reverse": self.legend_handles = reversed(self.legend_handles) self.legend_labels = reversed(self.legend_labels) handles += self.legend_handles labels += self.legend_labels if self.legend_title is not None: title = self.legend_title if len(handles) > 0: ax.legend(handles, labels, loc="best", title=title) elif self.subplots and self.legend: for ax in self.axes: if ax.get_visible(): ax.legend(loc="best") def _get_ax_legend_handle(self, ax): """ Take in axes and return ax, legend and handle under different scenarios """ leg = ax.get_legend() # Get handle from axes handle, _ = ax.get_legend_handles_labels() other_ax = getattr(ax, "left_ax", None) or getattr(ax, "right_ax", None) other_leg = None if other_ax is not None: other_leg = other_ax.get_legend() if leg is None and other_leg is not None: leg = other_leg ax = other_ax return ax, leg, handle @cache_readonly def plt(self): import matplotlib.pyplot as plt return plt _need_to_set_index = False def _get_xticks(self, convert_period=False): index = self.data.index is_datetype = index.inferred_type in ("datetime", "date", "datetime64", "time") if self.use_index: if convert_period and isinstance(index, ABCPeriodIndex): self.data = self.data.reindex(index=index.sort_values()) x = self.data.index.to_timestamp()._mpl_repr() elif index.is_numeric(): """ Matplotlib supports numeric values or datetime objects as xaxis values. Taking LBYL approach here, by the time matplotlib raises exception when using non numeric/datetime values for xaxis, several actions are already taken by plt. """ x = index._mpl_repr() elif is_datetype: self.data = self.data[notna(self.data.index)] self.data = self.data.sort_index() x = self.data.index._mpl_repr() else: self._need_to_set_index = True x = list(range(len(index))) else: x = list(range(len(index))) return x @classmethod def _plot(cls, ax, x, y, style=None, is_errorbar=False, **kwds): mask = isna(y) if mask.any(): y = np.ma.array(y) y = np.ma.masked_where(mask, y) if isinstance(x, ABCIndexClass): x = x._mpl_repr() if is_errorbar: if "xerr" in kwds: kwds["xerr"] = np.array(kwds.get("xerr")) if "yerr" in kwds: kwds["yerr"] = np.array(kwds.get("yerr")) return ax.errorbar(x, y, **kwds) else: # prevent style kwarg from going to errorbar, where it is # unsupported if style is not None: args = (x, y, style) else: args = (x, y) return ax.plot(*args, **kwds) def _get_index_name(self): if isinstance(self.data.index, ABCMultiIndex): name = self.data.index.names if com.any_not_none(*name): name = ",".join(pprint_thing(x) for x in name) else: name = None else: name = self.data.index.name if name is not None: name = pprint_thing(name) return name @classmethod def _get_ax_layer(cls, ax, primary=True): """get left (primary) or right (secondary) axes""" if primary: return getattr(ax, "left_ax", ax) else: return getattr(ax, "right_ax", ax) def _get_ax(self, i): # get the twinx ax if appropriate if self.subplots: ax = self.axes[i] ax = self._maybe_right_yaxis(ax, i) self.axes[i] = ax else: ax = self.axes[0] ax = self._maybe_right_yaxis(ax, i) ax.get_yaxis().set_visible(True) return ax @classmethod def get_default_ax(cls, ax): import matplotlib.pyplot as plt if ax is None and len(plt.get_fignums()) > 0: with plt.rc_context(): ax = plt.gca() ax = cls._get_ax_layer(ax) def on_right(self, i): if isinstance(self.secondary_y, bool): return self.secondary_y if isinstance(self.secondary_y, (tuple, list, np.ndarray, ABCIndexClass)): return self.data.columns[i] in self.secondary_y def _apply_style_colors(self, colors, kwds, col_num, label): """ Manage style and color based on column number and its label. Returns tuple of appropriate style and kwds which "color" may be added. """ style = None if self.style is not None: if isinstance(self.style, list): try: style = self.style[col_num] except IndexError: pass elif isinstance(self.style, dict): style = self.style.get(label, style) else: style = self.style has_color = "color" in kwds or self.colormap is not None nocolor_style = style is None or re.match("[a-z]+", style) is None if (has_color or self.subplots) and nocolor_style: kwds["color"] = colors[col_num % len(colors)] return style, kwds def _get_colors(self, num_colors=None, color_kwds="color"): if num_colors is None: num_colors = self.nseries return _get_standard_colors( num_colors=num_colors, colormap=self.colormap, color=self.kwds.get(color_kwds), ) def _parse_errorbars(self, label, err): """ Look for error keyword arguments and return the actual errorbar data or return the error DataFrame/dict Error bars can be specified in several ways: Series: the user provides a pandas.Series object of the same length as the data ndarray: provides a np.ndarray of the same length as the data DataFrame/dict: error values are paired with keys matching the key in the plotted DataFrame str: the name of the column within the plotted DataFrame """ if err is None: return None def match_labels(data, e): e = e.reindex(data.index) return e # key-matched DataFrame if isinstance(err, ABCDataFrame): err = match_labels(self.data, err) # key-matched dict elif isinstance(err, dict): pass # Series of error values elif isinstance(err, ABCSeries): # broadcast error series across data err = match_labels(self.data, err) err = np.atleast_2d(err) err = np.tile(err, (self.nseries, 1)) # errors are a column in the dataframe elif isinstance(err, str): evalues = self.data[err].values self.data = self.data[self.data.columns.drop(err)] err = np.atleast_2d(evalues) err = np.tile(err, (self.nseries, 1)) elif is_list_like(err): if is_iterator(err): err = np.atleast_2d(list(err)) else: # raw error values err = np.atleast_2d(err) err_shape = err.shape # asymmetrical error bars if err.ndim == 3: if ( (err_shape[0] != self.nseries) or (err_shape[1] != 2) or (err_shape[2] != len(self.data)) ): msg = ( "Asymmetrical error bars should be provided " + "with the shape (%u, 2, %u)" % (self.nseries, len(self.data)) ) raise ValueError(msg) # broadcast errors to each data series if len(err) == 1: err = np.tile(err, (self.nseries, 1)) elif is_number(err): err = np.tile([err], (self.nseries, len(self.data))) else: msg = "No valid {label} detected".format(label=label) raise ValueError(msg) return err def _get_errorbars(self, label=None, index=None, xerr=True, yerr=True): errors = {} for kw, flag in zip(["xerr", "yerr"], [xerr, yerr]): if flag: err = self.errors[kw] # user provided label-matched dataframe of errors if isinstance(err, (ABCDataFrame, dict)): if label is not None and label in err.keys(): err = err[label] else: err = None elif index is not None and err is not None: err = err[index] if err is not None: errors[kw] = err return errors def _get_subplots(self): from matplotlib.axes import Subplot return [ ax for ax in self.axes[0].get_figure().get_axes() if isinstance(ax, Subplot) ] def _get_axes_layout(self): axes = self._get_subplots() x_set = set() y_set = set() for ax in axes: # check axes coordinates to estimate layout points = ax.get_position().get_points() x_set.add(points[0][0]) y_set.add(points[0][1]) return (len(y_set), len(x_set)) class PlanePlot(MPLPlot): """ Abstract class for plotting on plane, currently scatter and hexbin. """ _layout_type = "single" def __init__(self, data, x, y, **kwargs): MPLPlot.__init__(self, data, **kwargs) if x is None or y is None: raise ValueError(self._kind + " requires an x and y column") if is_integer(x) and not self.data.columns.holds_integer(): x = self.data.columns[x] if is_integer(y) and not self.data.columns.holds_integer(): y = self.data.columns[y] if len(self.data[x]._get_numeric_data()) == 0: raise ValueError(self._kind + " requires x column to be numeric") if len(self.data[y]._get_numeric_data()) == 0: raise ValueError(self._kind + " requires y column to be numeric") self.x = x self.y = y @property def nseries(self): return 1 def _post_plot_logic(self, ax, data): x, y = self.x, self.y ax.set_ylabel(pprint_thing(y)) ax.set_xlabel(pprint_thing(x)) def _plot_colorbar(self, ax, **kwds): # Addresses issues #10611 and #10678: # When plotting scatterplots and hexbinplots in IPython # inline backend the colorbar axis height tends not to # exactly match the parent axis height. # The difference is due to small fractional differences # in floating points with similar representation. # To deal with this, this method forces the colorbar # height to take the height of the parent axes. # For a more detailed description of the issue # see the following link: # https://github.com/ipython/ipython/issues/11215 img = ax.collections[0] cbar = self.fig.colorbar(img, ax=ax, **kwds) if _mpl_ge_3_0_0(): # The workaround below is no longer necessary. return points = ax.get_position().get_points() cbar_points = cbar.ax.get_position().get_points() cbar.ax.set_position( [ cbar_points[0, 0], points[0, 1], cbar_points[1, 0] - cbar_points[0, 0], points[1, 1] - points[0, 1], ] ) # To see the discrepancy in axis heights uncomment # the following two lines: # print(points[1, 1] - points[0, 1]) # print(cbar_points[1, 1] - cbar_points[0, 1]) class ScatterPlot(PlanePlot): _kind = "scatter" def __init__(self, data, x, y, s=None, c=None, **kwargs): if s is None: # hide the matplotlib default for size, in case we want to change # the handling of this argument later s = 20 super().__init__(data, x, y, s=s, **kwargs) if is_integer(c) and not self.data.columns.holds_integer(): c = self.data.columns[c] self.c = c def _make_plot(self): x, y, c, data = self.x, self.y, self.c, self.data ax = self.axes[0] c_is_column = is_hashable(c) and c in self.data.columns # plot a colorbar only if a colormap is provided or necessary cb = self.kwds.pop("colorbar", self.colormap or c_is_column) # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or "Greys" cmap = self.plt.cm.get_cmap(cmap) color = self.kwds.pop("color", None) if c is not None and color is not None: raise TypeError("Specify exactly one of `c` and `color`") elif c is None and color is None: c_values = self.plt.rcParams["patch.facecolor"] elif color is not None: c_values = color elif c_is_column: c_values = self.data[c].values else: c_values = c if self.legend and hasattr(self, "label"): label = self.label else: label = None scatter = ax.scatter( data[x].values, data[y].values, c=c_values, label=label, cmap=cmap, **self.kwds ) if cb: cbar_label = c if c_is_column else "" self._plot_colorbar(ax, label=cbar_label) if label is not None: self._add_legend_handle(scatter, label) else: self.legend = False errors_x = self._get_errorbars(label=x, index=0, yerr=False) errors_y = self._get_errorbars(label=y, index=0, xerr=False) if len(errors_x) > 0 or len(errors_y) > 0: err_kwds = dict(errors_x, **errors_y) err_kwds["ecolor"] = scatter.get_facecolor()[0] ax.errorbar(data[x].values, data[y].values, linestyle="none", **err_kwds) class HexBinPlot(PlanePlot): _kind = "hexbin" def __init__(self, data, x, y, C=None, **kwargs): super().__init__(data, x, y, **kwargs) if is_integer(C) and not self.data.columns.holds_integer(): C = self.data.columns[C] self.C = C def _make_plot(self): x, y, data, C = self.x, self.y, self.data, self.C ax = self.axes[0] # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or "BuGn" cmap = self.plt.cm.get_cmap(cmap) cb = self.kwds.pop("colorbar", True) if C is None: c_values = None else: c_values = data[C].values ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap, **self.kwds) if cb: self._plot_colorbar(ax) def _make_legend(self): pass class LinePlot(MPLPlot): _kind = "line" _default_rot = 0 orientation = "vertical" def __init__(self, data, **kwargs): from pandas.plotting import plot_params MPLPlot.__init__(self, data, **kwargs) if self.stacked: self.data = self.data.fillna(value=0) self.x_compat = plot_params["x_compat"] if "x_compat" in self.kwds: self.x_compat = bool(self.kwds.pop("x_compat")) def _is_ts_plot(self): # this is slightly deceptive return not self.x_compat and self.use_index and self._use_dynamic_x() def _use_dynamic_x(self): from pandas.plotting._matplotlib.timeseries import _use_dynamic_x return _use_dynamic_x(self._get_ax(0), self.data) def _make_plot(self): if self._is_ts_plot(): from pandas.plotting._matplotlib.timeseries import _maybe_convert_index data = _maybe_convert_index(self._get_ax(0), self.data) x = data.index # dummy, not used plotf = self._ts_plot it = self._iter_data(data=data, keep_index=True) else: x = self._get_xticks(convert_period=True) plotf = self._plot it = self._iter_data() stacking_id = self._get_stacking_id() is_errorbar = com.any_not_none(*self.errors.values()) colors = self._get_colors() for i, (label, y) in enumerate(it): ax = self._get_ax(i) kwds = self.kwds.copy() style, kwds = self._apply_style_colors(colors, kwds, i, label) errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = pprint_thing(label) # .encode('utf-8') kwds["label"] = label newlines = plotf( ax, x, y, style=style, column_num=i, stacking_id=stacking_id, is_errorbar=is_errorbar, **kwds ) self._add_legend_handle(newlines[0], label, index=i) if self._is_ts_plot(): # reset of xlim should be used for ts data # TODO: GH28021, should find a way to change view limit on xaxis lines = _get_all_lines(ax) left, right = _get_xlim(lines) ax.set_xlim(left, right) @classmethod def _plot(cls, ax, x, y, style=None, column_num=None, stacking_id=None, **kwds): # column_num is used to get the target column from protf in line and # area plots if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(y)) y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"]) lines = MPLPlot._plot(ax, x, y_values, style=style, **kwds) cls._update_stacker(ax, stacking_id, y) return lines @classmethod def _ts_plot(cls, ax, x, data, style=None, **kwds): from pandas.plotting._matplotlib.timeseries import ( _maybe_resample, _decorate_axes, format_dateaxis, ) # accept x to be consistent with normal plot func, # x is not passed to tsplot as it uses data.index as x coordinate # column_num must be in kwds for stacking purpose freq, data = _maybe_resample(data, ax, kwds) # Set ax with freq info _decorate_axes(ax, freq, kwds) # digging deeper if hasattr(ax, "left_ax"): _decorate_axes(ax.left_ax, freq, kwds) if hasattr(ax, "right_ax"): _decorate_axes(ax.right_ax, freq, kwds) ax._plot_data.append((data, cls._kind, kwds)) lines = cls._plot(ax, data.index, data.values, style=style, **kwds) # set date formatter, locators and rescale limits format_dateaxis(ax, ax.freq, data.index) return lines def _get_stacking_id(self): if self.stacked: return id(self.data) else: return None @classmethod def _initialize_stacker(cls, ax, stacking_id, n): if stacking_id is None: return if not hasattr(ax, "_stacker_pos_prior"): ax._stacker_pos_prior = {} if not hasattr(ax, "_stacker_neg_prior"): ax._stacker_neg_prior = {} ax._stacker_pos_prior[stacking_id] = np.zeros(n) ax._stacker_neg_prior[stacking_id] = np.zeros(n) @classmethod def _get_stacked_values(cls, ax, stacking_id, values, label): if stacking_id is None: return values if not hasattr(ax, "_stacker_pos_prior"): # stacker may not be initialized for subplots cls._initialize_stacker(ax, stacking_id, len(values)) if (values >= 0).all(): return ax._stacker_pos_prior[stacking_id] + values elif (values <= 0).all(): return ax._stacker_neg_prior[stacking_id] + values raise ValueError( "When stacked is True, each column must be either " "all positive or negative." "{0} contains both positive and negative values".format(label) ) @classmethod def _update_stacker(cls, ax, stacking_id, values): if stacking_id is None: return if (values >= 0).all(): ax._stacker_pos_prior[stacking_id] += values elif (values <= 0).all(): ax._stacker_neg_prior[stacking_id] += values def _post_plot_logic(self, ax, data): from matplotlib.ticker import FixedLocator def get_label(i): try: return pprint_thing(data.index[i]) except Exception: return "" if self._need_to_set_index: xticks = ax.get_xticks() xticklabels = [get_label(x) for x in xticks] ax.set_xticklabels(xticklabels) ax.xaxis.set_major_locator(FixedLocator(xticks)) condition = ( not self._use_dynamic_x() and data.index.is_all_dates and not self.subplots or (self.subplots and self.sharex) ) index_name = self._get_index_name() if condition: # irregular TS rotated 30 deg. by default # probably a better place to check / set this. if not self._rot_set: self.rot = 30 format_date_labels(ax, rot=self.rot) if index_name is not None and self.use_index: ax.set_xlabel(index_name) class AreaPlot(LinePlot): _kind = "area" def __init__(self, data, **kwargs): kwargs.setdefault("stacked", True) data = data.fillna(value=0) LinePlot.__init__(self, data, **kwargs) if not self.stacked: # use smaller alpha to distinguish overlap self.kwds.setdefault("alpha", 0.5) if self.logy or self.loglog: raise ValueError("Log-y scales are not supported in area plot") @classmethod def _plot( cls, ax, x, y, style=None, column_num=None, stacking_id=None, is_errorbar=False, **kwds ): if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(y)) y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"]) # need to remove label, because subplots uses mpl legend as it is line_kwds = kwds.copy() line_kwds.pop("label") lines = MPLPlot._plot(ax, x, y_values, style=style, **line_kwds) # get data from the line to get coordinates for fill_between xdata, y_values = lines[0].get_data(orig=False) # unable to use ``_get_stacked_values`` here to get starting point if stacking_id is None: start = np.zeros(len(y)) elif (y >= 0).all(): start = ax._stacker_pos_prior[stacking_id] elif (y <= 0).all(): start = ax._stacker_neg_prior[stacking_id] else: start = np.zeros(len(y)) if "color" not in kwds: kwds["color"] = lines[0].get_color() rect = ax.fill_between(xdata, start, y_values, **kwds) cls._update_stacker(ax, stacking_id, y) # LinePlot expects list of artists res = [rect] return res def _post_plot_logic(self, ax, data): LinePlot._post_plot_logic(self, ax, data) if self.ylim is None: if (data >= 0).all().all(): ax.set_ylim(0, None) elif (data <= 0).all().all(): ax.set_ylim(None, 0) class BarPlot(MPLPlot): _kind = "bar" _default_rot = 90 orientation = "vertical" def __init__(self, data, **kwargs): # we have to treat a series differently than a # 1-column DataFrame w.r.t. color handling self._is_series = isinstance(data, ABCSeries) self.bar_width = kwargs.pop("width", 0.5) pos = kwargs.pop("position", 0.5) kwargs.setdefault("align", "center") self.tick_pos = np.arange(len(data)) self.bottom = kwargs.pop("bottom", 0) self.left = kwargs.pop("left", 0) self.log = kwargs.pop("log", False) MPLPlot.__init__(self, data, **kwargs) if self.stacked or self.subplots: self.tickoffset = self.bar_width * pos if kwargs["align"] == "edge": self.lim_offset = self.bar_width / 2 else: self.lim_offset = 0 else: if kwargs["align"] == "edge": w = self.bar_width / self.nseries self.tickoffset = self.bar_width * (pos - 0.5) + w * 0.5 self.lim_offset = w * 0.5 else: self.tickoffset = self.bar_width * pos self.lim_offset = 0 self.ax_pos = self.tick_pos - self.tickoffset def _args_adjust(self): if is_list_like(self.bottom): self.bottom = np.array(self.bottom) if is_list_like(self.left): self.left = np.array(self.left) @classmethod def _plot(cls, ax, x, y, w, start=0, log=False, **kwds): return ax.bar(x, y, w, bottom=start, log=log, **kwds) @property def _start_base(self): return self.bottom def _make_plot(self): import matplotlib as mpl colors = self._get_colors() ncolors = len(colors) pos_prior = neg_prior = np.zeros(len(self.data)) K = self.nseries for i, (label, y) in enumerate(self._iter_data(fillna=0)): ax = self._get_ax(i) kwds = self.kwds.copy() if self._is_series: kwds["color"] = colors else: kwds["color"] = colors[i % ncolors] errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = pprint_thing(label) if (("yerr" in kwds) or ("xerr" in kwds)) and (kwds.get("ecolor") is None): kwds["ecolor"] = mpl.rcParams["xtick.color"] start = 0 if self.log and (y >= 1).all(): start = 1 start = start + self._start_base if self.subplots: w = self.bar_width / 2 rect = self._plot( ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, log=self.log, **kwds ) ax.set_title(label) elif self.stacked: mask = y > 0 start = np.where(mask, pos_prior, neg_prior) + self._start_base w = self.bar_width / 2 rect = self._plot( ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, log=self.log, **kwds ) pos_prior = pos_prior + np.where(mask, y, 0) neg_prior = neg_prior + np.where(mask, 0, y) else: w = self.bar_width / K rect = self._plot( ax, self.ax_pos + (i + 0.5) * w, y, w, start=start, label=label, log=self.log, **kwds ) self._add_legend_handle(rect, label, index=i) def _post_plot_logic(self, ax, data): if self.use_index: str_index = [pprint_thing(key) for key in data.index] else: str_index = [pprint_thing(key) for key in range(data.shape[0])] name = self._get_index_name() s_edge = self.ax_pos[0] - 0.25 + self.lim_offset e_edge = self.ax_pos[-1] + 0.25 + self.bar_width + self.lim_offset self._decorate_ticks(ax, name, str_index, s_edge, e_edge) def _decorate_ticks(self, ax, name, ticklabels, start_edge, end_edge): ax.set_xlim((start_edge, end_edge)) ax.set_xticks(self.tick_pos) ax.set_xticklabels(ticklabels) if name is not None and self.use_index: ax.set_xlabel(name) class BarhPlot(BarPlot): _kind = "barh" _default_rot = 0 orientation = "horizontal" @property def _start_base(self): return self.left @classmethod def _plot(cls, ax, x, y, w, start=0, log=False, **kwds): return ax.barh(x, y, w, left=start, log=log, **kwds) def _decorate_ticks(self, ax, name, ticklabels, start_edge, end_edge): # horizontal bars ax.set_ylim((start_edge, end_edge)) ax.set_yticks(self.tick_pos) ax.set_yticklabels(ticklabels) if name is not None and self.use_index: ax.set_ylabel(name) class PiePlot(MPLPlot): _kind = "pie" _layout_type = "horizontal" def __init__(self, data, kind=None, **kwargs): data = data.fillna(value=0) if (data < 0).any().any(): raise ValueError("{0} doesn't allow negative values".format(kind)) MPLPlot.__init__(self, data, kind=kind, **kwargs) def _args_adjust(self): self.grid = False self.logy = False self.logx = False self.loglog = False def _validate_color_args(self): pass def _make_plot(self): colors = self._get_colors(num_colors=len(self.data), color_kwds="colors") self.kwds.setdefault("colors", colors) for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) if label is not None: label = pprint_thing(label) ax.set_ylabel(label) kwds = self.kwds.copy() def blank_labeler(label, value): if value == 0: return "" else: return label idx = [pprint_thing(v) for v in self.data.index] labels = kwds.pop("labels", idx) # labels is used for each wedge's labels # Blank out labels for values of 0 so they don't overlap # with nonzero wedges if labels is not None: blabels = [blank_labeler(l, value) for l, value in zip(labels, y)] else: blabels = None results = ax.pie(y, labels=blabels, **kwds) if kwds.get("autopct", None) is not None: patches, texts, autotexts = results else: patches, texts = results autotexts = [] if self.fontsize is not None: for t in texts + autotexts: t.set_fontsize(self.fontsize) # leglabels is used for legend labels leglabels = labels if labels is not None else idx for p, l in zip(patches, leglabels): self._add_legend_handle(p, l) import re from typing import Optional import warnings import numpy as np from pandas._config import get_option from pandas.errors import AbstractMethodError from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( is_hashable, is_integer, is_iterator, is_list_like, is_number, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna import pandas.core.common as com from pandas.io.formats.printing import pprint_thing from pandas.plotting._matplotlib import converter from pandas.plotting._matplotlib.compat import _mpl_ge_3_0_0 from pandas.plotting._matplotlib.style import _get_standard_colors from pandas.plotting._matplotlib.tools import ( _flatten, _get_all_lines, _get_xlim, _handle_shared_axes, _subplots, format_date_labels, table, ) if get_option("plotting.matplotlib.register_converters"): converter.register(explicit=False) class MPLPlot: """ Base class for assembling a pandas plot using matplotlib Parameters ---------- data : """ @property def _kind(self): """Specify kind str. Must be overridden in child class""" raise NotImplementedError _layout_type = "vertical" _default_rot = 0 orientation = None # type: Optional[str] _pop_attributes = [ "label", "style", "logy", "logx", "loglog", "mark_right", "stacked", ] _attr_defaults = { "logy": False, "logx": False, "loglog": False, "mark_right": True, "stacked": False, } def __init__( self, data, kind=None, by=None, subplots=False, sharex=None, sharey=False, use_index=True, figsize=None, grid=None, legend=True, rot=None, ax=None, fig=None, title=None, xlim=None, ylim=None, xticks=None, yticks=None, sort_columns=False, fontsize=None, secondary_y=False, colormap=None, table=False, layout=None, include_bool=False, **kwds ): import matplotlib.pyplot as plt converter._WARN = False # no warning for pandas plots self.data = data self.by = by self.kind = kind self.sort_columns = sort_columns self.subplots = subplots if sharex is None: if ax is None: self.sharex = True else: # if we get an axis, the users should do the visibility # setting... self.sharex = False else: self.sharex = sharex self.sharey = sharey self.figsize = figsize self.layout = layout self.xticks = xticks self.yticks = yticks self.xlim = xlim self.ylim = ylim self.title = title self.use_index = use_index self.fontsize = fontsize if rot is not None: self.rot = rot # need to know for format_date_labels since it's rotated to 30 by # default self._rot_set = True else: self._rot_set = False self.rot = self._default_rot if grid is None: grid = False if secondary_y else plt.rcParams["axes.grid"] self.grid = grid self.legend = legend self.legend_handles = [] self.legend_labels = [] for attr in self._pop_attributes: value = kwds.pop(attr, self._attr_defaults.get(attr, None)) setattr(self, attr, value) self.ax = ax self.fig = fig self.axes = None # parse errorbar input if given xerr = kwds.pop("xerr", None) yerr = kwds.pop("yerr", None) self.errors = { kw: self._parse_errorbars(kw, err) for kw, err in zip(["xerr", "yerr"], [xerr, yerr]) } if not isinstance(secondary_y, (bool, tuple, list, np.ndarray, ABCIndexClass)): secondary_y = [secondary_y] self.secondary_y = secondary_y # ugly TypeError if user passes matplotlib's `cmap` name. # Probably better to accept either. if "cmap" in kwds and colormap: raise TypeError("Only specify one of `cmap` and `colormap`.") elif "cmap" in kwds: self.colormap = kwds.pop("cmap") else: self.colormap = colormap self.table = table self.include_bool = include_bool self.kwds = kwds self._validate_color_args() def _validate_color_args(self): if "color" not in self.kwds and "colors" in self.kwds: warnings.warn( ( "'colors' is being deprecated. Please use 'color'" "instead of 'colors'" ) ) colors = self.kwds.pop("colors") self.kwds["color"] = colors if ( "color" in self.kwds and self.nseries == 1 and not is_list_like(self.kwds["color"]) ): # support series.plot(color='green') self.kwds["color"] = [self.kwds["color"]] if ( "color" in self.kwds and isinstance(self.kwds["color"], tuple) and self.nseries == 1 and len(self.kwds["color"]) in (3, 4) ): # support RGB and RGBA tuples in series plot self.kwds["color"] = [self.kwds["color"]] if ( "color" in self.kwds or "colors" in self.kwds ) and self.colormap is not None: warnings.warn( "'color' and 'colormap' cannot be used " "simultaneously. Using 'color'" ) if "color" in self.kwds and self.style is not None: if is_list_like(self.style): styles = self.style else: styles = [self.style] # need only a single match for s in styles: if re.match("^[a-z]+?", s) is not None: raise ValueError( "Cannot pass 'style' string with a color " "symbol and 'color' keyword argument. Please" " use one or the other or pass 'style' " "without a color symbol" ) def _iter_data(self, data=None, keep_index=False, fillna=None): if data is None: data = self.data if fillna is not None: data = data.fillna(fillna) # TODO: unused? # if self.sort_columns: # columns = com.try_sort(data.columns) # else: # columns = data.columns for col, values in data.items(): if keep_index is True: yield col, values else: yield col, values.values @property def nseries(self): if self.data.ndim == 1: return 1 else: return self.data.shape[1] def draw(self): self.plt.draw_if_interactive() def generate(self): self._args_adjust() self._compute_plot_data() self._setup_subplots() self._make_plot() self._add_table() self._make_legend() self._adorn_subplots() for ax in self.axes: self._post_plot_logic_common(ax, self.data) self._post_plot_logic(ax, self.data) def _args_adjust(self): pass def _has_plotted_object(self, ax): """check whether ax has data""" return len(ax.lines) != 0 or len(ax.artists) != 0 or len(ax.containers) != 0 def _maybe_right_yaxis(self, ax, axes_num): if not self.on_right(axes_num): # secondary axes may be passed via ax kw return self._get_ax_layer(ax) if hasattr(ax, "right_ax"): # if it has right_ax proparty, ``ax`` must be left axes return ax.right_ax elif hasattr(ax, "left_ax"): # if it has left_ax proparty, ``ax`` must be right axes return ax else: # otherwise, create twin axes orig_ax, new_ax = ax, ax.twinx() # TODO: use Matplotlib public API when available new_ax._get_lines = orig_ax._get_lines new_ax._get_patches_for_fill = orig_ax._get_patches_for_fill orig_ax.right_ax, new_ax.left_ax = new_ax, orig_ax if not self._has_plotted_object(orig_ax): # no data on left y orig_ax.get_yaxis().set_visible(False) if self.logy is True or self.loglog is True: new_ax.set_yscale("log") elif self.logy == "sym" or self.loglog == "sym": new_ax.set_yscale("symlog") return new_ax def _setup_subplots(self): if self.subplots: fig, axes = _subplots( naxes=self.nseries, sharex=self.sharex, sharey=self.sharey, figsize=self.figsize, ax=self.ax, layout=self.layout, layout_type=self._layout_type, ) else: if self.ax is None: fig = self.plt.figure(figsize=self.figsize) axes = fig.add_subplot(111) else: fig = self.ax.get_figure() if self.figsize is not None: fig.set_size_inches(self.figsize) axes = self.ax axes = _flatten(axes) valid_log = {False, True, "sym", None} input_log = {self.logx, self.logy, self.loglog} if input_log - valid_log: invalid_log = next(iter((input_log - valid_log))) raise ValueError( "Boolean, None and 'sym' are valid options," " '{}' is given.".format(invalid_log) ) if self.logx is True or self.loglog is True: [a.set_xscale("log") for a in axes] elif self.logx == "sym" or self.loglog == "sym": [a.set_xscale("symlog") for a in axes] if self.logy is True or self.loglog is True: [a.set_yscale("log") for a in axes] elif self.logy == "sym" or self.loglog == "sym": [a.set_yscale("symlog") for a in axes] self.fig = fig self.axes = axes @property def result(self): """ Return result axes """ if self.subplots: if self.layout is not None and not is_list_like(self.ax): return self.axes.reshape(*self.layout) else: return self.axes else: sec_true = isinstance(self.secondary_y, bool) and self.secondary_y all_sec = ( is_list_like(self.secondary_y) and len(self.secondary_y) == self.nseries ) if sec_true or all_sec: # if all data is plotted on secondary, return right axes return self._get_ax_layer(self.axes[0], primary=False) else: return self.axes[0] def _compute_plot_data(self): data = self.data if isinstance(data, ABCSeries): label = self.label if label is None and data.name is None: label = "None" data = data.to_frame(name=label) # GH16953, _convert is needed as fallback, for ``Series`` # with ``dtype == object`` data = data._convert(datetime=True, timedelta=True) include_type = [np.number, "datetime", "datetimetz", "timedelta"] # GH23719, allow plotting boolean if self.include_bool is True: include_type.append(np.bool_) # GH22799, exclude datatime-like type for boxplot exclude_type = None if self._kind == "box": # TODO: change after solving issue 27881 include_type = [np.number] exclude_type = ["timedelta"] numeric_data = data.select_dtypes(include=include_type, exclude=exclude_type) try: is_empty = numeric_data.columns.empty except AttributeError: is_empty = not len(numeric_data) # no non-numeric frames or series allowed if is_empty: raise TypeError("no numeric data to plot") # GH25587: cast ExtensionArray of pandas (IntegerArray, etc.) to # np.ndarray before plot. numeric_data = numeric_data.copy() for col in numeric_data: numeric_data[col] = np.asarray(numeric_data[col]) self.data = numeric_data def _make_plot(self): raise AbstractMethodError(self) def _add_table(self): if self.table is False: return elif self.table is True: data = self.data.transpose() else: data = self.table ax = self._get_ax(0) table(ax, data) def _post_plot_logic_common(self, ax, data): """Common post process for each axes""" if self.orientation == "vertical" or self.orientation is None: self._apply_axis_properties(ax.xaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.yaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) elif self.orientation == "horizontal": self._apply_axis_properties(ax.yaxis, rot=self.rot, fontsize=self.fontsize) self._apply_axis_properties(ax.xaxis, fontsize=self.fontsize) if hasattr(ax, "right_ax"): self._apply_axis_properties(ax.right_ax.yaxis, fontsize=self.fontsize) else: # pragma no cover raise ValueError def _post_plot_logic(self, ax, data): """Post process for each axes. Overridden in child classes""" pass def _adorn_subplots(self): """Common post process unrelated to data""" if len(self.axes) > 0: all_axes = self._get_subplots() nrows, ncols = self._get_axes_layout() _handle_shared_axes( axarr=all_axes, nplots=len(all_axes), naxes=nrows * ncols, nrows=nrows, ncols=ncols, sharex=self.sharex, sharey=self.sharey, ) for ax in self.axes: if self.yticks is not None: ax.set_yticks(self.yticks) if self.xticks is not None: ax.set_xticks(self.xticks) if self.ylim is not None: ax.set_ylim(self.ylim) if self.xlim is not None: ax.set_xlim(self.xlim) ax.grid(self.grid) if self.title: if self.subplots: if is_list_like(self.title): if len(self.title) != self.nseries: msg = ( "The length of `title` must equal the number " "of columns if using `title` of type `list` " "and `subplots=True`.\n" "length of title = {}\n" "number of columns = {}" ).format(len(self.title), self.nseries) raise ValueError(msg) for (ax, title) in zip(self.axes, self.title): ax.set_title(title) else: self.fig.suptitle(self.title) else: if is_list_like(self.title): msg = ( "Using `title` of type `list` is not supported " "unless `subplots=True` is passed" ) raise ValueError(msg) self.axes[0].set_title(self.title) def _apply_axis_properties(self, axis, rot=None, fontsize=None): """ Tick creation within matplotlib is reasonably expensive and is internally deferred until accessed as Ticks are created/destroyed multiple times per draw. It's therefore beneficial for us to avoid accessing unless we will act on the Tick. """ if rot is not None or fontsize is not None: # rot=0 is a valid setting, hence the explicit None check labels = axis.get_majorticklabels() + axis.get_minorticklabels() for label in labels: if rot is not None: label.set_rotation(rot) if fontsize is not None: label.set_fontsize(fontsize) @property def legend_title(self): if not isinstance(self.data.columns, ABCMultiIndex): name = self.data.columns.name if name is not None: name = pprint_thing(name) return name else: stringified = map(pprint_thing, self.data.columns.names) return ",".join(stringified) def _add_legend_handle(self, handle, label, index=None): if label is not None: if self.mark_right and index is not None: if self.on_right(index): label = label + " (right)" self.legend_handles.append(handle) self.legend_labels.append(label) def _make_legend(self): ax, leg, handle = self._get_ax_legend_handle(self.axes[0]) handles = [] labels = [] title = "" if not self.subplots: if leg is not None: title = leg.get_title().get_text() # Replace leg.LegendHandles because it misses marker info handles.extend(handle) labels = [x.get_text() for x in leg.get_texts()] if self.legend: if self.legend == "reverse": self.legend_handles = reversed(self.legend_handles) self.legend_labels = reversed(self.legend_labels) handles += self.legend_handles labels += self.legend_labels if self.legend_title is not None: title = self.legend_title if len(handles) > 0: ax.legend(handles, labels, loc="best", title=title) elif self.subplots and self.legend: for ax in self.axes: if ax.get_visible(): ax.legend(loc="best") def _get_ax_legend_handle(self, ax): """ Take in axes and return ax, legend and handle under different scenarios """ leg = ax.get_legend() # Get handle from axes handle, _ = ax.get_legend_handles_labels() other_ax = getattr(ax, "left_ax", None) or getattr(ax, "right_ax", None) other_leg = None if other_ax is not None: other_leg = other_ax.get_legend() if leg is None and other_leg is not None: leg = other_leg ax = other_ax return ax, leg, handle @cache_readonly def plt(self): import matplotlib.pyplot as plt return plt _need_to_set_index = False def _get_xticks(self, convert_period=False): index = self.data.index is_datetype = index.inferred_type in ("datetime", "date", "datetime64", "time") if self.use_index: if convert_period and isinstance(index, ABCPeriodIndex): self.data = self.data.reindex(index=index.sort_values()) x = self.data.index.to_timestamp()._mpl_repr() elif index.is_numeric(): """ Matplotlib supports numeric values or datetime objects as xaxis values. Taking LBYL approach here, by the time matplotlib raises exception when using non numeric/datetime values for xaxis, several actions are already taken by plt. """ x = index._mpl_repr() elif is_datetype: self.data = self.data[notna(self.data.index)] self.data = self.data.sort_index() x = self.data.index._mpl_repr() else: self._need_to_set_index = True x = list(range(len(index))) else: x = list(range(len(index))) return x @classmethod def _plot(cls, ax, x, y, style=None, is_errorbar=False, **kwds): mask = isna(y) if mask.any(): y = np.ma.array(y) y = np.ma.masked_where(mask, y) if isinstance(x, ABCIndexClass): x = x._mpl_repr() if is_errorbar: if "xerr" in kwds: kwds["xerr"] = np.array(kwds.get("xerr")) if "yerr" in kwds: kwds["yerr"] = np.array(kwds.get("yerr")) return ax.errorbar(x, y, **kwds) else: # prevent style kwarg from going to errorbar, where it is # unsupported if style is not None: args = (x, y, style) else: args = (x, y) return ax.plot(*args, **kwds) def _get_index_name(self): if isinstance(self.data.index, ABCMultiIndex): name = self.data.index.names if com.any_not_none(*name): name = ",".join(pprint_thing(x) for x in name) else: name = None else: name = self.data.index.name if name is not None: name = pprint_thing(name) return name @classmethod def _get_ax_layer(cls, ax, primary=True): """get left (primary) or right (secondary) axes""" if primary: return getattr(ax, "left_ax", ax) else: return getattr(ax, "right_ax", ax) def _get_ax(self, i): # get the twinx ax if appropriate if self.subplots: ax = self.axes[i] ax = self._maybe_right_yaxis(ax, i) self.axes[i] = ax else: ax = self.axes[0] ax = self._maybe_right_yaxis(ax, i) ax.get_yaxis().set_visible(True) return ax @classmethod def get_default_ax(cls, ax): import matplotlib.pyplot as plt if ax is None and len(plt.get_fignums()) > 0: with plt.rc_context(): ax = plt.gca() ax = cls._get_ax_layer(ax) def on_right(self, i): if isinstance(self.secondary_y, bool): return self.secondary_y if isinstance(self.secondary_y, (tuple, list, np.ndarray, ABCIndexClass)): return self.data.columns[i] in self.secondary_y def _apply_style_colors(self, colors, kwds, col_num, label): """ Manage style and color based on column number and its label. Returns tuple of appropriate style and kwds which "color" may be added. """ style = None if self.style is not None: if isinstance(self.style, list): try: style = self.style[col_num] except IndexError: pass elif isinstance(self.style, dict): style = self.style.get(label, style) else: style = self.style has_color = "color" in kwds or self.colormap is not None nocolor_style = style is None or re.match("[a-z]+", style) is None if (has_color or self.subplots) and nocolor_style: kwds["color"] = colors[col_num % len(colors)] return style, kwds def _get_colors(self, num_colors=None, color_kwds="color"): if num_colors is None: num_colors = self.nseries return _get_standard_colors( num_colors=num_colors, colormap=self.colormap, color=self.kwds.get(color_kwds), ) def _parse_errorbars(self, label, err): """ Look for error keyword arguments and return the actual errorbar data or return the error DataFrame/dict Error bars can be specified in several ways: Series: the user provides a pandas.Series object of the same length as the data ndarray: provides a np.ndarray of the same length as the data DataFrame/dict: error values are paired with keys matching the key in the plotted DataFrame str: the name of the column within the plotted DataFrame """ if err is None: return None def match_labels(data, e): e = e.reindex(data.index) return e # key-matched DataFrame if isinstance(err, ABCDataFrame): err = match_labels(self.data, err) # key-matched dict elif isinstance(err, dict): pass # Series of error values elif isinstance(err, ABCSeries): # broadcast error series across data err = match_labels(self.data, err) err = np.atleast_2d(err) err = np.tile(err, (self.nseries, 1)) # errors are a column in the dataframe elif isinstance(err, str): evalues = self.data[err].values self.data = self.data[self.data.columns.drop(err)] err = np.atleast_2d(evalues) err = np.tile(err, (self.nseries, 1)) elif is_list_like(err): if is_iterator(err): err = np.atleast_2d(list(err)) else: # raw error values err = np.atleast_2d(err) err_shape = err.shape # asymmetrical error bars if err.ndim == 3: if ( (err_shape[0] != self.nseries) or (err_shape[1] != 2) or (err_shape[2] != len(self.data)) ): msg = ( "Asymmetrical error bars should be provided " + "with the shape (%u, 2, %u)" % (self.nseries, len(self.data)) ) raise ValueError(msg) # broadcast errors to each data series if len(err) == 1: err = np.tile(err, (self.nseries, 1)) elif is_number(err): err = np.tile([err], (self.nseries, len(self.data))) else: msg = "No valid {label} detected".format(label=label) raise ValueError(msg) return err def _get_errorbars(self, label=None, index=None, xerr=True, yerr=True): errors = {} for kw, flag in zip(["xerr", "yerr"], [xerr, yerr]): if flag: err = self.errors[kw] # user provided label-matched dataframe of errors if isinstance(err, (ABCDataFrame, dict)): if label is not None and label in err.keys(): err = err[label] else: err = None elif index is not None and err is not None: err = err[index] if err is not None: errors[kw] = err return errors def _get_subplots(self): from matplotlib.axes import Subplot return [ ax for ax in self.axes[0].get_figure().get_axes() if isinstance(ax, Subplot) ] def _get_axes_layout(self): axes = self._get_subplots() x_set = set() y_set = set() for ax in axes: # check axes coordinates to estimate layout points = ax.get_position().get_points() x_set.add(points[0][0]) y_set.add(points[0][1]) return (len(y_set), len(x_set)) class PlanePlot(MPLPlot): """ Abstract class for plotting on plane, currently scatter and hexbin. """ _layout_type = "single" def __init__(self, data, x, y, **kwargs): MPLPlot.__init__(self, data, **kwargs) if x is None or y is None: raise ValueError(self._kind + " requires an x and y column") if is_integer(x) and not self.data.columns.holds_integer(): x = self.data.columns[x] if is_integer(y) and not self.data.columns.holds_integer(): y = self.data.columns[y] if len(self.data[x]._get_numeric_data()) == 0: raise ValueError(self._kind + " requires x column to be numeric") if len(self.data[y]._get_numeric_data()) == 0: raise ValueError(self._kind + " requires y column to be numeric") self.x = x self.y = y @property def nseries(self): return 1 def _post_plot_logic(self, ax, data): x, y = self.x, self.y ax.set_ylabel(pprint_thing(y)) ax.set_xlabel(pprint_thing(x)) def _plot_colorbar(self, ax, **kwds): # Addresses issues #10611 and #10678: # When plotting scatterplots and hexbinplots in IPython # inline backend the colorbar axis height tends not to # exactly match the parent axis height. # The difference is due to small fractional differences # in floating points with similar representation. # To deal with this, this method forces the colorbar # height to take the height of the parent axes. # For a more detailed description of the issue # see the following link: # https://github.com/ipython/ipython/issues/11215 img = ax.collections[0] cbar = self.fig.colorbar(img, ax=ax, **kwds) if _mpl_ge_3_0_0(): # The workaround below is no longer necessary. return points = ax.get_position().get_points() cbar_points = cbar.ax.get_position().get_points() cbar.ax.set_position( [ cbar_points[0, 0], points[0, 1], cbar_points[1, 0] - cbar_points[0, 0], points[1, 1] - points[0, 1], ] ) # To see the discrepancy in axis heights uncomment # the following two lines: # print(points[1, 1] - points[0, 1]) # print(cbar_points[1, 1] - cbar_points[0, 1]) class ScatterPlot(PlanePlot): _kind = "scatter" def __init__(self, data, x, y, s=None, c=None, **kwargs): if s is None: # hide the matplotlib default for size, in case we want to change # the handling of this argument later s = 20 super().__init__(data, x, y, s=s, **kwargs) if is_integer(c) and not self.data.columns.holds_integer(): c = self.data.columns[c] self.c = c def _make_plot(self): x, y, c, data = self.x, self.y, self.c, self.data ax = self.axes[0] c_is_column = is_hashable(c) and c in self.data.columns # plot a colorbar only if a colormap is provided or necessary cb = self.kwds.pop("colorbar", self.colormap or c_is_column) # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or "Greys" cmap = self.plt.cm.get_cmap(cmap) color = self.kwds.pop("color", None) if c is not None and color is not None: raise TypeError("Specify exactly one of `c` and `color`") elif c is None and color is None: c_values = self.plt.rcParams["patch.facecolor"] elif color is not None: c_values = color elif c_is_column: c_values = self.data[c].values else: c_values = c if self.legend and hasattr(self, "label"): label = self.label else: label = None scatter = ax.scatter( data[x].values, data[y].values, c=c_values, label=label, cmap=cmap, **self.kwds ) if cb: cbar_label = c if c_is_column else "" self._plot_colorbar(ax, label=cbar_label) if label is not None: self._add_legend_handle(scatter, label) else: self.legend = False errors_x = self._get_errorbars(label=x, index=0, yerr=False) errors_y = self._get_errorbars(label=y, index=0, xerr=False) if len(errors_x) > 0 or len(errors_y) > 0: err_kwds = dict(errors_x, **errors_y) err_kwds["ecolor"] = scatter.get_facecolor()[0] ax.errorbar(data[x].values, data[y].values, linestyle="none", **err_kwds) class HexBinPlot(PlanePlot): _kind = "hexbin" def __init__(self, data, x, y, C=None, **kwargs): super().__init__(data, x, y, **kwargs) if is_integer(C) and not self.data.columns.holds_integer(): C = self.data.columns[C] self.C = C def _make_plot(self): x, y, data, C = self.x, self.y, self.data, self.C ax = self.axes[0] # pandas uses colormap, matplotlib uses cmap. cmap = self.colormap or "BuGn" cmap = self.plt.cm.get_cmap(cmap) cb = self.kwds.pop("colorbar", True) if C is None: c_values = None else: c_values = data[C].values ax.hexbin(data[x].values, data[y].values, C=c_values, cmap=cmap, **self.kwds) if cb: self._plot_colorbar(ax) def _make_legend(self): pass class LinePlot(MPLPlot): _kind = "line" _default_rot = 0 orientation = "vertical" def __init__(self, data, **kwargs): from pandas.plotting import plot_params MPLPlot.__init__(self, data, **kwargs) if self.stacked: self.data = self.data.fillna(value=0) self.x_compat = plot_params["x_compat"] if "x_compat" in self.kwds: self.x_compat = bool(self.kwds.pop("x_compat")) def _is_ts_plot(self): # this is slightly deceptive return not self.x_compat and self.use_index and self._use_dynamic_x() def _use_dynamic_x(self): from pandas.plotting._matplotlib.timeseries import _use_dynamic_x return _use_dynamic_x(self._get_ax(0), self.data) def _make_plot(self): if self._is_ts_plot(): from pandas.plotting._matplotlib.timeseries import _maybe_convert_index data = _maybe_convert_index(self._get_ax(0), self.data) x = data.index # dummy, not used plotf = self._ts_plot it = self._iter_data(data=data, keep_index=True) else: x = self._get_xticks(convert_period=True) plotf = self._plot it = self._iter_data() stacking_id = self._get_stacking_id() is_errorbar = com.any_not_none(*self.errors.values()) colors = self._get_colors() for i, (label, y) in enumerate(it): ax = self._get_ax(i) kwds = self.kwds.copy() style, kwds = self._apply_style_colors(colors, kwds, i, label) errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = pprint_thing(label) # .encode('utf-8') kwds["label"] = label newlines = plotf( ax, x, y, style=style, column_num=i, stacking_id=stacking_id, is_errorbar=is_errorbar, **kwds ) self._add_legend_handle(newlines[0], label, index=i) if self._is_ts_plot(): # reset of xlim should be used for ts data # TODO: GH28021, should find a way to change view limit on xaxis lines = _get_all_lines(ax) left, right = _get_xlim(lines) ax.set_xlim(left, right) @classmethod def _plot(cls, ax, x, y, style=None, column_num=None, stacking_id=None, **kwds): # column_num is used to get the target column from protf in line and # area plots if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(y)) y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"]) lines = MPLPlot._plot(ax, x, y_values, style=style, **kwds) cls._update_stacker(ax, stacking_id, y) return lines @classmethod def _ts_plot(cls, ax, x, data, style=None, **kwds): from pandas.plotting._matplotlib.timeseries import ( _maybe_resample, _decorate_axes, format_dateaxis, ) # accept x to be consistent with normal plot func, # x is not passed to tsplot as it uses data.index as x coordinate # column_num must be in kwds for stacking purpose freq, data = _maybe_resample(data, ax, kwds) # Set ax with freq info _decorate_axes(ax, freq, kwds) # digging deeper if hasattr(ax, "left_ax"): _decorate_axes(ax.left_ax, freq, kwds) if hasattr(ax, "right_ax"): _decorate_axes(ax.right_ax, freq, kwds) ax._plot_data.append((data, cls._kind, kwds)) lines = cls._plot(ax, data.index, data.values, style=style, **kwds) # set date formatter, locators and rescale limits format_dateaxis(ax, ax.freq, data.index) return lines def _get_stacking_id(self): if self.stacked: return id(self.data) else: return None @classmethod def _initialize_stacker(cls, ax, stacking_id, n): if stacking_id is None: return if not hasattr(ax, "_stacker_pos_prior"): ax._stacker_pos_prior = {} if not hasattr(ax, "_stacker_neg_prior"): ax._stacker_neg_prior = {} ax._stacker_pos_prior[stacking_id] = np.zeros(n) ax._stacker_neg_prior[stacking_id] = np.zeros(n) @classmethod def _get_stacked_values(cls, ax, stacking_id, values, label): if stacking_id is None: return values if not hasattr(ax, "_stacker_pos_prior"): # stacker may not be initialized for subplots cls._initialize_stacker(ax, stacking_id, len(values)) if (values >= 0).all(): return ax._stacker_pos_prior[stacking_id] + values elif (values <= 0).all(): return ax._stacker_neg_prior[stacking_id] + values raise ValueError( "When stacked is True, each column must be either " "all positive or negative." "{0} contains both positive and negative values".format(label) ) @classmethod def _update_stacker(cls, ax, stacking_id, values): if stacking_id is None: return if (values >= 0).all(): ax._stacker_pos_prior[stacking_id] += values elif (values <= 0).all(): ax._stacker_neg_prior[stacking_id] += values def _post_plot_logic(self, ax, data): from matplotlib.ticker import FixedLocator def get_label(i): try: return pprint_thing(data.index[i]) except Exception: return "" if self._need_to_set_index: xticks = ax.get_xticks() xticklabels = [get_label(x) for x in xticks] ax.set_xticklabels(xticklabels) ax.xaxis.set_major_locator(FixedLocator(xticks)) condition = ( not self._use_dynamic_x() and data.index.is_all_dates and not self.subplots or (self.subplots and self.sharex) ) index_name = self._get_index_name() if condition: # irregular TS rotated 30 deg. by default # probably a better place to check / set this. if not self._rot_set: self.rot = 30 format_date_labels(ax, rot=self.rot) if index_name is not None and self.use_index: ax.set_xlabel(index_name) class AreaPlot(LinePlot): _kind = "area" def __init__(self, data, **kwargs): kwargs.setdefault("stacked", True) data = data.fillna(value=0) LinePlot.__init__(self, data, **kwargs) if not self.stacked: # use smaller alpha to distinguish overlap self.kwds.setdefault("alpha", 0.5) if self.logy or self.loglog: raise ValueError("Log-y scales are not supported in area plot") @classmethod def _plot( cls, ax, x, y, style=None, column_num=None, stacking_id=None, is_errorbar=False, **kwds ): if column_num == 0: cls._initialize_stacker(ax, stacking_id, len(y)) y_values = cls._get_stacked_values(ax, stacking_id, y, kwds["label"]) # need to remove label, because subplots uses mpl legend as it is line_kwds = kwds.copy() line_kwds.pop("label") lines = MPLPlot._plot(ax, x, y_values, style=style, **line_kwds) # get data from the line to get coordinates for fill_between xdata, y_values = lines[0].get_data(orig=False) # unable to use ``_get_stacked_values`` here to get starting point if stacking_id is None: start = np.zeros(len(y)) elif (y >= 0).all(): start = ax._stacker_pos_prior[stacking_id] elif (y <= 0).all(): start = ax._stacker_neg_prior[stacking_id] else: start = np.zeros(len(y)) if "color" not in kwds: kwds["color"] = lines[0].get_color() rect = ax.fill_between(xdata, start, y_values, **kwds) cls._update_stacker(ax, stacking_id, y) # LinePlot expects list of artists res = [rect] return res def _post_plot_logic(self, ax, data): LinePlot._post_plot_logic(self, ax, data) if self.ylim is None: if (data >= 0).all().all(): ax.set_ylim(0, None) elif (data <= 0).all().all(): ax.set_ylim(None, 0) class BarPlot(MPLPlot): _kind = "bar" _default_rot = 90 orientation = "vertical" def __init__(self, data, **kwargs): # we have to treat a series differently than a # 1-column DataFrame w.r.t. color handling self._is_series = isinstance(data, ABCSeries) self.bar_width = kwargs.pop("width", 0.5) pos = kwargs.pop("position", 0.5) kwargs.setdefault("align", "center") self.tick_pos = np.arange(len(data)) self.bottom = kwargs.pop("bottom", 0) self.left = kwargs.pop("left", 0) self.log = kwargs.pop("log", False) MPLPlot.__init__(self, data, **kwargs) if self.stacked or self.subplots: self.tickoffset = self.bar_width * pos if kwargs["align"] == "edge": self.lim_offset = self.bar_width / 2 else: self.lim_offset = 0 else: if kwargs["align"] == "edge": w = self.bar_width / self.nseries self.tickoffset = self.bar_width * (pos - 0.5) + w * 0.5 self.lim_offset = w * 0.5 else: self.tickoffset = self.bar_width * pos self.lim_offset = 0 self.ax_pos = self.tick_pos - self.tickoffset def _args_adjust(self): if is_list_like(self.bottom): self.bottom = np.array(self.bottom) if is_list_like(self.left): self.left = np.array(self.left) @classmethod def _plot(cls, ax, x, y, w, start=0, log=False, **kwds): return ax.bar(x, y, w, bottom=start, log=log, **kwds) @property def _start_base(self): return self.bottom def _make_plot(self): import matplotlib as mpl colors = self._get_colors() ncolors = len(colors) pos_prior = neg_prior = np.zeros(len(self.data)) K = self.nseries for i, (label, y) in enumerate(self._iter_data(fillna=0)): ax = self._get_ax(i) kwds = self.kwds.copy() if self._is_series: kwds["color"] = colors else: kwds["color"] = colors[i % ncolors] errors = self._get_errorbars(label=label, index=i) kwds = dict(kwds, **errors) label = pprint_thing(label) if (("yerr" in kwds) or ("xerr" in kwds)) and (kwds.get("ecolor") is None): kwds["ecolor"] = mpl.rcParams["xtick.color"] start = 0 if self.log and (y >= 1).all(): start = 1 start = start + self._start_base if self.subplots: w = self.bar_width / 2 rect = self._plot( ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, log=self.log, **kwds ) ax.set_title(label) elif self.stacked: mask = y > 0 start = np.where(mask, pos_prior, neg_prior) + self._start_base w = self.bar_width / 2 rect = self._plot( ax, self.ax_pos + w, y, self.bar_width, start=start, label=label, log=self.log, **kwds ) pos_prior = pos_prior + np.where(mask, y, 0) neg_prior = neg_prior + np.where(mask, 0, y) else: w = self.bar_width / K rect = self._plot( ax, self.ax_pos + (i + 0.5) * w, y, w, start=start, label=label, log=self.log, **kwds ) self._add_legend_handle(rect, label, index=i) def _post_plot_logic(self, ax, data): if self.use_index: str_index = [pprint_thing(key) for key in data.index] else: str_index = [pprint_thing(key) for key in range(data.shape[0])] name = self._get_index_name() s_edge = self.ax_pos[0] - 0.25 + self.lim_offset e_edge = self.ax_pos[-1] + 0.25 + self.bar_width + self.lim_offset self._decorate_ticks(ax, name, str_index, s_edge, e_edge) def _decorate_ticks(self, ax, name, ticklabels, start_edge, end_edge): ax.set_xlim((start_edge, end_edge)) if self.xticks is not None: ax.set_xticks(np.array(self.xticks)) else: ax.set_xticks(self.tick_pos) ax.set_xticklabels(ticklabels) if name is not None and self.use_index: ax.set_xlabel(name) class BarhPlot(BarPlot): _kind = "barh" _default_rot = 0 orientation = "horizontal" @property def _start_base(self): return self.left @classmethod def _plot(cls, ax, x, y, w, start=0, log=False, **kwds): return ax.barh(x, y, w, left=start, log=log, **kwds) def _decorate_ticks(self, ax, name, ticklabels, start_edge, end_edge): # horizontal bars ax.set_ylim((start_edge, end_edge)) ax.set_yticks(self.tick_pos) ax.set_yticklabels(ticklabels) if name is not None and self.use_index: ax.set_ylabel(name) class PiePlot(MPLPlot): _kind = "pie" _layout_type = "horizontal" def __init__(self, data, kind=None, **kwargs): data = data.fillna(value=0) if (data < 0).any().any(): raise ValueError("{0} doesn't allow negative values".format(kind)) MPLPlot.__init__(self, data, kind=kind, **kwargs) def _args_adjust(self): self.grid = False self.logy = False self.logx = False self.loglog = False def _validate_color_args(self): pass def _make_plot(self): colors = self._get_colors(num_colors=len(self.data), color_kwds="colors") self.kwds.setdefault("colors", colors) for i, (label, y) in enumerate(self._iter_data()): ax = self._get_ax(i) if label is not None: label = pprint_thing(label) ax.set_ylabel(label) kwds = self.kwds.copy() def blank_labeler(label, value): if value == 0: return "" else: return label idx = [pprint_thing(v) for v in self.data.index] labels = kwds.pop("labels", idx) # labels is used for each wedge's labels # Blank out labels for values of 0 so they don't overlap # with nonzero wedges if labels is not None: blabels = [blank_labeler(l, value) for l, value in zip(labels, y)] else: blabels = None results = ax.pie(y, labels=blabels, **kwds) if kwds.get("autopct", None) is not None: patches, texts, autotexts = results else: patches, texts = results autotexts = [] if self.fontsize is not None: for t in texts + autotexts: t.set_fontsize(self.fontsize) # leglabels is used for legend labels leglabels = labels if labels is not None else idx for p, l in zip(patches, leglabels): self._add_legend_handle(p, l)
BugsInPy/BugsInPy/temp/projects/pandas/bug-144-fixed/pandas/pandas/plotting/_matplotlib/core.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-144-buggy/pandas/pandas/plotting/_matplotlib/core.py
pandas-bug-79
""" Provide user facing operators for doing the split part of the split-apply-combine paradigm. """ from typing import Dict, Hashable, List, Optional, Tuple import numpy as np from pandas._typing import FrameOrSeries from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( ensure_categorical, is_categorical_dtype, is_datetime64_dtype, is_list_like, is_scalar, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCSeries import pandas.core.algorithms as algorithms from pandas.core.arrays import Categorical, ExtensionArray import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.groupby import ops from pandas.core.groupby.categorical import recode_for_groupby, recode_from_groupby from pandas.core.indexes.api import CategoricalIndex, Index, MultiIndex from pandas.core.series import Series from pandas.io.formats.printing import pprint_thing class Grouper: """ A Grouper allows the user to specify a groupby instruction for an object. This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. If `axis` and/or `level` are passed as keywords to both `Grouper` and `groupby`, the values passed to `Grouper` take precedence. Parameters ---------- key : str, defaults to None Groupby key, which selects the grouping column of the target. level : name/number, defaults to None The level for the target index. freq : str / frequency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object. For full specification of available frequencies, please see `here <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_. axis : str, int, defaults to 0 Number/name of the axis. sort : bool, default to False Whether to sort the resulting labels. closed : {'left' or 'right'} Closed end of interval. Only when `freq` parameter is passed. label : {'left' or 'right'} Interval boundary to use for labeling. Only when `freq` parameter is passed. convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex and `freq` parameter is passed. base : int, default 0 Only when `freq` parameter is passed. loffset : str, DateOffset, timedelta object Only when `freq` parameter is passed. Returns ------- A specification for a groupby instruction Examples -------- Syntactic sugar for ``df.groupby('A')`` >>> df.groupby(Grouper(key='A')) Specify a resample operation on the column 'date' >>> df.groupby(Grouper(key='date', freq='60s')) Specify a resample operation on the level 'date' on the columns axis with a frequency of 60s >>> df.groupby(Grouper(level='date', freq='60s', axis=1)) """ _attributes: Tuple[str, ...] = ("key", "level", "freq", "axis", "sort") def __new__(cls, *args, **kwargs): if kwargs.get("freq") is not None: from pandas.core.resample import TimeGrouper cls = TimeGrouper return super().__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=0, sort=False): self.key = key self.level = level self.freq = freq self.axis = axis self.sort = sort self.grouper = None self.obj = None self.indexer = None self.binner = None self._grouper = None @property def ax(self): return self.grouper def _get_grouper(self, obj, validate: bool = True): """ Parameters ---------- obj : the subject object validate : boolean, default True if True, validate the grouper Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) self.grouper, _, self.obj = get_grouper( self.obj, [self.key], axis=self.axis, level=self.level, sort=self.sort, validate=validate, ) return self.binner, self.grouper, self.obj def _set_grouper(self, obj: FrameOrSeries, sort: bool = False): """ given an object and the specifications, setup the internal grouper for this particular specification Parameters ---------- obj : Series or DataFrame sort : bool, default False whether the resulting grouper should be sorted """ assert obj is not None if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # Keep self.grouper value before overriding if self._grouper is None: self._grouper = self.grouper # the key must be a valid info item if self.key is not None: key = self.key # The 'on' is already defined if getattr(self.grouper, "name", None) == key and isinstance( obj, ABCSeries ): ax = self._grouper.take(obj.index) else: if key not in obj._info_axis: raise KeyError(f"The grouper name {key} is not found") ax = Index(obj[key], name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) ax = Index(ax._get_level_values(level), name=ax.names[level]) else: if level not in (0, ax.name): raise ValueError(f"The level {level} is not valid") # possibly sort if (self.sort or sort) and not ax.is_monotonic: # use stable sort to support first, last, nth indexer = self.indexer = ax.argsort(kind="mergesort") ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis) self.obj = obj self.grouper = ax return self.grouper @property def groups(self): return self.grouper.groups def __repr__(self) -> str: attrs_list = ( f"{attr_name}={repr(getattr(self, attr_name))}" for attr_name in self._attributes if getattr(self, attr_name) is not None ) attrs = ", ".join(attrs_list) cls_name = type(self).__name__ return f"{cls_name}({attrs})" class Grouping: """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj Union[DataFrame, Series]: name : level : observed : bool, default False If we are a Categorical, use the observed values in_axis : if the Grouping is a column in self.obj and hence among Groupby.exclusions list Returns ------- **Attributes**: * indices : dict of {group -> index_list} * codes : ndarray, group codes * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__( self, index: Index, grouper=None, obj: Optional[FrameOrSeries] = None, name=None, level=None, sort: bool = True, observed: bool = False, in_axis: bool = False, ): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.all_grouper = None self.index = index self.sort = sort self.obj = obj self.observed = observed self.in_axis = in_axis # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # we have a single grouper which may be a myriad of things, # some of which are dependent on the passing in level if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError(f"Level {level} not in index") level = index.names.index(level) if self.name is None: self.name = index.names[level] ( self.grouper, self._codes, self._group_index, ) = index._get_grouper_for_level(self.grouper, level) # a passed Grouper like, directly get the grouper in the same way # as single grouper groupby, use the group_info to get codes elif isinstance(self.grouper, Grouper): # get the new grouper; we already have disambiguated # what key/level refer to exactly, don't need to # check again as we have by this point converted these # to an actual value (rather than a pd.Grouper) _, grouper, _ = self.grouper._get_grouper(self.obj, validate=False) if self.name is None: self.name = grouper.result_index.name self.obj = self.grouper.obj self.grouper = grouper._get_grouper() else: if self.grouper is None and self.name is not None and self.obj is not None: self.grouper = self.obj[self.name] elif isinstance(self.grouper, (list, tuple)): self.grouper = com.asarray_tuplesafe(self.grouper) # a passed Categorical elif is_categorical_dtype(self.grouper): self.grouper, self.all_grouper = recode_for_groupby( self.grouper, self.sort, observed ) categories = self.grouper.categories # we make a CategoricalIndex out of the cat grouper # preserving the categories / ordered attributes self._codes = self.grouper.codes if observed: codes = algorithms.unique1d(self.grouper.codes) codes = codes[codes != -1] if sort or self.grouper.ordered: codes = np.sort(codes) else: codes = np.arange(len(categories)) self._group_index = CategoricalIndex( Categorical.from_codes( codes=codes, categories=categories, ordered=self.grouper.ordered ), name=self.name, ) # we are done if isinstance(self.grouper, Grouping): self.grouper = self.grouper.grouper # no level passed elif not isinstance( self.grouper, (Series, Index, ExtensionArray, np.ndarray) ): if getattr(self.grouper, "ndim", 1) != 1: t = self.name or str(type(self.grouper)) raise ValueError(f"Grouper for '{t}' not 1-dimensional") self.grouper = self.index.map(self.grouper) if not ( hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index) ): grper = pprint_thing(self.grouper) errmsg = ( "Grouper result violates len(labels) == " f"len(data)\nresult: {grper}" ) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have # Timestamps like if getattr(self.grouper, "dtype", None) is not None: if is_datetime64_dtype(self.grouper): self.grouper = self.grouper.astype("datetime64[ns]") elif is_timedelta64_dtype(self.grouper): self.grouper = self.grouper.astype("timedelta64[ns]") def __repr__(self) -> str: return f"Grouping({self.name})" def __iter__(self): return iter(self.indices) _codes: Optional[np.ndarray] = None _group_index: Optional[Index] = None @property def ngroups(self) -> int: return len(self.group_index) @cache_readonly def indices(self): # we have a list of groupers if isinstance(self.grouper, ops.BaseGrouper): return self.grouper.indices values = ensure_categorical(self.grouper) return values._reverse_indexer() @property def codes(self) -> np.ndarray: if self._codes is None: self._make_codes() return self._codes @cache_readonly def result_index(self) -> Index: if self.all_grouper is not None: return recode_from_groupby(self.all_grouper, self.sort, self.group_index) return self.group_index @property def group_index(self) -> Index: if self._group_index is None: self._make_codes() assert self._group_index is not None return self._group_index def _make_codes(self) -> None: if self._codes is None or self._group_index is None: # we have a list of groupers if isinstance(self.grouper, ops.BaseGrouper): codes = self.grouper.codes_info uniques = self.grouper.result_index else: codes, uniques = algorithms.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._codes = codes self._group_index = uniques @cache_readonly def groups(self) -> Dict[Hashable, np.ndarray]: return self.index.groupby(Categorical.from_codes(self.codes, self.group_index)) def get_grouper( obj: FrameOrSeries, key=None, axis: int = 0, level=None, sort: bool = True, observed: bool = False, mutated: bool = False, validate: bool = True, ) -> "Tuple[ops.BaseGrouper, List[Hashable], FrameOrSeries]": """ Create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure out what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. If observed & we have a categorical grouper, only show the observed values. If validate, then check for key/level overlaps. """ group_axis = obj._get_axis(axis) # validate that the passed single level is compatible with the passed # axis of the object if level is not None: # TODO: These if-block and else-block are almost same. # MultiIndex instance check is removable, but it seems that there are # some processes only for non-MultiIndex in else-block, # eg. `obj.index.name != level`. We have to consider carefully whether # these are applicable for MultiIndex. Even if these are applicable, # we need to check if it makes no side effect to subsequent processes # on the outside of this condition. # (GH 17621) if isinstance(group_axis, MultiIndex): if is_list_like(level) and len(level) == 1: level = level[0] if key is None and is_scalar(level): # Get the level values from group_axis key = group_axis.get_level_values(level) level = None else: # allow level to be a length-one list-like object # (e.g., level=[0]) # GH 13901 if is_list_like(level): nlevels = len(level) if nlevels == 1: level = level[0] elif nlevels == 0: raise ValueError("No group keys passed!") else: raise ValueError("multiple levels only valid with MultiIndex") if isinstance(level, str): if obj._get_axis(axis).name != level: raise ValueError( f"level name {level} is not the name " f"of the {obj._get_axis_name(axis)}" ) elif level > 0 or level < -1: raise ValueError("level > 0 or level < -1 only valid with MultiIndex") # NOTE: `group_axis` and `group_axis.get_level_values(level)` # are same in this section. level = None key = group_axis # a passed-in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj, validate=False) if key.key is None: return grouper, [], obj else: return grouper, [key.key], obj # already have a BaseGrouper, just return it elif isinstance(key, ops.BaseGrouper): return key, [], obj if not isinstance(key, list): keys = [key] match_axis_length = False else: keys = key match_axis_length = len(keys) == len(group_axis) # what are we after, exactly? any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_groupers = any(isinstance(g, Grouper) for g in keys) any_arraylike = any( isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys ) # is this an index replacement? if ( not any_callable and not any_arraylike and not any_groupers and match_axis_length and level is None ): if isinstance(obj, DataFrame): all_in_columns_index = all( g in obj.columns or g in obj.index.names for g in keys ) else: assert isinstance(obj, Series) all_in_columns_index = all(g in obj.index.names for g in keys) if not all_in_columns_index: keys = [com.asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings: List[Grouping] = [] exclusions: List[Hashable] = [] # if the actual grouper should be obj[key] def is_in_axis(key) -> bool: if not _is_label_like(key): items = obj._data.items try: items.get_loc(key) except (KeyError, TypeError): # TypeError shows up here if we pass e.g. Int64Index return False return True # if the grouper is obj[name] def is_in_obj(gpr) -> bool: if not hasattr(gpr, "name"): return False try: return gpr is obj[gpr.name] except (KeyError, IndexError): return False for i, (gpr, level) in enumerate(zip(keys, levels)): if is_in_obj(gpr): # df.groupby(df['name']) in_axis, name = True, gpr.name exclusions.append(name) elif is_in_axis(gpr): # df.groupby('name') if gpr in obj: if validate: obj._check_label_or_level_ambiguity(gpr, axis=axis) in_axis, name, gpr = True, gpr, obj[gpr] exclusions.append(name) elif obj._is_level_reference(gpr, axis=axis): in_axis, name, level, gpr = False, None, gpr, None else: raise KeyError(gpr) elif isinstance(gpr, Grouper) and gpr.key is not None: # Add key to exclusions exclusions.append(gpr.key) in_axis, name = False, None else: in_axis, name = False, None if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]: raise ValueError( f"Length of grouper ({len(gpr)}) and axis ({obj.shape[axis]}) " "must be same length" ) # create the Grouping # allow us to passing the actual Grouping as the gpr ping = ( Grouping( group_axis, gpr, obj=obj, name=name, level=level, sort=sort, observed=observed, in_axis=in_axis, ) if not isinstance(gpr, Grouping) else gpr ) groupings.append(ping) if len(groupings) == 0 and len(obj): raise ValueError("No group keys passed!") elif len(groupings) == 0: groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp))) # create the internals grouper grouper = ops.BaseGrouper(group_axis, groupings, sort=sort, mutated=mutated) return grouper, exclusions, obj def _is_label_like(val) -> bool: return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val)) def _convert_grouper(axis: Index, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper._values else: return grouper.reindex(axis)._values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise ValueError("Grouper and axis must be same length") return grouper else: return grouper """ Provide user facing operators for doing the split part of the split-apply-combine paradigm. """ from typing import Dict, Hashable, List, Optional, Tuple import numpy as np from pandas._typing import FrameOrSeries from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( ensure_categorical, is_categorical_dtype, is_datetime64_dtype, is_list_like, is_scalar, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCSeries import pandas.core.algorithms as algorithms from pandas.core.arrays import Categorical, ExtensionArray import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.groupby import ops from pandas.core.groupby.categorical import recode_for_groupby, recode_from_groupby from pandas.core.indexes.api import CategoricalIndex, Index, MultiIndex from pandas.core.indexes.base import InvalidIndexError from pandas.core.series import Series from pandas.io.formats.printing import pprint_thing class Grouper: """ A Grouper allows the user to specify a groupby instruction for an object. This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object. If `axis` and/or `level` are passed as keywords to both `Grouper` and `groupby`, the values passed to `Grouper` take precedence. Parameters ---------- key : str, defaults to None Groupby key, which selects the grouping column of the target. level : name/number, defaults to None The level for the target index. freq : str / frequency object, defaults to None This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object. For full specification of available frequencies, please see `here <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_. axis : str, int, defaults to 0 Number/name of the axis. sort : bool, default to False Whether to sort the resulting labels. closed : {'left' or 'right'} Closed end of interval. Only when `freq` parameter is passed. label : {'left' or 'right'} Interval boundary to use for labeling. Only when `freq` parameter is passed. convention : {'start', 'end', 'e', 's'} If grouper is PeriodIndex and `freq` parameter is passed. base : int, default 0 Only when `freq` parameter is passed. loffset : str, DateOffset, timedelta object Only when `freq` parameter is passed. Returns ------- A specification for a groupby instruction Examples -------- Syntactic sugar for ``df.groupby('A')`` >>> df.groupby(Grouper(key='A')) Specify a resample operation on the column 'date' >>> df.groupby(Grouper(key='date', freq='60s')) Specify a resample operation on the level 'date' on the columns axis with a frequency of 60s >>> df.groupby(Grouper(level='date', freq='60s', axis=1)) """ _attributes: Tuple[str, ...] = ("key", "level", "freq", "axis", "sort") def __new__(cls, *args, **kwargs): if kwargs.get("freq") is not None: from pandas.core.resample import TimeGrouper cls = TimeGrouper return super().__new__(cls) def __init__(self, key=None, level=None, freq=None, axis=0, sort=False): self.key = key self.level = level self.freq = freq self.axis = axis self.sort = sort self.grouper = None self.obj = None self.indexer = None self.binner = None self._grouper = None @property def ax(self): return self.grouper def _get_grouper(self, obj, validate: bool = True): """ Parameters ---------- obj : the subject object validate : boolean, default True if True, validate the grouper Returns ------- a tuple of binner, grouper, obj (possibly sorted) """ self._set_grouper(obj) self.grouper, _, self.obj = get_grouper( self.obj, [self.key], axis=self.axis, level=self.level, sort=self.sort, validate=validate, ) return self.binner, self.grouper, self.obj def _set_grouper(self, obj: FrameOrSeries, sort: bool = False): """ given an object and the specifications, setup the internal grouper for this particular specification Parameters ---------- obj : Series or DataFrame sort : bool, default False whether the resulting grouper should be sorted """ assert obj is not None if self.key is not None and self.level is not None: raise ValueError("The Grouper cannot specify both a key and a level!") # Keep self.grouper value before overriding if self._grouper is None: self._grouper = self.grouper # the key must be a valid info item if self.key is not None: key = self.key # The 'on' is already defined if getattr(self.grouper, "name", None) == key and isinstance( obj, ABCSeries ): ax = self._grouper.take(obj.index) else: if key not in obj._info_axis: raise KeyError(f"The grouper name {key} is not found") ax = Index(obj[key], name=key) else: ax = obj._get_axis(self.axis) if self.level is not None: level = self.level # if a level is given it must be a mi level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) ax = Index(ax._get_level_values(level), name=ax.names[level]) else: if level not in (0, ax.name): raise ValueError(f"The level {level} is not valid") # possibly sort if (self.sort or sort) and not ax.is_monotonic: # use stable sort to support first, last, nth indexer = self.indexer = ax.argsort(kind="mergesort") ax = ax.take(indexer) obj = obj.take(indexer, axis=self.axis) self.obj = obj self.grouper = ax return self.grouper @property def groups(self): return self.grouper.groups def __repr__(self) -> str: attrs_list = ( f"{attr_name}={repr(getattr(self, attr_name))}" for attr_name in self._attributes if getattr(self, attr_name) is not None ) attrs = ", ".join(attrs_list) cls_name = type(self).__name__ return f"{cls_name}({attrs})" class Grouping: """ Holds the grouping information for a single key Parameters ---------- index : Index grouper : obj Union[DataFrame, Series]: name : level : observed : bool, default False If we are a Categorical, use the observed values in_axis : if the Grouping is a column in self.obj and hence among Groupby.exclusions list Returns ------- **Attributes**: * indices : dict of {group -> index_list} * codes : ndarray, group codes * group_index : unique groups * groups : dict of {group -> label_list} """ def __init__( self, index: Index, grouper=None, obj: Optional[FrameOrSeries] = None, name=None, level=None, sort: bool = True, observed: bool = False, in_axis: bool = False, ): self.name = name self.level = level self.grouper = _convert_grouper(index, grouper) self.all_grouper = None self.index = index self.sort = sort self.obj = obj self.observed = observed self.in_axis = in_axis # right place for this? if isinstance(grouper, (Series, Index)) and name is None: self.name = grouper.name if isinstance(grouper, MultiIndex): self.grouper = grouper.values # we have a single grouper which may be a myriad of things, # some of which are dependent on the passing in level if level is not None: if not isinstance(level, int): if level not in index.names: raise AssertionError(f"Level {level} not in index") level = index.names.index(level) if self.name is None: self.name = index.names[level] ( self.grouper, self._codes, self._group_index, ) = index._get_grouper_for_level(self.grouper, level) # a passed Grouper like, directly get the grouper in the same way # as single grouper groupby, use the group_info to get codes elif isinstance(self.grouper, Grouper): # get the new grouper; we already have disambiguated # what key/level refer to exactly, don't need to # check again as we have by this point converted these # to an actual value (rather than a pd.Grouper) _, grouper, _ = self.grouper._get_grouper(self.obj, validate=False) if self.name is None: self.name = grouper.result_index.name self.obj = self.grouper.obj self.grouper = grouper._get_grouper() else: if self.grouper is None and self.name is not None and self.obj is not None: self.grouper = self.obj[self.name] elif isinstance(self.grouper, (list, tuple)): self.grouper = com.asarray_tuplesafe(self.grouper) # a passed Categorical elif is_categorical_dtype(self.grouper): self.grouper, self.all_grouper = recode_for_groupby( self.grouper, self.sort, observed ) categories = self.grouper.categories # we make a CategoricalIndex out of the cat grouper # preserving the categories / ordered attributes self._codes = self.grouper.codes if observed: codes = algorithms.unique1d(self.grouper.codes) codes = codes[codes != -1] if sort or self.grouper.ordered: codes = np.sort(codes) else: codes = np.arange(len(categories)) self._group_index = CategoricalIndex( Categorical.from_codes( codes=codes, categories=categories, ordered=self.grouper.ordered ), name=self.name, ) # we are done if isinstance(self.grouper, Grouping): self.grouper = self.grouper.grouper # no level passed elif not isinstance( self.grouper, (Series, Index, ExtensionArray, np.ndarray) ): if getattr(self.grouper, "ndim", 1) != 1: t = self.name or str(type(self.grouper)) raise ValueError(f"Grouper for '{t}' not 1-dimensional") self.grouper = self.index.map(self.grouper) if not ( hasattr(self.grouper, "__len__") and len(self.grouper) == len(self.index) ): grper = pprint_thing(self.grouper) errmsg = ( "Grouper result violates len(labels) == " f"len(data)\nresult: {grper}" ) self.grouper = None # Try for sanity raise AssertionError(errmsg) # if we have a date/time-like grouper, make sure that we have # Timestamps like if getattr(self.grouper, "dtype", None) is not None: if is_datetime64_dtype(self.grouper): self.grouper = self.grouper.astype("datetime64[ns]") elif is_timedelta64_dtype(self.grouper): self.grouper = self.grouper.astype("timedelta64[ns]") def __repr__(self) -> str: return f"Grouping({self.name})" def __iter__(self): return iter(self.indices) _codes: Optional[np.ndarray] = None _group_index: Optional[Index] = None @property def ngroups(self) -> int: return len(self.group_index) @cache_readonly def indices(self): # we have a list of groupers if isinstance(self.grouper, ops.BaseGrouper): return self.grouper.indices values = ensure_categorical(self.grouper) return values._reverse_indexer() @property def codes(self) -> np.ndarray: if self._codes is None: self._make_codes() return self._codes @cache_readonly def result_index(self) -> Index: if self.all_grouper is not None: return recode_from_groupby(self.all_grouper, self.sort, self.group_index) return self.group_index @property def group_index(self) -> Index: if self._group_index is None: self._make_codes() assert self._group_index is not None return self._group_index def _make_codes(self) -> None: if self._codes is None or self._group_index is None: # we have a list of groupers if isinstance(self.grouper, ops.BaseGrouper): codes = self.grouper.codes_info uniques = self.grouper.result_index else: codes, uniques = algorithms.factorize(self.grouper, sort=self.sort) uniques = Index(uniques, name=self.name) self._codes = codes self._group_index = uniques @cache_readonly def groups(self) -> Dict[Hashable, np.ndarray]: return self.index.groupby(Categorical.from_codes(self.codes, self.group_index)) def get_grouper( obj: FrameOrSeries, key=None, axis: int = 0, level=None, sort: bool = True, observed: bool = False, mutated: bool = False, validate: bool = True, ) -> "Tuple[ops.BaseGrouper, List[Hashable], FrameOrSeries]": """ Create and return a BaseGrouper, which is an internal mapping of how to create the grouper indexers. This may be composed of multiple Grouping objects, indicating multiple groupers Groupers are ultimately index mappings. They can originate as: index mappings, keys to columns, functions, or Groupers Groupers enable local references to axis,level,sort, while the passed in axis, level, and sort are 'global'. This routine tries to figure out what the passing in references are and then creates a Grouping for each one, combined into a BaseGrouper. If observed & we have a categorical grouper, only show the observed values. If validate, then check for key/level overlaps. """ group_axis = obj._get_axis(axis) # validate that the passed single level is compatible with the passed # axis of the object if level is not None: # TODO: These if-block and else-block are almost same. # MultiIndex instance check is removable, but it seems that there are # some processes only for non-MultiIndex in else-block, # eg. `obj.index.name != level`. We have to consider carefully whether # these are applicable for MultiIndex. Even if these are applicable, # we need to check if it makes no side effect to subsequent processes # on the outside of this condition. # (GH 17621) if isinstance(group_axis, MultiIndex): if is_list_like(level) and len(level) == 1: level = level[0] if key is None and is_scalar(level): # Get the level values from group_axis key = group_axis.get_level_values(level) level = None else: # allow level to be a length-one list-like object # (e.g., level=[0]) # GH 13901 if is_list_like(level): nlevels = len(level) if nlevels == 1: level = level[0] elif nlevels == 0: raise ValueError("No group keys passed!") else: raise ValueError("multiple levels only valid with MultiIndex") if isinstance(level, str): if obj._get_axis(axis).name != level: raise ValueError( f"level name {level} is not the name " f"of the {obj._get_axis_name(axis)}" ) elif level > 0 or level < -1: raise ValueError("level > 0 or level < -1 only valid with MultiIndex") # NOTE: `group_axis` and `group_axis.get_level_values(level)` # are same in this section. level = None key = group_axis # a passed-in Grouper, directly convert if isinstance(key, Grouper): binner, grouper, obj = key._get_grouper(obj, validate=False) if key.key is None: return grouper, [], obj else: return grouper, [key.key], obj # already have a BaseGrouper, just return it elif isinstance(key, ops.BaseGrouper): return key, [], obj if not isinstance(key, list): keys = [key] match_axis_length = False else: keys = key match_axis_length = len(keys) == len(group_axis) # what are we after, exactly? any_callable = any(callable(g) or isinstance(g, dict) for g in keys) any_groupers = any(isinstance(g, Grouper) for g in keys) any_arraylike = any( isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys ) # is this an index replacement? if ( not any_callable and not any_arraylike and not any_groupers and match_axis_length and level is None ): if isinstance(obj, DataFrame): all_in_columns_index = all( g in obj.columns or g in obj.index.names for g in keys ) else: assert isinstance(obj, Series) all_in_columns_index = all(g in obj.index.names for g in keys) if not all_in_columns_index: keys = [com.asarray_tuplesafe(keys)] if isinstance(level, (tuple, list)): if key is None: keys = [None] * len(level) levels = level else: levels = [level] * len(keys) groupings: List[Grouping] = [] exclusions: List[Hashable] = [] # if the actual grouper should be obj[key] def is_in_axis(key) -> bool: if not _is_label_like(key): items = obj._data.items try: items.get_loc(key) except (KeyError, TypeError, InvalidIndexError): # TypeError shows up here if we pass e.g. Int64Index return False return True # if the grouper is obj[name] def is_in_obj(gpr) -> bool: if not hasattr(gpr, "name"): return False try: return gpr is obj[gpr.name] except (KeyError, IndexError): return False for i, (gpr, level) in enumerate(zip(keys, levels)): if is_in_obj(gpr): # df.groupby(df['name']) in_axis, name = True, gpr.name exclusions.append(name) elif is_in_axis(gpr): # df.groupby('name') if gpr in obj: if validate: obj._check_label_or_level_ambiguity(gpr, axis=axis) in_axis, name, gpr = True, gpr, obj[gpr] exclusions.append(name) elif obj._is_level_reference(gpr, axis=axis): in_axis, name, level, gpr = False, None, gpr, None else: raise KeyError(gpr) elif isinstance(gpr, Grouper) and gpr.key is not None: # Add key to exclusions exclusions.append(gpr.key) in_axis, name = False, None else: in_axis, name = False, None if is_categorical_dtype(gpr) and len(gpr) != obj.shape[axis]: raise ValueError( f"Length of grouper ({len(gpr)}) and axis ({obj.shape[axis]}) " "must be same length" ) # create the Grouping # allow us to passing the actual Grouping as the gpr ping = ( Grouping( group_axis, gpr, obj=obj, name=name, level=level, sort=sort, observed=observed, in_axis=in_axis, ) if not isinstance(gpr, Grouping) else gpr ) groupings.append(ping) if len(groupings) == 0 and len(obj): raise ValueError("No group keys passed!") elif len(groupings) == 0: groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp))) # create the internals grouper grouper = ops.BaseGrouper(group_axis, groupings, sort=sort, mutated=mutated) return grouper, exclusions, obj def _is_label_like(val) -> bool: return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val)) def _convert_grouper(axis: Index, grouper): if isinstance(grouper, dict): return grouper.get elif isinstance(grouper, Series): if grouper.index.equals(axis): return grouper._values else: return grouper.reindex(axis)._values elif isinstance(grouper, (list, Series, Index, np.ndarray)): if len(grouper) != len(axis): raise ValueError("Grouper and axis must be same length") return grouper else: return grouper
BugsInPy/BugsInPy/temp/projects/pandas/bug-79-fixed/pandas/pandas/core/groupby/grouper.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-79-buggy/pandas/pandas/core/groupby/grouper.py
pandas-bug-39
""" Functions to generate methods and pin them to the appropriate classes. """ import operator from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries, ABCSparseArray from pandas.core.ops.roperator import ( radd, rand_, rdivmod, rfloordiv, rmod, rmul, ror_, rpow, rsub, rtruediv, rxor, ) def _get_method_wrappers(cls): """ Find the appropriate operation-wrappers to use when defining flex/special arithmetic, boolean, and comparison operations with the given class. Parameters ---------- cls : class Returns ------- arith_flex : function or None comp_flex : function or None arith_special : function comp_special : function bool_special : function Notes ----- None is only returned for SparseArray """ # TODO: make these non-runtime imports once the relevant functions # are no longer in __init__ from pandas.core.ops import ( _arith_method_FRAME, _arith_method_SERIES, _bool_method_SERIES, _comp_method_FRAME, _comp_method_SERIES, _flex_comp_method_FRAME, _flex_method_SERIES, ) if issubclass(cls, ABCSeries): # Just Series arith_flex = _flex_method_SERIES comp_flex = _flex_method_SERIES arith_special = _arith_method_SERIES comp_special = _comp_method_SERIES bool_special = _bool_method_SERIES elif issubclass(cls, ABCDataFrame): arith_flex = _arith_method_FRAME comp_flex = _flex_comp_method_FRAME arith_special = _arith_method_FRAME comp_special = _comp_method_FRAME bool_special = _arith_method_FRAME return arith_flex, comp_flex, arith_special, comp_special, bool_special def add_special_arithmetic_methods(cls): """ Adds the full suite of special arithmetic methods (``__add__``, ``__sub__``, etc.) to the class. Parameters ---------- cls : class special methods will be defined and pinned to this class """ _, _, arith_method, comp_method, bool_method = _get_method_wrappers(cls) new_methods = _create_methods( cls, arith_method, comp_method, bool_method, special=True ) # inplace operators (I feel like these should get passed an `inplace=True` # or just be removed def _wrap_inplace_method(method): """ return an inplace wrapper for this method """ def f(self, other): result = method(self, other) # this makes sure that we are aligned like the input # we are updating inplace so we want to ignore is_copy self._update_inplace( result.reindex_like(self, copy=False)._data, verify_is_copy=False ) return self name = method.__name__.strip("__") f.__name__ = f"__i{name}__" return f new_methods.update( dict( __iadd__=_wrap_inplace_method(new_methods["__add__"]), __isub__=_wrap_inplace_method(new_methods["__sub__"]), __imul__=_wrap_inplace_method(new_methods["__mul__"]), __itruediv__=_wrap_inplace_method(new_methods["__truediv__"]), __ifloordiv__=_wrap_inplace_method(new_methods["__floordiv__"]), __imod__=_wrap_inplace_method(new_methods["__mod__"]), __ipow__=_wrap_inplace_method(new_methods["__pow__"]), ) ) new_methods.update( dict( __iand__=_wrap_inplace_method(new_methods["__and__"]), __ior__=_wrap_inplace_method(new_methods["__or__"]), __ixor__=_wrap_inplace_method(new_methods["__xor__"]), ) ) _add_methods(cls, new_methods=new_methods) def add_flex_arithmetic_methods(cls): """ Adds the full suite of flex arithmetic methods (``pow``, ``mul``, ``add``) to the class. Parameters ---------- cls : class flex methods will be defined and pinned to this class """ flex_arith_method, flex_comp_method, _, _, _ = _get_method_wrappers(cls) new_methods = _create_methods( cls, flex_arith_method, flex_comp_method, bool_method=None, special=False ) new_methods.update( dict( multiply=new_methods["mul"], subtract=new_methods["sub"], divide=new_methods["div"], ) ) # opt out of bool flex methods for now assert not any(kname in new_methods for kname in ("ror_", "rxor", "rand_")) _add_methods(cls, new_methods=new_methods) def _create_methods(cls, arith_method, comp_method, bool_method, special): # creates actual methods based upon arithmetic, comp and bool method # constructors. have_divmod = issubclass(cls, ABCSeries) # divmod is available for Series new_methods = dict( add=arith_method(cls, operator.add, special), radd=arith_method(cls, radd, special), sub=arith_method(cls, operator.sub, special), mul=arith_method(cls, operator.mul, special), truediv=arith_method(cls, operator.truediv, special), floordiv=arith_method(cls, operator.floordiv, special), # Causes a floating point exception in the tests when numexpr enabled, # so for now no speedup mod=arith_method(cls, operator.mod, special), pow=arith_method(cls, operator.pow, special), # not entirely sure why this is necessary, but previously was included # so it's here to maintain compatibility rmul=arith_method(cls, rmul, special), rsub=arith_method(cls, rsub, special), rtruediv=arith_method(cls, rtruediv, special), rfloordiv=arith_method(cls, rfloordiv, special), rpow=arith_method(cls, rpow, special), rmod=arith_method(cls, rmod, special), ) new_methods["div"] = new_methods["truediv"] new_methods["rdiv"] = new_methods["rtruediv"] if have_divmod: # divmod doesn't have an op that is supported by numexpr new_methods["divmod"] = arith_method(cls, divmod, special) new_methods["rdivmod"] = arith_method(cls, rdivmod, special) new_methods.update( dict( eq=comp_method(cls, operator.eq, special), ne=comp_method(cls, operator.ne, special), lt=comp_method(cls, operator.lt, special), gt=comp_method(cls, operator.gt, special), le=comp_method(cls, operator.le, special), ge=comp_method(cls, operator.ge, special), ) ) if bool_method: new_methods.update( dict( and_=bool_method(cls, operator.and_, special), or_=bool_method(cls, operator.or_, special), # For some reason ``^`` wasn't used in original. xor=bool_method(cls, operator.xor, special), rand_=bool_method(cls, rand_, special), ror_=bool_method(cls, ror_, special), rxor=bool_method(cls, rxor, special), ) ) if special: dunderize = lambda x: f"__{x.strip('_')}__" else: dunderize = lambda x: x new_methods = {dunderize(k): v for k, v in new_methods.items()} return new_methods def _add_methods(cls, new_methods): for name, method in new_methods.items(): # For most methods, if we find that the class already has a method # of the same name, it is OK to over-write it. The exception is # inplace methods (__iadd__, __isub__, ...) for SparseArray, which # retain the np.ndarray versions. force = not (issubclass(cls, ABCSparseArray) and name.startswith("__i")) if force or name not in cls.__dict__: setattr(cls, name, method) """ Functions to generate methods and pin them to the appropriate classes. """ import operator from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries, ABCSparseArray from pandas.core.ops.roperator import ( radd, rand_, rdivmod, rfloordiv, rmod, rmul, ror_, rpow, rsub, rtruediv, rxor, ) def _get_method_wrappers(cls): """ Find the appropriate operation-wrappers to use when defining flex/special arithmetic, boolean, and comparison operations with the given class. Parameters ---------- cls : class Returns ------- arith_flex : function or None comp_flex : function or None arith_special : function comp_special : function bool_special : function Notes ----- None is only returned for SparseArray """ # TODO: make these non-runtime imports once the relevant functions # are no longer in __init__ from pandas.core.ops import ( _arith_method_FRAME, _arith_method_SERIES, _bool_method_SERIES, _comp_method_FRAME, _comp_method_SERIES, _flex_comp_method_FRAME, _flex_method_SERIES, ) if issubclass(cls, ABCSeries): # Just Series arith_flex = _flex_method_SERIES comp_flex = _flex_method_SERIES arith_special = _arith_method_SERIES comp_special = _comp_method_SERIES bool_special = _bool_method_SERIES elif issubclass(cls, ABCDataFrame): arith_flex = _arith_method_FRAME comp_flex = _flex_comp_method_FRAME arith_special = _arith_method_FRAME comp_special = _comp_method_FRAME bool_special = _arith_method_FRAME return arith_flex, comp_flex, arith_special, comp_special, bool_special def add_special_arithmetic_methods(cls): """ Adds the full suite of special arithmetic methods (``__add__``, ``__sub__``, etc.) to the class. Parameters ---------- cls : class special methods will be defined and pinned to this class """ _, _, arith_method, comp_method, bool_method = _get_method_wrappers(cls) new_methods = _create_methods( cls, arith_method, comp_method, bool_method, special=True ) # inplace operators (I feel like these should get passed an `inplace=True` # or just be removed def _wrap_inplace_method(method): """ return an inplace wrapper for this method """ def f(self, other): result = method(self, other) # Delete cacher self._reset_cacher() # this makes sure that we are aligned like the input # we are updating inplace so we want to ignore is_copy self._update_inplace( result.reindex_like(self, copy=False)._data, verify_is_copy=False ) return self name = method.__name__.strip("__") f.__name__ = f"__i{name}__" return f new_methods.update( dict( __iadd__=_wrap_inplace_method(new_methods["__add__"]), __isub__=_wrap_inplace_method(new_methods["__sub__"]), __imul__=_wrap_inplace_method(new_methods["__mul__"]), __itruediv__=_wrap_inplace_method(new_methods["__truediv__"]), __ifloordiv__=_wrap_inplace_method(new_methods["__floordiv__"]), __imod__=_wrap_inplace_method(new_methods["__mod__"]), __ipow__=_wrap_inplace_method(new_methods["__pow__"]), ) ) new_methods.update( dict( __iand__=_wrap_inplace_method(new_methods["__and__"]), __ior__=_wrap_inplace_method(new_methods["__or__"]), __ixor__=_wrap_inplace_method(new_methods["__xor__"]), ) ) _add_methods(cls, new_methods=new_methods) def add_flex_arithmetic_methods(cls): """ Adds the full suite of flex arithmetic methods (``pow``, ``mul``, ``add``) to the class. Parameters ---------- cls : class flex methods will be defined and pinned to this class """ flex_arith_method, flex_comp_method, _, _, _ = _get_method_wrappers(cls) new_methods = _create_methods( cls, flex_arith_method, flex_comp_method, bool_method=None, special=False ) new_methods.update( dict( multiply=new_methods["mul"], subtract=new_methods["sub"], divide=new_methods["div"], ) ) # opt out of bool flex methods for now assert not any(kname in new_methods for kname in ("ror_", "rxor", "rand_")) _add_methods(cls, new_methods=new_methods) def _create_methods(cls, arith_method, comp_method, bool_method, special): # creates actual methods based upon arithmetic, comp and bool method # constructors. have_divmod = issubclass(cls, ABCSeries) # divmod is available for Series new_methods = dict( add=arith_method(cls, operator.add, special), radd=arith_method(cls, radd, special), sub=arith_method(cls, operator.sub, special), mul=arith_method(cls, operator.mul, special), truediv=arith_method(cls, operator.truediv, special), floordiv=arith_method(cls, operator.floordiv, special), # Causes a floating point exception in the tests when numexpr enabled, # so for now no speedup mod=arith_method(cls, operator.mod, special), pow=arith_method(cls, operator.pow, special), # not entirely sure why this is necessary, but previously was included # so it's here to maintain compatibility rmul=arith_method(cls, rmul, special), rsub=arith_method(cls, rsub, special), rtruediv=arith_method(cls, rtruediv, special), rfloordiv=arith_method(cls, rfloordiv, special), rpow=arith_method(cls, rpow, special), rmod=arith_method(cls, rmod, special), ) new_methods["div"] = new_methods["truediv"] new_methods["rdiv"] = new_methods["rtruediv"] if have_divmod: # divmod doesn't have an op that is supported by numexpr new_methods["divmod"] = arith_method(cls, divmod, special) new_methods["rdivmod"] = arith_method(cls, rdivmod, special) new_methods.update( dict( eq=comp_method(cls, operator.eq, special), ne=comp_method(cls, operator.ne, special), lt=comp_method(cls, operator.lt, special), gt=comp_method(cls, operator.gt, special), le=comp_method(cls, operator.le, special), ge=comp_method(cls, operator.ge, special), ) ) if bool_method: new_methods.update( dict( and_=bool_method(cls, operator.and_, special), or_=bool_method(cls, operator.or_, special), # For some reason ``^`` wasn't used in original. xor=bool_method(cls, operator.xor, special), rand_=bool_method(cls, rand_, special), ror_=bool_method(cls, ror_, special), rxor=bool_method(cls, rxor, special), ) ) if special: dunderize = lambda x: f"__{x.strip('_')}__" else: dunderize = lambda x: x new_methods = {dunderize(k): v for k, v in new_methods.items()} return new_methods def _add_methods(cls, new_methods): for name, method in new_methods.items(): # For most methods, if we find that the class already has a method # of the same name, it is OK to over-write it. The exception is # inplace methods (__iadd__, __isub__, ...) for SparseArray, which # retain the np.ndarray versions. force = not (issubclass(cls, ABCSparseArray) and name.startswith("__i")) if force or name not in cls.__dict__: setattr(cls, name, method)
BugsInPy/BugsInPy/temp/projects/pandas/bug-39-fixed/pandas/pandas/core/ops/methods.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-39-buggy/pandas/pandas/core/ops/methods.py
pandas-bug-47
""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ import collections from collections import abc import datetime from io import StringIO import itertools from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, Dict, FrozenSet, Hashable, Iterable, List, Optional, Sequence, Set, Tuple, Type, Union, cast, ) import warnings import numpy as np import numpy.ma as ma from pandas._config import get_option from pandas._libs import algos as libalgos, lib, properties from pandas._typing import Axes, Axis, Dtype, FilePathOrBuffer, Label, Level, Renamer from pandas.compat import PY37 from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, deprecate_kwarg, doc, rewrite_axis_style_signature, ) from pandas.util._validators import ( validate_axis_style_args, validate_bool_kwarg, validate_percentile, ) from pandas.core.dtypes.cast import ( cast_scalar_to_array, coerce_to_dtypes, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_cast_to_datetime, maybe_convert_platform, maybe_downcast_to_dtype, maybe_infer_to_datetimelike, maybe_upcast, maybe_upcast_putmask, validate_numeric_casting, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_platform_int, infer_dtype_from_object, is_bool_dtype, is_datetime64_any_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_named_tuple, is_object_dtype, is_period_dtype, is_scalar, is_sequence, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import algorithms, common as com, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import Categorical, ExtensionArray from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin as DatetimeLikeArray from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.generic import NDFrame, _shared_docs from pandas.core.indexes import base as ibase from pandas.core.indexes.api import Index, ensure_index, ensure_index_from_sequences from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.multi import MultiIndex, maybe_droplevels from pandas.core.indexes.period import PeriodIndex from pandas.core.indexing import check_bool_indexer, convert_to_index_sliceable from pandas.core.internals import BlockManager from pandas.core.internals.construction import ( arrays_to_mgr, get_names_from_index, init_dict, init_ndarray, masked_rec_array_to_mgr, reorder_arrays, sanitize_index, to_arrays, ) from pandas.core.ops.missing import dispatch_fill_zeros from pandas.core.series import Series from pandas.io.common import get_filepath_or_buffer from pandas.io.formats import console, format as fmt from pandas.io.formats.info import info import pandas.plotting if TYPE_CHECKING: from pandas.core.groupby.generic import DataFrameGroupBy from pandas.io.formats.style import Styler # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes="index, columns", klass="DataFrame", axes_single_arg="{0 or 'index', 1 or 'columns'}", axis="""axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", optional_by=""" by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels. - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels. .. versionchanged:: 0.23.0 Allow specifying index or column level names.""", versionadded_to_excel="", optional_labels="""labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", optional_axis="""axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", ) _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : tuple of (str, str), default ('_x', '_y') Suffix to apply to overlapping column names in the left and right side, respectively. To raise an exception on overlapping columns use (False, False). copy : bool, default True If False, avoid copy if possible. indicator : bool or str, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 0.21.0 Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional, size-mutable, potentially heterogeneous tabular data. Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects. .. versionchanged:: 0.23.0 If data is a dict, column order follows insertion-order for Python 3.6 and later. .. versionchanged:: 0.25.0 If data is a list of dicts, column order follows insertion-order for Python 3.6 and later. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer. copy : bool, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input. See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. read_csv : Read a comma-separated values (csv) file into DataFrame. read_table : Read general delimited file into DataFrame. read_clipboard : Read text from clipboard into DataFrame. Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 """ _internal_names_set = {"columns", "index"} | NDFrame._internal_names_set _typ = "dataframe" @property def _constructor(self) -> Type["DataFrame"]: return DataFrame _constructor_sliced: Type[Series] = Series _deprecations: FrozenSet[str] = NDFrame._deprecations | frozenset([]) _accessors: Set[str] = {"sparse"} @property def _constructor_expanddim(self): raise NotImplementedError("Not supported for DataFrames!") # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index: Optional[Axes] = None, columns: Optional[Axes] = None, dtype: Optional[Dtype] = None, copy: bool = False, ): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr( data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy ) elif isinstance(data, dict): mgr = init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data.soften_mask() # set hardmask False if it was True data[mask] = fill_value else: data = data.copy() mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = init_dict(data, index, columns, dtype=dtype) elif getattr(data, "name", None) is not None: mgr = init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) # For data is list-like, or Iterable (will consume into list) elif isinstance(data, abc.Iterable) and not isinstance(data, (str, bytes)): if not isinstance(data, (abc.Sequence, ExtensionArray)): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], "ndim", 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = to_arrays(data, columns, dtype=dtype) columns = ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = get_names_from_index(data) elif isinstance(data[0], Categorical): index = ibase.default_index(len(data[0])) else: index = ibase.default_index(len(data)) mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = init_dict({}, index, columns, dtype=dtype) else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as err: exc = TypeError( "DataFrame constructor called with " f"incompatible data and dtype: {err}" ) raise exc from err if arr.ndim == 0 and index is not None and columns is not None: values = cast_scalar_to_array( (len(index), len(columns)), data, dtype=dtype ) mgr = init_ndarray( values, index, columns, dtype=values.dtype, copy=False ) else: raise ValueError("DataFrame constructor not properly called!") NDFrame.__init__(self, mgr) # ---------------------------------------------------------------------- @property def axes(self) -> List[Index]: """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self) -> Tuple[int, int]: """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self) -> bool: """ Whether all the columns in a DataFrame have the same type. Returns ------- bool See Also -------- Index._is_homogeneous_type : Whether the object has a single dtype. MultiIndex._is_homogeneous_type : Whether all the levels of a MultiIndex have the same dtype. Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ if self._data.any_extension_types: return len({block.dtype for block in self._data.blocks}) == 1 else: return not self._data.is_mixed_type # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self) -> bool: """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width: bool = False) -> bool: """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case of non-interactive session, no boundaries apply. `ignore_width` is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( (not ignore_width) and width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(l) for l in value.split("\n")) return repr_width < width def _info_repr(self) -> bool: """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self) -> str: """ Return a string representation for a particular DataFrame. """ buf = StringIO("") if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") max_colwidth = get_option("display.max_colwidth") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string( buf=buf, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, line_width=width, max_colwidth=max_colwidth, show_dimensions=show_dimensions, ) return buf.getvalue() def _repr_html_(self) -> Optional[str]: """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO("") self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"&lt;", 1) val = val.replace(">", r"&gt;", 1) return "<pre>" + val + "</pre>" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") formatter = fmt.DataFrameFormatter( self, columns=None, col_space=None, na_rep="NaN", formatters=None, float_format=None, sparsify=None, justify=None, index_names=True, header=True, index=True, bold_rows=True, escape=True, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=".", table_id=None, render_links=False, ) return formatter.to_html(notebook=True) else: return None @Substitution( header_type="bool or sequence", header="Write out the column names. If a list of strings " "is given, it is assumed to be aliases for the " "column names", col_space_type="int", col_space="The minimum width of each column", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf: Optional[FilePathOrBuffer[str]] = None, columns: Optional[Sequence[str]] = None, col_space: Optional[int] = None, header: Union[bool, Sequence[str]] = True, index: bool = True, na_rep: str = "NaN", formatters: Optional[fmt.FormattersType] = None, float_format: Optional[fmt.FloatFormatType] = None, sparsify: Optional[bool] = None, index_names: bool = True, justify: Optional[str] = None, max_rows: Optional[int] = None, min_rows: Optional[int] = None, max_cols: Optional[int] = None, show_dimensions: bool = False, decimal: str = ".", line_width: Optional[int] = None, max_colwidth: Optional[int] = None, encoding: Optional[str] = None, ) -> Optional[str]: """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. max_colwidth : int, optional Max width to truncate each column in characters. By default, no limit. .. versionadded:: 1.0.0 encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ from pandas import option_context with option_context("display.max_colwidth", max_colwidth): formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, line_width=line_width, ) return formatter.to_string(buf=buf, encoding=encoding) # ---------------------------------------------------------------------- @property def style(self) -> "Styler": """ Returns a Styler object. Contains methods for building a styled HTML representation of the DataFrame. See Also -------- io.formats.style.Styler """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields ------ label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print(f'label: {label}') ... print(f'content: {content}', sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"]) def items(self) -> Iterable[Tuple[Label, Series]]: if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) @Appender(_shared_docs["items"]) def iteritems(self) -> Iterable[Tuple[Label, Series]]: yield from self.items() def iterrows(self) -> Iterable[Tuple[Label, Series]]: """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. it : generator A generator that iterates over the rows of the frame. See Also -------- DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. On python versions < 3.7 regular tuples are returned for DataFrames with a large number of columns (>254). Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python versions before 3.7 support at most 255 arguments to constructors can_return_named_tuples = PY37 or len(self.columns) + index < 255 if name is not None and can_return_named_tuples: itertuple = collections.namedtuple(name, fields, rename=True) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self) -> int: """ Returns length of info axis, but here we use the index. """ return len(self.index) def dot(self, other): """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Serie. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, DataFrame): return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns ) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.T.dot(np.transpose(other)).T # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient="columns", dtype=None, columns=None) -> "DataFrame": """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """ index = None orient = orient.lower() if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == "columns": if columns is not None: raise ValueError("cannot use columns parameter with orient='columns'") else: # pragma: no cover raise ValueError("only recognize index or columns for orient") return cls(data, index=index, columns=columns, dtype=dtype) def to_numpy(self, dtype=None, copy=False) -> np.ndarray: """ Convert the DataFrame to a NumPy array. .. versionadded:: 0.24.0 By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ result = np.array(self.values, dtype=dtype, copy=copy) return result def to_dict(self, orient="dict", into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn( "DataFrame columns are not unique, some columns will be omitted.", UserWarning, stacklevel=2, ) # GH16122 into_c = com.standardize_mapping(into) if orient.lower().startswith("d"): return into_c((k, v.to_dict(into)) for k, v in self.items()) elif orient.lower().startswith("l"): return into_c((k, v.tolist()) for k, v in self.items()) elif orient.lower().startswith("sp"): return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(com.maybe_box_datetimelike, t)) for t in self.itertuples(index=False, name=None) ], ), ) ) elif orient.lower().startswith("s"): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in self.items()) elif orient.lower().startswith("r"): columns = self.columns.tolist() rows = ( dict(zip(columns, row)) for row in self.itertuples(index=False, name=None) ) return [ into_c((k, com.maybe_box_datetimelike(v)) for k, v in row.items()) for row in rows ] elif orient.lower().startswith("i"): if not self.index.is_unique: raise ValueError("DataFrame index must be unique for orient='index'.") return into_c( (t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None) ) else: raise ValueError(f"orient '{orient}' not understood") def to_gbq( self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists="fail", auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None, ) -> None: """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists raise pandas_gbq.gbq.TableCreationError. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None, ) -> "DataFrame": """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : str, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use. exclude : sequence, default None Columns or fields to exclude. columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns). coerce_float : bool, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. nrows : int, default None Number of rows to read if data is an iterator. Returns ------- DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in data.items(): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = to_arrays(data, columns) if columns is not None: columns = ensure_index(columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns, coerce_float=coerce_float) arr_columns = ensure_index(arr_columns) if columns is not None: columns = ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] except (KeyError, TypeError): # raised by get_loc, see GH#29258 result_index = index else: result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records( self, index=True, column_dtypes=None, index_dtypes=None ) -> np.recarray: """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. column_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = f"<S{df.index.str.len().max()}" >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """ if index: if isinstance(self.index, ABCMultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index.values))) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c]._internal_get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = f"level_{count}" count += 1 elif index_names[0] is None: index_names = ["index"] names = [str(name) for name in itertools.chain(index_names, self.columns)] else: arrays = [self[c]._internal_get_values() for c in self.columns] names = [str(c) for c in self.columns] index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): formats.append(dtype_mapping) else: element = "row" if i < index_len else "column" msg = f"Invalid dtype {dtype_mapping} specified for {element} {name}" raise ValueError(msg) return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats}) @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None) -> "DataFrame": mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_stata( self, path: FilePathOrBuffer, convert_dates: Optional[Dict[Label, str]] = None, write_index: bool = True, byteorder: Optional[str] = None, time_stamp: Optional[datetime.datetime] = None, data_label: Optional[str] = None, variable_labels: Optional[Dict[Label, str]] = None, version: Optional[int] = 114, convert_strl: Optional[Sequence[Label]] = None, ) -> None: """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- path : str, buffer or path object String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written. .. versionchanged:: 1.0.0 Previously this was "fname" convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {114, 117, 118, 119, None}, default 114 Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Added support for formats 118 and 119. convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. .. versionadded:: 0.23.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ if version not in (114, 117, 118, 119, None): raise ValueError("Only formats 114, 117, 118 and 119 are supported.") if version == 114: if convert_strl is not None: raise ValueError("strl is not supported in format 114") from pandas.io.stata import StataWriter as statawriter elif version == 117: # mypy: Name 'statawriter' already defined (possibly by an import) from pandas.io.stata import StataWriter117 as statawriter # type: ignore else: # versions 118 and 119 # mypy: Name 'statawriter' already defined (possibly by an import) from pandas.io.stata import StataWriterUTF8 as statawriter # type:ignore kwargs: Dict[str, Any] = {} if version is None or version >= 117: # strl conversion is only supported >= 117 kwargs["convert_strl"] = convert_strl if version is None or version >= 118: # Specifying the version is only supported for UTF8 (118 or 119) kwargs["version"] = version # mypy: Too many arguments for "StataWriter" writer = statawriter( # type: ignore path, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, **kwargs, ) writer.write_file() @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_feather(self, path) -> None: """ Write out the binary feather-format for DataFrames. Parameters ---------- path : str String file path. """ from pandas.io.feather_format import to_feather to_feather(self, path) @Appender( """ Examples -------- >>> df = pd.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(df.to_markdown()) | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal | """ ) @Substitution(klass="DataFrame") @Appender(_shared_docs["to_markdown"]) def to_markdown( self, buf: Optional[IO[str]] = None, mode: Optional[str] = None, **kwargs ) -> Optional[str]: kwargs.setdefault("headers", "keys") kwargs.setdefault("tablefmt", "pipe") tabulate = import_optional_dependency("tabulate") result = tabulate.tabulate(self, **kwargs) if buf is None: return result buf, _, _, _ = get_filepath_or_buffer(buf, mode=mode) assert buf is not None # Help mypy. buf.writelines(result) return None @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_parquet( self, path, engine="auto", compression="snappy", index=None, partition_cols=None, **kwargs, ) -> None: """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- path : str File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset. .. versionchanged:: 1.0.0 Previously this was "fname" engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``True`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. .. versionadded:: 0.24.0 partition_cols : list, optional, default None Column names by which to partition the dataset. Columns are partitioned in the order they are given. .. versionadded:: 0.24.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 """ from pandas.io.parquet import to_parquet to_parquet( self, path, engine, compression=compression, index=index, partition_cols=partition_cols, **kwargs, ) @Substitution( header_type="bool", header="Whether to print column labels, default True", col_space_type="str or int", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.\n\n" " .. versionadded:: 0.25.0\n" " Ability to use str", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=".", bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, encoding=None, ): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.display.html.border``. encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 table_id : str, optional A css id is included in the opening `<table>` tag if specified. .. versionadded:: 0.23.0 render_links : bool, default False Convert URLs to HTML links. .. versionadded:: 0.24.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, table_id=table_id, render_links=render_links, ) # TODO: a generic formatter wld b in DataFrameFormatter return formatter.to_html( buf=buf, classes=classes, notebook=notebook, border=border, encoding=encoding, ) # ---------------------------------------------------------------------- @Appender(info.__doc__) def info( self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None ) -> None: return info(self, verbose, buf, max_cols, memory_usage, null_counts) def memory_usage(self, index=True, deep=False) -> Series: """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.000000+0.000000j 1 True 1 1 1.0 1.000000+0.000000j 1 True 2 1 1.0 1.000000+0.000000j 1 True 3 1 1.0 1.000000+0.000000j 1 True 4 1 1.0 1.000000+0.000000j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5216 """ result = Series( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, ) if index: result = Series(self.index.memory_usage(deep=deep), index=["Index"]).append( result ) return result def transpose(self, *args, copy: bool = False) -> "DataFrame": """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- *args : tuple, optional Accepted for compatibility with NumPy. copy : bool, default False Whether to copy the data after transposing, even for DataFrames with a single dtype. Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, dict()) # construct the args dtypes = list(self.dtypes) if self._is_homogeneous_type and dtypes and is_extension_array_dtype(dtypes[0]): # We have EAs with the same dtype. We can preserve that dtype in transpose. dtype = dtypes[0] arr_type = dtype.construct_array_type() values = self.values new_values = [arr_type._from_sequence(row, dtype=dtype) for row in values] result = self._constructor( dict(zip(self.index, new_values)), index=self.columns ) else: new_values = self.values.T if copy: new_values = new_values.copy() result = self._constructor( new_values, index=self.columns, columns=self.index ) return result.__finalize__(self) @property def T(self) -> "DataFrame": return self.transpose() # ---------------------------------------------------------------------- # Indexing Methods def _ixs(self, i: int, axis: int = 0): """ Parameters ---------- i : int axis : int Notes ----- If slice passed, the resulting data will be a view. """ # irow if axis == 0: new_values = self._data.fast_xs(i) # if we are a copy, mark as such copy = isinstance(new_values, np.ndarray) and new_values.base is None result = self._constructor_sliced( new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype, ) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] values = self._data.iget(i) result = self._box_col_values(values, label) # this is a cached value, mark it so result._set_as_cached(label, self) return result def __getitem__(self, key): key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key): # shortcut if the key is in columns if self.columns.is_unique and key in self.columns: if self.columns.nlevels > 1: return self._getitem_multilevel(key) return self._get_item_cache(key) # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self.where(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self._take_with_is_copy(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, ABCMultiIndex): data = data[key] return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match DataFrame index.", UserWarning, stacklevel=3, ) elif len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}." ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self._take_with_is_copy(indexer, axis=0) def _getitem_multilevel(self, key): # self.columns is a MultiIndex loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor( new_values, index=self.index, columns=result_columns ) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _get_value(self, index, col, takeable: bool = False): """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar """ if takeable: series = self._ixs(col, axis=1) return series._values[index] series = self._get_item_cache(col) engine = self.index._engine try: loc = engine.get_loc(index) return series._values[loc] except KeyError: # GH 20629 if self.index.nlevels > 1: # partial indexing forbidden raise # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key: slice, value): # NB: we can't just use self.loc[key] = value because that # operates on labels and we need to operate positional for # backwards-compat, xref GH#31469 self._check_setitem_copy() self.iloc._setitem_with_indexer(key, value) def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}!" ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.iloc._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError("Columns must be same length as key") for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: indexer = self.loc._get_listlike_indexer( key, axis=1, raise_missing=False )[1] self._check_setitem_copy() self.iloc._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict()) if key.values.size and not is_bool_dtype(key.values): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _iset_item(self, loc: int, value): self._ensure_valid_index(value) # technically _sanitize_column expects a label, not a position, # but the behavior is the same as long as we pass broadcast=False value = self._sanitize_column(loc, value, broadcast=False) NDFrame._iset_item(self, loc, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_value(self, index, col, value, takeable: bool = False): """ Put single value at passed column and index. Parameters ---------- index : row label col : column label value : scalar takeable : interpret the index/col as indexers, default False """ try: if takeable is True: series = self._ixs(col, axis=1) series._set_value(index, value, takeable=True) return series = self._get_item_cache(col) engine = self.index._engine loc = engine.get_loc(index) validate_numeric_casting(series.dtype, value) series._values[loc] = value # Note: trying to use series._set_value breaks tests in # tests.frame.indexing.test_indexing and tests.indexing.test_partial except (KeyError, TypeError): # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) def _ensure_valid_index(self, value): """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value) and len(value): try: value = Series(value) except (ValueError, NotImplementedError, TypeError) as err: raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a Series" ) from err self._data = self._data.reindex_axis( value.index.copy(), axis=1, fill_value=np.nan ) def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ Provide boxed values for a column. """ klass = self._constructor_sliced return klass(values, index=self.index, name=items, fastpath=True) # ---------------------------------------------------------------------- # Unsorted def query(self, expr, inplace=False, **kwargs): """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. You can refer to column names that contain spaces or operators by surrounding them in backticks. This way you can also escape names that start with a digit, or those that are a Python keyword. Basically when it is not valid Python identifier. See notes down for more details. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. .. versionadded:: 0.25.0 Backtick quoting introduced. .. versionadded:: 1.0.0 Expanding functionality of backtick quoting for more than only spaces. inplace : bool Whether the query should modify the data in place or return a modified copy. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame DataFrame resulting from the provided query expression. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. *Backtick quoted variables* Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems. During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped). In a special case, quotes that make a pair around a backtick can confuse the parser. For example, ```it's` > `that's``` will raise an error, as it forms a quoted string (``'s > `that'``) with a backtick inside. See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in :mod:`pandas.core.computation.parsing`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = f"expr must be a string to be evaluated, {type(expr)} given" raise ValueError(msg) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, or pandas object The result of the evaluation. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 Multiple columns can be assigned to using multi-line expressions: >>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") resolvers = kwargs.pop("resolvers", None) kwargs["level"] = kwargs.pop("level", 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() column_resolvers = self._get_cleaned_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None) -> "DataFrame": """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = (frozenset(include), frozenset(exclude)) if not any(selection): raise ValueError("at least one of include or exclude must be nonempty") # convert the myriad valid dtypes object to a single representation include = frozenset(infer_dtype_from_object(x) for x in include) exclude = frozenset(infer_dtype_from_object(x) for x in exclude) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError(f"include and exclude overlap on {(include & exclude)}") # We raise when both include and exclude are empty # Hence, we can just shrink the columns we want to keep keep_these = np.full(self.shape[1], True) def extract_unique_dtypes_from_dtypes_set( dtypes_set: FrozenSet[Dtype], unique_dtypes: np.ndarray ) -> List[Dtype]: extracted_dtypes = [ unique_dtype for unique_dtype in unique_dtypes if issubclass(unique_dtype.type, tuple(dtypes_set)) # type: ignore ] return extracted_dtypes unique_dtypes = self.dtypes.unique() if include: included_dtypes = extract_unique_dtypes_from_dtypes_set( include, unique_dtypes ) keep_these &= self.dtypes.isin(included_dtypes) if exclude: excluded_dtypes = extract_unique_dtypes_from_dtypes_set( exclude, unique_dtypes ) keep_these &= ~self.dtypes.isin(excluded_dtypes) return self.iloc[:, keep_these.values] def insert(self, loc, column, value, allow_duplicates=False) -> None: """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns). column : str, number, or hashable object Label of the inserted column. value : int, Series, or array-like allow_duplicates : bool, optional """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs) -> "DataFrame": r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. Later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. .. versionchanged:: 0.23.0 Keyword argument order is maintained. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy() for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- numpy.ndarray """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except ValueError as err: # raised in MultiIndex.from_tuples, see test_insert_error_msmgs if not value.index.is_unique: # duplicate axis raise err # other raise TypeError( "incompatible index of inserted column with frame index" ) from err return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, ABCMultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, ExtensionArray): # Explicitly copy here, instead of in sanitize_index, # as sanitize_index won't copy an EA, even with copy=True value = value.copy() value = sanitize_index(value, self.index) elif isinstance(value, Index) or is_sequence(value): # turn me into an ndarray value = sanitize_index(value, self.index) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com.asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: # cast ignores pandas dtypes. so save the dtype first infer_dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) # upcast value = cast_scalar_to_array(len(self.index), value) value = maybe_cast_to_datetime(value, infer_dtype) # return internal types directly if is_extension_array_dtype(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if not self.columns.is_unique or isinstance(self.columns, ABCMultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): return { item: Series(self._data.iget(idx), index=self.index, name=item) for idx, item in enumerate(self.columns) } def lookup(self, row_labels, col_labels) -> np.ndarray: """ Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup. col_labels : sequence The column labels to use for lookup. Returns ------- numpy.ndarray The found values. """ n = len(row_labels) if n != len(col_labels): raise ValueError("Row labels must have same size as column labels") thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError("One or more row labels was not found") if (cidx == -1).any(): raise KeyError("One or more column labels was not found") flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype="O") for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes["columns"] if columns is not None: frame = frame._reindex_columns( columns, method, copy, level, fill_value, limit, tolerance ) index = axes["index"] if index is not None: frame = frame._reindex_index( index, method, copy, level, fill_value, limit, tolerance ) return frame def _reindex_index( self, new_index, method, copy, level, fill_value=np.nan, limit=None, tolerance=None, ): new_index, indexer = self.index.reindex( new_index, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_columns( self, new_columns, method, copy, level, fill_value=None, limit=None, tolerance=None, ): new_columns, indexer = self.columns.reindex( new_columns, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_multi(self, axes, copy, fill_value) -> "DataFrame": """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi( self.values, indexer, fill_value=fill_value ) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @Appender(_shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ) -> "DataFrame": return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) @Appender( """ Examples -------- >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6 Now, update the labels inplace. >>> df.set_axis(['i', 'ii'], axis='columns', inplace=True) >>> df i ii 0 1 4 1 2 5 2 3 6 """ ) @Substitution( **_shared_doc_kwargs, extended_summary_sub=" column or", axis_description_sub=", and 1 identifies the columns", see_also_sub=" or columns", ) @Appender(NDFrame.set_axis.__doc__) def set_axis(self, labels, axis: Axis = 0, inplace: bool = False): return super().set_axis(labels, axis=axis, inplace=inplace) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.reindex.__doc__) @rewrite_axis_style_signature( "labels", [ ("method", None), ("copy", True), ("level", None), ("fill_value", np.nan), ("limit", None), ("tolerance", None), ], ) def reindex(self, *args, **kwargs) -> "DataFrame": axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("labels", None) return super().reindex(**kwargs) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). .. versionadded:: 0.21.0 columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame DataFrame without the removed index or column labels. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @rewrite_axis_style_signature( "mapper", [("copy", True), ("inplace", False), ("level", None), ("errors", "ignore")], ) def rename( self, mapper: Optional[Renamer] = None, *, index: Optional[Renamer] = None, columns: Optional[Renamer] = None, axis: Optional[Axis] = None, copy: bool = True, inplace: bool = False, level: Optional[Level] = None, errors: str = "ignore", ) -> Optional["DataFrame"]: """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper : dict-like or function Dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : int or str Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame DataFrame with the renamed axis labels. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ return super().rename( mapper=mapper, index=index, columns=columns, axis=axis, copy=copy, inplace=inplace, level=level, errors=errors, ) @doc(NDFrame.fillna, **_shared_doc_kwargs) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, ) -> Optional["DataFrame"]: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) @Appender(_shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @Appender(_shared_docs["shift"] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None) -> "DataFrame": return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def set_index( self, keys, drop=True, append=False, inplace=False, verify_integrity=False ): """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing: List[Label] = [] for col in keys: if isinstance( col, (ABCIndexClass, ABCSeries, np.ndarray, list, abc.Iterator) ): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError as err: raise TypeError( f"{err_msg}. Received column of type {type(col)}" ) from err else: if not found: missing.append(col) if missing: raise KeyError(f"None of {missing} are in the columns") if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove: List[Label] = [] for col in keys: if isinstance(col, ABCMultiIndex): for n in range(col.nlevels): arrays.append(col._get_level_values(n)) names.extend(col.names) elif isinstance(col, (ABCIndexClass, ABCSeries)): # if Index then not MultiIndex (treated above) arrays.append(col) names.append(col.name) elif isinstance(col, (list, np.ndarray)): arrays.append(col) names.append(None) elif isinstance(col, abc.Iterator): arrays.append(list(col)) names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( f"Length mismatch: Expected {len(self)} rows, " f"received array of length {len(arrays[-1])}" ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError(f"Index has duplicate keys: {duplicates}") # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index( self, level: Optional[Union[Hashable, Sequence[Hashable]]] = None, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Label = "", ) -> Optional["DataFrame"]: """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame or None DataFrame with the new index or None if ``inplace=True``. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): values = index._values if not isinstance(index, (PeriodIndex, DatetimeIndex)): if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 # we can have situations where the whole mask is -1, # meaning there is nothing found in labels, so make all nan's if mask.all(): values = np.empty(len(mask)) values.fill(np.nan) else: values = values.take(labels) # TODO(https://github.com/pandas-dev/pandas/issues/24206) # Push this into maybe_upcast_putmask? # We can't pass EAs there right now. Looks a bit # complicated. # So we unbox the ndarray_values, op, re-box. values_type = type(values) values_dtype = values.dtype if issubclass(values_type, DatetimeLikeArray): values = values._data if mask.any(): values, _ = maybe_upcast_putmask(values, mask, np.nan) if issubclass(values_type, DatetimeLikeArray): values = values_type(values, dtype=values_dtype) return values new_index = ibase.default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: to_insert: Iterable[Tuple[Any, Optional[Any]]] if isinstance(self.index, ABCMultiIndex): names = [ (n if n is not None else f"level_{i}") for i, n in enumerate(self.index.names) ] to_insert = zip(self.index.levels, self.index.codes) else: default = "index" if "index" not in self else "level_0" names = [default] if self.index.name is None else [self.index.name] to_insert = ((self.index, None),) multi_col = isinstance(self.columns, ABCMultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if not (level is None or i in level): continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " f"with incomplete column name {name}" ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj return None # ---------------------------------------------------------------------- # Reindex-based selection methods @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isna(self) -> "DataFrame": return super().isna() @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isnull(self) -> "DataFrame": return super().isnull() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notna(self) -> "DataFrame": return super().notna() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notnull(self) -> "DataFrame": return super().notnull() def dropna(self, axis=0, how="any", thresh=None, subset=None, inplace=False): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. versionchanged:: 1.0.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 raise TypeError("supplying multiple axes to axis is no longer supported.") axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == "any": mask = count == len(agg_obj._get_axis(agg_axis)) elif how == "all": mask = count > 0 else: if how is not None: raise ValueError(f"invalid how option: {how}") else: raise TypeError("must specify how or thresh") result = self.loc(axis=axis)[mask] if inplace: self._update_inplace(result) else: return result def drop_duplicates( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", inplace: bool = False, ignore_index: bool = False, ) -> Optional["DataFrame"]: """ Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to keep. - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : bool, default False Whether to drop duplicates in place or to return a copy. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- DataFrame DataFrame with duplicates removed or None if ``inplace=True``. See Also -------- DataFrame.value_counts: Count unique combinations of columns. """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, "inplace") duplicated = self.duplicated(subset, keep=keep) if inplace: (inds,) = np.asarray(-duplicated).nonzero() new_data = self._data.take(inds) if ignore_index: new_data.axes[1] = ibase.default_index(len(inds)) self._update_inplace(new_data) else: result = self[-duplicated] if ignore_index: result.index = ibase.default_index(len(result)) return result return None def duplicated( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", ) -> "Series": """ Return boolean Series denoting duplicate rows. Considering certain columns is optional. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to mark. - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series """ from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT if self.empty: return Series(dtype=bool) def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT) ) return labels.astype("i8", copy=False), len(shape) if subset is None: subset = self.columns elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # needed for mypy since can't narrow types using np.iterable subset = cast(Iterable, subset) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_values.__doc__) def sort_values( self, by, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ignore_index=False, ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError( f"Length of ascending ({len(ascending)}) != length of by ({len(by)})" ) if len(by) > 1: from pandas.core.sorting import lexsort_indexer keys = [self._get_label_or_level_values(x, axis=axis) for x in by] indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) else: from pandas.core.sorting import nargsort by = by[0] k = self._get_label_or_level_values(by, axis=axis) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position ) new_data = self._data.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def sort_index( self, axis=0, level=None, ascending: bool = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, ): """ Sort object by labels (along an axis). Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns. level : int or level name or list of ints or list of level names If not None, sort on values in specified index level(s). ascending : bool or list of bools, default True Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- sorted_obj : DataFrame or None DataFrame with sorted index if inplace=False, None otherwise. """ # TODO: this can be combined with Series.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) labels = self._get_axis(axis) # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer labels = labels._sort_levels_monotonic() if level is not None: new_axis, indexer = labels.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(labels, ABCMultiIndex): from pandas.core.sorting import lexsort_indexer indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and labels.is_monotonic_increasing) or ( not ascending and labels.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( labels, kind=kind, ascending=ascending, na_position=na_position ) baxis = self._get_block_manager_axis(axis) new_data = self._data.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def value_counts( self, subset: Optional[Sequence[Label]] = None, normalize: bool = False, sort: bool = True, ascending: bool = False, ): """ Return a Series containing counts of unique rows in the DataFrame. .. versionadded:: 1.1.0 Parameters ---------- subset : list-like, optional Columns to use when counting unique combinations. normalize : bool, default False Return proportions rather than frequencies. sort : bool, default True Sort by frequencies. ascending : bool, default False Sort in ascending order. Returns ------- Series See Also -------- Series.value_counts: Equivalent method on Series. Notes ----- The returned Series will have a MultiIndex with one level per input column. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0 >>> df.value_counts() num_legs num_wings 4 0 2 6 0 1 2 2 1 dtype: int64 >>> df.value_counts(sort=False) num_legs num_wings 2 2 1 4 0 2 6 0 1 dtype: int64 >>> df.value_counts(ascending=True) num_legs num_wings 2 2 1 6 0 1 4 0 2 dtype: int64 >>> df.value_counts(normalize=True) num_legs num_wings 4 0 0.50 6 0 0.25 2 2 0.25 dtype: float64 """ if subset is None: subset = self.columns.tolist() counts = self.groupby(subset).size() if sort: counts = counts.sort_values(ascending=ascending) if normalize: counts /= counts.sum() # Force MultiIndex for single column if len(subset) == 1: counts.index = MultiIndex.from_arrays( [counts.index], names=[counts.index.name] ) return counts def nlargest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 337000, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 337000 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "population". >>> df.nsmallest(3, 'population') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 337000 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS Nauru 337000 182 NR To order by the smallest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Nauru 337000 182 NR """ return algorithms.SelectNFrame( self, n=n, keep=keep, columns=columns ).nsmallest() def swaplevel(self, i=-2, j=-1, axis=0) -> "DataFrame": """ Swap levels i and j in a MultiIndex on a particular axis. Parameters ---------- i, j : int or str Levels of the indices to be swapped. Can pass level name as string. Returns ------- DataFrame """ result = self.copy() axis = self._get_axis_number(axis) if not isinstance(result._get_axis(axis), ABCMultiIndex): # pragma: no cover raise TypeError("Can only swap levels on a hierarchical axis.") if axis == 0: assert isinstance(result.index, ABCMultiIndex) result.index = result.index.swaplevel(i, j) else: assert isinstance(result.columns, ABCMultiIndex) result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0) -> "DataFrame": """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- DataFrame """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), ABCMultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy() if axis == 0: assert isinstance(result.index, ABCMultiIndex) result.index = result.index.reorder_levels(order) else: assert isinstance(result.columns, ABCMultiIndex) result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other: "DataFrame", func, fill_value=None): # at this point we have `self._indexed_same(other)` if fill_value is None: # since _arith_op may be called in a loop, avoid function call # overhead if possible by doing this check once _arith_op = func else: def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) if ops.should_series_dispatch(self, other, func): # iterate over columns new_data = ops.dispatch_to_series(self, other, _arith_op) else: with np.errstate(all="ignore"): res_values = _arith_op(self.values, other.values) new_data = dispatch_fill_zeros(func, self.values, other.values, res_values) return new_data def _construct_result(self, result) -> "DataFrame": """ Wrap the result of an arithmetic, comparison, or logical operation. Parameters ---------- result : DataFrame Returns ------- DataFrame """ out = self._constructor(result, index=self.index, copy=False) # Pin columns instead of passing to constructor for compat with # non-unique columns case out.columns = self.columns return out def combine( self, other: "DataFrame", func, fill_value=None, overwrite=True ) -> "DataFrame": """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) arr = func(series, otherSeries) arr = maybe_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns) def combine_first(self, other: "DataFrame") -> "DataFrame": """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ import pandas.core.computation.expressions as expressions def extract_values(arr): # Does two things: # 1. maybe gets the values from the Series / Index # 2. convert datelike to i8 if isinstance(arr, (ABCIndexClass, ABCSeries)): arr = arr._values if needs_i8_conversion(arr): if is_extension_array_dtype(arr.dtype): arr = arr.asi8 else: arr = arr.view("i8") return arr def combiner(x, y): mask = isna(x) if isinstance(mask, (ABCIndexClass, ABCSeries)): mask = mask._values x_values = extract_values(x) y_values = extract_values(y) # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) return self.combine(other, combiner, overwrite=False) def update( self, other, join="left", overwrite=True, filter_func=None, errors="ignore" ) -> None: """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. .. versionchanged:: 0.24.0 Changed from `raise_conflict=False|True` to `errors='ignore'|'raise'`. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError("The parameter errors must be either 'ignore' or 'raise'") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all="ignore"): mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping @Appender( """ Examples -------- >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0 **Hierarchical Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Captive 210.0 Wild 185.0 """ ) @Appender(_shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, ) -> "DataFrameGroupBy": from pandas.core.groupby.generic import DataFrameGroupBy if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return DataFrameGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, ) _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ----------%s index : str or object or a list of str, optional Column to use to make new frame's index. If None, uses existing index. .. versionchanged:: 1.1.0 Also accept list of index names. columns : str or object or a list of str Column to use to make new frame's columns. .. versionchanged:: 1.1.0 Also accept list of columns names. values : str, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. .. versionchanged:: 0.23.0 Also accept list of column names. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t You could also assign a list of column names or a list of index names. >>> df = pd.DataFrame({ ... "lev1": [1, 1, 1, 2, 2, 2], ... "lev2": [1, 1, 2, 1, 1, 2], ... "lev3": [1, 2, 1, 2, 1, 2], ... "lev4": [1, 2, 3, 4, 5, 6], ... "values": [0, 1, 2, 3, 4, 5]}) >>> df lev1 lev2 lev3 lev4 values 0 1 1 1 1 0 1 1 1 2 2 1 2 1 2 1 3 2 3 2 1 2 4 3 4 2 1 1 5 4 5 2 2 2 6 5 >>> df.pivot(index="lev1", columns=["lev2", "lev3"],values="values") lev2 1 2 lev3 1 2 1 2 lev1 1 0.0 1.0 2.0 NaN 2 4.0 3.0 NaN 5.0 >>> df.pivot(index=["lev1", "lev2"], columns=["lev3"],values="values") lev3 1 2 lev1 lev2 1 1 0.0 1.0 2 2.0 NaN 2 1 4.0 3.0 2 NaN 5.0 A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot(self, index=None, columns=None, values=None) -> "DataFrame": from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with (in the resulting pivot table, after aggregation). margins : bool, default False Add all row / columns (e.g. for subtotal / grand totals). dropna : bool, default True Do not include columns whose entries are all NaN. margins_name : str, default 'All' Name of the row / column that will contain the totals when margins is True. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionchanged:: 0.25.0 Returns ------- DataFrame An Excel style pivot table. See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9.0 7.500000 6.0 small 5.500000 9.0 8.500000 8.0 foo large 2.000000 5.0 4.500000 4.0 small 2.333333 6.0 4.333333 2.0 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ) -> "DataFrame": from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) def stack(self, level=-1, dropna=True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. The new index levels are sorted. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def explode(self, column: Union[str, Tuple]) -> "DataFrame": """ Transform each element of a list-like to a row, replicating index values. .. versionadded:: 0.25.0 Parameters ---------- column : str or tuple Column to explode. Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : if columns of the frame are not unique. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels. DataFrame.melt : Unpivot a DataFrame from wide format to long format. Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 foo 1 2 [] 1 3 [3, 4] 1 >>> df.explode('A') A B 0 1 1 0 2 1 0 3 1 1 foo 1 2 NaN 1 3 3 1 3 4 1 """ if not (is_scalar(column) or isinstance(column, tuple)): raise ValueError("column must be a scalar") if not self.columns.is_unique: raise ValueError("columns must be unique") df = self.reset_index(drop=True) # TODO: use overload to refine return type of reset_index assert df is not None # needed for mypy result = df[column].explode() result = df.drop([column], axis=1).join(result) result.index = self.index.take(result.index) result = result.reindex(columns=self.columns, copy=False) return result def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, str, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name. fill_value : int, str or dict Replace NaN with this value if the unstack produces missing values. Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) _shared_docs[ "melt" ] = """ Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. %(versionadded)s Parameters ---------- id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or str, optional If columns are a MultiIndex then use this level to melt. Returns ------- DataFrame Unpivoted DataFrame. See Also -------- %(other)s pivot_table DataFrame.pivot Series.explode Examples -------- >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ @Appender( _shared_docs["melt"] % dict( caller="df.melt(", versionadded="\n .. versionadded:: 0.20.0\n", other="melt", ) ) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ) -> "DataFrame": from pandas.core.reshape.melt import melt return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0) -> "DataFrame": """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). Returns ------- DataFrame See Also -------- Series.diff: First discrete difference for a Series. DataFrame.pct_change: Percent change over given number of periods. DataFrame.shift: Shift index by desired number of periods with an optional time freq. Notes ----- For boolean dtypes, this uses :meth:`operator.xor` rather than :meth:`operator.sub`. Examples -------- Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0.0 0.0 1 NaN -1.0 3.0 2 NaN -1.0 7.0 3 NaN -1.0 13.0 4 NaN 0.0 20.0 5 NaN 2.0 28.0 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: Union[str, List[str]], ndim: int, subset: Optional[Union[Series, ABCDataFrame]] = None, ) -> Union[Series, ABCDataFrame]: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_summary_and_see_also_doc = dedent( """ The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.EWM : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @Substitution( see_also=_agg_summary_and_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs, ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) result = None try: result, how = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, axis=0, *args, **kwargs): if axis == 1: # NDFrame.aggregate returns a tuple, and we need to transpose # only result result, how = self.T._aggregate(arg, *args, **kwargs) result = result.T if result is not None else result return result, how return super()._aggregate(arg, *args, **kwargs) agg = aggregate @Appender(_shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs) -> "DataFrame": axis = self._get_axis_number(axis) if axis == 1: return self.T.transform(func, *args, **kwargs).T return super().transform(func, *args, **kwargs) def apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. raw : bool, default False Determines if row or column is passed as a Series or ndarray object: * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing result_type='expand' will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, raw=raw, result_type=result_type, args=args, kwds=kwds, ) return op.get_result() def applymap(self, func) -> "DataFrame": """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. Notes ----- In the current implementation applymap calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func) return lib.map_infer(x.astype(object).values, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append( self, other, ignore_index=False, verify_integrity=False, sort=False ) -> "DataFrame": """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : bool, default False If True, do not use the index labels. verify_integrity : bool, default False If True, raise ValueError on creating index with duplicates. sort : bool, default False Sort columns if the columns of `self` and `other` are not aligned. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Changed to not sort by default. Returns ------- DataFrame See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): if not ignore_index: raise TypeError("Can only append a dict if ignore_index=True") other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True " "or if the Series has a name" ) index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) try: combined_columns = self.columns.append(idx_diff) except TypeError: combined_columns = self.columns.astype(object).append(idx_diff) other = ( other.reindex(combined_columns, copy=False) .to_frame() .T.infer_objects() .rename_axis(index.names, copy=False) ) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list): if not other: pass elif not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.reindex(columns=self.columns) from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self, *other] else: to_concat = [self, other] return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) def join( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ) -> "DataFrame": """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it. lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Support for specifying index levels as the `on` parameter was added in version 0.23.0. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN """ return self._join_compat( other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort ) def _join_compat( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ): from pandas.core.reshape.merge import merge from pandas.core.reshape.concat import concat if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported for joining on index" ) frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat( frames, axis=1, join="outer", verify_integrity=True, sort=sort ) return res.reindex(self.index, copy=False) else: return concat( frames, axis=1, join=how, verify_integrity=True, sort=sort ) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ) -> "DataFrame": from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round(self, decimals=0, *args, **kwargs) -> "DataFrame": """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = list(_dict_round(self, decimals)) elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.items()] else: raise TypeError("decimals must be an integer, a dict-like or a Series") if len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method="pearson", min_periods=1) -> "DataFrame": """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith : Compute pairwise correlation with another DataFrame or Series. Series.corr : Compute the correlation between two Series. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if method == "pearson": correl = libalgos.nancorr(ensure_float64(mat), minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(ensure_float64(mat), minp=min_periods) elif method == "kendall" or callable(method): if min_periods is None: min_periods = 1 mat = ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods=None) -> "DataFrame": """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.EWM.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if notna(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = libalgos.nancorr(ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=idx, columns=cols) def corrwith(self, other, axis=0, drop=False, method="pearson") -> Series: """ Compute pairwise correlation. Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr : Compute pairwise correlation of columns. """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series( map(c, zip(left.values.T, right.values.T)), index=left.columns ) else: raise ValueError( f"Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable" ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype("int64") def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, ABCMultiIndex): raise TypeError( f"Can only count levels on hierarchical {self._get_axis_name(axis)}." ) if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notna(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, str): level = count_axis._get_level_number(level) level_name = count_axis._names[level] level_index = count_axis.levels[level]._shallow_copy(name=level_name) level_codes = ensure_int64(count_axis.codes[level]) counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): assert filter_type is None or filter_type == "bool", filter_type dtype_is_dt = self.dtypes.apply( lambda x: is_datetime64_any_dtype(x) or is_period_dtype(x) ) if numeric_only is None and name in ["mean", "median"] and dtype_is_dt.any(): warnings.warn( "DataFrame.mean and DataFrame.median with numeric_only=None " "will include datetime64, datetime64tz, and PeriodDtype columns in a " "future version.", FutureWarning, stacklevel=3, ) cols = self.columns[~dtype_is_dt] self = self[cols] if axis is None and filter_type == "bool": labels = None constructor = None else: # TODO: Make other agg func handle axis=None properly axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) constructor = self._constructor def f(x): return op(x, axis=axis, skipna=skipna, **kwds) def _get_data(axis_matters): if filter_type is None: data = self._get_numeric_data() elif filter_type == "bool": if axis_matters: # GH#25101, GH#24434 data = self._get_bool_data() if axis == 0 else self else: data = self._get_bool_data() else: # pragma: no cover msg = ( f"Generating numeric_only data with filter_type {filter_type} " "not supported." ) raise NotImplementedError(msg) return data if numeric_only is not None and axis in [0, 1]: df = self if numeric_only is True: df = _get_data(axis_matters=True) if axis == 1: df = df.T axis = 0 out_dtype = "bool" if filter_type == "bool" else None def blk_func(values): if values.ndim == 1 and not isinstance(values, np.ndarray): # we can't pass axis=1 return op(values, axis=0, skipna=skipna, **kwds) return op(values, axis=1, skipna=skipna, **kwds) # After possibly _get_data and transposing, we are now in the # simple case where we can use BlockManager._reduce res = df._data.reduce(blk_func) assert isinstance(res, dict) if len(res): assert len(res) == max(list(res.keys())) + 1, res.keys() out = df._constructor_sliced(res, index=range(len(res)), dtype=out_dtype) out.index = df.columns if axis == 0 and df.dtypes.apply(needs_i8_conversion).any(): # FIXME: needs_i8_conversion check is kludge, not sure # why it is necessary in this case and this case alone out[:] = coerce_to_dtypes(out.values, df.dtypes) return out if numeric_only is None: data = self values = data.values try: result = f(values) except TypeError: # e.g. in nanops trying to convert strs to float # try by-column first if filter_type is None and axis == 0: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series # we only end up here if we have not specified # numeric_only and yet we have tried a # column-by-column reduction, where we have mixed type. # So let's just do what we can from pandas.core.apply import frame_apply opa = frame_apply( self, func=f, result_type="expand", ignore_failures=True ) result = opa.get_result() if result.ndim == self.ndim: result = result.iloc[0] return result # TODO: why doesnt axis matter here? data = _get_data(axis_matters=False) labels = data._get_agg_axis(axis) values = data.values with np.errstate(all="ignore"): result = f(values) else: if numeric_only: data = _get_data(axis_matters=True) labels = data._get_agg_axis(axis) values = data.values else: data = self values = data.values result = f(values) if filter_type == "bool" and is_object_dtype(values) and axis is None: # work around https://github.com/numpy/numpy/issues/10489 # TODO: can we de-duplicate parts of this with the next blocK? result = np.bool_(result) elif hasattr(result, "dtype") and is_object_dtype(result.dtype): try: if filter_type is None: result = result.astype(np.float64) elif filter_type == "bool" and notna(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = coerce_to_dtypes(result, data.dtypes) if constructor is not None: result = self._constructor_sliced(result, index=labels) return result def nunique(self, axis=0, dropna=True) -> Series: """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin : Return index of the minimum element. Notes ----- This method is the DataFrame version of ``ndarray.argmin``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the minimum value in each column. >>> df.idxmin() consumption Pork co2_emissions Wheat Products dtype: object To return the index for the minimum value in each row, use ``axis="columns"``. >>> df.idxmin(axis="columns") Pork consumption Wheat Products co2_emissions Beef consumption dtype: object """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax : Return index of the maximum element. Notes ----- This method is the DataFrame version of ``ndarray.argmax``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the maximum value in each column. >>> df.idxmax() consumption Wheat Products co2_emissions Beef dtype: object To return the index for the maximum value in each row, use ``axis="columns"``. >>> df.idxmax(axis="columns") Pork co2_emissions Wheat Products consumption Beef co2_emissions dtype: object """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError(f"Axis must be 0 or 1 (got {repr(axis_num)})") def mode(self, axis=0, numeric_only=False, dropna=True) -> "DataFrame": """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row. numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains ``NaN``, because they have only one mode, but the DataFrame has two rows. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation="linear"): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ validate_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T if len(data.columns) == 0: # GH#23925 _get_numeric_data may have dropped all columns cols = Index([], name=self.columns.name) if is_list_like(q): return self._constructor([], index=q, columns=cols) return self._constructor_sliced([], index=cols, name=q, dtype=np.float64) result = data._data.quantile( qs=q, axis=1, interpolation=interpolation, transposed=is_transposed ) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp( self, freq=None, how: str = "start", axis: Axis = 0, copy: bool = True ) -> "DataFrame": """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with DatetimeIndex """ new_obj = self.copy(deep=copy) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) new_ax = old_ax.to_timestamp(freq=freq, how=how) setattr(new_obj, axis_name, new_ax) return new_obj def to_period(self, freq=None, axis: Axis = 0, copy: bool = True) -> "DataFrame": """ Convert DataFrame from DatetimeIndex to PeriodIndex. Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with PeriodIndex """ new_obj = self.copy(deep=copy) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) new_ax = old_ax.to_period(freq=freq) setattr(new_obj, axis_name, new_ax) return new_obj def isin(self, values) -> "DataFrame": """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are allowed " "to be passed to DataFrame.isin(), " f"you passed a '{type(values).__name__}'" ) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns, ) # ---------------------------------------------------------------------- # Add index and columns _AXIS_ORDERS = ["index", "columns"] _AXIS_NUMBERS = {"index": 0, "columns": 1} _AXIS_NAMES = {0: "index", 1: "columns"} _AXIS_REVERSED = True _AXIS_LEN = len(_AXIS_ORDERS) _info_axis_number = 1 _info_axis_name = "columns" index: "Index" = properties.AxisProperty( axis=1, doc="The index (row labels) of the DataFrame." ) columns: "Index" = properties.AxisProperty( axis=0, doc="The column labels of the DataFrame." ) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() ops.add_flex_arithmetic_methods(DataFrame) ops.add_special_arithmetic_methods(DataFrame) def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = collections.defaultdict(dict) for index, s in data.items(): for col, v in s.items(): new_data[col][index] = v return new_data """ DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ import collections from collections import abc import datetime from io import StringIO import itertools from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, Dict, FrozenSet, Hashable, Iterable, List, Optional, Sequence, Set, Tuple, Type, Union, cast, ) import warnings import numpy as np import numpy.ma as ma from pandas._config import get_option from pandas._libs import algos as libalgos, lib, properties from pandas._typing import Axes, Axis, Dtype, FilePathOrBuffer, Label, Level, Renamer from pandas.compat import PY37 from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, deprecate_kwarg, doc, rewrite_axis_style_signature, ) from pandas.util._validators import ( validate_axis_style_args, validate_bool_kwarg, validate_percentile, ) from pandas.core.dtypes.cast import ( cast_scalar_to_array, coerce_to_dtypes, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_cast_to_datetime, maybe_convert_platform, maybe_downcast_to_dtype, maybe_infer_to_datetimelike, maybe_upcast, maybe_upcast_putmask, validate_numeric_casting, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_platform_int, infer_dtype_from_object, is_bool_dtype, is_datetime64_any_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_named_tuple, is_object_dtype, is_period_dtype, is_scalar, is_sequence, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import algorithms, common as com, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import Categorical, ExtensionArray from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin as DatetimeLikeArray from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.generic import NDFrame, _shared_docs from pandas.core.indexes import base as ibase from pandas.core.indexes.api import Index, ensure_index, ensure_index_from_sequences from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.multi import MultiIndex, maybe_droplevels from pandas.core.indexes.period import PeriodIndex from pandas.core.indexing import check_bool_indexer, convert_to_index_sliceable from pandas.core.internals import BlockManager from pandas.core.internals.construction import ( arrays_to_mgr, get_names_from_index, init_dict, init_ndarray, masked_rec_array_to_mgr, reorder_arrays, sanitize_index, to_arrays, ) from pandas.core.ops.missing import dispatch_fill_zeros from pandas.core.series import Series from pandas.io.common import get_filepath_or_buffer from pandas.io.formats import console, format as fmt from pandas.io.formats.info import info import pandas.plotting if TYPE_CHECKING: from pandas.core.groupby.generic import DataFrameGroupBy from pandas.io.formats.style import Styler # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes="index, columns", klass="DataFrame", axes_single_arg="{0 or 'index', 1 or 'columns'}", axis="""axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", optional_by=""" by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels. - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels. .. versionchanged:: 0.23.0 Allow specifying index or column level names.""", versionadded_to_excel="", optional_labels="""labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", optional_axis="""axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", ) _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : tuple of (str, str), default ('_x', '_y') Suffix to apply to overlapping column names in the left and right side, respectively. To raise an exception on overlapping columns use (False, False). copy : bool, default True If False, avoid copy if possible. indicator : bool or str, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 0.21.0 Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional, size-mutable, potentially heterogeneous tabular data. Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects. .. versionchanged:: 0.23.0 If data is a dict, column order follows insertion-order for Python 3.6 and later. .. versionchanged:: 0.25.0 If data is a list of dicts, column order follows insertion-order for Python 3.6 and later. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer. copy : bool, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input. See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. read_csv : Read a comma-separated values (csv) file into DataFrame. read_table : Read general delimited file into DataFrame. read_clipboard : Read text from clipboard into DataFrame. Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 """ _internal_names_set = {"columns", "index"} | NDFrame._internal_names_set _typ = "dataframe" @property def _constructor(self) -> Type["DataFrame"]: return DataFrame _constructor_sliced: Type[Series] = Series _deprecations: FrozenSet[str] = NDFrame._deprecations | frozenset([]) _accessors: Set[str] = {"sparse"} @property def _constructor_expanddim(self): raise NotImplementedError("Not supported for DataFrames!") # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index: Optional[Axes] = None, columns: Optional[Axes] = None, dtype: Optional[Dtype] = None, copy: bool = False, ): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr( data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy ) elif isinstance(data, dict): mgr = init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data.soften_mask() # set hardmask False if it was True data[mask] = fill_value else: data = data.copy() mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = init_dict(data, index, columns, dtype=dtype) elif getattr(data, "name", None) is not None: mgr = init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) # For data is list-like, or Iterable (will consume into list) elif isinstance(data, abc.Iterable) and not isinstance(data, (str, bytes)): if not isinstance(data, (abc.Sequence, ExtensionArray)): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], "ndim", 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = to_arrays(data, columns, dtype=dtype) columns = ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = get_names_from_index(data) elif isinstance(data[0], Categorical): index = ibase.default_index(len(data[0])) else: index = ibase.default_index(len(data)) mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = init_dict({}, index, columns, dtype=dtype) else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as err: exc = TypeError( "DataFrame constructor called with " f"incompatible data and dtype: {err}" ) raise exc from err if arr.ndim == 0 and index is not None and columns is not None: values = cast_scalar_to_array( (len(index), len(columns)), data, dtype=dtype ) mgr = init_ndarray( values, index, columns, dtype=values.dtype, copy=False ) else: raise ValueError("DataFrame constructor not properly called!") NDFrame.__init__(self, mgr) # ---------------------------------------------------------------------- @property def axes(self) -> List[Index]: """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self) -> Tuple[int, int]: """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self) -> bool: """ Whether all the columns in a DataFrame have the same type. Returns ------- bool See Also -------- Index._is_homogeneous_type : Whether the object has a single dtype. MultiIndex._is_homogeneous_type : Whether all the levels of a MultiIndex have the same dtype. Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ if self._data.any_extension_types: return len({block.dtype for block in self._data.blocks}) == 1 else: return not self._data.is_mixed_type # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self) -> bool: """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width: bool = False) -> bool: """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case of non-interactive session, no boundaries apply. `ignore_width` is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( (not ignore_width) and width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(l) for l in value.split("\n")) return repr_width < width def _info_repr(self) -> bool: """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self) -> str: """ Return a string representation for a particular DataFrame. """ buf = StringIO("") if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") max_colwidth = get_option("display.max_colwidth") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string( buf=buf, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, line_width=width, max_colwidth=max_colwidth, show_dimensions=show_dimensions, ) return buf.getvalue() def _repr_html_(self) -> Optional[str]: """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO("") self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"&lt;", 1) val = val.replace(">", r"&gt;", 1) return "<pre>" + val + "</pre>" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") formatter = fmt.DataFrameFormatter( self, columns=None, col_space=None, na_rep="NaN", formatters=None, float_format=None, sparsify=None, justify=None, index_names=True, header=True, index=True, bold_rows=True, escape=True, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=".", table_id=None, render_links=False, ) return formatter.to_html(notebook=True) else: return None @Substitution( header_type="bool or sequence", header="Write out the column names. If a list of strings " "is given, it is assumed to be aliases for the " "column names", col_space_type="int", col_space="The minimum width of each column", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf: Optional[FilePathOrBuffer[str]] = None, columns: Optional[Sequence[str]] = None, col_space: Optional[int] = None, header: Union[bool, Sequence[str]] = True, index: bool = True, na_rep: str = "NaN", formatters: Optional[fmt.FormattersType] = None, float_format: Optional[fmt.FloatFormatType] = None, sparsify: Optional[bool] = None, index_names: bool = True, justify: Optional[str] = None, max_rows: Optional[int] = None, min_rows: Optional[int] = None, max_cols: Optional[int] = None, show_dimensions: bool = False, decimal: str = ".", line_width: Optional[int] = None, max_colwidth: Optional[int] = None, encoding: Optional[str] = None, ) -> Optional[str]: """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. max_colwidth : int, optional Max width to truncate each column in characters. By default, no limit. .. versionadded:: 1.0.0 encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ from pandas import option_context with option_context("display.max_colwidth", max_colwidth): formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, line_width=line_width, ) return formatter.to_string(buf=buf, encoding=encoding) # ---------------------------------------------------------------------- @property def style(self) -> "Styler": """ Returns a Styler object. Contains methods for building a styled HTML representation of the DataFrame. See Also -------- io.formats.style.Styler """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields ------ label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print(f'label: {label}') ... print(f'content: {content}', sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"]) def items(self) -> Iterable[Tuple[Label, Series]]: if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) @Appender(_shared_docs["items"]) def iteritems(self) -> Iterable[Tuple[Label, Series]]: yield from self.items() def iterrows(self) -> Iterable[Tuple[Label, Series]]: """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. it : generator A generator that iterates over the rows of the frame. See Also -------- DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. On python versions < 3.7 regular tuples are returned for DataFrames with a large number of columns (>254). Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python versions before 3.7 support at most 255 arguments to constructors can_return_named_tuples = PY37 or len(self.columns) + index < 255 if name is not None and can_return_named_tuples: itertuple = collections.namedtuple(name, fields, rename=True) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self) -> int: """ Returns length of info axis, but here we use the index. """ return len(self.index) def dot(self, other): """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Serie. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, DataFrame): return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns ) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.T.dot(np.transpose(other)).T # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient="columns", dtype=None, columns=None) -> "DataFrame": """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """ index = None orient = orient.lower() if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == "columns": if columns is not None: raise ValueError("cannot use columns parameter with orient='columns'") else: # pragma: no cover raise ValueError("only recognize index or columns for orient") return cls(data, index=index, columns=columns, dtype=dtype) def to_numpy(self, dtype=None, copy=False) -> np.ndarray: """ Convert the DataFrame to a NumPy array. .. versionadded:: 0.24.0 By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ result = np.array(self.values, dtype=dtype, copy=copy) return result def to_dict(self, orient="dict", into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn( "DataFrame columns are not unique, some columns will be omitted.", UserWarning, stacklevel=2, ) # GH16122 into_c = com.standardize_mapping(into) if orient.lower().startswith("d"): return into_c((k, v.to_dict(into)) for k, v in self.items()) elif orient.lower().startswith("l"): return into_c((k, v.tolist()) for k, v in self.items()) elif orient.lower().startswith("sp"): return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(com.maybe_box_datetimelike, t)) for t in self.itertuples(index=False, name=None) ], ), ) ) elif orient.lower().startswith("s"): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in self.items()) elif orient.lower().startswith("r"): columns = self.columns.tolist() rows = ( dict(zip(columns, row)) for row in self.itertuples(index=False, name=None) ) return [ into_c((k, com.maybe_box_datetimelike(v)) for k, v in row.items()) for row in rows ] elif orient.lower().startswith("i"): if not self.index.is_unique: raise ValueError("DataFrame index must be unique for orient='index'.") return into_c( (t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None) ) else: raise ValueError(f"orient '{orient}' not understood") def to_gbq( self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists="fail", auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None, ) -> None: """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists raise pandas_gbq.gbq.TableCreationError. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: https://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None, ) -> "DataFrame": """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : str, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use. exclude : sequence, default None Columns or fields to exclude. columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns). coerce_float : bool, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. nrows : int, default None Number of rows to read if data is an iterator. Returns ------- DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in data.items(): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = to_arrays(data, columns) if columns is not None: columns = ensure_index(columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns, coerce_float=coerce_float) arr_columns = ensure_index(arr_columns) if columns is not None: columns = ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] except (KeyError, TypeError): # raised by get_loc, see GH#29258 result_index = index else: result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records( self, index=True, column_dtypes=None, index_dtypes=None ) -> np.recarray: """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. column_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = f"<S{df.index.str.len().max()}" >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """ if index: if isinstance(self.index, ABCMultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index.values))) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c]._internal_get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = f"level_{count}" count += 1 elif index_names[0] is None: index_names = ["index"] names = [str(name) for name in itertools.chain(index_names, self.columns)] else: arrays = [self[c]._internal_get_values() for c in self.columns] names = [str(c) for c in self.columns] index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): formats.append(dtype_mapping) else: element = "row" if i < index_len else "column" msg = f"Invalid dtype {dtype_mapping} specified for {element} {name}" raise ValueError(msg) return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats}) @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None) -> "DataFrame": mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_stata( self, path: FilePathOrBuffer, convert_dates: Optional[Dict[Label, str]] = None, write_index: bool = True, byteorder: Optional[str] = None, time_stamp: Optional[datetime.datetime] = None, data_label: Optional[str] = None, variable_labels: Optional[Dict[Label, str]] = None, version: Optional[int] = 114, convert_strl: Optional[Sequence[Label]] = None, ) -> None: """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- path : str, buffer or path object String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written. .. versionchanged:: 1.0.0 Previously this was "fname" convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {114, 117, 118, 119, None}, default 114 Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Added support for formats 118 and 119. convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. .. versionadded:: 0.23.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ if version not in (114, 117, 118, 119, None): raise ValueError("Only formats 114, 117, 118 and 119 are supported.") if version == 114: if convert_strl is not None: raise ValueError("strl is not supported in format 114") from pandas.io.stata import StataWriter as statawriter elif version == 117: # mypy: Name 'statawriter' already defined (possibly by an import) from pandas.io.stata import StataWriter117 as statawriter # type: ignore else: # versions 118 and 119 # mypy: Name 'statawriter' already defined (possibly by an import) from pandas.io.stata import StataWriterUTF8 as statawriter # type:ignore kwargs: Dict[str, Any] = {} if version is None or version >= 117: # strl conversion is only supported >= 117 kwargs["convert_strl"] = convert_strl if version is None or version >= 118: # Specifying the version is only supported for UTF8 (118 or 119) kwargs["version"] = version # mypy: Too many arguments for "StataWriter" writer = statawriter( # type: ignore path, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, **kwargs, ) writer.write_file() @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_feather(self, path) -> None: """ Write out the binary feather-format for DataFrames. Parameters ---------- path : str String file path. """ from pandas.io.feather_format import to_feather to_feather(self, path) @Appender( """ Examples -------- >>> df = pd.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(df.to_markdown()) | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal | """ ) @Substitution(klass="DataFrame") @Appender(_shared_docs["to_markdown"]) def to_markdown( self, buf: Optional[IO[str]] = None, mode: Optional[str] = None, **kwargs ) -> Optional[str]: kwargs.setdefault("headers", "keys") kwargs.setdefault("tablefmt", "pipe") tabulate = import_optional_dependency("tabulate") result = tabulate.tabulate(self, **kwargs) if buf is None: return result buf, _, _, _ = get_filepath_or_buffer(buf, mode=mode) assert buf is not None # Help mypy. buf.writelines(result) return None @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_parquet( self, path, engine="auto", compression="snappy", index=None, partition_cols=None, **kwargs, ) -> None: """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- path : str File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset. .. versionchanged:: 1.0.0 Previously this was "fname" engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``True`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. .. versionadded:: 0.24.0 partition_cols : list, optional, default None Column names by which to partition the dataset. Columns are partitioned in the order they are given. .. versionadded:: 0.24.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 """ from pandas.io.parquet import to_parquet to_parquet( self, path, engine, compression=compression, index=index, partition_cols=partition_cols, **kwargs, ) @Substitution( header_type="bool", header="Whether to print column labels, default True", col_space_type="str or int", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.\n\n" " .. versionadded:: 0.25.0\n" " Ability to use str", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=".", bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, encoding=None, ): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.display.html.border``. encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 table_id : str, optional A css id is included in the opening `<table>` tag if specified. .. versionadded:: 0.23.0 render_links : bool, default False Convert URLs to HTML links. .. versionadded:: 0.24.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, table_id=table_id, render_links=render_links, ) # TODO: a generic formatter wld b in DataFrameFormatter return formatter.to_html( buf=buf, classes=classes, notebook=notebook, border=border, encoding=encoding, ) # ---------------------------------------------------------------------- @Appender(info.__doc__) def info( self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None ) -> None: return info(self, verbose, buf, max_cols, memory_usage, null_counts) def memory_usage(self, index=True, deep=False) -> Series: """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.000000+0.000000j 1 True 1 1 1.0 1.000000+0.000000j 1 True 2 1 1.0 1.000000+0.000000j 1 True 3 1 1.0 1.000000+0.000000j 1 True 4 1 1.0 1.000000+0.000000j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5216 """ result = Series( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, ) if index: result = Series(self.index.memory_usage(deep=deep), index=["Index"]).append( result ) return result def transpose(self, *args, copy: bool = False) -> "DataFrame": """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- *args : tuple, optional Accepted for compatibility with NumPy. copy : bool, default False Whether to copy the data after transposing, even for DataFrames with a single dtype. Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, dict()) # construct the args dtypes = list(self.dtypes) if self._is_homogeneous_type and dtypes and is_extension_array_dtype(dtypes[0]): # We have EAs with the same dtype. We can preserve that dtype in transpose. dtype = dtypes[0] arr_type = dtype.construct_array_type() values = self.values new_values = [arr_type._from_sequence(row, dtype=dtype) for row in values] result = self._constructor( dict(zip(self.index, new_values)), index=self.columns ) else: new_values = self.values.T if copy: new_values = new_values.copy() result = self._constructor( new_values, index=self.columns, columns=self.index ) return result.__finalize__(self) @property def T(self) -> "DataFrame": return self.transpose() # ---------------------------------------------------------------------- # Indexing Methods def _ixs(self, i: int, axis: int = 0): """ Parameters ---------- i : int axis : int Notes ----- If slice passed, the resulting data will be a view. """ # irow if axis == 0: new_values = self._data.fast_xs(i) # if we are a copy, mark as such copy = isinstance(new_values, np.ndarray) and new_values.base is None result = self._constructor_sliced( new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype, ) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] values = self._data.iget(i) result = self._box_col_values(values, label) # this is a cached value, mark it so result._set_as_cached(label, self) return result def __getitem__(self, key): key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key): # shortcut if the key is in columns if self.columns.is_unique and key in self.columns: if self.columns.nlevels > 1: return self._getitem_multilevel(key) return self._get_item_cache(key) # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self.where(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self._take_with_is_copy(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, ABCMultiIndex): data = data[key] return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match DataFrame index.", UserWarning, stacklevel=3, ) elif len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}." ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self._take_with_is_copy(indexer, axis=0) def _getitem_multilevel(self, key): # self.columns is a MultiIndex loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor( new_values, index=self.index, columns=result_columns ) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _get_value(self, index, col, takeable: bool = False): """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar """ if takeable: series = self._ixs(col, axis=1) return series._values[index] series = self._get_item_cache(col) engine = self.index._engine try: loc = engine.get_loc(index) return series._values[loc] except KeyError: # GH 20629 if self.index.nlevels > 1: # partial indexing forbidden raise # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key: slice, value): # NB: we can't just use self.loc[key] = value because that # operates on labels and we need to operate positional for # backwards-compat, xref GH#31469 self._check_setitem_copy() self.iloc._setitem_with_indexer(key, value) def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}!" ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.iloc._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError("Columns must be same length as key") for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: self.loc._ensure_listlike_indexer(key, axis=1) indexer = self.loc._get_listlike_indexer( key, axis=1, raise_missing=False )[1] self._check_setitem_copy() self.iloc._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict()) if key.values.size and not is_bool_dtype(key.values): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _iset_item(self, loc: int, value): self._ensure_valid_index(value) # technically _sanitize_column expects a label, not a position, # but the behavior is the same as long as we pass broadcast=False value = self._sanitize_column(loc, value, broadcast=False) NDFrame._iset_item(self, loc, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_value(self, index, col, value, takeable: bool = False): """ Put single value at passed column and index. Parameters ---------- index : row label col : column label value : scalar takeable : interpret the index/col as indexers, default False """ try: if takeable is True: series = self._ixs(col, axis=1) series._set_value(index, value, takeable=True) return series = self._get_item_cache(col) engine = self.index._engine loc = engine.get_loc(index) validate_numeric_casting(series.dtype, value) series._values[loc] = value # Note: trying to use series._set_value breaks tests in # tests.frame.indexing.test_indexing and tests.indexing.test_partial except (KeyError, TypeError): # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) def _ensure_valid_index(self, value): """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value) and len(value): try: value = Series(value) except (ValueError, NotImplementedError, TypeError) as err: raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a Series" ) from err self._data = self._data.reindex_axis( value.index.copy(), axis=1, fill_value=np.nan ) def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ Provide boxed values for a column. """ klass = self._constructor_sliced return klass(values, index=self.index, name=items, fastpath=True) # ---------------------------------------------------------------------- # Unsorted def query(self, expr, inplace=False, **kwargs): """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. You can refer to column names that contain spaces or operators by surrounding them in backticks. This way you can also escape names that start with a digit, or those that are a Python keyword. Basically when it is not valid Python identifier. See notes down for more details. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. .. versionadded:: 0.25.0 Backtick quoting introduced. .. versionadded:: 1.0.0 Expanding functionality of backtick quoting for more than only spaces. inplace : bool Whether the query should modify the data in place or return a modified copy. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame DataFrame resulting from the provided query expression. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. *Backtick quoted variables* Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems. During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped). In a special case, quotes that make a pair around a backtick can confuse the parser. For example, ```it's` > `that's``` will raise an error, as it forms a quoted string (``'s > `that'``) with a backtick inside. See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in :mod:`pandas.core.computation.parsing`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = f"expr must be a string to be evaluated, {type(expr)} given" raise ValueError(msg) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, or pandas object The result of the evaluation. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 Multiple columns can be assigned to using multi-line expressions: >>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") resolvers = kwargs.pop("resolvers", None) kwargs["level"] = kwargs.pop("level", 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() column_resolvers = self._get_cleaned_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None) -> "DataFrame": """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <https://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = (frozenset(include), frozenset(exclude)) if not any(selection): raise ValueError("at least one of include or exclude must be nonempty") # convert the myriad valid dtypes object to a single representation include = frozenset(infer_dtype_from_object(x) for x in include) exclude = frozenset(infer_dtype_from_object(x) for x in exclude) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError(f"include and exclude overlap on {(include & exclude)}") # We raise when both include and exclude are empty # Hence, we can just shrink the columns we want to keep keep_these = np.full(self.shape[1], True) def extract_unique_dtypes_from_dtypes_set( dtypes_set: FrozenSet[Dtype], unique_dtypes: np.ndarray ) -> List[Dtype]: extracted_dtypes = [ unique_dtype for unique_dtype in unique_dtypes if issubclass(unique_dtype.type, tuple(dtypes_set)) # type: ignore ] return extracted_dtypes unique_dtypes = self.dtypes.unique() if include: included_dtypes = extract_unique_dtypes_from_dtypes_set( include, unique_dtypes ) keep_these &= self.dtypes.isin(included_dtypes) if exclude: excluded_dtypes = extract_unique_dtypes_from_dtypes_set( exclude, unique_dtypes ) keep_these &= ~self.dtypes.isin(excluded_dtypes) return self.iloc[:, keep_these.values] def insert(self, loc, column, value, allow_duplicates=False) -> None: """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns). column : str, number, or hashable object Label of the inserted column. value : int, Series, or array-like allow_duplicates : bool, optional """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs) -> "DataFrame": r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. Later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. .. versionchanged:: 0.23.0 Keyword argument order is maintained. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy() for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- numpy.ndarray """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except ValueError as err: # raised in MultiIndex.from_tuples, see test_insert_error_msmgs if not value.index.is_unique: # duplicate axis raise err # other raise TypeError( "incompatible index of inserted column with frame index" ) from err return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, ABCMultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, ExtensionArray): # Explicitly copy here, instead of in sanitize_index, # as sanitize_index won't copy an EA, even with copy=True value = value.copy() value = sanitize_index(value, self.index) elif isinstance(value, Index) or is_sequence(value): # turn me into an ndarray value = sanitize_index(value, self.index) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com.asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: # cast ignores pandas dtypes. so save the dtype first infer_dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) # upcast value = cast_scalar_to_array(len(self.index), value) value = maybe_cast_to_datetime(value, infer_dtype) # return internal types directly if is_extension_array_dtype(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if not self.columns.is_unique or isinstance(self.columns, ABCMultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): return { item: Series(self._data.iget(idx), index=self.index, name=item) for idx, item in enumerate(self.columns) } def lookup(self, row_labels, col_labels) -> np.ndarray: """ Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup. col_labels : sequence The column labels to use for lookup. Returns ------- numpy.ndarray The found values. """ n = len(row_labels) if n != len(col_labels): raise ValueError("Row labels must have same size as column labels") thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError("One or more row labels was not found") if (cidx == -1).any(): raise KeyError("One or more column labels was not found") flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype="O") for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes["columns"] if columns is not None: frame = frame._reindex_columns( columns, method, copy, level, fill_value, limit, tolerance ) index = axes["index"] if index is not None: frame = frame._reindex_index( index, method, copy, level, fill_value, limit, tolerance ) return frame def _reindex_index( self, new_index, method, copy, level, fill_value=np.nan, limit=None, tolerance=None, ): new_index, indexer = self.index.reindex( new_index, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_columns( self, new_columns, method, copy, level, fill_value=None, limit=None, tolerance=None, ): new_columns, indexer = self.columns.reindex( new_columns, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_multi(self, axes, copy, fill_value) -> "DataFrame": """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi( self.values, indexer, fill_value=fill_value ) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @Appender(_shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ) -> "DataFrame": return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) @Appender( """ Examples -------- >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6 Now, update the labels inplace. >>> df.set_axis(['i', 'ii'], axis='columns', inplace=True) >>> df i ii 0 1 4 1 2 5 2 3 6 """ ) @Substitution( **_shared_doc_kwargs, extended_summary_sub=" column or", axis_description_sub=", and 1 identifies the columns", see_also_sub=" or columns", ) @Appender(NDFrame.set_axis.__doc__) def set_axis(self, labels, axis: Axis = 0, inplace: bool = False): return super().set_axis(labels, axis=axis, inplace=inplace) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.reindex.__doc__) @rewrite_axis_style_signature( "labels", [ ("method", None), ("copy", True), ("level", None), ("fill_value", np.nan), ("limit", None), ("tolerance", None), ], ) def reindex(self, *args, **kwargs) -> "DataFrame": axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("labels", None) return super().reindex(**kwargs) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). .. versionadded:: 0.21.0 columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame DataFrame without the removed index or column labels. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @rewrite_axis_style_signature( "mapper", [("copy", True), ("inplace", False), ("level", None), ("errors", "ignore")], ) def rename( self, mapper: Optional[Renamer] = None, *, index: Optional[Renamer] = None, columns: Optional[Renamer] = None, axis: Optional[Axis] = None, copy: bool = True, inplace: bool = False, level: Optional[Level] = None, errors: str = "ignore", ) -> Optional["DataFrame"]: """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper : dict-like or function Dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : int or str Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame DataFrame with the renamed axis labels. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ return super().rename( mapper=mapper, index=index, columns=columns, axis=axis, copy=copy, inplace=inplace, level=level, errors=errors, ) @doc(NDFrame.fillna, **_shared_doc_kwargs) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, ) -> Optional["DataFrame"]: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) @Appender(_shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @Appender(_shared_docs["shift"] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None) -> "DataFrame": return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def set_index( self, keys, drop=True, append=False, inplace=False, verify_integrity=False ): """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing: List[Label] = [] for col in keys: if isinstance( col, (ABCIndexClass, ABCSeries, np.ndarray, list, abc.Iterator) ): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError as err: raise TypeError( f"{err_msg}. Received column of type {type(col)}" ) from err else: if not found: missing.append(col) if missing: raise KeyError(f"None of {missing} are in the columns") if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove: List[Label] = [] for col in keys: if isinstance(col, ABCMultiIndex): for n in range(col.nlevels): arrays.append(col._get_level_values(n)) names.extend(col.names) elif isinstance(col, (ABCIndexClass, ABCSeries)): # if Index then not MultiIndex (treated above) arrays.append(col) names.append(col.name) elif isinstance(col, (list, np.ndarray)): arrays.append(col) names.append(None) elif isinstance(col, abc.Iterator): arrays.append(list(col)) names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( f"Length mismatch: Expected {len(self)} rows, " f"received array of length {len(arrays[-1])}" ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError(f"Index has duplicate keys: {duplicates}") # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index( self, level: Optional[Union[Hashable, Sequence[Hashable]]] = None, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Label = "", ) -> Optional["DataFrame"]: """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame or None DataFrame with the new index or None if ``inplace=True``. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): values = index._values if not isinstance(index, (PeriodIndex, DatetimeIndex)): if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 # we can have situations where the whole mask is -1, # meaning there is nothing found in labels, so make all nan's if mask.all(): values = np.empty(len(mask)) values.fill(np.nan) else: values = values.take(labels) # TODO(https://github.com/pandas-dev/pandas/issues/24206) # Push this into maybe_upcast_putmask? # We can't pass EAs there right now. Looks a bit # complicated. # So we unbox the ndarray_values, op, re-box. values_type = type(values) values_dtype = values.dtype if issubclass(values_type, DatetimeLikeArray): values = values._data if mask.any(): values, _ = maybe_upcast_putmask(values, mask, np.nan) if issubclass(values_type, DatetimeLikeArray): values = values_type(values, dtype=values_dtype) return values new_index = ibase.default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: to_insert: Iterable[Tuple[Any, Optional[Any]]] if isinstance(self.index, ABCMultiIndex): names = [ (n if n is not None else f"level_{i}") for i, n in enumerate(self.index.names) ] to_insert = zip(self.index.levels, self.index.codes) else: default = "index" if "index" not in self else "level_0" names = [default] if self.index.name is None else [self.index.name] to_insert = ((self.index, None),) multi_col = isinstance(self.columns, ABCMultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if not (level is None or i in level): continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " f"with incomplete column name {name}" ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj return None # ---------------------------------------------------------------------- # Reindex-based selection methods @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isna(self) -> "DataFrame": return super().isna() @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isnull(self) -> "DataFrame": return super().isnull() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notna(self) -> "DataFrame": return super().notna() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notnull(self) -> "DataFrame": return super().notnull() def dropna(self, axis=0, how="any", thresh=None, subset=None, inplace=False): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. versionchanged:: 1.0.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 raise TypeError("supplying multiple axes to axis is no longer supported.") axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == "any": mask = count == len(agg_obj._get_axis(agg_axis)) elif how == "all": mask = count > 0 else: if how is not None: raise ValueError(f"invalid how option: {how}") else: raise TypeError("must specify how or thresh") result = self.loc(axis=axis)[mask] if inplace: self._update_inplace(result) else: return result def drop_duplicates( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", inplace: bool = False, ignore_index: bool = False, ) -> Optional["DataFrame"]: """ Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to keep. - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : bool, default False Whether to drop duplicates in place or to return a copy. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- DataFrame DataFrame with duplicates removed or None if ``inplace=True``. See Also -------- DataFrame.value_counts: Count unique combinations of columns. """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, "inplace") duplicated = self.duplicated(subset, keep=keep) if inplace: (inds,) = np.asarray(-duplicated).nonzero() new_data = self._data.take(inds) if ignore_index: new_data.axes[1] = ibase.default_index(len(inds)) self._update_inplace(new_data) else: result = self[-duplicated] if ignore_index: result.index = ibase.default_index(len(result)) return result return None def duplicated( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", ) -> "Series": """ Return boolean Series denoting duplicate rows. Considering certain columns is optional. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to mark. - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series """ from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT if self.empty: return Series(dtype=bool) def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT) ) return labels.astype("i8", copy=False), len(shape) if subset is None: subset = self.columns elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # needed for mypy since can't narrow types using np.iterable subset = cast(Iterable, subset) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_values.__doc__) def sort_values( self, by, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ignore_index=False, ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError( f"Length of ascending ({len(ascending)}) != length of by ({len(by)})" ) if len(by) > 1: from pandas.core.sorting import lexsort_indexer keys = [self._get_label_or_level_values(x, axis=axis) for x in by] indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) else: from pandas.core.sorting import nargsort by = by[0] k = self._get_label_or_level_values(by, axis=axis) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position ) new_data = self._data.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def sort_index( self, axis=0, level=None, ascending: bool = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, ): """ Sort object by labels (along an axis). Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns. level : int or level name or list of ints or list of level names If not None, sort on values in specified index level(s). ascending : bool or list of bools, default True Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- sorted_obj : DataFrame or None DataFrame with sorted index if inplace=False, None otherwise. """ # TODO: this can be combined with Series.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) labels = self._get_axis(axis) # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer labels = labels._sort_levels_monotonic() if level is not None: new_axis, indexer = labels.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(labels, ABCMultiIndex): from pandas.core.sorting import lexsort_indexer indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and labels.is_monotonic_increasing) or ( not ascending and labels.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( labels, kind=kind, ascending=ascending, na_position=na_position ) baxis = self._get_block_manager_axis(axis) new_data = self._data.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def value_counts( self, subset: Optional[Sequence[Label]] = None, normalize: bool = False, sort: bool = True, ascending: bool = False, ): """ Return a Series containing counts of unique rows in the DataFrame. .. versionadded:: 1.1.0 Parameters ---------- subset : list-like, optional Columns to use when counting unique combinations. normalize : bool, default False Return proportions rather than frequencies. sort : bool, default True Sort by frequencies. ascending : bool, default False Sort in ascending order. Returns ------- Series See Also -------- Series.value_counts: Equivalent method on Series. Notes ----- The returned Series will have a MultiIndex with one level per input column. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df num_legs num_wings falcon 2 2 dog 4 0 cat 4 0 ant 6 0 >>> df.value_counts() num_legs num_wings 4 0 2 6 0 1 2 2 1 dtype: int64 >>> df.value_counts(sort=False) num_legs num_wings 2 2 1 4 0 2 6 0 1 dtype: int64 >>> df.value_counts(ascending=True) num_legs num_wings 2 2 1 6 0 1 4 0 2 dtype: int64 >>> df.value_counts(normalize=True) num_legs num_wings 4 0 0.50 6 0 0.25 2 2 0.25 dtype: float64 """ if subset is None: subset = self.columns.tolist() counts = self.groupby(subset).size() if sort: counts = counts.sort_values(ascending=ascending) if normalize: counts /= counts.sum() # Force MultiIndex for single column if len(subset) == 1: counts.index = MultiIndex.from_arrays( [counts.index], names=[counts.index.name] ) return counts def nlargest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 337000, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 337000 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "population". >>> df.nsmallest(3, 'population') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 337000 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS Nauru 337000 182 NR To order by the smallest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Nauru 337000 182 NR """ return algorithms.SelectNFrame( self, n=n, keep=keep, columns=columns ).nsmallest() def swaplevel(self, i=-2, j=-1, axis=0) -> "DataFrame": """ Swap levels i and j in a MultiIndex on a particular axis. Parameters ---------- i, j : int or str Levels of the indices to be swapped. Can pass level name as string. Returns ------- DataFrame """ result = self.copy() axis = self._get_axis_number(axis) if not isinstance(result._get_axis(axis), ABCMultiIndex): # pragma: no cover raise TypeError("Can only swap levels on a hierarchical axis.") if axis == 0: assert isinstance(result.index, ABCMultiIndex) result.index = result.index.swaplevel(i, j) else: assert isinstance(result.columns, ABCMultiIndex) result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0) -> "DataFrame": """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- DataFrame """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), ABCMultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy() if axis == 0: assert isinstance(result.index, ABCMultiIndex) result.index = result.index.reorder_levels(order) else: assert isinstance(result.columns, ABCMultiIndex) result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other: "DataFrame", func, fill_value=None): # at this point we have `self._indexed_same(other)` if fill_value is None: # since _arith_op may be called in a loop, avoid function call # overhead if possible by doing this check once _arith_op = func else: def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) if ops.should_series_dispatch(self, other, func): # iterate over columns new_data = ops.dispatch_to_series(self, other, _arith_op) else: with np.errstate(all="ignore"): res_values = _arith_op(self.values, other.values) new_data = dispatch_fill_zeros(func, self.values, other.values, res_values) return new_data def _construct_result(self, result) -> "DataFrame": """ Wrap the result of an arithmetic, comparison, or logical operation. Parameters ---------- result : DataFrame Returns ------- DataFrame """ out = self._constructor(result, index=self.index, copy=False) # Pin columns instead of passing to constructor for compat with # non-unique columns case out.columns = self.columns return out def combine( self, other: "DataFrame", func, fill_value=None, overwrite=True ) -> "DataFrame": """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) arr = func(series, otherSeries) arr = maybe_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns) def combine_first(self, other: "DataFrame") -> "DataFrame": """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ import pandas.core.computation.expressions as expressions def extract_values(arr): # Does two things: # 1. maybe gets the values from the Series / Index # 2. convert datelike to i8 if isinstance(arr, (ABCIndexClass, ABCSeries)): arr = arr._values if needs_i8_conversion(arr): if is_extension_array_dtype(arr.dtype): arr = arr.asi8 else: arr = arr.view("i8") return arr def combiner(x, y): mask = isna(x) if isinstance(mask, (ABCIndexClass, ABCSeries)): mask = mask._values x_values = extract_values(x) y_values = extract_values(y) # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) return self.combine(other, combiner, overwrite=False) def update( self, other, join="left", overwrite=True, filter_func=None, errors="ignore" ) -> None: """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. .. versionchanged:: 0.24.0 Changed from `raise_conflict=False|True` to `errors='ignore'|'raise'`. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError("The parameter errors must be either 'ignore' or 'raise'") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all="ignore"): mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping @Appender( """ Examples -------- >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0 **Hierarchical Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Captive 210.0 Wild 185.0 """ ) @Appender(_shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, ) -> "DataFrameGroupBy": from pandas.core.groupby.generic import DataFrameGroupBy if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return DataFrameGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, ) _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ----------%s index : str or object or a list of str, optional Column to use to make new frame's index. If None, uses existing index. .. versionchanged:: 1.1.0 Also accept list of index names. columns : str or object or a list of str Column to use to make new frame's columns. .. versionchanged:: 1.1.0 Also accept list of columns names. values : str, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. .. versionchanged:: 0.23.0 Also accept list of column names. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t You could also assign a list of column names or a list of index names. >>> df = pd.DataFrame({ ... "lev1": [1, 1, 1, 2, 2, 2], ... "lev2": [1, 1, 2, 1, 1, 2], ... "lev3": [1, 2, 1, 2, 1, 2], ... "lev4": [1, 2, 3, 4, 5, 6], ... "values": [0, 1, 2, 3, 4, 5]}) >>> df lev1 lev2 lev3 lev4 values 0 1 1 1 1 0 1 1 1 2 2 1 2 1 2 1 3 2 3 2 1 2 4 3 4 2 1 1 5 4 5 2 2 2 6 5 >>> df.pivot(index="lev1", columns=["lev2", "lev3"],values="values") lev2 1 2 lev3 1 2 1 2 lev1 1 0.0 1.0 2.0 NaN 2 4.0 3.0 NaN 5.0 >>> df.pivot(index=["lev1", "lev2"], columns=["lev3"],values="values") lev3 1 2 lev1 lev2 1 1 0.0 1.0 2 2.0 NaN 2 1 4.0 3.0 2 NaN 5.0 A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot(self, index=None, columns=None, values=None) -> "DataFrame": from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with (in the resulting pivot table, after aggregation). margins : bool, default False Add all row / columns (e.g. for subtotal / grand totals). dropna : bool, default True Do not include columns whose entries are all NaN. margins_name : str, default 'All' Name of the row / column that will contain the totals when margins is True. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionchanged:: 0.25.0 Returns ------- DataFrame An Excel style pivot table. See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9.0 7.500000 6.0 small 5.500000 9.0 8.500000 8.0 foo large 2.000000 5.0 4.500000 4.0 small 2.333333 6.0 4.333333 2.0 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ) -> "DataFrame": from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) def stack(self, level=-1, dropna=True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. The new index levels are sorted. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def explode(self, column: Union[str, Tuple]) -> "DataFrame": """ Transform each element of a list-like to a row, replicating index values. .. versionadded:: 0.25.0 Parameters ---------- column : str or tuple Column to explode. Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : if columns of the frame are not unique. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels. DataFrame.melt : Unpivot a DataFrame from wide format to long format. Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 foo 1 2 [] 1 3 [3, 4] 1 >>> df.explode('A') A B 0 1 1 0 2 1 0 3 1 1 foo 1 2 NaN 1 3 3 1 3 4 1 """ if not (is_scalar(column) or isinstance(column, tuple)): raise ValueError("column must be a scalar") if not self.columns.is_unique: raise ValueError("columns must be unique") df = self.reset_index(drop=True) # TODO: use overload to refine return type of reset_index assert df is not None # needed for mypy result = df[column].explode() result = df.drop([column], axis=1).join(result) result.index = self.index.take(result.index) result = result.reindex(columns=self.columns, copy=False) return result def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, str, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name. fill_value : int, str or dict Replace NaN with this value if the unstack produces missing values. Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) _shared_docs[ "melt" ] = """ Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. %(versionadded)s Parameters ---------- id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or str, optional If columns are a MultiIndex then use this level to melt. Returns ------- DataFrame Unpivoted DataFrame. See Also -------- %(other)s pivot_table DataFrame.pivot Series.explode Examples -------- >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ @Appender( _shared_docs["melt"] % dict( caller="df.melt(", versionadded="\n .. versionadded:: 0.20.0\n", other="melt", ) ) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ) -> "DataFrame": from pandas.core.reshape.melt import melt return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0) -> "DataFrame": """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). Returns ------- DataFrame See Also -------- Series.diff: First discrete difference for a Series. DataFrame.pct_change: Percent change over given number of periods. DataFrame.shift: Shift index by desired number of periods with an optional time freq. Notes ----- For boolean dtypes, this uses :meth:`operator.xor` rather than :meth:`operator.sub`. Examples -------- Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0.0 0.0 1 NaN -1.0 3.0 2 NaN -1.0 7.0 3 NaN -1.0 13.0 4 NaN 0.0 20.0 5 NaN 2.0 28.0 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: Union[str, List[str]], ndim: int, subset: Optional[Union[Series, ABCDataFrame]] = None, ) -> Union[Series, ABCDataFrame]: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_summary_and_see_also_doc = dedent( """ The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.EWM : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @Substitution( see_also=_agg_summary_and_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs, ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) result = None try: result, how = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, axis=0, *args, **kwargs): if axis == 1: # NDFrame.aggregate returns a tuple, and we need to transpose # only result result, how = self.T._aggregate(arg, *args, **kwargs) result = result.T if result is not None else result return result, how return super()._aggregate(arg, *args, **kwargs) agg = aggregate @Appender(_shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs) -> "DataFrame": axis = self._get_axis_number(axis) if axis == 1: return self.T.transform(func, *args, **kwargs).T return super().transform(func, *args, **kwargs) def apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. raw : bool, default False Determines if row or column is passed as a Series or ndarray object: * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing result_type='expand' will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, raw=raw, result_type=result_type, args=args, kwds=kwds, ) return op.get_result() def applymap(self, func) -> "DataFrame": """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. Notes ----- In the current implementation applymap calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func) return lib.map_infer(x.astype(object).values, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append( self, other, ignore_index=False, verify_integrity=False, sort=False ) -> "DataFrame": """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : bool, default False If True, do not use the index labels. verify_integrity : bool, default False If True, raise ValueError on creating index with duplicates. sort : bool, default False Sort columns if the columns of `self` and `other` are not aligned. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Changed to not sort by default. Returns ------- DataFrame See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): if not ignore_index: raise TypeError("Can only append a dict if ignore_index=True") other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True " "or if the Series has a name" ) index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) try: combined_columns = self.columns.append(idx_diff) except TypeError: combined_columns = self.columns.astype(object).append(idx_diff) other = ( other.reindex(combined_columns, copy=False) .to_frame() .T.infer_objects() .rename_axis(index.names, copy=False) ) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list): if not other: pass elif not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.reindex(columns=self.columns) from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self, *other] else: to_concat = [self, other] return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) def join( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ) -> "DataFrame": """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it. lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Support for specifying index levels as the `on` parameter was added in version 0.23.0. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN """ return self._join_compat( other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort ) def _join_compat( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ): from pandas.core.reshape.merge import merge from pandas.core.reshape.concat import concat if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported for joining on index" ) frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat( frames, axis=1, join="outer", verify_integrity=True, sort=sort ) return res.reindex(self.index, copy=False) else: return concat( frames, axis=1, join=how, verify_integrity=True, sort=sort ) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ) -> "DataFrame": from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round(self, decimals=0, *args, **kwargs) -> "DataFrame": """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = list(_dict_round(self, decimals)) elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.items()] else: raise TypeError("decimals must be an integer, a dict-like or a Series") if len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method="pearson", min_periods=1) -> "DataFrame": """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith : Compute pairwise correlation with another DataFrame or Series. Series.corr : Compute the correlation between two Series. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if method == "pearson": correl = libalgos.nancorr(ensure_float64(mat), minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(ensure_float64(mat), minp=min_periods) elif method == "kendall" or callable(method): if min_periods is None: min_periods = 1 mat = ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods=None) -> "DataFrame": """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.EWM.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <https://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if notna(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = libalgos.nancorr(ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=idx, columns=cols) def corrwith(self, other, axis=0, drop=False, method="pearson") -> Series: """ Compute pairwise correlation. Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr : Compute pairwise correlation of columns. """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series( map(c, zip(left.values.T, right.values.T)), index=left.columns ) else: raise ValueError( f"Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable" ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype("int64") def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, ABCMultiIndex): raise TypeError( f"Can only count levels on hierarchical {self._get_axis_name(axis)}." ) if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notna(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, str): level = count_axis._get_level_number(level) level_name = count_axis._names[level] level_index = count_axis.levels[level]._shallow_copy(name=level_name) level_codes = ensure_int64(count_axis.codes[level]) counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): assert filter_type is None or filter_type == "bool", filter_type dtype_is_dt = self.dtypes.apply( lambda x: is_datetime64_any_dtype(x) or is_period_dtype(x) ) if numeric_only is None and name in ["mean", "median"] and dtype_is_dt.any(): warnings.warn( "DataFrame.mean and DataFrame.median with numeric_only=None " "will include datetime64, datetime64tz, and PeriodDtype columns in a " "future version.", FutureWarning, stacklevel=3, ) cols = self.columns[~dtype_is_dt] self = self[cols] if axis is None and filter_type == "bool": labels = None constructor = None else: # TODO: Make other agg func handle axis=None properly axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) constructor = self._constructor def f(x): return op(x, axis=axis, skipna=skipna, **kwds) def _get_data(axis_matters): if filter_type is None: data = self._get_numeric_data() elif filter_type == "bool": if axis_matters: # GH#25101, GH#24434 data = self._get_bool_data() if axis == 0 else self else: data = self._get_bool_data() else: # pragma: no cover msg = ( f"Generating numeric_only data with filter_type {filter_type} " "not supported." ) raise NotImplementedError(msg) return data if numeric_only is not None and axis in [0, 1]: df = self if numeric_only is True: df = _get_data(axis_matters=True) if axis == 1: df = df.T axis = 0 out_dtype = "bool" if filter_type == "bool" else None def blk_func(values): if values.ndim == 1 and not isinstance(values, np.ndarray): # we can't pass axis=1 return op(values, axis=0, skipna=skipna, **kwds) return op(values, axis=1, skipna=skipna, **kwds) # After possibly _get_data and transposing, we are now in the # simple case where we can use BlockManager._reduce res = df._data.reduce(blk_func) assert isinstance(res, dict) if len(res): assert len(res) == max(list(res.keys())) + 1, res.keys() out = df._constructor_sliced(res, index=range(len(res)), dtype=out_dtype) out.index = df.columns if axis == 0 and df.dtypes.apply(needs_i8_conversion).any(): # FIXME: needs_i8_conversion check is kludge, not sure # why it is necessary in this case and this case alone out[:] = coerce_to_dtypes(out.values, df.dtypes) return out if numeric_only is None: data = self values = data.values try: result = f(values) except TypeError: # e.g. in nanops trying to convert strs to float # try by-column first if filter_type is None and axis == 0: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series # we only end up here if we have not specified # numeric_only and yet we have tried a # column-by-column reduction, where we have mixed type. # So let's just do what we can from pandas.core.apply import frame_apply opa = frame_apply( self, func=f, result_type="expand", ignore_failures=True ) result = opa.get_result() if result.ndim == self.ndim: result = result.iloc[0] return result # TODO: why doesnt axis matter here? data = _get_data(axis_matters=False) labels = data._get_agg_axis(axis) values = data.values with np.errstate(all="ignore"): result = f(values) else: if numeric_only: data = _get_data(axis_matters=True) labels = data._get_agg_axis(axis) values = data.values else: data = self values = data.values result = f(values) if filter_type == "bool" and is_object_dtype(values) and axis is None: # work around https://github.com/numpy/numpy/issues/10489 # TODO: can we de-duplicate parts of this with the next blocK? result = np.bool_(result) elif hasattr(result, "dtype") and is_object_dtype(result.dtype): try: if filter_type is None: result = result.astype(np.float64) elif filter_type == "bool" and notna(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = coerce_to_dtypes(result, data.dtypes) if constructor is not None: result = self._constructor_sliced(result, index=labels) return result def nunique(self, axis=0, dropna=True) -> Series: """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin : Return index of the minimum element. Notes ----- This method is the DataFrame version of ``ndarray.argmin``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the minimum value in each column. >>> df.idxmin() consumption Pork co2_emissions Wheat Products dtype: object To return the index for the minimum value in each row, use ``axis="columns"``. >>> df.idxmin(axis="columns") Pork consumption Wheat Products co2_emissions Beef consumption dtype: object """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax : Return index of the maximum element. Notes ----- This method is the DataFrame version of ``ndarray.argmax``. Examples -------- Consider a dataset containing food consumption in Argentina. >>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48], ... 'co2_emissions': [37.2, 19.66, 1712]}, ... index=['Pork', 'Wheat Products', 'Beef']) >>> df consumption co2_emissions Pork 10.51 37.20 Wheat Products 103.11 19.66 Beef 55.48 1712.00 By default, it returns the index for the maximum value in each column. >>> df.idxmax() consumption Wheat Products co2_emissions Beef dtype: object To return the index for the maximum value in each row, use ``axis="columns"``. >>> df.idxmax(axis="columns") Pork co2_emissions Wheat Products consumption Beef co2_emissions dtype: object """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError(f"Axis must be 0 or 1 (got {repr(axis_num)})") def mode(self, axis=0, numeric_only=False, dropna=True) -> "DataFrame": """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row. numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains ``NaN``, because they have only one mode, but the DataFrame has two rows. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation="linear"): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ validate_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T if len(data.columns) == 0: # GH#23925 _get_numeric_data may have dropped all columns cols = Index([], name=self.columns.name) if is_list_like(q): return self._constructor([], index=q, columns=cols) return self._constructor_sliced([], index=cols, name=q, dtype=np.float64) result = data._data.quantile( qs=q, axis=1, interpolation=interpolation, transposed=is_transposed ) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp( self, freq=None, how: str = "start", axis: Axis = 0, copy: bool = True ) -> "DataFrame": """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with DatetimeIndex """ new_obj = self.copy(deep=copy) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) new_ax = old_ax.to_timestamp(freq=freq, how=how) setattr(new_obj, axis_name, new_ax) return new_obj def to_period(self, freq=None, axis: Axis = 0, copy: bool = True) -> "DataFrame": """ Convert DataFrame from DatetimeIndex to PeriodIndex. Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with PeriodIndex """ new_obj = self.copy(deep=copy) axis_name = self._get_axis_name(axis) old_ax = getattr(self, axis_name) new_ax = old_ax.to_period(freq=freq) setattr(new_obj, axis_name, new_ax) return new_obj def isin(self, values) -> "DataFrame": """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are allowed " "to be passed to DataFrame.isin(), " f"you passed a '{type(values).__name__}'" ) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns, ) # ---------------------------------------------------------------------- # Add index and columns _AXIS_ORDERS = ["index", "columns"] _AXIS_NUMBERS = {"index": 0, "columns": 1} _AXIS_NAMES = {0: "index", 1: "columns"} _AXIS_REVERSED = True _AXIS_LEN = len(_AXIS_ORDERS) _info_axis_number = 1 _info_axis_name = "columns" index: "Index" = properties.AxisProperty( axis=1, doc="The index (row labels) of the DataFrame." ) columns: "Index" = properties.AxisProperty( axis=0, doc="The column labels of the DataFrame." ) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() ops.add_flex_arithmetic_methods(DataFrame) ops.add_special_arithmetic_methods(DataFrame) def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = collections.defaultdict(dict) for index, s in data.items(): for col, v in s.items(): new_data[col][index] = v return new_data
BugsInPy/BugsInPy/temp/projects/pandas/bug-47-fixed/pandas/pandas/core/frame.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-47-buggy/pandas/pandas/core/frame.py
pandas-bug-129
from datetime import datetime, timedelta import operator from typing import Any, Sequence, Type, Union, cast import warnings import numpy as np from pandas._libs import NaT, NaTType, Timestamp, algos, iNaT, lib from pandas._libs.tslibs.c_timestamp import maybe_integer_op_deprecated from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from pandas._libs.tslibs.timestamps import RoundTo, round_nsint64 from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError, NullFrequencyError, PerformanceWarning from pandas.util._decorators import Appender, Substitution from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_offsetlike, is_period_dtype, is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCPeriodArray, ABCSeries, ) from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna from pandas._typing import DatetimeLikeScalar from pandas.core import missing, nanops from pandas.core.algorithms import checked_add_with_arr, take, unique1d, value_counts import pandas.core.common as com from pandas.core.ops.invalid import make_invalid_op from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick from .base import ExtensionArray, ExtensionOpsMixin class AttributesMixin: _data = None # type: np.ndarray @classmethod def _simple_new(cls, values, **kwargs): raise AbstractMethodError(cls) @property def _scalar_type(self) -> Type[DatetimeLikeScalar]: """The scalar associated with this datelike * PeriodArray : Period * DatetimeArray : Timestamp * TimedeltaArray : Timedelta """ raise AbstractMethodError(self) def _scalar_from_string( self, value: str ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self) def _unbox_scalar(self, value: Union[Period, Timestamp, Timedelta, NaTType]) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000 """ raise AbstractMethodError(self) def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType] ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other Raises ------ Exception """ raise AbstractMethodError(self) class DatelikeOps: """ Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex. """ @Substitution( URL="https://docs.python.org/3/library/datetime.html" "#strftime-and-strptime-behavior" ) def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- ndarray NumPy ndarray of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ return self._format_native_types(date_format=date_format).astype(object) class TimelikeOps: """ Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex. """ _round_doc = """ Perform {op} operation on the data to the specified `freq`. Parameters ---------- freq : str or Offset The frequency level to {op} the index to. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timeseries.offset_aliases>` for a list of possible `freq` values. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' Only relevant for DatetimeIndex: - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. .. versionadded:: 0.24.0 nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- DatetimeIndex, TimedeltaIndex, or Series Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ------ ValueError if the `freq` cannot be converted. Examples -------- **DatetimeIndex** >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') """ _round_example = """>>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _floor_example = """>>> rng.floor('H') DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _ceil_example = """>>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.ceil("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] """ def _round(self, freq, mode, ambiguous, nonexistent): # round the local times values = _ensure_datetimelike_to_i8(self) result = round_nsint64(values, mode, freq) result = self._maybe_mask_results(result, fill_value=NaT) dtype = self.dtype if is_datetime64tz_dtype(self): dtype = None return self._ensure_localized( self._simple_new(result, dtype=dtype), ambiguous, nonexistent ) @Appender((_round_doc + _round_example).format(op="round")) def round(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.NEAREST_HALF_EVEN, ambiguous, nonexistent) @Appender((_round_doc + _floor_example).format(op="floor")) def floor(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.MINUS_INFTY, ambiguous, nonexistent) @Appender((_round_doc + _ceil_example).format(op="ceil")) def ceil(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.PLUS_INFTY, ambiguous, nonexistent) class DatetimeLikeArrayMixin(ExtensionOpsMixin, AttributesMixin, ExtensionArray): """ Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray Assumes that __new__/__init__ defines: _data _freq and that the inheriting class has methods: _generate_range """ @property def _box_func(self): """ box function to get object from internal representation """ raise AbstractMethodError(self) def _box_values(self, values): """ apply box func to passed values """ return lib.map_infer(values, self._box_func) def __iter__(self): return (self._box_func(v) for v in self.asi8) @property def asi8(self) -> np.ndarray: """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ # do not cache or you'll create a memory leak return self._data.view("i8") @property def _ndarray_values(self): return self._data # ---------------------------------------------------------------- # Rendering Methods def _format_native_types(self, na_rep="NaT", date_format=None): """ Helper method for astype when converting to strings. Returns ------- ndarray[str] """ raise AbstractMethodError(self) def _formatter(self, boxed=False): # TODO: Remove Datetime & DatetimeTZ formatters. return "'{}'".format # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods @property def nbytes(self): return self._data.nbytes def __array__(self, dtype=None): # used for Timedelta/DatetimeArray, overwritten by PeriodArray if is_object_dtype(dtype): return np.array(list(self), dtype=object) return self._data @property def size(self) -> int: """The number of elements in this array.""" return np.prod(self.shape) def __len__(self) -> int: return len(self._data) def __getitem__(self, key): """ This getitem defers to the underlying array, which by-definition can only handle list-likes, slices, and integer scalars """ is_int = lib.is_integer(key) if lib.is_scalar(key) and not is_int: raise IndexError( "only integers, slices (`:`), ellipsis (`...`), " "numpy.newaxis (`None`) and integer or boolean " "arrays are valid indices" ) getitem = self._data.__getitem__ if is_int: val = getitem(key) return self._box_func(val) if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) if key.all(): key = slice(0, None, None) else: key = lib.maybe_booleans_to_slice(key.view(np.uint8)) is_period = is_period_dtype(self) if is_period: freq = self.freq else: freq = None if isinstance(key, slice): if self.freq is not None and key.step is not None: freq = key.step * self.freq else: freq = self.freq elif key is Ellipsis: # GH#21282 indexing with Ellipsis is similar to a full slice, # should preserve `freq` attribute freq = self.freq result = getitem(key) if result.ndim > 1: # To support MPL which performs slicing with 2 dim # even though it only has 1 dim by definition if is_period: return self._simple_new(result, dtype=self.dtype, freq=freq) return result return self._simple_new(result, dtype=self.dtype, freq=freq) def __setitem__( self, key: Union[int, Sequence[int], Sequence[bool], slice], value: Union[NaTType, Any, Sequence[Any]], ) -> None: # I'm fudging the types a bit here. "Any" above really depends # on type(self). For PeriodArray, it's Period (or stuff coercible # to a period in from_sequence). For DatetimeArray, it's Timestamp... # I don't know if mypy can do that, possibly with Generics. # https://mypy.readthedocs.io/en/latest/generics.html if lib.is_scalar(value) and not isna(value): value = com.maybe_box_datetimelike(value) if is_list_like(value): is_slice = isinstance(key, slice) if lib.is_scalar(key): raise ValueError("setting an array element with a sequence.") if not is_slice: key = cast(Sequence, key) if len(key) != len(value) and not com.is_bool_indexer(key): msg = ( "shape mismatch: value array of length '{}' does " "not match indexing result of length '{}'." ) raise ValueError(msg.format(len(key), len(value))) elif not len(key): return value = type(self)._from_sequence(value, dtype=self.dtype) self._check_compatible_with(value) value = value.asi8 elif isinstance(value, self._scalar_type): self._check_compatible_with(value) value = self._unbox_scalar(value) elif is_valid_nat_for_dtype(value, self.dtype): value = iNaT else: msg = ( "'value' should be a '{scalar}', 'NaT', or array of those. " "Got '{typ}' instead." ) raise TypeError( msg.format(scalar=self._scalar_type.__name__, typ=type(value).__name__) ) self._data[key] = value self._maybe_clear_freq() def _maybe_clear_freq(self): # inplace operations like __setitem__ may invalidate the freq of # DatetimeArray and TimedeltaArray pass def astype(self, dtype, copy=True): # Some notes on cases we don't have to handle here in the base class: # 1. PeriodArray.astype handles period -> period # 2. DatetimeArray.astype handles conversion between tz. # 3. DatetimeArray.astype handles datetime -> period from pandas import Categorical dtype = pandas_dtype(dtype) if is_object_dtype(dtype): return self._box_values(self.asi8) elif is_string_dtype(dtype) and not is_categorical_dtype(dtype): return self._format_native_types() elif is_integer_dtype(dtype): # we deliberately ignore int32 vs. int64 here. # See https://github.com/pandas-dev/pandas/issues/24381 for more. values = self.asi8 if is_unsigned_integer_dtype(dtype): # Again, we ignore int32 vs. int64 values = values.view("uint64") if copy: values = values.copy() return values elif ( is_datetime_or_timedelta_dtype(dtype) and not is_dtype_equal(self.dtype, dtype) ) or is_float_dtype(dtype): # disallow conversion between datetime/timedelta, # and conversions for any datetimelike to float msg = "Cannot cast {name} to dtype {dtype}" raise TypeError(msg.format(name=type(self).__name__, dtype=dtype)) elif is_categorical_dtype(dtype): return Categorical(self, dtype=dtype) else: return np.asarray(self, dtype=dtype) def view(self, dtype=None): if dtype is None or dtype is self.dtype: return type(self)(self._data, dtype=self.dtype) return self._data.view(dtype=dtype) # ------------------------------------------------------------------ # ExtensionArray Interface def unique(self): result = unique1d(self.asi8) return type(self)(result, dtype=self.dtype) def _validate_fill_value(self, fill_value): """ If a fill_value is passed to `take` convert it to an i8 representation, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : np.int64 Raises ------ ValueError """ raise AbstractMethodError(self) def take(self, indices, allow_fill=False, fill_value=None): if allow_fill: fill_value = self._validate_fill_value(fill_value) new_values = take( self.asi8, indices, allow_fill=allow_fill, fill_value=fill_value ) return type(self)(new_values, dtype=self.dtype) @classmethod def _concat_same_type(cls, to_concat): dtypes = {x.dtype for x in to_concat} assert len(dtypes) == 1 dtype = list(dtypes)[0] values = np.concatenate([x.asi8 for x in to_concat]) return cls(values, dtype=dtype) def copy(self): values = self.asi8.copy() return type(self)._simple_new(values, dtype=self.dtype, freq=self.freq) def _values_for_factorize(self): return self.asi8, iNaT @classmethod def _from_factorized(cls, values, original): return cls(values, dtype=original.dtype) def _values_for_argsort(self): return self._data # ------------------------------------------------------------------ # Additional array methods # These are not part of the EA API, but we implement them because # pandas assumes they're there. def searchsorted(self, value, side="left", sorter=None): """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted array `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- indices : array of ints Array of insertion points with the same shape as `value`. """ if isinstance(value, str): value = self._scalar_from_string(value) if not (isinstance(value, (self._scalar_type, type(self))) or isna(value)): raise ValueError( "Unexpected type for 'value': {valtype}".format(valtype=type(value)) ) self._check_compatible_with(value) if isinstance(value, type(self)): value = value.asi8 else: value = self._unbox_scalar(value) return self.asi8.searchsorted(value, side=side, sorter=sorter) def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) values = self._data.repeat(repeats) return type(self)(values.view("i8"), dtype=self.dtype) def value_counts(self, dropna=False): """ Return a Series containing counts of unique values. Parameters ---------- dropna : bool, default True Don't include counts of NaT values. Returns ------- Series """ from pandas import Series, Index if dropna: values = self[~self.isna()]._data else: values = self._data cls = type(self) result = value_counts(values, sort=False, dropna=dropna) index = Index( cls(result.index.view("i8"), dtype=self.dtype), name=result.index.name ) return Series(result.values, index=index, name=result.name) def map(self, mapper): # TODO(GH-23179): Add ExtensionArray.map # Need to figure out if we want ExtensionArray.map first. # If so, then we can refactor IndexOpsMixin._map_values to # a standalone function and call from here.. # Else, just rewrite _map_infer_values to do the right thing. from pandas import Index return Index(self).map(mapper).array # ------------------------------------------------------------------ # Null Handling def isna(self): return self._isnan @property # NB: override with cache_readonly in immutable subclasses def _isnan(self): """ return if each value is nan """ return self.asi8 == iNaT @property # NB: override with cache_readonly in immutable subclasses def _hasnans(self): """ return if I have any nans; enables various perf speedups """ return bool(self._isnan.any()) def _maybe_mask_results(self, result, fill_value=iNaT, convert=None): """ Parameters ---------- result : a ndarray fill_value : object, default iNaT convert : str, dtype or None Returns ------- result : ndarray with values replace by the fill_value mask the result if needed, convert to the provided dtype if its not None This is an internal routine. """ if self._hasnans: if convert: result = result.astype(convert) if fill_value is None: fill_value = np.nan result[self._isnan] = fill_value return result def fillna(self, value=None, method=None, limit=None): # TODO(GH-20300): remove this # Just overriding to ensure that we avoid an astype(object). # Either 20300 or a `_values_for_fillna` would avoid this duplication. if isinstance(value, ABCSeries): value = value.array value, method = validate_fillna_kwargs(value, method) mask = self.isna() if is_array_like(value): if len(value) != len(self): raise ValueError( "Length of 'value' does not match. Got ({}) " " expected {}".format(len(value), len(self)) ) value = value[mask] if mask.any(): if method is not None: if method == "pad": func = missing.pad_1d else: func = missing.backfill_1d values = self._data if not is_period_dtype(self): # For PeriodArray self._data is i8, which gets copied # by `func`. Otherwise we need to make a copy manually # to avoid modifying `self` in-place. values = values.copy() new_values = func(values, limit=limit, mask=mask) if is_datetime64tz_dtype(self): # we need to pass int64 values to the constructor to avoid # re-localizing incorrectly new_values = new_values.view("i8") new_values = type(self)(new_values, dtype=self.dtype) else: # fill with value new_values = self.copy() new_values[mask] = value else: new_values = self.copy() return new_values # ------------------------------------------------------------------ # Frequency Properties/Methods @property def freq(self): """ Return the frequency object if it is set, otherwise None. """ return self._freq @freq.setter def freq(self, value): if value is not None: value = frequencies.to_offset(value) self._validate_frequency(self, value) self._freq = value @property def freqstr(self): """ Return the frequency object as a string if its set, otherwise None """ if self.freq is None: return None return self.freq.freqstr @property # NB: override with cache_readonly in immutable subclasses def inferred_freq(self): """ Tryies to return a string representing a frequency guess, generated by infer_freq. Returns None if it can't autodetect the frequency. """ try: return frequencies.infer_freq(self) except ValueError: return None @property # NB: override with cache_readonly in immutable subclasses def _resolution(self): return frequencies.Resolution.get_reso_from_freq(self.freqstr) @property # NB: override with cache_readonly in immutable subclasses def resolution(self): """ Returns day, hour, minute, second, millisecond or microsecond """ return frequencies.Resolution.get_str(self._resolution) @classmethod def _validate_frequency(cls, index, freq, **kwargs): """ Validate that a frequency is compatible with the values of a given Datetime Array/Index or Timedelta Array/Index Parameters ---------- index : DatetimeIndex or TimedeltaIndex The index on which to determine if the given frequency is valid freq : DateOffset The frequency to validate """ if is_period_dtype(cls): # Frequency validation is not meaningful for Period Array/Index return None inferred = index.inferred_freq if index.size == 0 or inferred == freq.freqstr: return None try: on_freq = cls._generate_range( start=index[0], end=None, periods=len(index), freq=freq, **kwargs ) if not np.array_equal(index.asi8, on_freq.asi8): raise ValueError except ValueError as e: if "non-fixed" in str(e): # non-fixed frequencies are not meaningful for timedelta64; # we retain that error message raise e # GH#11587 the main way this is reached is if the `np.array_equal` # check above is False. This can also be reached if index[0] # is `NaT`, in which case the call to `cls._generate_range` will # raise a ValueError, which we re-raise with a more targeted # message. raise ValueError( "Inferred frequency {infer} from passed values " "does not conform to passed frequency {passed}".format( infer=inferred, passed=freq.freqstr ) ) # monotonicity/uniqueness properties are called via frequencies.infer_freq, # see GH#23789 @property def _is_monotonic_increasing(self): return algos.is_monotonic(self.asi8, timelike=True)[0] @property def _is_monotonic_decreasing(self): return algos.is_monotonic(self.asi8, timelike=True)[1] @property def _is_unique(self): return len(unique1d(self.asi8)) == len(self) # ------------------------------------------------------------------ # Arithmetic Methods # pow is invalid for all three subclasses; TimedeltaArray will override # the multiplication and division ops __pow__ = make_invalid_op("__pow__") __rpow__ = make_invalid_op("__rpow__") __mul__ = make_invalid_op("__mul__") __rmul__ = make_invalid_op("__rmul__") __truediv__ = make_invalid_op("__truediv__") __rtruediv__ = make_invalid_op("__rtruediv__") __floordiv__ = make_invalid_op("__floordiv__") __rfloordiv__ = make_invalid_op("__rfloordiv__") __mod__ = make_invalid_op("__mod__") __rmod__ = make_invalid_op("__rmod__") __divmod__ = make_invalid_op("__divmod__") __rdivmod__ = make_invalid_op("__rdivmod__") def _add_datetimelike_scalar(self, other): # Overriden by TimedeltaArray raise TypeError( "cannot add {cls} and {typ}".format( cls=type(self).__name__, typ=type(other).__name__ ) ) _add_datetime_arraylike = _add_datetimelike_scalar def _sub_datetimelike_scalar(self, other): # Overridden by DatetimeArray assert other is not NaT raise TypeError( "cannot subtract a datelike from a {cls}".format(cls=type(self).__name__) ) _sub_datetime_arraylike = _sub_datetimelike_scalar def _sub_period(self, other): # Overriden by PeriodArray raise TypeError( "cannot subtract Period from a {cls}".format(cls=type(self).__name__) ) def _add_offset(self, offset): raise AbstractMethodError(self) def _add_delta(self, other): """ Add a timedelta-like, Tick or TimedeltaIndex-like object to self, yielding an int64 numpy array Parameters ---------- delta : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : ndarray[int64] Notes ----- The result's name is set outside of _add_delta by the calling method (__add__ or __sub__), if necessary (i.e. for Indexes). """ if isinstance(other, (Tick, timedelta, np.timedelta64)): new_values = self._add_timedeltalike_scalar(other) elif is_timedelta64_dtype(other): # ndarray[timedelta64] or TimedeltaArray/index new_values = self._add_delta_tdi(other) return new_values def _add_timedeltalike_scalar(self, other): """ Add a delta of a timedeltalike return the i8 result view """ if isna(other): # i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds new_values = np.empty(len(self), dtype="i8") new_values[:] = iNaT return new_values inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan).view( "i8" ) new_values = self._maybe_mask_results(new_values) return new_values.view("i8") def _add_delta_tdi(self, other): """ Add a delta of a TimedeltaIndex return the i8 result view """ if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): # ndarray[timedelta64]; wrap in TimedeltaIndex for op from pandas.core.arrays import TimedeltaArray other = TimedeltaArray._from_sequence(other) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr( self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan ) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return new_values.view("i8") def _add_nat(self): """ Add pd.NaT to self """ if is_period_dtype(self): raise TypeError( "Cannot add {cls} and {typ}".format( cls=type(self).__name__, typ=type(NaT).__name__ ) ) # GH#19124 pd.NaT is treated like a timedelta for both timedelta # and datetime dtypes result = np.zeros(len(self), dtype=np.int64) result.fill(iNaT) return type(self)(result, dtype=self.dtype, freq=None) def _sub_nat(self): """ Subtract pd.NaT from self """ # GH#19124 Timedelta - datetime is not in general well-defined. # We make an exception for pd.NaT, which in this case quacks # like a timedelta. # For datetime64 dtypes by convention we treat NaT as a datetime, so # this subtraction returns a timedelta64 dtype. # For period dtype, timedelta64 is a close-enough return dtype. result = np.zeros(len(self), dtype=np.int64) result.fill(iNaT) return result.view("timedelta64[ns]") def _sub_period_array(self, other): """ Subtract a Period Array/Index from self. This is only valid if self is itself a Period Array/Index, raises otherwise. Both objects must have the same frequency. Parameters ---------- other : PeriodIndex or PeriodArray Returns ------- result : np.ndarray[object] Array of DateOffset objects; nulls represented by NaT. """ if not is_period_dtype(self): raise TypeError( "cannot subtract {dtype}-dtype from {cls}".format( dtype=other.dtype, cls=type(self).__name__ ) ) if len(self) != len(other): raise ValueError("cannot subtract arrays/indices of unequal length") if self.freq != other.freq: msg = DIFFERENT_FREQ.format( cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr ) raise IncompatibleFrequency(msg) new_values = checked_add_with_arr( self.asi8, -other.asi8, arr_mask=self._isnan, b_mask=other._isnan ) new_values = np.array([self.freq.base * x for x in new_values]) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = NaT return new_values def _addsub_int_array(self, other, op): """ Add or subtract array-like of integers equivalent to applying `_time_shift` pointwise. Parameters ---------- other : Index, ExtensionArray, np.ndarray integer-dtype op : {operator.add, operator.sub} Returns ------- result : same class as self """ # _addsub_int_array is overriden by PeriodArray assert not is_period_dtype(self) assert op in [operator.add, operator.sub] if self.freq is None: # GH#19123 raise NullFrequencyError("Cannot shift with no freq") elif isinstance(self.freq, Tick): # easy case where we can convert to timedelta64 operation td = Timedelta(self.freq) return op(self, td * other) # We should only get here with DatetimeIndex; dispatch # to _addsub_offset_array assert not is_timedelta64_dtype(self) return op(self, np.array(other) * self.freq) def _addsub_offset_array(self, other, op): """ Add or subtract array-like of DateOffset objects Parameters ---------- other : Index, np.ndarray object-dtype containing pd.DateOffset objects op : {operator.add, operator.sub} Returns ------- result : same class as self """ assert op in [operator.add, operator.sub] if len(other) == 1: return op(self, other[0]) warnings.warn( "Adding/subtracting array of DateOffsets to " "{cls} not vectorized".format(cls=type(self).__name__), PerformanceWarning, ) # For EA self.astype('O') returns a numpy array, not an Index left = self.astype("O") res_values = op(left, np.array(other)) kwargs = {} if not is_period_dtype(self): kwargs["freq"] = "infer" return self._from_sequence(res_values, **kwargs) def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None and freq != self.freq: if isinstance(freq, str): freq = frequencies.to_offset(freq) offset = periods * freq result = self + offset return result if periods == 0: # immutable so OK return self.copy() if self.freq is None: raise NullFrequencyError("Cannot shift with no freq") start = self[0] + periods * self.freq end = self[-1] + periods * self.freq # Note: in the DatetimeTZ case, _generate_range will infer the # appropriate timezone from `start` and `end`, so tz does not need # to be passed explicitly. return self._generate_range(start=start, end=end, periods=None, freq=self.freq) def __add__(self, other): other = lib.item_from_zerodim(other) if isinstance(other, (ABCSeries, ABCDataFrame, ABCIndexClass)): return NotImplemented # scalar others elif other is NaT: result = self._add_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(other) elif isinstance(other, (datetime, np.datetime64)): result = self._add_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): maybe_integer_op_deprecated(self) result = self._time_shift(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(other) elif is_offsetlike(other): # Array/Index of DateOffset objects result = self._addsub_offset_array(other, operator.add) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] return self._add_datetime_arraylike(other) elif is_integer_dtype(other): if not is_period_dtype(self): maybe_integer_op_deprecated(self) result = self._addsub_int_array(other, operator.add) else: # Includes Categorical, other ExtensionArrays # For PeriodDtype, if self is a TimedeltaArray and other is a # PeriodArray with a timedelta-like (i.e. Tick) freq, this # operation is valid. Defer to the PeriodArray implementation. # In remaining cases, this will end up raising TypeError. return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __radd__(self, other): # alias for __add__ return self.__add__(other) def __sub__(self, other): other = lib.item_from_zerodim(other) if isinstance(other, (ABCSeries, ABCDataFrame, ABCIndexClass)): return NotImplemented # scalar others elif other is NaT: result = self._sub_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(-other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(-other) elif isinstance(other, (datetime, np.datetime64)): result = self._sub_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): maybe_integer_op_deprecated(self) result = self._time_shift(-other) elif isinstance(other, Period): result = self._sub_period(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(-other) elif is_offsetlike(other): # Array/Index of DateOffset objects result = self._addsub_offset_array(other, operator.sub) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] result = self._sub_datetime_arraylike(other) elif is_period_dtype(other): # PeriodIndex result = self._sub_period_array(other) elif is_integer_dtype(other): if not is_period_dtype(self): maybe_integer_op_deprecated(self) result = self._addsub_int_array(other, operator.sub) else: # Includes ExtensionArrays, float_dtype return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __rsub__(self, other): if is_datetime64_any_dtype(other) and is_timedelta64_dtype(self.dtype): # ndarray[datetime64] cannot be subtracted from self, so # we need to wrap in DatetimeArray/Index and flip the operation if not isinstance(other, DatetimeLikeArrayMixin): # Avoid down-casting DatetimeIndex from pandas.core.arrays import DatetimeArray other = DatetimeArray(other) return other - self elif ( is_datetime64_any_dtype(self.dtype) and hasattr(other, "dtype") and not is_datetime64_any_dtype(other.dtype) ): # GH#19959 datetime - datetime is well-defined as timedelta, # but any other type - datetime is not well-defined. raise TypeError( "cannot subtract {cls} from {typ}".format( cls=type(self).__name__, typ=type(other).__name__ ) ) elif is_period_dtype(self.dtype) and is_timedelta64_dtype(other): # TODO: Can we simplify/generalize these cases at all? raise TypeError( "cannot subtract {cls} from {dtype}".format( cls=type(self).__name__, dtype=other.dtype ) ) elif is_timedelta64_dtype(self.dtype): if lib.is_integer(other) or is_integer_dtype(other): # need to subtract before negating, since that flips freq # -self flips self.freq, messing up results return -(self - other) return (-self) + other return -(self - other) # FIXME: DTA/TDA/PA inplace methods should actually be inplace, GH#24115 def __iadd__(self, other): # alias for __add__ return self.__add__(other) def __isub__(self, other): # alias for __sub__ return self.__sub__(other) # -------------------------------------------------------------- # Comparison Methods def _ensure_localized( self, arg, ambiguous="raise", nonexistent="raise", from_utc=False ): """ Ensure that we are re-localized. This is for compat as we can then call this on all datetimelike arrays generally (ignored for Period/Timedelta) Parameters ---------- arg : Union[DatetimeLikeArray, DatetimeIndexOpsMixin, ndarray] ambiguous : str, bool, or bool-ndarray, default 'raise' nonexistent : str, default 'raise' from_utc : bool, default False If True, localize the i8 ndarray to UTC first before converting to the appropriate tz. If False, localize directly to the tz. Returns ------- localized array """ # reconvert to local tz tz = getattr(self, "tz", None) if tz is not None: if not isinstance(arg, type(self)): arg = self._simple_new(arg) if from_utc: arg = arg.tz_localize("UTC").tz_convert(self.tz) else: arg = arg.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return arg # -------------------------------------------------------------- # Reductions def _reduce(self, name, axis=0, skipna=True, **kwargs): op = getattr(self, name, None) if op: return op(skipna=skipna, **kwargs) else: return super()._reduce(name, skipna, **kwargs) def min(self, axis=None, skipna=True, *args, **kwargs): """ Return the minimum value of the Array or minimum along an axis. See Also -------- numpy.ndarray.min Index.min : Return the minimum value in an Index. Series.min : Return the minimum value in a Series. """ nv.validate_min(args, kwargs) nv.validate_minmax_axis(axis) result = nanops.nanmin(self.asi8, skipna=skipna, mask=self.isna()) if isna(result): # Period._from_ordinal does not handle np.nan gracefully return NaT return self._box_func(result) def max(self, axis=None, skipna=True, *args, **kwargs): """ Return the maximum value of the Array or maximum along an axis. See Also -------- numpy.ndarray.max Index.max : Return the maximum value in an Index. Series.max : Return the maximum value in a Series. """ # TODO: skipna is broken with max. # See https://github.com/pandas-dev/pandas/issues/24265 nv.validate_max(args, kwargs) nv.validate_minmax_axis(axis) mask = self.isna() if skipna: values = self[~mask].asi8 elif mask.any(): return NaT else: values = self.asi8 if not len(values): # short-circuit for empty max / min return NaT result = nanops.nanmax(values, skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result) def mean(self, skipna=True): """ Return the mean value of the Array. .. versionadded:: 0.25.0 Parameters ---------- skipna : bool, default True Whether to ignore any NaT elements. Returns ------- scalar Timestamp or Timedelta. See Also -------- numpy.ndarray.mean : Returns the average of array elements along a given axis. Series.mean : Return the mean value in a Series. Notes ----- mean is only defined for Datetime and Timedelta dtypes, not for Period. """ if is_period_dtype(self): # See discussion in GH#24757 raise TypeError( "mean is not implemented for {cls} since the meaning is " "ambiguous. An alternative is " "obj.to_timestamp(how='start').mean()".format(cls=type(self).__name__) ) mask = self.isna() if skipna: values = self[~mask] elif mask.any(): return NaT else: values = self if not len(values): # short-circut for empty max / min return NaT result = nanops.nanmean(values.view("i8"), skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result) # ------------------------------------------------------------------- # Shared Constructor Helpers def validate_periods(periods): """ If a `periods` argument is passed to the Datetime/Timedelta Array/Index constructor, cast it to an integer. Parameters ---------- periods : None, float, int Returns ------- periods : None or int Raises ------ TypeError if periods is None, float, or int """ if periods is not None: if lib.is_float(periods): periods = int(periods) elif not lib.is_integer(periods): raise TypeError( "periods must be a number, got {periods}".format(periods=periods) ) return periods def validate_endpoints(closed): """ Check that the `closed` argument is among [None, "left", "right"] Parameters ---------- closed : {None, "left", "right"} Returns ------- left_closed : bool right_closed : bool Raises ------ ValueError : if argument is not among valid values """ left_closed = False right_closed = False if closed is None: left_closed = True right_closed = True elif closed == "left": left_closed = True elif closed == "right": right_closed = True else: raise ValueError("Closed has to be either 'left', 'right' or None") return left_closed, right_closed def validate_inferred_freq(freq, inferred_freq, freq_infer): """ If the user passes a freq and another freq is inferred from passed data, require that they match. Parameters ---------- freq : DateOffset or None inferred_freq : DateOffset or None freq_infer : bool Returns ------- freq : DateOffset or None freq_infer : bool Notes ----- We assume at this point that `maybe_infer_freq` has been called, so `freq` is either a DateOffset object or None. """ if inferred_freq is not None: if freq is not None and freq != inferred_freq: raise ValueError( "Inferred frequency {inferred} from passed " "values does not conform to passed frequency " "{passed}".format(inferred=inferred_freq, passed=freq.freqstr) ) elif freq is None: freq = inferred_freq freq_infer = False return freq, freq_infer def maybe_infer_freq(freq): """ Comparing a DateOffset to the string "infer" raises, so we need to be careful about comparisons. Make a dummy variable `freq_infer` to signify the case where the given freq is "infer" and set freq to None to avoid comparison trouble later on. Parameters ---------- freq : {DateOffset, None, str} Returns ------- freq : {DateOffset, None} freq_infer : bool """ freq_infer = False if not isinstance(freq, DateOffset): # if a passed freq is None, don't infer automatically if freq != "infer": freq = frequencies.to_offset(freq) else: freq_infer = True freq = None return freq, freq_infer def _ensure_datetimelike_to_i8(other, to_utc=False): """ Helper for coercing an input scalar or array to i8. Parameters ---------- other : 1d array to_utc : bool, default False If True, convert the values to UTC before extracting the i8 values If False, extract the i8 values directly. Returns ------- i8 1d array """ from pandas import Index if lib.is_scalar(other) and isna(other): return iNaT elif isinstance(other, (ABCPeriodArray, ABCIndexClass, DatetimeLikeArrayMixin)): # convert tz if needed if getattr(other, "tz", None) is not None: if to_utc: other = other.tz_convert("UTC") else: other = other.tz_localize(None) else: try: return np.array(other, copy=False).view("i8") except TypeError: # period array cannot be coerced to int other = Index(other) return other.asi8 from datetime import datetime, timedelta import operator from typing import Any, Sequence, Type, Union, cast import warnings import numpy as np from pandas._libs import NaT, NaTType, Timestamp, algos, iNaT, lib from pandas._libs.tslibs.c_timestamp import maybe_integer_op_deprecated from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from pandas._libs.tslibs.timestamps import RoundTo, round_nsint64 from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError, NullFrequencyError, PerformanceWarning from pandas.util._decorators import Appender, Substitution from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_offsetlike, is_period_dtype, is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCPeriodArray, ABCSeries, ) from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna from pandas._typing import DatetimeLikeScalar from pandas.core import missing, nanops from pandas.core.algorithms import checked_add_with_arr, take, unique1d, value_counts import pandas.core.common as com from pandas.core.ops.invalid import make_invalid_op from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick from .base import ExtensionArray, ExtensionOpsMixin class AttributesMixin: _data = None # type: np.ndarray @classmethod def _simple_new(cls, values, **kwargs): raise AbstractMethodError(cls) @property def _scalar_type(self) -> Type[DatetimeLikeScalar]: """The scalar associated with this datelike * PeriodArray : Period * DatetimeArray : Timestamp * TimedeltaArray : Timedelta """ raise AbstractMethodError(self) def _scalar_from_string( self, value: str ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self) def _unbox_scalar(self, value: Union[Period, Timestamp, Timedelta, NaTType]) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta('10s')) # DOCTEST: +SKIP 10000000000 """ raise AbstractMethodError(self) def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType] ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other Raises ------ Exception """ raise AbstractMethodError(self) class DatelikeOps: """ Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex. """ @Substitution( URL="https://docs.python.org/3/library/datetime.html" "#strftime-and-strptime-behavior" ) def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- ndarray NumPy ndarray of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ return self._format_native_types(date_format=date_format).astype(object) class TimelikeOps: """ Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex. """ _round_doc = """ Perform {op} operation on the data to the specified `freq`. Parameters ---------- freq : str or Offset The frequency level to {op} the index to. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timeseries.offset_aliases>` for a list of possible `freq` values. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' Only relevant for DatetimeIndex: - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. .. versionadded:: 0.24.0 nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- DatetimeIndex, TimedeltaIndex, or Series Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ------ ValueError if the `freq` cannot be converted. Examples -------- **DatetimeIndex** >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') """ _round_example = """>>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _floor_example = """>>> rng.floor('H') DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _ceil_example = """>>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.ceil("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] """ def _round(self, freq, mode, ambiguous, nonexistent): # round the local times values = _ensure_datetimelike_to_i8(self) result = round_nsint64(values, mode, freq) result = self._maybe_mask_results(result, fill_value=NaT) dtype = self.dtype if is_datetime64tz_dtype(self): dtype = None return self._ensure_localized( self._simple_new(result, dtype=dtype), ambiguous, nonexistent ) @Appender((_round_doc + _round_example).format(op="round")) def round(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.NEAREST_HALF_EVEN, ambiguous, nonexistent) @Appender((_round_doc + _floor_example).format(op="floor")) def floor(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.MINUS_INFTY, ambiguous, nonexistent) @Appender((_round_doc + _ceil_example).format(op="ceil")) def ceil(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.PLUS_INFTY, ambiguous, nonexistent) class DatetimeLikeArrayMixin(ExtensionOpsMixin, AttributesMixin, ExtensionArray): """ Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray Assumes that __new__/__init__ defines: _data _freq and that the inheriting class has methods: _generate_range """ @property def _box_func(self): """ box function to get object from internal representation """ raise AbstractMethodError(self) def _box_values(self, values): """ apply box func to passed values """ return lib.map_infer(values, self._box_func) def __iter__(self): return (self._box_func(v) for v in self.asi8) @property def asi8(self) -> np.ndarray: """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ # do not cache or you'll create a memory leak return self._data.view("i8") @property def _ndarray_values(self): return self._data # ---------------------------------------------------------------- # Rendering Methods def _format_native_types(self, na_rep="NaT", date_format=None): """ Helper method for astype when converting to strings. Returns ------- ndarray[str] """ raise AbstractMethodError(self) def _formatter(self, boxed=False): # TODO: Remove Datetime & DatetimeTZ formatters. return "'{}'".format # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods @property def nbytes(self): return self._data.nbytes def __array__(self, dtype=None): # used for Timedelta/DatetimeArray, overwritten by PeriodArray if is_object_dtype(dtype): return np.array(list(self), dtype=object) return self._data @property def size(self) -> int: """The number of elements in this array.""" return np.prod(self.shape) def __len__(self) -> int: return len(self._data) def __getitem__(self, key): """ This getitem defers to the underlying array, which by-definition can only handle list-likes, slices, and integer scalars """ is_int = lib.is_integer(key) if lib.is_scalar(key) and not is_int: raise IndexError( "only integers, slices (`:`), ellipsis (`...`), " "numpy.newaxis (`None`) and integer or boolean " "arrays are valid indices" ) getitem = self._data.__getitem__ if is_int: val = getitem(key) return self._box_func(val) if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) if key.all(): key = slice(0, None, None) else: key = lib.maybe_booleans_to_slice(key.view(np.uint8)) is_period = is_period_dtype(self) if is_period: freq = self.freq else: freq = None if isinstance(key, slice): if self.freq is not None and key.step is not None: freq = key.step * self.freq else: freq = self.freq elif key is Ellipsis: # GH#21282 indexing with Ellipsis is similar to a full slice, # should preserve `freq` attribute freq = self.freq result = getitem(key) if result.ndim > 1: # To support MPL which performs slicing with 2 dim # even though it only has 1 dim by definition if is_period: return self._simple_new(result, dtype=self.dtype, freq=freq) return result return self._simple_new(result, dtype=self.dtype, freq=freq) def __setitem__( self, key: Union[int, Sequence[int], Sequence[bool], slice], value: Union[NaTType, Any, Sequence[Any]], ) -> None: # I'm fudging the types a bit here. "Any" above really depends # on type(self). For PeriodArray, it's Period (or stuff coercible # to a period in from_sequence). For DatetimeArray, it's Timestamp... # I don't know if mypy can do that, possibly with Generics. # https://mypy.readthedocs.io/en/latest/generics.html if lib.is_scalar(value) and not isna(value): value = com.maybe_box_datetimelike(value) if is_list_like(value): is_slice = isinstance(key, slice) if lib.is_scalar(key): raise ValueError("setting an array element with a sequence.") if not is_slice: key = cast(Sequence, key) if len(key) != len(value) and not com.is_bool_indexer(key): msg = ( "shape mismatch: value array of length '{}' does " "not match indexing result of length '{}'." ) raise ValueError(msg.format(len(key), len(value))) elif not len(key): return value = type(self)._from_sequence(value, dtype=self.dtype) self._check_compatible_with(value) value = value.asi8 elif isinstance(value, self._scalar_type): self._check_compatible_with(value) value = self._unbox_scalar(value) elif is_valid_nat_for_dtype(value, self.dtype): value = iNaT else: msg = ( "'value' should be a '{scalar}', 'NaT', or array of those. " "Got '{typ}' instead." ) raise TypeError( msg.format(scalar=self._scalar_type.__name__, typ=type(value).__name__) ) self._data[key] = value self._maybe_clear_freq() def _maybe_clear_freq(self): # inplace operations like __setitem__ may invalidate the freq of # DatetimeArray and TimedeltaArray pass def astype(self, dtype, copy=True): # Some notes on cases we don't have to handle here in the base class: # 1. PeriodArray.astype handles period -> period # 2. DatetimeArray.astype handles conversion between tz. # 3. DatetimeArray.astype handles datetime -> period from pandas import Categorical dtype = pandas_dtype(dtype) if is_object_dtype(dtype): return self._box_values(self.asi8) elif is_string_dtype(dtype) and not is_categorical_dtype(dtype): return self._format_native_types() elif is_integer_dtype(dtype): # we deliberately ignore int32 vs. int64 here. # See https://github.com/pandas-dev/pandas/issues/24381 for more. values = self.asi8 if is_unsigned_integer_dtype(dtype): # Again, we ignore int32 vs. int64 values = values.view("uint64") if copy: values = values.copy() return values elif ( is_datetime_or_timedelta_dtype(dtype) and not is_dtype_equal(self.dtype, dtype) ) or is_float_dtype(dtype): # disallow conversion between datetime/timedelta, # and conversions for any datetimelike to float msg = "Cannot cast {name} to dtype {dtype}" raise TypeError(msg.format(name=type(self).__name__, dtype=dtype)) elif is_categorical_dtype(dtype): return Categorical(self, dtype=dtype) else: return np.asarray(self, dtype=dtype) def view(self, dtype=None): if dtype is None or dtype is self.dtype: return type(self)(self._data, dtype=self.dtype) return self._data.view(dtype=dtype) # ------------------------------------------------------------------ # ExtensionArray Interface def unique(self): result = unique1d(self.asi8) return type(self)(result, dtype=self.dtype) def _validate_fill_value(self, fill_value): """ If a fill_value is passed to `take` convert it to an i8 representation, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : np.int64 Raises ------ ValueError """ raise AbstractMethodError(self) def take(self, indices, allow_fill=False, fill_value=None): if allow_fill: fill_value = self._validate_fill_value(fill_value) new_values = take( self.asi8, indices, allow_fill=allow_fill, fill_value=fill_value ) return type(self)(new_values, dtype=self.dtype) @classmethod def _concat_same_type(cls, to_concat): dtypes = {x.dtype for x in to_concat} assert len(dtypes) == 1 dtype = list(dtypes)[0] values = np.concatenate([x.asi8 for x in to_concat]) return cls(values, dtype=dtype) def copy(self): values = self.asi8.copy() return type(self)._simple_new(values, dtype=self.dtype, freq=self.freq) def _values_for_factorize(self): return self.asi8, iNaT @classmethod def _from_factorized(cls, values, original): return cls(values, dtype=original.dtype) def _values_for_argsort(self): return self._data # ------------------------------------------------------------------ # Additional array methods # These are not part of the EA API, but we implement them because # pandas assumes they're there. def searchsorted(self, value, side="left", sorter=None): """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted array `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- indices : array of ints Array of insertion points with the same shape as `value`. """ if isinstance(value, str): value = self._scalar_from_string(value) if not (isinstance(value, (self._scalar_type, type(self))) or isna(value)): raise ValueError( "Unexpected type for 'value': {valtype}".format(valtype=type(value)) ) self._check_compatible_with(value) if isinstance(value, type(self)): value = value.asi8 else: value = self._unbox_scalar(value) return self.asi8.searchsorted(value, side=side, sorter=sorter) def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) values = self._data.repeat(repeats) return type(self)(values.view("i8"), dtype=self.dtype) def value_counts(self, dropna=False): """ Return a Series containing counts of unique values. Parameters ---------- dropna : bool, default True Don't include counts of NaT values. Returns ------- Series """ from pandas import Series, Index if dropna: values = self[~self.isna()]._data else: values = self._data cls = type(self) result = value_counts(values, sort=False, dropna=dropna) index = Index( cls(result.index.view("i8"), dtype=self.dtype), name=result.index.name ) return Series(result.values, index=index, name=result.name) def map(self, mapper): # TODO(GH-23179): Add ExtensionArray.map # Need to figure out if we want ExtensionArray.map first. # If so, then we can refactor IndexOpsMixin._map_values to # a standalone function and call from here.. # Else, just rewrite _map_infer_values to do the right thing. from pandas import Index return Index(self).map(mapper).array # ------------------------------------------------------------------ # Null Handling def isna(self): return self._isnan @property # NB: override with cache_readonly in immutable subclasses def _isnan(self): """ return if each value is nan """ return self.asi8 == iNaT @property # NB: override with cache_readonly in immutable subclasses def _hasnans(self): """ return if I have any nans; enables various perf speedups """ return bool(self._isnan.any()) def _maybe_mask_results(self, result, fill_value=iNaT, convert=None): """ Parameters ---------- result : a ndarray fill_value : object, default iNaT convert : str, dtype or None Returns ------- result : ndarray with values replace by the fill_value mask the result if needed, convert to the provided dtype if its not None This is an internal routine. """ if self._hasnans: if convert: result = result.astype(convert) if fill_value is None: fill_value = np.nan result[self._isnan] = fill_value return result def fillna(self, value=None, method=None, limit=None): # TODO(GH-20300): remove this # Just overriding to ensure that we avoid an astype(object). # Either 20300 or a `_values_for_fillna` would avoid this duplication. if isinstance(value, ABCSeries): value = value.array value, method = validate_fillna_kwargs(value, method) mask = self.isna() if is_array_like(value): if len(value) != len(self): raise ValueError( "Length of 'value' does not match. Got ({}) " " expected {}".format(len(value), len(self)) ) value = value[mask] if mask.any(): if method is not None: if method == "pad": func = missing.pad_1d else: func = missing.backfill_1d values = self._data if not is_period_dtype(self): # For PeriodArray self._data is i8, which gets copied # by `func`. Otherwise we need to make a copy manually # to avoid modifying `self` in-place. values = values.copy() new_values = func(values, limit=limit, mask=mask) if is_datetime64tz_dtype(self): # we need to pass int64 values to the constructor to avoid # re-localizing incorrectly new_values = new_values.view("i8") new_values = type(self)(new_values, dtype=self.dtype) else: # fill with value new_values = self.copy() new_values[mask] = value else: new_values = self.copy() return new_values # ------------------------------------------------------------------ # Frequency Properties/Methods @property def freq(self): """ Return the frequency object if it is set, otherwise None. """ return self._freq @freq.setter def freq(self, value): if value is not None: value = frequencies.to_offset(value) self._validate_frequency(self, value) self._freq = value @property def freqstr(self): """ Return the frequency object as a string if its set, otherwise None """ if self.freq is None: return None return self.freq.freqstr @property # NB: override with cache_readonly in immutable subclasses def inferred_freq(self): """ Tryies to return a string representing a frequency guess, generated by infer_freq. Returns None if it can't autodetect the frequency. """ try: return frequencies.infer_freq(self) except ValueError: return None @property # NB: override with cache_readonly in immutable subclasses def _resolution(self): return frequencies.Resolution.get_reso_from_freq(self.freqstr) @property # NB: override with cache_readonly in immutable subclasses def resolution(self): """ Returns day, hour, minute, second, millisecond or microsecond """ return frequencies.Resolution.get_str(self._resolution) @classmethod def _validate_frequency(cls, index, freq, **kwargs): """ Validate that a frequency is compatible with the values of a given Datetime Array/Index or Timedelta Array/Index Parameters ---------- index : DatetimeIndex or TimedeltaIndex The index on which to determine if the given frequency is valid freq : DateOffset The frequency to validate """ if is_period_dtype(cls): # Frequency validation is not meaningful for Period Array/Index return None inferred = index.inferred_freq if index.size == 0 or inferred == freq.freqstr: return None try: on_freq = cls._generate_range( start=index[0], end=None, periods=len(index), freq=freq, **kwargs ) if not np.array_equal(index.asi8, on_freq.asi8): raise ValueError except ValueError as e: if "non-fixed" in str(e): # non-fixed frequencies are not meaningful for timedelta64; # we retain that error message raise e # GH#11587 the main way this is reached is if the `np.array_equal` # check above is False. This can also be reached if index[0] # is `NaT`, in which case the call to `cls._generate_range` will # raise a ValueError, which we re-raise with a more targeted # message. raise ValueError( "Inferred frequency {infer} from passed values " "does not conform to passed frequency {passed}".format( infer=inferred, passed=freq.freqstr ) ) # monotonicity/uniqueness properties are called via frequencies.infer_freq, # see GH#23789 @property def _is_monotonic_increasing(self): return algos.is_monotonic(self.asi8, timelike=True)[0] @property def _is_monotonic_decreasing(self): return algos.is_monotonic(self.asi8, timelike=True)[1] @property def _is_unique(self): return len(unique1d(self.asi8)) == len(self) # ------------------------------------------------------------------ # Arithmetic Methods # pow is invalid for all three subclasses; TimedeltaArray will override # the multiplication and division ops __pow__ = make_invalid_op("__pow__") __rpow__ = make_invalid_op("__rpow__") __mul__ = make_invalid_op("__mul__") __rmul__ = make_invalid_op("__rmul__") __truediv__ = make_invalid_op("__truediv__") __rtruediv__ = make_invalid_op("__rtruediv__") __floordiv__ = make_invalid_op("__floordiv__") __rfloordiv__ = make_invalid_op("__rfloordiv__") __mod__ = make_invalid_op("__mod__") __rmod__ = make_invalid_op("__rmod__") __divmod__ = make_invalid_op("__divmod__") __rdivmod__ = make_invalid_op("__rdivmod__") def _add_datetimelike_scalar(self, other): # Overriden by TimedeltaArray raise TypeError( "cannot add {cls} and {typ}".format( cls=type(self).__name__, typ=type(other).__name__ ) ) _add_datetime_arraylike = _add_datetimelike_scalar def _sub_datetimelike_scalar(self, other): # Overridden by DatetimeArray assert other is not NaT raise TypeError( "cannot subtract a datelike from a {cls}".format(cls=type(self).__name__) ) _sub_datetime_arraylike = _sub_datetimelike_scalar def _sub_period(self, other): # Overriden by PeriodArray raise TypeError( "cannot subtract Period from a {cls}".format(cls=type(self).__name__) ) def _add_offset(self, offset): raise AbstractMethodError(self) def _add_delta(self, other): """ Add a timedelta-like, Tick or TimedeltaIndex-like object to self, yielding an int64 numpy array Parameters ---------- delta : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : ndarray[int64] Notes ----- The result's name is set outside of _add_delta by the calling method (__add__ or __sub__), if necessary (i.e. for Indexes). """ if isinstance(other, (Tick, timedelta, np.timedelta64)): new_values = self._add_timedeltalike_scalar(other) elif is_timedelta64_dtype(other): # ndarray[timedelta64] or TimedeltaArray/index new_values = self._add_delta_tdi(other) return new_values def _add_timedeltalike_scalar(self, other): """ Add a delta of a timedeltalike return the i8 result view """ if isna(other): # i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds new_values = np.empty(len(self), dtype="i8") new_values[:] = iNaT return new_values inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan).view( "i8" ) new_values = self._maybe_mask_results(new_values) return new_values.view("i8") def _add_delta_tdi(self, other): """ Add a delta of a TimedeltaIndex return the i8 result view """ if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): # ndarray[timedelta64]; wrap in TimedeltaIndex for op from pandas.core.arrays import TimedeltaArray other = TimedeltaArray._from_sequence(other) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr( self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan ) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return new_values.view("i8") def _add_nat(self): """ Add pd.NaT to self """ if is_period_dtype(self): raise TypeError( "Cannot add {cls} and {typ}".format( cls=type(self).__name__, typ=type(NaT).__name__ ) ) # GH#19124 pd.NaT is treated like a timedelta for both timedelta # and datetime dtypes result = np.zeros(len(self), dtype=np.int64) result.fill(iNaT) return type(self)(result, dtype=self.dtype, freq=None) def _sub_nat(self): """ Subtract pd.NaT from self """ # GH#19124 Timedelta - datetime is not in general well-defined. # We make an exception for pd.NaT, which in this case quacks # like a timedelta. # For datetime64 dtypes by convention we treat NaT as a datetime, so # this subtraction returns a timedelta64 dtype. # For period dtype, timedelta64 is a close-enough return dtype. result = np.zeros(len(self), dtype=np.int64) result.fill(iNaT) return result.view("timedelta64[ns]") def _sub_period_array(self, other): """ Subtract a Period Array/Index from self. This is only valid if self is itself a Period Array/Index, raises otherwise. Both objects must have the same frequency. Parameters ---------- other : PeriodIndex or PeriodArray Returns ------- result : np.ndarray[object] Array of DateOffset objects; nulls represented by NaT. """ if not is_period_dtype(self): raise TypeError( "cannot subtract {dtype}-dtype from {cls}".format( dtype=other.dtype, cls=type(self).__name__ ) ) if len(self) != len(other): raise ValueError("cannot subtract arrays/indices of unequal length") if self.freq != other.freq: msg = DIFFERENT_FREQ.format( cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr ) raise IncompatibleFrequency(msg) new_values = checked_add_with_arr( self.asi8, -other.asi8, arr_mask=self._isnan, b_mask=other._isnan ) new_values = np.array([self.freq.base * x for x in new_values]) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = NaT return new_values def _addsub_int_array(self, other, op): """ Add or subtract array-like of integers equivalent to applying `_time_shift` pointwise. Parameters ---------- other : Index, ExtensionArray, np.ndarray integer-dtype op : {operator.add, operator.sub} Returns ------- result : same class as self """ # _addsub_int_array is overriden by PeriodArray assert not is_period_dtype(self) assert op in [operator.add, operator.sub] if self.freq is None: # GH#19123 raise NullFrequencyError("Cannot shift with no freq") elif isinstance(self.freq, Tick): # easy case where we can convert to timedelta64 operation td = Timedelta(self.freq) return op(self, td * other) # We should only get here with DatetimeIndex; dispatch # to _addsub_offset_array assert not is_timedelta64_dtype(self) return op(self, np.array(other) * self.freq) def _addsub_offset_array(self, other, op): """ Add or subtract array-like of DateOffset objects Parameters ---------- other : Index, np.ndarray object-dtype containing pd.DateOffset objects op : {operator.add, operator.sub} Returns ------- result : same class as self """ assert op in [operator.add, operator.sub] if len(other) == 1: return op(self, other[0]) warnings.warn( "Adding/subtracting array of DateOffsets to " "{cls} not vectorized".format(cls=type(self).__name__), PerformanceWarning, ) # For EA self.astype('O') returns a numpy array, not an Index left = self.astype("O") res_values = op(left, np.array(other)) kwargs = {} if not is_period_dtype(self): kwargs["freq"] = "infer" return self._from_sequence(res_values, **kwargs) def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None and freq != self.freq: if isinstance(freq, str): freq = frequencies.to_offset(freq) offset = periods * freq result = self + offset return result if periods == 0: # immutable so OK return self.copy() if self.freq is None: raise NullFrequencyError("Cannot shift with no freq") start = self[0] + periods * self.freq end = self[-1] + periods * self.freq # Note: in the DatetimeTZ case, _generate_range will infer the # appropriate timezone from `start` and `end`, so tz does not need # to be passed explicitly. return self._generate_range(start=start, end=end, periods=None, freq=self.freq) def __add__(self, other): other = lib.item_from_zerodim(other) if isinstance(other, (ABCSeries, ABCDataFrame, ABCIndexClass)): return NotImplemented # scalar others elif other is NaT: result = self._add_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(other) elif isinstance(other, (datetime, np.datetime64)): result = self._add_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): maybe_integer_op_deprecated(self) result = self._time_shift(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(other) elif is_offsetlike(other): # Array/Index of DateOffset objects result = self._addsub_offset_array(other, operator.add) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] return self._add_datetime_arraylike(other) elif is_integer_dtype(other): if not is_period_dtype(self): maybe_integer_op_deprecated(self) result = self._addsub_int_array(other, operator.add) else: # Includes Categorical, other ExtensionArrays # For PeriodDtype, if self is a TimedeltaArray and other is a # PeriodArray with a timedelta-like (i.e. Tick) freq, this # operation is valid. Defer to the PeriodArray implementation. # In remaining cases, this will end up raising TypeError. return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __radd__(self, other): # alias for __add__ return self.__add__(other) def __sub__(self, other): other = lib.item_from_zerodim(other) if isinstance(other, (ABCSeries, ABCDataFrame, ABCIndexClass)): return NotImplemented # scalar others elif other is NaT: result = self._sub_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_delta(-other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(-other) elif isinstance(other, (datetime, np.datetime64)): result = self._sub_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): maybe_integer_op_deprecated(self) result = self._time_shift(-other) elif isinstance(other, Period): result = self._sub_period(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_delta(-other) elif is_offsetlike(other): # Array/Index of DateOffset objects result = self._addsub_offset_array(other, operator.sub) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] result = self._sub_datetime_arraylike(other) elif is_period_dtype(other): # PeriodIndex result = self._sub_period_array(other) elif is_integer_dtype(other): if not is_period_dtype(self): maybe_integer_op_deprecated(self) result = self._addsub_int_array(other, operator.sub) else: # Includes ExtensionArrays, float_dtype return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __rsub__(self, other): if is_datetime64_any_dtype(other) and is_timedelta64_dtype(self.dtype): # ndarray[datetime64] cannot be subtracted from self, so # we need to wrap in DatetimeArray/Index and flip the operation if lib.is_scalar(other): # i.e. np.datetime64 object return Timestamp(other) - self if not isinstance(other, DatetimeLikeArrayMixin): # Avoid down-casting DatetimeIndex from pandas.core.arrays import DatetimeArray other = DatetimeArray(other) return other - self elif ( is_datetime64_any_dtype(self.dtype) and hasattr(other, "dtype") and not is_datetime64_any_dtype(other.dtype) ): # GH#19959 datetime - datetime is well-defined as timedelta, # but any other type - datetime is not well-defined. raise TypeError( "cannot subtract {cls} from {typ}".format( cls=type(self).__name__, typ=type(other).__name__ ) ) elif is_period_dtype(self.dtype) and is_timedelta64_dtype(other): # TODO: Can we simplify/generalize these cases at all? raise TypeError( "cannot subtract {cls} from {dtype}".format( cls=type(self).__name__, dtype=other.dtype ) ) elif is_timedelta64_dtype(self.dtype): if lib.is_integer(other) or is_integer_dtype(other): # need to subtract before negating, since that flips freq # -self flips self.freq, messing up results return -(self - other) return (-self) + other return -(self - other) # FIXME: DTA/TDA/PA inplace methods should actually be inplace, GH#24115 def __iadd__(self, other): # alias for __add__ return self.__add__(other) def __isub__(self, other): # alias for __sub__ return self.__sub__(other) # -------------------------------------------------------------- # Comparison Methods def _ensure_localized( self, arg, ambiguous="raise", nonexistent="raise", from_utc=False ): """ Ensure that we are re-localized. This is for compat as we can then call this on all datetimelike arrays generally (ignored for Period/Timedelta) Parameters ---------- arg : Union[DatetimeLikeArray, DatetimeIndexOpsMixin, ndarray] ambiguous : str, bool, or bool-ndarray, default 'raise' nonexistent : str, default 'raise' from_utc : bool, default False If True, localize the i8 ndarray to UTC first before converting to the appropriate tz. If False, localize directly to the tz. Returns ------- localized array """ # reconvert to local tz tz = getattr(self, "tz", None) if tz is not None: if not isinstance(arg, type(self)): arg = self._simple_new(arg) if from_utc: arg = arg.tz_localize("UTC").tz_convert(self.tz) else: arg = arg.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return arg # -------------------------------------------------------------- # Reductions def _reduce(self, name, axis=0, skipna=True, **kwargs): op = getattr(self, name, None) if op: return op(skipna=skipna, **kwargs) else: return super()._reduce(name, skipna, **kwargs) def min(self, axis=None, skipna=True, *args, **kwargs): """ Return the minimum value of the Array or minimum along an axis. See Also -------- numpy.ndarray.min Index.min : Return the minimum value in an Index. Series.min : Return the minimum value in a Series. """ nv.validate_min(args, kwargs) nv.validate_minmax_axis(axis) result = nanops.nanmin(self.asi8, skipna=skipna, mask=self.isna()) if isna(result): # Period._from_ordinal does not handle np.nan gracefully return NaT return self._box_func(result) def max(self, axis=None, skipna=True, *args, **kwargs): """ Return the maximum value of the Array or maximum along an axis. See Also -------- numpy.ndarray.max Index.max : Return the maximum value in an Index. Series.max : Return the maximum value in a Series. """ # TODO: skipna is broken with max. # See https://github.com/pandas-dev/pandas/issues/24265 nv.validate_max(args, kwargs) nv.validate_minmax_axis(axis) mask = self.isna() if skipna: values = self[~mask].asi8 elif mask.any(): return NaT else: values = self.asi8 if not len(values): # short-circuit for empty max / min return NaT result = nanops.nanmax(values, skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result) def mean(self, skipna=True): """ Return the mean value of the Array. .. versionadded:: 0.25.0 Parameters ---------- skipna : bool, default True Whether to ignore any NaT elements. Returns ------- scalar Timestamp or Timedelta. See Also -------- numpy.ndarray.mean : Returns the average of array elements along a given axis. Series.mean : Return the mean value in a Series. Notes ----- mean is only defined for Datetime and Timedelta dtypes, not for Period. """ if is_period_dtype(self): # See discussion in GH#24757 raise TypeError( "mean is not implemented for {cls} since the meaning is " "ambiguous. An alternative is " "obj.to_timestamp(how='start').mean()".format(cls=type(self).__name__) ) mask = self.isna() if skipna: values = self[~mask] elif mask.any(): return NaT else: values = self if not len(values): # short-circut for empty max / min return NaT result = nanops.nanmean(values.view("i8"), skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result) # ------------------------------------------------------------------- # Shared Constructor Helpers def validate_periods(periods): """ If a `periods` argument is passed to the Datetime/Timedelta Array/Index constructor, cast it to an integer. Parameters ---------- periods : None, float, int Returns ------- periods : None or int Raises ------ TypeError if periods is None, float, or int """ if periods is not None: if lib.is_float(periods): periods = int(periods) elif not lib.is_integer(periods): raise TypeError( "periods must be a number, got {periods}".format(periods=periods) ) return periods def validate_endpoints(closed): """ Check that the `closed` argument is among [None, "left", "right"] Parameters ---------- closed : {None, "left", "right"} Returns ------- left_closed : bool right_closed : bool Raises ------ ValueError : if argument is not among valid values """ left_closed = False right_closed = False if closed is None: left_closed = True right_closed = True elif closed == "left": left_closed = True elif closed == "right": right_closed = True else: raise ValueError("Closed has to be either 'left', 'right' or None") return left_closed, right_closed def validate_inferred_freq(freq, inferred_freq, freq_infer): """ If the user passes a freq and another freq is inferred from passed data, require that they match. Parameters ---------- freq : DateOffset or None inferred_freq : DateOffset or None freq_infer : bool Returns ------- freq : DateOffset or None freq_infer : bool Notes ----- We assume at this point that `maybe_infer_freq` has been called, so `freq` is either a DateOffset object or None. """ if inferred_freq is not None: if freq is not None and freq != inferred_freq: raise ValueError( "Inferred frequency {inferred} from passed " "values does not conform to passed frequency " "{passed}".format(inferred=inferred_freq, passed=freq.freqstr) ) elif freq is None: freq = inferred_freq freq_infer = False return freq, freq_infer def maybe_infer_freq(freq): """ Comparing a DateOffset to the string "infer" raises, so we need to be careful about comparisons. Make a dummy variable `freq_infer` to signify the case where the given freq is "infer" and set freq to None to avoid comparison trouble later on. Parameters ---------- freq : {DateOffset, None, str} Returns ------- freq : {DateOffset, None} freq_infer : bool """ freq_infer = False if not isinstance(freq, DateOffset): # if a passed freq is None, don't infer automatically if freq != "infer": freq = frequencies.to_offset(freq) else: freq_infer = True freq = None return freq, freq_infer def _ensure_datetimelike_to_i8(other, to_utc=False): """ Helper for coercing an input scalar or array to i8. Parameters ---------- other : 1d array to_utc : bool, default False If True, convert the values to UTC before extracting the i8 values If False, extract the i8 values directly. Returns ------- i8 1d array """ from pandas import Index if lib.is_scalar(other) and isna(other): return iNaT elif isinstance(other, (ABCPeriodArray, ABCIndexClass, DatetimeLikeArrayMixin)): # convert tz if needed if getattr(other, "tz", None) is not None: if to_utc: other = other.tz_convert("UTC") else: other = other.tz_localize(None) else: try: return np.array(other, copy=False).view("i8") except TypeError: # period array cannot be coerced to int other = Index(other) return other.asi8
BugsInPy/BugsInPy/temp/projects/pandas/bug-129-fixed/pandas/pandas/core/arrays/datetimelike.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-129-buggy/pandas/pandas/core/arrays/datetimelike.py
pandas-bug-137
import operator from shutil import get_terminal_size import textwrap from typing import Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable, lib from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import coerce_indexer_dtype, maybe_infer_to_datetimelike from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_datetimelike, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas._typing import ArrayLike, Dtype, Ordered from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import ( _get_data_algo, _hashtables, factorize, take, take_1d, unique1d, ) from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import extract_array, sanitize_array from pandas.core.missing import interpolate_2d from pandas.core.sorting import nargsort from pandas.io.formats import console from .base import ExtensionArray, _extension_array_shared_docs _take_msg = textwrap.dedent( """\ Interpreting negative values in 'indexer' as missing values. In the future, this will change to meaning positional indices from the right. Use 'allow_fill=True' to retain the previous behavior and silence this warning. Use 'allow_fill=False' to accept the new behavior.""" ) def _cat_compare_op(op): opname = "__{op}__".format(op=op.__name__) def f(self, other): # On python2, you can usually compare any type to any type, and # Categoricals can be seen as a custom type, but having different # results depending whether categories are the same or not is kind of # insane, so be a bit stricter here and use the python3 idea of # comparing only things of equal type. if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)): return NotImplemented other = lib.item_from_zerodim(other) if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes mask = (self._codes == -1) | (other_codes == -1) f = getattr(self._codes, opname) ret = f(other_codes) if mask.any(): # In other series, the leads to False, so do that here too ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) # check for NaN in self mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.repeat(False, len(self)) elif opname == "__ne__": return np.repeat(True, len(self)) else: msg = ( "Cannot compare a Categorical for op {op} with a " "scalar, which is not a category." ) raise TypeError(msg.format(op=opname)) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) msg = ( "Cannot compare a Categorical for op {op} with type {typ}." "\nIf you want to compare values, use 'np.asarray(cat) " "<op> other'." ) raise TypeError(msg.format(op=opname, typ=type(other))) f.__name__ = opname return f def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical .. versionadded:: 0.21.0 Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. .. versionadded:: 0.21.0 Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- api.types.CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = frozenset(["labels", "tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step futher below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype._ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: if len(values) == 0: sanitize_dtype = "object" else: sanitize_dtype = None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError: codes, categories = factorize(values, sort=False) if dtype._ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) except ValueError: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) # we're inferring from values dtype = CategoricalDtype(categories, dtype._ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = _recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype._ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _ndarray_values(self) -> np.ndarray: return self.codes @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_integer_dtype(dtype) and self.isna().any(): msg = "Cannot convert float NaN to integer" raise ValueError(msg) return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ return the len of myself """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> list: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @property def base(self) -> None: """ compat, we are always our own object """ return None @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = _recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = _recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like, integers An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or the string "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) codes = np.asarray(codes) # #21767 if not is_integer_dtype(codes): msg = "codes need to be array-like integers" if is_float_dtype(codes): icodes = codes.astype("i8") if (icodes == codes).all(): msg = None codes = icodes warn( ( "float codes will be disallowed in the future and " "raise a ValueError" ), FutureWarning, stacklevel=2, ) if msg: raise ValueError(msg) if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = _recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype._ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = _recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. .. versionadded:: 0.21.0 * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0 inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories add_categories remove_categories remove_unused_categories set_categories Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories add_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories reorder_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: msg = ( "new categories must not include old categories: " "{already_included!s}" ) raise ValueError(msg.format(already_included=already_included)) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories reorder_categories add_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(list(removals)) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = [x for x in not_included if notna(x)] new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: msg = "removals must all be in old categories: {not_included!s}" raise ValueError(msg.format(not_included=not_included)) return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( "'fill_value={}' is not present " "in this Categorical's " "categories".format(fill_value) ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None): """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( "Object with dtype {dtype} cannot perform " "the numpy op {op}".format(dtype=self.dtype, op=ufunc.__name__) ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") # compat with pre 0.21.0 CategoricalDtype change if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self): """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @Substitution(klass="Categorical") @Appender(_shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def put(self, *args, **kwargs): """ Replace specific elements in the Categorical with given values. """ raise NotImplementedError(("'put' is not yet implemented for Categorical")) def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def get_values(self): """ Return the values. .. deprecated:: 0.25.0 For internal compatibility with pandas formatting. Returns ------- numpy.array A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ warn( "The 'get_values' method is deprecated and will be removed in a " "future version", FutureWarning, stacklevel=2, ) return self._internal_get_values() def _internal_get_values(self): # if we are a datetime and period index, return Index to keep metadata if is_datetimelike(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( "Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n".format(op=op) ) def _values_for_argsort(self): return self._codes.copy() def argsort(self, ascending=True, kind="quicksort", *args, **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. *args, **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, *args, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2.0, 2.0, NaN, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values() [2.0, 2.0, 5.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5.0, 2.0, 2.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2.0, 2.0, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5.0, 2.0, 2.0] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: msg = "invalid na_position: {na_position!r}" raise ValueError(msg.format(na_position=na_position)) sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def ravel(self, order="C"): """ Return a flattened (numpy) array. For internal compatibility with numpy arrays. Returns ------- numpy.array """ warn( "Categorical.ravel will return a Categorical object instead " "of an ndarray in a future version.", FutureWarning, stacklevel=2, ) return np.array(self) def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ return np.asarray(self) @deprecate_kwarg(old_arg_name="fill_value", new_arg_name="value") def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: values = self.to_dense().reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, ABCSeries): if not value[~value.isin(self.categories)].isna().all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( '"value" parameter must be a scalar, dict ' "or Series, but you passed a " '"{0}"'.format(type(value).__name__) ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take_nd(self, indexer, allow_fill=None, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default None How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 0.23.0 Deprecated the default value of `allow_fill`. The deprecated default is ``True``. In the future, this will change to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (3, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) if allow_fill is None: if (indexer < 0).any(): warn(_take_msg, FutureWarning, stacklevel=2) allow_fill = True dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = "'fill_value' ('{}') is not in this Categorical's categories." raise TypeError(msg.format(fill_value)) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result take = take_nd def __len__(self): """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key): """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True): """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = "{head}, ..., {tail}".format(head=head[:-1], tail=tail[1:]) if footer: result = "{result}\n{footer}".format( result=result, footer=self._repr_footer() ) return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self): """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = "Categories ({length}, {dtype}): ".format( length=len(self.categories), dtype=dtype ) width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self): return "Length: {length}\n{info}".format( length=len(self), info=self._repr_categories_info() ) def _get_repr(self, length=True, na_rep="NaN", footer=True): from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self): """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = "[], {repr_msg}".format(repr_msg=msg) return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] else: return self._constructor( values=self._codes[key], dtype=self.dtype, fastpath=True ) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = _recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) self._codes[key] = lindexer def _reverse_indexer(self): """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: msg = "Categorical cannot perform the operation {op}" raise TypeError(msg.format(op=name)) return func(**kwargs) def min(self, numeric_only=None, **kwargs): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if numeric_only: good = self._codes != -1 pointer = self._codes[good].min(**kwargs) else: pointer = self._codes.min(**kwargs) if pointer == -1: return np.nan else: return self.categories[pointer] def max(self, numeric_only=None, **kwargs): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if numeric_only: good = self._codes != -1 pointer = self._codes[good].max(**kwargs) else: pointer = self._codes.max(**kwargs) if pointer == -1: return np.nan else: return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list('baabc')) [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list('baabc'), categories=list('abc')) [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical(list('baabc'), ... categories=list('abc'), ... ordered=True) [b, a, c] Categories (3, object): [a < b < c] See Also -------- unique CategoricalIndex.unique Series.unique """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = _recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed" " to isin(), you passed a [{values_type}]".format( values_type=type(values).__name__ ) ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s.cat.categories >>> s.cat.categories = list('abc') >>> s.cat.rename_categories(list('cab')) >>> s.cat.reorder_categories(list('cab')) >>> s.cat.add_categories(['d','e']) >>> s.cat.remove_categories(['d']) >>> s.cat.remove_unused_categories() >>> s.cat.set_categories(list('abcde')) >>> s.cat.as_ordered() >>> s.cat.as_unordered() """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) @property def categorical(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `categorical` will need to be removed from # `ok_for_cat`. warn( "`Series.cat.categorical` has been deprecated. Use the " "attributes on 'Series.cat' directly instead.", FutureWarning, stacklevel=2, ) return self._parent @property def name(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `name` will need to be removed from # `ok_for_cat`. warn( "`Series.cat.name` has been deprecated. Use `Series.name` instead.", FutureWarning, stacklevel=2, ) return self._name @property def index(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `index` will need to be removed from # ok_for_cat`. warn( "`Series.cat.index` has been deprecated. Use `Series.index` instead.", FutureWarning, stacklevel=2, ) return self._index # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, "_ndarray_values", values) categories = getattr(categories, "_ndarray_values", categories) elif is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) try: values = categories.dtype.construct_array_type()._from_sequence(values) except Exception: # but that may fail for any reason, so fall back to object values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) (hash_klass, vec_klass), vals = _get_data_algo(values, _hashtables) (_, _), cats = _get_data_algo(categories, _hashtables) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def _recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def _factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def _factorize_from_iterables(iterables): """ A higher-level wrapper over `_factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `_factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(_factorize_from_iterable(it) for it in iterables))) import operator from shutil import get_terminal_size import textwrap from typing import Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable, lib from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import coerce_indexer_dtype, maybe_infer_to_datetimelike from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_datetimelike, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas._typing import ArrayLike, Dtype, Ordered from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import ( _get_data_algo, _hashtables, factorize, take, take_1d, unique1d, ) from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.missing import interpolate_2d from pandas.core.sorting import nargsort from pandas.io.formats import console from .base import ExtensionArray, _extension_array_shared_docs _take_msg = textwrap.dedent( """\ Interpreting negative values in 'indexer' as missing values. In the future, this will change to meaning positional indices from the right. Use 'allow_fill=True' to retain the previous behavior and silence this warning. Use 'allow_fill=False' to accept the new behavior.""" ) def _cat_compare_op(op): opname = "__{op}__".format(op=op.__name__) def f(self, other): # On python2, you can usually compare any type to any type, and # Categoricals can be seen as a custom type, but having different # results depending whether categories are the same or not is kind of # insane, so be a bit stricter here and use the python3 idea of # comparing only things of equal type. if isinstance(other, (ABCDataFrame, ABCSeries, ABCIndexClass)): return NotImplemented other = lib.item_from_zerodim(other) if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes mask = (self._codes == -1) | (other_codes == -1) f = getattr(self._codes, opname) ret = f(other_codes) if mask.any(): # In other series, the leads to False, so do that here too ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) # check for NaN in self mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.repeat(False, len(self)) elif opname == "__ne__": return np.repeat(True, len(self)) else: msg = ( "Cannot compare a Categorical for op {op} with a " "scalar, which is not a category." ) raise TypeError(msg.format(op=opname)) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) msg = ( "Cannot compare a Categorical for op {op} with type {typ}." "\nIf you want to compare values, use 'np.asarray(cat) " "<op> other'." ) raise TypeError(msg.format(op=opname, typ=type(other))) f.__name__ = opname return f def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical .. versionadded:: 0.21.0 Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. .. versionadded:: 0.21.0 Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- api.types.CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = frozenset(["labels", "tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step futher below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype._ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: if len(values) == 0: sanitize_dtype = "object" else: sanitize_dtype = None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError: codes, categories = factorize(values, sort=False) if dtype._ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) except ValueError: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) # we're inferring from values dtype = CategoricalDtype(categories, dtype._ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = _recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype._ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _ndarray_values(self) -> np.ndarray: return self.codes @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): msg = "Cannot convert float NaN to integer" raise ValueError(msg) return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ return the len of myself """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> list: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @property def base(self) -> None: """ compat, we are always our own object """ return None @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = _recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = _recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like, integers An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or the string "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) codes = np.asarray(codes) # #21767 if not is_integer_dtype(codes): msg = "codes need to be array-like integers" if is_float_dtype(codes): icodes = codes.astype("i8") if (icodes == codes).all(): msg = None codes = icodes warn( ( "float codes will be disallowed in the future and " "raise a ValueError" ), FutureWarning, stacklevel=2, ) if msg: raise ValueError(msg) if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = _recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes on python3, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype._ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = _recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. .. versionadded:: 0.21.0 * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0 inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories add_categories remove_categories remove_unused_categories set_categories Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories add_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories reorder_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: msg = ( "new categories must not include old categories: " "{already_included!s}" ) raise ValueError(msg.format(already_included=already_included)) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories reorder_categories add_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(list(removals)) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = [x for x in not_included if notna(x)] new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: msg = "removals must all be in old categories: {not_included!s}" raise ValueError(msg.format(not_included=not_included)) return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( "'fill_value={}' is not present " "in this Categorical's " "categories".format(fill_value) ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None): """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( "Object with dtype {dtype} cannot perform " "the numpy op {op}".format(dtype=self.dtype, op=ufunc.__name__) ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") # compat with pre 0.21.0 CategoricalDtype change if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self): """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @Substitution(klass="Categorical") @Appender(_shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def put(self, *args, **kwargs): """ Replace specific elements in the Categorical with given values. """ raise NotImplementedError(("'put' is not yet implemented for Categorical")) def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def get_values(self): """ Return the values. .. deprecated:: 0.25.0 For internal compatibility with pandas formatting. Returns ------- numpy.array A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ warn( "The 'get_values' method is deprecated and will be removed in a " "future version", FutureWarning, stacklevel=2, ) return self._internal_get_values() def _internal_get_values(self): # if we are a datetime and period index, return Index to keep metadata if is_datetimelike(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( "Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n".format(op=op) ) def _values_for_argsort(self): return self._codes.copy() def argsort(self, ascending=True, kind="quicksort", *args, **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. *args, **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, *args, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2.0, 2.0, NaN, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values() [2.0, 2.0, 5.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5.0, 2.0, 2.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2.0, 2.0, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5.0, 2.0, 2.0] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: msg = "invalid na_position: {na_position!r}" raise ValueError(msg.format(na_position=na_position)) sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def ravel(self, order="C"): """ Return a flattened (numpy) array. For internal compatibility with numpy arrays. Returns ------- numpy.array """ warn( "Categorical.ravel will return a Categorical object instead " "of an ndarray in a future version.", FutureWarning, stacklevel=2, ) return np.array(self) def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ return np.asarray(self) @deprecate_kwarg(old_arg_name="fill_value", new_arg_name="value") def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: values = self.to_dense().reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, ABCSeries): if not value[~value.isin(self.categories)].isna().all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( '"value" parameter must be a scalar, dict ' "or Series, but you passed a " '"{0}"'.format(type(value).__name__) ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take_nd(self, indexer, allow_fill=None, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default None How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 0.23.0 Deprecated the default value of `allow_fill`. The deprecated default is ``True``. In the future, this will change to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (3, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) if allow_fill is None: if (indexer < 0).any(): warn(_take_msg, FutureWarning, stacklevel=2) allow_fill = True dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = "'fill_value' ('{}') is not in this Categorical's categories." raise TypeError(msg.format(fill_value)) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result take = take_nd def __len__(self): """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key): """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True): """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = "{head}, ..., {tail}".format(head=head[:-1], tail=tail[1:]) if footer: result = "{result}\n{footer}".format( result=result, footer=self._repr_footer() ) return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self): """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = "Categories ({length}, {dtype}): ".format( length=len(self.categories), dtype=dtype ) width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self): return "Length: {length}\n{info}".format( length=len(self), info=self._repr_categories_info() ) def _get_repr(self, length=True, na_rep="NaN", footer=True): from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self): """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = "[], {repr_msg}".format(repr_msg=msg) return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] else: return self._constructor( values=self._codes[key], dtype=self.dtype, fastpath=True ) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = _recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) self._codes[key] = lindexer def _reverse_indexer(self): """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: msg = "Categorical cannot perform the operation {op}" raise TypeError(msg.format(op=name)) return func(**kwargs) def min(self, numeric_only=None, **kwargs): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if numeric_only: good = self._codes != -1 pointer = self._codes[good].min(**kwargs) else: pointer = self._codes.min(**kwargs) if pointer == -1: return np.nan else: return self.categories[pointer] def max(self, numeric_only=None, **kwargs): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if numeric_only: good = self._codes != -1 pointer = self._codes[good].max(**kwargs) else: pointer = self._codes.max(**kwargs) if pointer == -1: return np.nan else: return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list('baabc')) [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list('baabc'), categories=list('abc')) [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical(list('baabc'), ... categories=list('abc'), ... ordered=True) [b, a, c] Categories (3, object): [a < b < c] See Also -------- unique CategoricalIndex.unique Series.unique """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = _recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): raise TypeError( "only list-like objects are allowed to be passed" " to isin(), you passed a [{values_type}]".format( values_type=type(values).__name__ ) ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s.cat.categories >>> s.cat.categories = list('abc') >>> s.cat.rename_categories(list('cab')) >>> s.cat.reorder_categories(list('cab')) >>> s.cat.add_categories(['d','e']) >>> s.cat.remove_categories(['d']) >>> s.cat.remove_unused_categories() >>> s.cat.set_categories(list('abcde')) >>> s.cat.as_ordered() >>> s.cat.as_unordered() """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) @property def categorical(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `categorical` will need to be removed from # `ok_for_cat`. warn( "`Series.cat.categorical` has been deprecated. Use the " "attributes on 'Series.cat' directly instead.", FutureWarning, stacklevel=2, ) return self._parent @property def name(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `name` will need to be removed from # `ok_for_cat`. warn( "`Series.cat.name` has been deprecated. Use `Series.name` instead.", FutureWarning, stacklevel=2, ) return self._name @property def index(self): # Note: Upon deprecation, `test_tab_completion_with_categorical` will # need to be updated. `index` will need to be removed from # ok_for_cat`. warn( "`Series.cat.index` has been deprecated. Use `Series.index` instead.", FutureWarning, stacklevel=2, ) return self._index # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, "_ndarray_values", values) categories = getattr(categories, "_ndarray_values", categories) elif is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) try: values = categories.dtype.construct_array_type()._from_sequence(values) except Exception: # but that may fail for any reason, so fall back to object values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) (hash_klass, vec_klass), vals = _get_data_algo(values, _hashtables) (_, _), cats = _get_data_algo(categories, _hashtables) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def _recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def _factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def _factorize_from_iterables(iterables): """ A higher-level wrapper over `_factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `_factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(_factorize_from_iterable(it) for it in iterables)))
BugsInPy/BugsInPy/temp/projects/pandas/bug-137-fixed/pandas/pandas/core/arrays/categorical.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-137-buggy/pandas/pandas/core/arrays/categorical.py
pandas-bug-135
""" Provide classes to perform the groupby aggregate operations. These are not exposed to the user and provide implementations of the grouping operations, primarily in cython. These classes (BaseGrouper and BinGrouper) are contained *in* the SeriesGroupBy and DataFrameGroupBy objects. """ import collections import numpy as np from pandas._libs import NaT, iNaT, lib import pandas._libs.groupby as libgroupby import pandas._libs.reduction as libreduction from pandas.errors import AbstractMethodError from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_int_or_float, ensure_platform_int, is_bool_dtype, is_categorical_dtype, is_complex_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_integer_dtype, is_numeric_dtype, is_sparse, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import _maybe_fill, isna import pandas.core.algorithms as algorithms from pandas.core.base import SelectionMixin import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.groupby import base from pandas.core.index import Index, MultiIndex, ensure_index from pandas.core.series import Series from pandas.core.sorting import ( compress_group_index, decons_obs_group_ids, get_flattened_iterator, get_group_index, get_group_index_sorter, get_indexer_dict, ) def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and ( values[j] < r_bin or (closed == "right" and values[j] == r_bin) ): j += 1 bins[bc] = j bc += 1 return bins class BaseGrouper: """ This is an internal Grouper class, which actually holds the generated groups Parameters ---------- axis : int the axis to group groupings : array of grouping all the grouping instances to handle in this grouper for example for grouper list to groupby, need to pass the list sort : boolean, default True whether this grouper will give sorted result or not group_keys : boolean, default True mutated : boolean, default False indexer : intp array, optional the indexer created by Grouper some groupers (TimeGrouper) will sort its axis and its group_info is also sorted, so need the indexer to reorder """ def __init__( self, axis, groupings, sort=True, group_keys=True, mutated=False, indexer=None ): self._filter_empty_groups = self.compressed = len(groupings) != 1 self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.mutated = mutated self.indexer = indexer @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_grouper(self): """ We are a grouper as part of another's groupings. We have a specific method of grouping, so cannot convert to a Index for our grouper. """ return self.groupings[0].grouper def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting return get_flattened_iterator(comp_ids, ngroups, self.levels, self.labels) def apply(self, f, data, axis=0): mutated = self.mutated splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() result_values = None # oh boy f_name = com.get_callable_name(f) if ( f_name not in base.plotting_methods and hasattr(splitter, "fast_apply") and axis == 0 ): try: result_values, mutated = splitter.fast_apply(f, group_keys) # If the fast apply path could be used we can return here. # Otherwise we need to fall back to the slow implementation. if len(result_values) == len(group_keys): return group_keys, result_values, mutated except libreduction.InvalidApply: # Cannot fast apply on MultiIndex (_has_complex_internals). # This Exception is also raised if `f` triggers an exception # but it is preferable to raise the exception in Python. pass except TypeError as err: if "Cannot convert" in str(err): # via apply_frame_axis0 if we pass a non-ndarray pass else: raise for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, "name", key) # result_values is None if fast apply path wasn't taken # or fast apply aborted with an unexpected exception. # In either case, initialize the result list and perform # the slow iteration. if result_values is None: result_values = [] # If result_values is not None we're in the case that the # fast apply loop was broken prematurely but we have # already the result for the first group which we can reuse. elif i == 0: continue # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [com.values_from_object(ping.group_index) for ping in self.groupings] return get_indexer_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ ids, _, ngroup = self.group_info ids = ensure_platform_int(ids) if ngroup: out = np.bincount(ids[ids != -1], minlength=ngroup) else: out = [] return Series(out, index=self.result_index, dtype="int64") @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = zip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby) @cache_readonly def is_monotonic(self): # return if my group orderings are monotonic return Index(self.group_info[0]).is_monotonic @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups @cache_readonly def label_info(self): # return the labels of items in original grouped axis labels, _, _ = self.group_info if self.indexer is not None: sorter = np.lexsort((labels, self.indexer)) labels = labels[sorter] return labels def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape, sort=True, xnull=True) return compress_group_index(group_index, sort=self.sort) ping = self.groupings[0] return ping.labels, np.arange(len(ping.group_index)) @cache_readonly def ngroups(self): return len(self.result_index) @property def recons_labels(self): comp_ids, obs_ids, _ = self.group_info labels = (ping.labels for ping in self.groupings) return decons_obs_group_ids(comp_ids, obs_ids, self.shape, labels, xnull=True) @cache_readonly def result_index(self): if not self.compressed and len(self.groupings) == 1: return self.groupings[0].result_index.rename(self.names[0]) codes = self.recons_labels levels = [ping.result_index for ping in self.groupings] result = MultiIndex( levels=levels, codes=codes, verify_integrity=False, names=self.names ) return result def get_group_levels(self): if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].result_index] name_list = [] for ping, labels in zip(self.groupings, self.recons_labels): labels = ensure_platform_int(labels) levels = ping.result_index.take(labels) name_list.append(levels) return name_list # ------------------------------------------------------------ # Aggregation functions _cython_functions = { "aggregate": { "add": "group_add", "prod": "group_prod", "min": "group_min", "max": "group_max", "mean": "group_mean", "median": {"name": "group_median"}, "var": "group_var", "first": { "name": "group_nth", "f": lambda func, a, b, c, d, e: func(a, b, c, d, 1, -1), }, "last": "group_last", "ohlc": "group_ohlc", }, "transform": { "cumprod": "group_cumprod", "cumsum": "group_cumsum", "cummin": "group_cummin", "cummax": "group_cummax", "rank": { "name": "group_rank", "f": lambda func, a, b, c, d, e, **kwargs: func( a, b, c, e, kwargs.get("ties_method", "average"), kwargs.get("ascending", True), kwargs.get("pct", False), kwargs.get("na_option", "keep"), ), }, }, } _cython_arity = {"ohlc": 4} # OHLC _name_functions = {"ohlc": lambda *args: ["open", "high", "low", "close"]} def _is_builtin_func(self, arg): """ if we define an builtin function for this argument, return it, otherwise return the arg """ return SelectionMixin._builtin_table.get(arg, arg) def _get_cython_function(self, kind, how, values, is_numeric): dtype_str = values.dtype.name def get_func(fname): # see if there is a fused-type version of function # only valid for numeric f = getattr(libgroupby, fname, None) if f is not None and is_numeric: return f # otherwise find dtype-specific version, falling back to object for dt in [dtype_str, "object"]: f2 = getattr( libgroupby, "{fname}_{dtype_str}".format(fname=fname, dtype_str=dt), None, ) if f2 is not None: return f2 if hasattr(f, "__signatures__"): # inspect what fused types are implemented if dtype_str == "object" and "object" not in f.__signatures__: # return None so we get a NotImplementedError below # instead of a TypeError at runtime return None return f ftype = self._cython_functions[kind][how] if isinstance(ftype, dict): func = afunc = get_func(ftype["name"]) # a sub-function f = ftype.get("f") if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError( "function is not implemented for this dtype: " "[how->{how},dtype->{dtype_str}]".format(how=how, dtype_str=dtype_str) ) return func def _cython_operation(self, kind, values, how, axis, min_count=-1, **kwargs): assert kind in ["transform", "aggregate"] orig_values = values # can we do this operation with our cython functions # if not raise NotImplementedError # we raise NotImplemented if this is an invalid operation # entirely, e.g. adding datetimes # categoricals are only 1d, so we # are not setup for dim transforming if is_categorical_dtype(values) or is_sparse(values): raise NotImplementedError("{} dtype not supported".format(values.dtype)) elif is_datetime64_any_dtype(values): if how in ["add", "prod", "cumsum", "cumprod"]: raise NotImplementedError( "datetime64 type does not support {} operations".format(how) ) elif is_timedelta64_dtype(values): if how in ["prod", "cumprod"]: raise NotImplementedError( "timedelta64 type does not support {} operations".format(how) ) if is_datetime64tz_dtype(values.dtype): # Cast to naive; we'll cast back at the end of the function # TODO: possible need to reshape? kludge can be avoided when # 2D EA is allowed. values = values.view("M8[ns]") is_datetimelike = needs_i8_conversion(values.dtype) is_numeric = is_numeric_dtype(values.dtype) if is_datetimelike: values = values.view("int64") is_numeric = True elif is_bool_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values): # we use iNaT for the missing value on ints # so pre-convert to guard this condition if (values == iNaT).any(): values = ensure_float64(values) else: values = ensure_int_or_float(values) elif is_numeric and not is_complex_dtype(values): values = ensure_float64(values) else: values = values.astype(object) arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True assert axis == 1, axis values = values.T if arity > 1: raise NotImplementedError( "arity of more than 1 is not supported for the 'how' argument" ) out_shape = (self.ngroups,) + values.shape[1:] try: func = self._get_cython_function(kind, how, values, is_numeric) except NotImplementedError: if is_numeric: try: values = ensure_float64(values) except TypeError: if lib.infer_dtype(values, skipna=False) == "complex": values = values.astype(complex) else: raise func = self._get_cython_function(kind, how, values, is_numeric) else: raise if how == "rank": out_dtype = "float" else: if is_numeric: out_dtype = "{kind}{itemsize}".format( kind=values.dtype.kind, itemsize=values.dtype.itemsize ) else: out_dtype = "object" labels, _, _ = self.group_info if kind == "aggregate": result = _maybe_fill( np.empty(out_shape, dtype=out_dtype), fill_value=np.nan ) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate( result, counts, values, labels, func, is_numeric, is_datetimelike, min_count, ) elif kind == "transform": result = _maybe_fill( np.empty_like(values, dtype=out_dtype), fill_value=np.nan ) # TODO: min_count result = self._transform( result, values, labels, func, is_numeric, is_datetimelike, **kwargs ) if is_integer_dtype(result) and not is_datetimelike: mask = result == iNaT if mask.any(): result = result.astype("float64") result[mask] = np.nan if kind == "aggregate" and self._filter_empty_groups and not counts.all(): assert result.ndim != 2 result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) if is_datetime64tz_dtype(orig_values.dtype): result = type(orig_values)(result.astype(np.int64), dtype=orig_values.dtype) elif is_datetimelike and kind == "aggregate": result = result.astype(orig_values.dtype) return result, names def aggregate(self, values, how, axis=0, min_count=-1): return self._cython_operation( "aggregate", values, how, axis, min_count=min_count ) def transform(self, values, how, axis=0, **kwargs): return self._cython_operation("transform", values, how, axis, **kwargs) def _aggregate( self, result, counts, values, comp_ids, agg_func, is_numeric, is_datetimelike, min_count=-1, ): if values.ndim > 2: # punting for now raise NotImplementedError("number of dimensions is currently limited to 2") else: agg_func(result, counts, values, comp_ids, min_count) return result def _transform( self, result, values, comp_ids, transform_func, is_numeric, is_datetimelike, **kwargs ): comp_ids, _, ngroups = self.group_info if values.ndim > 2: # punting for now raise NotImplementedError("number of dimensions is currently limited to 2") else: transform_func(result, values, comp_ids, ngroups, is_datetimelike, **kwargs) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except AssertionError: raise except ValueError as err: if "No result." in str(err): # raised in libreduction pass elif "Function does not reduce" in str(err): # raised in libreduction pass else: raise return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = self._is_builtin_func(func) if obj.index._has_complex_internals: raise TypeError("Incompatible index for Cython grouper") group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)) indexer = get_group_index_sorter(group_index, ngroups) obj = obj.take(indexer) group_index = algorithms.take_nd(group_index, indexer, allow_fill=False) grouper = libreduction.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if isinstance(res, (Series, Index, np.ndarray)): raise ValueError("Function does not reduce") result = np.empty(ngroups, dtype="O") counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts class BinGrouper(BaseGrouper): """ This is an internal Grouper class Parameters ---------- bins : the split index of binlabels to group the item of axis binlabels : the label list filter_empty : boolean, default False mutated : boolean, default False indexer : a intp array Examples -------- bins: [2, 4, 6, 8, 10] binlabels: DatetimeIndex(['2005-01-01', '2005-01-03', '2005-01-05', '2005-01-07', '2005-01-09'], dtype='datetime64[ns]', freq='2D') the group_info, which contains the label of each item in grouped axis, the index of label in label list, group number, is (array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]), array([0, 1, 2, 3, 4]), 5) means that, the grouped axis has 10 items, can be grouped into 5 labels, the first and second items belong to the first label, the third and forth items belong to the second label, and so on """ def __init__( self, bins, binlabels, filter_empty=False, mutated=False, indexer=None ): self.bins = ensure_int64(bins) self.binlabels = ensure_index(binlabels) self._filter_empty_groups = filter_empty self.mutated = mutated self.indexer = indexer @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = { key: value for key, value in zip(self.binlabels, self.bins) if key is not NaT } return result @property def nkeys(self): return 1 def _get_grouper(self): """ We are a grouper as part of another's groupings. We have a specific method of grouping, so cannot convert to a Index for our grouper. """ return self def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start, edge: data._slice(slice(start, edge), axis=axis) length = len(data.axes[axis]) else: slicer = lambda start, edge: data[slice(start, edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not NaT: yield label, slicer(start, edge) start = edge if start < length: yield self.binlabels[-1], slicer(start, None) @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def group_info(self): ngroups = self.ngroups obs_group_ids = np.arange(ngroups) rep = np.diff(np.r_[0, self.bins]) rep = ensure_platform_int(rep) if ngroups == len(self.bins): comp_ids = np.repeat(np.arange(ngroups), rep) else: comp_ids = np.repeat(np.r_[-1, np.arange(ngroups)], rep) return ( comp_ids.astype("int64", copy=False), obs_group_ids.astype("int64", copy=False), ngroups, ) @cache_readonly def result_index(self): if len(self.binlabels) != 0 and isna(self.binlabels[0]): return self.binlabels[1:] return self.binlabels @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): from pandas.core.groupby.grouper import Grouping return [ Grouping(lvl, lvl, in_axis=False, level=None, name=name) for lvl, name in zip(self.levels, self.names) ] def agg_series(self, obj, func): dummy = obj[:0] grouper = libreduction.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False # ---------------------------------------------------------------------- # Splitting / application class DataSplitter: def __init__(self, data, labels, ngroups, axis=0): self.data = data self.labels = ensure_int64(labels) self.ngroups = ngroups self.axis = axis @cache_readonly def slabels(self): # Sorted labels return algorithms.take_nd(self.labels, self.sort_idx, allow_fill=False) @cache_readonly def sort_idx(self): # Counting sort indexer return get_group_index_sorter(self.labels, self.ngroups) def __iter__(self): sdata = self._get_sorted_data() if self.ngroups == 0: # we are inside a generator, rather than raise StopIteration # we merely return signal the end return starts, ends = lib.generate_slices(self.slabels, self.ngroups) for i, (start, end) in enumerate(zip(starts, ends)): # Since I'm now compressing the group ids, it's now not "possible" # to produce empty slices because such groups would not be observed # in the data # if start >= end: # raise AssertionError('Start %s must be less than end %s' # % (str(start), str(end))) yield i, self._chop(sdata, slice(start, end)) def _get_sorted_data(self): return self.data.take(self.sort_idx, axis=self.axis) def _chop(self, sdata, slice_obj): raise AbstractMethodError(self) def apply(self, f): raise AbstractMethodError(self) class SeriesSplitter(DataSplitter): def _chop(self, sdata, slice_obj): return sdata._get_values(slice_obj) class FrameSplitter(DataSplitter): def fast_apply(self, f, names): # must return keys::list, values::list, mutated::bool starts, ends = lib.generate_slices(self.slabels, self.ngroups) sdata = self._get_sorted_data() return libreduction.apply_frame_axis0(sdata, f, names, starts, ends) def _chop(self, sdata, slice_obj): if self.axis == 0: return sdata.iloc[slice_obj] else: return sdata._slice(slice_obj, axis=1) def get_splitter(data, *args, **kwargs): if isinstance(data, Series): klass = SeriesSplitter elif isinstance(data, DataFrame): klass = FrameSplitter return klass(data, *args, **kwargs) """ Provide classes to perform the groupby aggregate operations. These are not exposed to the user and provide implementations of the grouping operations, primarily in cython. These classes (BaseGrouper and BinGrouper) are contained *in* the SeriesGroupBy and DataFrameGroupBy objects. """ import collections import numpy as np from pandas._libs import NaT, iNaT, lib import pandas._libs.groupby as libgroupby import pandas._libs.reduction as libreduction from pandas.errors import AbstractMethodError from pandas.util._decorators import cache_readonly from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_int_or_float, ensure_platform_int, is_bool_dtype, is_categorical_dtype, is_complex_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_integer_dtype, is_numeric_dtype, is_sparse, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import _maybe_fill, isna import pandas.core.algorithms as algorithms from pandas.core.base import SelectionMixin import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.generic import NDFrame from pandas.core.groupby import base from pandas.core.index import Index, MultiIndex, ensure_index from pandas.core.series import Series from pandas.core.sorting import ( compress_group_index, decons_obs_group_ids, get_flattened_iterator, get_group_index, get_group_index_sorter, get_indexer_dict, ) def generate_bins_generic(values, binner, closed): """ Generate bin edge offsets and bin labels for one array using another array which has bin edge values. Both arrays must be sorted. Parameters ---------- values : array of values binner : a comparable array of values representing bins into which to bin the first array. Note, 'values' end-points must fall within 'binner' end-points. closed : which end of bin is closed; left (default), right Returns ------- bins : array of offsets (into 'values' argument) of bins. Zero and last edge are excluded in result, so for instance the first bin is values[0:bin[0]] and the last is values[bin[-1]:] """ lenidx = len(values) lenbin = len(binner) if lenidx <= 0 or lenbin <= 0: raise ValueError("Invalid length for values or for binner") # check binner fits data if values[0] < binner[0]: raise ValueError("Values falls before first bin") if values[lenidx - 1] > binner[lenbin - 1]: raise ValueError("Values falls after last bin") bins = np.empty(lenbin - 1, dtype=np.int64) j = 0 # index into values bc = 0 # bin count # linear scan, presume nothing about values/binner except that it fits ok for i in range(0, lenbin - 1): r_bin = binner[i + 1] # count values in current bin, advance to next bin while j < lenidx and ( values[j] < r_bin or (closed == "right" and values[j] == r_bin) ): j += 1 bins[bc] = j bc += 1 return bins class BaseGrouper: """ This is an internal Grouper class, which actually holds the generated groups Parameters ---------- axis : int the axis to group groupings : array of grouping all the grouping instances to handle in this grouper for example for grouper list to groupby, need to pass the list sort : boolean, default True whether this grouper will give sorted result or not group_keys : boolean, default True mutated : boolean, default False indexer : intp array, optional the indexer created by Grouper some groupers (TimeGrouper) will sort its axis and its group_info is also sorted, so need the indexer to reorder """ def __init__( self, axis, groupings, sort=True, group_keys=True, mutated=False, indexer=None ): self._filter_empty_groups = self.compressed = len(groupings) != 1 self.axis = axis self.groupings = groupings self.sort = sort self.group_keys = group_keys self.mutated = mutated self.indexer = indexer @property def shape(self): return tuple(ping.ngroups for ping in self.groupings) def __iter__(self): return iter(self.indices) @property def nkeys(self): return len(self.groupings) def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ splitter = self._get_splitter(data, axis=axis) keys = self._get_group_keys() for key, (i, group) in zip(keys, splitter): yield key, group def _get_splitter(self, data, axis=0): comp_ids, _, ngroups = self.group_info return get_splitter(data, comp_ids, ngroups, axis=axis) def _get_grouper(self): """ We are a grouper as part of another's groupings. We have a specific method of grouping, so cannot convert to a Index for our grouper. """ return self.groupings[0].grouper def _get_group_keys(self): if len(self.groupings) == 1: return self.levels[0] else: comp_ids, _, ngroups = self.group_info # provide "flattened" iterator for multi-group setting return get_flattened_iterator(comp_ids, ngroups, self.levels, self.labels) def apply(self, f, data, axis=0): mutated = self.mutated splitter = self._get_splitter(data, axis=axis) group_keys = self._get_group_keys() result_values = None # oh boy f_name = com.get_callable_name(f) if ( f_name not in base.plotting_methods and hasattr(splitter, "fast_apply") and axis == 0 ): try: result_values, mutated = splitter.fast_apply(f, group_keys) # If the fast apply path could be used we can return here. # Otherwise we need to fall back to the slow implementation. if len(result_values) == len(group_keys): return group_keys, result_values, mutated except libreduction.InvalidApply: # Cannot fast apply on MultiIndex (_has_complex_internals). # This Exception is also raised if `f` triggers an exception # but it is preferable to raise the exception in Python. pass except TypeError as err: if "Cannot convert" in str(err): # via apply_frame_axis0 if we pass a non-ndarray pass else: raise for key, (i, group) in zip(group_keys, splitter): object.__setattr__(group, "name", key) # result_values is None if fast apply path wasn't taken # or fast apply aborted with an unexpected exception. # In either case, initialize the result list and perform # the slow iteration. if result_values is None: result_values = [] # If result_values is not None we're in the case that the # fast apply loop was broken prematurely but we have # already the result for the first group which we can reuse. elif i == 0: continue # group might be modified group_axes = _get_axes(group) res = f(group) if not _is_indexed_like(res, group_axes): mutated = True result_values.append(res) return group_keys, result_values, mutated @cache_readonly def indices(self): """ dict {group name -> group indices} """ if len(self.groupings) == 1: return self.groupings[0].indices else: label_list = [ping.labels for ping in self.groupings] keys = [com.values_from_object(ping.group_index) for ping in self.groupings] return get_indexer_dict(label_list, keys) @property def labels(self): return [ping.labels for ping in self.groupings] @property def levels(self): return [ping.group_index for ping in self.groupings] @property def names(self): return [ping.name for ping in self.groupings] def size(self): """ Compute group sizes """ ids, _, ngroup = self.group_info ids = ensure_platform_int(ids) if ngroup: out = np.bincount(ids[ids != -1], minlength=ngroup) else: out = [] return Series(out, index=self.result_index, dtype="int64") @cache_readonly def groups(self): """ dict {group name -> group labels} """ if len(self.groupings) == 1: return self.groupings[0].groups else: to_groupby = zip(*(ping.grouper for ping in self.groupings)) to_groupby = Index(to_groupby) return self.axis.groupby(to_groupby) @cache_readonly def is_monotonic(self): # return if my group orderings are monotonic return Index(self.group_info[0]).is_monotonic @cache_readonly def group_info(self): comp_ids, obs_group_ids = self._get_compressed_labels() ngroups = len(obs_group_ids) comp_ids = ensure_int64(comp_ids) return comp_ids, obs_group_ids, ngroups @cache_readonly def label_info(self): # return the labels of items in original grouped axis labels, _, _ = self.group_info if self.indexer is not None: sorter = np.lexsort((labels, self.indexer)) labels = labels[sorter] return labels def _get_compressed_labels(self): all_labels = [ping.labels for ping in self.groupings] if len(all_labels) > 1: group_index = get_group_index(all_labels, self.shape, sort=True, xnull=True) return compress_group_index(group_index, sort=self.sort) ping = self.groupings[0] return ping.labels, np.arange(len(ping.group_index)) @cache_readonly def ngroups(self): return len(self.result_index) @property def recons_labels(self): comp_ids, obs_ids, _ = self.group_info labels = (ping.labels for ping in self.groupings) return decons_obs_group_ids(comp_ids, obs_ids, self.shape, labels, xnull=True) @cache_readonly def result_index(self): if not self.compressed and len(self.groupings) == 1: return self.groupings[0].result_index.rename(self.names[0]) codes = self.recons_labels levels = [ping.result_index for ping in self.groupings] result = MultiIndex( levels=levels, codes=codes, verify_integrity=False, names=self.names ) return result def get_group_levels(self): if not self.compressed and len(self.groupings) == 1: return [self.groupings[0].result_index] name_list = [] for ping, labels in zip(self.groupings, self.recons_labels): labels = ensure_platform_int(labels) levels = ping.result_index.take(labels) name_list.append(levels) return name_list # ------------------------------------------------------------ # Aggregation functions _cython_functions = { "aggregate": { "add": "group_add", "prod": "group_prod", "min": "group_min", "max": "group_max", "mean": "group_mean", "median": {"name": "group_median"}, "var": "group_var", "first": { "name": "group_nth", "f": lambda func, a, b, c, d, e: func(a, b, c, d, 1, -1), }, "last": "group_last", "ohlc": "group_ohlc", }, "transform": { "cumprod": "group_cumprod", "cumsum": "group_cumsum", "cummin": "group_cummin", "cummax": "group_cummax", "rank": { "name": "group_rank", "f": lambda func, a, b, c, d, e, **kwargs: func( a, b, c, e, kwargs.get("ties_method", "average"), kwargs.get("ascending", True), kwargs.get("pct", False), kwargs.get("na_option", "keep"), ), }, }, } _cython_arity = {"ohlc": 4} # OHLC _name_functions = {"ohlc": lambda *args: ["open", "high", "low", "close"]} def _is_builtin_func(self, arg): """ if we define an builtin function for this argument, return it, otherwise return the arg """ return SelectionMixin._builtin_table.get(arg, arg) def _get_cython_function(self, kind, how, values, is_numeric): dtype_str = values.dtype.name def get_func(fname): # see if there is a fused-type version of function # only valid for numeric f = getattr(libgroupby, fname, None) if f is not None and is_numeric: return f # otherwise find dtype-specific version, falling back to object for dt in [dtype_str, "object"]: f2 = getattr( libgroupby, "{fname}_{dtype_str}".format(fname=fname, dtype_str=dt), None, ) if f2 is not None: return f2 if hasattr(f, "__signatures__"): # inspect what fused types are implemented if dtype_str == "object" and "object" not in f.__signatures__: # return None so we get a NotImplementedError below # instead of a TypeError at runtime return None return f ftype = self._cython_functions[kind][how] if isinstance(ftype, dict): func = afunc = get_func(ftype["name"]) # a sub-function f = ftype.get("f") if f is not None: def wrapper(*args, **kwargs): return f(afunc, *args, **kwargs) # need to curry our sub-function func = wrapper else: func = get_func(ftype) if func is None: raise NotImplementedError( "function is not implemented for this dtype: " "[how->{how},dtype->{dtype_str}]".format(how=how, dtype_str=dtype_str) ) return func def _cython_operation(self, kind, values, how, axis, min_count=-1, **kwargs): assert kind in ["transform", "aggregate"] orig_values = values # can we do this operation with our cython functions # if not raise NotImplementedError # we raise NotImplemented if this is an invalid operation # entirely, e.g. adding datetimes # categoricals are only 1d, so we # are not setup for dim transforming if is_categorical_dtype(values) or is_sparse(values): raise NotImplementedError("{} dtype not supported".format(values.dtype)) elif is_datetime64_any_dtype(values): if how in ["add", "prod", "cumsum", "cumprod"]: raise NotImplementedError( "datetime64 type does not support {} operations".format(how) ) elif is_timedelta64_dtype(values): if how in ["prod", "cumprod"]: raise NotImplementedError( "timedelta64 type does not support {} operations".format(how) ) if is_datetime64tz_dtype(values.dtype): # Cast to naive; we'll cast back at the end of the function # TODO: possible need to reshape? kludge can be avoided when # 2D EA is allowed. values = values.view("M8[ns]") is_datetimelike = needs_i8_conversion(values.dtype) is_numeric = is_numeric_dtype(values.dtype) if is_datetimelike: values = values.view("int64") is_numeric = True elif is_bool_dtype(values.dtype): values = ensure_float64(values) elif is_integer_dtype(values): # we use iNaT for the missing value on ints # so pre-convert to guard this condition if (values == iNaT).any(): values = ensure_float64(values) else: values = ensure_int_or_float(values) elif is_numeric and not is_complex_dtype(values): values = ensure_float64(values) else: values = values.astype(object) arity = self._cython_arity.get(how, 1) vdim = values.ndim swapped = False if vdim == 1: values = values[:, None] out_shape = (self.ngroups, arity) else: if axis > 0: swapped = True assert axis == 1, axis values = values.T if arity > 1: raise NotImplementedError( "arity of more than 1 is not supported for the 'how' argument" ) out_shape = (self.ngroups,) + values.shape[1:] try: func = self._get_cython_function(kind, how, values, is_numeric) except NotImplementedError: if is_numeric: try: values = ensure_float64(values) except TypeError: if lib.infer_dtype(values, skipna=False) == "complex": values = values.astype(complex) else: raise func = self._get_cython_function(kind, how, values, is_numeric) else: raise if how == "rank": out_dtype = "float" else: if is_numeric: out_dtype = "{kind}{itemsize}".format( kind=values.dtype.kind, itemsize=values.dtype.itemsize ) else: out_dtype = "object" labels, _, _ = self.group_info if kind == "aggregate": result = _maybe_fill( np.empty(out_shape, dtype=out_dtype), fill_value=np.nan ) counts = np.zeros(self.ngroups, dtype=np.int64) result = self._aggregate( result, counts, values, labels, func, is_numeric, is_datetimelike, min_count, ) elif kind == "transform": result = _maybe_fill( np.empty_like(values, dtype=out_dtype), fill_value=np.nan ) # TODO: min_count result = self._transform( result, values, labels, func, is_numeric, is_datetimelike, **kwargs ) if is_integer_dtype(result) and not is_datetimelike: mask = result == iNaT if mask.any(): result = result.astype("float64") result[mask] = np.nan if kind == "aggregate" and self._filter_empty_groups and not counts.all(): assert result.ndim != 2 result = result[counts > 0] if vdim == 1 and arity == 1: result = result[:, 0] if how in self._name_functions: # TODO names = self._name_functions[how]() else: names = None if swapped: result = result.swapaxes(0, axis) if is_datetime64tz_dtype(orig_values.dtype): result = type(orig_values)(result.astype(np.int64), dtype=orig_values.dtype) elif is_datetimelike and kind == "aggregate": result = result.astype(orig_values.dtype) return result, names def aggregate(self, values, how, axis=0, min_count=-1): return self._cython_operation( "aggregate", values, how, axis, min_count=min_count ) def transform(self, values, how, axis=0, **kwargs): return self._cython_operation("transform", values, how, axis, **kwargs) def _aggregate( self, result, counts, values, comp_ids, agg_func, is_numeric, is_datetimelike, min_count=-1, ): if values.ndim > 2: # punting for now raise NotImplementedError("number of dimensions is currently limited to 2") else: agg_func(result, counts, values, comp_ids, min_count) return result def _transform( self, result, values, comp_ids, transform_func, is_numeric, is_datetimelike, **kwargs ): comp_ids, _, ngroups = self.group_info if values.ndim > 2: # punting for now raise NotImplementedError("number of dimensions is currently limited to 2") else: transform_func(result, values, comp_ids, ngroups, is_datetimelike, **kwargs) return result def agg_series(self, obj, func): try: return self._aggregate_series_fast(obj, func) except AssertionError: raise except ValueError as err: if "No result." in str(err): # raised in libreduction pass elif "Function does not reduce" in str(err): # raised in libreduction pass else: raise except TypeError as err: if "ndarray" in str(err): # raised in libreduction if obj's values is no ndarray pass else: raise return self._aggregate_series_pure_python(obj, func) def _aggregate_series_fast(self, obj, func): func = self._is_builtin_func(func) if obj.index._has_complex_internals: raise TypeError("Incompatible index for Cython grouper") group_index, _, ngroups = self.group_info # avoids object / Series creation overhead dummy = obj._get_values(slice(None, 0)) indexer = get_group_index_sorter(group_index, ngroups) obj = obj.take(indexer) group_index = algorithms.take_nd(group_index, indexer, allow_fill=False) grouper = libreduction.SeriesGrouper(obj, func, group_index, ngroups, dummy) result, counts = grouper.get_result() return result, counts def _aggregate_series_pure_python(self, obj, func): group_index, _, ngroups = self.group_info counts = np.zeros(ngroups, dtype=int) result = None splitter = get_splitter(obj, group_index, ngroups, axis=self.axis) for label, group in splitter: res = func(group) if result is None: if isinstance(res, (Series, Index, np.ndarray)): raise ValueError("Function does not reduce") result = np.empty(ngroups, dtype="O") counts[label] = group.shape[0] result[label] = res result = lib.maybe_convert_objects(result, try_float=0) return result, counts class BinGrouper(BaseGrouper): """ This is an internal Grouper class Parameters ---------- bins : the split index of binlabels to group the item of axis binlabels : the label list filter_empty : boolean, default False mutated : boolean, default False indexer : a intp array Examples -------- bins: [2, 4, 6, 8, 10] binlabels: DatetimeIndex(['2005-01-01', '2005-01-03', '2005-01-05', '2005-01-07', '2005-01-09'], dtype='datetime64[ns]', freq='2D') the group_info, which contains the label of each item in grouped axis, the index of label in label list, group number, is (array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]), array([0, 1, 2, 3, 4]), 5) means that, the grouped axis has 10 items, can be grouped into 5 labels, the first and second items belong to the first label, the third and forth items belong to the second label, and so on """ def __init__( self, bins, binlabels, filter_empty=False, mutated=False, indexer=None ): self.bins = ensure_int64(bins) self.binlabels = ensure_index(binlabels) self._filter_empty_groups = filter_empty self.mutated = mutated self.indexer = indexer @cache_readonly def groups(self): """ dict {group name -> group labels} """ # this is mainly for compat # GH 3881 result = { key: value for key, value in zip(self.binlabels, self.bins) if key is not NaT } return result @property def nkeys(self): return 1 def _get_grouper(self): """ We are a grouper as part of another's groupings. We have a specific method of grouping, so cannot convert to a Index for our grouper. """ return self def get_iterator(self, data, axis=0): """ Groupby iterator Returns ------- Generator yielding sequence of (name, subsetted object) for each group """ if isinstance(data, NDFrame): slicer = lambda start, edge: data._slice(slice(start, edge), axis=axis) length = len(data.axes[axis]) else: slicer = lambda start, edge: data[slice(start, edge)] length = len(data) start = 0 for edge, label in zip(self.bins, self.binlabels): if label is not NaT: yield label, slicer(start, edge) start = edge if start < length: yield self.binlabels[-1], slicer(start, None) @cache_readonly def indices(self): indices = collections.defaultdict(list) i = 0 for label, bin in zip(self.binlabels, self.bins): if i < bin: if label is not NaT: indices[label] = list(range(i, bin)) i = bin return indices @cache_readonly def group_info(self): ngroups = self.ngroups obs_group_ids = np.arange(ngroups) rep = np.diff(np.r_[0, self.bins]) rep = ensure_platform_int(rep) if ngroups == len(self.bins): comp_ids = np.repeat(np.arange(ngroups), rep) else: comp_ids = np.repeat(np.r_[-1, np.arange(ngroups)], rep) return ( comp_ids.astype("int64", copy=False), obs_group_ids.astype("int64", copy=False), ngroups, ) @cache_readonly def result_index(self): if len(self.binlabels) != 0 and isna(self.binlabels[0]): return self.binlabels[1:] return self.binlabels @property def levels(self): return [self.binlabels] @property def names(self): return [self.binlabels.name] @property def groupings(self): from pandas.core.groupby.grouper import Grouping return [ Grouping(lvl, lvl, in_axis=False, level=None, name=name) for lvl, name in zip(self.levels, self.names) ] def agg_series(self, obj, func): dummy = obj[:0] grouper = libreduction.SeriesBinGrouper(obj, func, self.bins, dummy) return grouper.get_result() def _get_axes(group): if isinstance(group, Series): return [group.index] else: return group.axes def _is_indexed_like(obj, axes): if isinstance(obj, Series): if len(axes) > 1: return False return obj.index.equals(axes[0]) elif isinstance(obj, DataFrame): return obj.index.equals(axes[0]) return False # ---------------------------------------------------------------------- # Splitting / application class DataSplitter: def __init__(self, data, labels, ngroups, axis=0): self.data = data self.labels = ensure_int64(labels) self.ngroups = ngroups self.axis = axis @cache_readonly def slabels(self): # Sorted labels return algorithms.take_nd(self.labels, self.sort_idx, allow_fill=False) @cache_readonly def sort_idx(self): # Counting sort indexer return get_group_index_sorter(self.labels, self.ngroups) def __iter__(self): sdata = self._get_sorted_data() if self.ngroups == 0: # we are inside a generator, rather than raise StopIteration # we merely return signal the end return starts, ends = lib.generate_slices(self.slabels, self.ngroups) for i, (start, end) in enumerate(zip(starts, ends)): # Since I'm now compressing the group ids, it's now not "possible" # to produce empty slices because such groups would not be observed # in the data # if start >= end: # raise AssertionError('Start %s must be less than end %s' # % (str(start), str(end))) yield i, self._chop(sdata, slice(start, end)) def _get_sorted_data(self): return self.data.take(self.sort_idx, axis=self.axis) def _chop(self, sdata, slice_obj): raise AbstractMethodError(self) def apply(self, f): raise AbstractMethodError(self) class SeriesSplitter(DataSplitter): def _chop(self, sdata, slice_obj): return sdata._get_values(slice_obj) class FrameSplitter(DataSplitter): def fast_apply(self, f, names): # must return keys::list, values::list, mutated::bool starts, ends = lib.generate_slices(self.slabels, self.ngroups) sdata = self._get_sorted_data() return libreduction.apply_frame_axis0(sdata, f, names, starts, ends) def _chop(self, sdata, slice_obj): if self.axis == 0: return sdata.iloc[slice_obj] else: return sdata._slice(slice_obj, axis=1) def get_splitter(data, *args, **kwargs): if isinstance(data, Series): klass = SeriesSplitter elif isinstance(data, DataFrame): klass = FrameSplitter return klass(data, *args, **kwargs)
BugsInPy/BugsInPy/temp/projects/pandas/bug-135-fixed/pandas/pandas/core/groupby/ops.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-135-buggy/pandas/pandas/core/groupby/ops.py
pandas-bug-83
import textwrap from typing import List, Set from pandas._libs import NaT, lib import pandas.core.common as com from pandas.core.indexes.base import ( Index, InvalidIndexError, _new_Index, ensure_index, ensure_index_from_sequences, ) from pandas.core.indexes.category import CategoricalIndex from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.interval import IntervalIndex from pandas.core.indexes.multi import MultiIndex from pandas.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, UInt64Index, ) from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.range import RangeIndex from pandas.core.indexes.timedeltas import TimedeltaIndex _sort_msg = textwrap.dedent( """\ Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default. To accept the future behavior, pass 'sort=False'. To retain the current behavior and silence the warning, pass 'sort=True'. """ ) __all__ = [ "Index", "MultiIndex", "NumericIndex", "Float64Index", "Int64Index", "CategoricalIndex", "IntervalIndex", "RangeIndex", "UInt64Index", "InvalidIndexError", "TimedeltaIndex", "PeriodIndex", "DatetimeIndex", "_new_Index", "NaT", "ensure_index", "ensure_index_from_sequences", "get_objs_combined_axis", "union_indexes", "get_consensus_names", "all_indexes_same", ] def get_objs_combined_axis( objs, intersect: bool = False, axis=0, sort: bool = True ) -> Index: """ Extract combined index: return intersection or union (depending on the value of "intersect") of indexes on given axis, or None if all objects lack indexes (e.g. they are numpy arrays). Parameters ---------- objs : list Series or DataFrame objects, may be mix of the two. intersect : bool, default False If True, calculate the intersection between indexes. Otherwise, calculate the union. axis : {0 or 'index', 1 or 'outer'}, default 0 The axis to extract indexes from. sort : bool, default True Whether the result index should come out sorted or not. Returns ------- Index """ obs_idxes = [obj._get_axis(axis) for obj in objs] return _get_combined_index(obs_idxes, intersect=intersect, sort=sort) def _get_distinct_objs(objs: List[Index]) -> List[Index]: """ Return a list with distinct elements of "objs" (different ids). Preserves order. """ ids: Set[int] = set() res = [] for obj in objs: if id(obj) not in ids: ids.add(id(obj)) res.append(obj) return res def _get_combined_index( indexes: List[Index], intersect: bool = False, sort: bool = False ) -> Index: """ Return the union or intersection of indexes. Parameters ---------- indexes : list of Index or list objects When intersect=True, do not accept list of lists. intersect : bool, default False If True, calculate the intersection between indexes. Otherwise, calculate the union. sort : bool, default False Whether the result index should come out sorted or not. Returns ------- Index """ # TODO: handle index names! indexes = _get_distinct_objs(indexes) if len(indexes) == 0: index = Index([]) elif len(indexes) == 1: index = indexes[0] elif intersect: index = indexes[0] for other in indexes[1:]: index = index.intersection(other) else: index = union_indexes(indexes, sort=sort) index = ensure_index(index) if sort: try: index = index.sort_values() except TypeError: pass return index def union_indexes(indexes, sort=True) -> Index: """ Return the union of indexes. The behavior of sort and names is not consistent. Parameters ---------- indexes : list of Index or list objects sort : bool, default True Whether the result index should come out sorted or not. Returns ------- Index """ if len(indexes) == 0: raise AssertionError("Must have at least 1 Index to union") if len(indexes) == 1: result = indexes[0] if isinstance(result, list): result = Index(sorted(result)) return result indexes, kind = _sanitize_and_check(indexes) def _unique_indices(inds) -> Index: """ Convert indexes to lists and concatenate them, removing duplicates. The final dtype is inferred. Parameters ---------- inds : list of Index or list objects Returns ------- Index """ def conv(i): if isinstance(i, Index): i = i.tolist() return i return Index(lib.fast_unique_multiple_list([conv(i) for i in inds], sort=sort)) if kind == "special": result = indexes[0] if hasattr(result, "union_many"): # DatetimeIndex return result.union_many(indexes[1:]) else: for other in indexes[1:]: result = result.union(other) return result elif kind == "array": index = indexes[0] for other in indexes[1:]: if not index.equals(other): return _unique_indices(indexes) name = get_consensus_names(indexes)[0] if name != index.name: index = index._shallow_copy(name=name) return index else: # kind='list' return _unique_indices(indexes) def _sanitize_and_check(indexes): """ Verify the type of indexes and convert lists to Index. Cases: - [list, list, ...]: Return ([list, list, ...], 'list') - [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...]) Lists are sorted and converted to Index. - [Index, Index, ...]: Return ([Index, Index, ...], TYPE) TYPE = 'special' if at least one special type, 'array' otherwise. Parameters ---------- indexes : list of Index or list objects Returns ------- sanitized_indexes : list of Index or list objects type : {'list', 'array', 'special'} """ kinds = list({type(index) for index in indexes}) if list in kinds: if len(kinds) > 1: indexes = [ Index(com.try_sort(x)) if not isinstance(x, Index) else x for x in indexes ] kinds.remove(list) else: return indexes, "list" if len(kinds) > 1 or Index not in kinds: return indexes, "special" else: return indexes, "array" def get_consensus_names(indexes): """ Give a consensus 'names' to indexes. If there's exactly one non-empty 'names', return this, otherwise, return empty. Parameters ---------- indexes : list of Index objects Returns ------- list A list representing the consensus 'names' found. """ # find the non-none names, need to tupleify to make # the set hashable, then reverse on return consensus_names = {tuple(i.names) for i in indexes if com.any_not_none(*i.names)} if len(consensus_names) == 1: return list(list(consensus_names)[0]) return [None] * indexes[0].nlevels def all_indexes_same(indexes): """ Determine if all indexes contain the same elements. Parameters ---------- indexes : list of Index objects Returns ------- bool True if all indexes contain the same elements, False otherwise. """ first = indexes[0] for index in indexes[1:]: if not first.equals(index): return False return True import textwrap from typing import List, Set from pandas._libs import NaT, lib import pandas.core.common as com from pandas.core.indexes.base import ( Index, InvalidIndexError, _new_Index, ensure_index, ensure_index_from_sequences, ) from pandas.core.indexes.category import CategoricalIndex from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.interval import IntervalIndex from pandas.core.indexes.multi import MultiIndex from pandas.core.indexes.numeric import ( Float64Index, Int64Index, NumericIndex, UInt64Index, ) from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.range import RangeIndex from pandas.core.indexes.timedeltas import TimedeltaIndex _sort_msg = textwrap.dedent( """\ Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default. To accept the future behavior, pass 'sort=False'. To retain the current behavior and silence the warning, pass 'sort=True'. """ ) __all__ = [ "Index", "MultiIndex", "NumericIndex", "Float64Index", "Int64Index", "CategoricalIndex", "IntervalIndex", "RangeIndex", "UInt64Index", "InvalidIndexError", "TimedeltaIndex", "PeriodIndex", "DatetimeIndex", "_new_Index", "NaT", "ensure_index", "ensure_index_from_sequences", "get_objs_combined_axis", "union_indexes", "get_consensus_names", "all_indexes_same", ] def get_objs_combined_axis( objs, intersect: bool = False, axis=0, sort: bool = True, copy: bool = False ) -> Index: """ Extract combined index: return intersection or union (depending on the value of "intersect") of indexes on given axis, or None if all objects lack indexes (e.g. they are numpy arrays). Parameters ---------- objs : list Series or DataFrame objects, may be mix of the two. intersect : bool, default False If True, calculate the intersection between indexes. Otherwise, calculate the union. axis : {0 or 'index', 1 or 'outer'}, default 0 The axis to extract indexes from. sort : bool, default True Whether the result index should come out sorted or not. copy : bool, default False If True, return a copy of the combined index. Returns ------- Index """ obs_idxes = [obj._get_axis(axis) for obj in objs] return _get_combined_index(obs_idxes, intersect=intersect, sort=sort, copy=copy) def _get_distinct_objs(objs: List[Index]) -> List[Index]: """ Return a list with distinct elements of "objs" (different ids). Preserves order. """ ids: Set[int] = set() res = [] for obj in objs: if id(obj) not in ids: ids.add(id(obj)) res.append(obj) return res def _get_combined_index( indexes: List[Index], intersect: bool = False, sort: bool = False, copy: bool = False, ) -> Index: """ Return the union or intersection of indexes. Parameters ---------- indexes : list of Index or list objects When intersect=True, do not accept list of lists. intersect : bool, default False If True, calculate the intersection between indexes. Otherwise, calculate the union. sort : bool, default False Whether the result index should come out sorted or not. copy : bool, default False If True, return a copy of the combined index. Returns ------- Index """ # TODO: handle index names! indexes = _get_distinct_objs(indexes) if len(indexes) == 0: index = Index([]) elif len(indexes) == 1: index = indexes[0] elif intersect: index = indexes[0] for other in indexes[1:]: index = index.intersection(other) else: index = union_indexes(indexes, sort=sort) index = ensure_index(index) if sort: try: index = index.sort_values() except TypeError: pass # GH 29879 if copy: index = index.copy() return index def union_indexes(indexes, sort=True) -> Index: """ Return the union of indexes. The behavior of sort and names is not consistent. Parameters ---------- indexes : list of Index or list objects sort : bool, default True Whether the result index should come out sorted or not. Returns ------- Index """ if len(indexes) == 0: raise AssertionError("Must have at least 1 Index to union") if len(indexes) == 1: result = indexes[0] if isinstance(result, list): result = Index(sorted(result)) return result indexes, kind = _sanitize_and_check(indexes) def _unique_indices(inds) -> Index: """ Convert indexes to lists and concatenate them, removing duplicates. The final dtype is inferred. Parameters ---------- inds : list of Index or list objects Returns ------- Index """ def conv(i): if isinstance(i, Index): i = i.tolist() return i return Index(lib.fast_unique_multiple_list([conv(i) for i in inds], sort=sort)) if kind == "special": result = indexes[0] if hasattr(result, "union_many"): # DatetimeIndex return result.union_many(indexes[1:]) else: for other in indexes[1:]: result = result.union(other) return result elif kind == "array": index = indexes[0] for other in indexes[1:]: if not index.equals(other): return _unique_indices(indexes) name = get_consensus_names(indexes)[0] if name != index.name: index = index._shallow_copy(name=name) return index else: # kind='list' return _unique_indices(indexes) def _sanitize_and_check(indexes): """ Verify the type of indexes and convert lists to Index. Cases: - [list, list, ...]: Return ([list, list, ...], 'list') - [list, Index, ...]: Return _sanitize_and_check([Index, Index, ...]) Lists are sorted and converted to Index. - [Index, Index, ...]: Return ([Index, Index, ...], TYPE) TYPE = 'special' if at least one special type, 'array' otherwise. Parameters ---------- indexes : list of Index or list objects Returns ------- sanitized_indexes : list of Index or list objects type : {'list', 'array', 'special'} """ kinds = list({type(index) for index in indexes}) if list in kinds: if len(kinds) > 1: indexes = [ Index(com.try_sort(x)) if not isinstance(x, Index) else x for x in indexes ] kinds.remove(list) else: return indexes, "list" if len(kinds) > 1 or Index not in kinds: return indexes, "special" else: return indexes, "array" def get_consensus_names(indexes): """ Give a consensus 'names' to indexes. If there's exactly one non-empty 'names', return this, otherwise, return empty. Parameters ---------- indexes : list of Index objects Returns ------- list A list representing the consensus 'names' found. """ # find the non-none names, need to tupleify to make # the set hashable, then reverse on return consensus_names = {tuple(i.names) for i in indexes if com.any_not_none(*i.names)} if len(consensus_names) == 1: return list(list(consensus_names)[0]) return [None] * indexes[0].nlevels def all_indexes_same(indexes): """ Determine if all indexes contain the same elements. Parameters ---------- indexes : list of Index objects Returns ------- bool True if all indexes contain the same elements, False otherwise. """ first = indexes[0] for index in indexes[1:]: if not first.equals(index): return False return True
BugsInPy/BugsInPy/temp/projects/pandas/bug-83-fixed/pandas/pandas/core/indexes/api.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-83-buggy/pandas/pandas/core/indexes/api.py
pandas-bug-51
from typing import Any, List import warnings import numpy as np from pandas._config import get_option from pandas._libs import index as libindex from pandas._libs.hashtable import duplicated_int64 from pandas._libs.lib import no_default from pandas._typing import Label from pandas.util._decorators import Appender, cache_readonly from pandas.core.dtypes.common import ( ensure_platform_int, is_categorical_dtype, is_interval_dtype, is_list_like, is_scalar, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.missing import isna from pandas.core import accessor from pandas.core.algorithms import take_1d from pandas.core.arrays.categorical import Categorical, _recode_for_categories, contains import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import Index, _index_shared_docs, maybe_extract_name from pandas.core.indexes.extension import ExtensionIndex, inherit_names import pandas.core.missing as missing _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update(dict(target_klass="CategoricalIndex")) @inherit_names( [ "argsort", "_internal_get_values", "tolist", "codes", "categories", "ordered", "_reverse_indexer", "searchsorted", "is_dtype_equal", "min", "max", ], Categorical, ) @accessor.delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", overwrite=True, ) class CategoricalIndex(ExtensionIndex, accessor.PandasDelegate): """ Index based on an underlying :class:`Categorical`. CategoricalIndex, like Categorical, can only take on a limited, and usually fixed, number of possible values (`categories`). Also, like Categorical, it might have an order, but numerical operations (additions, divisions, ...) are not possible. Parameters ---------- data : array-like (1-dimensional) The values of the categorical. If `categories` are given, values not in `categories` will be replaced with NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here (and also not in `dtype`), they will be inferred from the `data`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.21.0 copy : bool, default False Make a copy of input ndarray. name : object, optional Name to be stored in the index. Attributes ---------- codes categories ordered Methods ------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories as_ordered as_unordered map Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- Index : The base pandas Index type. Categorical : A categorical array. CategoricalDtype : Type for categorical data. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#categoricalindex>`_ for more. Examples -------- >>> pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c']) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa ``CategoricalIndex`` can also be instantiated from a ``Categorical``: >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) >>> pd.CategoricalIndex(c) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa Ordered ``CategoricalIndex`` can have a min and max value. >>> ci = pd.CategoricalIndex(['a','b','c','a','b','c'], ordered=True, ... categories=['c', 'b', 'a']) >>> ci CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['c', 'b', 'a'], ordered=True, dtype='category') # noqa >>> ci.min() 'c' """ _typ = "categoricalindex" codes: np.ndarray categories: Index _data: Categorical @property def _engine_type(self): # self.codes can have dtype int8, int16, int32 or int64, so we need # to return the corresponding engine type (libindex.Int8Engine, etc.). return { np.int8: libindex.Int8Engine, np.int16: libindex.Int16Engine, np.int32: libindex.Int32Engine, np.int64: libindex.Int64Engine, }[self.codes.dtype.type] _attributes = ["name"] # -------------------------------------------------------------------- # Constructors def __new__( cls, data=None, categories=None, ordered=None, dtype=None, copy=False, name=None ): dtype = CategoricalDtype._from_values_or_dtype(data, categories, ordered, dtype) name = maybe_extract_name(name, data, cls) if not is_categorical_dtype(data): # don't allow scalars # if data is None, then categories must be provided if is_scalar(data): if data is not None or categories is None: raise cls._scalar_data_error(data) data = [] assert isinstance(dtype, CategoricalDtype), dtype if not isinstance(data, Categorical) or data.dtype != dtype: data = Categorical(data, dtype=dtype) data = data.copy() if copy else data return cls._simple_new(data, name=name) def _create_from_codes(self, codes, dtype=None, name=None): """ *this is an internal non-public method* create the correct categorical from codes Parameters ---------- codes : new codes dtype: CategoricalDtype, defaults to existing name : optional name attribute, defaults to existing Returns ------- CategoricalIndex """ if dtype is None: dtype = self.dtype if name is None: name = self.name cat = Categorical.from_codes(codes, dtype=dtype) return CategoricalIndex(cat, name=name) @classmethod def _simple_new(cls, values: Categorical, name: Label = None): assert isinstance(values, Categorical), type(values) result = object.__new__(cls) result._data = values result.name = name result._reset_identity() result._no_setting_name = False return result # -------------------------------------------------------------------- @Appender(Index._shallow_copy.__doc__) def _shallow_copy(self, values=None, name: Label = no_default): name = self.name if name is no_default else name if values is None: values = self.values cat = Categorical(values, dtype=self.dtype) return type(self)._simple_new(cat, name=name) def _is_dtype_compat(self, other) -> bool: """ *this is an internal non-public method* provide a comparison between the dtype of self and other (coercing if needed) Raises ------ TypeError if the dtypes are not compatible """ if is_categorical_dtype(other): if isinstance(other, CategoricalIndex): other = other._values if not other.is_dtype_equal(self): raise TypeError( "categories must match existing categories when appending" ) else: values = other if not is_list_like(values): values = [values] cat = Categorical(other, dtype=self.dtype) other = CategoricalIndex(cat) if not other.isin(values).all(): raise TypeError( "cannot append a non-category item to a CategoricalIndex" ) return other def equals(self, other) -> bool: """ Determine if two CategoricalIndex objects contain the same elements. Returns ------- bool If two CategoricalIndex objects have equal elements True, otherwise False. """ if self.is_(other): return True if not isinstance(other, Index): return False try: other = self._is_dtype_compat(other) if isinstance(other, type(self)): other = other._data return self._data.equals(other) except (TypeError, ValueError): pass return False # -------------------------------------------------------------------- # Rendering Methods @property def _formatter_func(self): return self.categories._formatter_func def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) attrs = [ ( "categories", ibase.default_pprint(self.categories, max_seq_items=max_categories), ), ("ordered", self.ordered), ] if self.name is not None: attrs.append(("name", ibase.default_pprint(self.name))) attrs.append(("dtype", f"'{self.dtype.name}'")) max_seq_items = get_option("display.max_seq_items") or len(self) if len(self) > max_seq_items: attrs.append(("length", len(self))) return attrs # -------------------------------------------------------------------- @property def inferred_type(self) -> str: return "categorical" @property def values(self): """ return the underlying data, which is a Categorical """ return self._data @property def _has_complex_internals(self) -> bool: # used to avoid libreduction code paths, which raise or require conversion return True @Appender(Index.__contains__.__doc__) def __contains__(self, key: Any) -> bool: # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.hasnans hash(key) return contains(self, key, container=self._engine) def __array__(self, dtype=None) -> np.ndarray: """ the array interface, return my values """ return np.array(self._data, dtype=dtype) @Appender(Index.astype.__doc__) def astype(self, dtype, copy=True): if is_interval_dtype(dtype): from pandas import IntervalIndex return IntervalIndex(np.array(self)) elif is_categorical_dtype(dtype): # GH 18630 dtype = self.dtype.update_dtype(dtype) if dtype == self.dtype: return self.copy() if copy else self return Index.astype(self, dtype=dtype, copy=copy) @cache_readonly def _isnan(self): """ return if each value is nan""" return self._data.codes == -1 @Appender(Index.fillna.__doc__) def fillna(self, value, downcast=None): self._assert_can_do_op(value) return CategoricalIndex(self._data.fillna(value), name=self.name) @cache_readonly def _engine(self): # we are going to look things up with the codes themselves. # To avoid a reference cycle, bind `codes` to a local variable, so # `self` is not passed into the lambda. codes = self.codes return self._engine_type(lambda: codes, len(self)) @Appender(Index.unique.__doc__) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = self.values.unique() # Use _simple_new instead of _shallow_copy to ensure we keep dtype # of result, not self. return type(self)._simple_new(result, name=self.name) @Appender(Index.duplicated.__doc__) def duplicated(self, keep="first"): codes = self.codes.astype("i8") return duplicated_int64(codes, keep) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self.astype("object") def _maybe_cast_indexer(self, key): code = self.categories.get_loc(key) code = self.codes.dtype.type(code) return code @Appender(Index.where.__doc__) def where(self, cond, other=None): # TODO: Investigate an alternative implementation with # 1. copy the underlying Categorical # 2. setitem with `cond` and `other` # 3. Rebuild CategoricalIndex. if other is None: other = self._na_value values = np.where(cond, self.values, other) cat = Categorical(values, dtype=self.dtype) return type(self)._simple_new(cat, name=self.name) def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ if method is not None: raise NotImplementedError( "argument method is not implemented for CategoricalIndex.reindex" ) if level is not None: raise NotImplementedError( "argument level is not implemented for CategoricalIndex.reindex" ) if limit is not None: raise NotImplementedError( "argument limit is not implemented for CategoricalIndex.reindex" ) target = ibase.ensure_index(target) missing: List[int] if self.equals(target): indexer = None missing = [] else: indexer, missing = self.get_indexer_non_unique(np.array(target)) if len(self.codes) and indexer is not None: new_target = self.take(indexer) else: new_target = target # filling in missing if needed if len(missing): cats = self.categories.get_indexer(target) if (cats == -1).any(): # coerce to a regular index here! result = Index(np.array(self), name=self.name) new_target, indexer, _ = result._reindex_non_unique(np.array(target)) else: codes = new_target.codes.copy() codes[indexer == -1] = cats[missing] new_target = self._create_from_codes(codes) # we always want to return an Index type here # to be consistent with .reindex for other index types (e.g. they don't # coerce based on the actual values, only on the dtype) # unless we had an initial Categorical to begin with # in which case we are going to conform to the passed Categorical new_target = np.asarray(new_target) if is_categorical_dtype(target): new_target = target._shallow_copy(new_target, name=self.name) else: new_target = Index(new_target, name=self.name) return new_target, indexer def _reindex_non_unique(self, target): """ reindex from a non-unique; which CategoricalIndex's are almost always """ new_target, indexer = self.reindex(target) new_indexer = None check = indexer == -1 if check.any(): new_indexer = np.arange(len(self.take(indexer))) new_indexer[check] = -1 cats = self.categories.get_indexer(target) if not (cats == -1).any(): # .reindex returns normal Index. Revert to CategoricalIndex if # all targets are included in my categories new_target = self._shallow_copy(new_target) return new_target, indexer, new_indexer @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = ibase.ensure_index(target) if self.is_unique and self.equals(target): return np.arange(len(self), dtype="intp") if method == "pad" or method == "backfill": raise NotImplementedError( "method='pad' and method='backfill' not " "implemented yet for CategoricalIndex" ) elif method == "nearest": raise NotImplementedError( "method='nearest' not implemented yet for CategoricalIndex" ) if isinstance(target, CategoricalIndex) and self.values.is_dtype_equal(target): if self.values.equals(target.values): # we have the same codes codes = target.codes else: codes = _recode_for_categories( target.codes, target.categories, self.values.categories ) else: if isinstance(target, CategoricalIndex): code_indexer = self.categories.get_indexer(target.categories) codes = take_1d(code_indexer, target.codes, fill_value=-1) else: codes = self.categories.get_indexer(target) indexer, _ = self._engine.get_indexer_non_unique(codes) return ensure_platform_int(indexer) @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ibase.ensure_index(target) if isinstance(target, CategoricalIndex): # Indexing on codes is more efficient if categories are the same: if target.categories is self.categories: target = target.codes indexer, missing = self._engine.get_indexer_non_unique(target) return ensure_platform_int(indexer), missing target = target.values codes = self.categories.get_indexer(target) indexer, missing = self._engine.get_indexer_non_unique(codes) return ensure_platform_int(indexer), missing @Appender(Index._convert_scalar_indexer.__doc__) def _convert_scalar_indexer(self, key, kind: str): assert kind in ["loc", "getitem"] if kind == "loc": try: return self.categories._convert_scalar_indexer(key, kind="loc") except TypeError: self._invalid_indexer("label", key) return super()._convert_scalar_indexer(key, kind=kind) @Appender(Index._convert_list_indexer.__doc__) def _convert_list_indexer(self, keyarr): # Return our indexer or raise if all of the values are not included in # the categories if self.categories._defer_to_indexing: indexer = self.categories._convert_list_indexer(keyarr) return Index(self.codes).get_indexer_for(indexer) indexer = self.categories.get_indexer(np.asarray(keyarr)) if (indexer == -1).any(): raise KeyError( "a list-indexer must only include values that are in the categories" ) return self.get_indexer(keyarr) @Appender(Index._convert_arr_indexer.__doc__) def _convert_arr_indexer(self, keyarr): keyarr = com.asarray_tuplesafe(keyarr) if self.categories._defer_to_indexing: return keyarr return self._shallow_copy(keyarr) @Appender(Index._convert_index_indexer.__doc__) def _convert_index_indexer(self, keyarr): return self._shallow_copy(keyarr) def take_nd(self, *args, **kwargs): """Alias for `take`""" warnings.warn( "CategoricalIndex.take_nd is deprecated, use CategoricalIndex.take instead", FutureWarning, stacklevel=2, ) return self.take(*args, **kwargs) @Appender(Index._maybe_cast_slice_bound.__doc__) def _maybe_cast_slice_bound(self, label, side, kind): if kind == "loc": return label return super()._maybe_cast_slice_bound(label, side, kind) def map(self, mapper): """ Map values using input correspondence (a dict, Series, or function). Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.CategoricalIndex` which has the same order property as the original, otherwise an :class:`~pandas.Index` is returned. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.CategoricalIndex or pandas.Index Mapped index. See Also -------- Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> idx = pd.CategoricalIndex(['a', 'b', 'c']) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') >>> idx.map(lambda x: x.upper()) CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, dtype='category') >>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'}) CategoricalIndex(['first', 'second', 'third'], categories=['first', 'second', 'third'], ordered=False, dtype='category') If the mapping is one-to-one the ordering of the categories is preserved: >>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category') >>> idx.map({'a': 3, 'b': 2, 'c': 1}) CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True, dtype='category') If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> idx.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ return self._shallow_copy_with_infer(self.values.map(mapper)) def delete(self, loc): """ Make new Index with passed location(-s) deleted Returns ------- new_index : Index """ return self._create_from_codes(np.delete(self.codes, loc)) def insert(self, loc: int, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters ---------- loc : int item : object Returns ------- new_index : Index Raises ------ ValueError if the item is not in the categories """ code = self.categories.get_indexer([item]) if (code == -1) and not (is_scalar(item) and isna(item)): raise TypeError( "cannot insert an item into a CategoricalIndex " "that is not already an existing category" ) codes = self.codes codes = np.concatenate((codes[:loc], code, codes[loc:])) return self._create_from_codes(codes) def _concat(self, to_concat, name): # if calling index is category, don't check dtype of others return CategoricalIndex._concat_same_dtype(self, to_concat, name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class ValueError if other is not in the categories """ codes = np.concatenate([self._is_dtype_compat(c).codes for c in to_concat]) result = self._create_from_codes(codes, name=name) # if name is None, _create_from_codes sets self.name result.name = name return result def _delegate_method(self, name: str, *args, **kwargs): """ method delegation to the ._values """ method = getattr(self._values, name) if "inplace" in kwargs: raise ValueError("cannot use inplace with CategoricalIndex") res = method(*args, **kwargs) if is_scalar(res): return res return CategoricalIndex(res, name=self.name) CategoricalIndex._add_numeric_methods_add_sub_disabled() CategoricalIndex._add_numeric_methods_disabled() CategoricalIndex._add_logical_methods_disabled() from typing import Any, List import warnings import numpy as np from pandas._config import get_option from pandas._libs import index as libindex from pandas._libs.hashtable import duplicated_int64 from pandas._libs.lib import no_default from pandas._typing import Label from pandas.util._decorators import Appender, cache_readonly from pandas.core.dtypes.common import ( ensure_platform_int, is_categorical_dtype, is_interval_dtype, is_list_like, is_scalar, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.missing import isna from pandas.core import accessor from pandas.core.algorithms import take_1d from pandas.core.arrays.categorical import Categorical, _recode_for_categories, contains import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import Index, _index_shared_docs, maybe_extract_name from pandas.core.indexes.extension import ExtensionIndex, inherit_names import pandas.core.missing as missing from pandas.core.ops import get_op_result_name _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update(dict(target_klass="CategoricalIndex")) @inherit_names( [ "argsort", "_internal_get_values", "tolist", "codes", "categories", "ordered", "_reverse_indexer", "searchsorted", "is_dtype_equal", "min", "max", ], Categorical, ) @accessor.delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", overwrite=True, ) class CategoricalIndex(ExtensionIndex, accessor.PandasDelegate): """ Index based on an underlying :class:`Categorical`. CategoricalIndex, like Categorical, can only take on a limited, and usually fixed, number of possible values (`categories`). Also, like Categorical, it might have an order, but numerical operations (additions, divisions, ...) are not possible. Parameters ---------- data : array-like (1-dimensional) The values of the categorical. If `categories` are given, values not in `categories` will be replaced with NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here (and also not in `dtype`), they will be inferred from the `data`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.21.0 copy : bool, default False Make a copy of input ndarray. name : object, optional Name to be stored in the index. Attributes ---------- codes categories ordered Methods ------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories as_ordered as_unordered map Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- Index : The base pandas Index type. Categorical : A categorical array. CategoricalDtype : Type for categorical data. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html#categoricalindex>`_ for more. Examples -------- >>> pd.CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c']) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa ``CategoricalIndex`` can also be instantiated from a ``Categorical``: >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) >>> pd.CategoricalIndex(c) CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') # noqa Ordered ``CategoricalIndex`` can have a min and max value. >>> ci = pd.CategoricalIndex(['a','b','c','a','b','c'], ordered=True, ... categories=['c', 'b', 'a']) >>> ci CategoricalIndex(['a', 'b', 'c', 'a', 'b', 'c'], categories=['c', 'b', 'a'], ordered=True, dtype='category') # noqa >>> ci.min() 'c' """ _typ = "categoricalindex" codes: np.ndarray categories: Index _data: Categorical @property def _engine_type(self): # self.codes can have dtype int8, int16, int32 or int64, so we need # to return the corresponding engine type (libindex.Int8Engine, etc.). return { np.int8: libindex.Int8Engine, np.int16: libindex.Int16Engine, np.int32: libindex.Int32Engine, np.int64: libindex.Int64Engine, }[self.codes.dtype.type] _attributes = ["name"] # -------------------------------------------------------------------- # Constructors def __new__( cls, data=None, categories=None, ordered=None, dtype=None, copy=False, name=None ): dtype = CategoricalDtype._from_values_or_dtype(data, categories, ordered, dtype) name = maybe_extract_name(name, data, cls) if not is_categorical_dtype(data): # don't allow scalars # if data is None, then categories must be provided if is_scalar(data): if data is not None or categories is None: raise cls._scalar_data_error(data) data = [] assert isinstance(dtype, CategoricalDtype), dtype if not isinstance(data, Categorical) or data.dtype != dtype: data = Categorical(data, dtype=dtype) data = data.copy() if copy else data return cls._simple_new(data, name=name) def _create_from_codes(self, codes, dtype=None, name=None): """ *this is an internal non-public method* create the correct categorical from codes Parameters ---------- codes : new codes dtype: CategoricalDtype, defaults to existing name : optional name attribute, defaults to existing Returns ------- CategoricalIndex """ if dtype is None: dtype = self.dtype if name is None: name = self.name cat = Categorical.from_codes(codes, dtype=dtype) return CategoricalIndex(cat, name=name) @classmethod def _simple_new(cls, values: Categorical, name: Label = None): assert isinstance(values, Categorical), type(values) result = object.__new__(cls) result._data = values result.name = name result._reset_identity() result._no_setting_name = False return result # -------------------------------------------------------------------- @Appender(Index._shallow_copy.__doc__) def _shallow_copy(self, values=None, name: Label = no_default): name = self.name if name is no_default else name if values is None: values = self.values cat = Categorical(values, dtype=self.dtype) return type(self)._simple_new(cat, name=name) def _is_dtype_compat(self, other) -> bool: """ *this is an internal non-public method* provide a comparison between the dtype of self and other (coercing if needed) Raises ------ TypeError if the dtypes are not compatible """ if is_categorical_dtype(other): if isinstance(other, CategoricalIndex): other = other._values if not other.is_dtype_equal(self): raise TypeError( "categories must match existing categories when appending" ) else: values = other if not is_list_like(values): values = [values] cat = Categorical(other, dtype=self.dtype) other = CategoricalIndex(cat) if not other.isin(values).all(): raise TypeError( "cannot append a non-category item to a CategoricalIndex" ) return other def equals(self, other) -> bool: """ Determine if two CategoricalIndex objects contain the same elements. Returns ------- bool If two CategoricalIndex objects have equal elements True, otherwise False. """ if self.is_(other): return True if not isinstance(other, Index): return False try: other = self._is_dtype_compat(other) if isinstance(other, type(self)): other = other._data return self._data.equals(other) except (TypeError, ValueError): pass return False # -------------------------------------------------------------------- # Rendering Methods @property def _formatter_func(self): return self.categories._formatter_func def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) attrs = [ ( "categories", ibase.default_pprint(self.categories, max_seq_items=max_categories), ), ("ordered", self.ordered), ] if self.name is not None: attrs.append(("name", ibase.default_pprint(self.name))) attrs.append(("dtype", f"'{self.dtype.name}'")) max_seq_items = get_option("display.max_seq_items") or len(self) if len(self) > max_seq_items: attrs.append(("length", len(self))) return attrs # -------------------------------------------------------------------- @property def inferred_type(self) -> str: return "categorical" @property def values(self): """ return the underlying data, which is a Categorical """ return self._data @property def _has_complex_internals(self) -> bool: # used to avoid libreduction code paths, which raise or require conversion return True @Appender(Index.__contains__.__doc__) def __contains__(self, key: Any) -> bool: # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.hasnans hash(key) return contains(self, key, container=self._engine) def __array__(self, dtype=None) -> np.ndarray: """ the array interface, return my values """ return np.array(self._data, dtype=dtype) @Appender(Index.astype.__doc__) def astype(self, dtype, copy=True): if is_interval_dtype(dtype): from pandas import IntervalIndex return IntervalIndex(np.array(self)) elif is_categorical_dtype(dtype): # GH 18630 dtype = self.dtype.update_dtype(dtype) if dtype == self.dtype: return self.copy() if copy else self return Index.astype(self, dtype=dtype, copy=copy) @cache_readonly def _isnan(self): """ return if each value is nan""" return self._data.codes == -1 @Appender(Index.fillna.__doc__) def fillna(self, value, downcast=None): self._assert_can_do_op(value) return CategoricalIndex(self._data.fillna(value), name=self.name) @cache_readonly def _engine(self): # we are going to look things up with the codes themselves. # To avoid a reference cycle, bind `codes` to a local variable, so # `self` is not passed into the lambda. codes = self.codes return self._engine_type(lambda: codes, len(self)) @Appender(Index.unique.__doc__) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = self.values.unique() # Use _simple_new instead of _shallow_copy to ensure we keep dtype # of result, not self. return type(self)._simple_new(result, name=self.name) @Appender(Index.duplicated.__doc__) def duplicated(self, keep="first"): codes = self.codes.astype("i8") return duplicated_int64(codes, keep) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self.astype("object") def _maybe_cast_indexer(self, key): code = self.categories.get_loc(key) code = self.codes.dtype.type(code) return code @Appender(Index.where.__doc__) def where(self, cond, other=None): # TODO: Investigate an alternative implementation with # 1. copy the underlying Categorical # 2. setitem with `cond` and `other` # 3. Rebuild CategoricalIndex. if other is None: other = self._na_value values = np.where(cond, self.values, other) cat = Categorical(values, dtype=self.dtype) return type(self)._simple_new(cat, name=self.name) def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Returns ------- new_index : pd.Index Resulting index indexer : np.ndarray or None Indices of output values in original index """ if method is not None: raise NotImplementedError( "argument method is not implemented for CategoricalIndex.reindex" ) if level is not None: raise NotImplementedError( "argument level is not implemented for CategoricalIndex.reindex" ) if limit is not None: raise NotImplementedError( "argument limit is not implemented for CategoricalIndex.reindex" ) target = ibase.ensure_index(target) missing: List[int] if self.equals(target): indexer = None missing = [] else: indexer, missing = self.get_indexer_non_unique(np.array(target)) if len(self.codes) and indexer is not None: new_target = self.take(indexer) else: new_target = target # filling in missing if needed if len(missing): cats = self.categories.get_indexer(target) if (cats == -1).any(): # coerce to a regular index here! result = Index(np.array(self), name=self.name) new_target, indexer, _ = result._reindex_non_unique(np.array(target)) else: codes = new_target.codes.copy() codes[indexer == -1] = cats[missing] new_target = self._create_from_codes(codes) # we always want to return an Index type here # to be consistent with .reindex for other index types (e.g. they don't # coerce based on the actual values, only on the dtype) # unless we had an initial Categorical to begin with # in which case we are going to conform to the passed Categorical new_target = np.asarray(new_target) if is_categorical_dtype(target): new_target = target._shallow_copy(new_target, name=self.name) else: new_target = Index(new_target, name=self.name) return new_target, indexer def _reindex_non_unique(self, target): """ reindex from a non-unique; which CategoricalIndex's are almost always """ new_target, indexer = self.reindex(target) new_indexer = None check = indexer == -1 if check.any(): new_indexer = np.arange(len(self.take(indexer))) new_indexer[check] = -1 cats = self.categories.get_indexer(target) if not (cats == -1).any(): # .reindex returns normal Index. Revert to CategoricalIndex if # all targets are included in my categories new_target = self._shallow_copy(new_target) return new_target, indexer, new_indexer @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = ibase.ensure_index(target) if self.is_unique and self.equals(target): return np.arange(len(self), dtype="intp") if method == "pad" or method == "backfill": raise NotImplementedError( "method='pad' and method='backfill' not " "implemented yet for CategoricalIndex" ) elif method == "nearest": raise NotImplementedError( "method='nearest' not implemented yet for CategoricalIndex" ) if isinstance(target, CategoricalIndex) and self.values.is_dtype_equal(target): if self.values.equals(target.values): # we have the same codes codes = target.codes else: codes = _recode_for_categories( target.codes, target.categories, self.values.categories ) else: if isinstance(target, CategoricalIndex): code_indexer = self.categories.get_indexer(target.categories) codes = take_1d(code_indexer, target.codes, fill_value=-1) else: codes = self.categories.get_indexer(target) indexer, _ = self._engine.get_indexer_non_unique(codes) return ensure_platform_int(indexer) @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ibase.ensure_index(target) if isinstance(target, CategoricalIndex): # Indexing on codes is more efficient if categories are the same: if target.categories is self.categories: target = target.codes indexer, missing = self._engine.get_indexer_non_unique(target) return ensure_platform_int(indexer), missing target = target.values codes = self.categories.get_indexer(target) indexer, missing = self._engine.get_indexer_non_unique(codes) return ensure_platform_int(indexer), missing @Appender(Index._convert_scalar_indexer.__doc__) def _convert_scalar_indexer(self, key, kind: str): assert kind in ["loc", "getitem"] if kind == "loc": try: return self.categories._convert_scalar_indexer(key, kind="loc") except TypeError: self._invalid_indexer("label", key) return super()._convert_scalar_indexer(key, kind=kind) @Appender(Index._convert_list_indexer.__doc__) def _convert_list_indexer(self, keyarr): # Return our indexer or raise if all of the values are not included in # the categories if self.categories._defer_to_indexing: indexer = self.categories._convert_list_indexer(keyarr) return Index(self.codes).get_indexer_for(indexer) indexer = self.categories.get_indexer(np.asarray(keyarr)) if (indexer == -1).any(): raise KeyError( "a list-indexer must only include values that are in the categories" ) return self.get_indexer(keyarr) @Appender(Index._convert_arr_indexer.__doc__) def _convert_arr_indexer(self, keyarr): keyarr = com.asarray_tuplesafe(keyarr) if self.categories._defer_to_indexing: return keyarr return self._shallow_copy(keyarr) @Appender(Index._convert_index_indexer.__doc__) def _convert_index_indexer(self, keyarr): return self._shallow_copy(keyarr) def take_nd(self, *args, **kwargs): """Alias for `take`""" warnings.warn( "CategoricalIndex.take_nd is deprecated, use CategoricalIndex.take instead", FutureWarning, stacklevel=2, ) return self.take(*args, **kwargs) @Appender(Index._maybe_cast_slice_bound.__doc__) def _maybe_cast_slice_bound(self, label, side, kind): if kind == "loc": return label return super()._maybe_cast_slice_bound(label, side, kind) def map(self, mapper): """ Map values using input correspondence (a dict, Series, or function). Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.CategoricalIndex` which has the same order property as the original, otherwise an :class:`~pandas.Index` is returned. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.CategoricalIndex or pandas.Index Mapped index. See Also -------- Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> idx = pd.CategoricalIndex(['a', 'b', 'c']) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') >>> idx.map(lambda x: x.upper()) CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, dtype='category') >>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'}) CategoricalIndex(['first', 'second', 'third'], categories=['first', 'second', 'third'], ordered=False, dtype='category') If the mapping is one-to-one the ordering of the categories is preserved: >>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category') >>> idx.map({'a': 3, 'b': 2, 'c': 1}) CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True, dtype='category') If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> idx.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ return self._shallow_copy_with_infer(self.values.map(mapper)) def delete(self, loc): """ Make new Index with passed location(-s) deleted Returns ------- new_index : Index """ return self._create_from_codes(np.delete(self.codes, loc)) def insert(self, loc: int, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values Parameters ---------- loc : int item : object Returns ------- new_index : Index Raises ------ ValueError if the item is not in the categories """ code = self.categories.get_indexer([item]) if (code == -1) and not (is_scalar(item) and isna(item)): raise TypeError( "cannot insert an item into a CategoricalIndex " "that is not already an existing category" ) codes = self.codes codes = np.concatenate((codes[:loc], code, codes[loc:])) return self._create_from_codes(codes) def _concat(self, to_concat, name): # if calling index is category, don't check dtype of others return CategoricalIndex._concat_same_dtype(self, to_concat, name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class ValueError if other is not in the categories """ codes = np.concatenate([self._is_dtype_compat(c).codes for c in to_concat]) result = self._create_from_codes(codes, name=name) # if name is None, _create_from_codes sets self.name result.name = name return result def _delegate_method(self, name: str, *args, **kwargs): """ method delegation to the ._values """ method = getattr(self._values, name) if "inplace" in kwargs: raise ValueError("cannot use inplace with CategoricalIndex") res = method(*args, **kwargs) if is_scalar(res): return res return CategoricalIndex(res, name=self.name) def _wrap_joined_index( self, joined: np.ndarray, other: "CategoricalIndex" ) -> "CategoricalIndex": name = get_op_result_name(self, other) return self._create_from_codes(joined, name=name) CategoricalIndex._add_numeric_methods_add_sub_disabled() CategoricalIndex._add_numeric_methods_disabled() CategoricalIndex._add_logical_methods_disabled()
BugsInPy/BugsInPy/temp/projects/pandas/bug-51-fixed/pandas/pandas/core/indexes/category.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-51-buggy/pandas/pandas/core/indexes/category.py
pandas-bug-118
import re from typing import List import numpy as np from pandas.util._decorators import Appender from pandas.core.dtypes.common import is_extension_array_dtype, is_list_like from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCMultiIndex from pandas.core.dtypes.missing import notna from pandas.core.arrays import Categorical from pandas.core.frame import DataFrame, _shared_docs from pandas.core.indexes.base import Index from pandas.core.reshape.concat import concat from pandas.core.tools.numeric import to_numeric @Appender( _shared_docs["melt"] % dict(caller="pd.melt(df, ", versionadded="", other="DataFrame.melt") ) def melt( frame: DataFrame, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ) -> DataFrame: # TODO: what about the existing index? # If multiindex, gather names of columns on all level for checking presence # of `id_vars` and `value_vars` if isinstance(frame.columns, ABCMultiIndex): cols = [x for c in frame.columns for x in c] else: cols = list(frame.columns) if id_vars is not None: if not is_list_like(id_vars): id_vars = [id_vars] elif isinstance(frame.columns, ABCMultiIndex) and not isinstance(id_vars, list): raise ValueError( "id_vars must be a list of tuples when columns are a MultiIndex" ) else: # Check that `id_vars` are in frame id_vars = list(id_vars) missing = Index(np.ravel(id_vars)).difference(cols) if not missing.empty: raise KeyError( "The following 'id_vars' are not present" " in the DataFrame: {missing}" "".format(missing=list(missing)) ) else: id_vars = [] if value_vars is not None: if not is_list_like(value_vars): value_vars = [value_vars] elif isinstance(frame.columns, ABCMultiIndex) and not isinstance( value_vars, list ): raise ValueError( "value_vars must be a list of tuples when columns are a MultiIndex" ) else: value_vars = list(value_vars) # Check that `value_vars` are in frame missing = Index(np.ravel(value_vars)).difference(cols) if not missing.empty: raise KeyError( "The following 'value_vars' are not present in" " the DataFrame: {missing}" "".format(missing=list(missing)) ) frame = frame.loc[:, id_vars + value_vars] else: frame = frame.copy() if col_level is not None: # allow list or other? # frame is a copy frame.columns = frame.columns.get_level_values(col_level) if var_name is None: if isinstance(frame.columns, ABCMultiIndex): if len(frame.columns.names) == len(set(frame.columns.names)): var_name = frame.columns.names else: var_name = [ "variable_{i}".format(i=i) for i in range(len(frame.columns.names)) ] else: var_name = [ frame.columns.name if frame.columns.name is not None else "variable" ] if isinstance(var_name, str): var_name = [var_name] N, K = frame.shape K -= len(id_vars) mdata = {} for col in id_vars: id_data = frame.pop(col) if is_extension_array_dtype(id_data): id_data = concat([id_data] * K, ignore_index=True) else: id_data = np.tile(id_data.values, K) mdata[col] = id_data mcolumns = id_vars + var_name + [value_name] mdata[value_name] = frame.values.ravel("F") for i, col in enumerate(var_name): # asanyarray will keep the columns as an Index mdata[col] = np.asanyarray(frame.columns._get_level_values(i)).repeat(N) return frame._constructor(mdata, columns=mcolumns) def lreshape(data: DataFrame, groups, dropna: bool = True, label=None) -> DataFrame: """ Reshape long-format data to wide. Generalized inverse of DataFrame.pivot Parameters ---------- data : DataFrame groups : dict {new_name : list_of_columns} dropna : boolean, default True label : object, default None Dummy kwarg, not used. Examples -------- >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526], ... 'team': ['Red Sox', 'Yankees'], ... 'year1': [2007, 2007], 'year2': [2008, 2008]}) >>> data hr1 hr2 team year1 year2 0 514 545 Red Sox 2007 2008 1 573 526 Yankees 2007 2008 >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']}) team year hr 0 Red Sox 2007 514 1 Yankees 2007 573 2 Red Sox 2008 545 3 Yankees 2008 526 Returns ------- reshaped : DataFrame """ if isinstance(groups, dict): keys = list(groups.keys()) values = list(groups.values()) else: keys, values = zip(*groups) all_cols = list(set.union(*[set(x) for x in values])) id_cols = list(data.columns.difference(all_cols)) K = len(values[0]) for seq in values: if len(seq) != K: raise ValueError("All column lists must be same length") mdata = {} pivot_cols = [] for target, names in zip(keys, values): to_concat = [data[col].values for col in names] mdata[target] = concat_compat(to_concat) pivot_cols.append(target) for col in id_cols: mdata[col] = np.tile(data[col].values, K) if dropna: mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool) for c in pivot_cols: mask &= notna(mdata[c]) if not mask.all(): mdata = {k: v[mask] for k, v in mdata.items()} return data._constructor(mdata, columns=id_cols + pivot_cols) def wide_to_long(df: DataFrame, stubnames, i, j, sep: str = "", suffix: str = r"\d+"): r""" Wide panel to long format. Less flexible but more user-friendly than melt. With stubnames ['A', 'B'], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,... You specify what you want to call this suffix in the resulting long format with `j` (for example `j='year'`) Each row of these wide variables are assumed to be uniquely identified by `i` (can be a single column name or a list of column names) All remaining variables in the data frame are left intact. Parameters ---------- df : DataFrame The wide-format DataFrame. stubnames : str or list-like The stub name(s). The wide format variables are assumed to start with the stub names. i : str or list-like Column(s) to use as id variable(s). j : str The name of the sub-observation variable. What you wish to name your suffix in the long format. sep : str, default "" A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying `sep='-'`. suffix : str, default '\\d+' A regular expression capturing the wanted suffixes. '\\d+' captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class '\\D+'. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying `suffix='(!?one|two)'`. .. versionchanged:: 0.23.0 When all suffixes are numeric, they are cast to int64/float64. Returns ------- DataFrame A DataFrame that contains each stub name as a variable, with new index (i, j). Notes ----- All extra variables are left untouched. This simply uses `pandas.melt` under the hood, but is hard-coded to "do the right thing" in a typical case. Examples -------- >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... # doctest: +NORMALIZE_WHITESPACE X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 With multiple id columns >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9 Going from long back to wide just takes some creative use of `unstack` >>> w = l.unstack() >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format) >>> w.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 Less wieldy column names are also handled >>> np.random.seed(0) >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3), ... 'A(weekly)-2011': np.random.rand(3), ... 'B(weekly)-2010': np.random.rand(3), ... 'B(weekly)-2011': np.random.rand(3), ... 'X' : np.random.randint(3, size=3)}) >>> df['id'] = df.index >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id 0 0.548814 0.544883 0.437587 0.383442 0 0 1 0.715189 0.423655 0.891773 0.791725 1 1 2 0.602763 0.645894 0.963663 0.528895 1 2 >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id', ... j='year', sep='-') ... # doctest: +NORMALIZE_WHITESPACE X A(weekly) B(weekly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895 If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long >>> stubnames = sorted( ... set([match[0] for match in df.columns.str.findall( ... r'[A-B]\(.*\)').values if match != []]) ... ) >>> list(stubnames) ['A(weekly)', 'B(weekly)'] All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes. >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht_one ht_two 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age', ... sep='_', suffix='\w+') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 one 2.8 two 3.4 2 one 2.9 two 3.8 3 one 2.2 two 2.9 2 1 one 2.0 two 3.2 2 one 1.8 two 2.8 3 one 1.9 two 2.4 3 1 one 2.2 two 3.3 2 one 2.3 two 3.4 3 one 2.1 two 2.9 """ def get_var_names(df, stub: str, sep: str, suffix: str) -> List[str]: regex = r"^{stub}{sep}{suffix}$".format( stub=re.escape(stub), sep=re.escape(sep), suffix=suffix ) pattern = re.compile(regex) return [col for col in df.columns if pattern.match(col)] def melt_stub(df, stub: str, i, j, value_vars, sep: str): newdf = melt( df, id_vars=i, value_vars=value_vars, value_name=stub.rstrip(sep), var_name=j, ) newdf[j] = Categorical(newdf[j]) newdf[j] = newdf[j].str.replace(re.escape(stub + sep), "") # GH17627 Cast numerics suffixes to int/float newdf[j] = to_numeric(newdf[j], errors="ignore") return newdf.set_index(i + [j]) if not is_list_like(stubnames): stubnames = [stubnames] else: stubnames = list(stubnames) if any(col in stubnames for col in df.columns): raise ValueError("stubname can't be identical to a column name") if not is_list_like(i): i = [i] else: i = list(i) if df[i].duplicated().any(): raise ValueError("the id variables need to uniquely identify each row") value_vars = [get_var_names(df, stub, sep, suffix) for stub in stubnames] value_vars_flattened = [e for sublist in value_vars for e in sublist] id_vars = list(set(df.columns.tolist()).difference(value_vars_flattened)) _melted = [melt_stub(df, s, i, j, v, sep) for s, v in zip(stubnames, value_vars)] melted = _melted[0].join(_melted[1:], how="outer") if len(i) == 1: new = df[id_vars].set_index(i).join(melted) return new new = df[id_vars].merge(melted.reset_index(), on=i).set_index(i + [j]) return new import re from typing import List import numpy as np from pandas.util._decorators import Appender from pandas.core.dtypes.common import is_extension_array_dtype, is_list_like from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCMultiIndex from pandas.core.dtypes.missing import notna from pandas.core.arrays import Categorical import pandas.core.common as com from pandas.core.frame import DataFrame, _shared_docs from pandas.core.indexes.base import Index from pandas.core.reshape.concat import concat from pandas.core.tools.numeric import to_numeric @Appender( _shared_docs["melt"] % dict(caller="pd.melt(df, ", versionadded="", other="DataFrame.melt") ) def melt( frame: DataFrame, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ) -> DataFrame: # TODO: what about the existing index? # If multiindex, gather names of columns on all level for checking presence # of `id_vars` and `value_vars` if isinstance(frame.columns, ABCMultiIndex): cols = [x for c in frame.columns for x in c] else: cols = list(frame.columns) if id_vars is not None: if not is_list_like(id_vars): id_vars = [id_vars] elif isinstance(frame.columns, ABCMultiIndex) and not isinstance(id_vars, list): raise ValueError( "id_vars must be a list of tuples when columns are a MultiIndex" ) else: # Check that `id_vars` are in frame id_vars = list(id_vars) missing = Index(com.flatten(id_vars)).difference(cols) if not missing.empty: raise KeyError( "The following 'id_vars' are not present" " in the DataFrame: {missing}" "".format(missing=list(missing)) ) else: id_vars = [] if value_vars is not None: if not is_list_like(value_vars): value_vars = [value_vars] elif isinstance(frame.columns, ABCMultiIndex) and not isinstance( value_vars, list ): raise ValueError( "value_vars must be a list of tuples when columns are a MultiIndex" ) else: value_vars = list(value_vars) # Check that `value_vars` are in frame missing = Index(com.flatten(value_vars)).difference(cols) if not missing.empty: raise KeyError( "The following 'value_vars' are not present in" " the DataFrame: {missing}" "".format(missing=list(missing)) ) frame = frame.loc[:, id_vars + value_vars] else: frame = frame.copy() if col_level is not None: # allow list or other? # frame is a copy frame.columns = frame.columns.get_level_values(col_level) if var_name is None: if isinstance(frame.columns, ABCMultiIndex): if len(frame.columns.names) == len(set(frame.columns.names)): var_name = frame.columns.names else: var_name = [ "variable_{i}".format(i=i) for i in range(len(frame.columns.names)) ] else: var_name = [ frame.columns.name if frame.columns.name is not None else "variable" ] if isinstance(var_name, str): var_name = [var_name] N, K = frame.shape K -= len(id_vars) mdata = {} for col in id_vars: id_data = frame.pop(col) if is_extension_array_dtype(id_data): id_data = concat([id_data] * K, ignore_index=True) else: id_data = np.tile(id_data.values, K) mdata[col] = id_data mcolumns = id_vars + var_name + [value_name] mdata[value_name] = frame.values.ravel("F") for i, col in enumerate(var_name): # asanyarray will keep the columns as an Index mdata[col] = np.asanyarray(frame.columns._get_level_values(i)).repeat(N) return frame._constructor(mdata, columns=mcolumns) def lreshape(data: DataFrame, groups, dropna: bool = True, label=None) -> DataFrame: """ Reshape long-format data to wide. Generalized inverse of DataFrame.pivot Parameters ---------- data : DataFrame groups : dict {new_name : list_of_columns} dropna : boolean, default True label : object, default None Dummy kwarg, not used. Examples -------- >>> data = pd.DataFrame({'hr1': [514, 573], 'hr2': [545, 526], ... 'team': ['Red Sox', 'Yankees'], ... 'year1': [2007, 2007], 'year2': [2008, 2008]}) >>> data hr1 hr2 team year1 year2 0 514 545 Red Sox 2007 2008 1 573 526 Yankees 2007 2008 >>> pd.lreshape(data, {'year': ['year1', 'year2'], 'hr': ['hr1', 'hr2']}) team year hr 0 Red Sox 2007 514 1 Yankees 2007 573 2 Red Sox 2008 545 3 Yankees 2008 526 Returns ------- reshaped : DataFrame """ if isinstance(groups, dict): keys = list(groups.keys()) values = list(groups.values()) else: keys, values = zip(*groups) all_cols = list(set.union(*[set(x) for x in values])) id_cols = list(data.columns.difference(all_cols)) K = len(values[0]) for seq in values: if len(seq) != K: raise ValueError("All column lists must be same length") mdata = {} pivot_cols = [] for target, names in zip(keys, values): to_concat = [data[col].values for col in names] mdata[target] = concat_compat(to_concat) pivot_cols.append(target) for col in id_cols: mdata[col] = np.tile(data[col].values, K) if dropna: mask = np.ones(len(mdata[pivot_cols[0]]), dtype=bool) for c in pivot_cols: mask &= notna(mdata[c]) if not mask.all(): mdata = {k: v[mask] for k, v in mdata.items()} return data._constructor(mdata, columns=id_cols + pivot_cols) def wide_to_long(df: DataFrame, stubnames, i, j, sep: str = "", suffix: str = r"\d+"): r""" Wide panel to long format. Less flexible but more user-friendly than melt. With stubnames ['A', 'B'], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,..., B-suffix1, B-suffix2,... You specify what you want to call this suffix in the resulting long format with `j` (for example `j='year'`) Each row of these wide variables are assumed to be uniquely identified by `i` (can be a single column name or a list of column names) All remaining variables in the data frame are left intact. Parameters ---------- df : DataFrame The wide-format DataFrame. stubnames : str or list-like The stub name(s). The wide format variables are assumed to start with the stub names. i : str or list-like Column(s) to use as id variable(s). j : str The name of the sub-observation variable. What you wish to name your suffix in the long format. sep : str, default "" A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying `sep='-'`. suffix : str, default '\\d+' A regular expression capturing the wanted suffixes. '\\d+' captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class '\\D+'. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying `suffix='(!?one|two)'`. .. versionchanged:: 0.23.0 When all suffixes are numeric, they are cast to int64/float64. Returns ------- DataFrame A DataFrame that contains each stub name as a variable, with new index (i, j). Notes ----- All extra variables are left untouched. This simply uses `pandas.melt` under the hood, but is hard-coded to "do the right thing" in a typical case. Examples -------- >>> np.random.seed(123) >>> df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"}, ... "A1980" : {0 : "d", 1 : "e", 2 : "f"}, ... "B1970" : {0 : 2.5, 1 : 1.2, 2 : .7}, ... "B1980" : {0 : 3.2, 1 : 1.3, 2 : .1}, ... "X" : dict(zip(range(3), np.random.randn(3))) ... }) >>> df["id"] = df.index >>> df A1970 A1980 B1970 B1980 X id 0 a d 2.5 3.2 -1.085631 0 1 b e 1.2 1.3 0.997345 1 2 c f 0.7 0.1 0.282978 2 >>> pd.wide_to_long(df, ["A", "B"], i="id", j="year") ... # doctest: +NORMALIZE_WHITESPACE X A B id year 0 1970 -1.085631 a 2.5 1 1970 0.997345 b 1.2 2 1970 0.282978 c 0.7 0 1980 -1.085631 d 3.2 1 1980 0.997345 e 1.3 2 1980 0.282978 f 0.1 With multiple id columns >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 1 2.8 2 3.4 2 1 2.9 2 3.8 3 1 2.2 2 2.9 2 1 1 2.0 2 3.2 2 1 1.8 2 2.8 3 1 1.9 2 2.4 3 1 1 2.2 2 3.3 2 1 2.3 2 3.4 3 1 2.1 2 2.9 Going from long back to wide just takes some creative use of `unstack` >>> w = l.unstack() >>> w.columns = w.columns.map('{0[0]}{0[1]}'.format) >>> w.reset_index() famid birth ht1 ht2 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 Less wieldy column names are also handled >>> np.random.seed(0) >>> df = pd.DataFrame({'A(weekly)-2010': np.random.rand(3), ... 'A(weekly)-2011': np.random.rand(3), ... 'B(weekly)-2010': np.random.rand(3), ... 'B(weekly)-2011': np.random.rand(3), ... 'X' : np.random.randint(3, size=3)}) >>> df['id'] = df.index >>> df # doctest: +NORMALIZE_WHITESPACE, +ELLIPSIS A(weekly)-2010 A(weekly)-2011 B(weekly)-2010 B(weekly)-2011 X id 0 0.548814 0.544883 0.437587 0.383442 0 0 1 0.715189 0.423655 0.891773 0.791725 1 1 2 0.602763 0.645894 0.963663 0.528895 1 2 >>> pd.wide_to_long(df, ['A(weekly)', 'B(weekly)'], i='id', ... j='year', sep='-') ... # doctest: +NORMALIZE_WHITESPACE X A(weekly) B(weekly) id year 0 2010 0 0.548814 0.437587 1 2010 1 0.715189 0.891773 2 2010 1 0.602763 0.963663 0 2011 0 0.544883 0.383442 1 2011 1 0.423655 0.791725 2 2011 1 0.645894 0.528895 If we have many columns, we could also use a regex to find our stubnames and pass that list on to wide_to_long >>> stubnames = sorted( ... set([match[0] for match in df.columns.str.findall( ... r'[A-B]\(.*\)').values if match != []]) ... ) >>> list(stubnames) ['A(weekly)', 'B(weekly)'] All of the above examples have integers as suffixes. It is possible to have non-integers as suffixes. >>> df = pd.DataFrame({ ... 'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3], ... 'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3], ... 'ht_one': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1], ... 'ht_two': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9] ... }) >>> df famid birth ht_one ht_two 0 1 1 2.8 3.4 1 1 2 2.9 3.8 2 1 3 2.2 2.9 3 2 1 2.0 3.2 4 2 2 1.8 2.8 5 2 3 1.9 2.4 6 3 1 2.2 3.3 7 3 2 2.3 3.4 8 3 3 2.1 2.9 >>> l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age', ... sep='_', suffix='\w+') >>> l ... # doctest: +NORMALIZE_WHITESPACE ht famid birth age 1 1 one 2.8 two 3.4 2 one 2.9 two 3.8 3 one 2.2 two 2.9 2 1 one 2.0 two 3.2 2 one 1.8 two 2.8 3 one 1.9 two 2.4 3 1 one 2.2 two 3.3 2 one 2.3 two 3.4 3 one 2.1 two 2.9 """ def get_var_names(df, stub: str, sep: str, suffix: str) -> List[str]: regex = r"^{stub}{sep}{suffix}$".format( stub=re.escape(stub), sep=re.escape(sep), suffix=suffix ) pattern = re.compile(regex) return [col for col in df.columns if pattern.match(col)] def melt_stub(df, stub: str, i, j, value_vars, sep: str): newdf = melt( df, id_vars=i, value_vars=value_vars, value_name=stub.rstrip(sep), var_name=j, ) newdf[j] = Categorical(newdf[j]) newdf[j] = newdf[j].str.replace(re.escape(stub + sep), "") # GH17627 Cast numerics suffixes to int/float newdf[j] = to_numeric(newdf[j], errors="ignore") return newdf.set_index(i + [j]) if not is_list_like(stubnames): stubnames = [stubnames] else: stubnames = list(stubnames) if any(col in stubnames for col in df.columns): raise ValueError("stubname can't be identical to a column name") if not is_list_like(i): i = [i] else: i = list(i) if df[i].duplicated().any(): raise ValueError("the id variables need to uniquely identify each row") value_vars = [get_var_names(df, stub, sep, suffix) for stub in stubnames] value_vars_flattened = [e for sublist in value_vars for e in sublist] id_vars = list(set(df.columns.tolist()).difference(value_vars_flattened)) _melted = [melt_stub(df, s, i, j, v, sep) for s, v in zip(stubnames, value_vars)] melted = _melted[0].join(_melted[1:], how="outer") if len(i) == 1: new = df[id_vars].set_index(i).join(melted) return new new = df[id_vars].merge(melted.reset_index(), on=i).set_index(i + [j]) return new
BugsInPy/BugsInPy/temp/projects/pandas/bug-118-fixed/pandas/pandas/core/reshape/melt.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-118-buggy/pandas/pandas/core/reshape/melt.py
pandas-bug-50
import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import coerce_indexer_dtype, maybe_infer_to_datetimelike from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.arrays.base import ( ExtensionArray, _extension_array_shared_docs, try_cast_to_ea, ) from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. .. versionadded:: 0.21.0 Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. .. versionadded:: 0.21.0 Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = "object" if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = _recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _ndarray_values(self) -> np.ndarray: return self.codes @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = _recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = _recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = _recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = _recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. .. versionadded:: 0.21.0. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories add_categories remove_categories remove_unused_categories set_categories Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories add_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories reorder_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories reorder_categories add_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") # compat with pre 0.21.0 CategoricalDtype change if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self): """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @Substitution(klass="Categorical") @Appender(_shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def put(self, *args, **kwargs): """ Replace specific elements in the Categorical with given values. """ raise NotImplementedError(("'put' is not yet implemented for Categorical")) def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes.copy() def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2.0, 2.0, NaN, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values() [2.0, 2.0, 5.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5.0, 2.0, 2.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2.0, 2.0, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5.0, 2.0, 2.0] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: values = self.to_dense().reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, ABCSeries): if not value[~value.isin(self.categories)].isna().all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (3, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = ( f"'fill_value' ('{fill_value}') is not in this " "Categorical's categories." ) raise TypeError(msg) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = _recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list('baabc')) [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list('baabc'), categories=list('abc')) [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical(list('baabc'), ... categories=list('abc'), ... ordered=True) [b, a, c] Categories (3, object): [a < b < c] See Also -------- unique CategoricalIndex.unique Series.unique """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = _recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 3, 2, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() # build a dict of (to replace -> value) pairs if is_list_like(to_replace): # if to_replace is list-like and value is scalar replace_dict = {replace_value: value for replace_value in to_replace} else: # if both to_replace and value are scalar replace_dict = {to_replace: value} # other cases, like if both to_replace and value are list-like or if # to_replace is a dict, are handled separately in NDFrame for replace_value, new_value in replace_dict.items(): if replace_value in cat.categories: if isna(new_value): cat.remove_categories(replace_value, inplace=True) continue categories = cat.categories.tolist() index = categories.index(replace_value) if new_value in cat.categories: value_index = categories.index(new_value) cat._codes[cat._codes == index] = value_index cat.remove_categories(replace_value, inplace=True) else: categories[index] = new_value cat.rename_categories(categories, inplace=True) if not inplace: return cat # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s.cat.categories >>> s.cat.categories = list('abc') >>> s.cat.rename_categories(list('cab')) >>> s.cat.reorder_categories(list('cab')) >>> s.cat.add_categories(['d','e']) >>> s.cat.remove_categories(['d']) >>> s.cat.remove_unused_categories() >>> s.cat.set_categories(list('abcde')) >>> s.cat.as_ordered() >>> s.cat.as_unordered() """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, "_ndarray_values", values) categories = getattr(categories, "_ndarray_values", categories) elif is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = try_cast_to_ea(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def _recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables))) import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import coerce_indexer_dtype, maybe_infer_to_datetimelike from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.arrays.base import ( ExtensionArray, _extension_array_shared_docs, try_cast_to_ea, ) from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. .. versionadded:: 0.21.0 Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. .. versionadded:: 0.21.0 Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = "object" if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = _recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _ndarray_values(self) -> np.ndarray: return self.codes @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = _recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = _recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = _recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = _recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. .. versionadded:: 0.21.0. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories add_categories remove_categories remove_unused_categories set_categories Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories add_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories reorder_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories reorder_categories add_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") # compat with pre 0.21.0 CategoricalDtype change if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self): """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @Substitution(klass="Categorical") @Appender(_shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def put(self, *args, **kwargs): """ Replace specific elements in the Categorical with given values. """ raise NotImplementedError(("'put' is not yet implemented for Categorical")) def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes.copy() def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2.0, 2.0, NaN, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values() [2.0, 2.0, 5.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5.0, 2.0, 2.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2.0, 2.0, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5.0, 2.0, 2.0] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: values = self.to_dense().reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, ABCSeries): if not value[~value.isin(self.categories)].isna().all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (3, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = ( f"'fill_value' ('{fill_value}') is not in this " "Categorical's categories." ) raise TypeError(msg) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = _recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list('baabc')) [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list('baabc'), categories=list('abc')) [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical(list('baabc'), ... categories=list('abc'), ... ordered=True) [b, a, c] Categories (3, object): [a < b < c] See Also -------- unique CategoricalIndex.unique Series.unique """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = _recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 3, 2, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() # build a dict of (to replace -> value) pairs if is_list_like(to_replace): # if to_replace is list-like and value is scalar replace_dict = {replace_value: value for replace_value in to_replace} else: # if both to_replace and value are scalar replace_dict = {to_replace: value} # other cases, like if both to_replace and value are list-like or if # to_replace is a dict, are handled separately in NDFrame for replace_value, new_value in replace_dict.items(): if replace_value in cat.categories: if isna(new_value): cat.remove_categories(replace_value, inplace=True) continue categories = cat.categories.tolist() index = categories.index(replace_value) if new_value in cat.categories: value_index = categories.index(new_value) cat._codes[cat._codes == index] = value_index cat.remove_categories(replace_value, inplace=True) else: categories[index] = new_value cat.rename_categories(categories, inplace=True) if not inplace: return cat # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s.cat.categories >>> s.cat.categories = list('abc') >>> s.cat.rename_categories(list('cab')) >>> s.cat.reorder_categories(list('cab')) >>> s.cat.add_categories(['d','e']) >>> s.cat.remove_categories(['d']) >>> s.cat.remove_unused_categories() >>> s.cat.set_categories(list('abcde')) >>> s.cat.as_ordered() >>> s.cat.as_unordered() """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, "_ndarray_values", values) categories = getattr(categories, "_ndarray_values", categories) elif is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = try_cast_to_ea(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def _recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables)))
BugsInPy/BugsInPy/temp/projects/pandas/bug-50-fixed/pandas/pandas/core/arrays/categorical.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-50-buggy/pandas/pandas/core/arrays/categorical.py
pandas-bug-119
from typing import TYPE_CHECKING, Callable, Dict, Tuple, Union import numpy as np from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.cast import maybe_downcast_to_dtype from pandas.core.dtypes.common import is_integer_dtype, is_list_like, is_scalar from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries import pandas.core.common as com from pandas.core.frame import _shared_docs from pandas.core.groupby import Grouper from pandas.core.index import Index, MultiIndex, get_objs_combined_axis from pandas.core.reshape.concat import concat from pandas.core.reshape.util import cartesian_product from pandas.core.series import Series if TYPE_CHECKING: from pandas import DataFrame # Note: We need to make sure `frame` is imported before `pivot`, otherwise # _shared_docs['pivot_table'] will not yet exist. TODO: Fix this dependency @Substitution("\ndata : DataFrame") @Appender(_shared_docs["pivot_table"], indents=1) def pivot_table( data, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ): index = _convert_by(index) columns = _convert_by(columns) if isinstance(aggfunc, list): pieces = [] keys = [] for func in aggfunc: table = pivot_table( data, values=values, index=index, columns=columns, fill_value=fill_value, aggfunc=func, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) pieces.append(table) keys.append(getattr(func, "__name__", func)) return concat(pieces, keys=keys, axis=1) keys = index + columns values_passed = values is not None if values_passed: if is_list_like(values): values_multi = True values = list(values) else: values_multi = False values = [values] # GH14938 Make sure value labels are in data for i in values: if i not in data: raise KeyError(i) to_filter = [] for x in keys + values: if isinstance(x, Grouper): x = x.key try: if x in data: to_filter.append(x) except TypeError: pass if len(to_filter) < len(data.columns): data = data[to_filter] else: values = data.columns for key in keys: try: values = values.drop(key) except (TypeError, ValueError, KeyError): pass values = list(values) grouped = data.groupby(keys, observed=observed) agged = grouped.agg(aggfunc) if dropna and isinstance(agged, ABCDataFrame) and len(agged.columns): agged = agged.dropna(how="all") # gh-21133 # we want to down cast if # the original values are ints # as we grouped with a NaN value # and then dropped, coercing to floats for v in values: if ( v in data and is_integer_dtype(data[v]) and v in agged and not is_integer_dtype(agged[v]) ): agged[v] = maybe_downcast_to_dtype(agged[v], data[v].dtype) table = agged if table.index.nlevels > 1: # Related GH #17123 # If index_names are integers, determine whether the integers refer # to the level position or name. index_names = agged.index.names[: len(index)] to_unstack = [] for i in range(len(index), len(keys)): name = agged.index.names[i] if name is None or name in index_names: to_unstack.append(i) else: to_unstack.append(name) table = agged.unstack(to_unstack) if not dropna: if table.index.nlevels > 1: m = MultiIndex.from_arrays( cartesian_product(table.index.levels), names=table.index.names ) table = table.reindex(m, axis=0) if table.columns.nlevels > 1: m = MultiIndex.from_arrays( cartesian_product(table.columns.levels), names=table.columns.names ) table = table.reindex(m, axis=1) if isinstance(table, ABCDataFrame): table = table.sort_index(axis=1) if fill_value is not None: table = table.fillna(value=fill_value, downcast="infer") if margins: if dropna: data = data[data.notna().all(axis=1)] table = _add_margins( table, data, values, rows=index, cols=columns, aggfunc=aggfunc, observed=dropna, margins_name=margins_name, fill_value=fill_value, ) # discard the top level if ( values_passed and not values_multi and not table.empty and (table.columns.nlevels > 1) ): table = table[values[0]] if len(index) == 0 and len(columns) > 0: table = table.T # GH 15193 Make sure empty columns are removed if dropna=True if isinstance(table, ABCDataFrame) and dropna: table = table.dropna(how="all", axis=1) return table def _add_margins( table: Union["Series", "DataFrame"], data, values, rows, cols, aggfunc, observed=None, margins_name: str = "All", fill_value=None, ): if not isinstance(margins_name, str): raise ValueError("margins_name argument must be a string") msg = 'Conflicting name "{name}" in margins'.format(name=margins_name) for level in table.index.names: if margins_name in table.index.get_level_values(level): raise ValueError(msg) grand_margin = _compute_grand_margin(data, values, aggfunc, margins_name) if table.ndim == 2: # i.e. DataFramae for level in table.columns.names[1:]: if margins_name in table.columns.get_level_values(level): raise ValueError(msg) key: Union[str, Tuple[str, ...]] if len(rows) > 1: key = (margins_name,) + ("",) * (len(rows) - 1) else: key = margins_name if not values and isinstance(table, ABCSeries): # If there are no values and the table is a series, then there is only # one column in the data. Compute grand margin and return it. return table.append(Series({key: grand_margin[margins_name]})) elif values: marginal_result_set = _generate_marginal_results( table, data, values, rows, cols, aggfunc, observed, grand_margin, margins_name, ) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set else: # no values, and table is a DataFrame assert isinstance(table, ABCDataFrame) marginal_result_set = _generate_marginal_results_without_values( table, data, rows, cols, aggfunc, observed, margins_name ) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set row_margin = row_margin.reindex(result.columns, fill_value=fill_value) # populate grand margin for k in margin_keys: if isinstance(k, str): row_margin[k] = grand_margin[k] else: row_margin[k] = grand_margin[k[0]] from pandas import DataFrame margin_dummy = DataFrame(row_margin, columns=[key]).T row_names = result.index.names try: for dtype in set(result.dtypes): cols = result.select_dtypes([dtype]).columns margin_dummy[cols] = margin_dummy[cols].astype(dtype) result = result.append(margin_dummy) except TypeError: # we cannot reshape, so coerce the axis result.index = result.index._to_safe_for_reshape() result = result.append(margin_dummy) result.index.names = row_names return result def _compute_grand_margin(data, values, aggfunc, margins_name: str = "All"): if values: grand_margin = {} for k, v in data[values].items(): try: if isinstance(aggfunc, str): grand_margin[k] = getattr(v, aggfunc)() elif isinstance(aggfunc, dict): if isinstance(aggfunc[k], str): grand_margin[k] = getattr(v, aggfunc[k])() else: grand_margin[k] = aggfunc[k](v) else: grand_margin[k] = aggfunc(v) except TypeError: pass return grand_margin else: return {margins_name: aggfunc(data.index)} def _generate_marginal_results( table, data, values, rows, cols, aggfunc, observed, grand_margin, margins_name: str = "All", ): if len(cols) > 0: # need to "interleave" the margins table_pieces = [] margin_keys = [] def _all_key(key): return (key, margins_name) + ("",) * (len(cols) - 1) if len(rows) > 0: margin = data[rows + values].groupby(rows, observed=observed).agg(aggfunc) cat_axis = 1 for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed): all_key = _all_key(key) # we are going to mutate this, so need to copy! piece = piece.copy() try: piece[all_key] = margin[key] except TypeError: # we cannot reshape, so coerce the axis piece.set_axis( piece._get_axis(cat_axis)._to_safe_for_reshape(), axis=cat_axis, inplace=True, ) piece[all_key] = margin[key] table_pieces.append(piece) margin_keys.append(all_key) else: margin = grand_margin cat_axis = 0 for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed): all_key = _all_key(key) table_pieces.append(piece) table_pieces.append(Series(margin[key], index=[all_key])) margin_keys.append(all_key) result = concat(table_pieces, axis=cat_axis) if len(rows) == 0: return result else: result = table margin_keys = table.columns if len(cols) > 0: row_margin = data[cols + values].groupby(cols, observed=observed).agg(aggfunc) row_margin = row_margin.stack() # slight hack new_order = [len(cols)] + list(range(len(cols))) row_margin.index = row_margin.index.reorder_levels(new_order) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _generate_marginal_results_without_values( table: "DataFrame", data, rows, cols, aggfunc, observed, margins_name: str = "All" ): if len(cols) > 0: # need to "interleave" the margins margin_keys = [] def _all_key(): if len(cols) == 1: return margins_name return (margins_name,) + ("",) * (len(cols) - 1) if len(rows) > 0: margin = data[rows].groupby(rows, observed=observed).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) else: margin = data.groupby(level=0, axis=0, observed=observed).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) return result else: result = table margin_keys = table.columns if len(cols): row_margin = data[cols].groupby(cols, observed=observed).apply(aggfunc) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _convert_by(by): if by is None: by = [] elif ( is_scalar(by) or isinstance(by, (np.ndarray, Index, ABCSeries, Grouper)) or hasattr(by, "__call__") ): by = [by] else: by = list(by) return by @Substitution("\ndata : DataFrame") @Appender(_shared_docs["pivot"], indents=1) def pivot(data: "DataFrame", index=None, columns=None, values=None): if values is None: cols = [columns] if index is None else [index, columns] append = index is None indexed = data.set_index(cols, append=append) else: if index is None: index = data.index else: index = data[index] index = MultiIndex.from_arrays([index, data[columns]]) if is_list_like(values) and not isinstance(values, tuple): # Exclude tuple because it is seen as a single column name indexed = data._constructor( data[values].values, index=index, columns=values ) else: indexed = data._constructor_sliced(data[values].values, index=index) return indexed.unstack(columns) def crosstab( index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, margins_name: str = "All", dropna: bool = True, normalize=False, ): """ Compute a simple cross tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed. Parameters ---------- index : array-like, Series, or list of arrays/Series Values to group by in the rows. columns : array-like, Series, or list of arrays/Series Values to group by in the columns. values : array-like, optional Array of values to aggregate according to the factors. Requires `aggfunc` be specified. rownames : sequence, default None If passed, must match number of row arrays passed. colnames : sequence, default None If passed, must match number of column arrays passed. aggfunc : function, optional If specified, requires `values` be specified as well. margins : bool, default False Add row/column margins (subtotals). margins_name : str, default 'All' Name of the row/column that will contain the totals when margins is True. .. versionadded:: 0.21.0 dropna : bool, default True Do not include columns whose entries are all NaN. normalize : bool, {'all', 'index', 'columns'}, or {0,1}, default False Normalize by dividing all values by the sum of values. - If passed 'all' or `True`, will normalize over all values. - If passed 'index' will normalize over each row. - If passed 'columns' will normalize over each column. - If margins is `True`, will also normalize margin values. Returns ------- DataFrame Cross tabulation of the data. See Also -------- DataFrame.pivot : Reshape data based on column values. pivot_table : Create a pivot table as a DataFrame. Notes ----- Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified. Any input passed containing Categorical data will have **all** of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category. In the event that there aren't overlapping indexes an empty DataFrame will be returned. Examples -------- >>> a = np.array(["foo", "foo", "foo", "foo", "bar", "bar", ... "bar", "bar", "foo", "foo", "foo"], dtype=object) >>> b = np.array(["one", "one", "one", "two", "one", "one", ... "one", "two", "two", "two", "one"], dtype=object) >>> c = np.array(["dull", "dull", "shiny", "dull", "dull", "shiny", ... "shiny", "dull", "shiny", "shiny", "shiny"], ... dtype=object) >>> pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c']) b one two c dull shiny dull shiny a bar 1 2 1 0 foo 2 2 1 2 Here 'c' and 'f' are not represented in the data and will not be shown in the output because dropna is True by default. Set dropna=False to preserve categories with no data. >>> foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c']) >>> bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f']) >>> pd.crosstab(foo, bar) col_0 d e row_0 a 1 0 b 0 1 >>> pd.crosstab(foo, bar, dropna=False) col_0 d e f row_0 a 1 0 0 b 0 1 0 c 0 0 0 """ index = com.maybe_make_list(index) columns = com.maybe_make_list(columns) rownames = _get_names(index, rownames, prefix="row") colnames = _get_names(columns, colnames, prefix="col") common_idx = None pass_objs = [x for x in index + columns if isinstance(x, (ABCSeries, ABCDataFrame))] if pass_objs: common_idx = get_objs_combined_axis(pass_objs, intersect=True, sort=False) data: Dict = {} data.update(zip(rownames, index)) data.update(zip(colnames, columns)) if values is None and aggfunc is not None: raise ValueError("aggfunc cannot be used without values.") if values is not None and aggfunc is None: raise ValueError("values cannot be used without an aggfunc.") from pandas import DataFrame df = DataFrame(data, index=common_idx) if values is None: df["__dummy__"] = 0 kwargs = {"aggfunc": len, "fill_value": 0} else: df["__dummy__"] = values kwargs = {"aggfunc": aggfunc} table = df.pivot_table( "__dummy__", index=rownames, columns=colnames, margins=margins, margins_name=margins_name, dropna=dropna, **kwargs, ) # Post-process if normalize is not False: table = _normalize( table, normalize=normalize, margins=margins, margins_name=margins_name ) return table def _normalize(table, normalize, margins: bool, margins_name="All"): if not isinstance(normalize, (bool, str)): axis_subs = {0: "index", 1: "columns"} try: normalize = axis_subs[normalize] except KeyError: raise ValueError("Not a valid normalize argument") if margins is False: # Actual Normalizations normalizers: Dict[Union[bool, str], Callable] = { "all": lambda x: x / x.sum(axis=1).sum(axis=0), "columns": lambda x: x / x.sum(), "index": lambda x: x.div(x.sum(axis=1), axis=0), } normalizers[True] = normalizers["all"] try: f = normalizers[normalize] except KeyError: raise ValueError("Not a valid normalize argument") table = f(table) table = table.fillna(0) elif margins is True: # keep index and column of pivoted table table_index = table.index table_columns = table.columns # check if margin name is in (for MI cases) or equal to last # index/column and save the column and index margin if (margins_name not in table.iloc[-1, :].name) | ( margins_name != table.iloc[:, -1].name ): raise ValueError( "{mname} not in pivoted DataFrame".format(mname=margins_name) ) column_margin = table.iloc[:-1, -1] index_margin = table.iloc[-1, :-1] # keep the core table table = table.iloc[:-1, :-1] # Normalize core table = _normalize(table, normalize=normalize, margins=False) # Fix Margins if normalize == "columns": column_margin = column_margin / column_margin.sum() table = concat([table, column_margin], axis=1) table = table.fillna(0) table.columns = table_columns elif normalize == "index": index_margin = index_margin / index_margin.sum() table = table.append(index_margin) table = table.fillna(0) table.index = table_index elif normalize == "all" or normalize is True: column_margin = column_margin / column_margin.sum() index_margin = index_margin / index_margin.sum() index_margin.loc[margins_name] = 1 table = concat([table, column_margin], axis=1) table = table.append(index_margin) table = table.fillna(0) table.index = table_index table.columns = table_columns else: raise ValueError("Not a valid normalize argument") else: raise ValueError("Not a valid margins argument") return table def _get_names(arrs, names, prefix: str = "row"): if names is None: names = [] for i, arr in enumerate(arrs): if isinstance(arr, ABCSeries) and arr.name is not None: names.append(arr.name) else: names.append("{prefix}_{i}".format(prefix=prefix, i=i)) else: if len(names) != len(arrs): raise AssertionError("arrays and names must have the same length") if not isinstance(names, list): names = list(names) return names from typing import TYPE_CHECKING, Callable, Dict, Tuple, Union import numpy as np from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.cast import maybe_downcast_to_dtype from pandas.core.dtypes.common import is_integer_dtype, is_list_like, is_scalar from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries import pandas.core.common as com from pandas.core.frame import _shared_docs from pandas.core.groupby import Grouper from pandas.core.index import Index, MultiIndex, get_objs_combined_axis from pandas.core.reshape.concat import concat from pandas.core.reshape.util import cartesian_product from pandas.core.series import Series if TYPE_CHECKING: from pandas import DataFrame # Note: We need to make sure `frame` is imported before `pivot`, otherwise # _shared_docs['pivot_table'] will not yet exist. TODO: Fix this dependency @Substitution("\ndata : DataFrame") @Appender(_shared_docs["pivot_table"], indents=1) def pivot_table( data, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ): index = _convert_by(index) columns = _convert_by(columns) if isinstance(aggfunc, list): pieces = [] keys = [] for func in aggfunc: table = pivot_table( data, values=values, index=index, columns=columns, fill_value=fill_value, aggfunc=func, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) pieces.append(table) keys.append(getattr(func, "__name__", func)) return concat(pieces, keys=keys, axis=1) keys = index + columns values_passed = values is not None if values_passed: if is_list_like(values): values_multi = True values = list(values) else: values_multi = False values = [values] # GH14938 Make sure value labels are in data for i in values: if i not in data: raise KeyError(i) to_filter = [] for x in keys + values: if isinstance(x, Grouper): x = x.key try: if x in data: to_filter.append(x) except TypeError: pass if len(to_filter) < len(data.columns): data = data[to_filter] else: values = data.columns for key in keys: try: values = values.drop(key) except (TypeError, ValueError, KeyError): pass values = list(values) grouped = data.groupby(keys, observed=observed) agged = grouped.agg(aggfunc) if dropna and isinstance(agged, ABCDataFrame) and len(agged.columns): agged = agged.dropna(how="all") # gh-21133 # we want to down cast if # the original values are ints # as we grouped with a NaN value # and then dropped, coercing to floats for v in values: if ( v in data and is_integer_dtype(data[v]) and v in agged and not is_integer_dtype(agged[v]) ): agged[v] = maybe_downcast_to_dtype(agged[v], data[v].dtype) table = agged if table.index.nlevels > 1: # Related GH #17123 # If index_names are integers, determine whether the integers refer # to the level position or name. index_names = agged.index.names[: len(index)] to_unstack = [] for i in range(len(index), len(keys)): name = agged.index.names[i] if name is None or name in index_names: to_unstack.append(i) else: to_unstack.append(name) table = agged.unstack(to_unstack) if not dropna: if table.index.nlevels > 1: m = MultiIndex.from_arrays( cartesian_product(table.index.levels), names=table.index.names ) table = table.reindex(m, axis=0) if table.columns.nlevels > 1: m = MultiIndex.from_arrays( cartesian_product(table.columns.levels), names=table.columns.names ) table = table.reindex(m, axis=1) if isinstance(table, ABCDataFrame): table = table.sort_index(axis=1) if fill_value is not None: table = table.fillna(value=fill_value, downcast="infer") if margins: if dropna: data = data[data.notna().all(axis=1)] table = _add_margins( table, data, values, rows=index, cols=columns, aggfunc=aggfunc, observed=dropna, margins_name=margins_name, fill_value=fill_value, ) # discard the top level if ( values_passed and not values_multi and not table.empty and (table.columns.nlevels > 1) ): table = table[values[0]] if len(index) == 0 and len(columns) > 0: table = table.T # GH 15193 Make sure empty columns are removed if dropna=True if isinstance(table, ABCDataFrame) and dropna: table = table.dropna(how="all", axis=1) return table def _add_margins( table: Union["Series", "DataFrame"], data, values, rows, cols, aggfunc, observed=None, margins_name: str = "All", fill_value=None, ): if not isinstance(margins_name, str): raise ValueError("margins_name argument must be a string") msg = 'Conflicting name "{name}" in margins'.format(name=margins_name) for level in table.index.names: if margins_name in table.index.get_level_values(level): raise ValueError(msg) grand_margin = _compute_grand_margin(data, values, aggfunc, margins_name) if table.ndim == 2: # i.e. DataFramae for level in table.columns.names[1:]: if margins_name in table.columns.get_level_values(level): raise ValueError(msg) key: Union[str, Tuple[str, ...]] if len(rows) > 1: key = (margins_name,) + ("",) * (len(rows) - 1) else: key = margins_name if not values and isinstance(table, ABCSeries): # If there are no values and the table is a series, then there is only # one column in the data. Compute grand margin and return it. return table.append(Series({key: grand_margin[margins_name]})) elif values: marginal_result_set = _generate_marginal_results( table, data, values, rows, cols, aggfunc, observed, grand_margin, margins_name, ) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set else: # no values, and table is a DataFrame assert isinstance(table, ABCDataFrame) marginal_result_set = _generate_marginal_results_without_values( table, data, rows, cols, aggfunc, observed, margins_name ) if not isinstance(marginal_result_set, tuple): return marginal_result_set result, margin_keys, row_margin = marginal_result_set row_margin = row_margin.reindex(result.columns, fill_value=fill_value) # populate grand margin for k in margin_keys: if isinstance(k, str): row_margin[k] = grand_margin[k] else: row_margin[k] = grand_margin[k[0]] from pandas import DataFrame margin_dummy = DataFrame(row_margin, columns=[key]).T row_names = result.index.names try: # check the result column and leave floats for dtype in set(result.dtypes): cols = result.select_dtypes([dtype]).columns margin_dummy[cols] = margin_dummy[cols].apply( maybe_downcast_to_dtype, args=(dtype,) ) result = result.append(margin_dummy) except TypeError: # we cannot reshape, so coerce the axis result.index = result.index._to_safe_for_reshape() result = result.append(margin_dummy) result.index.names = row_names return result def _compute_grand_margin(data, values, aggfunc, margins_name: str = "All"): if values: grand_margin = {} for k, v in data[values].items(): try: if isinstance(aggfunc, str): grand_margin[k] = getattr(v, aggfunc)() elif isinstance(aggfunc, dict): if isinstance(aggfunc[k], str): grand_margin[k] = getattr(v, aggfunc[k])() else: grand_margin[k] = aggfunc[k](v) else: grand_margin[k] = aggfunc(v) except TypeError: pass return grand_margin else: return {margins_name: aggfunc(data.index)} def _generate_marginal_results( table, data, values, rows, cols, aggfunc, observed, grand_margin, margins_name: str = "All", ): if len(cols) > 0: # need to "interleave" the margins table_pieces = [] margin_keys = [] def _all_key(key): return (key, margins_name) + ("",) * (len(cols) - 1) if len(rows) > 0: margin = data[rows + values].groupby(rows, observed=observed).agg(aggfunc) cat_axis = 1 for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed): all_key = _all_key(key) # we are going to mutate this, so need to copy! piece = piece.copy() try: piece[all_key] = margin[key] except TypeError: # we cannot reshape, so coerce the axis piece.set_axis( piece._get_axis(cat_axis)._to_safe_for_reshape(), axis=cat_axis, inplace=True, ) piece[all_key] = margin[key] table_pieces.append(piece) margin_keys.append(all_key) else: margin = grand_margin cat_axis = 0 for key, piece in table.groupby(level=0, axis=cat_axis, observed=observed): all_key = _all_key(key) table_pieces.append(piece) table_pieces.append(Series(margin[key], index=[all_key])) margin_keys.append(all_key) result = concat(table_pieces, axis=cat_axis) if len(rows) == 0: return result else: result = table margin_keys = table.columns if len(cols) > 0: row_margin = data[cols + values].groupby(cols, observed=observed).agg(aggfunc) row_margin = row_margin.stack() # slight hack new_order = [len(cols)] + list(range(len(cols))) row_margin.index = row_margin.index.reorder_levels(new_order) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _generate_marginal_results_without_values( table: "DataFrame", data, rows, cols, aggfunc, observed, margins_name: str = "All" ): if len(cols) > 0: # need to "interleave" the margins margin_keys = [] def _all_key(): if len(cols) == 1: return margins_name return (margins_name,) + ("",) * (len(cols) - 1) if len(rows) > 0: margin = data[rows].groupby(rows, observed=observed).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) else: margin = data.groupby(level=0, axis=0, observed=observed).apply(aggfunc) all_key = _all_key() table[all_key] = margin result = table margin_keys.append(all_key) return result else: result = table margin_keys = table.columns if len(cols): row_margin = data[cols].groupby(cols, observed=observed).apply(aggfunc) else: row_margin = Series(np.nan, index=result.columns) return result, margin_keys, row_margin def _convert_by(by): if by is None: by = [] elif ( is_scalar(by) or isinstance(by, (np.ndarray, Index, ABCSeries, Grouper)) or hasattr(by, "__call__") ): by = [by] else: by = list(by) return by @Substitution("\ndata : DataFrame") @Appender(_shared_docs["pivot"], indents=1) def pivot(data: "DataFrame", index=None, columns=None, values=None): if values is None: cols = [columns] if index is None else [index, columns] append = index is None indexed = data.set_index(cols, append=append) else: if index is None: index = data.index else: index = data[index] index = MultiIndex.from_arrays([index, data[columns]]) if is_list_like(values) and not isinstance(values, tuple): # Exclude tuple because it is seen as a single column name indexed = data._constructor( data[values].values, index=index, columns=values ) else: indexed = data._constructor_sliced(data[values].values, index=index) return indexed.unstack(columns) def crosstab( index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, margins_name: str = "All", dropna: bool = True, normalize=False, ): """ Compute a simple cross tabulation of two (or more) factors. By default computes a frequency table of the factors unless an array of values and an aggregation function are passed. Parameters ---------- index : array-like, Series, or list of arrays/Series Values to group by in the rows. columns : array-like, Series, or list of arrays/Series Values to group by in the columns. values : array-like, optional Array of values to aggregate according to the factors. Requires `aggfunc` be specified. rownames : sequence, default None If passed, must match number of row arrays passed. colnames : sequence, default None If passed, must match number of column arrays passed. aggfunc : function, optional If specified, requires `values` be specified as well. margins : bool, default False Add row/column margins (subtotals). margins_name : str, default 'All' Name of the row/column that will contain the totals when margins is True. .. versionadded:: 0.21.0 dropna : bool, default True Do not include columns whose entries are all NaN. normalize : bool, {'all', 'index', 'columns'}, or {0,1}, default False Normalize by dividing all values by the sum of values. - If passed 'all' or `True`, will normalize over all values. - If passed 'index' will normalize over each row. - If passed 'columns' will normalize over each column. - If margins is `True`, will also normalize margin values. Returns ------- DataFrame Cross tabulation of the data. See Also -------- DataFrame.pivot : Reshape data based on column values. pivot_table : Create a pivot table as a DataFrame. Notes ----- Any Series passed will have their name attributes used unless row or column names for the cross-tabulation are specified. Any input passed containing Categorical data will have **all** of its categories included in the cross-tabulation, even if the actual data does not contain any instances of a particular category. In the event that there aren't overlapping indexes an empty DataFrame will be returned. Examples -------- >>> a = np.array(["foo", "foo", "foo", "foo", "bar", "bar", ... "bar", "bar", "foo", "foo", "foo"], dtype=object) >>> b = np.array(["one", "one", "one", "two", "one", "one", ... "one", "two", "two", "two", "one"], dtype=object) >>> c = np.array(["dull", "dull", "shiny", "dull", "dull", "shiny", ... "shiny", "dull", "shiny", "shiny", "shiny"], ... dtype=object) >>> pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c']) b one two c dull shiny dull shiny a bar 1 2 1 0 foo 2 2 1 2 Here 'c' and 'f' are not represented in the data and will not be shown in the output because dropna is True by default. Set dropna=False to preserve categories with no data. >>> foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c']) >>> bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f']) >>> pd.crosstab(foo, bar) col_0 d e row_0 a 1 0 b 0 1 >>> pd.crosstab(foo, bar, dropna=False) col_0 d e f row_0 a 1 0 0 b 0 1 0 c 0 0 0 """ index = com.maybe_make_list(index) columns = com.maybe_make_list(columns) rownames = _get_names(index, rownames, prefix="row") colnames = _get_names(columns, colnames, prefix="col") common_idx = None pass_objs = [x for x in index + columns if isinstance(x, (ABCSeries, ABCDataFrame))] if pass_objs: common_idx = get_objs_combined_axis(pass_objs, intersect=True, sort=False) data: Dict = {} data.update(zip(rownames, index)) data.update(zip(colnames, columns)) if values is None and aggfunc is not None: raise ValueError("aggfunc cannot be used without values.") if values is not None and aggfunc is None: raise ValueError("values cannot be used without an aggfunc.") from pandas import DataFrame df = DataFrame(data, index=common_idx) if values is None: df["__dummy__"] = 0 kwargs = {"aggfunc": len, "fill_value": 0} else: df["__dummy__"] = values kwargs = {"aggfunc": aggfunc} table = df.pivot_table( "__dummy__", index=rownames, columns=colnames, margins=margins, margins_name=margins_name, dropna=dropna, **kwargs, ) # Post-process if normalize is not False: table = _normalize( table, normalize=normalize, margins=margins, margins_name=margins_name ) return table def _normalize(table, normalize, margins: bool, margins_name="All"): if not isinstance(normalize, (bool, str)): axis_subs = {0: "index", 1: "columns"} try: normalize = axis_subs[normalize] except KeyError: raise ValueError("Not a valid normalize argument") if margins is False: # Actual Normalizations normalizers: Dict[Union[bool, str], Callable] = { "all": lambda x: x / x.sum(axis=1).sum(axis=0), "columns": lambda x: x / x.sum(), "index": lambda x: x.div(x.sum(axis=1), axis=0), } normalizers[True] = normalizers["all"] try: f = normalizers[normalize] except KeyError: raise ValueError("Not a valid normalize argument") table = f(table) table = table.fillna(0) elif margins is True: # keep index and column of pivoted table table_index = table.index table_columns = table.columns # check if margin name is in (for MI cases) or equal to last # index/column and save the column and index margin if (margins_name not in table.iloc[-1, :].name) | ( margins_name != table.iloc[:, -1].name ): raise ValueError( "{mname} not in pivoted DataFrame".format(mname=margins_name) ) column_margin = table.iloc[:-1, -1] index_margin = table.iloc[-1, :-1] # keep the core table table = table.iloc[:-1, :-1] # Normalize core table = _normalize(table, normalize=normalize, margins=False) # Fix Margins if normalize == "columns": column_margin = column_margin / column_margin.sum() table = concat([table, column_margin], axis=1) table = table.fillna(0) table.columns = table_columns elif normalize == "index": index_margin = index_margin / index_margin.sum() table = table.append(index_margin) table = table.fillna(0) table.index = table_index elif normalize == "all" or normalize is True: column_margin = column_margin / column_margin.sum() index_margin = index_margin / index_margin.sum() index_margin.loc[margins_name] = 1 table = concat([table, column_margin], axis=1) table = table.append(index_margin) table = table.fillna(0) table.index = table_index table.columns = table_columns else: raise ValueError("Not a valid normalize argument") else: raise ValueError("Not a valid margins argument") return table def _get_names(arrs, names, prefix: str = "row"): if names is None: names = [] for i, arr in enumerate(arrs): if isinstance(arr, ABCSeries) and arr.name is not None: names.append(arr.name) else: names.append("{prefix}_{i}".format(prefix=prefix, i=i)) else: if len(names) != len(arrs): raise AssertionError("arrays and names must have the same length") if not isinstance(names, list): names = list(names) return names
BugsInPy/BugsInPy/temp/projects/pandas/bug-119-fixed/pandas/pandas/core/reshape/pivot.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-119-buggy/pandas/pandas/core/reshape/pivot.py
pandas-bug-145
""" Arithmetic operations for PandasObjects This is not a public API. """ import datetime import operator from typing import Any, Callable, Tuple, Union import numpy as np from pandas._libs import Timedelta, Timestamp, lib, ops as libops from pandas.errors import NullFrequencyError from pandas.util._decorators import Appender from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import ( ensure_object, is_bool_dtype, is_datetime64_dtype, is_extension_array_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCExtensionArray, ABCIndexClass, ABCSeries, ABCTimedeltaArray, ABCTimedeltaIndex, ) from pandas.core.dtypes.missing import isna, notna from pandas._typing import ArrayLike from pandas.core.construction import array, extract_array from pandas.core.ops.array_ops import ( comp_method_OBJECT_ARRAY, define_na_arithmetic_op, na_arithmetic_op, ) from pandas.core.ops.docstrings import ( _arith_doc_FRAME, _flex_comp_doc_FRAME, _make_flex_doc, _op_descriptions, ) from pandas.core.ops.invalid import invalid_comparison from pandas.core.ops.methods import ( # noqa:F401 add_flex_arithmetic_methods, add_special_arithmetic_methods, ) from pandas.core.ops.roperator import ( # noqa:F401 radd, rand_, rdiv, rdivmod, rfloordiv, rmod, rmul, ror_, rpow, rsub, rtruediv, rxor, ) # ----------------------------------------------------------------------------- # Ops Wrapping Utilities def get_op_result_name(left, right): """ Find the appropriate name to pin to an operation result. This result should always be either an Index or a Series. Parameters ---------- left : {Series, Index} right : object Returns ------- name : object Usually a string """ # `left` is always a Series when called from within ops if isinstance(right, (ABCSeries, ABCIndexClass)): name = _maybe_match_name(left, right) else: name = left.name return name def _maybe_match_name(a, b): """ Try to find a name to attach to the result of an operation between a and b. If only one of these has a `name` attribute, return that name. Otherwise return a consensus name if they match of None if they have different names. Parameters ---------- a : object b : object Returns ------- name : str or None See Also -------- pandas.core.common.consensus_name_attr """ a_has = hasattr(a, "name") b_has = hasattr(b, "name") if a_has and b_has: if a.name == b.name: return a.name else: # TODO: what if they both have np.nan for their names? return None elif a_has: return a.name elif b_has: return b.name return None def maybe_upcast_for_op(obj, shape: Tuple[int, ...]): """ Cast non-pandas objects to pandas types to unify behavior of arithmetic and comparison operations. Parameters ---------- obj: object shape : tuple[int] Returns ------- out : object Notes ----- Be careful to call this *after* determining the `name` attribute to be attached to the result of the arithmetic operation. """ from pandas.core.arrays import DatetimeArray, TimedeltaArray if type(obj) is datetime.timedelta: # GH#22390 cast up to Timedelta to rely on Timedelta # implementation; otherwise operation against numeric-dtype # raises TypeError return Timedelta(obj) elif isinstance(obj, np.datetime64): # GH#28080 numpy casts integer-dtype to datetime64 when doing # array[int] + datetime64, which we do not allow if isna(obj): # Avoid possible ambiguities with pd.NaT obj = obj.astype("datetime64[ns]") right = np.broadcast_to(obj, shape) return DatetimeArray(right) return Timestamp(obj) elif isinstance(obj, np.timedelta64): if isna(obj): # wrapping timedelta64("NaT") in Timedelta returns NaT, # which would incorrectly be treated as a datetime-NaT, so # we broadcast and wrap in a TimedeltaArray obj = obj.astype("timedelta64[ns]") right = np.broadcast_to(obj, shape) return TimedeltaArray(right) # In particular non-nanosecond timedelta64 needs to be cast to # nanoseconds, or else we get undesired behavior like # np.timedelta64(3, 'D') / 2 == np.timedelta64(1, 'D') return Timedelta(obj) elif isinstance(obj, np.ndarray) and is_timedelta64_dtype(obj.dtype): # GH#22390 Unfortunately we need to special-case right-hand # timedelta64 dtypes because numpy casts integer dtypes to # timedelta64 when operating with timedelta64 return TimedeltaArray._from_sequence(obj) return obj # ----------------------------------------------------------------------------- def _gen_eval_kwargs(name): """ Find the keyword arguments to pass to numexpr for the given operation. Parameters ---------- name : str Returns ------- eval_kwargs : dict Examples -------- >>> _gen_eval_kwargs("__add__") {} >>> _gen_eval_kwargs("rtruediv") {'reversed': True, 'truediv': True} """ kwargs = {} # Series appear to only pass __add__, __radd__, ... # but DataFrame gets both these dunder names _and_ non-dunder names # add, radd, ... name = name.replace("__", "") if name.startswith("r"): if name not in ["radd", "rand", "ror", "rxor"]: # Exclude commutative operations kwargs["reversed"] = True return kwargs def _get_frame_op_default_axis(name): """ Only DataFrame cares about default_axis, specifically: special methods have default_axis=None and flex methods have default_axis='columns'. Parameters ---------- name : str Returns ------- default_axis: str or None """ if name.replace("__r", "__") in ["__and__", "__or__", "__xor__"]: # bool methods return "columns" elif name.startswith("__"): # __add__, __mul__, ... return None else: # add, mul, ... return "columns" def _get_opstr(op): """ Find the operation string, if any, to pass to numexpr for this operation. Parameters ---------- op : binary operator Returns ------- op_str : string or None """ return { operator.add: "+", radd: "+", operator.mul: "*", rmul: "*", operator.sub: "-", rsub: "-", operator.truediv: "/", rtruediv: "/", operator.floordiv: "//", rfloordiv: "//", operator.mod: None, # TODO: Why None for mod but '%' for rmod? rmod: "%", operator.pow: "**", rpow: "**", operator.eq: "==", operator.ne: "!=", operator.le: "<=", operator.lt: "<", operator.ge: ">=", operator.gt: ">", operator.and_: "&", rand_: "&", operator.or_: "|", ror_: "|", operator.xor: "^", rxor: "^", divmod: None, rdivmod: None, }[op] def _get_op_name(op, special): """ Find the name to attach to this method according to conventions for special and non-special methods. Parameters ---------- op : binary operator special : bool Returns ------- op_name : str """ opname = op.__name__.strip("_") if special: opname = "__{opname}__".format(opname=opname) return opname # ----------------------------------------------------------------------------- # Masking NA values and fallbacks for operations numpy does not support def fill_binop(left, right, fill_value): """ If a non-None fill_value is given, replace null entries in left and right with this value, but only in positions where _one_ of left/right is null, not both. Parameters ---------- left : array-like right : array-like fill_value : object Returns ------- left : array-like right : array-like Notes ----- Makes copies if fill_value is not None """ # TODO: can we make a no-copy implementation? if fill_value is not None: left_mask = isna(left) right_mask = isna(right) left = left.copy() right = right.copy() # one but not both mask = left_mask ^ right_mask left[left_mask & mask] = fill_value right[right_mask & mask] = fill_value return left, right def mask_cmp_op(x, y, op): """ Apply the function `op` to only non-null points in x and y. Parameters ---------- x : array-like y : array-like op : binary operation Returns ------- result : ndarray[bool] """ xrav = x.ravel() result = np.empty(x.size, dtype=bool) if isinstance(y, (np.ndarray, ABCSeries)): yrav = y.ravel() mask = notna(xrav) & notna(yrav) result[mask] = op(np.array(list(xrav[mask])), np.array(list(yrav[mask]))) else: mask = notna(xrav) result[mask] = op(np.array(list(xrav[mask])), y) if op == operator.ne: # pragma: no cover np.putmask(result, ~mask, True) else: np.putmask(result, ~mask, False) result = result.reshape(x.shape) return result # ----------------------------------------------------------------------------- # Dispatch logic def should_extension_dispatch(left: ABCSeries, right: Any) -> bool: """ Identify cases where Series operation should use dispatch_to_extension_op. Parameters ---------- left : Series right : object Returns ------- bool """ if ( is_extension_array_dtype(left.dtype) or is_datetime64_dtype(left.dtype) or is_timedelta64_dtype(left.dtype) ): return True if not is_scalar(right) and is_extension_array_dtype(right): # GH#22378 disallow scalar to exclude e.g. "category", "Int64" return True return False def should_series_dispatch(left, right, op): """ Identify cases where a DataFrame operation should dispatch to its Series counterpart. Parameters ---------- left : DataFrame right : DataFrame op : binary operator Returns ------- override : bool """ if left._is_mixed_type or right._is_mixed_type: return True if not len(left.columns) or not len(right.columns): # ensure obj.dtypes[0] exists for each obj return False ldtype = left.dtypes.iloc[0] rdtype = right.dtypes.iloc[0] if (is_timedelta64_dtype(ldtype) and is_integer_dtype(rdtype)) or ( is_timedelta64_dtype(rdtype) and is_integer_dtype(ldtype) ): # numpy integer dtypes as timedelta64 dtypes in this scenario return True if is_datetime64_dtype(ldtype) and is_object_dtype(rdtype): # in particular case where right is an array of DateOffsets return True return False def dispatch_to_series(left, right, func, str_rep=None, axis=None): """ Evaluate the frame operation func(left, right) by evaluating column-by-column, dispatching to the Series implementation. Parameters ---------- left : DataFrame right : scalar or DataFrame func : arithmetic or comparison operator str_rep : str or None, default None axis : {None, 0, 1, "index", "columns"} Returns ------- DataFrame """ # Note: we use iloc to access columns for compat with cases # with non-unique columns. import pandas.core.computation.expressions as expressions right = lib.item_from_zerodim(right) if lib.is_scalar(right) or np.ndim(right) == 0: def column_op(a, b): return {i: func(a.iloc[:, i], b) for i in range(len(a.columns))} elif isinstance(right, ABCDataFrame): assert right._indexed_same(left) def column_op(a, b): return {i: func(a.iloc[:, i], b.iloc[:, i]) for i in range(len(a.columns))} elif isinstance(right, ABCSeries) and axis == "columns": # We only get here if called via left._combine_match_columns, # in which case we specifically want to operate row-by-row assert right.index.equals(left.columns) def column_op(a, b): return {i: func(a.iloc[:, i], b.iloc[i]) for i in range(len(a.columns))} elif isinstance(right, ABCSeries): assert right.index.equals(left.index) # Handle other cases later def column_op(a, b): return {i: func(a.iloc[:, i], b) for i in range(len(a.columns))} else: # Remaining cases have less-obvious dispatch rules raise NotImplementedError(right) new_data = expressions.evaluate(column_op, str_rep, left, right) return new_data def dispatch_to_extension_op( op, left: Union[ABCExtensionArray, np.ndarray], right: Any, keep_null_freq: bool = False, ): """ Assume that left or right is a Series backed by an ExtensionArray, apply the operator defined by op. Parameters ---------- op : binary operator left : ExtensionArray or np.ndarray right : object keep_null_freq : bool, default False Whether to re-raise a NullFrequencyError unchanged, as opposed to catching and raising TypeError. Returns ------- ExtensionArray or np.ndarray 2-tuple of these if op is divmod or rdivmod """ # NB: left and right should already be unboxed, so neither should be # a Series or Index. if left.dtype.kind in "mM" and isinstance(left, np.ndarray): # We need to cast datetime64 and timedelta64 ndarrays to # DatetimeArray/TimedeltaArray. But we avoid wrapping others in # PandasArray as that behaves poorly with e.g. IntegerArray. left = array(left) # The op calls will raise TypeError if the op is not defined # on the ExtensionArray try: res_values = op(left, right) except NullFrequencyError: # DatetimeIndex and TimedeltaIndex with freq == None raise ValueError # on add/sub of integers (or int-like). We re-raise as a TypeError. if keep_null_freq: # TODO: remove keep_null_freq after Timestamp+int deprecation # GH#22535 is enforced raise raise TypeError( "incompatible type for a datetime/timedelta " "operation [{name}]".format(name=op.__name__) ) return res_values # ----------------------------------------------------------------------------- # Series def _align_method_SERIES(left, right, align_asobject=False): """ align lhs and rhs Series """ # ToDo: Different from _align_method_FRAME, list, tuple and ndarray # are not coerced here # because Series has inconsistencies described in #13637 if isinstance(right, ABCSeries): # avoid repeated alignment if not left.index.equals(right.index): if align_asobject: # to keep original value's dtype for bool ops left = left.astype(object) right = right.astype(object) left, right = left.align(right, copy=False) return left, right def _construct_result(left, result, index, name, dtype=None): """ If the raw op result has a non-None name (e.g. it is an Index object) and the name argument is None, then passing name to the constructor will not be enough; we still need to override the name attribute. """ out = left._constructor(result, index=index, dtype=dtype) out = out.__finalize__(left) out.name = name return out def _construct_divmod_result(left, result, index, name, dtype=None): """divmod returns a tuple of like indexed series instead of a single series. """ return ( _construct_result(left, result[0], index=index, name=name, dtype=dtype), _construct_result(left, result[1], index=index, name=name, dtype=dtype), ) def _arith_method_SERIES(cls, op, special): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ str_rep = _get_opstr(op) op_name = _get_op_name(op, special) eval_kwargs = _gen_eval_kwargs(op_name) construct_result = ( _construct_divmod_result if op in [divmod, rdivmod] else _construct_result ) def wrapper(left, right): if isinstance(right, ABCDataFrame): return NotImplemented left, right = _align_method_SERIES(left, right) res_name = get_op_result_name(left, right) keep_null_freq = isinstance( right, ( ABCDatetimeIndex, ABCDatetimeArray, ABCTimedeltaIndex, ABCTimedeltaArray, Timestamp, ), ) lvalues = extract_array(left, extract_numpy=True) rvalues = extract_array(right, extract_numpy=True) rvalues = maybe_upcast_for_op(rvalues, lvalues.shape) if should_extension_dispatch(left, rvalues) or isinstance( rvalues, (ABCTimedeltaArray, ABCDatetimeArray, Timestamp) ): result = dispatch_to_extension_op(op, lvalues, rvalues, keep_null_freq) else: with np.errstate(all="ignore"): result = na_arithmetic_op(lvalues, rvalues, op, str_rep, eval_kwargs) # We do not pass dtype to ensure that the Series constructor # does inference in the case where `result` has object-dtype. return construct_result(left, result, index=left.index, name=res_name) wrapper.__name__ = op_name return wrapper def _comp_method_SERIES(cls, op, special): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ op_name = _get_op_name(op, special) def wrapper(self, other): res_name = get_op_result_name(self, other) # TODO: shouldn't we be applying finalize whenever # not isinstance(other, ABCSeries)? finalizer = ( lambda x: x.__finalize__(self) if isinstance(other, (np.ndarray, ABCIndexClass)) else x ) if isinstance(other, ABCDataFrame): # pragma: no cover # Defer to DataFrame implementation; fail early return NotImplemented if isinstance(other, ABCSeries) and not self._indexed_same(other): raise ValueError("Can only compare identically-labeled Series objects") other = lib.item_from_zerodim(other) if isinstance(other, list): # TODO: same for tuples? other = np.asarray(other) if isinstance(other, (np.ndarray, ABCExtensionArray, ABCIndexClass)): # TODO: make this treatment consistent across ops and classes. # We are not catching all listlikes here (e.g. frozenset, tuple) # The ambiguous case is object-dtype. See GH#27803 if len(self) != len(other): raise ValueError("Lengths must match to compare") lvalues = extract_array(self, extract_numpy=True) rvalues = extract_array(other, extract_numpy=True) if should_extension_dispatch(lvalues, rvalues): res_values = dispatch_to_extension_op(op, lvalues, rvalues) elif is_scalar(rvalues) and isna(rvalues): # numpy does not like comparisons vs None if op is operator.ne: res_values = np.ones(len(lvalues), dtype=bool) else: res_values = np.zeros(len(lvalues), dtype=bool) elif is_object_dtype(lvalues.dtype): res_values = comp_method_OBJECT_ARRAY(op, lvalues, rvalues) else: op_name = "__{op}__".format(op=op.__name__) method = getattr(lvalues, op_name) with np.errstate(all="ignore"): res_values = method(rvalues) if res_values is NotImplemented: res_values = invalid_comparison(lvalues, rvalues, op) if is_scalar(res_values): raise TypeError( "Could not compare {typ} type with Series".format(typ=type(rvalues)) ) result = self._constructor(res_values, index=self.index) result = finalizer(result) # Set the result's name after finalizer is called because finalizer # would set it back to self.name result.name = res_name return result wrapper.__name__ = op_name return wrapper def _bool_method_SERIES(cls, op, special): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ op_name = _get_op_name(op, special) def na_op(x, y): try: result = op(x, y) except TypeError: assert not isinstance(y, (list, ABCSeries, ABCIndexClass)) if isinstance(y, np.ndarray): # bool-bool dtype operations should be OK, should not get here assert not (is_bool_dtype(x.dtype) and is_bool_dtype(y.dtype)) x = ensure_object(x) y = ensure_object(y) result = libops.vec_binop(x, y, op) else: # let null fall thru assert lib.is_scalar(y) if not isna(y): y = bool(y) try: result = libops.scalar_binop(x, y, op) except ( TypeError, ValueError, AttributeError, OverflowError, NotImplementedError, ): raise TypeError( "cannot compare a dtyped [{dtype}] array " "with a scalar of type [{typ}]".format( dtype=x.dtype, typ=type(y).__name__ ) ) return result fill_int = lambda x: x def fill_bool(x, left=None): # if `left` is specifically not-boolean, we do not cast to bool if x.dtype.kind in ["c", "f", "O"]: # dtypes that can hold NA mask = isna(x) if mask.any(): x = x.astype(object) x[mask] = False if left is None or is_bool_dtype(left.dtype): x = x.astype(bool) return x def wrapper(self, other): is_self_int_dtype = is_integer_dtype(self.dtype) self, other = _align_method_SERIES(self, other, align_asobject=True) res_name = get_op_result_name(self, other) # TODO: shouldn't we be applying finalize whenever # not isinstance(other, ABCSeries)? finalizer = ( lambda x: x.__finalize__(self) if not isinstance(other, (ABCSeries, ABCIndexClass)) else x ) if isinstance(other, ABCDataFrame): # Defer to DataFrame implementation; fail early return NotImplemented other = lib.item_from_zerodim(other) if is_list_like(other) and not hasattr(other, "dtype"): # e.g. list, tuple other = construct_1d_object_array_from_listlike(other) lvalues = extract_array(self, extract_numpy=True) rvalues = extract_array(other, extract_numpy=True) if should_extension_dispatch(self, rvalues): res_values = dispatch_to_extension_op(op, lvalues, rvalues) else: if isinstance(rvalues, (ABCSeries, ABCIndexClass, np.ndarray)): is_other_int_dtype = is_integer_dtype(rvalues.dtype) rvalues = rvalues if is_other_int_dtype else fill_bool(rvalues, lvalues) else: # i.e. scalar is_other_int_dtype = lib.is_integer(rvalues) # For int vs int `^`, `|`, `&` are bitwise operators and return # integer dtypes. Otherwise these are boolean ops filler = fill_int if is_self_int_dtype and is_other_int_dtype else fill_bool res_values = na_op(lvalues, rvalues) res_values = filler(res_values) result = self._constructor(res_values, index=self.index, name=res_name) return finalizer(result) wrapper.__name__ = op_name return wrapper def _flex_method_SERIES(cls, op, special): name = _get_op_name(op, special) doc = _make_flex_doc(name, "series") @Appender(doc) def flex_wrapper(self, other, level=None, fill_value=None, axis=0): # validate axis if axis is not None: self._get_axis_number(axis) if isinstance(other, ABCSeries): return self._binop(other, op, level=level, fill_value=fill_value) elif isinstance(other, (np.ndarray, list, tuple)): if len(other) != len(self): raise ValueError("Lengths must be equal") other = self._constructor(other, self.index) return self._binop(other, op, level=level, fill_value=fill_value) else: if fill_value is not None: self = self.fillna(fill_value) return self._constructor(op(self, other), self.index).__finalize__(self) flex_wrapper.__name__ = name return flex_wrapper # ----------------------------------------------------------------------------- # DataFrame def _combine_series_frame(self, other, func, fill_value=None, axis=None, level=None): """ Apply binary operator `func` to self, other using alignment and fill conventions determined by the fill_value, axis, and level kwargs. Parameters ---------- self : DataFrame other : Series func : binary operator fill_value : object, default None axis : {0, 1, 'columns', 'index', None}, default None level : int or None, default None Returns ------- result : DataFrame """ if fill_value is not None: raise NotImplementedError( "fill_value {fill} not supported.".format(fill=fill_value) ) if axis is not None: axis = self._get_axis_number(axis) if axis == 0: return self._combine_match_index(other, func, level=level) else: return self._combine_match_columns(other, func, level=level) else: if not len(other): return self * np.nan if not len(self): # Ambiguous case, use _series so works with DataFrame return self._constructor( data=self._series, index=self.index, columns=self.columns ) # default axis is columns return self._combine_match_columns(other, func, level=level) def _align_method_FRAME(left, right, axis): """ convert rhs to meet lhs dims if input is list, tuple or np.ndarray """ def to_series(right): msg = "Unable to coerce to Series, length must be {req_len}: given {given_len}" if axis is not None and left._get_axis_name(axis) == "index": if len(left.index) != len(right): raise ValueError( msg.format(req_len=len(left.index), given_len=len(right)) ) right = left._constructor_sliced(right, index=left.index) else: if len(left.columns) != len(right): raise ValueError( msg.format(req_len=len(left.columns), given_len=len(right)) ) right = left._constructor_sliced(right, index=left.columns) return right if isinstance(right, np.ndarray): if right.ndim == 1: right = to_series(right) elif right.ndim == 2: if right.shape == left.shape: right = left._constructor(right, index=left.index, columns=left.columns) elif right.shape[0] == left.shape[0] and right.shape[1] == 1: # Broadcast across columns right = np.broadcast_to(right, left.shape) right = left._constructor(right, index=left.index, columns=left.columns) elif right.shape[1] == left.shape[1] and right.shape[0] == 1: # Broadcast along rows right = to_series(right[0, :]) else: raise ValueError( "Unable to coerce to DataFrame, shape " "must be {req_shape}: given {given_shape}".format( req_shape=left.shape, given_shape=right.shape ) ) elif right.ndim > 2: raise ValueError( "Unable to coerce to Series/DataFrame, dim " "must be <= 2: {dim}".format(dim=right.shape) ) elif is_list_like(right) and not isinstance(right, (ABCSeries, ABCDataFrame)): # GH17901 right = to_series(right) return right def _arith_method_FRAME(cls, op, special): str_rep = _get_opstr(op) op_name = _get_op_name(op, special) eval_kwargs = _gen_eval_kwargs(op_name) default_axis = _get_frame_op_default_axis(op_name) na_op = define_na_arithmetic_op(op, str_rep, eval_kwargs) if op_name in _op_descriptions: # i.e. include "add" but not "__add__" doc = _make_flex_doc(op_name, "dataframe") else: doc = _arith_doc_FRAME % op_name @Appender(doc) def f(self, other, axis=default_axis, level=None, fill_value=None): other = _align_method_FRAME(self, other, axis) if isinstance(other, ABCDataFrame): # Another DataFrame pass_op = op if should_series_dispatch(self, other, op) else na_op return self._combine_frame(other, pass_op, fill_value, level) elif isinstance(other, ABCSeries): # For these values of `axis`, we end up dispatching to Series op, # so do not want the masked op. pass_op = op if axis in [0, "columns", None] else na_op return _combine_series_frame( self, other, pass_op, fill_value=fill_value, axis=axis, level=level ) else: # in this case we always have `np.ndim(other) == 0` if fill_value is not None: self = self.fillna(fill_value) return self._combine_const(other, op) f.__name__ = op_name return f def _flex_comp_method_FRAME(cls, op, special): str_rep = _get_opstr(op) op_name = _get_op_name(op, special) default_axis = _get_frame_op_default_axis(op_name) def na_op(x, y): try: with np.errstate(invalid="ignore"): result = op(x, y) except TypeError: result = mask_cmp_op(x, y, op) return result doc = _flex_comp_doc_FRAME.format( op_name=op_name, desc=_op_descriptions[op_name]["desc"] ) @Appender(doc) def f(self, other, axis=default_axis, level=None): other = _align_method_FRAME(self, other, axis) if isinstance(other, ABCDataFrame): # Another DataFrame if not self._indexed_same(other): self, other = self.align(other, "outer", level=level, copy=False) new_data = dispatch_to_series(self, other, na_op, str_rep) return self._construct_result(other, new_data, na_op) elif isinstance(other, ABCSeries): return _combine_series_frame( self, other, na_op, fill_value=None, axis=axis, level=level ) else: # in this case we always have `np.ndim(other) == 0` return self._combine_const(other, na_op) f.__name__ = op_name return f def _comp_method_FRAME(cls, func, special): str_rep = _get_opstr(func) op_name = _get_op_name(func, special) @Appender("Wrapper for comparison method {name}".format(name=op_name)) def f(self, other): other = _align_method_FRAME(self, other, axis=None) if isinstance(other, ABCDataFrame): # Another DataFrame if not self._indexed_same(other): raise ValueError( "Can only compare identically-labeled DataFrame objects" ) new_data = dispatch_to_series(self, other, func, str_rep) return self._construct_result(other, new_data, func) elif isinstance(other, ABCSeries): return _combine_series_frame( self, other, func, fill_value=None, axis=None, level=None ) else: # straight boolean comparisons we want to allow all columns # (regardless of dtype to pass thru) See #4537 for discussion. res = self._combine_const(other, func) return res f.__name__ = op_name return f # ----------------------------------------------------------------------------- # Sparse def maybe_dispatch_ufunc_to_dunder_op( self: ArrayLike, ufunc: Callable, method: str, *inputs: ArrayLike, **kwargs: Any ): """ Dispatch a ufunc to the equivalent dunder method. Parameters ---------- self : ArrayLike The array whose dunder method we dispatch to ufunc : Callable A NumPy ufunc method : {'reduce', 'accumulate', 'reduceat', 'outer', 'at', '__call__'} inputs : ArrayLike The input arrays. kwargs : Any The additional keyword arguments, e.g. ``out``. Returns ------- result : Any The result of applying the ufunc """ # special has the ufuncs we dispatch to the dunder op on special = { "add", "sub", "mul", "pow", "mod", "floordiv", "truediv", "divmod", "eq", "ne", "lt", "gt", "le", "ge", "remainder", "matmul", } aliases = { "subtract": "sub", "multiply": "mul", "floor_divide": "floordiv", "true_divide": "truediv", "power": "pow", "remainder": "mod", "divide": "div", "equal": "eq", "not_equal": "ne", "less": "lt", "less_equal": "le", "greater": "gt", "greater_equal": "ge", } # For op(., Array) -> Array.__r{op}__ flipped = { "lt": "__gt__", "le": "__ge__", "gt": "__lt__", "ge": "__le__", "eq": "__eq__", "ne": "__ne__", } op_name = ufunc.__name__ op_name = aliases.get(op_name, op_name) def not_implemented(*args, **kwargs): return NotImplemented if method == "__call__" and op_name in special and kwargs.get("out") is None: if isinstance(inputs[0], type(self)): name = "__{}__".format(op_name) return getattr(self, name, not_implemented)(inputs[1]) else: name = flipped.get(op_name, "__r{}__".format(op_name)) return getattr(self, name, not_implemented)(inputs[0]) else: return NotImplemented """ Arithmetic operations for PandasObjects This is not a public API. """ import datetime import operator from typing import Any, Callable, Tuple, Union import numpy as np from pandas._libs import Timedelta, Timestamp, lib, ops as libops from pandas.errors import NullFrequencyError from pandas.util._decorators import Appender from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import ( ensure_object, is_bool_dtype, is_datetime64_dtype, is_extension_array_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCExtensionArray, ABCIndexClass, ABCSeries, ABCTimedeltaArray, ABCTimedeltaIndex, ) from pandas.core.dtypes.missing import isna, notna from pandas._typing import ArrayLike from pandas.core.construction import array, extract_array from pandas.core.ops.array_ops import ( comp_method_OBJECT_ARRAY, define_na_arithmetic_op, na_arithmetic_op, ) from pandas.core.ops.docstrings import ( _arith_doc_FRAME, _flex_comp_doc_FRAME, _make_flex_doc, _op_descriptions, ) from pandas.core.ops.invalid import invalid_comparison from pandas.core.ops.methods import ( # noqa:F401 add_flex_arithmetic_methods, add_special_arithmetic_methods, ) from pandas.core.ops.roperator import ( # noqa:F401 radd, rand_, rdiv, rdivmod, rfloordiv, rmod, rmul, ror_, rpow, rsub, rtruediv, rxor, ) # ----------------------------------------------------------------------------- # Ops Wrapping Utilities def get_op_result_name(left, right): """ Find the appropriate name to pin to an operation result. This result should always be either an Index or a Series. Parameters ---------- left : {Series, Index} right : object Returns ------- name : object Usually a string """ # `left` is always a Series when called from within ops if isinstance(right, (ABCSeries, ABCIndexClass)): name = _maybe_match_name(left, right) else: name = left.name return name def _maybe_match_name(a, b): """ Try to find a name to attach to the result of an operation between a and b. If only one of these has a `name` attribute, return that name. Otherwise return a consensus name if they match of None if they have different names. Parameters ---------- a : object b : object Returns ------- name : str or None See Also -------- pandas.core.common.consensus_name_attr """ a_has = hasattr(a, "name") b_has = hasattr(b, "name") if a_has and b_has: if a.name == b.name: return a.name else: # TODO: what if they both have np.nan for their names? return None elif a_has: return a.name elif b_has: return b.name return None def maybe_upcast_for_op(obj, shape: Tuple[int, ...]): """ Cast non-pandas objects to pandas types to unify behavior of arithmetic and comparison operations. Parameters ---------- obj: object shape : tuple[int] Returns ------- out : object Notes ----- Be careful to call this *after* determining the `name` attribute to be attached to the result of the arithmetic operation. """ from pandas.core.arrays import DatetimeArray, TimedeltaArray if type(obj) is datetime.timedelta: # GH#22390 cast up to Timedelta to rely on Timedelta # implementation; otherwise operation against numeric-dtype # raises TypeError return Timedelta(obj) elif isinstance(obj, np.datetime64): # GH#28080 numpy casts integer-dtype to datetime64 when doing # array[int] + datetime64, which we do not allow if isna(obj): # Avoid possible ambiguities with pd.NaT obj = obj.astype("datetime64[ns]") right = np.broadcast_to(obj, shape) return DatetimeArray(right) return Timestamp(obj) elif isinstance(obj, np.timedelta64): if isna(obj): # wrapping timedelta64("NaT") in Timedelta returns NaT, # which would incorrectly be treated as a datetime-NaT, so # we broadcast and wrap in a TimedeltaArray obj = obj.astype("timedelta64[ns]") right = np.broadcast_to(obj, shape) return TimedeltaArray(right) # In particular non-nanosecond timedelta64 needs to be cast to # nanoseconds, or else we get undesired behavior like # np.timedelta64(3, 'D') / 2 == np.timedelta64(1, 'D') return Timedelta(obj) elif isinstance(obj, np.ndarray) and is_timedelta64_dtype(obj.dtype): # GH#22390 Unfortunately we need to special-case right-hand # timedelta64 dtypes because numpy casts integer dtypes to # timedelta64 when operating with timedelta64 return TimedeltaArray._from_sequence(obj) return obj # ----------------------------------------------------------------------------- def _gen_eval_kwargs(name): """ Find the keyword arguments to pass to numexpr for the given operation. Parameters ---------- name : str Returns ------- eval_kwargs : dict Examples -------- >>> _gen_eval_kwargs("__add__") {} >>> _gen_eval_kwargs("rtruediv") {'reversed': True, 'truediv': True} """ kwargs = {} # Series appear to only pass __add__, __radd__, ... # but DataFrame gets both these dunder names _and_ non-dunder names # add, radd, ... name = name.replace("__", "") if name.startswith("r"): if name not in ["radd", "rand", "ror", "rxor"]: # Exclude commutative operations kwargs["reversed"] = True return kwargs def _get_frame_op_default_axis(name): """ Only DataFrame cares about default_axis, specifically: special methods have default_axis=None and flex methods have default_axis='columns'. Parameters ---------- name : str Returns ------- default_axis: str or None """ if name.replace("__r", "__") in ["__and__", "__or__", "__xor__"]: # bool methods return "columns" elif name.startswith("__"): # __add__, __mul__, ... return None else: # add, mul, ... return "columns" def _get_opstr(op): """ Find the operation string, if any, to pass to numexpr for this operation. Parameters ---------- op : binary operator Returns ------- op_str : string or None """ return { operator.add: "+", radd: "+", operator.mul: "*", rmul: "*", operator.sub: "-", rsub: "-", operator.truediv: "/", rtruediv: "/", operator.floordiv: "//", rfloordiv: "//", operator.mod: None, # TODO: Why None for mod but '%' for rmod? rmod: "%", operator.pow: "**", rpow: "**", operator.eq: "==", operator.ne: "!=", operator.le: "<=", operator.lt: "<", operator.ge: ">=", operator.gt: ">", operator.and_: "&", rand_: "&", operator.or_: "|", ror_: "|", operator.xor: "^", rxor: "^", divmod: None, rdivmod: None, }[op] def _get_op_name(op, special): """ Find the name to attach to this method according to conventions for special and non-special methods. Parameters ---------- op : binary operator special : bool Returns ------- op_name : str """ opname = op.__name__.strip("_") if special: opname = "__{opname}__".format(opname=opname) return opname # ----------------------------------------------------------------------------- # Masking NA values and fallbacks for operations numpy does not support def fill_binop(left, right, fill_value): """ If a non-None fill_value is given, replace null entries in left and right with this value, but only in positions where _one_ of left/right is null, not both. Parameters ---------- left : array-like right : array-like fill_value : object Returns ------- left : array-like right : array-like Notes ----- Makes copies if fill_value is not None """ # TODO: can we make a no-copy implementation? if fill_value is not None: left_mask = isna(left) right_mask = isna(right) left = left.copy() right = right.copy() # one but not both mask = left_mask ^ right_mask left[left_mask & mask] = fill_value right[right_mask & mask] = fill_value return left, right def mask_cmp_op(x, y, op): """ Apply the function `op` to only non-null points in x and y. Parameters ---------- x : array-like y : array-like op : binary operation Returns ------- result : ndarray[bool] """ xrav = x.ravel() result = np.empty(x.size, dtype=bool) if isinstance(y, (np.ndarray, ABCSeries)): yrav = y.ravel() mask = notna(xrav) & notna(yrav) result[mask] = op(np.array(list(xrav[mask])), np.array(list(yrav[mask]))) else: mask = notna(xrav) result[mask] = op(np.array(list(xrav[mask])), y) if op == operator.ne: # pragma: no cover np.putmask(result, ~mask, True) else: np.putmask(result, ~mask, False) result = result.reshape(x.shape) return result # ----------------------------------------------------------------------------- # Dispatch logic def should_extension_dispatch(left: ABCSeries, right: Any) -> bool: """ Identify cases where Series operation should use dispatch_to_extension_op. Parameters ---------- left : Series right : object Returns ------- bool """ if ( is_extension_array_dtype(left.dtype) or is_datetime64_dtype(left.dtype) or is_timedelta64_dtype(left.dtype) ): return True if not is_scalar(right) and is_extension_array_dtype(right): # GH#22378 disallow scalar to exclude e.g. "category", "Int64" return True return False def should_series_dispatch(left, right, op): """ Identify cases where a DataFrame operation should dispatch to its Series counterpart. Parameters ---------- left : DataFrame right : DataFrame op : binary operator Returns ------- override : bool """ if left._is_mixed_type or right._is_mixed_type: return True if not len(left.columns) or not len(right.columns): # ensure obj.dtypes[0] exists for each obj return False ldtype = left.dtypes.iloc[0] rdtype = right.dtypes.iloc[0] if (is_timedelta64_dtype(ldtype) and is_integer_dtype(rdtype)) or ( is_timedelta64_dtype(rdtype) and is_integer_dtype(ldtype) ): # numpy integer dtypes as timedelta64 dtypes in this scenario return True if is_datetime64_dtype(ldtype) and is_object_dtype(rdtype): # in particular case where right is an array of DateOffsets return True return False def dispatch_to_series(left, right, func, str_rep=None, axis=None): """ Evaluate the frame operation func(left, right) by evaluating column-by-column, dispatching to the Series implementation. Parameters ---------- left : DataFrame right : scalar or DataFrame func : arithmetic or comparison operator str_rep : str or None, default None axis : {None, 0, 1, "index", "columns"} Returns ------- DataFrame """ # Note: we use iloc to access columns for compat with cases # with non-unique columns. import pandas.core.computation.expressions as expressions right = lib.item_from_zerodim(right) if lib.is_scalar(right) or np.ndim(right) == 0: def column_op(a, b): return {i: func(a.iloc[:, i], b) for i in range(len(a.columns))} elif isinstance(right, ABCDataFrame): assert right._indexed_same(left) def column_op(a, b): return {i: func(a.iloc[:, i], b.iloc[:, i]) for i in range(len(a.columns))} elif isinstance(right, ABCSeries) and axis == "columns": # We only get here if called via left._combine_match_columns, # in which case we specifically want to operate row-by-row assert right.index.equals(left.columns) if right.dtype == "timedelta64[ns]": # ensure we treat NaT values as the correct dtype # Note: we do not do this unconditionally as it may be lossy or # expensive for EA dtypes. right = np.asarray(right) def column_op(a, b): return {i: func(a.iloc[:, i], b[i]) for i in range(len(a.columns))} else: def column_op(a, b): return {i: func(a.iloc[:, i], b.iloc[i]) for i in range(len(a.columns))} elif isinstance(right, ABCSeries): assert right.index.equals(left.index) # Handle other cases later def column_op(a, b): return {i: func(a.iloc[:, i], b) for i in range(len(a.columns))} else: # Remaining cases have less-obvious dispatch rules raise NotImplementedError(right) new_data = expressions.evaluate(column_op, str_rep, left, right) return new_data def dispatch_to_extension_op( op, left: Union[ABCExtensionArray, np.ndarray], right: Any, keep_null_freq: bool = False, ): """ Assume that left or right is a Series backed by an ExtensionArray, apply the operator defined by op. Parameters ---------- op : binary operator left : ExtensionArray or np.ndarray right : object keep_null_freq : bool, default False Whether to re-raise a NullFrequencyError unchanged, as opposed to catching and raising TypeError. Returns ------- ExtensionArray or np.ndarray 2-tuple of these if op is divmod or rdivmod """ # NB: left and right should already be unboxed, so neither should be # a Series or Index. if left.dtype.kind in "mM" and isinstance(left, np.ndarray): # We need to cast datetime64 and timedelta64 ndarrays to # DatetimeArray/TimedeltaArray. But we avoid wrapping others in # PandasArray as that behaves poorly with e.g. IntegerArray. left = array(left) # The op calls will raise TypeError if the op is not defined # on the ExtensionArray try: res_values = op(left, right) except NullFrequencyError: # DatetimeIndex and TimedeltaIndex with freq == None raise ValueError # on add/sub of integers (or int-like). We re-raise as a TypeError. if keep_null_freq: # TODO: remove keep_null_freq after Timestamp+int deprecation # GH#22535 is enforced raise raise TypeError( "incompatible type for a datetime/timedelta " "operation [{name}]".format(name=op.__name__) ) return res_values # ----------------------------------------------------------------------------- # Series def _align_method_SERIES(left, right, align_asobject=False): """ align lhs and rhs Series """ # ToDo: Different from _align_method_FRAME, list, tuple and ndarray # are not coerced here # because Series has inconsistencies described in #13637 if isinstance(right, ABCSeries): # avoid repeated alignment if not left.index.equals(right.index): if align_asobject: # to keep original value's dtype for bool ops left = left.astype(object) right = right.astype(object) left, right = left.align(right, copy=False) return left, right def _construct_result(left, result, index, name, dtype=None): """ If the raw op result has a non-None name (e.g. it is an Index object) and the name argument is None, then passing name to the constructor will not be enough; we still need to override the name attribute. """ out = left._constructor(result, index=index, dtype=dtype) out = out.__finalize__(left) out.name = name return out def _construct_divmod_result(left, result, index, name, dtype=None): """divmod returns a tuple of like indexed series instead of a single series. """ return ( _construct_result(left, result[0], index=index, name=name, dtype=dtype), _construct_result(left, result[1], index=index, name=name, dtype=dtype), ) def _arith_method_SERIES(cls, op, special): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ str_rep = _get_opstr(op) op_name = _get_op_name(op, special) eval_kwargs = _gen_eval_kwargs(op_name) construct_result = ( _construct_divmod_result if op in [divmod, rdivmod] else _construct_result ) def wrapper(left, right): if isinstance(right, ABCDataFrame): return NotImplemented left, right = _align_method_SERIES(left, right) res_name = get_op_result_name(left, right) keep_null_freq = isinstance( right, ( ABCDatetimeIndex, ABCDatetimeArray, ABCTimedeltaIndex, ABCTimedeltaArray, Timestamp, ), ) lvalues = extract_array(left, extract_numpy=True) rvalues = extract_array(right, extract_numpy=True) rvalues = maybe_upcast_for_op(rvalues, lvalues.shape) if should_extension_dispatch(left, rvalues) or isinstance( rvalues, (ABCTimedeltaArray, ABCDatetimeArray, Timestamp) ): result = dispatch_to_extension_op(op, lvalues, rvalues, keep_null_freq) else: with np.errstate(all="ignore"): result = na_arithmetic_op(lvalues, rvalues, op, str_rep, eval_kwargs) # We do not pass dtype to ensure that the Series constructor # does inference in the case where `result` has object-dtype. return construct_result(left, result, index=left.index, name=res_name) wrapper.__name__ = op_name return wrapper def _comp_method_SERIES(cls, op, special): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ op_name = _get_op_name(op, special) def wrapper(self, other): res_name = get_op_result_name(self, other) # TODO: shouldn't we be applying finalize whenever # not isinstance(other, ABCSeries)? finalizer = ( lambda x: x.__finalize__(self) if isinstance(other, (np.ndarray, ABCIndexClass)) else x ) if isinstance(other, ABCDataFrame): # pragma: no cover # Defer to DataFrame implementation; fail early return NotImplemented if isinstance(other, ABCSeries) and not self._indexed_same(other): raise ValueError("Can only compare identically-labeled Series objects") other = lib.item_from_zerodim(other) if isinstance(other, list): # TODO: same for tuples? other = np.asarray(other) if isinstance(other, (np.ndarray, ABCExtensionArray, ABCIndexClass)): # TODO: make this treatment consistent across ops and classes. # We are not catching all listlikes here (e.g. frozenset, tuple) # The ambiguous case is object-dtype. See GH#27803 if len(self) != len(other): raise ValueError("Lengths must match to compare") lvalues = extract_array(self, extract_numpy=True) rvalues = extract_array(other, extract_numpy=True) if should_extension_dispatch(lvalues, rvalues): res_values = dispatch_to_extension_op(op, lvalues, rvalues) elif is_scalar(rvalues) and isna(rvalues): # numpy does not like comparisons vs None if op is operator.ne: res_values = np.ones(len(lvalues), dtype=bool) else: res_values = np.zeros(len(lvalues), dtype=bool) elif is_object_dtype(lvalues.dtype): res_values = comp_method_OBJECT_ARRAY(op, lvalues, rvalues) else: op_name = "__{op}__".format(op=op.__name__) method = getattr(lvalues, op_name) with np.errstate(all="ignore"): res_values = method(rvalues) if res_values is NotImplemented: res_values = invalid_comparison(lvalues, rvalues, op) if is_scalar(res_values): raise TypeError( "Could not compare {typ} type with Series".format(typ=type(rvalues)) ) result = self._constructor(res_values, index=self.index) result = finalizer(result) # Set the result's name after finalizer is called because finalizer # would set it back to self.name result.name = res_name return result wrapper.__name__ = op_name return wrapper def _bool_method_SERIES(cls, op, special): """ Wrapper function for Series arithmetic operations, to avoid code duplication. """ op_name = _get_op_name(op, special) def na_op(x, y): try: result = op(x, y) except TypeError: assert not isinstance(y, (list, ABCSeries, ABCIndexClass)) if isinstance(y, np.ndarray): # bool-bool dtype operations should be OK, should not get here assert not (is_bool_dtype(x.dtype) and is_bool_dtype(y.dtype)) x = ensure_object(x) y = ensure_object(y) result = libops.vec_binop(x, y, op) else: # let null fall thru assert lib.is_scalar(y) if not isna(y): y = bool(y) try: result = libops.scalar_binop(x, y, op) except ( TypeError, ValueError, AttributeError, OverflowError, NotImplementedError, ): raise TypeError( "cannot compare a dtyped [{dtype}] array " "with a scalar of type [{typ}]".format( dtype=x.dtype, typ=type(y).__name__ ) ) return result fill_int = lambda x: x def fill_bool(x, left=None): # if `left` is specifically not-boolean, we do not cast to bool if x.dtype.kind in ["c", "f", "O"]: # dtypes that can hold NA mask = isna(x) if mask.any(): x = x.astype(object) x[mask] = False if left is None or is_bool_dtype(left.dtype): x = x.astype(bool) return x def wrapper(self, other): is_self_int_dtype = is_integer_dtype(self.dtype) self, other = _align_method_SERIES(self, other, align_asobject=True) res_name = get_op_result_name(self, other) # TODO: shouldn't we be applying finalize whenever # not isinstance(other, ABCSeries)? finalizer = ( lambda x: x.__finalize__(self) if not isinstance(other, (ABCSeries, ABCIndexClass)) else x ) if isinstance(other, ABCDataFrame): # Defer to DataFrame implementation; fail early return NotImplemented other = lib.item_from_zerodim(other) if is_list_like(other) and not hasattr(other, "dtype"): # e.g. list, tuple other = construct_1d_object_array_from_listlike(other) lvalues = extract_array(self, extract_numpy=True) rvalues = extract_array(other, extract_numpy=True) if should_extension_dispatch(self, rvalues): res_values = dispatch_to_extension_op(op, lvalues, rvalues) else: if isinstance(rvalues, (ABCSeries, ABCIndexClass, np.ndarray)): is_other_int_dtype = is_integer_dtype(rvalues.dtype) rvalues = rvalues if is_other_int_dtype else fill_bool(rvalues, lvalues) else: # i.e. scalar is_other_int_dtype = lib.is_integer(rvalues) # For int vs int `^`, `|`, `&` are bitwise operators and return # integer dtypes. Otherwise these are boolean ops filler = fill_int if is_self_int_dtype and is_other_int_dtype else fill_bool res_values = na_op(lvalues, rvalues) res_values = filler(res_values) result = self._constructor(res_values, index=self.index, name=res_name) return finalizer(result) wrapper.__name__ = op_name return wrapper def _flex_method_SERIES(cls, op, special): name = _get_op_name(op, special) doc = _make_flex_doc(name, "series") @Appender(doc) def flex_wrapper(self, other, level=None, fill_value=None, axis=0): # validate axis if axis is not None: self._get_axis_number(axis) if isinstance(other, ABCSeries): return self._binop(other, op, level=level, fill_value=fill_value) elif isinstance(other, (np.ndarray, list, tuple)): if len(other) != len(self): raise ValueError("Lengths must be equal") other = self._constructor(other, self.index) return self._binop(other, op, level=level, fill_value=fill_value) else: if fill_value is not None: self = self.fillna(fill_value) return self._constructor(op(self, other), self.index).__finalize__(self) flex_wrapper.__name__ = name return flex_wrapper # ----------------------------------------------------------------------------- # DataFrame def _combine_series_frame(self, other, func, fill_value=None, axis=None, level=None): """ Apply binary operator `func` to self, other using alignment and fill conventions determined by the fill_value, axis, and level kwargs. Parameters ---------- self : DataFrame other : Series func : binary operator fill_value : object, default None axis : {0, 1, 'columns', 'index', None}, default None level : int or None, default None Returns ------- result : DataFrame """ if fill_value is not None: raise NotImplementedError( "fill_value {fill} not supported.".format(fill=fill_value) ) if axis is not None: axis = self._get_axis_number(axis) if axis == 0: return self._combine_match_index(other, func, level=level) else: return self._combine_match_columns(other, func, level=level) else: if not len(other): return self * np.nan if not len(self): # Ambiguous case, use _series so works with DataFrame return self._constructor( data=self._series, index=self.index, columns=self.columns ) # default axis is columns return self._combine_match_columns(other, func, level=level) def _align_method_FRAME(left, right, axis): """ convert rhs to meet lhs dims if input is list, tuple or np.ndarray """ def to_series(right): msg = "Unable to coerce to Series, length must be {req_len}: given {given_len}" if axis is not None and left._get_axis_name(axis) == "index": if len(left.index) != len(right): raise ValueError( msg.format(req_len=len(left.index), given_len=len(right)) ) right = left._constructor_sliced(right, index=left.index) else: if len(left.columns) != len(right): raise ValueError( msg.format(req_len=len(left.columns), given_len=len(right)) ) right = left._constructor_sliced(right, index=left.columns) return right if isinstance(right, np.ndarray): if right.ndim == 1: right = to_series(right) elif right.ndim == 2: if right.shape == left.shape: right = left._constructor(right, index=left.index, columns=left.columns) elif right.shape[0] == left.shape[0] and right.shape[1] == 1: # Broadcast across columns right = np.broadcast_to(right, left.shape) right = left._constructor(right, index=left.index, columns=left.columns) elif right.shape[1] == left.shape[1] and right.shape[0] == 1: # Broadcast along rows right = to_series(right[0, :]) else: raise ValueError( "Unable to coerce to DataFrame, shape " "must be {req_shape}: given {given_shape}".format( req_shape=left.shape, given_shape=right.shape ) ) elif right.ndim > 2: raise ValueError( "Unable to coerce to Series/DataFrame, dim " "must be <= 2: {dim}".format(dim=right.shape) ) elif is_list_like(right) and not isinstance(right, (ABCSeries, ABCDataFrame)): # GH17901 right = to_series(right) return right def _arith_method_FRAME(cls, op, special): str_rep = _get_opstr(op) op_name = _get_op_name(op, special) eval_kwargs = _gen_eval_kwargs(op_name) default_axis = _get_frame_op_default_axis(op_name) na_op = define_na_arithmetic_op(op, str_rep, eval_kwargs) if op_name in _op_descriptions: # i.e. include "add" but not "__add__" doc = _make_flex_doc(op_name, "dataframe") else: doc = _arith_doc_FRAME % op_name @Appender(doc) def f(self, other, axis=default_axis, level=None, fill_value=None): other = _align_method_FRAME(self, other, axis) if isinstance(other, ABCDataFrame): # Another DataFrame pass_op = op if should_series_dispatch(self, other, op) else na_op return self._combine_frame(other, pass_op, fill_value, level) elif isinstance(other, ABCSeries): # For these values of `axis`, we end up dispatching to Series op, # so do not want the masked op. pass_op = op if axis in [0, "columns", None] else na_op return _combine_series_frame( self, other, pass_op, fill_value=fill_value, axis=axis, level=level ) else: # in this case we always have `np.ndim(other) == 0` if fill_value is not None: self = self.fillna(fill_value) return self._combine_const(other, op) f.__name__ = op_name return f def _flex_comp_method_FRAME(cls, op, special): str_rep = _get_opstr(op) op_name = _get_op_name(op, special) default_axis = _get_frame_op_default_axis(op_name) def na_op(x, y): try: with np.errstate(invalid="ignore"): result = op(x, y) except TypeError: result = mask_cmp_op(x, y, op) return result doc = _flex_comp_doc_FRAME.format( op_name=op_name, desc=_op_descriptions[op_name]["desc"] ) @Appender(doc) def f(self, other, axis=default_axis, level=None): other = _align_method_FRAME(self, other, axis) if isinstance(other, ABCDataFrame): # Another DataFrame if not self._indexed_same(other): self, other = self.align(other, "outer", level=level, copy=False) new_data = dispatch_to_series(self, other, na_op, str_rep) return self._construct_result(other, new_data, na_op) elif isinstance(other, ABCSeries): return _combine_series_frame( self, other, na_op, fill_value=None, axis=axis, level=level ) else: # in this case we always have `np.ndim(other) == 0` return self._combine_const(other, na_op) f.__name__ = op_name return f def _comp_method_FRAME(cls, func, special): str_rep = _get_opstr(func) op_name = _get_op_name(func, special) @Appender("Wrapper for comparison method {name}".format(name=op_name)) def f(self, other): other = _align_method_FRAME(self, other, axis=None) if isinstance(other, ABCDataFrame): # Another DataFrame if not self._indexed_same(other): raise ValueError( "Can only compare identically-labeled DataFrame objects" ) new_data = dispatch_to_series(self, other, func, str_rep) return self._construct_result(other, new_data, func) elif isinstance(other, ABCSeries): return _combine_series_frame( self, other, func, fill_value=None, axis=None, level=None ) else: # straight boolean comparisons we want to allow all columns # (regardless of dtype to pass thru) See #4537 for discussion. res = self._combine_const(other, func) return res f.__name__ = op_name return f # ----------------------------------------------------------------------------- # Sparse def maybe_dispatch_ufunc_to_dunder_op( self: ArrayLike, ufunc: Callable, method: str, *inputs: ArrayLike, **kwargs: Any ): """ Dispatch a ufunc to the equivalent dunder method. Parameters ---------- self : ArrayLike The array whose dunder method we dispatch to ufunc : Callable A NumPy ufunc method : {'reduce', 'accumulate', 'reduceat', 'outer', 'at', '__call__'} inputs : ArrayLike The input arrays. kwargs : Any The additional keyword arguments, e.g. ``out``. Returns ------- result : Any The result of applying the ufunc """ # special has the ufuncs we dispatch to the dunder op on special = { "add", "sub", "mul", "pow", "mod", "floordiv", "truediv", "divmod", "eq", "ne", "lt", "gt", "le", "ge", "remainder", "matmul", } aliases = { "subtract": "sub", "multiply": "mul", "floor_divide": "floordiv", "true_divide": "truediv", "power": "pow", "remainder": "mod", "divide": "div", "equal": "eq", "not_equal": "ne", "less": "lt", "less_equal": "le", "greater": "gt", "greater_equal": "ge", } # For op(., Array) -> Array.__r{op}__ flipped = { "lt": "__gt__", "le": "__ge__", "gt": "__lt__", "ge": "__le__", "eq": "__eq__", "ne": "__ne__", } op_name = ufunc.__name__ op_name = aliases.get(op_name, op_name) def not_implemented(*args, **kwargs): return NotImplemented if method == "__call__" and op_name in special and kwargs.get("out") is None: if isinstance(inputs[0], type(self)): name = "__{}__".format(op_name) return getattr(self, name, not_implemented)(inputs[1]) else: name = flipped.get(op_name, "__r{}__".format(op_name)) return getattr(self, name, not_implemented)(inputs[0]) else: return NotImplemented
BugsInPy/BugsInPy/temp/projects/pandas/bug-145-fixed/pandas/pandas/core/ops/__init__.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-145-buggy/pandas/pandas/core/ops/__init__.py
pandas-bug-42
import bz2 from collections import Counter from contextlib import contextmanager from datetime import datetime from functools import wraps import gzip import os from shutil import rmtree import string import tempfile from typing import Any, Callable, List, Optional, Type, Union, cast import warnings import zipfile import numpy as np from numpy.random import rand, randn from pandas._config.localization import ( # noqa:F401 can_set_locale, get_locales, set_locale, ) import pandas._libs.testing as _testing from pandas._typing import FilePathOrBuffer, FrameOrSeries from pandas.compat import _get_lzma_file, _import_lzma from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_interval_dtype, is_number, is_numeric_dtype, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, bdate_range, ) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArray, period_array, ) from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing lzma = _import_lzma() _N = 30 _K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("always", _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("ignore", _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option("^display.", silent=True) def round_trip_pickle( obj: Any, path: Optional[FilePathOrBuffer] = None ) -> FrameOrSeries: """ Pickle an object and then read it again. Parameters ---------- obj : any object The object to pickle and then re-read. path : str, path object or file-like object, default None The path where the pickled object is written and then read. Returns ------- pandas object The original object that was pickled and then re-read. """ _path = path if _path is None: _path = f"__{rands(10)}__.pickle" with ensure_clean(_path) as temp_path: pd.to_pickle(obj, temp_path) return pd.read_pickle(temp_path) def round_trip_pathlib(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip("pathlib").Path if path is None: path = "___pathlib___" with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a py.path LocalPath and read it back. Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip("py.path").local if path is None: path = "___localpath___" with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object. Parameters ---------- path : str The path where the file is read from. compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- file object """ if compression is None: f = open(path, "rb") elif compression == "gzip": f = gzip.open(path, "rb") elif compression == "bz2": f = bz2.BZ2File(path, "rb") elif compression == "xz": f = _get_lzma_file(lzma)(path, "rb") elif compression == "zip": zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError(f"ZIP file {path} error. Only one file per ZIP.") else: raise ValueError(f"Unrecognized compression type: {compression}") try: yield f finally: f.close() if compression == "zip": zip_file.close() def write_to_compressed(compression, path, data, dest="test"): """ Write data to a compressed file. Parameters ---------- compression : {'gzip', 'bz2', 'zip', 'xz'} The compression type to use. path : str The file path to write the data. data : str The data to write. dest : str, default "test" The destination file (for ZIP only) Raises ------ ValueError : An invalid compression value was passed in. """ if compression == "zip": import zipfile compress_method = zipfile.ZipFile elif compression == "gzip": import gzip compress_method = gzip.GzipFile elif compression == "bz2": import bz2 compress_method = bz2.BZ2File elif compression == "xz": compress_method = _get_lzma_file(lzma) else: raise ValueError(f"Unrecognized compression type: {compression}") if compression == "zip": mode = "w" args = (dest, data) method = "writestr" else: mode = "wb" args = (data,) method = "write" with compress_method(path, mode=mode) as f: getattr(f, method)(*args) def assert_almost_equal( left, right, check_dtype: Union[bool, str] = "equiv", check_less_precise: Union[bool, int] = False, **kwargs, ): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool or {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): assert_index_equal( left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs, ) elif isinstance(left, pd.Series): assert_series_equal( left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) elif isinstance(left, pd.DataFrame): assert_frame_equal( left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if isinstance(left, np.ndarray) or isinstance(right, np.ndarray): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(left)} instead" ) if not isinstance(right, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(right)} instead" ) def assert_dict_equal(left, right, compare_keys: bool = True): _check_isinstance(left, right, dict) _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p: float = 0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array( list("".join(map(chr, range(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1), ) def rands_array(nchars, size, dtype="O"): """ Generate an array of byte strings. """ retval = ( np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)) .reshape(size) ) return retval.astype(dtype) def randu_array(nchars, size, dtype="O"): """ Generate an array of unicode strings. """ retval = ( np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)) .reshape(size) ) return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return "".join(np.random.choice(RANDS_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False, **kwargs): """ Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. **kwargs Additional keywords passed in for creating a temporary file. :meth:`tempFile.TemporaryFile` is used when `return_filelike` is ``True``. :meth:`tempfile.mkstemp` is used when `return_filelike` is ``False``. Note that the `filename` parameter will be passed in as the `suffix` argument to either function. See Also -------- tempfile.TemporaryFile tempfile.mkstemp """ filename = filename or "" fd = None kwargs["suffix"] = filename if return_filelike: f = tempfile.TemporaryFile(**kwargs) try: yield f finally: f.close() else: # Don't generate tempfile if using a path with directory specified. if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(**kwargs) except UnicodeEncodeError: import pytest pytest.skip("no unicode file names on this system") try: yield filename finally: try: os.close(fd) except OSError: print(f"Couldn't close file descriptor: {fd} (file: {filename})") try: if os.path.exists(filename): os.remove(filename) except OSError as e: print(f"Exception on removing file: {e}") @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix="") try: yield directory_name finally: try: rmtree(directory_name) except OSError: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2) -> bool: """ Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal( left: Index, right: Index, exact: Union[bool, str] = "equiv", check_names: bool = True, check_less_precise: Union[bool, int] = False, check_exact: bool = True, check_categorical: bool = True, obj: str = "Index", ) -> None: """ Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True def _check_types(l, r, obj="Index"): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal("dtype", l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ("string"): assert r.inferred_type in ("string") else: assert_attr_equal("inferred_type", l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] level_codes = index.codes[level] filled = take_1d(unique._values, level_codes, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = f"{obj} levels are different" msg2 = f"{left.nlevels}, {left}" msg3 = f"{right.nlevels}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = f"{obj} length are different" msg2 = f"{len(left)}, {left}" msg3 = f"{len(right)}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: left = cast(MultiIndex, left) right = cast(MultiIndex, right) for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = f"MultiIndex level [{level}]" assert_index_equal( llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj, ) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values).astype(int)) * 100.0 / len(left) msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal( left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right, ) # metadata comparison if check_names: assert_attr_equal("names", left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal("freq", left, right, obj=obj) if isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex): assert_interval_array_equal(left._values, right._values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left._values, right._values, obj=f"{obj} category") def assert_class_equal(left, right, exact: Union[bool, str] = True, obj="Input"): """ Checks classes are equal. """ __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x return type(x).__name__ if exact == "equiv": if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {"Int64Index", "RangeIndex"}): msg = f"{obj} classes are not equivalent" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = f"{obj} classes are different" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr: str, left, right, obj: str = "Attributes"): """ Check attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif ( is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr) ): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = f'Attribute "{attr}" are different' raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ( "one of 'objs' is not a matplotlib Axes instance, " f"type encountered {repr(type(el).__name__)}" ) assert isinstance(el, (plt.Axes, dict)), msg else: msg = ( "objs is neither an ndarray of Artist instances nor a single " "ArtistArtist instance, tuple, or dict, 'objs' is a " f"{repr(type(objs).__name__)}" ) assert isinstance(objs, (plt.Artist, tuple, dict)), msg def assert_is_sorted(seq): """Assert that the sequence is sorted.""" if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal( left, right, check_dtype=True, check_category_order=True, obj="Categorical" ): """ Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj=f"{obj}.categories") assert_numpy_array_equal( left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes", ) else: try: lc = left.categories.sort_values() rc = right.categories.sort_values() except TypeError: # e.g. '<' not supported between instances of 'int' and 'str' lc, rc = left.categories, right.categories assert_index_equal( lc, rc, obj=f"{obj}.categories", ) assert_index_equal( left.categories.take(left.codes), right.categories.take(right.codes), obj=f"{obj}.values", ) assert_attr_equal("ordered", left, right, obj=obj) def assert_interval_array_equal(left, right, exact="equiv", obj="IntervalArray"): """ Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj=f"{obj}.left") assert_index_equal(left.right, right.right, exact=exact, obj=f"{obj}.left") assert_attr_equal("closed", left, right, obj=obj) def assert_period_array_equal(left, right, obj="PeriodArray"): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) def assert_datetime_array_equal(left, right, obj="DatetimeArray"): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) assert_attr_equal("tz", left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj="TimedeltaArray"): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) msg = f"""{obj} are different {message} [left]: {left} [right]: {right}""" if diff is not None: msg += f"\n[diff]: {diff}" raise AssertionError(msg) def assert_numpy_array_equal( left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj="numpy array", ): """ Check that 'np.ndarray' is equivalent. Parameters ---------- left, right : numpy.ndarray or iterable The two arrays to be compared. strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype : bool, default True Check dtype if both a and b are np.ndarray. err_msg : str, default None If provided, used as assertion message. check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area. obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, "base", None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == "same": if left_base is not right_base: raise AssertionError(f"{repr(left_base)} is not {repr(right_base)}") elif check_same == "copy": if left_base is right_base: raise AssertionError(f"{repr(left_base)} is {repr(right_base)}") def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shapes are different", left.shape, right.shape, ) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal("dtype", left, right, obj=obj) def assert_extension_array_equal( left, right, check_dtype=True, check_less_precise=False, check_exact=False ): """ Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare. check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), "left is not an ExtensionArray" assert isinstance(right, ExtensionArray), "right is not an ExtensionArray" if check_dtype: assert_attr_equal("dtype", left, right, obj="ExtensionArray") if hasattr(left, "asi8") and type(right) == type(left): # Avoid slow object-dtype comparisons # np.asarray for case where we have a np.MaskedArray assert_numpy_array_equal(np.asarray(left.asi8), np.asarray(right.asi8)) return left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj="ExtensionArray NA mask") left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj="ExtensionArray") else: _testing.assert_almost_equal( left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj="ExtensionArray", ) # This could be refactored to use the NDFrame.equals method def assert_series_equal( left, right, check_dtype=True, check_index_type="equiv", check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, obj="Series", ): """ Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_category_order : bool, default True Whether to compare category order of internal Categoricals. .. versionadded:: 1.0.2 obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = f"{len(left)}, {left.index}" msg2 = f"{len(right)}, {right.index}" raise_assert_detail(obj, "Series length are different", msg1, msg2) # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.index", ) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if ( is_categorical_dtype(left.dtype) and is_categorical_dtype(right.dtype) and not check_categorical ): pass else: assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}") if check_exact: if not is_numeric_dtype(left.dtype): raise AssertionError("check_exact may only be used with numeric Series") assert_numpy_array_equal( left._values, right._values, check_dtype=check_dtype, obj=str(obj) ) elif check_datetimelike_compat and ( needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype) ): # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left._values).equals(Index(right._values)): msg = ( f"[datetimelike_compat=True] {left._values} " f"is not equal to {right._values}." ) raise AssertionError(msg) elif is_interval_dtype(left.dtype) or is_interval_dtype(right.dtype): assert_interval_array_equal(left.array, right.array) elif is_categorical_dtype(left.dtype) or is_categorical_dtype(right.dtype): _testing.assert_almost_equal( left._values, right._values, check_less_precise=check_less_precise, check_dtype=check_dtype, obj=str(obj), ) elif is_extension_array_dtype(left.dtype) or is_extension_array_dtype(right.dtype): assert_extension_array_equal(left._values, right._values) elif needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype): # DatetimeArray or TimedeltaArray assert_extension_array_equal(left._values, right._values) else: _testing.assert_almost_equal( left._values, right._values, check_less_precise=check_less_precise, check_dtype=check_dtype, obj=str(obj), ) # metadata comparison if check_names: assert_attr_equal("name", left, right, obj=obj) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal( left._values, right._values, obj=f"{obj} category", check_category_order=check_category_order, ) # This could be refactored to use the NDFrame.equals method def assert_frame_equal( left, right, check_dtype=True, check_index_type="equiv", check_column_type="equiv", check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, obj="DataFrame", ): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool or {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas._testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): ... AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}", ) if check_like: left, right = left.reindex_like(right), right # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.index", ) # column comparison assert_index_equal( left.columns, right.columns, exact=check_column_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.columns", ) # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal( lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj=obj ) # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_less_precise=check_less_precise, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, obj=f'{obj}.iloc[:, {i}] (column name="{col}")', ) def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left, right : Index, Series, DataFrame, ExtensionArray, or np.ndarray The two items to be compared. **kwargs All keyword arguments are passed through to the underlying assert method. """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) elif isinstance(left, str): assert kwargs == {} assert left == right else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place if is_period_dtype(obj): return period_array(obj) elif is_datetime64_dtype(obj) or is_datetime64tz_dtype(obj): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(obj): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal(left, right): """ Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray """ _check_isinstance(left, right, pd.arrays.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) left_index = left.sp_index right_index = right.sp_index if not left_index.equals(right_index): raise_assert_detail( "SparseArray.index", "index are not equal", left_index, right_index ) else: # Just ensure a pass assert_attr_equal("fill_value", left, right) assert_attr_equal("dtype", left, right) assert_numpy_array_equal(left.to_dense(), right.to_dense()) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, f"Did not contain item: {repr(k)}" def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ( f"Expected object {repr(type(elem1))} and object {repr(type(elem2))} to be " "different objects, but they were the same object." ) assert elem1 is not elem2, msg def getCols(k): return string.ascii_uppercase[:k] # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex( Categorical.from_codes(np.arange(k) % n, categories=x), name=name, **kwargs ) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(list(range(k)), name=name) def makeUIntIndex(k=10, name=None): return Index([2 ** 63 + i for i in range(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq="B", name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq="D", name=None, **kwargs): return pd.timedelta_range(start="1 day", periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) dr = pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs) return dr def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product((("foo", "bar"), (1, 2)), names=names, **kwargs) _names = [ "Alice", "Bob", "Charlie", "Dan", "Edith", "Frank", "George", "Hannah", "Ingrid", "Jerry", "Kevin", "Laura", "Michael", "Norbert", "Oliver", "Patricia", "Quinn", "Ray", "Sarah", "Tim", "Ursula", "Victor", "Wendy", "Xavier", "Yvonne", "Zelda", ] def _make_timeseries(start="2000-01-01", end="2000-12-31", freq="1D", seed=None): """ Make a DataFrame with a DatetimeIndex Parameters ---------- start : str or Timestamp, default "2000-01-01" The start of the index. Passed to date_range with `freq`. end : str or Timestamp, default "2000-12-31" The end of the index. Passed to date_range with `freq`. freq : str or Freq The frequency to use for the DatetimeIndex seed : int, optional The random state seed. * name : object dtype with string names * id : int dtype with * x, y : float dtype Examples -------- >>> _make_timeseries() id name x y timestamp 2000-01-01 982 Frank 0.031261 0.986727 2000-01-02 1025 Edith -0.086358 -0.032920 2000-01-03 982 Edith 0.473177 0.298654 2000-01-04 1009 Sarah 0.534344 -0.750377 2000-01-05 963 Zelda -0.271573 0.054424 ... ... ... ... ... 2000-12-27 980 Ingrid -0.132333 -0.422195 2000-12-28 972 Frank -0.376007 -0.298687 2000-12-29 1009 Ursula -0.865047 -0.503133 2000-12-30 1000 Hannah -0.063757 -0.507336 2000-12-31 972 Tim -0.869120 0.531685 """ index = pd.date_range(start=start, end=end, freq=freq, name="timestamp") n = len(index) state = np.random.RandomState(seed) columns = { "name": state.choice(_names, size=n), "id": state.poisson(1000, size=n), "x": state.rand(n) * 2 - 1, "y": state.rand(n) * 2 - 1, } df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def all_index_generator(k=10): """ Generator which can be iterated over to get instances of all the various index classes. Parameters ---------- k: length of each of the index instances """ all_make_index_funcs = [ makeIntIndex, makeFloatIndex, makeStringIndex, makeUnicodeIndex, makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeBoolIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, ] for make_index_func in all_make_index_funcs: yield make_index_func(k=k) def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex, ] for make_index_func in make_index_funcs: yield make_index_func def all_timeseries_index_generator(k=10): """ Generator which can be iterated over to get instances of all the classes which represent time-series. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: yield make_index_func(k=k) # make series def makeFloatSeries(name=None): index = makeStringIndex(_N) return Series(randn(_N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(_N) return Series(randn(_N), index=index, name=name) def makeObjectSeries(name=None): data = makeStringIndex(_N) data = Index(data, dtype=object) index = makeStringIndex(_N) return Series(data, index=index, name=name) def getSeriesData(): index = makeStringIndex(_N) return {c: Series(randn(_N), index=index) for c in getCols(_K)} def makeTimeSeries(nper=None, freq="B", name=None): if nper is None: nper = _N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = _N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq="B"): return {c: makeTimeSeries(nper, freq) for c in getCols(_K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(_K)} # make frame def makeTimeDataFrame(nper=None, freq="B"): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(["a", "b", "c", "d", "e"]) data = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": bdate_range("1/1/2009", periods=5), } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makeCustomIndex( nentries, nlevels, prefix="#", names=False, ndupe_l=None, idx_type=None ): """ Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert is_sequence(ndupe_l) and len(ndupe_l) <= nlevels assert names is None or names is False or names is True or len(names) is nlevels assert idx_type is None or ( idx_type in ("i", "f", "s", "u", "dt", "p", "td") and nlevels == 1 ) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singleton case uniform if isinstance(names, str) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = dict( i=makeIntIndex, f=makeFloatIndex, s=makeStringIndex, u=makeUnicodeIndex, dt=makeDateIndex, td=makeTimedeltaIndex, p=makePeriodIndex, ).get(idx_type) if idx_func: idx = idx_func(nentries) # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError( f"{repr(idx_type)} is not a legal value for `idx_type`, " "use 'i'/'f'/'s'/'u'/'dt'/'p'/'td'." ) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all(x > 0 for x in ndupe_l) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_") return [int(num) for num in numeric_tuple] # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 cnt = Counter() for j in range(div_factor): label = f"{prefix}_l{i}_g{j}" cnt[label] = ndupe_l[i] # cute Counter trick result = sorted(cnt.elements(), key=keyfunc)[:nentries] tuples.append(result) tuples = list(zip(*tuples)) # convert tuples to index if nentries == 1: # we have a single level of tuples, i.e. a regular Index index = Index(tuples[0], name=names[0]) elif nlevels == 1: name = None if names is None else names[0] index = Index((x[0] for x in tuples), name=name) else: index = MultiIndex.from_tuples(tuples, names=names) return index def makeCustomDataframe( nrows, ncols, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None, ): """ Create a DataFrame using supplied parameters. Parameters ---------- nrows, ncols - number of data rows/cols c_idx_names, idx_names - False/True/list of strings, yields No names , default names or uses the provided names for the levels of the corresponding index. You can provide a single string when c_idx_nlevels ==1. c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex data_gen_f - a function f(row,col) which return the data value at that position, the default generator used yields values of the form "RxCy" based on position. c_ndupe_l, r_ndupe_l - list of integers, determines the number of duplicates for each label at a given level of the corresponding index. The default `None` value produces a multiplicity of 1 across all levels, i.e. a unique index. Will accept a partial list of length N < idx_nlevels, for just the first N levels. If ndupe doesn't divide nrows/ncol, the last label might have lower multiplicity. dtype - passed to the DataFrame constructor as is, in case you wish to have more control in conjunction with a custom `data_gen_f` r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a timedelta index. if unspecified, string labels will be generated. Examples -------- # 5 row, 3 columns, default names on both, single index on both axis >> makeCustomDataframe(5,3) # make the data a random int between 1 and 100 >> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100)) # 2-level multiindex on rows with each label duplicated # twice on first level, default names on both axis, single # index on both axis >> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2]) # DatetimeIndex on row, index with unicode labels on columns # no names on either axis >> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False, r_idx_type="dt",c_idx_type="u") # 4-level multindex on rows with names provided, 2-level multindex # on columns with default labels and default names. >> a=makeCustomDataframe(5,3,r_idx_nlevels=4, r_idx_names=["FEE","FI","FO","FAM"], c_idx_nlevels=2) >> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) """ assert c_idx_nlevels > 0 assert r_idx_nlevels > 0 assert r_idx_type is None or ( r_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and r_idx_nlevels == 1 ) assert c_idx_type is None or ( c_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and c_idx_nlevels == 1 ) columns = makeCustomIndex( ncols, nlevels=c_idx_nlevels, prefix="C", names=c_idx_names, ndupe_l=c_ndupe_l, idx_type=c_idx_type, ) index = makeCustomIndex( nrows, nlevels=r_idx_nlevels, prefix="R", names=r_idx_names, ndupe_l=r_ndupe_l, idx_type=r_idx_type, ) # by default, generate data based on location if data_gen_f is None: data_gen_f = lambda r, c: f"R{r}C{c}" data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)] return DataFrame(data, index, columns, dtype=dtype) def _create_missing_idx(nrows, ncols, density, random_state=None): if random_state is None: random_state = np.random else: random_state = np.random.RandomState(random_state) # below is cribbed from scipy.sparse size = int(np.round((1 - density) * nrows * ncols)) # generate a few more to ensure unique values min_rows = 5 fac = 1.02 extra_size = min(size + min_rows, fac * size) def _gen_unique_rand(rng, _extra_size): ind = rng.rand(int(_extra_size)) return np.unique(np.floor(ind * nrows * ncols))[:size] ind = _gen_unique_rand(random_state, extra_size) while ind.size < size: extra_size *= 1.05 ind = _gen_unique_rand(random_state, extra_size) j = np.floor(ind * 1.0 / nrows).astype(int) i = (ind - j * nrows).astype(int) return i.tolist(), j.tolist() def makeMissingDataframe(density=0.9, random_state=None): df = makeDataFrame() i, j = _create_missing_idx(*df.shape, density=density, random_state=random_state) df.values[i, j] = np.nan return df def optional_args(decorator): """ allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, *args, **kwargs) """ @wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and callable(args[0]) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # skip tests on exceptions with this message _network_error_messages = ( # 'urlopen error timed out', # 'timeout: timed out', # 'socket.timeout: timed out', "timed out", "Server Hangup", "HTTP Error 503: Service Unavailable", "502: Proxy Error", "HTTP Error 502: internal error", "HTTP Error 502", "HTTP Error 503", "HTTP Error 403", "HTTP Error 400", "Temporary failure in name resolution", "Name or service not known", "Connection refused", "certificate verify", ) # or this e.errno/e.reason.errno _network_errno_vals = ( 101, # Network is unreachable 111, # Connection refused 110, # Connection timed out 104, # Connection reset Error 54, # Connection reset by peer 60, # urllib.error.URLError: [Errno 60] Connection timed out ) # Both of the above shouldn't mask real issues such as 404's # or refused connections (changed DNS). # But some tests (test_data yahoo) contact incredibly flakey # servers. # and conditionally raise on exception types in _get_default_network_errors def _get_default_network_errors(): # Lazy import for http.client because it imports many things from the stdlib import http.client return (IOError, http.client.HTTPException, TimeoutError) def can_connect(url, error_classes=None): """ Try to connect to the given url. True if succeeds, False if IOError raised Parameters ---------- url : basestring The URL to try to connect to Returns ------- connectable : bool Return True if no IOError (unable to connect) or URLError (bad url) was raised """ if error_classes is None: error_classes = _get_default_network_errors() try: with urlopen(url): pass except error_classes: return False else: return True @optional_args def network( t, url="http://www.google.com", raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT, check_before_test=False, error_classes=None, skip_errnos=_network_errno_vals, _skip_on_messages=_network_error_messages, ): """ Label a test as requiring network connection and, if an error is encountered, only raise if it does not find a network connection. In comparison to ``network``, this assumes an added contract to your test: you must assert that, under normal conditions, your test will ONLY fail if it does not have network connectivity. You can call this in 3 ways: as a standard decorator, with keyword arguments, or with a positional argument that is the url to check. Parameters ---------- t : callable The test requiring network connectivity. url : path The url to test via ``pandas.io.common.urlopen`` to check for connectivity. Defaults to 'http://www.google.com'. raise_on_error : bool If True, never catches errors. check_before_test : bool If True, checks connectivity before running the test case. error_classes : tuple or Exception error classes to ignore. If not in ``error_classes``, raises the error. defaults to IOError. Be careful about changing the error classes here. skip_errnos : iterable of int Any exception that has .errno or .reason.erno set to one of these values will be skipped with an appropriate message. _skip_on_messages: iterable of string any exception e for which one of the strings is a substring of str(e) will be skipped with an appropriate message. Intended to suppress errors where an errno isn't available. Notes ----- * ``raise_on_error`` supercedes ``check_before_test`` Returns ------- t : callable The decorated test ``t``, with checks for connectivity errors. Example ------- Tests decorated with @network will fail if it's possible to make a network connection to another URL (defaults to google.com):: >>> from pandas._testing import network >>> from pandas.io.common import urlopen >>> @network ... def test_network(): ... with urlopen("rabbit://bonanza.com"): ... pass Traceback ... URLError: <urlopen error unknown url type: rabit> You can specify alternative URLs:: >>> @network("http://www.yahoo.com") ... def test_something_with_yahoo(): ... raise IOError("Failure Message") >>> test_something_with_yahoo() Traceback (most recent call last): ... IOError: Failure Message If you set check_before_test, it will check the url first and not run the test on failure:: >>> @network("failing://url.blaher", check_before_test=True) ... def test_something(): ... print("I ran!") ... raise ValueError("Failure") >>> test_something() Traceback (most recent call last): ... Errors not related to networking will always be raised. """ from pytest import skip if error_classes is None: error_classes = _get_default_network_errors() t.network = True @wraps(t) def wrapper(*args, **kwargs): if check_before_test and not raise_on_error: if not can_connect(url, error_classes): skip() try: return t(*args, **kwargs) except Exception as err: errno = getattr(err, "errno", None) if not errno and hasattr(errno, "reason"): errno = getattr(err.reason, "errno", None) if errno in skip_errnos: skip(f"Skipping test due to known errno and error {err}") e_str = str(err) if any(m.lower() in e_str.lower() for m in _skip_on_messages): skip( f"Skipping test because exception message is known and error {err}" ) if not isinstance(err, error_classes): raise if raise_on_error or can_connect(url, error_classes): raise else: skip(f"Skipping test due to lack of connectivity and error {err}") return wrapper with_connectivity_check = network @contextmanager def assert_produces_warning( expected_warning=Warning, filter_level="always", check_stacklevel=True, raise_on_extra_warnings=True, ): """ Context manager for running code expected to either raise a specific warning, or not raise any warnings. Verifies that the code raises the expected warning, and that it does not raise any other unexpected warnings. It is basically a wrapper around ``warnings.catch_warnings``. Parameters ---------- expected_warning : {Warning, False, None}, default Warning The type of Exception raised. ``exception.Warning`` is the base class for all warnings. To check that no warning is returned, specify ``False`` or ``None``. filter_level : str or None, default "always" Specifies whether warnings are ignored, displayed, or turned into errors. Valid values are: * "error" - turns matching warnings into exceptions * "ignore" - discard the warning * "always" - always emit a warning * "default" - print the warning the first time it is generated from each location * "module" - print the warning the first time it is generated from each module * "once" - print the warning the first time it is generated check_stacklevel : bool, default True If True, displays the line that called the function containing the warning to show were the function is called. Otherwise, the line that implements the function is displayed. raise_on_extra_warnings : bool, default True Whether extra warnings not of the type `expected_warning` should cause the test to fail. Examples -------- >>> import warnings >>> with assert_produces_warning(): ... warnings.warn(UserWarning()) ... >>> with assert_produces_warning(False): ... warnings.warn(RuntimeWarning()) ... Traceback (most recent call last): ... AssertionError: Caused unexpected warning(s): ['RuntimeWarning']. >>> with assert_produces_warning(UserWarning): ... warnings.warn(RuntimeWarning()) Traceback (most recent call last): ... AssertionError: Did not see expected warning of class 'UserWarning'. ..warn:: This is *not* thread-safe. """ __tracebackhide__ = True with warnings.catch_warnings(record=True) as w: saw_warning = False warnings.simplefilter(filter_level) yield w extra_warnings = [] for actual_warning in w: if expected_warning and issubclass( actual_warning.category, expected_warning ): saw_warning = True if check_stacklevel and issubclass( actual_warning.category, (FutureWarning, DeprecationWarning) ): from inspect import getframeinfo, stack caller = getframeinfo(stack()[2][0]) msg = ( "Warning not set with correct stacklevel. " f"File where warning is raised: {actual_warning.filename} != " f"{caller.filename}. Warning message: {actual_warning.message}" ) assert actual_warning.filename == caller.filename, msg else: extra_warnings.append( ( actual_warning.category.__name__, actual_warning.message, actual_warning.filename, actual_warning.lineno, ) ) if expected_warning: msg = ( f"Did not see expected warning of class " f"{repr(expected_warning.__name__)}" ) assert saw_warning, msg if raise_on_extra_warnings and extra_warnings: raise AssertionError( f"Caused unexpected warning(s): {repr(extra_warnings)}" ) class RNGContext: """ Context manager to set the numpy random number generator speed. Returns to the original value upon exiting the context manager. Parameters ---------- seed : int Seed for numpy.random.seed Examples -------- with RNGContext(42): np.random.randn() """ def __init__(self, seed): self.seed = seed def __enter__(self): self.start_state = np.random.get_state() np.random.seed(self.seed) def __exit__(self, exc_type, exc_value, traceback): np.random.set_state(self.start_state) @contextmanager def with_csv_dialect(name, **kwargs): """ Context manager to temporarily register a CSV dialect for parsing CSV. Parameters ---------- name : str The name of the dialect. kwargs : mapping The parameters for the dialect. Raises ------ ValueError : the name of the dialect conflicts with a builtin one. See Also -------- csv : Python's CSV library. """ import csv _BUILTIN_DIALECTS = {"excel", "excel-tab", "unix"} if name in _BUILTIN_DIALECTS: raise ValueError("Cannot override builtin dialect.") csv.register_dialect(name, **kwargs) yield csv.unregister_dialect(name) @contextmanager def use_numexpr(use, min_elements=None): from pandas.core.computation import expressions as expr if min_elements is None: min_elements = expr._MIN_ELEMENTS olduse = expr._USE_NUMEXPR oldmin = expr._MIN_ELEMENTS expr.set_use_numexpr(use) expr._MIN_ELEMENTS = min_elements yield expr._MIN_ELEMENTS = oldmin expr.set_use_numexpr(olduse) def test_parallel(num_threads=2, kwargs_list=None): """ Decorator to run the same function multiple times in parallel. Parameters ---------- num_threads : int, optional The number of times the function is run in parallel. kwargs_list : list of dicts, optional The list of kwargs to update original function kwargs on different threads. Notes ----- This decorator does not pass the return value of the decorated function. Original from scikit-image: https://github.com/scikit-image/scikit-image/pull/1519 """ assert num_threads > 0 has_kwargs_list = kwargs_list is not None if has_kwargs_list: assert len(kwargs_list) == num_threads import threading def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner return wrapper class SubclassedSeries(Series): _metadata = ["testattr", "name"] @property def _constructor(self): return SubclassedSeries @property def _constructor_expanddim(self): return SubclassedDataFrame class SubclassedDataFrame(DataFrame): _metadata = ["testattr"] @property def _constructor(self): return SubclassedDataFrame @property def _constructor_sliced(self): return SubclassedSeries class SubclassedCategorical(Categorical): @property def _constructor(self): return SubclassedCategorical @contextmanager def set_timezone(tz: str): """ Context manager for temporarily setting a timezone. Parameters ---------- tz : str A string representing a valid timezone. Examples -------- >>> from datetime import datetime >>> from dateutil.tz import tzlocal >>> tzlocal().tzname(datetime.now()) 'IST' >>> with set_timezone('US/Eastern'): ... tzlocal().tzname(datetime.now()) ... 'EDT' """ import os import time def setTZ(tz): if tz is None: try: del os.environ["TZ"] except KeyError: pass else: os.environ["TZ"] = tz time.tzset() orig_tz = os.environ.get("TZ") setTZ(tz) try: yield finally: setTZ(orig_tz) def _make_skipna_wrapper(alternative, skipna_alternative=None): """ Create a function for calling on an array. Parameters ---------- alternative : function The function to be called on the array with no NaNs. Only used when 'skipna_alternative' is None. skipna_alternative : function The function to be called on the original array Returns ------- function """ if skipna_alternative: def skipna_wrapper(x): return skipna_alternative(x.values) else: def skipna_wrapper(x): nona = x.dropna() if len(nona) == 0: return np.nan return alternative(nona) return skipna_wrapper def convert_rows_list_to_csv_str(rows_list: List[str]): """ Convert list of CSV rows to single CSV-formatted string for current OS. This method is used for creating expected value of to_csv() method. Parameters ---------- rows_list : List[str] Each element represents the row of csv. Returns ------- str Expected output of to_csv() in current OS. """ sep = os.linesep expected = sep.join(rows_list) + sep return expected def external_error_raised( expected_exception: Type[Exception], ) -> Callable[[Type[Exception], None], None]: """ Helper function to mark pytest.raises that have an external error message. Parameters ---------- expected_exception : Exception Expected error to raise. Returns ------- Callable Regular `pytest.raises` function with `match` equal to `None`. """ import pytest return pytest.raises(expected_exception, match=None) import bz2 from collections import Counter from contextlib import contextmanager from datetime import datetime from functools import wraps import gzip import os from shutil import rmtree import string import tempfile from typing import Any, Callable, List, Optional, Type, Union, cast import warnings import zipfile import numpy as np from numpy.random import rand, randn from pandas._config.localization import ( # noqa:F401 can_set_locale, get_locales, set_locale, ) import pandas._libs.testing as _testing from pandas._typing import FilePathOrBuffer, FrameOrSeries from pandas.compat import _get_lzma_file, _import_lzma from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_interval_dtype, is_number, is_numeric_dtype, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, bdate_range, ) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArray, period_array, ) from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing lzma = _import_lzma() _N = 30 _K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("always", _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("ignore", _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option("^display.", silent=True) def round_trip_pickle( obj: Any, path: Optional[FilePathOrBuffer] = None ) -> FrameOrSeries: """ Pickle an object and then read it again. Parameters ---------- obj : any object The object to pickle and then re-read. path : str, path object or file-like object, default None The path where the pickled object is written and then read. Returns ------- pandas object The original object that was pickled and then re-read. """ _path = path if _path is None: _path = f"__{rands(10)}__.pickle" with ensure_clean(_path) as temp_path: pd.to_pickle(obj, temp_path) return pd.read_pickle(temp_path) def round_trip_pathlib(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip("pathlib").Path if path is None: path = "___pathlib___" with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a py.path LocalPath and read it back. Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip("py.path").local if path is None: path = "___localpath___" with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object. Parameters ---------- path : str The path where the file is read from. compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- file object """ if compression is None: f = open(path, "rb") elif compression == "gzip": f = gzip.open(path, "rb") elif compression == "bz2": f = bz2.BZ2File(path, "rb") elif compression == "xz": f = _get_lzma_file(lzma)(path, "rb") elif compression == "zip": zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError(f"ZIP file {path} error. Only one file per ZIP.") else: raise ValueError(f"Unrecognized compression type: {compression}") try: yield f finally: f.close() if compression == "zip": zip_file.close() def write_to_compressed(compression, path, data, dest="test"): """ Write data to a compressed file. Parameters ---------- compression : {'gzip', 'bz2', 'zip', 'xz'} The compression type to use. path : str The file path to write the data. data : str The data to write. dest : str, default "test" The destination file (for ZIP only) Raises ------ ValueError : An invalid compression value was passed in. """ if compression == "zip": import zipfile compress_method = zipfile.ZipFile elif compression == "gzip": import gzip compress_method = gzip.GzipFile elif compression == "bz2": import bz2 compress_method = bz2.BZ2File elif compression == "xz": compress_method = _get_lzma_file(lzma) else: raise ValueError(f"Unrecognized compression type: {compression}") if compression == "zip": mode = "w" args = (dest, data) method = "writestr" else: mode = "wb" args = (data,) method = "write" with compress_method(path, mode=mode) as f: getattr(f, method)(*args) def assert_almost_equal( left, right, check_dtype: Union[bool, str] = "equiv", check_less_precise: Union[bool, int] = False, **kwargs, ): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool or {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): assert_index_equal( left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs, ) elif isinstance(left, pd.Series): assert_series_equal( left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) elif isinstance(left, pd.DataFrame): assert_frame_equal( left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if isinstance(left, np.ndarray) or isinstance(right, np.ndarray): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(left)} instead" ) if not isinstance(right, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(right)} instead" ) def assert_dict_equal(left, right, compare_keys: bool = True): _check_isinstance(left, right, dict) _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p: float = 0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array( list("".join(map(chr, range(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1), ) def rands_array(nchars, size, dtype="O"): """ Generate an array of byte strings. """ retval = ( np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)) .reshape(size) ) return retval.astype(dtype) def randu_array(nchars, size, dtype="O"): """ Generate an array of unicode strings. """ retval = ( np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)) .reshape(size) ) return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return "".join(np.random.choice(RANDS_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False, **kwargs): """ Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. **kwargs Additional keywords passed in for creating a temporary file. :meth:`tempFile.TemporaryFile` is used when `return_filelike` is ``True``. :meth:`tempfile.mkstemp` is used when `return_filelike` is ``False``. Note that the `filename` parameter will be passed in as the `suffix` argument to either function. See Also -------- tempfile.TemporaryFile tempfile.mkstemp """ filename = filename or "" fd = None kwargs["suffix"] = filename if return_filelike: f = tempfile.TemporaryFile(**kwargs) try: yield f finally: f.close() else: # Don't generate tempfile if using a path with directory specified. if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(**kwargs) except UnicodeEncodeError: import pytest pytest.skip("no unicode file names on this system") try: yield filename finally: try: os.close(fd) except OSError: print(f"Couldn't close file descriptor: {fd} (file: {filename})") try: if os.path.exists(filename): os.remove(filename) except OSError as e: print(f"Exception on removing file: {e}") @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix="") try: yield directory_name finally: try: rmtree(directory_name) except OSError: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2) -> bool: """ Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal( left: Index, right: Index, exact: Union[bool, str] = "equiv", check_names: bool = True, check_less_precise: Union[bool, int] = False, check_exact: bool = True, check_categorical: bool = True, obj: str = "Index", ) -> None: """ Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True def _check_types(l, r, obj="Index"): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal("dtype", l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ("string"): assert r.inferred_type in ("string") else: assert_attr_equal("inferred_type", l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] level_codes = index.codes[level] filled = take_1d(unique._values, level_codes, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = f"{obj} levels are different" msg2 = f"{left.nlevels}, {left}" msg3 = f"{right.nlevels}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = f"{obj} length are different" msg2 = f"{len(left)}, {left}" msg3 = f"{len(right)}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: left = cast(MultiIndex, left) right = cast(MultiIndex, right) for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = f"MultiIndex level [{level}]" assert_index_equal( llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj, ) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values).astype(int)) * 100.0 / len(left) msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal( left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right, ) # metadata comparison if check_names: assert_attr_equal("names", left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal("freq", left, right, obj=obj) if isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex): assert_interval_array_equal(left._values, right._values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left._values, right._values, obj=f"{obj} category") def assert_class_equal(left, right, exact: Union[bool, str] = True, obj="Input"): """ Checks classes are equal. """ __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x return type(x).__name__ if exact == "equiv": if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {"Int64Index", "RangeIndex"}): msg = f"{obj} classes are not equivalent" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = f"{obj} classes are different" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr: str, left, right, obj: str = "Attributes"): """ Check attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif ( is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr) ): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = f'Attribute "{attr}" are different' raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ( "one of 'objs' is not a matplotlib Axes instance, " f"type encountered {repr(type(el).__name__)}" ) assert isinstance(el, (plt.Axes, dict)), msg else: msg = ( "objs is neither an ndarray of Artist instances nor a single " "ArtistArtist instance, tuple, or dict, 'objs' is a " f"{repr(type(objs).__name__)}" ) assert isinstance(objs, (plt.Artist, tuple, dict)), msg def assert_is_sorted(seq): """Assert that the sequence is sorted.""" if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal( left, right, check_dtype=True, check_category_order=True, obj="Categorical" ): """ Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj=f"{obj}.categories") assert_numpy_array_equal( left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes", ) else: try: lc = left.categories.sort_values() rc = right.categories.sort_values() except TypeError: # e.g. '<' not supported between instances of 'int' and 'str' lc, rc = left.categories, right.categories assert_index_equal( lc, rc, obj=f"{obj}.categories", ) assert_index_equal( left.categories.take(left.codes), right.categories.take(right.codes), obj=f"{obj}.values", ) assert_attr_equal("ordered", left, right, obj=obj) def assert_interval_array_equal(left, right, exact="equiv", obj="IntervalArray"): """ Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj=f"{obj}.left") assert_index_equal(left.right, right.right, exact=exact, obj=f"{obj}.left") assert_attr_equal("closed", left, right, obj=obj) def assert_period_array_equal(left, right, obj="PeriodArray"): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) def assert_datetime_array_equal(left, right, obj="DatetimeArray"): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) assert_attr_equal("tz", left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj="TimedeltaArray"): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) msg = f"""{obj} are different {message} [left]: {left} [right]: {right}""" if diff is not None: msg += f"\n[diff]: {diff}" raise AssertionError(msg) def assert_numpy_array_equal( left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj="numpy array", ): """ Check that 'np.ndarray' is equivalent. Parameters ---------- left, right : numpy.ndarray or iterable The two arrays to be compared. strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype : bool, default True Check dtype if both a and b are np.ndarray. err_msg : str, default None If provided, used as assertion message. check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area. obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, "base", None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == "same": if left_base is not right_base: raise AssertionError(f"{repr(left_base)} is not {repr(right_base)}") elif check_same == "copy": if left_base is right_base: raise AssertionError(f"{repr(left_base)} is {repr(right_base)}") def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shapes are different", left.shape, right.shape, ) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal("dtype", left, right, obj=obj) def assert_extension_array_equal( left, right, check_dtype=True, check_less_precise=False, check_exact=False ): """ Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare. check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), "left is not an ExtensionArray" assert isinstance(right, ExtensionArray), "right is not an ExtensionArray" if check_dtype: assert_attr_equal("dtype", left, right, obj="ExtensionArray") if hasattr(left, "asi8") and type(right) == type(left): # Avoid slow object-dtype comparisons # np.asarray for case where we have a np.MaskedArray assert_numpy_array_equal(np.asarray(left.asi8), np.asarray(right.asi8)) return left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj="ExtensionArray NA mask") left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj="ExtensionArray") else: _testing.assert_almost_equal( left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj="ExtensionArray", ) # This could be refactored to use the NDFrame.equals method def assert_series_equal( left, right, check_dtype=True, check_index_type="equiv", check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, obj="Series", ): """ Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_category_order : bool, default True Whether to compare category order of internal Categoricals. .. versionadded:: 1.0.2 obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = f"{len(left)}, {left.index}" msg2 = f"{len(right)}, {right.index}" raise_assert_detail(obj, "Series length are different", msg1, msg2) # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.index", ) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if ( is_categorical_dtype(left.dtype) and is_categorical_dtype(right.dtype) and not check_categorical ): pass else: assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}") if check_exact: if not is_numeric_dtype(left.dtype): raise AssertionError("check_exact may only be used with numeric Series") assert_numpy_array_equal( left._values, right._values, check_dtype=check_dtype, obj=str(obj) ) elif check_datetimelike_compat and ( needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype) ): # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left._values).equals(Index(right._values)): msg = ( f"[datetimelike_compat=True] {left._values} " f"is not equal to {right._values}." ) raise AssertionError(msg) elif is_interval_dtype(left.dtype) and is_interval_dtype(right.dtype): assert_interval_array_equal(left.array, right.array) elif is_categorical_dtype(left.dtype) or is_categorical_dtype(right.dtype): _testing.assert_almost_equal( left._values, right._values, check_less_precise=check_less_precise, check_dtype=check_dtype, obj=str(obj), ) elif is_extension_array_dtype(left.dtype) and is_extension_array_dtype(right.dtype): assert_extension_array_equal(left._values, right._values) elif needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype): # DatetimeArray or TimedeltaArray assert_extension_array_equal(left._values, right._values) else: _testing.assert_almost_equal( left._values, right._values, check_less_precise=check_less_precise, check_dtype=check_dtype, obj=str(obj), ) # metadata comparison if check_names: assert_attr_equal("name", left, right, obj=obj) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal( left._values, right._values, obj=f"{obj} category", check_category_order=check_category_order, ) # This could be refactored to use the NDFrame.equals method def assert_frame_equal( left, right, check_dtype=True, check_index_type="equiv", check_column_type="equiv", check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, obj="DataFrame", ): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool or {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas._testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): ... AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}", ) if check_like: left, right = left.reindex_like(right), right # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.index", ) # column comparison assert_index_equal( left.columns, right.columns, exact=check_column_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.columns", ) # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal( lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj=obj ) # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_less_precise=check_less_precise, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, obj=f'{obj}.iloc[:, {i}] (column name="{col}")', ) def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left, right : Index, Series, DataFrame, ExtensionArray, or np.ndarray The two items to be compared. **kwargs All keyword arguments are passed through to the underlying assert method. """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) elif isinstance(left, str): assert kwargs == {} assert left == right else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place if is_period_dtype(obj): return period_array(obj) elif is_datetime64_dtype(obj) or is_datetime64tz_dtype(obj): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(obj): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal(left, right): """ Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray """ _check_isinstance(left, right, pd.arrays.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) left_index = left.sp_index right_index = right.sp_index if not left_index.equals(right_index): raise_assert_detail( "SparseArray.index", "index are not equal", left_index, right_index ) else: # Just ensure a pass assert_attr_equal("fill_value", left, right) assert_attr_equal("dtype", left, right) assert_numpy_array_equal(left.to_dense(), right.to_dense()) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, f"Did not contain item: {repr(k)}" def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ( f"Expected object {repr(type(elem1))} and object {repr(type(elem2))} to be " "different objects, but they were the same object." ) assert elem1 is not elem2, msg def getCols(k): return string.ascii_uppercase[:k] # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex( Categorical.from_codes(np.arange(k) % n, categories=x), name=name, **kwargs ) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(list(range(k)), name=name) def makeUIntIndex(k=10, name=None): return Index([2 ** 63 + i for i in range(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq="B", name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq="D", name=None, **kwargs): return pd.timedelta_range(start="1 day", periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) dr = pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs) return dr def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product((("foo", "bar"), (1, 2)), names=names, **kwargs) _names = [ "Alice", "Bob", "Charlie", "Dan", "Edith", "Frank", "George", "Hannah", "Ingrid", "Jerry", "Kevin", "Laura", "Michael", "Norbert", "Oliver", "Patricia", "Quinn", "Ray", "Sarah", "Tim", "Ursula", "Victor", "Wendy", "Xavier", "Yvonne", "Zelda", ] def _make_timeseries(start="2000-01-01", end="2000-12-31", freq="1D", seed=None): """ Make a DataFrame with a DatetimeIndex Parameters ---------- start : str or Timestamp, default "2000-01-01" The start of the index. Passed to date_range with `freq`. end : str or Timestamp, default "2000-12-31" The end of the index. Passed to date_range with `freq`. freq : str or Freq The frequency to use for the DatetimeIndex seed : int, optional The random state seed. * name : object dtype with string names * id : int dtype with * x, y : float dtype Examples -------- >>> _make_timeseries() id name x y timestamp 2000-01-01 982 Frank 0.031261 0.986727 2000-01-02 1025 Edith -0.086358 -0.032920 2000-01-03 982 Edith 0.473177 0.298654 2000-01-04 1009 Sarah 0.534344 -0.750377 2000-01-05 963 Zelda -0.271573 0.054424 ... ... ... ... ... 2000-12-27 980 Ingrid -0.132333 -0.422195 2000-12-28 972 Frank -0.376007 -0.298687 2000-12-29 1009 Ursula -0.865047 -0.503133 2000-12-30 1000 Hannah -0.063757 -0.507336 2000-12-31 972 Tim -0.869120 0.531685 """ index = pd.date_range(start=start, end=end, freq=freq, name="timestamp") n = len(index) state = np.random.RandomState(seed) columns = { "name": state.choice(_names, size=n), "id": state.poisson(1000, size=n), "x": state.rand(n) * 2 - 1, "y": state.rand(n) * 2 - 1, } df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def all_index_generator(k=10): """ Generator which can be iterated over to get instances of all the various index classes. Parameters ---------- k: length of each of the index instances """ all_make_index_funcs = [ makeIntIndex, makeFloatIndex, makeStringIndex, makeUnicodeIndex, makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeBoolIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, ] for make_index_func in all_make_index_funcs: yield make_index_func(k=k) def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex, ] for make_index_func in make_index_funcs: yield make_index_func def all_timeseries_index_generator(k=10): """ Generator which can be iterated over to get instances of all the classes which represent time-series. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: yield make_index_func(k=k) # make series def makeFloatSeries(name=None): index = makeStringIndex(_N) return Series(randn(_N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(_N) return Series(randn(_N), index=index, name=name) def makeObjectSeries(name=None): data = makeStringIndex(_N) data = Index(data, dtype=object) index = makeStringIndex(_N) return Series(data, index=index, name=name) def getSeriesData(): index = makeStringIndex(_N) return {c: Series(randn(_N), index=index) for c in getCols(_K)} def makeTimeSeries(nper=None, freq="B", name=None): if nper is None: nper = _N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = _N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq="B"): return {c: makeTimeSeries(nper, freq) for c in getCols(_K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(_K)} # make frame def makeTimeDataFrame(nper=None, freq="B"): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(["a", "b", "c", "d", "e"]) data = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": bdate_range("1/1/2009", periods=5), } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makeCustomIndex( nentries, nlevels, prefix="#", names=False, ndupe_l=None, idx_type=None ): """ Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert is_sequence(ndupe_l) and len(ndupe_l) <= nlevels assert names is None or names is False or names is True or len(names) is nlevels assert idx_type is None or ( idx_type in ("i", "f", "s", "u", "dt", "p", "td") and nlevels == 1 ) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singleton case uniform if isinstance(names, str) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = dict( i=makeIntIndex, f=makeFloatIndex, s=makeStringIndex, u=makeUnicodeIndex, dt=makeDateIndex, td=makeTimedeltaIndex, p=makePeriodIndex, ).get(idx_type) if idx_func: idx = idx_func(nentries) # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError( f"{repr(idx_type)} is not a legal value for `idx_type`, " "use 'i'/'f'/'s'/'u'/'dt'/'p'/'td'." ) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all(x > 0 for x in ndupe_l) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_") return [int(num) for num in numeric_tuple] # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 cnt = Counter() for j in range(div_factor): label = f"{prefix}_l{i}_g{j}" cnt[label] = ndupe_l[i] # cute Counter trick result = sorted(cnt.elements(), key=keyfunc)[:nentries] tuples.append(result) tuples = list(zip(*tuples)) # convert tuples to index if nentries == 1: # we have a single level of tuples, i.e. a regular Index index = Index(tuples[0], name=names[0]) elif nlevels == 1: name = None if names is None else names[0] index = Index((x[0] for x in tuples), name=name) else: index = MultiIndex.from_tuples(tuples, names=names) return index def makeCustomDataframe( nrows, ncols, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None, ): """ Create a DataFrame using supplied parameters. Parameters ---------- nrows, ncols - number of data rows/cols c_idx_names, idx_names - False/True/list of strings, yields No names , default names or uses the provided names for the levels of the corresponding index. You can provide a single string when c_idx_nlevels ==1. c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex data_gen_f - a function f(row,col) which return the data value at that position, the default generator used yields values of the form "RxCy" based on position. c_ndupe_l, r_ndupe_l - list of integers, determines the number of duplicates for each label at a given level of the corresponding index. The default `None` value produces a multiplicity of 1 across all levels, i.e. a unique index. Will accept a partial list of length N < idx_nlevels, for just the first N levels. If ndupe doesn't divide nrows/ncol, the last label might have lower multiplicity. dtype - passed to the DataFrame constructor as is, in case you wish to have more control in conjunction with a custom `data_gen_f` r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a timedelta index. if unspecified, string labels will be generated. Examples -------- # 5 row, 3 columns, default names on both, single index on both axis >> makeCustomDataframe(5,3) # make the data a random int between 1 and 100 >> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100)) # 2-level multiindex on rows with each label duplicated # twice on first level, default names on both axis, single # index on both axis >> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2]) # DatetimeIndex on row, index with unicode labels on columns # no names on either axis >> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False, r_idx_type="dt",c_idx_type="u") # 4-level multindex on rows with names provided, 2-level multindex # on columns with default labels and default names. >> a=makeCustomDataframe(5,3,r_idx_nlevels=4, r_idx_names=["FEE","FI","FO","FAM"], c_idx_nlevels=2) >> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) """ assert c_idx_nlevels > 0 assert r_idx_nlevels > 0 assert r_idx_type is None or ( r_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and r_idx_nlevels == 1 ) assert c_idx_type is None or ( c_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and c_idx_nlevels == 1 ) columns = makeCustomIndex( ncols, nlevels=c_idx_nlevels, prefix="C", names=c_idx_names, ndupe_l=c_ndupe_l, idx_type=c_idx_type, ) index = makeCustomIndex( nrows, nlevels=r_idx_nlevels, prefix="R", names=r_idx_names, ndupe_l=r_ndupe_l, idx_type=r_idx_type, ) # by default, generate data based on location if data_gen_f is None: data_gen_f = lambda r, c: f"R{r}C{c}" data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)] return DataFrame(data, index, columns, dtype=dtype) def _create_missing_idx(nrows, ncols, density, random_state=None): if random_state is None: random_state = np.random else: random_state = np.random.RandomState(random_state) # below is cribbed from scipy.sparse size = int(np.round((1 - density) * nrows * ncols)) # generate a few more to ensure unique values min_rows = 5 fac = 1.02 extra_size = min(size + min_rows, fac * size) def _gen_unique_rand(rng, _extra_size): ind = rng.rand(int(_extra_size)) return np.unique(np.floor(ind * nrows * ncols))[:size] ind = _gen_unique_rand(random_state, extra_size) while ind.size < size: extra_size *= 1.05 ind = _gen_unique_rand(random_state, extra_size) j = np.floor(ind * 1.0 / nrows).astype(int) i = (ind - j * nrows).astype(int) return i.tolist(), j.tolist() def makeMissingDataframe(density=0.9, random_state=None): df = makeDataFrame() i, j = _create_missing_idx(*df.shape, density=density, random_state=random_state) df.values[i, j] = np.nan return df def optional_args(decorator): """ allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, *args, **kwargs) """ @wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and callable(args[0]) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # skip tests on exceptions with this message _network_error_messages = ( # 'urlopen error timed out', # 'timeout: timed out', # 'socket.timeout: timed out', "timed out", "Server Hangup", "HTTP Error 503: Service Unavailable", "502: Proxy Error", "HTTP Error 502: internal error", "HTTP Error 502", "HTTP Error 503", "HTTP Error 403", "HTTP Error 400", "Temporary failure in name resolution", "Name or service not known", "Connection refused", "certificate verify", ) # or this e.errno/e.reason.errno _network_errno_vals = ( 101, # Network is unreachable 111, # Connection refused 110, # Connection timed out 104, # Connection reset Error 54, # Connection reset by peer 60, # urllib.error.URLError: [Errno 60] Connection timed out ) # Both of the above shouldn't mask real issues such as 404's # or refused connections (changed DNS). # But some tests (test_data yahoo) contact incredibly flakey # servers. # and conditionally raise on exception types in _get_default_network_errors def _get_default_network_errors(): # Lazy import for http.client because it imports many things from the stdlib import http.client return (IOError, http.client.HTTPException, TimeoutError) def can_connect(url, error_classes=None): """ Try to connect to the given url. True if succeeds, False if IOError raised Parameters ---------- url : basestring The URL to try to connect to Returns ------- connectable : bool Return True if no IOError (unable to connect) or URLError (bad url) was raised """ if error_classes is None: error_classes = _get_default_network_errors() try: with urlopen(url): pass except error_classes: return False else: return True @optional_args def network( t, url="http://www.google.com", raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT, check_before_test=False, error_classes=None, skip_errnos=_network_errno_vals, _skip_on_messages=_network_error_messages, ): """ Label a test as requiring network connection and, if an error is encountered, only raise if it does not find a network connection. In comparison to ``network``, this assumes an added contract to your test: you must assert that, under normal conditions, your test will ONLY fail if it does not have network connectivity. You can call this in 3 ways: as a standard decorator, with keyword arguments, or with a positional argument that is the url to check. Parameters ---------- t : callable The test requiring network connectivity. url : path The url to test via ``pandas.io.common.urlopen`` to check for connectivity. Defaults to 'http://www.google.com'. raise_on_error : bool If True, never catches errors. check_before_test : bool If True, checks connectivity before running the test case. error_classes : tuple or Exception error classes to ignore. If not in ``error_classes``, raises the error. defaults to IOError. Be careful about changing the error classes here. skip_errnos : iterable of int Any exception that has .errno or .reason.erno set to one of these values will be skipped with an appropriate message. _skip_on_messages: iterable of string any exception e for which one of the strings is a substring of str(e) will be skipped with an appropriate message. Intended to suppress errors where an errno isn't available. Notes ----- * ``raise_on_error`` supercedes ``check_before_test`` Returns ------- t : callable The decorated test ``t``, with checks for connectivity errors. Example ------- Tests decorated with @network will fail if it's possible to make a network connection to another URL (defaults to google.com):: >>> from pandas._testing import network >>> from pandas.io.common import urlopen >>> @network ... def test_network(): ... with urlopen("rabbit://bonanza.com"): ... pass Traceback ... URLError: <urlopen error unknown url type: rabit> You can specify alternative URLs:: >>> @network("http://www.yahoo.com") ... def test_something_with_yahoo(): ... raise IOError("Failure Message") >>> test_something_with_yahoo() Traceback (most recent call last): ... IOError: Failure Message If you set check_before_test, it will check the url first and not run the test on failure:: >>> @network("failing://url.blaher", check_before_test=True) ... def test_something(): ... print("I ran!") ... raise ValueError("Failure") >>> test_something() Traceback (most recent call last): ... Errors not related to networking will always be raised. """ from pytest import skip if error_classes is None: error_classes = _get_default_network_errors() t.network = True @wraps(t) def wrapper(*args, **kwargs): if check_before_test and not raise_on_error: if not can_connect(url, error_classes): skip() try: return t(*args, **kwargs) except Exception as err: errno = getattr(err, "errno", None) if not errno and hasattr(errno, "reason"): errno = getattr(err.reason, "errno", None) if errno in skip_errnos: skip(f"Skipping test due to known errno and error {err}") e_str = str(err) if any(m.lower() in e_str.lower() for m in _skip_on_messages): skip( f"Skipping test because exception message is known and error {err}" ) if not isinstance(err, error_classes): raise if raise_on_error or can_connect(url, error_classes): raise else: skip(f"Skipping test due to lack of connectivity and error {err}") return wrapper with_connectivity_check = network @contextmanager def assert_produces_warning( expected_warning=Warning, filter_level="always", check_stacklevel=True, raise_on_extra_warnings=True, ): """ Context manager for running code expected to either raise a specific warning, or not raise any warnings. Verifies that the code raises the expected warning, and that it does not raise any other unexpected warnings. It is basically a wrapper around ``warnings.catch_warnings``. Parameters ---------- expected_warning : {Warning, False, None}, default Warning The type of Exception raised. ``exception.Warning`` is the base class for all warnings. To check that no warning is returned, specify ``False`` or ``None``. filter_level : str or None, default "always" Specifies whether warnings are ignored, displayed, or turned into errors. Valid values are: * "error" - turns matching warnings into exceptions * "ignore" - discard the warning * "always" - always emit a warning * "default" - print the warning the first time it is generated from each location * "module" - print the warning the first time it is generated from each module * "once" - print the warning the first time it is generated check_stacklevel : bool, default True If True, displays the line that called the function containing the warning to show were the function is called. Otherwise, the line that implements the function is displayed. raise_on_extra_warnings : bool, default True Whether extra warnings not of the type `expected_warning` should cause the test to fail. Examples -------- >>> import warnings >>> with assert_produces_warning(): ... warnings.warn(UserWarning()) ... >>> with assert_produces_warning(False): ... warnings.warn(RuntimeWarning()) ... Traceback (most recent call last): ... AssertionError: Caused unexpected warning(s): ['RuntimeWarning']. >>> with assert_produces_warning(UserWarning): ... warnings.warn(RuntimeWarning()) Traceback (most recent call last): ... AssertionError: Did not see expected warning of class 'UserWarning'. ..warn:: This is *not* thread-safe. """ __tracebackhide__ = True with warnings.catch_warnings(record=True) as w: saw_warning = False warnings.simplefilter(filter_level) yield w extra_warnings = [] for actual_warning in w: if expected_warning and issubclass( actual_warning.category, expected_warning ): saw_warning = True if check_stacklevel and issubclass( actual_warning.category, (FutureWarning, DeprecationWarning) ): from inspect import getframeinfo, stack caller = getframeinfo(stack()[2][0]) msg = ( "Warning not set with correct stacklevel. " f"File where warning is raised: {actual_warning.filename} != " f"{caller.filename}. Warning message: {actual_warning.message}" ) assert actual_warning.filename == caller.filename, msg else: extra_warnings.append( ( actual_warning.category.__name__, actual_warning.message, actual_warning.filename, actual_warning.lineno, ) ) if expected_warning: msg = ( f"Did not see expected warning of class " f"{repr(expected_warning.__name__)}" ) assert saw_warning, msg if raise_on_extra_warnings and extra_warnings: raise AssertionError( f"Caused unexpected warning(s): {repr(extra_warnings)}" ) class RNGContext: """ Context manager to set the numpy random number generator speed. Returns to the original value upon exiting the context manager. Parameters ---------- seed : int Seed for numpy.random.seed Examples -------- with RNGContext(42): np.random.randn() """ def __init__(self, seed): self.seed = seed def __enter__(self): self.start_state = np.random.get_state() np.random.seed(self.seed) def __exit__(self, exc_type, exc_value, traceback): np.random.set_state(self.start_state) @contextmanager def with_csv_dialect(name, **kwargs): """ Context manager to temporarily register a CSV dialect for parsing CSV. Parameters ---------- name : str The name of the dialect. kwargs : mapping The parameters for the dialect. Raises ------ ValueError : the name of the dialect conflicts with a builtin one. See Also -------- csv : Python's CSV library. """ import csv _BUILTIN_DIALECTS = {"excel", "excel-tab", "unix"} if name in _BUILTIN_DIALECTS: raise ValueError("Cannot override builtin dialect.") csv.register_dialect(name, **kwargs) yield csv.unregister_dialect(name) @contextmanager def use_numexpr(use, min_elements=None): from pandas.core.computation import expressions as expr if min_elements is None: min_elements = expr._MIN_ELEMENTS olduse = expr._USE_NUMEXPR oldmin = expr._MIN_ELEMENTS expr.set_use_numexpr(use) expr._MIN_ELEMENTS = min_elements yield expr._MIN_ELEMENTS = oldmin expr.set_use_numexpr(olduse) def test_parallel(num_threads=2, kwargs_list=None): """ Decorator to run the same function multiple times in parallel. Parameters ---------- num_threads : int, optional The number of times the function is run in parallel. kwargs_list : list of dicts, optional The list of kwargs to update original function kwargs on different threads. Notes ----- This decorator does not pass the return value of the decorated function. Original from scikit-image: https://github.com/scikit-image/scikit-image/pull/1519 """ assert num_threads > 0 has_kwargs_list = kwargs_list is not None if has_kwargs_list: assert len(kwargs_list) == num_threads import threading def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner return wrapper class SubclassedSeries(Series): _metadata = ["testattr", "name"] @property def _constructor(self): return SubclassedSeries @property def _constructor_expanddim(self): return SubclassedDataFrame class SubclassedDataFrame(DataFrame): _metadata = ["testattr"] @property def _constructor(self): return SubclassedDataFrame @property def _constructor_sliced(self): return SubclassedSeries class SubclassedCategorical(Categorical): @property def _constructor(self): return SubclassedCategorical @contextmanager def set_timezone(tz: str): """ Context manager for temporarily setting a timezone. Parameters ---------- tz : str A string representing a valid timezone. Examples -------- >>> from datetime import datetime >>> from dateutil.tz import tzlocal >>> tzlocal().tzname(datetime.now()) 'IST' >>> with set_timezone('US/Eastern'): ... tzlocal().tzname(datetime.now()) ... 'EDT' """ import os import time def setTZ(tz): if tz is None: try: del os.environ["TZ"] except KeyError: pass else: os.environ["TZ"] = tz time.tzset() orig_tz = os.environ.get("TZ") setTZ(tz) try: yield finally: setTZ(orig_tz) def _make_skipna_wrapper(alternative, skipna_alternative=None): """ Create a function for calling on an array. Parameters ---------- alternative : function The function to be called on the array with no NaNs. Only used when 'skipna_alternative' is None. skipna_alternative : function The function to be called on the original array Returns ------- function """ if skipna_alternative: def skipna_wrapper(x): return skipna_alternative(x.values) else: def skipna_wrapper(x): nona = x.dropna() if len(nona) == 0: return np.nan return alternative(nona) return skipna_wrapper def convert_rows_list_to_csv_str(rows_list: List[str]): """ Convert list of CSV rows to single CSV-formatted string for current OS. This method is used for creating expected value of to_csv() method. Parameters ---------- rows_list : List[str] Each element represents the row of csv. Returns ------- str Expected output of to_csv() in current OS. """ sep = os.linesep expected = sep.join(rows_list) + sep return expected def external_error_raised( expected_exception: Type[Exception], ) -> Callable[[Type[Exception], None], None]: """ Helper function to mark pytest.raises that have an external error message. Parameters ---------- expected_exception : Exception Expected error to raise. Returns ------- Callable Regular `pytest.raises` function with `match` equal to `None`. """ import pytest return pytest.raises(expected_exception, match=None)
BugsInPy/BugsInPy/temp/projects/pandas/bug-42-fixed/pandas/pandas/_testing.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-42-buggy/pandas/pandas/_testing.py
pandas-bug-14
""" Functions for defining unary operations. """ from typing import Any from pandas._typing import ArrayLike from pandas.core.dtypes.common import ( is_datetime64_dtype, is_integer_dtype, is_object_dtype, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCExtensionArray def should_extension_dispatch(left: ArrayLike, right: Any) -> bool: """ Identify cases where Series operation should dispatch to ExtensionArray method. Parameters ---------- left : np.ndarray or ExtensionArray right : object Returns ------- bool """ return isinstance(left, ABCExtensionArray) or isinstance(right, ABCExtensionArray) def should_series_dispatch(left, right, op): """ Identify cases where a DataFrame operation should dispatch to its Series counterpart. Parameters ---------- left : DataFrame right : DataFrame or Series op : binary operator Returns ------- override : bool """ if left._is_mixed_type or right._is_mixed_type: return True if op.__name__.strip("_") in ["and", "or", "xor", "rand", "ror", "rxor"]: # TODO: GH references for what this fixes # Note: this check must come before the check for nonempty columns. return True if right.ndim == 1: # operating with Series, short-circuit checks that would fail # with AttributeError. return False if not len(left.columns) or not len(right.columns): # ensure obj.dtypes[0] exists for each obj return False ldtype = left.dtypes.iloc[0] rdtype = right.dtypes.iloc[0] if (is_timedelta64_dtype(ldtype) and is_integer_dtype(rdtype)) or ( is_timedelta64_dtype(rdtype) and is_integer_dtype(ldtype) ): # numpy integer dtypes as timedelta64 dtypes in this scenario return True if is_datetime64_dtype(ldtype) and is_object_dtype(rdtype): # in particular case where right is an array of DateOffsets return True return False """ Functions for defining unary operations. """ from typing import Any from pandas._typing import ArrayLike from pandas.core.dtypes.common import ( is_datetime64_dtype, is_integer_dtype, is_object_dtype, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCExtensionArray def should_extension_dispatch(left: ArrayLike, right: Any) -> bool: """ Identify cases where Series operation should dispatch to ExtensionArray method. Parameters ---------- left : np.ndarray or ExtensionArray right : object Returns ------- bool """ return isinstance(left, ABCExtensionArray) or isinstance(right, ABCExtensionArray) def should_series_dispatch(left, right, op): """ Identify cases where a DataFrame operation should dispatch to its Series counterpart. Parameters ---------- left : DataFrame right : DataFrame or Series op : binary operator Returns ------- override : bool """ if left._is_mixed_type or right._is_mixed_type: return True if op.__name__.strip("_") in ["and", "or", "xor", "rand", "ror", "rxor"]: # TODO: GH references for what this fixes # Note: this check must come before the check for nonempty columns. return True if right.ndim == 1: # operating with Series, short-circuit checks that would fail # with AttributeError. return False if not len(left.columns) or not len(right.columns): # ensure obj.dtypes[0] exists for each obj return False ldtype = left.dtypes.iloc[0] rdtype = right.dtypes.iloc[0] if (is_timedelta64_dtype(ldtype) and is_integer_dtype(rdtype)) or ( is_timedelta64_dtype(rdtype) and is_integer_dtype(ldtype) ): # numpy integer dtypes as timedelta64 dtypes in this scenario return True if (is_datetime64_dtype(ldtype) and is_object_dtype(rdtype)) or ( is_datetime64_dtype(rdtype) and is_object_dtype(ldtype) ): # in particular case where one is an array of DateOffsets return True return False
BugsInPy/BugsInPy/temp/projects/pandas/bug-14-fixed/pandas/pandas/core/ops/dispatch.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-14-buggy/pandas/pandas/core/ops/dispatch.py
pandas-bug-147
""" define extension dtypes """ import re from typing import Any, Dict, List, Optional, Tuple, Type, Union, cast import warnings import numpy as np import pytz from pandas._libs.interval import Interval from pandas._libs.tslibs import NaT, Period, Timestamp, timezones from pandas.core.dtypes.generic import ABCCategoricalIndex, ABCDateOffset, ABCIndexClass from pandas._typing import Ordered from .base import ExtensionDtype from .inference import is_bool, is_list_like str_type = str # GH26403: sentinel value used for the default value of ordered in the # CategoricalDtype constructor to detect when ordered=None is explicitly passed ordered_sentinel = object() # type: object def register_extension_dtype(cls: Type[ExtensionDtype]) -> Type[ExtensionDtype]: """ Register an ExtensionType with pandas as class decorator. .. versionadded:: 0.24.0 This enables operations like ``.astype(name)`` for the name of the ExtensionDtype. Returns ------- callable A class decorator. Examples -------- >>> from pandas.api.extensions import register_extension_dtype >>> from pandas.api.extensions import ExtensionDtype >>> @register_extension_dtype ... class MyExtensionDtype(ExtensionDtype): ... pass """ registry.register(cls) return cls class Registry: """ Registry for dtype inference The registry allows one to map a string repr of a extension dtype to an extension dtype. The string alias can be used in several places, including * Series and Index constructors * :meth:`pandas.array` * :meth:`pandas.Series.astype` Multiple extension types can be registered. These are tried in order. """ def __init__(self): self.dtypes = [] # type: List[Type[ExtensionDtype]] def register(self, dtype: Type[ExtensionDtype]) -> None: """ Parameters ---------- dtype : ExtensionDtype """ if not issubclass(dtype, ExtensionDtype): raise ValueError("can only register pandas extension dtypes") self.dtypes.append(dtype) def find( self, dtype: Union[Type[ExtensionDtype], str] ) -> Optional[Type[ExtensionDtype]]: """ Parameters ---------- dtype : Type[ExtensionDtype] or string Returns ------- return the first matching dtype, otherwise return None """ if not isinstance(dtype, str): dtype_type = dtype if not isinstance(dtype, type): dtype_type = type(dtype) if issubclass(dtype_type, ExtensionDtype): return dtype return None for dtype_type in self.dtypes: try: return dtype_type.construct_from_string(dtype) except TypeError: pass return None registry = Registry() class PandasExtensionDtype(ExtensionDtype): """ A np.dtype duck-typed class, suitable for holding a custom dtype. THIS IS NOT A REAL NUMPY DTYPE """ type = None # type: Any kind = None # type: Any # The Any type annotations above are here only because mypy seems to have a # problem dealing with with multiple inheritance from PandasExtensionDtype # and ExtensionDtype's @properties in the subclasses below. The kind and # type variables in those subclasses are explicitly typed below. subdtype = None str = None # type: Optional[str_type] num = 100 shape = tuple() # type: Tuple[int, ...] itemsize = 8 base = None isbuiltin = 0 isnative = 0 _cache = {} # type: Dict[str_type, 'PandasExtensionDtype'] def __str__(self) -> str_type: """ Return a string representation for a particular Object """ return self.name def __repr__(self) -> str_type: """ Return a string representation for a particular object. """ return str(self) def __hash__(self) -> int: raise NotImplementedError("sub-classes should implement an __hash__ method") def __getstate__(self) -> Dict[str_type, Any]: # pickle support; we don't want to pickle the cache return {k: getattr(self, k, None) for k in self._metadata} @classmethod def reset_cache(cls) -> None: """ clear the cache """ cls._cache = {} class CategoricalDtypeType(type): """ the type of CategoricalDtype, this metaclass determines subclass ability """ pass @register_extension_dtype class CategoricalDtype(PandasExtensionDtype, ExtensionDtype): """ Type for categorical data with the categories and orderedness. .. versionchanged:: 0.21.0 Parameters ---------- categories : sequence, optional Must be unique, and must not contain any nulls. ordered : bool, default False Attributes ---------- categories ordered Methods ------- None See Also -------- Categorical Notes ----- This class is useful for specifying the type of a ``Categorical`` independent of the values. See :ref:`categorical.categoricaldtype` for more. Examples -------- >>> t = pd.CategoricalDtype(categories=['b', 'a'], ordered=True) >>> pd.Series(['a', 'b', 'a', 'c'], dtype=t) 0 a 1 b 2 a 3 NaN dtype: category Categories (2, object): [b < a] """ # TODO: Document public vs. private API name = "category" type = CategoricalDtypeType # type: Type[CategoricalDtypeType] kind = "O" # type: str_type str = "|O08" base = np.dtype("O") _metadata = ("categories", "ordered", "_ordered_from_sentinel") _cache = {} # type: Dict[str_type, PandasExtensionDtype] def __init__( self, categories=None, ordered: Union[Ordered, object] = ordered_sentinel ): # TODO(GH26403): Set type of ordered to Ordered ordered = cast(Ordered, ordered) self._finalize(categories, ordered, fastpath=False) @classmethod def _from_fastpath( cls, categories=None, ordered: Optional[bool] = None ) -> "CategoricalDtype": self = cls.__new__(cls) self._finalize(categories, ordered, fastpath=True) return self @classmethod def _from_categorical_dtype( cls, dtype: "CategoricalDtype", categories=None, ordered: Ordered = None ) -> "CategoricalDtype": if categories is ordered is None: return dtype if categories is None: categories = dtype.categories if ordered is None: ordered = dtype.ordered return cls(categories, ordered) @classmethod def _from_values_or_dtype( cls, values=None, categories=None, ordered: Optional[bool] = None, dtype: Optional["CategoricalDtype"] = None, ) -> "CategoricalDtype": """ Construct dtype from the input parameters used in :class:`Categorical`. This constructor method specifically does not do the factorization step, if that is needed to find the categories. This constructor may therefore return ``CategoricalDtype(categories=None, ordered=None)``, which may not be useful. Additional steps may therefore have to be taken to create the final dtype. The return dtype is specified from the inputs in this prioritized order: 1. if dtype is a CategoricalDtype, return dtype 2. if dtype is the string 'category', create a CategoricalDtype from the supplied categories and ordered parameters, and return that. 3. if values is a categorical, use value.dtype, but override it with categories and ordered if either/both of those are not None. 4. if dtype is None and values is not a categorical, construct the dtype from categories and ordered, even if either of those is None. Parameters ---------- values : list-like, optional The list-like must be 1-dimensional. categories : list-like, optional Categories for the CategoricalDtype. ordered : bool, optional Designating if the categories are ordered. dtype : CategoricalDtype or the string "category", optional If ``CategoricalDtype``, cannot be used together with `categories` or `ordered`. Returns ------- CategoricalDtype Examples -------- >>> CategoricalDtype._from_values_or_dtype() CategoricalDtype(categories=None, ordered=None) >>> CategoricalDtype._from_values_or_dtype(categories=['a', 'b'], ... ordered=True) CategoricalDtype(categories=['a', 'b'], ordered=True) >>> dtype1 = CategoricalDtype(['a', 'b'], ordered=True) >>> dtype2 = CategoricalDtype(['x', 'y'], ordered=False) >>> c = Categorical([0, 1], dtype=dtype1, fastpath=True) >>> CategoricalDtype._from_values_or_dtype(c, ['x', 'y'], ordered=True, ... dtype=dtype2) ValueError: Cannot specify `categories` or `ordered` together with `dtype`. The supplied dtype takes precedence over values' dtype: >>> CategoricalDtype._from_values_or_dtype(c, dtype=dtype2) CategoricalDtype(['x', 'y'], ordered=False) """ from pandas.core.dtypes.common import is_categorical if dtype is not None: # The dtype argument takes precedence over values.dtype (if any) if isinstance(dtype, str): if dtype == "category": dtype = CategoricalDtype(categories, ordered) else: msg = "Unknown dtype {dtype!r}" raise ValueError(msg.format(dtype=dtype)) elif categories is not None or ordered is not None: raise ValueError( "Cannot specify `categories` or `ordered` together with `dtype`." ) elif is_categorical(values): # If no "dtype" was passed, use the one from "values", but honor # the "ordered" and "categories" arguments dtype = values.dtype._from_categorical_dtype( values.dtype, categories, ordered ) else: # If dtype=None and values is not categorical, create a new dtype. # Note: This could potentially have categories=None and # ordered=None. dtype = CategoricalDtype(categories, ordered) return dtype def _finalize(self, categories, ordered: Ordered, fastpath: bool = False) -> None: if ordered is not None and ordered is not ordered_sentinel: self.validate_ordered(ordered) if categories is not None: categories = self.validate_categories(categories, fastpath=fastpath) self._categories = categories self._ordered = ordered if ordered is not ordered_sentinel else None self._ordered_from_sentinel = ordered is ordered_sentinel def __setstate__(self, state: Dict[str_type, Any]) -> None: # for pickle compat. __get_state__ is defined in the # PandasExtensionDtype superclass and uses the public properties to # pickle -> need to set the settable private ones here (see GH26067) self._categories = state.pop("categories", None) self._ordered = state.pop("ordered", False) self._ordered_from_sentinel = state.pop("_ordered_from_sentinel", False) def __hash__(self) -> int: # _hash_categories returns a uint64, so use the negative # space for when we have unknown categories to avoid a conflict if self.categories is None: if self._ordered: return -1 else: return -2 # We *do* want to include the real self.ordered here return int(self._hash_categories(self.categories, self._ordered)) def __eq__(self, other: Any) -> bool: """ Rules for CDT equality: 1) Any CDT is equal to the string 'category' 2) Any CDT is equal to itself 3) Any CDT is equal to a CDT with categories=None regardless of ordered 4) A CDT with ordered=True is only equal to another CDT with ordered=True and identical categories in the same order 5) A CDT with ordered={False, None} is only equal to another CDT with ordered={False, None} and identical categories, but same order is not required. There is no distinction between False/None. 6) Any other comparison returns False """ if isinstance(other, str): return other == self.name elif other is self: return True elif not (hasattr(other, "_ordered") and hasattr(other, "categories")): return False elif self.categories is None or other.categories is None: # We're forced into a suboptimal corner thanks to math and # backwards compatibility. We require that `CDT(...) == 'category'` # for all CDTs **including** `CDT(None, ...)`. Therefore, *all* # CDT(., .) = CDT(None, False) and *all* # CDT(., .) = CDT(None, True). return True elif self._ordered or other._ordered: # At least one has ordered=True; equal if both have ordered=True # and the same values for categories in the same order. return (self._ordered == other._ordered) and self.categories.equals( other.categories ) else: # Neither has ordered=True; equal if both have the same categories, # but same order is not necessary. There is no distinction between # ordered=False and ordered=None: CDT(., False) and CDT(., None) # will be equal if they have the same categories. if ( self.categories.dtype == other.categories.dtype and self.categories.equals(other.categories) ): # Check and see if they happen to be identical categories return True return hash(self) == hash(other) def __repr__(self): tpl = "CategoricalDtype(categories={}ordered={})" if self.categories is None: data = "None, " else: data = self.categories._format_data(name=self.__class__.__name__) return tpl.format(data, self._ordered) @staticmethod def _hash_categories(categories, ordered: Ordered = True) -> int: from pandas.core.util.hashing import ( hash_array, _combine_hash_arrays, hash_tuples, ) from pandas.core.dtypes.common import is_datetime64tz_dtype, _NS_DTYPE if len(categories) and isinstance(categories[0], tuple): # assumes if any individual category is a tuple, then all our. ATM # I don't really want to support just some of the categories being # tuples. categories = list(categories) # breaks if a np.array of categories cat_array = hash_tuples(categories) else: if categories.dtype == "O": if len({type(x) for x in categories}) != 1: # TODO: hash_array doesn't handle mixed types. It casts # everything to a str first, which means we treat # {'1', '2'} the same as {'1', 2} # find a better solution hashed = hash((tuple(categories), ordered)) return hashed if is_datetime64tz_dtype(categories.dtype): # Avoid future warning. categories = categories.astype(_NS_DTYPE) cat_array = hash_array(np.asarray(categories), categorize=False) if ordered: cat_array = np.vstack( [cat_array, np.arange(len(cat_array), dtype=cat_array.dtype)] ) else: cat_array = [cat_array] hashed = _combine_hash_arrays(iter(cat_array), num_items=len(cat_array)) return np.bitwise_xor.reduce(hashed) @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype Returns ------- type """ from pandas import Categorical return Categorical @staticmethod def validate_ordered(ordered: Ordered) -> None: """ Validates that we have a valid ordered parameter. If it is not a boolean, a TypeError will be raised. Parameters ---------- ordered : object The parameter to be verified. Raises ------ TypeError If 'ordered' is not a boolean. """ if not is_bool(ordered): raise TypeError("'ordered' must either be 'True' or 'False'") @staticmethod def validate_categories(categories, fastpath: bool = False): """ Validates that we have good categories Parameters ---------- categories : array-like fastpath : bool Whether to skip nan and uniqueness checks Returns ------- categories : Index """ from pandas.core.indexes.base import Index if not fastpath and not is_list_like(categories): msg = "Parameter 'categories' must be list-like, was {!r}" raise TypeError(msg.format(categories)) elif not isinstance(categories, ABCIndexClass): categories = Index(categories, tupleize_cols=False) if not fastpath: if categories.hasnans: raise ValueError("Categorial categories cannot be null") if not categories.is_unique: raise ValueError("Categorical categories must be unique") if isinstance(categories, ABCCategoricalIndex): categories = categories.categories return categories def update_dtype( self, dtype: Union[str_type, "CategoricalDtype"] ) -> "CategoricalDtype": """ Returns a CategoricalDtype with categories and ordered taken from dtype if specified, otherwise falling back to self if unspecified Parameters ---------- dtype : CategoricalDtype Returns ------- new_dtype : CategoricalDtype """ if isinstance(dtype, str) and dtype == "category": # dtype='category' should not change anything return self elif not self.is_dtype(dtype): msg = ( "a CategoricalDtype must be passed to perform an update, " "got {dtype!r}" ).format(dtype=dtype) raise ValueError(msg) else: # from here on, dtype is a CategoricalDtype dtype = cast(CategoricalDtype, dtype) # dtype is CDT: keep current categories/ordered if None new_categories = dtype.categories if new_categories is None: new_categories = self.categories new_ordered = dtype._ordered new_ordered_from_sentinel = dtype._ordered_from_sentinel if new_ordered is None: # maintain existing ordered if new dtype has ordered=None new_ordered = self._ordered if self._ordered and new_ordered_from_sentinel: # only warn if we'd actually change the existing behavior msg = ( "Constructing a CategoricalDtype without specifying " "`ordered` will default to `ordered=False` in a future " "version, which will cause the resulting categorical's " "`ordered` attribute to change to False; `ordered=True`" " must be explicitly passed in order to be retained" ) warnings.warn(msg, FutureWarning, stacklevel=3) return CategoricalDtype(new_categories, new_ordered) @property def categories(self): """ An ``Index`` containing the unique categories allowed. """ return self._categories @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ # TODO: remove if block when ordered=None as default is deprecated if self._ordered_from_sentinel and self._ordered is None: # warn when accessing ordered if ordered=None and None was not # explicitly passed to the constructor msg = ( "Constructing a CategoricalDtype without specifying " "`ordered` will default to `ordered=False` in a future " "version; `ordered=None` must be explicitly passed." ) warnings.warn(msg, FutureWarning, stacklevel=2) return self._ordered @property def _is_boolean(self) -> bool: from pandas.core.dtypes.common import is_bool_dtype return is_bool_dtype(self.categories) @register_extension_dtype class DatetimeTZDtype(PandasExtensionDtype): """ An ExtensionDtype for timezone-aware datetime data. **This is not an actual numpy dtype**, but a duck type. Parameters ---------- unit : str, default "ns" The precision of the datetime data. Currently limited to ``"ns"``. tz : str, int, or datetime.tzinfo The timezone. Attributes ---------- unit tz Methods ------- None Raises ------ pytz.UnknownTimeZoneError When the requested timezone cannot be found. Examples -------- >>> pd.DatetimeTZDtype(tz='UTC') datetime64[ns, UTC] >>> pd.DatetimeTZDtype(tz='dateutil/US/Central') datetime64[ns, tzfile('/usr/share/zoneinfo/US/Central')] """ type = Timestamp # type: Type[Timestamp] kind = "M" # type: str_type str = "|M8[ns]" num = 101 base = np.dtype("M8[ns]") na_value = NaT _metadata = ("unit", "tz") _match = re.compile(r"(datetime64|M8)\[(?P<unit>.+), (?P<tz>.+)\]") _cache = {} # type: Dict[str_type, PandasExtensionDtype] def __init__(self, unit="ns", tz=None): if isinstance(unit, DatetimeTZDtype): unit, tz = unit.unit, unit.tz if unit != "ns": if isinstance(unit, str) and tz is None: # maybe a string like datetime64[ns, tz], which we support for # now. result = type(self).construct_from_string(unit) unit = result.unit tz = result.tz msg = ( "Passing a dtype alias like 'datetime64[ns, {tz}]' " "to DatetimeTZDtype is deprecated. Use " "'DatetimeTZDtype.construct_from_string()' instead." ) warnings.warn(msg.format(tz=tz), FutureWarning, stacklevel=2) else: raise ValueError("DatetimeTZDtype only supports ns units") if tz: tz = timezones.maybe_get_tz(tz) tz = timezones.tz_standardize(tz) elif tz is not None: raise pytz.UnknownTimeZoneError(tz) elif tz is None: raise TypeError("A 'tz' is required.") self._unit = unit self._tz = tz @property def unit(self): """ The precision of the datetime data. """ return self._unit @property def tz(self): """ The timezone. """ return self._tz @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype Returns ------- type """ from pandas.core.arrays import DatetimeArray return DatetimeArray @classmethod def construct_from_string(cls, string): """ Construct a DatetimeTZDtype from a string. Parameters ---------- string : str The string alias for this DatetimeTZDtype. Should be formatted like ``datetime64[ns, <tz>]``, where ``<tz>`` is the timezone name. Examples -------- >>> DatetimeTZDtype.construct_from_string('datetime64[ns, UTC]') datetime64[ns, UTC] """ if isinstance(string, str): msg = "Could not construct DatetimeTZDtype from '{}'" try: match = cls._match.match(string) if match: d = match.groupdict() return cls(unit=d["unit"], tz=d["tz"]) except Exception: # TODO(py3): Change this pass to `raise TypeError(msg) from e` pass raise TypeError(msg.format(string)) raise TypeError("Could not construct DatetimeTZDtype") def __str__(self): return "datetime64[{unit}, {tz}]".format(unit=self.unit, tz=self.tz) @property def name(self): """A string representation of the dtype.""" return str(self) def __hash__(self): # make myself hashable # TODO: update this. return hash(str(self)) def __eq__(self, other): if isinstance(other, str): return other == self.name return ( isinstance(other, DatetimeTZDtype) and self.unit == other.unit and str(self.tz) == str(other.tz) ) def __setstate__(self, state): # for pickle compat. __get_state__ is defined in the # PandasExtensionDtype superclass and uses the public properties to # pickle -> need to set the settable private ones here (see GH26067) self._tz = state["tz"] self._unit = state["unit"] @register_extension_dtype class PeriodDtype(PandasExtensionDtype): """ An ExtensionDtype for Period data. **This is not an actual numpy dtype**, but a duck type. Parameters ---------- freq : str or DateOffset The frequency of this PeriodDtype Attributes ---------- freq Methods ------- None Examples -------- >>> pd.PeriodDtype(freq='D') period[D] >>> pd.PeriodDtype(freq=pd.offsets.MonthEnd()) period[M] """ type = Period # type: Type[Period] kind = "O" # type: str_type str = "|O08" base = np.dtype("O") num = 102 _metadata = ("freq",) _match = re.compile(r"(P|p)eriod\[(?P<freq>.+)\]") _cache = {} # type: Dict[str_type, PandasExtensionDtype] def __new__(cls, freq=None): """ Parameters ---------- freq : frequency """ if isinstance(freq, PeriodDtype): return freq elif freq is None: # empty constructor for pickle compat u = object.__new__(cls) u._freq = None return u if not isinstance(freq, ABCDateOffset): freq = cls._parse_dtype_strict(freq) try: return cls._cache[freq.freqstr] except KeyError: u = object.__new__(cls) u._freq = freq cls._cache[freq.freqstr] = u return u @property def freq(self): """ The frequency object of this PeriodDtype. """ return self._freq @classmethod def _parse_dtype_strict(cls, freq): if isinstance(freq, str): if freq.startswith("period[") or freq.startswith("Period["): m = cls._match.search(freq) if m is not None: freq = m.group("freq") from pandas.tseries.frequencies import to_offset freq = to_offset(freq) if freq is not None: return freq raise ValueError("could not construct PeriodDtype") @classmethod def construct_from_string(cls, string): """ Strict construction from a string, raise a TypeError if not possible """ if ( isinstance(string, str) and (string.startswith("period[") or string.startswith("Period[")) or isinstance(string, ABCDateOffset) ): # do not parse string like U as period[U] # avoid tuple to be regarded as freq try: return cls(freq=string) except ValueError: pass raise TypeError("could not construct PeriodDtype") def __str__(self): return self.name @property def name(self): return "period[{freq}]".format(freq=self.freq.freqstr) @property def na_value(self): return NaT def __hash__(self): # make myself hashable return hash(str(self)) def __eq__(self, other): if isinstance(other, str): return other == self.name or other == self.name.title() return isinstance(other, PeriodDtype) and self.freq == other.freq def __setstate__(self, state): # for pickle compat. __get_state__ is defined in the # PandasExtensionDtype superclass and uses the public properties to # pickle -> need to set the settable private ones here (see GH26067) self._freq = state["freq"] @classmethod def is_dtype(cls, dtype): """ Return a boolean if we if the passed type is an actual dtype that we can match (via string or type) """ if isinstance(dtype, str): # PeriodDtype can be instantiated from freq string like "U", # but doesn't regard freq str like "U" as dtype. if dtype.startswith("period[") or dtype.startswith("Period["): try: if cls._parse_dtype_strict(dtype) is not None: return True else: return False except ValueError: return False else: return False return super().is_dtype(dtype) @classmethod def construct_array_type(cls): from pandas.core.arrays import PeriodArray return PeriodArray @register_extension_dtype class IntervalDtype(PandasExtensionDtype): """ An ExtensionDtype for Interval data. **This is not an actual numpy dtype**, but a duck type. Parameters ---------- subtype : str, np.dtype The dtype of the Interval bounds. Attributes ---------- subtype Methods ------- None Examples -------- >>> pd.IntervalDtype(subtype='int64') interval[int64] """ name = "interval" kind = None # type: Optional[str_type] str = "|O08" base = np.dtype("O") num = 103 _metadata = ("subtype",) _match = re.compile(r"(I|i)nterval\[(?P<subtype>.+)\]") _cache = {} # type: Dict[str_type, PandasExtensionDtype] def __new__(cls, subtype=None): from pandas.core.dtypes.common import ( is_categorical_dtype, is_string_dtype, pandas_dtype, ) if isinstance(subtype, IntervalDtype): return subtype elif subtype is None: # we are called as an empty constructor # generally for pickle compat u = object.__new__(cls) u._subtype = None return u elif isinstance(subtype, str) and subtype.lower() == "interval": subtype = None else: if isinstance(subtype, str): m = cls._match.search(subtype) if m is not None: subtype = m.group("subtype") try: subtype = pandas_dtype(subtype) except TypeError: raise TypeError("could not construct IntervalDtype") if is_categorical_dtype(subtype) or is_string_dtype(subtype): # GH 19016 msg = ( "category, object, and string subtypes are not supported " "for IntervalDtype" ) raise TypeError(msg) try: return cls._cache[str(subtype)] except KeyError: u = object.__new__(cls) u._subtype = subtype cls._cache[str(subtype)] = u return u @property def subtype(self): """ The dtype of the Interval bounds. """ return self._subtype @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype Returns ------- type """ from pandas.core.arrays import IntervalArray return IntervalArray @classmethod def construct_from_string(cls, string): """ attempt to construct this type from a string, raise a TypeError if its not possible """ if not isinstance(string, str): msg = "a string needs to be passed, got type {typ}" raise TypeError(msg.format(typ=type(string))) if string.lower() == "interval" or cls._match.search(string) is not None: return cls(string) msg = ( "Incorrectly formatted string passed to constructor. " "Valid formats include Interval or Interval[dtype] " "where dtype is numeric, datetime, or timedelta" ) raise TypeError(msg) @property def type(self): return Interval def __str__(self): if self.subtype is None: return "interval" return "interval[{subtype}]".format(subtype=self.subtype) def __hash__(self): # make myself hashable return hash(str(self)) def __eq__(self, other): if isinstance(other, str): return other.lower() in (self.name.lower(), str(self).lower()) elif not isinstance(other, IntervalDtype): return False elif self.subtype is None or other.subtype is None: # None should match any subtype return True else: from pandas.core.dtypes.common import is_dtype_equal return is_dtype_equal(self.subtype, other.subtype) def __setstate__(self, state): # for pickle compat. __get_state__ is defined in the # PandasExtensionDtype superclass and uses the public properties to # pickle -> need to set the settable private ones here (see GH26067) self._subtype = state["subtype"] @classmethod def is_dtype(cls, dtype): """ Return a boolean if we if the passed type is an actual dtype that we can match (via string or type) """ if isinstance(dtype, str): if dtype.lower().startswith("interval"): try: if cls.construct_from_string(dtype) is not None: return True else: return False except (ValueError, TypeError): return False else: return False return super().is_dtype(dtype) """ define extension dtypes """ import re from typing import Any, Dict, List, Optional, Tuple, Type, Union, cast import warnings import numpy as np import pytz from pandas._libs.interval import Interval from pandas._libs.tslibs import NaT, Period, Timestamp, timezones from pandas.core.dtypes.generic import ABCCategoricalIndex, ABCDateOffset, ABCIndexClass from pandas._typing import Ordered from .base import ExtensionDtype from .inference import is_bool, is_list_like str_type = str # GH26403: sentinel value used for the default value of ordered in the # CategoricalDtype constructor to detect when ordered=None is explicitly passed ordered_sentinel = object() # type: object def register_extension_dtype(cls: Type[ExtensionDtype]) -> Type[ExtensionDtype]: """ Register an ExtensionType with pandas as class decorator. .. versionadded:: 0.24.0 This enables operations like ``.astype(name)`` for the name of the ExtensionDtype. Returns ------- callable A class decorator. Examples -------- >>> from pandas.api.extensions import register_extension_dtype >>> from pandas.api.extensions import ExtensionDtype >>> @register_extension_dtype ... class MyExtensionDtype(ExtensionDtype): ... pass """ registry.register(cls) return cls class Registry: """ Registry for dtype inference The registry allows one to map a string repr of a extension dtype to an extension dtype. The string alias can be used in several places, including * Series and Index constructors * :meth:`pandas.array` * :meth:`pandas.Series.astype` Multiple extension types can be registered. These are tried in order. """ def __init__(self): self.dtypes = [] # type: List[Type[ExtensionDtype]] def register(self, dtype: Type[ExtensionDtype]) -> None: """ Parameters ---------- dtype : ExtensionDtype """ if not issubclass(dtype, ExtensionDtype): raise ValueError("can only register pandas extension dtypes") self.dtypes.append(dtype) def find( self, dtype: Union[Type[ExtensionDtype], str] ) -> Optional[Type[ExtensionDtype]]: """ Parameters ---------- dtype : Type[ExtensionDtype] or string Returns ------- return the first matching dtype, otherwise return None """ if not isinstance(dtype, str): dtype_type = dtype if not isinstance(dtype, type): dtype_type = type(dtype) if issubclass(dtype_type, ExtensionDtype): return dtype return None for dtype_type in self.dtypes: try: return dtype_type.construct_from_string(dtype) except TypeError: pass return None registry = Registry() class PandasExtensionDtype(ExtensionDtype): """ A np.dtype duck-typed class, suitable for holding a custom dtype. THIS IS NOT A REAL NUMPY DTYPE """ type = None # type: Any kind = None # type: Any # The Any type annotations above are here only because mypy seems to have a # problem dealing with with multiple inheritance from PandasExtensionDtype # and ExtensionDtype's @properties in the subclasses below. The kind and # type variables in those subclasses are explicitly typed below. subdtype = None str = None # type: Optional[str_type] num = 100 shape = tuple() # type: Tuple[int, ...] itemsize = 8 base = None isbuiltin = 0 isnative = 0 _cache = {} # type: Dict[str_type, 'PandasExtensionDtype'] def __str__(self) -> str_type: """ Return a string representation for a particular Object """ return self.name def __repr__(self) -> str_type: """ Return a string representation for a particular object. """ return str(self) def __hash__(self) -> int: raise NotImplementedError("sub-classes should implement an __hash__ method") def __getstate__(self) -> Dict[str_type, Any]: # pickle support; we don't want to pickle the cache return {k: getattr(self, k, None) for k in self._metadata} @classmethod def reset_cache(cls) -> None: """ clear the cache """ cls._cache = {} class CategoricalDtypeType(type): """ the type of CategoricalDtype, this metaclass determines subclass ability """ pass @register_extension_dtype class CategoricalDtype(PandasExtensionDtype, ExtensionDtype): """ Type for categorical data with the categories and orderedness. .. versionchanged:: 0.21.0 Parameters ---------- categories : sequence, optional Must be unique, and must not contain any nulls. ordered : bool, default False Attributes ---------- categories ordered Methods ------- None See Also -------- Categorical Notes ----- This class is useful for specifying the type of a ``Categorical`` independent of the values. See :ref:`categorical.categoricaldtype` for more. Examples -------- >>> t = pd.CategoricalDtype(categories=['b', 'a'], ordered=True) >>> pd.Series(['a', 'b', 'a', 'c'], dtype=t) 0 a 1 b 2 a 3 NaN dtype: category Categories (2, object): [b < a] """ # TODO: Document public vs. private API name = "category" type = CategoricalDtypeType # type: Type[CategoricalDtypeType] kind = "O" # type: str_type str = "|O08" base = np.dtype("O") _metadata = ("categories", "ordered", "_ordered_from_sentinel") _cache = {} # type: Dict[str_type, PandasExtensionDtype] def __init__( self, categories=None, ordered: Union[Ordered, object] = ordered_sentinel ): # TODO(GH26403): Set type of ordered to Ordered ordered = cast(Ordered, ordered) self._finalize(categories, ordered, fastpath=False) @classmethod def _from_fastpath( cls, categories=None, ordered: Optional[bool] = None ) -> "CategoricalDtype": self = cls.__new__(cls) self._finalize(categories, ordered, fastpath=True) return self @classmethod def _from_categorical_dtype( cls, dtype: "CategoricalDtype", categories=None, ordered: Ordered = None ) -> "CategoricalDtype": if categories is ordered is None: return dtype if categories is None: categories = dtype.categories if ordered is None: ordered = dtype.ordered return cls(categories, ordered) @classmethod def _from_values_or_dtype( cls, values=None, categories=None, ordered: Optional[bool] = None, dtype: Optional["CategoricalDtype"] = None, ) -> "CategoricalDtype": """ Construct dtype from the input parameters used in :class:`Categorical`. This constructor method specifically does not do the factorization step, if that is needed to find the categories. This constructor may therefore return ``CategoricalDtype(categories=None, ordered=None)``, which may not be useful. Additional steps may therefore have to be taken to create the final dtype. The return dtype is specified from the inputs in this prioritized order: 1. if dtype is a CategoricalDtype, return dtype 2. if dtype is the string 'category', create a CategoricalDtype from the supplied categories and ordered parameters, and return that. 3. if values is a categorical, use value.dtype, but override it with categories and ordered if either/both of those are not None. 4. if dtype is None and values is not a categorical, construct the dtype from categories and ordered, even if either of those is None. Parameters ---------- values : list-like, optional The list-like must be 1-dimensional. categories : list-like, optional Categories for the CategoricalDtype. ordered : bool, optional Designating if the categories are ordered. dtype : CategoricalDtype or the string "category", optional If ``CategoricalDtype``, cannot be used together with `categories` or `ordered`. Returns ------- CategoricalDtype Examples -------- >>> CategoricalDtype._from_values_or_dtype() CategoricalDtype(categories=None, ordered=None) >>> CategoricalDtype._from_values_or_dtype(categories=['a', 'b'], ... ordered=True) CategoricalDtype(categories=['a', 'b'], ordered=True) >>> dtype1 = CategoricalDtype(['a', 'b'], ordered=True) >>> dtype2 = CategoricalDtype(['x', 'y'], ordered=False) >>> c = Categorical([0, 1], dtype=dtype1, fastpath=True) >>> CategoricalDtype._from_values_or_dtype(c, ['x', 'y'], ordered=True, ... dtype=dtype2) ValueError: Cannot specify `categories` or `ordered` together with `dtype`. The supplied dtype takes precedence over values' dtype: >>> CategoricalDtype._from_values_or_dtype(c, dtype=dtype2) CategoricalDtype(['x', 'y'], ordered=False) """ from pandas.core.dtypes.common import is_categorical if dtype is not None: # The dtype argument takes precedence over values.dtype (if any) if isinstance(dtype, str): if dtype == "category": dtype = CategoricalDtype(categories, ordered) else: msg = "Unknown dtype {dtype!r}" raise ValueError(msg.format(dtype=dtype)) elif categories is not None or ordered is not None: raise ValueError( "Cannot specify `categories` or `ordered` together with `dtype`." ) elif is_categorical(values): # If no "dtype" was passed, use the one from "values", but honor # the "ordered" and "categories" arguments dtype = values.dtype._from_categorical_dtype( values.dtype, categories, ordered ) else: # If dtype=None and values is not categorical, create a new dtype. # Note: This could potentially have categories=None and # ordered=None. dtype = CategoricalDtype(categories, ordered) return dtype def _finalize(self, categories, ordered: Ordered, fastpath: bool = False) -> None: if ordered is not None and ordered is not ordered_sentinel: self.validate_ordered(ordered) if categories is not None: categories = self.validate_categories(categories, fastpath=fastpath) self._categories = categories self._ordered = ordered if ordered is not ordered_sentinel else None self._ordered_from_sentinel = ordered is ordered_sentinel def __setstate__(self, state: Dict[str_type, Any]) -> None: # for pickle compat. __get_state__ is defined in the # PandasExtensionDtype superclass and uses the public properties to # pickle -> need to set the settable private ones here (see GH26067) self._categories = state.pop("categories", None) self._ordered = state.pop("ordered", False) self._ordered_from_sentinel = state.pop("_ordered_from_sentinel", False) def __hash__(self) -> int: # _hash_categories returns a uint64, so use the negative # space for when we have unknown categories to avoid a conflict if self.categories is None: if self._ordered: return -1 else: return -2 # We *do* want to include the real self.ordered here return int(self._hash_categories(self.categories, self._ordered)) def __eq__(self, other: Any) -> bool: """ Rules for CDT equality: 1) Any CDT is equal to the string 'category' 2) Any CDT is equal to itself 3) Any CDT is equal to a CDT with categories=None regardless of ordered 4) A CDT with ordered=True is only equal to another CDT with ordered=True and identical categories in the same order 5) A CDT with ordered={False, None} is only equal to another CDT with ordered={False, None} and identical categories, but same order is not required. There is no distinction between False/None. 6) Any other comparison returns False """ if isinstance(other, str): return other == self.name elif other is self: return True elif not (hasattr(other, "_ordered") and hasattr(other, "categories")): return False elif self.categories is None or other.categories is None: # We're forced into a suboptimal corner thanks to math and # backwards compatibility. We require that `CDT(...) == 'category'` # for all CDTs **including** `CDT(None, ...)`. Therefore, *all* # CDT(., .) = CDT(None, False) and *all* # CDT(., .) = CDT(None, True). return True elif self._ordered or other._ordered: # At least one has ordered=True; equal if both have ordered=True # and the same values for categories in the same order. return (self._ordered == other._ordered) and self.categories.equals( other.categories ) else: # Neither has ordered=True; equal if both have the same categories, # but same order is not necessary. There is no distinction between # ordered=False and ordered=None: CDT(., False) and CDT(., None) # will be equal if they have the same categories. if ( self.categories.dtype == other.categories.dtype and self.categories.equals(other.categories) ): # Check and see if they happen to be identical categories return True return hash(self) == hash(other) def __repr__(self): tpl = "CategoricalDtype(categories={}ordered={})" if self.categories is None: data = "None, " else: data = self.categories._format_data(name=self.__class__.__name__) return tpl.format(data, self._ordered) @staticmethod def _hash_categories(categories, ordered: Ordered = True) -> int: from pandas.core.util.hashing import ( hash_array, _combine_hash_arrays, hash_tuples, ) from pandas.core.dtypes.common import is_datetime64tz_dtype, _NS_DTYPE if len(categories) and isinstance(categories[0], tuple): # assumes if any individual category is a tuple, then all our. ATM # I don't really want to support just some of the categories being # tuples. categories = list(categories) # breaks if a np.array of categories cat_array = hash_tuples(categories) else: if categories.dtype == "O": if len({type(x) for x in categories}) != 1: # TODO: hash_array doesn't handle mixed types. It casts # everything to a str first, which means we treat # {'1', '2'} the same as {'1', 2} # find a better solution hashed = hash((tuple(categories), ordered)) return hashed if is_datetime64tz_dtype(categories.dtype): # Avoid future warning. categories = categories.astype(_NS_DTYPE) cat_array = hash_array(np.asarray(categories), categorize=False) if ordered: cat_array = np.vstack( [cat_array, np.arange(len(cat_array), dtype=cat_array.dtype)] ) else: cat_array = [cat_array] hashed = _combine_hash_arrays(iter(cat_array), num_items=len(cat_array)) return np.bitwise_xor.reduce(hashed) @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype Returns ------- type """ from pandas import Categorical return Categorical @staticmethod def validate_ordered(ordered: Ordered) -> None: """ Validates that we have a valid ordered parameter. If it is not a boolean, a TypeError will be raised. Parameters ---------- ordered : object The parameter to be verified. Raises ------ TypeError If 'ordered' is not a boolean. """ if not is_bool(ordered): raise TypeError("'ordered' must either be 'True' or 'False'") @staticmethod def validate_categories(categories, fastpath: bool = False): """ Validates that we have good categories Parameters ---------- categories : array-like fastpath : bool Whether to skip nan and uniqueness checks Returns ------- categories : Index """ from pandas.core.indexes.base import Index if not fastpath and not is_list_like(categories): msg = "Parameter 'categories' must be list-like, was {!r}" raise TypeError(msg.format(categories)) elif not isinstance(categories, ABCIndexClass): categories = Index(categories, tupleize_cols=False) if not fastpath: if categories.hasnans: raise ValueError("Categorial categories cannot be null") if not categories.is_unique: raise ValueError("Categorical categories must be unique") if isinstance(categories, ABCCategoricalIndex): categories = categories.categories return categories def update_dtype( self, dtype: Union[str_type, "CategoricalDtype"] ) -> "CategoricalDtype": """ Returns a CategoricalDtype with categories and ordered taken from dtype if specified, otherwise falling back to self if unspecified Parameters ---------- dtype : CategoricalDtype Returns ------- new_dtype : CategoricalDtype """ if isinstance(dtype, str) and dtype == "category": # dtype='category' should not change anything return self elif not self.is_dtype(dtype): msg = ( "a CategoricalDtype must be passed to perform an update, " "got {dtype!r}" ).format(dtype=dtype) raise ValueError(msg) else: # from here on, dtype is a CategoricalDtype dtype = cast(CategoricalDtype, dtype) # dtype is CDT: keep current categories/ordered if None new_categories = dtype.categories if new_categories is None: new_categories = self.categories new_ordered = dtype._ordered new_ordered_from_sentinel = dtype._ordered_from_sentinel if new_ordered is None: # maintain existing ordered if new dtype has ordered=None new_ordered = self._ordered if self._ordered and new_ordered_from_sentinel: # only warn if we'd actually change the existing behavior msg = ( "Constructing a CategoricalDtype without specifying " "`ordered` will default to `ordered=False` in a future " "version, which will cause the resulting categorical's " "`ordered` attribute to change to False; `ordered=True`" " must be explicitly passed in order to be retained" ) warnings.warn(msg, FutureWarning, stacklevel=3) return CategoricalDtype(new_categories, new_ordered) @property def categories(self): """ An ``Index`` containing the unique categories allowed. """ return self._categories @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ # TODO: remove if block when ordered=None as default is deprecated if self._ordered_from_sentinel and self._ordered is None: # warn when accessing ordered if ordered=None and None was not # explicitly passed to the constructor msg = ( "Constructing a CategoricalDtype without specifying " "`ordered` will default to `ordered=False` in a future " "version; `ordered=None` must be explicitly passed." ) warnings.warn(msg, FutureWarning, stacklevel=2) return self._ordered @property def _is_boolean(self) -> bool: from pandas.core.dtypes.common import is_bool_dtype return is_bool_dtype(self.categories) @register_extension_dtype class DatetimeTZDtype(PandasExtensionDtype): """ An ExtensionDtype for timezone-aware datetime data. **This is not an actual numpy dtype**, but a duck type. Parameters ---------- unit : str, default "ns" The precision of the datetime data. Currently limited to ``"ns"``. tz : str, int, or datetime.tzinfo The timezone. Attributes ---------- unit tz Methods ------- None Raises ------ pytz.UnknownTimeZoneError When the requested timezone cannot be found. Examples -------- >>> pd.DatetimeTZDtype(tz='UTC') datetime64[ns, UTC] >>> pd.DatetimeTZDtype(tz='dateutil/US/Central') datetime64[ns, tzfile('/usr/share/zoneinfo/US/Central')] """ type = Timestamp # type: Type[Timestamp] kind = "M" # type: str_type str = "|M8[ns]" num = 101 base = np.dtype("M8[ns]") na_value = NaT _metadata = ("unit", "tz") _match = re.compile(r"(datetime64|M8)\[(?P<unit>.+), (?P<tz>.+)\]") _cache = {} # type: Dict[str_type, PandasExtensionDtype] def __init__(self, unit="ns", tz=None): if isinstance(unit, DatetimeTZDtype): unit, tz = unit.unit, unit.tz if unit != "ns": if isinstance(unit, str) and tz is None: # maybe a string like datetime64[ns, tz], which we support for # now. result = type(self).construct_from_string(unit) unit = result.unit tz = result.tz msg = ( "Passing a dtype alias like 'datetime64[ns, {tz}]' " "to DatetimeTZDtype is deprecated. Use " "'DatetimeTZDtype.construct_from_string()' instead." ) warnings.warn(msg.format(tz=tz), FutureWarning, stacklevel=2) else: raise ValueError("DatetimeTZDtype only supports ns units") if tz: tz = timezones.maybe_get_tz(tz) tz = timezones.tz_standardize(tz) elif tz is not None: raise pytz.UnknownTimeZoneError(tz) if tz is None: raise TypeError("A 'tz' is required.") self._unit = unit self._tz = tz @property def unit(self): """ The precision of the datetime data. """ return self._unit @property def tz(self): """ The timezone. """ return self._tz @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype Returns ------- type """ from pandas.core.arrays import DatetimeArray return DatetimeArray @classmethod def construct_from_string(cls, string): """ Construct a DatetimeTZDtype from a string. Parameters ---------- string : str The string alias for this DatetimeTZDtype. Should be formatted like ``datetime64[ns, <tz>]``, where ``<tz>`` is the timezone name. Examples -------- >>> DatetimeTZDtype.construct_from_string('datetime64[ns, UTC]') datetime64[ns, UTC] """ if isinstance(string, str): msg = "Could not construct DatetimeTZDtype from '{}'" match = cls._match.match(string) if match: d = match.groupdict() try: return cls(unit=d["unit"], tz=d["tz"]) except (KeyError, TypeError, ValueError) as err: # KeyError if maybe_get_tz tries and fails to get a # pytz timezone (actually pytz.UnknownTimeZoneError). # TypeError if we pass a nonsense tz; # ValueError if we pass a unit other than "ns" raise TypeError(msg.format(string)) from err raise TypeError(msg.format(string)) raise TypeError("Could not construct DatetimeTZDtype") def __str__(self): return "datetime64[{unit}, {tz}]".format(unit=self.unit, tz=self.tz) @property def name(self): """A string representation of the dtype.""" return str(self) def __hash__(self): # make myself hashable # TODO: update this. return hash(str(self)) def __eq__(self, other): if isinstance(other, str): return other == self.name return ( isinstance(other, DatetimeTZDtype) and self.unit == other.unit and str(self.tz) == str(other.tz) ) def __setstate__(self, state): # for pickle compat. __get_state__ is defined in the # PandasExtensionDtype superclass and uses the public properties to # pickle -> need to set the settable private ones here (see GH26067) self._tz = state["tz"] self._unit = state["unit"] @register_extension_dtype class PeriodDtype(PandasExtensionDtype): """ An ExtensionDtype for Period data. **This is not an actual numpy dtype**, but a duck type. Parameters ---------- freq : str or DateOffset The frequency of this PeriodDtype Attributes ---------- freq Methods ------- None Examples -------- >>> pd.PeriodDtype(freq='D') period[D] >>> pd.PeriodDtype(freq=pd.offsets.MonthEnd()) period[M] """ type = Period # type: Type[Period] kind = "O" # type: str_type str = "|O08" base = np.dtype("O") num = 102 _metadata = ("freq",) _match = re.compile(r"(P|p)eriod\[(?P<freq>.+)\]") _cache = {} # type: Dict[str_type, PandasExtensionDtype] def __new__(cls, freq=None): """ Parameters ---------- freq : frequency """ if isinstance(freq, PeriodDtype): return freq elif freq is None: # empty constructor for pickle compat u = object.__new__(cls) u._freq = None return u if not isinstance(freq, ABCDateOffset): freq = cls._parse_dtype_strict(freq) try: return cls._cache[freq.freqstr] except KeyError: u = object.__new__(cls) u._freq = freq cls._cache[freq.freqstr] = u return u @property def freq(self): """ The frequency object of this PeriodDtype. """ return self._freq @classmethod def _parse_dtype_strict(cls, freq): if isinstance(freq, str): if freq.startswith("period[") or freq.startswith("Period["): m = cls._match.search(freq) if m is not None: freq = m.group("freq") from pandas.tseries.frequencies import to_offset freq = to_offset(freq) if freq is not None: return freq raise ValueError("could not construct PeriodDtype") @classmethod def construct_from_string(cls, string): """ Strict construction from a string, raise a TypeError if not possible """ if ( isinstance(string, str) and (string.startswith("period[") or string.startswith("Period[")) or isinstance(string, ABCDateOffset) ): # do not parse string like U as period[U] # avoid tuple to be regarded as freq try: return cls(freq=string) except ValueError: pass raise TypeError("could not construct PeriodDtype") def __str__(self): return self.name @property def name(self): return "period[{freq}]".format(freq=self.freq.freqstr) @property def na_value(self): return NaT def __hash__(self): # make myself hashable return hash(str(self)) def __eq__(self, other): if isinstance(other, str): return other == self.name or other == self.name.title() return isinstance(other, PeriodDtype) and self.freq == other.freq def __setstate__(self, state): # for pickle compat. __get_state__ is defined in the # PandasExtensionDtype superclass and uses the public properties to # pickle -> need to set the settable private ones here (see GH26067) self._freq = state["freq"] @classmethod def is_dtype(cls, dtype): """ Return a boolean if we if the passed type is an actual dtype that we can match (via string or type) """ if isinstance(dtype, str): # PeriodDtype can be instantiated from freq string like "U", # but doesn't regard freq str like "U" as dtype. if dtype.startswith("period[") or dtype.startswith("Period["): try: if cls._parse_dtype_strict(dtype) is not None: return True else: return False except ValueError: return False else: return False return super().is_dtype(dtype) @classmethod def construct_array_type(cls): from pandas.core.arrays import PeriodArray return PeriodArray @register_extension_dtype class IntervalDtype(PandasExtensionDtype): """ An ExtensionDtype for Interval data. **This is not an actual numpy dtype**, but a duck type. Parameters ---------- subtype : str, np.dtype The dtype of the Interval bounds. Attributes ---------- subtype Methods ------- None Examples -------- >>> pd.IntervalDtype(subtype='int64') interval[int64] """ name = "interval" kind = None # type: Optional[str_type] str = "|O08" base = np.dtype("O") num = 103 _metadata = ("subtype",) _match = re.compile(r"(I|i)nterval\[(?P<subtype>.+)\]") _cache = {} # type: Dict[str_type, PandasExtensionDtype] def __new__(cls, subtype=None): from pandas.core.dtypes.common import ( is_categorical_dtype, is_string_dtype, pandas_dtype, ) if isinstance(subtype, IntervalDtype): return subtype elif subtype is None: # we are called as an empty constructor # generally for pickle compat u = object.__new__(cls) u._subtype = None return u elif isinstance(subtype, str) and subtype.lower() == "interval": subtype = None else: if isinstance(subtype, str): m = cls._match.search(subtype) if m is not None: subtype = m.group("subtype") try: subtype = pandas_dtype(subtype) except TypeError: raise TypeError("could not construct IntervalDtype") if is_categorical_dtype(subtype) or is_string_dtype(subtype): # GH 19016 msg = ( "category, object, and string subtypes are not supported " "for IntervalDtype" ) raise TypeError(msg) try: return cls._cache[str(subtype)] except KeyError: u = object.__new__(cls) u._subtype = subtype cls._cache[str(subtype)] = u return u @property def subtype(self): """ The dtype of the Interval bounds. """ return self._subtype @classmethod def construct_array_type(cls): """ Return the array type associated with this dtype Returns ------- type """ from pandas.core.arrays import IntervalArray return IntervalArray @classmethod def construct_from_string(cls, string): """ attempt to construct this type from a string, raise a TypeError if its not possible """ if not isinstance(string, str): msg = "a string needs to be passed, got type {typ}" raise TypeError(msg.format(typ=type(string))) if string.lower() == "interval" or cls._match.search(string) is not None: return cls(string) msg = ( "Incorrectly formatted string passed to constructor. " "Valid formats include Interval or Interval[dtype] " "where dtype is numeric, datetime, or timedelta" ) raise TypeError(msg) @property def type(self): return Interval def __str__(self): if self.subtype is None: return "interval" return "interval[{subtype}]".format(subtype=self.subtype) def __hash__(self): # make myself hashable return hash(str(self)) def __eq__(self, other): if isinstance(other, str): return other.lower() in (self.name.lower(), str(self).lower()) elif not isinstance(other, IntervalDtype): return False elif self.subtype is None or other.subtype is None: # None should match any subtype return True else: from pandas.core.dtypes.common import is_dtype_equal return is_dtype_equal(self.subtype, other.subtype) def __setstate__(self, state): # for pickle compat. __get_state__ is defined in the # PandasExtensionDtype superclass and uses the public properties to # pickle -> need to set the settable private ones here (see GH26067) self._subtype = state["subtype"] @classmethod def is_dtype(cls, dtype): """ Return a boolean if we if the passed type is an actual dtype that we can match (via string or type) """ if isinstance(dtype, str): if dtype.lower().startswith("interval"): try: if cls.construct_from_string(dtype) is not None: return True else: return False except (ValueError, TypeError): return False else: return False return super().is_dtype(dtype)
BugsInPy/BugsInPy/temp/projects/pandas/bug-147-fixed/pandas/pandas/core/dtypes/dtypes.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-147-buggy/pandas/pandas/core/dtypes/dtypes.py
pandas-bug-41
from datetime import datetime, timedelta import functools import inspect import re from typing import Any, List import warnings import numpy as np from pandas._libs import NaT, Timestamp, algos as libalgos, lib, tslib, writers import pandas._libs.internals as libinternals from pandas._libs.tslibs import Timedelta, conversion from pandas._libs.tslibs.timezones import tz_compare from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( astype_nansafe, convert_scalar_for_putitemlike, find_common_type, infer_dtype_from, infer_dtype_from_scalar, maybe_downcast_numeric, maybe_downcast_to_dtype, maybe_infer_dtype_type, maybe_promote, maybe_upcast, soft_convert_objects, ) from pandas.core.dtypes.common import ( _NS_DTYPE, _TD_DTYPE, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_interval_dtype, is_list_like, is_object_dtype, is_period_dtype, is_re, is_re_compilable, is_sparse, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.concat import concat_categorical, concat_datetime from pandas.core.dtypes.dtypes import CategoricalDtype, ExtensionDtype from pandas.core.dtypes.generic import ( ABCDataFrame, ABCExtensionArray, ABCPandasArray, ABCSeries, ) from pandas.core.dtypes.missing import ( _isna_compat, array_equivalent, is_valid_nat_for_dtype, isna, ) import pandas.core.algorithms as algos from pandas.core.array_algos.transforms import shift from pandas.core.arrays import ( Categorical, DatetimeArray, ExtensionArray, PandasArray, PandasDtype, TimedeltaArray, ) from pandas.core.base import PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import ( check_setitem_lengths, is_empty_indexer, is_scalar_indexer, ) import pandas.core.missing as missing from pandas.core.nanops import nanpercentile class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ["_mgr_locs", "values", "ndim"] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_datetimetz = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_extension = False _can_hold_na = False _can_consolidate = True _verify_integrity = True _validate_ndim = True _concatenator = staticmethod(np.concatenate) def __init__(self, values, placement, ndim=None): self.ndim = self._check_ndim(values, ndim) self.mgr_locs = placement self.values = values if self._validate_ndim and self.ndim and len(self.mgr_locs) != len(self.values): raise ValueError( f"Wrong number of items passed {len(self.values)}, " f"placement implies {len(self.mgr_locs)}" ) def _check_ndim(self, values, ndim): """ ndim inference and validation. Infers ndim from 'values' if not provided to __init__. Validates that values.ndim and ndim are consistent if and only if the class variable '_validate_ndim' is True. Parameters ---------- values : array-like ndim : int or None Returns ------- ndim : int Raises ------ ValueError : the number of dimensions do not match """ if ndim is None: ndim = values.ndim if self._validate_ndim and values.ndim != ndim: raise ValueError( "Wrong number of dimensions. " f"values.ndim != ndim [{values.ndim} != {ndim}]" ) return ndim @property def _holder(self): """ The array-like that can hold the underlying values. None for 'Block', overridden by subclasses that don't use an ndarray. """ return None @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self) -> bool: return self.ndim == 1 @property def is_view(self) -> bool: """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self) -> bool: """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype) -> bool: """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if dtype is Categorical or dtype is CategoricalDtype: # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError(f"invalid type {dtype} for astype") elif is_categorical_dtype(dtype): return True return False def external_values(self): """ The array that Series.values returns (public attribute). This has some historical constraints, and is overridden in block subclasses to return the correct array (e.g. period returns object ndarray and datetimetz a datetime64[ns] ndarray instead of proper extension array). """ return self.values def internal_values(self): """ The array that Series._values returns (internal values). """ return self.values def array_values(self) -> ExtensionArray: """ The array that Series.array returns. Always an ExtensionArray. """ return PandasArray(self.values) def get_values(self, dtype=None): """ return an internal format, currently just the ndarray this is often overridden to handle to_dense like operations """ if is_object_dtype(dtype): return self.values.astype(object) return self.values def get_block_values_for_json(self) -> np.ndarray: """ This is used in the JSON C code. """ # TODO(2DEA): reshape will be unnecessary with 2D EAs return np.asarray(self.values).reshape(self.shape) @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, libinternals.BlockPlacement): new_mgr_locs = libinternals.BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def make_block(self, values, placement=None) -> "Block": """ Create a new block, with type inference propagate any values that are not specified """ if placement is None: placement = self.mgr_locs return make_block(values, placement=placement, ndim=self.ndim) def make_block_same_class(self, values, placement=None, ndim=None): """ Wrap given values in a block of same type as self. """ if placement is None: placement = self.mgr_locs if ndim is None: ndim = self.ndim return make_block(values, placement=placement, ndim=ndim, klass=type(self)) def __repr__(self) -> str: # don't want to print out all of the items here name = type(self).__name__ if self._is_single_block: result = f"{name}: {len(self)} dtype: {self.dtype}" else: shape = " x ".join(str(s) for s in self.shape) result = f"{name}: {self.mgr_locs.indexer}, {shape}, dtype: {self.dtype}" return result def __len__(self) -> int: return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = libinternals.BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: axis0_slicer = slicer[0] if isinstance(slicer, tuple) else slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def dtype(self): return self.values.dtype def merge(self, other): return _merge_blocks([self, other]) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) return self.make_block_same_class( values, placement=placement or slice(0, len(values), 1) ) def iget(self, i): return self.values[i] def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc) -> None: """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs) -> List["Block"]: """ apply the function to my values; return a block if we are not one """ with np.errstate(all="ignore"): result = func(self.values, **kwargs) return self._split_op_result(result) def _split_op_result(self, result) -> List["Block"]: # See also: split_and_operate if is_extension_array_dtype(result) and result.ndim > 1: # if we get a 2D ExtensionArray, we need to split it into 1D pieces nbs = [] for i, loc in enumerate(self.mgr_locs): vals = result[i] nv = _block_shape(vals, ndim=self.ndim) block = self.make_block(values=nv, placement=[loc]) nbs.append(block) return nbs if not isinstance(result, Block): result = self.make_block(values=_block_shape(result, ndim=self.ndim)) return [result] def fillna( self, value, limit=None, inplace: bool = False, downcast=None ) -> List["Block"]: """ fillna on the block with the value. If we fail, then convert to ObjectBlock and try again """ inplace = validate_bool_kwarg(inplace, "inplace") mask = isna(self.values) if limit is not None: limit = libalgos._validate_limit(None, limit=limit) mask[mask.cumsum(self.ndim - 1) > limit] = False if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] if self._can_hold_element(value): # equivalent: _try_coerce_args(value) would not raise blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) # we can't process the value, but nothing to do if not mask.any(): return [self] if inplace else [self.copy()] # operate column-by-column def f(mask, val, idx): block = self.coerce_to_target_dtype(value) # slice out our block if idx is not None: # i.e. self.ndim == 2 block = block.getitem_block(slice(idx, idx + 1)) return block.fillna(value, limit=limit, inplace=inplace, downcast=None) return self.split_and_operate(None, f, inplace) def split_and_operate(self, mask, f, inplace: bool) -> List["Block"]: """ split the block per-column, and apply the callable f per-column, return a new block for each. Handle masking which will not change a block unless needed. Parameters ---------- mask : 2-d boolean mask f : callable accepting (1d-mask, 1d values, indexer) inplace : boolean Returns ------- list of blocks """ if mask is None: mask = np.broadcast_to(True, shape=self.shape) new_values = self.values def make_a_block(nv, ref_loc): if isinstance(nv, list): assert len(nv) == 1, nv assert isinstance(nv[0], Block) block = nv[0] else: # Put back the dimension that was taken from it and make # a block out of the result. nv = _block_shape(nv, ndim=self.ndim) block = self.make_block(values=nv, placement=ref_loc) return block # ndim == 1 if self.ndim == 1: if mask.any(): nv = f(mask, new_values, None) else: nv = new_values if inplace else new_values.copy() block = make_a_block(nv, self.mgr_locs) return [block] # ndim > 1 new_blocks = [] for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): nv = f(m, v, i) else: nv = v if inplace else v.copy() block = make_a_block(nv, [ref_loc]) new_blocks.append(block) return new_blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: # no need to downcast our float # unless indicated if downcast is None and ( self.is_float or self.is_timedelta or self.is_datetime ): return blocks return _extend_blocks([b.downcast(downcast) for b in blocks]) def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return self values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = "infer" nv = maybe_downcast_to_dtype(values, dtypes) return self.make_block(nv) # ndim > 1 if dtypes is None: return self if not (dtypes == "infer" or isinstance(dtypes, dict)): raise ValueError( "downcast must have a dictionary or 'infer' as its argument" ) elif dtypes != "infer": raise AssertionError("dtypes as dict is not supported yet") # operate column-by-column # this is expensive as it splits the blocks items-by-item def f(mask, val, idx): val = maybe_downcast_to_dtype(val, dtype="infer") return val return self.split_and_operate(None, f, False) def astype(self, dtype, copy: bool = False, errors: str = "raise"): """ Coerce to the new dtype. Parameters ---------- dtype : str, dtype convertible copy : bool, default False copy if indicated errors : str, {'raise', 'ignore'}, default 'ignore' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object Returns ------- Block """ errors_legal_values = ("raise", "ignore") if errors not in errors_legal_values: invalid_arg = ( "Expected value of kwarg 'errors' to be one of " f"{list(errors_legal_values)}. Supplied value is '{errors}'" ) raise ValueError(invalid_arg) if inspect.isclass(dtype) and issubclass(dtype, ExtensionDtype): msg = ( f"Expected an instance of {dtype.__name__}, " "but got the class instead. Try instantiating 'dtype'." ) raise TypeError(msg) # may need to convert to categorical if self.is_categorical_astype(dtype): if is_categorical_dtype(self.values): # GH 10696/18593: update an existing categorical efficiently return self.make_block(self.values.astype(dtype, copy=copy)) return self.make_block(Categorical(self.values, dtype=dtype)) dtype = pandas_dtype(dtype) # astype processing if is_dtype_equal(self.dtype, dtype): if copy: return self.copy() return self # force the copy here if self.is_extension: # TODO: Should we try/except this astype? values = self.values.astype(dtype) else: if issubclass(dtype.type, str): # use native type formatting for datetime/tz/timedelta if self.is_datelike: values = self.to_native_types() # astype formatting else: # Because we have neither is_extension nor is_datelike, # self.values already has the correct shape values = self.values else: values = self.get_values(dtype=dtype) # _astype_nansafe works fine with 1-d only vals1d = values.ravel() try: values = astype_nansafe(vals1d, dtype, copy=True) except (ValueError, TypeError): # e.g. astype_nansafe can fail on object-dtype of strings # trying to convert to float if errors == "raise": raise newb = self.copy() if copy else self return newb # TODO(extension) # should we make this attribute? if isinstance(values, np.ndarray): values = values.reshape(self.shape) newb = make_block(values, placement=self.mgr_locs, ndim=self.ndim) if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError( f"cannot set astype for copy = [{copy}] for dtype " f"({self.dtype.name} [{self.shape}]) to different shape " f"({newb.dtype.name} [{newb.shape}])" ) return newb def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return self.copy() if copy else self def _can_hold_element(self, element: Any) -> bool: """ require the same dtype as ourselves """ dtype = self.values.dtype.type tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, dtype) return isinstance(element, dtype) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) itemsize = writers.word_len(na_rep) if not self.is_object and not quoting and itemsize: values = values.astype(str) if values.dtype.itemsize / np.dtype("U1").itemsize < itemsize: # enlarge for the na_rep values = values.astype(f"<U{itemsize}") else: values = np.array(values, dtype="object") values[mask] = na_rep return values # block actions # def copy(self, deep: bool = True): """ copy constructor """ values = self.values if deep: values = values.copy() return self.make_block_same_class(values, ndim=self.ndim) def replace( self, to_replace, value, inplace: bool = False, filter=None, regex: bool = False, convert: bool = True, ): """ replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility. """ inplace = validate_bool_kwarg(inplace, "inplace") original_to_replace = to_replace # If we cannot replace with own dtype, convert to ObjectBlock and # retry if not self._can_hold_element(to_replace): if not isinstance(to_replace, list): if inplace: return [self] return [self.copy()] to_replace = [x for x in to_replace if self._can_hold_element(x)] if not len(to_replace): # GH#28084 avoid costly checks since we can infer # that there is nothing to replace in this block if inplace: return [self] return [self.copy()] if len(to_replace) == 1: # _can_hold_element checks have reduced this back to the # scalar case and we can avoid a costly object cast return self.replace( to_replace[0], value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise AssertionError # try again with a compatible block block = self.astype(object) return block.replace( to_replace=to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) values = self.values if lib.is_scalar(to_replace) and isinstance(values, np.ndarray): # The only non-DatetimeLike class that also has a non-trivial # try_coerce_args is ObjectBlock, but that overrides replace, # so does not get here. to_replace = convert_scalar_for_putitemlike(to_replace, values.dtype) mask = missing.mask_missing(values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] try: blocks = self.putmask(mask, value, inplace=inplace) # Note: it is _not_ the case that self._can_hold_element(value) # is always true at this point. In particular, that can fail # for: # "2u" with bool-dtype, float-dtype # 0.5 with int64-dtype # np.nan with int64-dtype except (TypeError, ValueError): # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise assert not self._can_hold_element(value), value # try again with a compatible block block = self.astype(object) return block.replace( to_replace=original_to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) if convert: blocks = [b.convert(numeric=False, copy=not inplace) for b in blocks] return blocks def _replace_single(self, *args, **kwargs): """ no-op on a non-ObjectBlock """ return self if kwargs["inplace"] else self.copy() def setitem(self, indexer, value): """ Set the value inplace, returning a a maybe different typed block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ transpose = self.ndim == 2 if isinstance(indexer, np.ndarray) and indexer.ndim > self.ndim: raise ValueError(f"Cannot set values with ndim > {self.ndim}") # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce if block dtype can store value values = self.values if self._can_hold_element(value): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(value): value = convert_scalar_for_putitemlike(value, values.dtype) else: # current dtype cannot store value, coerce to common dtype find_dtype = False if hasattr(value, "dtype"): dtype = value.dtype find_dtype = True elif lib.is_scalar(value) and not isna(value): dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) find_dtype = True if find_dtype: dtype = find_common_type([values.dtype, dtype]) if not is_dtype_equal(self.dtype, dtype): b = self.astype(dtype) return b.setitem(indexer, value) # value must be storeable at this moment if is_extension_array_dtype(getattr(value, "dtype", None)): # We need to be careful not to allow through strings that # can be parsed to EADtypes arr_value = value else: arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = maybe_promote(arr_value.dtype) values = values.astype(dtype) if transpose: values = values.T # length checking check_setitem_lengths(indexer, value, values) exact_match = ( len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and arr_value.size == values.size ) if is_empty_indexer(indexer, arr_value): # GH#8669 empty indexers pass elif is_scalar_indexer(indexer, self.ndim): # setting a single element for each dim and with a rhs that could # be e.g. a list; see GH#6043 values[indexer] = value elif ( exact_match and is_categorical_dtype(arr_value.dtype) and not is_categorical_dtype(values) ): # GH25495 - If the current dtype is not categorical, # we need to create a new categorical block values[indexer] = value return self.make_block(Categorical(self.values, dtype=arr_value.dtype)) # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif exact_match: # We are setting _all_ of the array's values, so can cast to new dtype values[indexer] = value values = values.astype(arr_value.dtype, copy=False) # set else: values[indexer] = value if transpose: values = values.T block = self.make_block(values) return block def putmask( self, mask, new, align: bool = True, inplace: bool = False, axis: int = 0, transpose: bool = False, ): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False axis : int transpose : boolean Set to True if self is stored with axes reversed Returns ------- a list of new blocks, the result of the putmask """ new_values = self.values if inplace else self.values.copy() new = getattr(new, "values", new) mask = getattr(mask, "values", mask) # if we are passed a scalar None, convert it here if not is_list_like(new) and isna(new) and not self.is_object: # FIXME: make sure we have compatible NA new = self.fill_value if self._can_hold_element(new): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(new): new = convert_scalar_for_putitemlike(new, new_values.dtype) if transpose: new_values = new_values.T # If the default repeat behavior in np.putmask would go in the # wrong direction, then explicitly repeat and reshape new instead if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim and axis == 1: new = np.repeat(new, new_values.shape[-1]).reshape(self.shape) new = new.astype(new_values.dtype) # we require exact matches between the len of the # values we are setting (or is compat). np.putmask # doesn't check this and will simply truncate / pad # the output, but we want sane error messages # # TODO: this prob needs some better checking # for 2D cases if ( is_list_like(new) and np.any(mask[mask]) and getattr(new, "ndim", 1) == 1 ): if mask[mask].shape[-1] == len(new): # GH 30567 # If length of ``new`` is less than the length of ``new_values``, # `np.putmask` would first repeat the ``new`` array and then # assign the masked values hence produces incorrect result. # `np.place` on the other hand uses the ``new`` values at it is # to place in the masked locations of ``new_values`` np.place(new_values, mask, new) elif mask.shape[-1] == len(new) or len(new) == 1: np.putmask(new_values, mask, new) else: raise ValueError("cannot assign mismatch length to masked array") else: np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): if transpose: mask = mask.T if isinstance(new, np.ndarray): new = new.T axis = new_values.ndim - axis - 1 # Pseudo-broadcast if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim: new_shape = list(new.shape) new_shape.insert(axis, 1) new = new.reshape(tuple(new_shape)) # operate column-by-column def f(mask, val, idx): if idx is None: # ndim==1 case. n = new else: if isinstance(new, np.ndarray): n = np.squeeze(new[idx % new.shape[0]]) else: n = np.array(new) # type of the new block dtype, _ = maybe_promote(n.dtype) # we need to explicitly astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(val, mask, n) return nv new_blocks = self.split_and_operate(mask, f, inplace) return new_blocks if inplace: return [self] if transpose: new_values = new_values.T return [self.make_block(new_values)] def coerce_to_target_dtype(self, other): """ coerce the current block to a dtype compat for other we will return a block, possibly object, and not raise we can also safely try to coerce to the same dtype and will receive the same block """ # if we cannot then coerce to object dtype, _ = infer_dtype_from(other, pandas_dtype=True) if is_dtype_equal(self.dtype, dtype): return self if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype): # we don't upcast to bool return self.astype(object) elif (self.is_float or self.is_complex) and ( is_integer_dtype(dtype) or is_float_dtype(dtype) ): # don't coerce float/complex to int return self elif ( self.is_datetime or is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) ): # not a datetime if not ( (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype)) and self.is_datetime ): return self.astype(object) # don't upcast timezone with different timezone or no timezone mytz = getattr(self.dtype, "tz", None) othertz = getattr(dtype, "tz", None) if not tz_compare(mytz, othertz): return self.astype(object) raise AssertionError( f"possible recursion in coerce_to_target_dtype: {self} {other}" ) elif self.is_timedelta or is_timedelta64_dtype(dtype): # not a timedelta if not (is_timedelta64_dtype(dtype) and self.is_timedelta): return self.astype(object) raise AssertionError( f"possible recursion in coerce_to_target_dtype: {self} {other}" ) try: return self.astype(dtype) except (ValueError, TypeError, OverflowError): return self.astype(object) def interpolate( self, method="pad", axis=0, index=None, inplace=False, limit=None, limit_direction="forward", limit_area=None, fill_value=None, coerce=False, downcast=None, **kwargs, ): inplace = validate_bool_kwarg(inplace, "inplace") def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = missing.clean_fill_method(method) except ValueError: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill( method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast, ) # validate the interp method m = missing.clean_interp_method(method, **kwargs) r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate( method=m, index=index, axis=axis, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs, ) def _interpolate_with_fill( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, ) -> List["Block"]: """ fillna but using the interpolate machinery """ inplace = validate_bool_kwarg(inplace, "inplace") # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] values = self.values if inplace else self.values.copy() # We only get here for non-ExtensionBlock fill_value = convert_scalar_for_putitemlike(fill_value, self.values.dtype) values = missing.interpolate_2d( values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype, ) blocks = [self.make_block_same_class(values, ndim=self.ndim)] return self._maybe_downcast(blocks, downcast) def _interpolate( self, method=None, index=None, fill_value=None, axis=0, limit=None, limit_direction="forward", limit_area=None, inplace=False, downcast=None, **kwargs, ) -> List["Block"]: """ interpolate using scipy wrappers """ inplace = validate_bool_kwarg(inplace, "inplace") data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return [self] data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ("krogh", "piecewise_polynomial", "pchip"): if not index.is_monotonic: raise ValueError( f"{method} interpolation requires that the index be monotonic." ) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to missing.interpolate_1d return missing.interpolate_1d( index, x, method=method, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, bounds_error=False, **kwargs, ) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [self.make_block_same_class(interp_values)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis: int, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ # algos.take_nd dispatches for DatetimeTZBlock, CategoricalBlock # so need to preserve types # sparse is treated like an ndarray, but needs .get_values() shaping values = self.values if fill_tuple is None: fill_value = self.fill_value allow_fill = False else: fill_value = fill_tuple[0] allow_fill = True new_values = algos.take_nd( values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value ) # Called from three places in managers, all of which satisfy # this assertion assert not (axis == 0 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs if not is_dtype_equal(new_values.dtype, self.dtype): return self.make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def diff(self, n: int, axis: int = 1) -> List["Block"]: """ return block for the diff of the values """ new_values = algos.diff(self.values, n, axis=axis, stacklevel=7) # We use block_shape for ExtensionBlock subclasses, which may call here # via a super. new_values = _block_shape(new_values, ndim=self.ndim) return [self.make_block(values=new_values)] def shift(self, periods, axis: int = 0, fill_value=None): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = maybe_upcast(self.values, fill_value) new_values = shift(new_values, periods, axis, fill_value) return [self.make_block(new_values)] def where( self, other, cond, align: bool = True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : bool, default True Perform alignment on other/cond. errors : str, {'raise', 'ignore'}, default 'raise' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object axis : int, default 0 Returns ------- a new block(s), the result of the func """ import pandas.core.computation.expressions as expressions assert errors in ["raise", "ignore"] transpose = self.ndim == 2 values = self.values orig_other = other if transpose: values = values.T other = getattr(other, "_values", getattr(other, "values", other)) cond = getattr(cond, "values", cond) # If the default broadcasting would go in the wrong direction, then # explicitly reshape other instead if getattr(other, "ndim", 0) >= 1: if values.ndim - 1 == other.ndim and axis == 1: other = other.reshape(tuple(other.shape + (1,))) elif transpose and values.ndim == self.ndim - 1: cond = cond.T if not hasattr(cond, "shape"): raise ValueError("where must have a condition that is ndarray like") def where_func(cond, values, other): if not ( (self.is_integer or self.is_bool) and lib.is_float(other) and np.isnan(other) ): # np.where will cast integer array to floats in this case if not self._can_hold_element(other): raise TypeError if lib.is_scalar(other) and isinstance(values, np.ndarray): # convert datetime to datetime64, timedelta to timedelta64 other = convert_scalar_for_putitemlike(other, values.dtype) # By the time we get here, we should have all Series/Index # args extracted to ndarray fastres = expressions.where(cond, values, other) return fastres if cond.ravel().all(): result = values else: # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) try: result = where_func(cond, values, other) except TypeError: # we cannot coerce, return a compat dtype # we are explicitly ignoring errors block = self.coerce_to_target_dtype(other) blocks = block.where( orig_other, cond, align=align, errors=errors, try_cast=try_cast, axis=axis, ) return self._maybe_downcast(blocks, "infer") if self._can_hold_na or self.ndim == 1: if transpose: result = result.T return [self.make_block(result)] # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): taken = result.take(m.nonzero()[0], axis=axis) r = maybe_downcast_numeric(taken, self.dtype) nb = self.make_block(r.T, placement=self.mgr_locs[m]) result_blocks.append(nb) return result_blocks def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): """ Return a list of unstacked blocks of self Parameters ---------- unstacker_func : callable Partially applied unstacker. new_columns : Index All columns of the unstacked BlockManager. n_rows : int Only used in ExtensionBlock._unstack fill_value : int Only used in ExtensionBlock._unstack Returns ------- blocks : list of Block New blocks of unstacked values. mask : array_like of bool The mask of columns of `blocks` we should keep. """ unstacker = unstacker_func(self.values.T) new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) new_values = new_values.T[mask] new_placement = new_placement[mask] blocks = [make_block(new_values, placement=new_placement)] return blocks, mask def quantile(self, qs, interpolation="linear", axis: int = 0): """ compute the quantiles of the Parameters ---------- qs: a scalar or list of the quantiles to be computed interpolation: type of interpolation, default 'linear' axis: axis to compute, default 0 Returns ------- Block """ # We should always have ndim == 2 because Series dispatches to DataFrame assert self.ndim == 2 values = self.get_values() is_empty = values.shape[axis] == 0 orig_scalar = not is_list_like(qs) if orig_scalar: # make list-like, unpack later qs = [qs] if is_empty: # create the array of na_values # 2d len(values) * len(qs) result = np.repeat( np.array([self.fill_value] * len(qs)), len(values) ).reshape(len(values), len(qs)) else: # asarray needed for Sparse, see GH#24600 mask = np.asarray(isna(values)) result = nanpercentile( values, np.array(qs) * 100, axis=axis, na_value=self.fill_value, mask=mask, ndim=values.ndim, interpolation=interpolation, ) result = np.array(result, copy=False) result = result.T if orig_scalar and not lib.is_scalar(result): # result could be scalar in case with is_empty and self.ndim == 1 assert result.shape[-1] == 1, result.shape result = result[..., 0] result = lib.item_from_zerodim(result) ndim = np.ndim(result) return make_block(result, placement=np.arange(len(result)), ndim=ndim) def _replace_coerce( self, to_replace, value, inplace: bool = True, regex: bool = False, convert: bool = False, mask=None, ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default True Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): if not regex: self = self.coerce_to_target_dtype(value) return self.putmask(mask, value, inplace=inplace) else: return self._replace_single( to_replace, value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) return self class ExtensionBlock(Block): """ Block for holding extension types. Notes ----- This holds all 3rd-party extension array types. It's also the immediate parent class for our internal extension types' blocks, CategoricalBlock. ExtensionArrays are limited to 1-D. """ _can_consolidate = False _verify_integrity = False _validate_ndim = False is_extension = True def __init__(self, values, placement, ndim=None): """ Initialize a non-consolidatable block. 'ndim' may be inferred from 'placement'. This will call continue to call __init__ for the other base classes mixed in with this Mixin. """ values = self._maybe_coerce_values(values) # Placement must be converted to BlockPlacement so that we can check # its length if not isinstance(placement, libinternals.BlockPlacement): placement = libinternals.BlockPlacement(placement) # Maybe infer ndim from placement if ndim is None: if len(placement) != 1: ndim = 1 else: ndim = 2 super().__init__(values, placement, ndim=ndim) if self.ndim == 2 and len(self.mgr_locs) != 1: # TODO(2DEA): check unnecessary with 2D EAs raise AssertionError("block.size != values.size") @property def shape(self): if self.ndim == 1: return ((len(self.values)),) return (len(self.mgr_locs), len(self.values)) def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if not com.is_null_slice(col) and col != 0: raise IndexError(f"{self} only contains one item") elif isinstance(col, slice): if col != slice(None): raise NotImplementedError(col) return self.values[[loc]] return self.values[loc] else: if col != 0: raise IndexError(f"{self} only contains one item") return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def putmask( self, mask, new, align=True, inplace=False, axis=0, transpose=False, ): """ putmask the data to the block; we must be a single block and not generate other blocks return the resulting block Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block, the result of the putmask """ inplace = validate_bool_kwarg(inplace, "inplace") # use block's copy logic. # .values may be an Index which does shallow copy by default new_values = self.values if inplace else self.copy().values if isinstance(new, np.ndarray) and len(new) == len(mask): new = new[mask] mask = _safe_reshape(mask, new_values.shape) new_values[mask] = new return [self.make_block(values=new_values)] def _get_unstack_items(self, unstacker, new_columns): """ Get the placement, values, and mask for a Block unstack. This is shared between ObjectBlock and ExtensionBlock. They differ in that ObjectBlock passes the values, while ExtensionBlock passes the dummy ndarray of positions to be used by a take later. Parameters ---------- unstacker : pandas.core.reshape.reshape._Unstacker new_columns : Index All columns of the unstacked BlockManager. Returns ------- new_placement : ndarray[int] The placement of the new columns in `new_columns`. new_values : Union[ndarray, ExtensionArray] The first return value from _Unstacker.get_new_values. mask : ndarray[bool] The second return value from _Unstacker.get_new_values. """ # shared with ExtensionBlock new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) return new_placement, new_values, mask def _maybe_coerce_values(self, values): """ Unbox to an extension array. This will unbox an ExtensionArray stored in an Index or Series. ExtensionArrays pass through. No dtype coercion is done. Parameters ---------- values : Index, Series, ExtensionArray Returns ------- ExtensionArray """ return extract_array(values) @property def _holder(self): # For extension blocks, the holder is values-dependent. return type(self.values) @property def fill_value(self): # Used in reindex_indexer return self.values.dtype.na_value @property def _can_hold_na(self): # The default ExtensionArray._can_hold_na is True return self._holder._can_hold_na @property def is_view(self) -> bool: """Extension arrays are never treated as views.""" return False @property def is_numeric(self): return self.values.dtype._is_numeric def setitem(self, indexer, value): """ Set the value inplace, returning a same-typed block. This differs from Block.setitem by not allowing setitem to change the dtype of the Block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ if isinstance(indexer, tuple): # we are always 1-D indexer = indexer[0] check_setitem_lengths(indexer, value, self.values) self.values[indexer] = value return self def get_values(self, dtype=None): # ExtensionArrays must be iterable, so this works. values = np.asarray(self.values) if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def array_values(self) -> ExtensionArray: return self.values def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """override to use ExtensionArray astype for the conversion""" values = self.values if slicer is not None: values = values[slicer] mask = isna(values) values = np.asarray(values.astype(object)) values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def take_nd(self, indexer, axis: int = 0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block. """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take(indexer, fill_value=fill_value, allow_fill=True) # Called from three places in managers, all of which satisfy # this assertion assert not (self.ndim == 1 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def _can_hold_element(self, element: Any) -> bool: # XXX: We may need to think about pushing this onto the array. # We're doing the same as CategoricalBlock here. return True def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have if isinstance(slicer, tuple) and len(slicer) == 2: if not com.is_null_slice(slicer[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") slicer = slicer[1] return self.values[slicer] def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._holder._concat_same_type([blk.values for blk in to_concat]) placement = placement or slice(0, len(values), 1) return self.make_block_same_class(values, ndim=self.ndim, placement=placement) def fillna(self, value, limit=None, inplace=False, downcast=None): values = self.values if inplace else self.values.copy() values = values.fillna(value=value, limit=limit) return [ self.make_block_same_class( values=values, placement=self.mgr_locs, ndim=self.ndim ) ] def interpolate( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, **kwargs ): values = self.values if inplace else self.values.copy() return self.make_block_same_class( values=values.fillna(value=fill_value, method=method, limit=limit), placement=self.mgr_locs, ) def diff(self, n: int, axis: int = 1) -> List["Block"]: if axis == 1: # we are by definition 1D. axis = 0 return super().diff(n, axis) def shift( self, periods: int, axis: int = 0, fill_value: Any = None, ) -> List["ExtensionBlock"]: """ Shift the block by `periods`. Dispatches to underlying ExtensionArray and re-boxes in an ExtensionBlock. """ return [ self.make_block_same_class( self.values.shift(periods=periods, fill_value=fill_value), placement=self.mgr_locs, ndim=self.ndim, ) ] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: if isinstance(other, ABCDataFrame): # ExtensionArrays are 1-D, so if we get here then # `other` should be a DataFrame with a single column. assert other.shape[1] == 1 other = other.iloc[:, 0] other = extract_array(other, extract_numpy=True) if isinstance(cond, ABCDataFrame): assert cond.shape[1] == 1 cond = cond.iloc[:, 0] cond = extract_array(cond, extract_numpy=True) if lib.is_scalar(other) and isna(other): # The default `other` for Series / Frame is np.nan # we want to replace that with the correct NA value # for the type other = self.dtype.na_value if is_sparse(self.values): # TODO(SparseArray.__setitem__): remove this if condition # We need to re-infer the type of the data after doing the # where, for cases where the subtypes don't match dtype = None else: dtype = self.dtype result = self.values.copy() icond = ~cond if lib.is_scalar(other): set_other = other else: set_other = other[icond] try: result[icond] = set_other except (NotImplementedError, TypeError): # NotImplementedError for class not implementing `__setitem__` # TypeError for SparseArray, which implements just to raise # a TypeError result = self._holder._from_sequence( np.where(cond, self.values, other), dtype=dtype ) return [self.make_block_same_class(result, placement=self.mgr_locs)] def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): # ExtensionArray-safe unstack. # We override ObjectBlock._unstack, which unstacks directly on the # values of the array. For EA-backed blocks, this would require # converting to a 2-D ndarray of objects. # Instead, we unstack an ndarray of integer positions, followed by # a `take` on the actual values. dummy_arr = np.arange(n_rows) dummy_unstacker = functools.partial(unstacker_func, fill_value=-1) unstacker = dummy_unstacker(dummy_arr) new_placement, new_values, mask = self._get_unstack_items( unstacker, new_columns ) blocks = [ self.make_block_same_class( self.values.take(indices, allow_fill=True, fill_value=fill_value), [place], ) for indices, place in zip(new_values.T, new_placement) ] return blocks, mask class ObjectValuesExtensionBlock(ExtensionBlock): """ Block providing backwards-compatibility for `.values`. Used by PeriodArray and IntervalArray to ensure that Series[T].values is an ndarray of objects. """ def external_values(self): return self.values.astype(object) class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer)) and not issubclass( tipo.type, (np.datetime64, np.timedelta64) ) return isinstance( element, (float, int, np.floating, np.int_) ) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64), ) def to_native_types( self, slicer=None, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs, ): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] # see gh-13418: no special formatting is desired at the # output (important for appropriate 'quoting' behaviour), # so do not pass it through the FloatArrayFormatter if float_format is None and decimal == ".": mask = isna(values) if not quoting: values = values.astype(str) else: values = np.array(values, dtype="object") values[mask] = na_rep return values from pandas.io.formats.format import FloatArrayFormatter formatter = FloatArrayFormatter( values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False, ) return formatter.get_result_as_array() def should_store(self, value) -> bool: # when inserting a column should not coerce integers to floats # unnecessarily return issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer, np.complexfloating)) return isinstance( element, (float, int, complex, np.float_, np.int_) ) and not isinstance(element, (bool, np.bool_)) def should_store(self, value) -> bool: return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return ( issubclass(tipo.type, np.integer) and not issubclass(tipo.type, (np.datetime64, np.timedelta64)) and self.dtype.itemsize >= tipo.itemsize ) return is_integer(element) def should_store(self, value) -> bool: return is_integer_dtype(value) and value.dtype == self.dtype class DatetimeLikeBlockMixin: """Mixin class for DatetimeBlock, DatetimeTZBlock, and TimedeltaBlock.""" @property def _holder(self): return DatetimeArray @property def fill_value(self): return np.datetime64("NaT", "ns") def get_values(self, dtype=None): """ return object dtype as boxed values, such as Timestamps/Timedelta """ if is_object_dtype(dtype): values = self.values.ravel() result = self._holder(values).astype(object) return result.reshape(self.values.shape) return self.values def internal_values(self): # Override to return DatetimeArray and TimedeltaArray return self.array_values() def iget(self, key): # GH#31649 we need to wrap scalars in Timestamp/Timedelta # TODO(EA2D): this can be removed if we ever have 2D EA result = super().iget(key) if isinstance(result, np.datetime64): result = Timestamp(result) elif isinstance(result, np.timedelta64): result = Timedelta(result) return result def shift(self, periods, axis=0, fill_value=None): # TODO(EA2D) this is unnecessary if these blocks are backed by 2D EAs values = self.array_values() new_values = values.shift(periods, fill_value=fill_value, axis=axis) return self.make_block_same_class(new_values) class DatetimeBlock(DatetimeLikeBlockMixin, Block): __slots__ = () is_datetime = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement=placement, ndim=ndim) @property def _can_hold_na(self): return True def _maybe_coerce_values(self, values): """ Input validation for values passed to __init__. Ensure that we have datetime64ns, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : ndarray[datetime64ns] Overridden by DatetimeTZBlock. """ if values.dtype != _NS_DTYPE: values = conversion.ensure_datetime64ns(values) if isinstance(values, DatetimeArray): values = values._data assert isinstance(values, np.ndarray), type(values) return values def astype(self, dtype, copy: bool = False, errors: str = "raise"): """ these automatically copy, so copy=True has no effect raise on an except if raise == True """ dtype = pandas_dtype(dtype) # if we are passed a datetime64[ns, tz] if is_datetime64tz_dtype(dtype): values = self.values if copy: # this should be the only copy values = values.copy() if getattr(values, "tz", None) is None: values = DatetimeArray(values).tz_localize("UTC") values = values.tz_convert(dtype.tz) return self.make_block(values) # delegate return super().astype(dtype=dtype, copy=copy, errors=errors) def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: if self.is_datetimetz: # require exact match, since non-nano does not exist return is_dtype_equal(tipo, self.dtype) or is_valid_nat_for_dtype( element, self.dtype ) # GH#27419 if we get a non-nano datetime64 object return is_datetime64_dtype(tipo) elif element is NaT: return True elif isinstance(element, datetime): if self.is_datetimetz: return tz_compare(element.tzinfo, self.dtype.tz) return element.tzinfo is None return is_valid_nat_for_dtype(element, self.dtype) def to_native_types( self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs ): """ convert to our native types format, slicing if desired """ values = self.values i8values = self.values.view("i8") if slicer is not None: values = values[..., slicer] i8values = i8values[..., slicer] from pandas.io.formats.format import _get_format_datetime64_from_values fmt = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime( i8values.ravel(), tz=getattr(self.values, "tz", None), format=fmt, na_rep=na_rep, ).reshape(i8values.shape) return np.atleast_2d(result) def should_store(self, value) -> bool: return is_datetime64_dtype(value.dtype) def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ values = conversion.ensure_datetime64ns(values, copy=False) self.values[locs] = values def external_values(self): return np.asarray(self.values.astype("datetime64[ns]", copy=False)) def array_values(self) -> ExtensionArray: return DatetimeArray._simple_new(self.values) class DatetimeTZBlock(ExtensionBlock, DatetimeBlock): """ implement a datetime64 block with a tz attribute """ __slots__ = () is_datetimetz = True is_extension = True internal_values = Block.internal_values _can_hold_element = DatetimeBlock._can_hold_element to_native_types = DatetimeBlock.to_native_types fill_value = np.datetime64("NaT", "ns") @property def _holder(self): return DatetimeArray def _maybe_coerce_values(self, values): """ Input validation for values passed to __init__. Ensure that we have datetime64TZ, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : DatetimeArray """ if not isinstance(values, self._holder): values = self._holder(values) if values.tz is None: raise ValueError("cannot create a DatetimeTZBlock without a tz") return values @property def is_view(self) -> bool: """ return a boolean if I am possibly a view """ # check the ndarray values of the DatetimeIndex values return self.values._data.base is not None def get_values(self, dtype=None): """ Returns an ndarray of values. Parameters ---------- dtype : np.dtype Only `object`-like dtypes are respected here (not sure why). Returns ------- values : ndarray When ``dtype=object``, then and object-dtype ndarray of boxed values is returned. Otherwise, an M8[ns] ndarray is returned. DatetimeArray is always 1-d. ``get_values`` will reshape the return value to be the same dimensionality as the block. """ values = self.values if is_object_dtype(dtype): values = values.astype(object) values = np.asarray(values) if self.ndim == 2: # Ensure that our shape is correct for DataFrame. # ExtensionArrays are always 1-D, even in a DataFrame when # the analogous NumPy-backed column would be a 2-D ndarray. values = values.reshape(1, -1) return values def _slice(self, slicer): """ return a slice of my values """ if isinstance(slicer, tuple): col, loc = slicer if not com.is_null_slice(col) and col != 0: raise IndexError(f"{self} only contains one item") return self.values[loc] return self.values[slicer] def diff(self, n: int, axis: int = 0) -> List["Block"]: """ 1st discrete difference. Parameters ---------- n : int Number of periods to diff. axis : int, default 0 Axis to diff upon. Returns ------- A list with a new TimeDeltaBlock. Notes ----- The arguments here are mimicking shift so they are called correctly by apply. """ if axis == 0: # Cannot currently calculate diff across multiple blocks since this # function is invoked via apply raise NotImplementedError new_values = (self.values - self.shift(n, axis=axis)[0].values).asi8 # Reshape the new_values like how algos.diff does for timedelta data new_values = new_values.reshape(1, len(new_values)) new_values = new_values.astype("timedelta64[ns]") return [TimeDeltaBlock(new_values, placement=self.mgr_locs.indexer)] def concat_same_type(self, to_concat, placement=None): # need to handle concat([tz1, tz2]) here, since DatetimeArray # only handles cases where all the tzs are the same. # Instead of placing the condition here, it could also go into the # is_uniform_join_units check, but I'm not sure what is better. if len({x.dtype for x in to_concat}) > 1: values = concat_datetime([x.values for x in to_concat]) placement = placement or slice(0, len(values), 1) if self.ndim > 1: values = np.atleast_2d(values) return ObjectBlock(values, ndim=self.ndim, placement=placement) return super().concat_same_type(to_concat, placement) def fillna(self, value, limit=None, inplace=False, downcast=None): # We support filling a DatetimeTZ with a `value` whose timezone # is different by coercing to object. if self._can_hold_element(value): return super().fillna(value, limit, inplace, downcast) # different timezones, or a non-tz return self.astype(object).fillna( value, limit=limit, inplace=inplace, downcast=downcast ) def setitem(self, indexer, value): # https://github.com/pandas-dev/pandas/issues/24020 # Need a dedicated setitem until #24020 (type promotion in setitem # for extension arrays) is designed and implemented. if self._can_hold_element(value) or ( isinstance(indexer, np.ndarray) and indexer.size == 0 ): return super().setitem(indexer, value) obj_vals = self.values.astype(object) newb = make_block( obj_vals, placement=self.mgr_locs, klass=ObjectBlock, ndim=self.ndim ) return newb.setitem(indexer, value) def equals(self, other) -> bool: # override for significant performance improvement if self.dtype != other.dtype or self.shape != other.shape: return False return (self.values.view("i8") == other.values.view("i8")).all() def quantile(self, qs, interpolation="linear", axis=0): naive = self.values.view("M8[ns]") # kludge for 2D block with 1D values naive = naive.reshape(self.shape) blk = self.make_block(naive) res_blk = blk.quantile(qs, interpolation=interpolation, axis=axis) # ravel is kludge for 2D block with 1D values, assumes column-like aware = self._holder(res_blk.values.ravel(), dtype=self.dtype) return self.make_block_same_class(aware, ndim=res_blk.ndim) class TimeDeltaBlock(DatetimeLikeBlockMixin, IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False fill_value = np.timedelta64("NaT", "ns") def __init__(self, values, placement, ndim=None): if values.dtype != _TD_DTYPE: values = conversion.ensure_timedelta64ns(values) if isinstance(values, TimedeltaArray): values = values._data assert isinstance(values, np.ndarray), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return TimedeltaArray def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.timedelta64) elif element is NaT: return True elif isinstance(element, (timedelta, np.timedelta64)): return True return is_valid_nat_for_dtype(element, self.dtype) def fillna(self, value, **kwargs): # allow filling with integers to be # interpreted as nanoseconds if is_integer(value): # Deprecation GH#24694, GH#19233 raise TypeError( "Passing integers to fillna for timedelta64[ns] dtype is no " "longer supported. To obtain the old behavior, pass " "`pd.Timedelta(seconds=n)` instead." ) return super().fillna(value, **kwargs) def should_store(self, value) -> bool: return is_timedelta64_dtype(value.dtype) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = "NaT" rvalues[mask] = na_rep imask = (~mask).ravel() # FIXME: # should use the formats.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array( [Timedelta(val)._repr_base(format="all") for val in values.ravel()[imask]], dtype=object, ) return rvalues def external_values(self): return np.asarray(self.values.astype("timedelta64[ns]", copy=False)) def array_values(self) -> ExtensionArray: return TimedeltaArray._simple_new(self.values) class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.bool_) return isinstance(element, (bool, np.bool_)) def should_store(self, value) -> bool: return issubclass(value.dtype.type, np.bool_) and not is_extension_array_dtype( value ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): inplace = validate_bool_kwarg(inplace, "inplace") to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, placement=None, ndim=2): if issubclass(values.dtype.type, str): values = np.array(values, dtype=object) super().__init__(values, ndim=ndim, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # operate column-by-column def f(mask, val, idx): shape = val.shape values = soft_convert_objects( val.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy, ) if isinstance(values, np.ndarray): # TODO: allow EA once reshape is supported values = values.reshape(shape) values = _block_shape(values, ndim=self.ndim) return values if self.ndim == 2: blocks = self.split_and_operate(None, f, False) else: values = f(None, self.values.ravel(), None) blocks = [make_block(values, ndim=self.ndim, placement=self.mgr_locs)] return blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: if downcast is not None: return blocks # split and convert the blocks return _extend_blocks([b.convert(datetime=True, numeric=False) for b in blocks]) def _can_hold_element(self, element: Any) -> bool: return True def should_store(self, value) -> bool: return not ( issubclass( value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_), ) or is_extension_array_dtype(value) ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): to_rep_is_list = is_list_like(to_replace) value_is_list = is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list result_blocks = [] blocks = [self] if not either_list and is_re(to_replace): return self._replace_single( to_replace, value, inplace=inplace, filter=filter, regex=True, convert=convert, ) elif not (either_list or regex): return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) elif both_lists: for to_rep, v in zip(to_replace, value): result_blocks = [] for b in blocks: result = b._replace_single( to_rep, v, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks elif to_rep_is_list and regex: for to_rep in to_replace: result_blocks = [] for b in blocks: result = b._replace_single( to_rep, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks return self._replace_single( to_replace, value, inplace=inplace, filter=filter, convert=convert, regex=regex, ) def _replace_single( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mask=None, ): """ Replace elements by the given value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. filter : list, optional regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- a new block, the result after replacing """ inplace = validate_bool_kwarg(inplace, "inplace") # to_replace is regex compilable to_rep_re = regex and is_re_compilable(to_replace) # regex is regex compilable regex_re = is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError( "only one of to_replace and regex can be regex compilable" ) # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string if is_re(to_replace): pattern = to_replace.pattern else: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex ) new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isna(value) or not isinstance(value, str): def re_replacer(s): if is_re(rx) and isinstance(s, str): return value if rx.search(s) is not None else s else: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): if is_re(rx) and isinstance(s, str): return rx.sub(value, s) else: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] if mask is None: new_values[filt] = f(new_values[filt]) else: new_values[filt][mask] = f(new_values[filt][mask]) # convert block = self.make_block(new_values) if convert: block = block.convert(numeric=False) return block def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): block = super()._replace_coerce( to_replace=to_replace, value=value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) if convert: block = [b.convert(numeric=False, copy=True) for b in block] return block if convert: return [self.convert(numeric=False, copy=True)] return self class CategoricalBlock(ExtensionBlock): __slots__ = () is_categorical = True _verify_integrity = True _can_hold_na = True _concatenator = staticmethod(concat_categorical) def __init__(self, values, placement, ndim=None): # coerce to categorical if we can values = extract_array(values) assert isinstance(values, Categorical), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return Categorical def to_native_types(self, slicer=None, na_rep="", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isna(values) values = np.array(values, dtype="object") values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. Note that this CategoricalBlock._concat_same_type *may* not return a CategoricalBlock. When the categories in `to_concat` differ, this will return an object ndarray. If / when we decide we don't like that behavior: 1. Change Categorical._concat_same_type to use union_categoricals 2. Delete this method. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) # not using self.make_block_same_class as values can be object dtype return make_block( values, placement=placement or slice(0, len(values), 1), ndim=self.ndim ) def replace( self, to_replace, value, inplace: bool = False, filter=None, regex: bool = False, convert: bool = True, ): inplace = validate_bool_kwarg(inplace, "inplace") result = self if inplace else self.copy() if filter is None: # replace was called on a series result.values.replace(to_replace, value, inplace=True) if convert: return result.convert(numeric=False, copy=not inplace) else: return result else: # replace was called on a DataFrame if not isna(value): result.values.add_categories(value, inplace=True) return super(CategoricalBlock, result).replace( to_replace, value, inplace, filter, regex, convert ) # ----------------------------------------------------------------- # Constructor Helpers def get_block_type(values, dtype=None): """ Find the appropriate Block subclass to use for the given values and dtype. Parameters ---------- values : ndarray-like dtype : numpy or pandas dtype Returns ------- cls : class, subclass of Block """ dtype = dtype or values.dtype vtype = dtype.type if is_sparse(dtype): # Need this first(ish) so that Sparse[datetime] is sparse cls = ExtensionBlock elif is_categorical(values): cls = CategoricalBlock elif issubclass(vtype, np.datetime64): assert not is_datetime64tz_dtype(values) cls = DatetimeBlock elif is_datetime64tz_dtype(values): cls = DatetimeTZBlock elif is_interval_dtype(dtype) or is_period_dtype(dtype): cls = ObjectValuesExtensionBlock elif is_extension_array_dtype(values): cls = ExtensionBlock elif issubclass(vtype, np.floating): cls = FloatBlock elif issubclass(vtype, np.timedelta64): assert issubclass(vtype, np.integer) cls = TimeDeltaBlock elif issubclass(vtype, np.complexfloating): cls = ComplexBlock elif issubclass(vtype, np.integer): cls = IntBlock elif dtype == np.bool_: cls = BoolBlock else: cls = ObjectBlock return cls def make_block(values, placement, klass=None, ndim=None, dtype=None): # Ensure that we don't allow PandasArray / PandasDtype in internals. # For now, blocks should be backed by ndarrays when possible. if isinstance(values, ABCPandasArray): values = values.to_numpy() if ndim and ndim > 1: values = np.atleast_2d(values) if isinstance(dtype, PandasDtype): dtype = dtype.numpy_dtype if klass is None: dtype = dtype or values.dtype klass = get_block_type(values, dtype) elif klass is DatetimeTZBlock and not is_datetime64tz_dtype(values): # TODO: This is no longer hit internally; does it need to be retained # for e.g. pyarrow? values = DatetimeArray._simple_new(values, dtype=dtype) return klass(values, ndim=ndim, placement=placement) # ----------------------------------------------------------------- def _extend_blocks(result, blocks=None): """ return a new extended blocks, given the result """ if blocks is None: blocks = [] if isinstance(result, list): for r in result: if isinstance(r, list): blocks.extend(r) else: blocks.append(r) else: assert isinstance(result, Block), type(result) blocks.append(result) return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim < ndim: if shape is None: shape = values.shape if not is_extension_array_dtype(values): # TODO: https://github.com/pandas-dev/pandas/issues/23023 # block.shape is incorrect for "2D" ExtensionArrays # We can't, and don't need to, reshape. values = values.reshape(tuple((1,) + shape)) return values def _merge_blocks(blocks, dtype=None, _can_consolidate=True): if len(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if len({b.dtype for b in blocks}) != 1: raise AssertionError("_merge_blocks are invalid!") # FIXME: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) new_values = np.vstack([b.values for b in blocks]) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, placement=new_mgr_locs) # no merge return blocks def _safe_reshape(arr, new_shape): """ If possible, reshape `arr` to have shape `new_shape`, with a couple of exceptions (see gh-13012): 1) If `arr` is a ExtensionArray or Index, `arr` will be returned as is. 2) If `arr` is a Series, the `_values` attribute will be reshaped and returned. Parameters ---------- arr : array-like, object to be reshaped new_shape : int or tuple of ints, the new shape """ if isinstance(arr, ABCSeries): arr = arr._values if not isinstance(arr, ABCExtensionArray): arr = arr.reshape(new_shape) return arr def _putmask_smart(v: np.ndarray, mask: np.ndarray, n) -> np.ndarray: """ Return a new ndarray, try to preserve dtype if possible. Parameters ---------- v : np.ndarray `values`, updated in-place. mask : np.ndarray[bool] Applies to both sides (array like). n : `new values` either scalar or an array like aligned with `values` Returns ------- values : ndarray with updated values this *may* be a copy of the original See Also -------- ndarray.putmask """ # we cannot use np.asarray() here as we cannot have conversions # that numpy does when numeric are mixed with strings # n should be the length of the mask or a scalar here if not is_list_like(n): n = np.repeat(n, len(mask)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[mask] except TypeError: # TypeError: only integer scalar arrays can be converted to a scalar index pass else: # make sure that we have a nullable type # if we have nulls if not _isna_compat(v, nn[0]): pass elif not (is_float_dtype(nn.dtype) or is_integer_dtype(nn.dtype)): # only compare integers/floats pass elif not (is_float_dtype(v.dtype) or is_integer_dtype(v.dtype)): # only compare integers/floats pass else: # we ignore ComplexWarning here with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", np.ComplexWarning) nn_at = nn.astype(v.dtype) comp = nn == nn_at if is_list_like(comp) and comp.all(): nv = v.copy() nv[mask] = nn_at return nv n = np.asarray(n) def _putmask_preserve(nv, n): try: nv[mask] = n[mask] except (IndexError, ValueError): nv[mask] = n return nv # preserves dtype if possible if v.dtype.kind == n.dtype.kind: return _putmask_preserve(v, n) # change the dtype if needed dtype, _ = maybe_promote(n.dtype) v = v.astype(dtype) return _putmask_preserve(v, n) from datetime import datetime, timedelta import functools import inspect import re from typing import Any, List import warnings import numpy as np from pandas._libs import NaT, Timestamp, algos as libalgos, lib, tslib, writers import pandas._libs.internals as libinternals from pandas._libs.tslibs import Timedelta, conversion from pandas._libs.tslibs.timezones import tz_compare from pandas._typing import ArrayLike from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( astype_nansafe, convert_scalar_for_putitemlike, find_common_type, infer_dtype_from, infer_dtype_from_scalar, maybe_downcast_numeric, maybe_downcast_to_dtype, maybe_infer_dtype_type, maybe_promote, maybe_upcast, soft_convert_objects, ) from pandas.core.dtypes.common import ( _NS_DTYPE, _TD_DTYPE, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_interval_dtype, is_list_like, is_object_dtype, is_period_dtype, is_re, is_re_compilable, is_sparse, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.concat import concat_categorical, concat_datetime from pandas.core.dtypes.dtypes import CategoricalDtype, ExtensionDtype from pandas.core.dtypes.generic import ( ABCDataFrame, ABCExtensionArray, ABCPandasArray, ABCSeries, ) from pandas.core.dtypes.missing import ( _isna_compat, array_equivalent, is_valid_nat_for_dtype, isna, ) import pandas.core.algorithms as algos from pandas.core.array_algos.transforms import shift from pandas.core.arrays import ( Categorical, DatetimeArray, ExtensionArray, PandasArray, PandasDtype, TimedeltaArray, ) from pandas.core.base import PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import ( check_setitem_lengths, is_empty_indexer, is_scalar_indexer, ) import pandas.core.missing as missing from pandas.core.nanops import nanpercentile class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ["_mgr_locs", "values", "ndim"] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_datetimetz = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_extension = False _can_hold_na = False _can_consolidate = True _verify_integrity = True _validate_ndim = True _concatenator = staticmethod(np.concatenate) def __init__(self, values, placement, ndim=None): self.ndim = self._check_ndim(values, ndim) self.mgr_locs = placement self.values = values if self._validate_ndim and self.ndim and len(self.mgr_locs) != len(self.values): raise ValueError( f"Wrong number of items passed {len(self.values)}, " f"placement implies {len(self.mgr_locs)}" ) def _check_ndim(self, values, ndim): """ ndim inference and validation. Infers ndim from 'values' if not provided to __init__. Validates that values.ndim and ndim are consistent if and only if the class variable '_validate_ndim' is True. Parameters ---------- values : array-like ndim : int or None Returns ------- ndim : int Raises ------ ValueError : the number of dimensions do not match """ if ndim is None: ndim = values.ndim if self._validate_ndim and values.ndim != ndim: raise ValueError( "Wrong number of dimensions. " f"values.ndim != ndim [{values.ndim} != {ndim}]" ) return ndim @property def _holder(self): """ The array-like that can hold the underlying values. None for 'Block', overridden by subclasses that don't use an ndarray. """ return None @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self) -> bool: return self.ndim == 1 @property def is_view(self) -> bool: """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self) -> bool: """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype) -> bool: """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if dtype is Categorical or dtype is CategoricalDtype: # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError(f"invalid type {dtype} for astype") elif is_categorical_dtype(dtype): return True return False def external_values(self): """ The array that Series.values returns (public attribute). This has some historical constraints, and is overridden in block subclasses to return the correct array (e.g. period returns object ndarray and datetimetz a datetime64[ns] ndarray instead of proper extension array). """ return self.values def internal_values(self): """ The array that Series._values returns (internal values). """ return self.values def array_values(self) -> ExtensionArray: """ The array that Series.array returns. Always an ExtensionArray. """ return PandasArray(self.values) def get_values(self, dtype=None): """ return an internal format, currently just the ndarray this is often overridden to handle to_dense like operations """ if is_object_dtype(dtype): return self.values.astype(object) return self.values def get_block_values_for_json(self) -> np.ndarray: """ This is used in the JSON C code. """ # TODO(2DEA): reshape will be unnecessary with 2D EAs return np.asarray(self.values).reshape(self.shape) @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, libinternals.BlockPlacement): new_mgr_locs = libinternals.BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs def make_block(self, values, placement=None) -> "Block": """ Create a new block, with type inference propagate any values that are not specified """ if placement is None: placement = self.mgr_locs return make_block(values, placement=placement, ndim=self.ndim) def make_block_same_class(self, values, placement=None, ndim=None): """ Wrap given values in a block of same type as self. """ if placement is None: placement = self.mgr_locs if ndim is None: ndim = self.ndim return make_block(values, placement=placement, ndim=ndim, klass=type(self)) def __repr__(self) -> str: # don't want to print out all of the items here name = type(self).__name__ if self._is_single_block: result = f"{name}: {len(self)} dtype: {self.dtype}" else: shape = " x ".join(str(s) for s in self.shape) result = f"{name}: {self.mgr_locs.indexer}, {shape}, dtype: {self.dtype}" return result def __len__(self) -> int: return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = libinternals.BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: axis0_slicer = slicer[0] if isinstance(slicer, tuple) else slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def dtype(self): return self.values.dtype def merge(self, other): return _merge_blocks([self, other]) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) return self.make_block_same_class( values, placement=placement or slice(0, len(values), 1) ) def iget(self, i): return self.values[i] def set(self, locs, values): """ Modify block values in-place with new item value. Notes ----- `set` never creates a new array or new Block, whereas `setitem` _may_ create a new array and always creates a new Block. """ self.values[locs] = values def delete(self, loc) -> None: """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs) -> List["Block"]: """ apply the function to my values; return a block if we are not one """ with np.errstate(all="ignore"): result = func(self.values, **kwargs) return self._split_op_result(result) def _split_op_result(self, result) -> List["Block"]: # See also: split_and_operate if is_extension_array_dtype(result) and result.ndim > 1: # if we get a 2D ExtensionArray, we need to split it into 1D pieces nbs = [] for i, loc in enumerate(self.mgr_locs): vals = result[i] nv = _block_shape(vals, ndim=self.ndim) block = self.make_block(values=nv, placement=[loc]) nbs.append(block) return nbs if not isinstance(result, Block): result = self.make_block(values=_block_shape(result, ndim=self.ndim)) return [result] def fillna( self, value, limit=None, inplace: bool = False, downcast=None ) -> List["Block"]: """ fillna on the block with the value. If we fail, then convert to ObjectBlock and try again """ inplace = validate_bool_kwarg(inplace, "inplace") mask = isna(self.values) if limit is not None: limit = libalgos._validate_limit(None, limit=limit) mask[mask.cumsum(self.ndim - 1) > limit] = False if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] if self._can_hold_element(value): # equivalent: _try_coerce_args(value) would not raise blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) # we can't process the value, but nothing to do if not mask.any(): return [self] if inplace else [self.copy()] # operate column-by-column def f(mask, val, idx): block = self.coerce_to_target_dtype(value) # slice out our block if idx is not None: # i.e. self.ndim == 2 block = block.getitem_block(slice(idx, idx + 1)) return block.fillna(value, limit=limit, inplace=inplace, downcast=None) return self.split_and_operate(None, f, inplace) def split_and_operate(self, mask, f, inplace: bool) -> List["Block"]: """ split the block per-column, and apply the callable f per-column, return a new block for each. Handle masking which will not change a block unless needed. Parameters ---------- mask : 2-d boolean mask f : callable accepting (1d-mask, 1d values, indexer) inplace : boolean Returns ------- list of blocks """ if mask is None: mask = np.broadcast_to(True, shape=self.shape) new_values = self.values def make_a_block(nv, ref_loc): if isinstance(nv, list): assert len(nv) == 1, nv assert isinstance(nv[0], Block) block = nv[0] else: # Put back the dimension that was taken from it and make # a block out of the result. nv = _block_shape(nv, ndim=self.ndim) block = self.make_block(values=nv, placement=ref_loc) return block # ndim == 1 if self.ndim == 1: if mask.any(): nv = f(mask, new_values, None) else: nv = new_values if inplace else new_values.copy() block = make_a_block(nv, self.mgr_locs) return [block] # ndim > 1 new_blocks = [] for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): nv = f(m, v, i) else: nv = v if inplace else v.copy() block = make_a_block(nv, [ref_loc]) new_blocks.append(block) return new_blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: # no need to downcast our float # unless indicated if downcast is None and ( self.is_float or self.is_timedelta or self.is_datetime ): return blocks return _extend_blocks([b.downcast(downcast) for b in blocks]) def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return self values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = "infer" nv = maybe_downcast_to_dtype(values, dtypes) return self.make_block(nv) # ndim > 1 if dtypes is None: return self if not (dtypes == "infer" or isinstance(dtypes, dict)): raise ValueError( "downcast must have a dictionary or 'infer' as its argument" ) elif dtypes != "infer": raise AssertionError("dtypes as dict is not supported yet") # operate column-by-column # this is expensive as it splits the blocks items-by-item def f(mask, val, idx): val = maybe_downcast_to_dtype(val, dtype="infer") return val return self.split_and_operate(None, f, False) def astype(self, dtype, copy: bool = False, errors: str = "raise"): """ Coerce to the new dtype. Parameters ---------- dtype : str, dtype convertible copy : bool, default False copy if indicated errors : str, {'raise', 'ignore'}, default 'ignore' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object Returns ------- Block """ errors_legal_values = ("raise", "ignore") if errors not in errors_legal_values: invalid_arg = ( "Expected value of kwarg 'errors' to be one of " f"{list(errors_legal_values)}. Supplied value is '{errors}'" ) raise ValueError(invalid_arg) if inspect.isclass(dtype) and issubclass(dtype, ExtensionDtype): msg = ( f"Expected an instance of {dtype.__name__}, " "but got the class instead. Try instantiating 'dtype'." ) raise TypeError(msg) # may need to convert to categorical if self.is_categorical_astype(dtype): if is_categorical_dtype(self.values): # GH 10696/18593: update an existing categorical efficiently return self.make_block(self.values.astype(dtype, copy=copy)) return self.make_block(Categorical(self.values, dtype=dtype)) dtype = pandas_dtype(dtype) # astype processing if is_dtype_equal(self.dtype, dtype): if copy: return self.copy() return self # force the copy here if self.is_extension: # TODO: Should we try/except this astype? values = self.values.astype(dtype) else: if issubclass(dtype.type, str): # use native type formatting for datetime/tz/timedelta if self.is_datelike: values = self.to_native_types() # astype formatting else: # Because we have neither is_extension nor is_datelike, # self.values already has the correct shape values = self.values else: values = self.get_values(dtype=dtype) # _astype_nansafe works fine with 1-d only vals1d = values.ravel() try: values = astype_nansafe(vals1d, dtype, copy=True) except (ValueError, TypeError): # e.g. astype_nansafe can fail on object-dtype of strings # trying to convert to float if errors == "raise": raise newb = self.copy() if copy else self return newb # TODO(extension) # should we make this attribute? if isinstance(values, np.ndarray): values = values.reshape(self.shape) newb = make_block(values, placement=self.mgr_locs, ndim=self.ndim) if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError( f"cannot set astype for copy = [{copy}] for dtype " f"({self.dtype.name} [{self.shape}]) to different shape " f"({newb.dtype.name} [{newb.shape}])" ) return newb def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return self.copy() if copy else self def _can_hold_element(self, element: Any) -> bool: """ require the same dtype as ourselves """ dtype = self.values.dtype.type tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, dtype) return isinstance(element, dtype) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) itemsize = writers.word_len(na_rep) if not self.is_object and not quoting and itemsize: values = values.astype(str) if values.dtype.itemsize / np.dtype("U1").itemsize < itemsize: # enlarge for the na_rep values = values.astype(f"<U{itemsize}") else: values = np.array(values, dtype="object") values[mask] = na_rep return values # block actions # def copy(self, deep: bool = True): """ copy constructor """ values = self.values if deep: values = values.copy() return self.make_block_same_class(values, ndim=self.ndim) def replace( self, to_replace, value, inplace: bool = False, filter=None, regex: bool = False, convert: bool = True, ): """ replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility. """ inplace = validate_bool_kwarg(inplace, "inplace") original_to_replace = to_replace # If we cannot replace with own dtype, convert to ObjectBlock and # retry if not self._can_hold_element(to_replace): if not isinstance(to_replace, list): if inplace: return [self] return [self.copy()] to_replace = [x for x in to_replace if self._can_hold_element(x)] if not len(to_replace): # GH#28084 avoid costly checks since we can infer # that there is nothing to replace in this block if inplace: return [self] return [self.copy()] if len(to_replace) == 1: # _can_hold_element checks have reduced this back to the # scalar case and we can avoid a costly object cast return self.replace( to_replace[0], value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise AssertionError # try again with a compatible block block = self.astype(object) return block.replace( to_replace=to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) values = self.values if lib.is_scalar(to_replace) and isinstance(values, np.ndarray): # The only non-DatetimeLike class that also has a non-trivial # try_coerce_args is ObjectBlock, but that overrides replace, # so does not get here. to_replace = convert_scalar_for_putitemlike(to_replace, values.dtype) mask = missing.mask_missing(values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] try: blocks = self.putmask(mask, value, inplace=inplace) # Note: it is _not_ the case that self._can_hold_element(value) # is always true at this point. In particular, that can fail # for: # "2u" with bool-dtype, float-dtype # 0.5 with int64-dtype # np.nan with int64-dtype except (TypeError, ValueError): # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise assert not self._can_hold_element(value), value # try again with a compatible block block = self.astype(object) return block.replace( to_replace=original_to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) if convert: blocks = [b.convert(numeric=False, copy=not inplace) for b in blocks] return blocks def _replace_single(self, *args, **kwargs): """ no-op on a non-ObjectBlock """ return self if kwargs["inplace"] else self.copy() def setitem(self, indexer, value): """ Attempt self.values[indexer] = value, possibly creating a new array. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ transpose = self.ndim == 2 if isinstance(indexer, np.ndarray) and indexer.ndim > self.ndim: raise ValueError(f"Cannot set values with ndim > {self.ndim}") # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce if block dtype can store value values = self.values if self._can_hold_element(value): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(value): value = convert_scalar_for_putitemlike(value, values.dtype) else: # current dtype cannot store value, coerce to common dtype find_dtype = False if hasattr(value, "dtype"): dtype = value.dtype find_dtype = True elif lib.is_scalar(value) and not isna(value): dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) find_dtype = True if find_dtype: dtype = find_common_type([values.dtype, dtype]) if not is_dtype_equal(self.dtype, dtype): b = self.astype(dtype) return b.setitem(indexer, value) # value must be storeable at this moment if is_extension_array_dtype(getattr(value, "dtype", None)): # We need to be careful not to allow through strings that # can be parsed to EADtypes arr_value = value else: arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = maybe_promote(arr_value.dtype) values = values.astype(dtype) if transpose: values = values.T # length checking check_setitem_lengths(indexer, value, values) exact_match = ( len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and arr_value.size == values.size ) if is_empty_indexer(indexer, arr_value): # GH#8669 empty indexers pass elif is_scalar_indexer(indexer, self.ndim): # setting a single element for each dim and with a rhs that could # be e.g. a list; see GH#6043 values[indexer] = value elif ( exact_match and is_categorical_dtype(arr_value.dtype) and not is_categorical_dtype(values) ): # GH25495 - If the current dtype is not categorical, # we need to create a new categorical block values[indexer] = value return self.make_block(Categorical(self.values, dtype=arr_value.dtype)) # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif exact_match: # We are setting _all_ of the array's values, so can cast to new dtype values[indexer] = value values = values.astype(arr_value.dtype, copy=False) # set else: values[indexer] = value if transpose: values = values.T block = self.make_block(values) return block def putmask( self, mask, new, align: bool = True, inplace: bool = False, axis: int = 0, transpose: bool = False, ): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False axis : int transpose : boolean Set to True if self is stored with axes reversed Returns ------- a list of new blocks, the result of the putmask """ new_values = self.values if inplace else self.values.copy() new = getattr(new, "values", new) mask = getattr(mask, "values", mask) # if we are passed a scalar None, convert it here if not is_list_like(new) and isna(new) and not self.is_object: # FIXME: make sure we have compatible NA new = self.fill_value if self._can_hold_element(new): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(new): new = convert_scalar_for_putitemlike(new, new_values.dtype) if transpose: new_values = new_values.T # If the default repeat behavior in np.putmask would go in the # wrong direction, then explicitly repeat and reshape new instead if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim and axis == 1: new = np.repeat(new, new_values.shape[-1]).reshape(self.shape) new = new.astype(new_values.dtype) # we require exact matches between the len of the # values we are setting (or is compat). np.putmask # doesn't check this and will simply truncate / pad # the output, but we want sane error messages # # TODO: this prob needs some better checking # for 2D cases if ( is_list_like(new) and np.any(mask[mask]) and getattr(new, "ndim", 1) == 1 ): if mask[mask].shape[-1] == len(new): # GH 30567 # If length of ``new`` is less than the length of ``new_values``, # `np.putmask` would first repeat the ``new`` array and then # assign the masked values hence produces incorrect result. # `np.place` on the other hand uses the ``new`` values at it is # to place in the masked locations of ``new_values`` np.place(new_values, mask, new) elif mask.shape[-1] == len(new) or len(new) == 1: np.putmask(new_values, mask, new) else: raise ValueError("cannot assign mismatch length to masked array") else: np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): if transpose: mask = mask.T if isinstance(new, np.ndarray): new = new.T axis = new_values.ndim - axis - 1 # Pseudo-broadcast if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim: new_shape = list(new.shape) new_shape.insert(axis, 1) new = new.reshape(tuple(new_shape)) # operate column-by-column def f(mask, val, idx): if idx is None: # ndim==1 case. n = new else: if isinstance(new, np.ndarray): n = np.squeeze(new[idx % new.shape[0]]) else: n = np.array(new) # type of the new block dtype, _ = maybe_promote(n.dtype) # we need to explicitly astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(val, mask, n) return nv new_blocks = self.split_and_operate(mask, f, inplace) return new_blocks if inplace: return [self] if transpose: new_values = new_values.T return [self.make_block(new_values)] def coerce_to_target_dtype(self, other): """ coerce the current block to a dtype compat for other we will return a block, possibly object, and not raise we can also safely try to coerce to the same dtype and will receive the same block """ # if we cannot then coerce to object dtype, _ = infer_dtype_from(other, pandas_dtype=True) if is_dtype_equal(self.dtype, dtype): return self if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype): # we don't upcast to bool return self.astype(object) elif (self.is_float or self.is_complex) and ( is_integer_dtype(dtype) or is_float_dtype(dtype) ): # don't coerce float/complex to int return self elif ( self.is_datetime or is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) ): # not a datetime if not ( (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype)) and self.is_datetime ): return self.astype(object) # don't upcast timezone with different timezone or no timezone mytz = getattr(self.dtype, "tz", None) othertz = getattr(dtype, "tz", None) if not tz_compare(mytz, othertz): return self.astype(object) raise AssertionError( f"possible recursion in coerce_to_target_dtype: {self} {other}" ) elif self.is_timedelta or is_timedelta64_dtype(dtype): # not a timedelta if not (is_timedelta64_dtype(dtype) and self.is_timedelta): return self.astype(object) raise AssertionError( f"possible recursion in coerce_to_target_dtype: {self} {other}" ) try: return self.astype(dtype) except (ValueError, TypeError, OverflowError): return self.astype(object) def interpolate( self, method="pad", axis=0, index=None, inplace=False, limit=None, limit_direction="forward", limit_area=None, fill_value=None, coerce=False, downcast=None, **kwargs, ): inplace = validate_bool_kwarg(inplace, "inplace") def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = missing.clean_fill_method(method) except ValueError: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill( method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast, ) # validate the interp method m = missing.clean_interp_method(method, **kwargs) r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate( method=m, index=index, axis=axis, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs, ) def _interpolate_with_fill( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, ) -> List["Block"]: """ fillna but using the interpolate machinery """ inplace = validate_bool_kwarg(inplace, "inplace") # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] values = self.values if inplace else self.values.copy() # We only get here for non-ExtensionBlock fill_value = convert_scalar_for_putitemlike(fill_value, self.values.dtype) values = missing.interpolate_2d( values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype, ) blocks = [self.make_block_same_class(values, ndim=self.ndim)] return self._maybe_downcast(blocks, downcast) def _interpolate( self, method=None, index=None, fill_value=None, axis=0, limit=None, limit_direction="forward", limit_area=None, inplace=False, downcast=None, **kwargs, ) -> List["Block"]: """ interpolate using scipy wrappers """ inplace = validate_bool_kwarg(inplace, "inplace") data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return [self] data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ("krogh", "piecewise_polynomial", "pchip"): if not index.is_monotonic: raise ValueError( f"{method} interpolation requires that the index be monotonic." ) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to missing.interpolate_1d return missing.interpolate_1d( index, x, method=method, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, bounds_error=False, **kwargs, ) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [self.make_block_same_class(interp_values)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis: int, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ # algos.take_nd dispatches for DatetimeTZBlock, CategoricalBlock # so need to preserve types # sparse is treated like an ndarray, but needs .get_values() shaping values = self.values if fill_tuple is None: fill_value = self.fill_value allow_fill = False else: fill_value = fill_tuple[0] allow_fill = True new_values = algos.take_nd( values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value ) # Called from three places in managers, all of which satisfy # this assertion assert not (axis == 0 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs if not is_dtype_equal(new_values.dtype, self.dtype): return self.make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def diff(self, n: int, axis: int = 1) -> List["Block"]: """ return block for the diff of the values """ new_values = algos.diff(self.values, n, axis=axis, stacklevel=7) # We use block_shape for ExtensionBlock subclasses, which may call here # via a super. new_values = _block_shape(new_values, ndim=self.ndim) return [self.make_block(values=new_values)] def shift(self, periods, axis: int = 0, fill_value=None): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = maybe_upcast(self.values, fill_value) new_values = shift(new_values, periods, axis, fill_value) return [self.make_block(new_values)] def where( self, other, cond, align: bool = True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : bool, default True Perform alignment on other/cond. errors : str, {'raise', 'ignore'}, default 'raise' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object axis : int, default 0 Returns ------- a new block(s), the result of the func """ import pandas.core.computation.expressions as expressions assert errors in ["raise", "ignore"] transpose = self.ndim == 2 values = self.values orig_other = other if transpose: values = values.T other = getattr(other, "_values", getattr(other, "values", other)) cond = getattr(cond, "values", cond) # If the default broadcasting would go in the wrong direction, then # explicitly reshape other instead if getattr(other, "ndim", 0) >= 1: if values.ndim - 1 == other.ndim and axis == 1: other = other.reshape(tuple(other.shape + (1,))) elif transpose and values.ndim == self.ndim - 1: cond = cond.T if not hasattr(cond, "shape"): raise ValueError("where must have a condition that is ndarray like") def where_func(cond, values, other): if not ( (self.is_integer or self.is_bool) and lib.is_float(other) and np.isnan(other) ): # np.where will cast integer array to floats in this case if not self._can_hold_element(other): raise TypeError if lib.is_scalar(other) and isinstance(values, np.ndarray): # convert datetime to datetime64, timedelta to timedelta64 other = convert_scalar_for_putitemlike(other, values.dtype) # By the time we get here, we should have all Series/Index # args extracted to ndarray fastres = expressions.where(cond, values, other) return fastres if cond.ravel().all(): result = values else: # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) try: result = where_func(cond, values, other) except TypeError: # we cannot coerce, return a compat dtype # we are explicitly ignoring errors block = self.coerce_to_target_dtype(other) blocks = block.where( orig_other, cond, align=align, errors=errors, try_cast=try_cast, axis=axis, ) return self._maybe_downcast(blocks, "infer") if self._can_hold_na or self.ndim == 1: if transpose: result = result.T return [self.make_block(result)] # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): taken = result.take(m.nonzero()[0], axis=axis) r = maybe_downcast_numeric(taken, self.dtype) nb = self.make_block(r.T, placement=self.mgr_locs[m]) result_blocks.append(nb) return result_blocks def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): """ Return a list of unstacked blocks of self Parameters ---------- unstacker_func : callable Partially applied unstacker. new_columns : Index All columns of the unstacked BlockManager. n_rows : int Only used in ExtensionBlock._unstack fill_value : int Only used in ExtensionBlock._unstack Returns ------- blocks : list of Block New blocks of unstacked values. mask : array_like of bool The mask of columns of `blocks` we should keep. """ unstacker = unstacker_func(self.values.T) new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) new_values = new_values.T[mask] new_placement = new_placement[mask] blocks = [make_block(new_values, placement=new_placement)] return blocks, mask def quantile(self, qs, interpolation="linear", axis: int = 0): """ compute the quantiles of the Parameters ---------- qs: a scalar or list of the quantiles to be computed interpolation: type of interpolation, default 'linear' axis: axis to compute, default 0 Returns ------- Block """ # We should always have ndim == 2 because Series dispatches to DataFrame assert self.ndim == 2 values = self.get_values() is_empty = values.shape[axis] == 0 orig_scalar = not is_list_like(qs) if orig_scalar: # make list-like, unpack later qs = [qs] if is_empty: # create the array of na_values # 2d len(values) * len(qs) result = np.repeat( np.array([self.fill_value] * len(qs)), len(values) ).reshape(len(values), len(qs)) else: # asarray needed for Sparse, see GH#24600 mask = np.asarray(isna(values)) result = nanpercentile( values, np.array(qs) * 100, axis=axis, na_value=self.fill_value, mask=mask, ndim=values.ndim, interpolation=interpolation, ) result = np.array(result, copy=False) result = result.T if orig_scalar and not lib.is_scalar(result): # result could be scalar in case with is_empty and self.ndim == 1 assert result.shape[-1] == 1, result.shape result = result[..., 0] result = lib.item_from_zerodim(result) ndim = np.ndim(result) return make_block(result, placement=np.arange(len(result)), ndim=ndim) def _replace_coerce( self, to_replace, value, inplace: bool = True, regex: bool = False, convert: bool = False, mask=None, ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default True Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): if not regex: self = self.coerce_to_target_dtype(value) return self.putmask(mask, value, inplace=inplace) else: return self._replace_single( to_replace, value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) return self class ExtensionBlock(Block): """ Block for holding extension types. Notes ----- This holds all 3rd-party extension array types. It's also the immediate parent class for our internal extension types' blocks, CategoricalBlock. ExtensionArrays are limited to 1-D. """ _can_consolidate = False _verify_integrity = False _validate_ndim = False is_extension = True def __init__(self, values, placement, ndim=None): """ Initialize a non-consolidatable block. 'ndim' may be inferred from 'placement'. This will call continue to call __init__ for the other base classes mixed in with this Mixin. """ values = self._maybe_coerce_values(values) # Placement must be converted to BlockPlacement so that we can check # its length if not isinstance(placement, libinternals.BlockPlacement): placement = libinternals.BlockPlacement(placement) # Maybe infer ndim from placement if ndim is None: if len(placement) != 1: ndim = 1 else: ndim = 2 super().__init__(values, placement, ndim=ndim) if self.ndim == 2 and len(self.mgr_locs) != 1: # TODO(2DEA): check unnecessary with 2D EAs raise AssertionError("block.size != values.size") @property def shape(self): if self.ndim == 1: return ((len(self.values)),) return (len(self.mgr_locs), len(self.values)) def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if not com.is_null_slice(col) and col != 0: raise IndexError(f"{self} only contains one item") elif isinstance(col, slice): if col != slice(None): raise NotImplementedError(col) return self.values[[loc]] return self.values[loc] else: if col != 0: raise IndexError(f"{self} only contains one item") return self.values def should_store(self, value: ArrayLike) -> bool: """ Can we set the given array-like value inplace? """ return isinstance(value, self._holder) def set(self, locs, values): assert locs.tolist() == [0] self.values[:] = values def putmask( self, mask, new, align=True, inplace=False, axis=0, transpose=False, ): """ putmask the data to the block; we must be a single block and not generate other blocks return the resulting block Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block, the result of the putmask """ inplace = validate_bool_kwarg(inplace, "inplace") # use block's copy logic. # .values may be an Index which does shallow copy by default new_values = self.values if inplace else self.copy().values if isinstance(new, np.ndarray) and len(new) == len(mask): new = new[mask] mask = _safe_reshape(mask, new_values.shape) new_values[mask] = new return [self.make_block(values=new_values)] def _get_unstack_items(self, unstacker, new_columns): """ Get the placement, values, and mask for a Block unstack. This is shared between ObjectBlock and ExtensionBlock. They differ in that ObjectBlock passes the values, while ExtensionBlock passes the dummy ndarray of positions to be used by a take later. Parameters ---------- unstacker : pandas.core.reshape.reshape._Unstacker new_columns : Index All columns of the unstacked BlockManager. Returns ------- new_placement : ndarray[int] The placement of the new columns in `new_columns`. new_values : Union[ndarray, ExtensionArray] The first return value from _Unstacker.get_new_values. mask : ndarray[bool] The second return value from _Unstacker.get_new_values. """ # shared with ExtensionBlock new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) return new_placement, new_values, mask def _maybe_coerce_values(self, values): """ Unbox to an extension array. This will unbox an ExtensionArray stored in an Index or Series. ExtensionArrays pass through. No dtype coercion is done. Parameters ---------- values : Index, Series, ExtensionArray Returns ------- ExtensionArray """ return extract_array(values) @property def _holder(self): # For extension blocks, the holder is values-dependent. return type(self.values) @property def fill_value(self): # Used in reindex_indexer return self.values.dtype.na_value @property def _can_hold_na(self): # The default ExtensionArray._can_hold_na is True return self._holder._can_hold_na @property def is_view(self) -> bool: """Extension arrays are never treated as views.""" return False @property def is_numeric(self): return self.values.dtype._is_numeric def setitem(self, indexer, value): """ Attempt self.values[indexer] = value, possibly creating a new array. This differs from Block.setitem by not allowing setitem to change the dtype of the Block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ if isinstance(indexer, tuple): # we are always 1-D indexer = indexer[0] check_setitem_lengths(indexer, value, self.values) self.values[indexer] = value return self def get_values(self, dtype=None): # ExtensionArrays must be iterable, so this works. values = np.asarray(self.values) if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def array_values(self) -> ExtensionArray: return self.values def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """override to use ExtensionArray astype for the conversion""" values = self.values if slicer is not None: values = values[slicer] mask = isna(values) values = np.asarray(values.astype(object)) values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def take_nd(self, indexer, axis: int = 0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block. """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take(indexer, fill_value=fill_value, allow_fill=True) # Called from three places in managers, all of which satisfy # this assertion assert not (self.ndim == 1 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def _can_hold_element(self, element: Any) -> bool: # XXX: We may need to think about pushing this onto the array. # We're doing the same as CategoricalBlock here. return True def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have if isinstance(slicer, tuple) and len(slicer) == 2: if not com.is_null_slice(slicer[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") slicer = slicer[1] return self.values[slicer] def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._holder._concat_same_type([blk.values for blk in to_concat]) placement = placement or slice(0, len(values), 1) return self.make_block_same_class(values, ndim=self.ndim, placement=placement) def fillna(self, value, limit=None, inplace=False, downcast=None): values = self.values if inplace else self.values.copy() values = values.fillna(value=value, limit=limit) return [ self.make_block_same_class( values=values, placement=self.mgr_locs, ndim=self.ndim ) ] def interpolate( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, **kwargs ): values = self.values if inplace else self.values.copy() return self.make_block_same_class( values=values.fillna(value=fill_value, method=method, limit=limit), placement=self.mgr_locs, ) def diff(self, n: int, axis: int = 1) -> List["Block"]: if axis == 1: # we are by definition 1D. axis = 0 return super().diff(n, axis) def shift( self, periods: int, axis: int = 0, fill_value: Any = None, ) -> List["ExtensionBlock"]: """ Shift the block by `periods`. Dispatches to underlying ExtensionArray and re-boxes in an ExtensionBlock. """ return [ self.make_block_same_class( self.values.shift(periods=periods, fill_value=fill_value), placement=self.mgr_locs, ndim=self.ndim, ) ] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: if isinstance(other, ABCDataFrame): # ExtensionArrays are 1-D, so if we get here then # `other` should be a DataFrame with a single column. assert other.shape[1] == 1 other = other.iloc[:, 0] other = extract_array(other, extract_numpy=True) if isinstance(cond, ABCDataFrame): assert cond.shape[1] == 1 cond = cond.iloc[:, 0] cond = extract_array(cond, extract_numpy=True) if lib.is_scalar(other) and isna(other): # The default `other` for Series / Frame is np.nan # we want to replace that with the correct NA value # for the type other = self.dtype.na_value if is_sparse(self.values): # TODO(SparseArray.__setitem__): remove this if condition # We need to re-infer the type of the data after doing the # where, for cases where the subtypes don't match dtype = None else: dtype = self.dtype result = self.values.copy() icond = ~cond if lib.is_scalar(other): set_other = other else: set_other = other[icond] try: result[icond] = set_other except (NotImplementedError, TypeError): # NotImplementedError for class not implementing `__setitem__` # TypeError for SparseArray, which implements just to raise # a TypeError result = self._holder._from_sequence( np.where(cond, self.values, other), dtype=dtype ) return [self.make_block_same_class(result, placement=self.mgr_locs)] def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): # ExtensionArray-safe unstack. # We override ObjectBlock._unstack, which unstacks directly on the # values of the array. For EA-backed blocks, this would require # converting to a 2-D ndarray of objects. # Instead, we unstack an ndarray of integer positions, followed by # a `take` on the actual values. dummy_arr = np.arange(n_rows) dummy_unstacker = functools.partial(unstacker_func, fill_value=-1) unstacker = dummy_unstacker(dummy_arr) new_placement, new_values, mask = self._get_unstack_items( unstacker, new_columns ) blocks = [ self.make_block_same_class( self.values.take(indices, allow_fill=True, fill_value=fill_value), [place], ) for indices, place in zip(new_values.T, new_placement) ] return blocks, mask class ObjectValuesExtensionBlock(ExtensionBlock): """ Block providing backwards-compatibility for `.values`. Used by PeriodArray and IntervalArray to ensure that Series[T].values is an ndarray of objects. """ def external_values(self): return self.values.astype(object) class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer)) and not issubclass( tipo.type, (np.datetime64, np.timedelta64) ) return isinstance( element, (float, int, np.floating, np.int_) ) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64), ) def to_native_types( self, slicer=None, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs, ): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] # see gh-13418: no special formatting is desired at the # output (important for appropriate 'quoting' behaviour), # so do not pass it through the FloatArrayFormatter if float_format is None and decimal == ".": mask = isna(values) if not quoting: values = values.astype(str) else: values = np.array(values, dtype="object") values[mask] = na_rep return values from pandas.io.formats.format import FloatArrayFormatter formatter = FloatArrayFormatter( values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False, ) return formatter.get_result_as_array() def should_store(self, value: ArrayLike) -> bool: # when inserting a column should not coerce integers to floats # unnecessarily return issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer, np.complexfloating)) return isinstance( element, (float, int, complex, np.float_, np.int_) ) and not isinstance(element, (bool, np.bool_)) def should_store(self, value: ArrayLike) -> bool: return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return ( issubclass(tipo.type, np.integer) and not issubclass(tipo.type, (np.datetime64, np.timedelta64)) and self.dtype.itemsize >= tipo.itemsize ) return is_integer(element) def should_store(self, value: ArrayLike) -> bool: return is_integer_dtype(value) and value.dtype == self.dtype class DatetimeLikeBlockMixin: """Mixin class for DatetimeBlock, DatetimeTZBlock, and TimedeltaBlock.""" @property def _holder(self): return DatetimeArray def should_store(self, value): return is_dtype_equal(self.dtype, value.dtype) @property def fill_value(self): return np.datetime64("NaT", "ns") def get_values(self, dtype=None): """ return object dtype as boxed values, such as Timestamps/Timedelta """ if is_object_dtype(dtype): values = self.values.ravel() result = self._holder(values).astype(object) return result.reshape(self.values.shape) return self.values def internal_values(self): # Override to return DatetimeArray and TimedeltaArray return self.array_values() def iget(self, key): # GH#31649 we need to wrap scalars in Timestamp/Timedelta # TODO(EA2D): this can be removed if we ever have 2D EA result = super().iget(key) if isinstance(result, np.datetime64): result = Timestamp(result) elif isinstance(result, np.timedelta64): result = Timedelta(result) return result def shift(self, periods, axis=0, fill_value=None): # TODO(EA2D) this is unnecessary if these blocks are backed by 2D EAs values = self.array_values() new_values = values.shift(periods, fill_value=fill_value, axis=axis) return self.make_block_same_class(new_values) class DatetimeBlock(DatetimeLikeBlockMixin, Block): __slots__ = () is_datetime = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement=placement, ndim=ndim) @property def _can_hold_na(self): return True def _maybe_coerce_values(self, values): """ Input validation for values passed to __init__. Ensure that we have datetime64ns, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : ndarray[datetime64ns] Overridden by DatetimeTZBlock. """ if values.dtype != _NS_DTYPE: values = conversion.ensure_datetime64ns(values) if isinstance(values, DatetimeArray): values = values._data assert isinstance(values, np.ndarray), type(values) return values def astype(self, dtype, copy: bool = False, errors: str = "raise"): """ these automatically copy, so copy=True has no effect raise on an except if raise == True """ dtype = pandas_dtype(dtype) # if we are passed a datetime64[ns, tz] if is_datetime64tz_dtype(dtype): values = self.values if copy: # this should be the only copy values = values.copy() if getattr(values, "tz", None) is None: values = DatetimeArray(values).tz_localize("UTC") values = values.tz_convert(dtype.tz) return self.make_block(values) # delegate return super().astype(dtype=dtype, copy=copy, errors=errors) def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: if self.is_datetimetz: # require exact match, since non-nano does not exist return is_dtype_equal(tipo, self.dtype) or is_valid_nat_for_dtype( element, self.dtype ) # GH#27419 if we get a non-nano datetime64 object return is_datetime64_dtype(tipo) elif element is NaT: return True elif isinstance(element, datetime): if self.is_datetimetz: return tz_compare(element.tzinfo, self.dtype.tz) return element.tzinfo is None return is_valid_nat_for_dtype(element, self.dtype) def to_native_types( self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs ): """ convert to our native types format, slicing if desired """ values = self.values i8values = self.values.view("i8") if slicer is not None: values = values[..., slicer] i8values = i8values[..., slicer] from pandas.io.formats.format import _get_format_datetime64_from_values fmt = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime( i8values.ravel(), tz=getattr(self.values, "tz", None), format=fmt, na_rep=na_rep, ).reshape(i8values.shape) return np.atleast_2d(result) def set(self, locs, values): """ See Block.set.__doc__ """ values = conversion.ensure_datetime64ns(values, copy=False) self.values[locs] = values def external_values(self): return np.asarray(self.values.astype("datetime64[ns]", copy=False)) def array_values(self) -> ExtensionArray: return DatetimeArray._simple_new(self.values) class DatetimeTZBlock(ExtensionBlock, DatetimeBlock): """ implement a datetime64 block with a tz attribute """ __slots__ = () is_datetimetz = True is_extension = True internal_values = Block.internal_values _can_hold_element = DatetimeBlock._can_hold_element to_native_types = DatetimeBlock.to_native_types fill_value = np.datetime64("NaT", "ns") should_store = DatetimeBlock.should_store @property def _holder(self): return DatetimeArray def _maybe_coerce_values(self, values): """ Input validation for values passed to __init__. Ensure that we have datetime64TZ, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : DatetimeArray """ if not isinstance(values, self._holder): values = self._holder(values) if values.tz is None: raise ValueError("cannot create a DatetimeTZBlock without a tz") return values @property def is_view(self) -> bool: """ return a boolean if I am possibly a view """ # check the ndarray values of the DatetimeIndex values return self.values._data.base is not None def get_values(self, dtype=None): """ Returns an ndarray of values. Parameters ---------- dtype : np.dtype Only `object`-like dtypes are respected here (not sure why). Returns ------- values : ndarray When ``dtype=object``, then and object-dtype ndarray of boxed values is returned. Otherwise, an M8[ns] ndarray is returned. DatetimeArray is always 1-d. ``get_values`` will reshape the return value to be the same dimensionality as the block. """ values = self.values if is_object_dtype(dtype): values = values.astype(object) values = np.asarray(values) if self.ndim == 2: # Ensure that our shape is correct for DataFrame. # ExtensionArrays are always 1-D, even in a DataFrame when # the analogous NumPy-backed column would be a 2-D ndarray. values = values.reshape(1, -1) return values def _slice(self, slicer): """ return a slice of my values """ if isinstance(slicer, tuple): col, loc = slicer if not com.is_null_slice(col) and col != 0: raise IndexError(f"{self} only contains one item") return self.values[loc] return self.values[slicer] def diff(self, n: int, axis: int = 0) -> List["Block"]: """ 1st discrete difference. Parameters ---------- n : int Number of periods to diff. axis : int, default 0 Axis to diff upon. Returns ------- A list with a new TimeDeltaBlock. Notes ----- The arguments here are mimicking shift so they are called correctly by apply. """ if axis == 0: # Cannot currently calculate diff across multiple blocks since this # function is invoked via apply raise NotImplementedError new_values = (self.values - self.shift(n, axis=axis)[0].values).asi8 # Reshape the new_values like how algos.diff does for timedelta data new_values = new_values.reshape(1, len(new_values)) new_values = new_values.astype("timedelta64[ns]") return [TimeDeltaBlock(new_values, placement=self.mgr_locs.indexer)] def concat_same_type(self, to_concat, placement=None): # need to handle concat([tz1, tz2]) here, since DatetimeArray # only handles cases where all the tzs are the same. # Instead of placing the condition here, it could also go into the # is_uniform_join_units check, but I'm not sure what is better. if len({x.dtype for x in to_concat}) > 1: values = concat_datetime([x.values for x in to_concat]) placement = placement or slice(0, len(values), 1) if self.ndim > 1: values = np.atleast_2d(values) return ObjectBlock(values, ndim=self.ndim, placement=placement) return super().concat_same_type(to_concat, placement) def fillna(self, value, limit=None, inplace=False, downcast=None): # We support filling a DatetimeTZ with a `value` whose timezone # is different by coercing to object. if self._can_hold_element(value): return super().fillna(value, limit, inplace, downcast) # different timezones, or a non-tz return self.astype(object).fillna( value, limit=limit, inplace=inplace, downcast=downcast ) def setitem(self, indexer, value): # https://github.com/pandas-dev/pandas/issues/24020 # Need a dedicated setitem until #24020 (type promotion in setitem # for extension arrays) is designed and implemented. if self._can_hold_element(value) or ( isinstance(indexer, np.ndarray) and indexer.size == 0 ): return super().setitem(indexer, value) obj_vals = self.values.astype(object) newb = make_block( obj_vals, placement=self.mgr_locs, klass=ObjectBlock, ndim=self.ndim ) return newb.setitem(indexer, value) def equals(self, other) -> bool: # override for significant performance improvement if self.dtype != other.dtype or self.shape != other.shape: return False return (self.values.view("i8") == other.values.view("i8")).all() def quantile(self, qs, interpolation="linear", axis=0): naive = self.values.view("M8[ns]") # kludge for 2D block with 1D values naive = naive.reshape(self.shape) blk = self.make_block(naive) res_blk = blk.quantile(qs, interpolation=interpolation, axis=axis) # ravel is kludge for 2D block with 1D values, assumes column-like aware = self._holder(res_blk.values.ravel(), dtype=self.dtype) return self.make_block_same_class(aware, ndim=res_blk.ndim) class TimeDeltaBlock(DatetimeLikeBlockMixin, IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False fill_value = np.timedelta64("NaT", "ns") def __init__(self, values, placement, ndim=None): if values.dtype != _TD_DTYPE: values = conversion.ensure_timedelta64ns(values) if isinstance(values, TimedeltaArray): values = values._data assert isinstance(values, np.ndarray), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return TimedeltaArray def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.timedelta64) elif element is NaT: return True elif isinstance(element, (timedelta, np.timedelta64)): return True return is_valid_nat_for_dtype(element, self.dtype) def fillna(self, value, **kwargs): # allow filling with integers to be # interpreted as nanoseconds if is_integer(value): # Deprecation GH#24694, GH#19233 raise TypeError( "Passing integers to fillna for timedelta64[ns] dtype is no " "longer supported. To obtain the old behavior, pass " "`pd.Timedelta(seconds=n)` instead." ) return super().fillna(value, **kwargs) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = "NaT" rvalues[mask] = na_rep imask = (~mask).ravel() # FIXME: # should use the formats.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array( [Timedelta(val)._repr_base(format="all") for val in values.ravel()[imask]], dtype=object, ) return rvalues def external_values(self): return np.asarray(self.values.astype("timedelta64[ns]", copy=False)) def array_values(self) -> ExtensionArray: return TimedeltaArray._simple_new(self.values) class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.bool_) return isinstance(element, (bool, np.bool_)) def should_store(self, value: ArrayLike) -> bool: return issubclass(value.dtype.type, np.bool_) and not is_extension_array_dtype( value ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): inplace = validate_bool_kwarg(inplace, "inplace") to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, placement=None, ndim=2): if issubclass(values.dtype.type, str): values = np.array(values, dtype=object) super().__init__(values, ndim=ndim, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # operate column-by-column def f(mask, val, idx): shape = val.shape values = soft_convert_objects( val.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy, ) if isinstance(values, np.ndarray): # TODO: allow EA once reshape is supported values = values.reshape(shape) values = _block_shape(values, ndim=self.ndim) return values if self.ndim == 2: blocks = self.split_and_operate(None, f, False) else: values = f(None, self.values.ravel(), None) blocks = [make_block(values, ndim=self.ndim, placement=self.mgr_locs)] return blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: if downcast is not None: return blocks # split and convert the blocks return _extend_blocks([b.convert(datetime=True, numeric=False) for b in blocks]) def _can_hold_element(self, element: Any) -> bool: return True def should_store(self, value: ArrayLike) -> bool: return not ( issubclass( value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_), ) or is_extension_array_dtype(value) ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): to_rep_is_list = is_list_like(to_replace) value_is_list = is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list result_blocks = [] blocks = [self] if not either_list and is_re(to_replace): return self._replace_single( to_replace, value, inplace=inplace, filter=filter, regex=True, convert=convert, ) elif not (either_list or regex): return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) elif both_lists: for to_rep, v in zip(to_replace, value): result_blocks = [] for b in blocks: result = b._replace_single( to_rep, v, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks elif to_rep_is_list and regex: for to_rep in to_replace: result_blocks = [] for b in blocks: result = b._replace_single( to_rep, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks return self._replace_single( to_replace, value, inplace=inplace, filter=filter, convert=convert, regex=regex, ) def _replace_single( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mask=None, ): """ Replace elements by the given value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. filter : list, optional regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- a new block, the result after replacing """ inplace = validate_bool_kwarg(inplace, "inplace") # to_replace is regex compilable to_rep_re = regex and is_re_compilable(to_replace) # regex is regex compilable regex_re = is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError( "only one of to_replace and regex can be regex compilable" ) # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string if is_re(to_replace): pattern = to_replace.pattern else: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex ) new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isna(value) or not isinstance(value, str): def re_replacer(s): if is_re(rx) and isinstance(s, str): return value if rx.search(s) is not None else s else: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): if is_re(rx) and isinstance(s, str): return rx.sub(value, s) else: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] if mask is None: new_values[filt] = f(new_values[filt]) else: new_values[filt][mask] = f(new_values[filt][mask]) # convert block = self.make_block(new_values) if convert: block = block.convert(numeric=False) return block def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): block = super()._replace_coerce( to_replace=to_replace, value=value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) if convert: block = [b.convert(numeric=False, copy=True) for b in block] return block if convert: return [self.convert(numeric=False, copy=True)] return self class CategoricalBlock(ExtensionBlock): __slots__ = () is_categorical = True _verify_integrity = True _can_hold_na = True _concatenator = staticmethod(concat_categorical) def __init__(self, values, placement, ndim=None): # coerce to categorical if we can values = extract_array(values) assert isinstance(values, Categorical), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return Categorical def should_store(self, arr: ArrayLike): return isinstance(arr, self._holder) and is_dtype_equal(self.dtype, arr.dtype) def to_native_types(self, slicer=None, na_rep="", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isna(values) values = np.array(values, dtype="object") values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. Note that this CategoricalBlock._concat_same_type *may* not return a CategoricalBlock. When the categories in `to_concat` differ, this will return an object ndarray. If / when we decide we don't like that behavior: 1. Change Categorical._concat_same_type to use union_categoricals 2. Delete this method. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) # not using self.make_block_same_class as values can be object dtype return make_block( values, placement=placement or slice(0, len(values), 1), ndim=self.ndim ) def replace( self, to_replace, value, inplace: bool = False, filter=None, regex: bool = False, convert: bool = True, ): inplace = validate_bool_kwarg(inplace, "inplace") result = self if inplace else self.copy() if filter is None: # replace was called on a series result.values.replace(to_replace, value, inplace=True) if convert: return result.convert(numeric=False, copy=not inplace) else: return result else: # replace was called on a DataFrame if not isna(value): result.values.add_categories(value, inplace=True) return super(CategoricalBlock, result).replace( to_replace, value, inplace, filter, regex, convert ) # ----------------------------------------------------------------- # Constructor Helpers def get_block_type(values, dtype=None): """ Find the appropriate Block subclass to use for the given values and dtype. Parameters ---------- values : ndarray-like dtype : numpy or pandas dtype Returns ------- cls : class, subclass of Block """ dtype = dtype or values.dtype vtype = dtype.type if is_sparse(dtype): # Need this first(ish) so that Sparse[datetime] is sparse cls = ExtensionBlock elif is_categorical(values): cls = CategoricalBlock elif issubclass(vtype, np.datetime64): assert not is_datetime64tz_dtype(values) cls = DatetimeBlock elif is_datetime64tz_dtype(values): cls = DatetimeTZBlock elif is_interval_dtype(dtype) or is_period_dtype(dtype): cls = ObjectValuesExtensionBlock elif is_extension_array_dtype(values): cls = ExtensionBlock elif issubclass(vtype, np.floating): cls = FloatBlock elif issubclass(vtype, np.timedelta64): assert issubclass(vtype, np.integer) cls = TimeDeltaBlock elif issubclass(vtype, np.complexfloating): cls = ComplexBlock elif issubclass(vtype, np.integer): cls = IntBlock elif dtype == np.bool_: cls = BoolBlock else: cls = ObjectBlock return cls def make_block(values, placement, klass=None, ndim=None, dtype=None): # Ensure that we don't allow PandasArray / PandasDtype in internals. # For now, blocks should be backed by ndarrays when possible. if isinstance(values, ABCPandasArray): values = values.to_numpy() if ndim and ndim > 1: values = np.atleast_2d(values) if isinstance(dtype, PandasDtype): dtype = dtype.numpy_dtype if klass is None: dtype = dtype or values.dtype klass = get_block_type(values, dtype) elif klass is DatetimeTZBlock and not is_datetime64tz_dtype(values): # TODO: This is no longer hit internally; does it need to be retained # for e.g. pyarrow? values = DatetimeArray._simple_new(values, dtype=dtype) return klass(values, ndim=ndim, placement=placement) # ----------------------------------------------------------------- def _extend_blocks(result, blocks=None): """ return a new extended blocks, given the result """ if blocks is None: blocks = [] if isinstance(result, list): for r in result: if isinstance(r, list): blocks.extend(r) else: blocks.append(r) else: assert isinstance(result, Block), type(result) blocks.append(result) return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim < ndim: if shape is None: shape = values.shape if not is_extension_array_dtype(values): # TODO: https://github.com/pandas-dev/pandas/issues/23023 # block.shape is incorrect for "2D" ExtensionArrays # We can't, and don't need to, reshape. values = values.reshape(tuple((1,) + shape)) return values def _merge_blocks(blocks, dtype=None, _can_consolidate=True): if len(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if len({b.dtype for b in blocks}) != 1: raise AssertionError("_merge_blocks are invalid!") # FIXME: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) new_values = np.vstack([b.values for b in blocks]) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, placement=new_mgr_locs) # no merge return blocks def _safe_reshape(arr, new_shape): """ If possible, reshape `arr` to have shape `new_shape`, with a couple of exceptions (see gh-13012): 1) If `arr` is a ExtensionArray or Index, `arr` will be returned as is. 2) If `arr` is a Series, the `_values` attribute will be reshaped and returned. Parameters ---------- arr : array-like, object to be reshaped new_shape : int or tuple of ints, the new shape """ if isinstance(arr, ABCSeries): arr = arr._values if not isinstance(arr, ABCExtensionArray): arr = arr.reshape(new_shape) return arr def _putmask_smart(v: np.ndarray, mask: np.ndarray, n) -> np.ndarray: """ Return a new ndarray, try to preserve dtype if possible. Parameters ---------- v : np.ndarray `values`, updated in-place. mask : np.ndarray[bool] Applies to both sides (array like). n : `new values` either scalar or an array like aligned with `values` Returns ------- values : ndarray with updated values this *may* be a copy of the original See Also -------- ndarray.putmask """ # we cannot use np.asarray() here as we cannot have conversions # that numpy does when numeric are mixed with strings # n should be the length of the mask or a scalar here if not is_list_like(n): n = np.repeat(n, len(mask)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[mask] except TypeError: # TypeError: only integer scalar arrays can be converted to a scalar index pass else: # make sure that we have a nullable type # if we have nulls if not _isna_compat(v, nn[0]): pass elif not (is_float_dtype(nn.dtype) or is_integer_dtype(nn.dtype)): # only compare integers/floats pass elif not (is_float_dtype(v.dtype) or is_integer_dtype(v.dtype)): # only compare integers/floats pass else: # we ignore ComplexWarning here with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", np.ComplexWarning) nn_at = nn.astype(v.dtype) comp = nn == nn_at if is_list_like(comp) and comp.all(): nv = v.copy() nv[mask] = nn_at return nv n = np.asarray(n) def _putmask_preserve(nv, n): try: nv[mask] = n[mask] except (IndexError, ValueError): nv[mask] = n return nv # preserves dtype if possible if v.dtype.kind == n.dtype.kind: return _putmask_preserve(v, n) # change the dtype if needed dtype, _ = maybe_promote(n.dtype) v = v.astype(dtype) return _putmask_preserve(v, n)
BugsInPy/BugsInPy/temp/projects/pandas/bug-41-fixed/pandas/pandas/core/internals/blocks.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-41-buggy/pandas/pandas/core/internals/blocks.py
pandas-bug-98
from datetime import datetime import operator from textwrap import dedent from typing import Dict, FrozenSet, Hashable, Optional, Union import warnings import numpy as np from pandas._libs import algos as libalgos, index as libindex, lib import pandas._libs.join as libjoin from pandas._libs.lib import is_datetime_array from pandas._libs.tslibs import OutOfBoundsDatetime, Timestamp from pandas._libs.tslibs.period import IncompatibleFrequency from pandas._libs.tslibs.timezones import tz_compare from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes import concat as _concat from pandas.core.dtypes.cast import maybe_cast_to_integer_array from pandas.core.dtypes.common import ( ensure_categorical, ensure_int64, ensure_object, ensure_platform_int, is_bool, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_interval_dtype, is_iterator, is_list_like, is_object_dtype, is_period_dtype, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ( ABCCategorical, ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCIndexClass, ABCIntervalIndex, ABCMultiIndex, ABCPandasArray, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas.core.dtypes.missing import array_equivalent, isna from pandas.core import ops from pandas.core.accessor import CachedAccessor import pandas.core.algorithms as algos from pandas.core.arrays import ExtensionArray from pandas.core.base import IndexOpsMixin, PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import maybe_convert_indices from pandas.core.indexes.frozen import FrozenList import pandas.core.missing as missing from pandas.core.ops import get_op_result_name from pandas.core.ops.invalid import make_invalid_op from pandas.core.strings import StringMethods from pandas.io.formats.printing import ( default_pprint, format_object_attrs, format_object_summary, pprint_thing, ) __all__ = ["Index"] _unsortable_types = frozenset(("mixed", "mixed-integer")) _index_doc_kwargs = dict( klass="Index", inplace="", target_klass="Index", raises_section="", unique="Index", duplicated="np.ndarray", ) _index_shared_docs = dict() def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries, ExtensionArray)): if other.ndim > 0 and len(self) != len(other): raise ValueError("Lengths must match to compare") if is_object_dtype(self) and isinstance(other, ABCCategorical): left = type(other)(self._values, dtype=other.dtype) return op(left, other) elif is_object_dtype(self) and not isinstance(self, ABCMultiIndex): # don't pass MultiIndex with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY(op, self.values, other) else: with np.errstate(all="ignore"): result = op(self.values, np.asarray(other)) if is_bool_dtype(result): return result return ops.invalid_comparison(self, other, op) name = f"__{op.__name__}__" return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame, ABCTimedeltaIndex)): return NotImplemented from pandas import Series result = op(Series(self), other) if isinstance(result, tuple): return (Index(result[0]), Index(result[1])) return Index(result) name = f"__{op.__name__}__" # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__. """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) if issubclass(cls, ABCMultiIndex): if "labels" in d and "codes" not in d: # GH#23752 "labels" kwarg has been replaced with "codes" d["codes"] = d.pop("labels") return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects. Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible. See Also -------- RangeIndex : Index implementing a monotonic integer range. CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index. IntervalIndex : An Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') """ # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations: FrozenSet[str] = ( PandasObject._deprecations | IndexOpsMixin._deprecations | frozenset(["contains", "set_value"]) ) # To hand over control to subclasses _join_precedence = 1 # Cython methods; see github.com/cython/cython/issues/2647 # for why we need to wrap these instead of making them class attributes # Moreover, cython will choose the appropriate-dtyped sub-function # given the dtypes of the passed arguments def _left_indexer_unique(self, left, right): return libjoin.left_join_indexer_unique(left, right) def _left_indexer(self, left, right): return libjoin.left_join_indexer(left, right) def _inner_indexer(self, left, right): return libjoin.inner_join_indexer(left, right) def _outer_indexer(self, left, right): return libjoin.outer_join_indexer(left, right) _typ = "index" _data: Union[ExtensionArray, np.ndarray] _id = None _name: Optional[Hashable] = None # MultiIndex.levels previously allowed setting the index name. We # don't allow this anymore, and raise if it happens rather than # failing silently. _no_setting_name: bool = False _comparables = ["name"] _attributes = ["name"] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine # whether we support partial string indexing. Overridden # in DatetimeIndex and PeriodIndex _supports_partial_string_indexing = False _accessors = {"str"} str = CachedAccessor("str", StringMethods) # -------------------------------------------------------------------- # Constructors def __new__( cls, data=None, dtype=None, copy=False, name=None, tupleize_cols=True, **kwargs, ) -> "Index": from .range import RangeIndex from pandas import PeriodIndex, DatetimeIndex, TimedeltaIndex from .numeric import Float64Index, Int64Index, UInt64Index from .interval import IntervalIndex from .category import CategoricalIndex name = maybe_extract_name(name, data, cls) if isinstance(data, ABCPandasArray): # ensure users don't accidentally put a PandasArray in an index. data = data.to_numpy() # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, dtype=dtype, name=name) # categorical elif is_categorical_dtype(data) or is_categorical_dtype(dtype): return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval elif ( is_interval_dtype(data) or is_interval_dtype(dtype) ) and not is_object_dtype(dtype): closed = kwargs.get("closed", None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) elif ( is_datetime64_any_dtype(data) or is_datetime64_any_dtype(dtype) or "tz" in kwargs ): if is_dtype_equal(_o_dtype, dtype): # GH#23524 passing `dtype=object` to DatetimeIndex is invalid, # will raise in the where `data` is already tz-aware. So # we leave it out of this step and cast to object-dtype after # the DatetimeIndex construction. # Note we can pass copy=False because the .astype below # will always make a copy return DatetimeIndex(data, copy=False, name=name, **kwargs).astype( object ) else: return DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) elif is_timedelta64_dtype(data) or is_timedelta64_dtype(dtype): if is_dtype_equal(_o_dtype, dtype): # Note we can pass copy=False because the .astype below # will always make a copy return TimedeltaIndex(data, copy=False, name=name, **kwargs).astype( object ) else: return TimedeltaIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) elif is_period_dtype(data) and not is_object_dtype(dtype): return PeriodIndex(data, copy=copy, name=name, **kwargs) # extension dtype elif is_extension_array_dtype(data) or is_extension_array_dtype(dtype): if not (dtype is None or is_object_dtype(dtype)): # coerce to the provided dtype ea_cls = dtype.construct_array_type() data = ea_cls._from_sequence(data, dtype=dtype, copy=False) else: data = np.asarray(data, dtype=object) # coerce to the object dtype data = data.astype(object) return Index(data, dtype=object, copy=copy, name=name, **kwargs) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if dtype is not None: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 data = _maybe_cast_with_dtype(data, dtype, copy) dtype = data.dtype # TODO: maybe not for object? # maybe coerce to a sub-class if is_signed_integer_dtype(data.dtype): return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype("object") else: subarr = com.asarray_tuplesafe(data, dtype=object) # asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: new_data, new_dtype = _maybe_cast_data_without_dtype(subarr) if new_dtype is not None: return cls( new_data, dtype=new_dtype, copy=False, name=name, **kwargs ) if kwargs: raise TypeError(f"Unexpected keyword arguments {repr(set(kwargs))}") return cls._simple_new(subarr, name, **kwargs) elif hasattr(data, "__array__"): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): raise cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data): # GH21470: convert iterable to list before determining if empty if is_iterator(data): data = list(data) if data and all(isinstance(e, tuple) for e in data): # we must be all tuples, otherwise don't construct # 10697 from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get("names") ) # other iterable of some kind subarr = com.asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @property def asi8(self): """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ return None @classmethod def _simple_new(cls, values, name=None, dtype=None): """ We require that we have a dtype compat for the values. If we are passed a non-dtype compat, then coerce using the constructor. Must be careful not to recurse. """ if isinstance(values, (ABCSeries, ABCIndexClass)): # Index._data must always be an ndarray. # This is no-copy for when _values is an ndarray, # which should be always at this point. values = np.asarray(values._values) result = object.__new__(cls) result._data = values # _index_data is a (temporary?) fix to ensure that the direct data # manipulation we do in `_libs/reduction.pyx` continues to work. # We need access to the actual ndarray, since we're messing with # data buffers and strides. We don't re-use `_ndarray_values`, since # we actually set this value too. result._index_data = values result._name = name return result._reset_identity() @cache_readonly def _constructor(self): return type(self) # -------------------------------------------------------------------- # Index Internals Methods def _get_attributes_dict(self): """ Return an attributes dict for my class. """ return {k: getattr(self, k, None) for k in self._attributes} _index_shared_docs[ "_shallow_copy" ] = """ Create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs["_shallow_copy"]) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype # _simple_new expects an the type of self._data values = getattr(values, "_values", values) if isinstance(values, ABCDatetimeArray): # `self.values` returns `self` for tz-aware, so we need to unwrap # more specifically values = values.asi8 return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values, **kwargs): """ Create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ attributes = self._get_attributes_dict() attributes.update(kwargs) attributes["copy"] = False if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def is_(self, other) -> bool: """ More flexible, faster check like ``is`` but that works through views. Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr(other, "_id", Ellipsis) and self._id is not None def _reset_identity(self): """ Initializes or resets ``_id`` attribute with new object. """ self._id = _Identity() return self def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _engine(self): # property, for now, slow to look up # to avoid a reference cycle, bind `_ndarray_values` to a local variable, so # `self` is not passed into the lambda. _ndarray_values = self._ndarray_values return self._engine_type(lambda: _ndarray_values, len(self)) # -------------------------------------------------------------------- # Array-Like Methods # ndarray compat def __len__(self) -> int: """ Return the length of the Index. """ return len(self._data) def __array__(self, dtype=None): """ The array interface, return my values. """ return np.asarray(self._data, dtype=dtype) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. """ result = lib.item_from_zerodim(result) if is_bool_dtype(result) or lib.is_scalar(result): return result attrs = self._get_attributes_dict() return Index(result, **attrs) @cache_readonly def dtype(self): """ Return the dtype object of the underlying data. """ return self._data.dtype def ravel(self, order="C"): """ Return an ndarray of the flattened values of the underlying data. Returns ------- numpy.ndarray Flattened array. See Also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, "_typ"): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result _index_shared_docs[ "astype" ] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type Note that any signed integer `dtype` is treated as ``'int64'``, and any unsigned integer `dtype` is treated as ``'uint64'``, regardless of the size. copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. Returns ------- Index Index with values cast to specified dtype. """ @Appender(_index_shared_docs["astype"]) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) elif is_extension_array_dtype(dtype): return Index(np.asarray(self), dtype=dtype, copy=copy) try: return Index( self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype ) except (TypeError, ValueError): raise TypeError(f"Cannot cast {type(self).__name__} to dtype {dtype}") _index_shared_docs[ "take" ] = """ Return a new %(klass)s of the values selected by the indices. For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken. axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError. Returns ------- numpy.ndarray Elements of given indices. See Also -------- numpy.ndarray.take """ @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable( self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value, ) else: if allow_fill and fill_value is not None: cls_name = type(self).__name__ raise ValueError( f"Unable to fill values because {cls_name} cannot contain NA" ) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable( self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan ): """ Internal method to handle NA filling of take. """ indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): raise ValueError( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) taken = algos.take( values, indices, allow_fill=allow_fill, fill_value=na_value ) else: taken = values.take(indices) return taken _index_shared_docs[ "repeat" ] = """ Repeat elements of a %(klass)s. Returns a new %(klass)s where each element of the current %(klass)s is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty %(klass)s. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- repeated_index : %(klass)s Newly created %(klass)s with repeated elements. See Also -------- Series.repeat : Equivalent function for Series. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> idx = pd.Index(['a', 'b', 'c']) >>> idx Index(['a', 'b', 'c'], dtype='object') >>> idx.repeat(2) Index(['a', 'a', 'b', 'b', 'c', 'c'], dtype='object') >>> idx.repeat([1, 2, 3]) Index(['a', 'b', 'b', 'c', 'c', 'c'], dtype='object') """ @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats, axis=None): repeats = ensure_platform_int(repeats) nv.validate_repeat(tuple(), dict(axis=axis)) return self._shallow_copy(self._values.repeat(repeats)) # -------------------------------------------------------------------- # Copying Methods _index_shared_docs[ "copy" ] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : str, optional deep : bool, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs["copy"]) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get("names") names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): """ Parameters ---------- memo, default None Standard signature. Unused """ return self.copy(deep=True) # -------------------------------------------------------------------- # Rendering Methods def __repr__(self): """ Return a string representation for this object. """ klass_name = type(self).__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() attrs_str = [f"{k}={v}" for k, v in attrs] prepr = f",{space}".join(attrs_str) # no data provided, just attributes if data is None: data = "" res = f"{klass_name}({data}{prepr})" return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function. """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string. """ # do we want to justify (only do so for non-objects) is_justify = not ( self.inferred_type in ("string", "unicode") or ( self.inferred_type == "categorical" and is_object_dtype(self.categories) ) ) return format_object_summary( self, self._formatter_func, is_justify=is_justify, name=name ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index. """ header = [] if name: header.append( pprint_thing(self.name, escape_chars=("\t", "\r", "\n")) if self.name is not None else "" ) if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep="NaN", **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=("\t", "\r", "\n")) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify="left")) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values. Returns ------- numpy.ndarray Formatted values. """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep="", quoting=None, **kwargs): """ Actually format specific types of the index. """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def _summary(self, name=None): """ Return a summarized representation. Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if hasattr(head, "format") and not isinstance(head, str): head = head.format() tail = self[-1] if hasattr(tail, "format") and not isinstance(tail, str): tail = tail.format() index_summary = f", {head} to {tail}" else: index_summary = "" if name is None: name = type(self).__name__ return f"{name}: {len(self)} entries{index_summary}" # -------------------------------------------------------------------- # Conversion Methods def to_flat_index(self): """ Identity method. .. versionadded:: 0.24.0 This is implemented for compatibility with subclass implementations when chaining. Returns ------- pd.Index Caller. See Also -------- MultiIndex.to_flat_index : Subclass implementation. """ return self def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index. Parameters ---------- index : Index, optional Index of resulting Series. If None, defaults to original index. name : str, optional Dame of resulting Series. If None, defaults to name of original index. Returns ------- Series The dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self.values.copy(), index=index, name=name) def to_frame(self, index=True, name=None): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original Index. name : object, default None The passed name should substitute for the index name (if it has one). Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow To override the name of the resulting column, specify `name`: >>> idx.to_frame(index=False, name='zoo') zoo 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame if name is None: name = self.name or 0 result = DataFrame({name: self._values.copy()}) if index: result.index = self return result # -------------------------------------------------------------------- # Name-Centric Methods @property def name(self): return self._name @name.setter def name(self, value): if self._no_setting_name: # Used in MultiIndex.levels to avoid silently ignoring name updates. raise RuntimeError( "Cannot set name on a level of a MultiIndex. Use " "'MultiIndex.set_names' instead." ) maybe_extract_name(value, None, type(self)) self._name = value def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def _get_names(self): return FrozenList((self.name,)) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError("Names must be a list-like") if len(values) != 1: raise ValueError(f"Length of new names must be 1, got {len(values)}") # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError(f"{type(self).__name__}.name must be a hashable type") self._name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set Index or MultiIndex name. Able to set new names partially and by level. Parameters ---------- names : label or list of label Name(s) to set. level : int, label or list of int or label, optional If the index is a MultiIndex, level(s) to set (None for all levels). Otherwise level must be None. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.rename : Able to set new names without level. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> idx.set_names('quarter') Int64Index([1, 2, 3, 4], dtype='int64', name='quarter') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]]) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], ) >>> idx.set_names(['kind', 'year'], inplace=True) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.set_names('species', level=0) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) """ if level is not None and not isinstance(self, ABCMultiIndex): raise ValueError("Level must be None for non-MultiIndex") if level is not None and not is_list_like(level) and is_list_like(names): raise TypeError("Names must be a string when a single level is provided.") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Alter Index or MultiIndex name. Able to set new names without level. Defaults to returning new index. Length of names must match number of levels in MultiIndex. Parameters ---------- name : label or list of labels Name(s) to set. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.set_names : Able to set new names partially and by level. Examples -------- >>> idx = pd.Index(['A', 'C', 'A', 'B'], name='score') >>> idx.rename('grade') Index(['A', 'C', 'A', 'B'], dtype='object', name='grade') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]], ... names=['kind', 'year']) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.rename(['species', 'year']) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) >>> idx.rename('species') Traceback (most recent call last): TypeError: Must pass list-like as `names`. """ return self.set_names([name], inplace=inplace) # -------------------------------------------------------------------- # Level-Centric Methods @property def nlevels(self) -> int: """ Number of levels. """ return 1 def _sort_levels_monotonic(self): """ Compat with MultiIndex. """ return self def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError( "Too many levels: Index has only 1 level, " f"{level} is not a valid level number" ) elif level > 0: raise IndexError( f"Too many levels: Index has only 1 level, not {level + 1}" ) elif level != self.name: raise KeyError( f"Requested level ({level}) does not match index name ({self.name})" ) def _get_level_number(self, level): self._validate_index_level(level) return 0 def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API. Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : bool, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- Index """ return self.sort_values(return_indexer=True, ascending=ascending) def _get_level_values(self, level): """ Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters ---------- level : int or str It is either the integer position or the name of the level. Returns ------- Index Calling object, as there is only one level in the Index. See Also -------- MultiIndex.get_level_values : Get values for a level of a MultiIndex. Notes ----- For Index, level should be 0, since there are no multiple levels. Examples -------- >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying `level` as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object') """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError( f"Cannot remove {len(level)} levels from an index with {self.nlevels} " "levels: at least one level must be left." ) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_codes.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_codes[0] == -1 result = new_levels[0].take(new_codes[0]) if mask.any(): result = result.putmask(mask, np.nan) result._name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False, ) _index_shared_docs[ "_get_grouper_for_level" ] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on. labels : ndarray of int or None Array of locations in level_index. uniques : Index or None Index of unique values for level. """ @Appender(_index_shared_docs["_get_grouper_for_level"]) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None # -------------------------------------------------------------------- # Introspection Methods @property def is_monotonic(self) -> bool: """ Alias for is_monotonic_increasing. """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ Return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self) -> bool: """ Return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self) -> bool: """ Return if the index is strictly monotonic increasing (only increasing) values. Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self) -> bool: """ Return if the index is strictly monotonic decreasing (only decreasing) values. Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing @cache_readonly def is_unique(self) -> bool: """ Return if the index has unique values. """ return self._engine.is_unique @property def has_duplicates(self) -> bool: return not self.is_unique def is_boolean(self) -> bool: return self.inferred_type in ["boolean"] def is_integer(self) -> bool: return self.inferred_type in ["integer"] def is_floating(self) -> bool: return self.inferred_type in ["floating", "mixed-integer-float", "integer-na"] def is_numeric(self) -> bool: return self.inferred_type in ["integer", "floating"] def is_object(self) -> bool: return is_object_dtype(self.dtype) def is_categorical(self) -> bool: """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ["categorical"] def is_interval(self) -> bool: return self.inferred_type in ["interval"] def is_mixed(self) -> bool: return self.inferred_type in ["mixed"] def holds_integer(self): """ Whether the type is an integer type. """ return self.inferred_type in ["integer", "mixed-integer"] @cache_readonly def inferred_type(self): """ Return a string of the type inferred from the values. """ return lib.infer_dtype(self, skipna=False) @cache_readonly def is_all_dates(self) -> bool: return is_datetime_array(ensure_object(self.values)) # -------------------------------------------------------------------- # Pickle Methods def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (type(self), d), None def __setstate__(self, state): """ Necessary for making this object picklable. """ if isinstance(state, dict): self._data = state.pop("data") for k, v in state.items(): setattr(self, k, v) elif isinstance(state, tuple): if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self._name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ # -------------------------------------------------------------------- # Null Handling Methods _na_value = np.nan """The expected NA value to use with this index.""" @cache_readonly def _isnan(self): """ Return if each value is NaN. """ if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: return self._isnan.nonzero()[0] else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ Return if I have any nans; enables various perf speedups. """ if self._can_hold_na: return bool(self._isnan.any()) else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- numpy.ndarray A boolean array of whether my values are NA. See Also -------- Index.notna : Boolean inverse of isna. Index.dropna : Omit entries with missing values. isna : Top-level isna. Series.isna : Detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See Also -------- Index.notnull : Alias of notna. Index.isna: Inverse of notna. notna : Top-level notna. Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna _index_shared_docs[ "fillna" ] = """ Fill NA/NaN values with the specified value. Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns ------- filled : Index """ @Appender(_index_shared_docs["fillna"]) def fillna(self, value=None, downcast=None): self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() _index_shared_docs[ "dropna" ] = """ Return Index without NA/NaN values. Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ @Appender(_index_shared_docs["dropna"]) def dropna(self, how="any"): if how not in ("any", "all"): raise ValueError(f"invalid how option: {how}") if self.hasnans: return self._shallow_copy(self.values[~self._isnan]) return self._shallow_copy() # -------------------------------------------------------------------- # Uniqueness Methods _index_shared_docs[ "index_unique" ] = """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex). .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """ @Appender(_index_shared_docs["index_unique"] % _index_doc_kwargs) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = super().unique() return self._shallow_copy(result) def drop_duplicates(self, keep="first"): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : Equivalent method on Series. DataFrame.drop_duplicates : Equivalent method on DataFrame. Index.duplicated : Related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super().drop_duplicates(keep=keep) def duplicated(self, keep="first"): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- numpy.ndarray See Also -------- Series.duplicated : Equivalent method on pandas.Series. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Index.drop_duplicates : Remove duplicate values from Index. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) """ return super().duplicated(keep=keep) def _get_unique_index(self, dropna=False): """ Returns an index containing unique values. Parameters ---------- dropna : bool If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) # -------------------------------------------------------------------- # Arithmetic & Logical Methods def __add__(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented from pandas import Series return Index(Series(self) + other) def __radd__(self, other): from pandas import Series return Index(other + Series(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): return Index(np.array(self) - other) def __rsub__(self, other): # wrap Series to ensure we pin name correctly from pandas import Series return Index(other - Series(self)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def __nonzero__(self): raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." ) __bool__ = __nonzero__ # -------------------------------------------------------------------- # Set Operation Methods def _get_reconciled_name_object(self, other): """ If the result of a set operation will be self, return self, unless the name changes, in which case make a shallow copy of self. """ name = get_op_result_name(self, other) if self.name != name: return self._shallow_copy(name=name) return self def _union_incompatible_dtypes(self, other, sort): """ Casts this and other index to object dtype to allow the formation of a union between incompatible types. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ this = self.astype(object, copy=False) # cast to Index for when `other` is list-like other = Index(other).astype(object, copy=False) return Index.union(this, other, sort=sort).astype(object, copy=False) def _is_compatible_with_other(self, other): """ Check whether this and the other dtype are compatible with each other. Meaning a union can be formed between them without needing to be cast to dtype object. Parameters ---------- other : Index or array-like Returns ------- bool """ return type(self) is type(other) and is_dtype_equal(self.dtype, other.dtype) def _validate_sort_keyword(self, sort): if sort not in [None, False]: raise ValueError( "The 'sort' keyword only takes the values of " f"None or False; {sort} was passed." ) def union(self, other, sort=None): """ Form the union of two Index objects. If the Index objects are incompatible, both Index objects will be cast to dtype('object') first. .. versionchanged:: 0.25.0 Parameters ---------- other : Index or array-like sort : bool or None, default None Whether to sort the resulting Index. * None : Sort the result, except when 1. `self` and `other` are equal. 2. `self` or `other` has length 0. 3. Some values in `self` or `other` cannot be compared. A RuntimeWarning is issued in this case. * False : do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- union : Index Examples -------- Union matching dtypes >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') Union mismatched dtypes >>> idx1 = pd.Index(['a', 'b', 'c', 'd']) >>> idx2 = pd.Index([1, 2, 3, 4]) >>> idx1.union(idx2) Index(['a', 'b', 'c', 'd', 1, 2, 3, 4], dtype='object') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if not self._is_compatible_with_other(other): return self._union_incompatible_dtypes(other, sort=sort) return self._union(other, sort=sort) def _union(self, other, sort): """ Specific union logic should go here. In subclasses, union behavior should be overwritten here rather than in `self.union`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ if not len(other) or self.equals(other): return self._get_reconciled_name_object(other) if not len(self): return other._get_reconciled_name_object(self) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if sort is None and self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: # find indexes of things in "other" that are not in "self" if self.is_unique: indexer = self.get_indexer(other) indexer = (indexer == -1).nonzero()[0] else: indexer = algos.unique1d(self.get_indexer_non_unique(other)[1]) if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = concat_compat((lvals, other_diff)) else: result = lvals if sort is None: try: result = algos.safe_sort(result) except TypeError as err: warnings.warn( f"{err}, sort order is undefined for incomparable objects", RuntimeWarning, stacklevel=3, ) # for subclasses return self._wrap_setop_result(other, result) def _wrap_setop_result(self, other, result): return self._constructor(result, name=get_op_result_name(self, other)) _index_shared_docs[ "intersection" ] = """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default from ``True`` to ``False``, to match the behaviour of 0.23.4 and earlier. Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ # TODO: standardize return type of non-union setops type(self vs other) @Appender(_index_shared_docs["intersection"]) def intersection(self, other, sort=False): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.intersection(other, sort=sort) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_setop_result(other, result) except TypeError: pass try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except (InvalidIndexError, IncompatibleFrequency): # InvalidIndexError raised by get_indexer if non-unique # IncompatibleFrequency raised by PeriodIndex.get_indexer indexer = algos.unique1d(Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if sort is None: taken = algos.safe_sort(taken.values) if self.name != other.name: name = None else: name = self.name return self._shallow_copy(taken, name=name) if self.name != other.name: taken.name = None return taken def difference(self, other, sort=None): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([2, 1, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') >>> idx1.difference(idx2, sort=False) Int64Index([2, 1], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if self.equals(other): # pass an empty np.ndarray with the appropriate dtype return self._shallow_copy(self._data[:0]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name) def symmetric_difference(self, other, result_name=None, sort=None): """ Compute the symmetric difference of two Index objects. Parameters ---------- other : Index or array-like result_name : str sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d( np.arange(this.size), common_indexer, assume_unique=True ) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = concat_compat([left_diff, right_diff]) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs["name"] = result_name if "freq" in attribs: attribs["freq"] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError("Input must be Index or array-like") return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = get_op_result_name(self, other) return other, result_name # -------------------------------------------------------------------- # Indexing Methods _index_shared_docs[ "get_loc" ] = """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : int or float, optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples -------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ @Appender(_index_shared_docs["get_loc"]) def get_loc(self, key, method=None, tolerance=None): if method is None: if tolerance is not None: raise ValueError( "tolerance argument only valid if using pad, " "backfill or nearest lookups" ) try: return self._engine.get_loc(key) except KeyError: return self._engine.get_loc(self._maybe_cast_indexer(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError("get_loc requires scalar valued input") loc = indexer.item() if loc == -1: raise KeyError(key) return loc _index_shared_docs[ "get_indexer" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. %(raises_section)s Examples -------- >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in ``index`` and ``x`` is marked by -1, as it is not in ``index``. """ @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer( ptarget, method=method, limit=limit, tolerance=tolerance ) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) if not self.is_unique: raise InvalidIndexError( "Reindexing only valid with uniquely valued Index objects" ) if method == "pad" or method == "backfill": indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == "nearest": indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError( "tolerance argument only valid if doing pad, " "backfill or nearest reindexing" ) if limit is not None: raise ValueError( "limit argument only valid if doing pad, " "backfill or nearest reindexing" ) indexer = self._engine.get_indexer(target._ndarray_values) return ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError("list-like tolerance size must match target index size") return tolerance def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = ( self._engine.get_pad_indexer if method == "pad" else self._engine.get_backfill_indexer ) indexer = method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance( target._ndarray_values, indexer, tolerance ) return indexer def _get_fill_indexer_searchsorted(self, target, method, limit=None): """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets. """ if limit is not None: raise ValueError( f"limit argument for {repr(method)} method only well-defined " "if index and target are monotonic" ) side = "left" if method == "pad" else "right" # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = indexer == -1 indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == "left": # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, "pad", limit=limit) right_indexer = self.get_indexer(target, "backfill", limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where( op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer, ) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, target, indexer, tolerance): distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer # -------------------------------------------------------------------- # Indexer Conversion Methods _index_shared_docs[ "_convert_scalar_indexer" ] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs["_convert_scalar_indexer"]) def _convert_scalar_indexer(self, key, kind=None): assert kind in ["ix", "loc", "getitem", "iloc", None] if kind == "iloc": return self._validate_indexer("positional", key, kind) if len(self) and not isinstance(self, ABCMultiIndex): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ["getitem", "ix"] and is_float(key): if not self.is_floating(): return self._invalid_indexer("label", key) elif kind in ["loc"] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in [ "floating", "mixed-integer-float", "integer-na", "string", "unicode", "mixed", ]: self._invalid_indexer("label", key) elif kind in ["loc"] and is_integer(key): if not self.holds_integer(): self._invalid_indexer("label", key) return key _index_shared_docs[ "_convert_slice_indexer" ] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs["_convert_slice_indexer"]) def _convert_slice_indexer(self, key: slice, kind=None): assert kind in ["ix", "loc", "getitem", "iloc", None] # validate iloc if kind == "iloc": return slice( self._validate_indexer("slice", key.start, kind), self._validate_indexer("slice", key.stop, kind), self._validate_indexer("slice", key.step, kind), ) # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not ( self.is_integer() or self.is_categorical() ) if kind == "getitem": """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice( self._validate_indexer("slice", key.start, kind), self._validate_indexer("slice", key.stop, kind), self._validate_indexer("slice", key.step, kind), ) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # Validate start & stop if start is not None: self.get_loc(start) if stop is not None: self.get_loc(stop) is_positional = False except KeyError: if self.inferred_type in ["mixed-integer-float", "integer-na"]: raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: indexer = self.slice_indexer(start, stop, step, kind=kind) return indexer def _convert_listlike_indexer(self, keyarr, kind=None): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- indexer : numpy.ndarray or None Return an ndarray or None if cannot convert. keyarr : numpy.ndarray Return tuple-safe keys. """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr _index_shared_docs[ "_convert_arr_indexer" ] = """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ @Appender(_index_shared_docs["_convert_arr_indexer"]) def _convert_arr_indexer(self, keyarr): keyarr = com.asarray_tuplesafe(keyarr) return keyarr _index_shared_docs[ "_convert_index_indexer" ] = """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ @Appender(_index_shared_docs["_convert_index_indexer"]) def _convert_index_indexer(self, keyarr): return keyarr _index_shared_docs[ "_convert_list_indexer" ] = """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, ix, loc, optional Returns ------- positional indexer or None """ @Appender(_index_shared_docs["_convert_list_indexer"]) def _convert_list_indexer(self, keyarr, kind=None): if ( kind in [None, "iloc", "ix"] and is_integer_dtype(keyarr) and not self.is_floating() and not isinstance(keyarr, ABCPeriodIndex) ): if self.inferred_type == "mixed-integer": indexer = self.get_indexer(keyarr) if (indexer >= 0).all(): return indexer # missing values are flagged as -1 by get_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = len(self) return maybe_convert_indices(indexer, len(self)) elif not self.inferred_type == "integer": keyarr = np.where(keyarr < 0, len(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ Consistent invalid indexer message. """ raise TypeError( f"cannot do {form} indexing on {type(self)} with these " f"indexers [{key}] of {type(key)}" ) # -------------------------------------------------------------------- # Reindex Methods def _can_reindex(self, indexer): """ Check if we are allowing reindexing with this particular indexer. Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary). Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "name") # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq values = self._data[:0] # appropriately-dtyped empty array target = self._simple_new(values, dtype=self.dtype, **attrs) else: target = ensure_index(target) if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") _, indexer, _ = self._join_level( target, level, how="right", return_indexers=True ) else: if self.equals(target): indexer = None else: # check is_overlapping for IntervalIndex compat if self.is_unique and not getattr(self, "is_overlapping", False): indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: if method is not None or limit is not None: raise ValueError( "cannot reindex a non-unique index " "with a method or limit" ) indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target. Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ target = ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = -1 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels) return new_index, indexer, new_indexer # -------------------------------------------------------------------- # Join Methods _index_shared_docs[ "join" ] = """ Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : bool, default False sort : bool, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword). Returns ------- join_index, (left_indexer, right_indexer) """ @Appender(_index_shared_docs["join"]) def join(self, other, how="left", level=None, return_indexers=False, sort=False): self_is_mi = isinstance(self, ABCMultiIndex) other_is_mi = isinstance(other, ABCMultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level( other, level, how=how, return_indexers=return_indexers ) other = ensure_index(other) if len(other) == 0 and how in ("left", "outer"): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ("right", "outer"): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {"right": "left", "left": "right"}.get(how, how) result = other.join( self, how=how, level=level, return_indexers=return_indexers ) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) else: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) except TypeError: pass if how == "left": join_index = self elif how == "right": join_index = other elif how == "inner": # TODO: sort=False here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.intersection(other, sort=False) elif how == "outer": # TODO: sort=True here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from .multi import MultiIndex from pandas.core.reshape.merge import _restore_dropped_levels_multijoin # figure out join names self_names = set(com.not_none(*self.names)) other_names = set(com.not_none(*other.names)) overlap = self_names & other_names # need at least 1 in common if not overlap: raise ValueError("cannot join with no overlapping index names") self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) if self_is_mi and other_is_mi: # Drop the non-matching levels from left and right respectively ldrop_names = list(self_names - overlap) rdrop_names = list(other_names - overlap) # if only the order differs if not len(ldrop_names + rdrop_names): self_jnlevels = self other_jnlevels = other.reorder_levels(self.names) else: self_jnlevels = self.droplevel(ldrop_names) other_jnlevels = other.droplevel(rdrop_names) # Join left and right # Join on same leveled multi-index frames is supported join_idx, lidx, ridx = self_jnlevels.join( other_jnlevels, how, return_indexers=True ) # Restore the dropped levels # Returned index level order is # common levels, ldrop_names, rdrop_names dropped_names = ldrop_names + rdrop_names levels, codes, names = _restore_dropped_levels_multijoin( self, other, dropped_names, join_idx, lidx, ridx ) # Re-create the multi-index multi_join_idx = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) multi_join_idx = multi_join_idx.remove_unused_levels() return multi_join_idx, lidx, ridx jl = list(overlap)[0] # Case where only one index is multi # make the indices into mi's that match flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {"right": "left", "left": "right"}.get(how, how) level = other.names.index(jl) result = self._join_level( other, level, how=how, return_indexers=return_indexers ) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result def _join_non_unique(self, other, how="left", return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers( [self._ndarray_values], [other._ndarray_values], how=how, sort=True ) left_idx = ensure_platform_int(left_idx) right_idx = ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level( self, other, level, how="left", return_indexers=False, keep_order=True ): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If ```keep_order == True```, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from .multi import MultiIndex def _get_leaf_sorter(labels): """ Returns sorter for the inner most level while preserving the order of higher levels. """ if labels[0].size == 0: return np.empty(0, dtype="int64") if len(labels) == 1: lab = ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = ensure_int64(labels[-1]) return lib.get_level_sorter(lab, ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError("Join on level between two MultiIndex objects is ambiguous") left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {"right": "left", "left": "right"}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError( "Index._join_level on non-unique index is not implemented" ) new_level, left_lev_indexer, right_lev_indexer = old_level.join( right, how=how, return_indexers=True ) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.codes[: level + 1]) join_index = left[left_indexer] else: left_lev_indexer = ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_codes = algos.take_nd( rev_indexer, left.codes[level], allow_fill=False ) new_codes = list(left.codes) new_codes[level] = new_lev_codes new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_codes != -1 if not mask.all(): new_codes = [lab[mask] for lab in new_codes] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_codes.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_codes, ngroups ) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0] :] new_codes = [lab[left_indexer] for lab in new_codes] else: # sort the leaves mask = new_lev_codes != -1 mask_all = mask.all() if not mask_all: new_codes = [lab[mask] for lab in new_codes] left_indexer = _get_leaf_sorter(new_codes[: level + 1]) new_codes = [lab[left_indexer] for lab in new_codes] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex( levels=new_levels, codes=new_codes, names=left.names, verify_integrity=False, ) if right_lev_indexer is not None: right_indexer = algos.take_nd( right_lev_indexer, join_index.codes[level], allow_fill=False ) else: right_indexer = join_index.codes[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = ( None if left_indexer is None else ensure_platform_int(left_indexer) ) right_indexer = ( None if right_indexer is None else ensure_platform_int(right_indexer) ) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how="left", return_indexers=False): if self.equals(other): ret_index = other if how == "right" else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == "left": join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == "right": join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == "left": join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == "right": join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else ensure_platform_int(lidx) ridx = None if ridx is None else ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = get_op_result_name(self, other) return Index(joined, name=name) # -------------------------------------------------------------------- # Uncategorized Methods @property def values(self): """ Return an array representing the data in the Index. .. warning:: We recommend using :attr:`Index.array` or :meth:`Index.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- array: numpy.ndarray or ExtensionArray See Also -------- Index.array : Reference to the underlying data. Index.to_numpy : A NumPy array representing the underlying data. """ return self._data.view(np.ndarray) @property def _values(self) -> Union[ExtensionArray, ABCIndexClass, np.ndarray]: # TODO(EA): remove index types as they become extension arrays """ The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | --------------- | ------------- | --------------- | Index | ndarray | ndarray | ndarray | CategoricalIndex | Categorical | Categorical | ndarray[int] | DatetimeIndex | ndarray[M8ns] | ndarray[M8ns] | ndarray[M8ns] | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | PeriodIndex | ndarray[object] | PeriodArray | ndarray[int] | IntervalIndex | IntervalArray | IntervalArray | ndarray[object] | See Also -------- values _ndarray_values """ return self._data def _internal_get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that _internal_get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index._internal_get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx._internal_get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx._internal_get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx._internal_get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super().memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result _index_shared_docs[ "where" ] = """ Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : bool array-like with the same length as self other : scalar, or array-like Returns ------- Index """ @Appender(_index_shared_docs["where"]) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) # construction helpers @classmethod def _scalar_data_error(cls, data): # We return the TypeError so that we can raise it from the constructor # in order to keep mypy happy return TypeError( f"{cls.__name__}(...) must be called with a collection of some " f"kind, {repr(data)} was passed" ) @classmethod def _string_data_error(cls, data): raise TypeError( "String dtype not supported, you may need " "to explicitly cast to a numeric type" ) def _coerce_scalar_to_index(self, item): """ We need to coerce a scalar to a compat for our index type. Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) def _to_safe_for_reshape(self): """ Convert to object if we are a categorical. """ return self def _convert_for_op(self, value): """ Convert value to be insertable to ndarray. """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op. """ if not is_scalar(value): raise TypeError(f"'value' must be a scalar, passed: {type(value).__name__}") def _is_memory_usage_qualified(self) -> bool: """ Return a boolean if we need a qualified .info display. """ return self.is_object() def is_type_compatible(self, kind) -> bool: """ Whether the index type is compatible with the provided type. """ return kind == self.inferred_type _index_shared_docs[ "contains" ] = """ Return a boolean indicating whether the provided key is in the index. Parameters ---------- key : label The key to check if it is present in the index. Returns ------- bool Whether the key search is in the index. See Also -------- Index.isin : Returns an ndarray of boolean dtype indicating whether the list-like key is in the index. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> 2 in idx True >>> 6 in idx False """ @Appender(_index_shared_docs["contains"] % _index_doc_kwargs) def __contains__(self, key) -> bool: hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False def __hash__(self): raise TypeError(f"unhashable type: {repr(type(self).__name__)}") def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): key = com.cast_scalar_indexer(key) return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) key = com.values_from_object(key) result = getitem(key) if not is_scalar(result): return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name) -> bool: """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together. Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError("all inputs must be Index") names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return Index._concat_same_dtype(self, to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class. """ # must be overridden in specific classes klasses = ( ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, ExtensionArray, ABCIntervalIndex, ) to_concat = [ x.astype(object) if isinstance(x, klasses) else x for x in to_concat ] self = to_concat[0] attribs = self._get_attributes_dict() attribs["name"] = name to_concat = [x._values if isinstance(x, Index) else x for x in to_concat] return self._shallow_copy_with_infer(np.concatenate(to_concat), **attribs) def putmask(self, mask, value): """ Return a new Index of the values set with the mask. Returns ------- Index See Also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def equals(self, other) -> bool: """ Determine if two Index objects contain the same elements. Returns ------- bool True if "other" is an Index and it has the same elements as calling index; False otherwise. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) if isinstance(other, ABCMultiIndex): # d-level MultiIndex can equal d-tuple Index if not is_object_dtype(self.dtype): if self.nlevels != other.nlevels: return False return array_equivalent( com.values_from_object(self), com.values_from_object(other) ) def identical(self, other) -> bool: """ Similar to equals, but check that other comparable attributes are also equal. Returns ------- bool If two Index objects have equal elements and same type True, otherwise False. """ return ( self.equals(other) and all( ( getattr(self, c, None) == getattr(other, c, None) for c in self._comparables ) ) and type(self) == type(other) ) def asof(self, label): """ Return the label from the index, or, if not present, the previous one. Assuming that the index is sorted, return the passed index label if it is in the index, or return the previous index label if the passed one is not in the index. Parameters ---------- label : object The label up to which the method returns the latest index label. Returns ------- object The passed label if it is in the index. The previous label if the passed label is not in the sorted index or `NaN` if there is no such label. See Also -------- Series.asof : Return the latest value in a Series up to the passed index. merge_asof : Perform an asof merge (similar to left join but it matches on nearest key rather than equal key). Index.get_loc : An `asof` is a thin wrapper around `get_loc` with method='pad'. Examples -------- `Index.asof` returns the latest index label up to the passed label. >>> idx = pd.Index(['2013-12-31', '2014-01-02', '2014-01-03']) >>> idx.asof('2014-01-01') '2013-12-31' If the label is in the index, the method returns the passed label. >>> idx.asof('2014-01-02') '2014-01-02' If all of the labels in the index are later than the passed label, NaN is returned. >>> idx.asof('1999-01-02') nan If the index is not sorted, an error is raised. >>> idx_not_sorted = pd.Index(['2013-12-31', '2015-01-02', ... '2014-01-03']) >>> idx_not_sorted.asof('2013-12-31') Traceback (most recent call last): ValueError: index must be monotonic increasing or decreasing """ try: loc = self.get_loc(label, method="pad") except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ Find the locations (indices) of the labels from the index for every entry in the `where` argument. As in the `asof` function, if the label (a particular entry in `where`) is not in the index, the latest index label up to the passed label is chosen and its index returned. If all of the labels in the index are later than a label in `where`, -1 is returned. `mask` is used to ignore NA values in the index during calculation. Parameters ---------- where : Index An Index consisting of an array of timestamps. mask : array-like Array of booleans denoting where values in the original data are not NA. Returns ------- numpy.ndarray An array of locations (indices) of the labels from the Index which correspond to the return values of the `asof` function for every element in `where`. """ locs = self.values[mask].searchsorted(where.values, side="right") locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where.values < self.values[first])] = -1 return result def sort_values(self, return_indexer=False, ascending=True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- Series.sort_values : Sort values of a Series. DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): """ Use sort_values instead. """ raise TypeError("cannot sort an Index object in-place, use sort_values instead") def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or str, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index Shifted index. See Also -------- Series.shift : Shift values of Series. Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') """ raise NotImplementedError(f"Not supported for type {type(self).__name__}") def argsort(self, *args, **kwargs): """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See Also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) _index_shared_docs[ "get_value" ] = """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing. Returns ------- scalar A value in the Series with the index of the key value in self. """ @Appender(_index_shared_docs["get_value"] % _index_doc_kwargs) def get_value(self, series, key): # if we have something that is Index-like, then # use this, e.g. DatetimeIndex # Things like `Series._get_value` (via .at) pass the EA directly here. s = extract_array(series, extract_numpy=True) if isinstance(s, ExtensionArray): if is_scalar(key): # GH 20882, 21257 # First try to convert the key to a location # If that fails, raise a KeyError if an integer # index, otherwise, see if key is an integer, and # try that try: iloc = self.get_loc(key) return s[iloc] except KeyError: if len(self) > 0 and (self.holds_integer() or self.is_boolean()): raise elif is_integer(key): return s[key] else: # if key is not a scalar, directly raise an error (the code below # would convert to numpy arrays and raise later any way) - GH29926 raise InvalidIndexError(key) s = com.values_from_object(series) k = com.values_from_object(key) k = self._convert_scalar_indexer(k, kind="getitem") try: return self._engine.get_value(s, k, tz=getattr(series.dtype, "tz", None)) except KeyError as e1: if len(self) > 0 and (self.holds_integer() or self.is_boolean()): raise try: return libindex.get_value_at(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: raise e1 except TypeError: # e.g. "[False] is an invalid key" if is_scalar(key): raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. .. deprecated:: 1.0 Notes ----- Only use this if you know what you're doing. """ warnings.warn( ( "The 'set_value' method is deprecated, and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) self._engine.set_value( com.values_from_object(arr), com.values_from_object(key), value ) _index_shared_docs[ "get_indexer_non_unique" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array. """ @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if is_categorical(target): tgt_values = np.asarray(target) elif self.is_all_dates and target.is_all_dates: # GH 30399 tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ Guaranteed return of an indexer even when non-unique. This dispatches to get_indexer or get_indexer_non_unique as appropriate. Returns ------- numpy.ndarray List of indices. """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works if self.inferred_type == "date" and isinstance(other, ABCDatetimeIndex): return type(other)(self), other elif self.inferred_type == "boolean": if not is_object_dtype(self.dtype): return self.astype("object"), other.astype("object") return self, other def groupby(self, values) -> Dict[Hashable, np.ndarray]: """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples if isinstance(values, ABCMultiIndex): values = values.values values = ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in result.items()} return result def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex new_values = super()._map_values(mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get("name"): names = [attributes.get("name")] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes["copy"] = False if not new_values.size: # empty attributes["dtype"] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See Also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], codes=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, default None kind : str, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples -------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index, then try to cast to an int if equivalent. """ if is_float(key) and not self.is_floating(): try: ckey = int(key) if ckey == key: key = ckey except (OverflowError, ValueError, TypeError): pass return key def _validate_indexer(self, form, key, kind): """ If we are positional indexer, validate that we have appropriate typed bounds must be an integer. """ assert kind in ["ix", "loc", "getitem", "iloc"] if key is None: pass elif is_integer(key): pass elif kind in ["iloc", "getitem"]: self._invalid_indexer(form, key) return key _index_shared_docs[ "_maybe_cast_slice_bound" ] = """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ @Appender(_index_shared_docs["_maybe_cast_slice_bound"]) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ["ix", "loc", "getitem", None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): if not (kind in ["ix"] and (self.holds_integer() or self.is_floating())): self._invalid_indexer("slice", label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer("slice", label) return label def _searchsorted_monotonic(self, label, side="left"): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted( label, side="right" if side == "left" else "left" ) return len(self) - pos raise ValueError("index must be monotonic increasing or decreasing") def get_slice_bound(self, label, side, kind): """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- int Index of label. """ assert kind in ["ix", "loc", "getitem", None] if side not in ("left", "right"): raise ValueError( f"Invalid value for side kwarg, must be either" f" 'left' or 'right': {side}" ) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self.get_loc(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view("u1")) else: slc = lib.maybe_indices_to_slice(slc.astype("i8"), len(self)) if isinstance(slc, np.ndarray): raise KeyError( f"Cannot get {side} slice bound for non-unique " f"label: {repr(original_label)}" ) if isinstance(slc, slice): if side == "left": return slc.start else: return slc.stop else: if side == "right": return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, defaults None If None, defaults to 1. kind : {'ix', 'loc', 'getitem'} or None Returns ------- start, end : int See Also -------- Index.get_loc : Get location for a single label. Notes ----- This method only works if the index is monotonic or unique. Examples -------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) """ inc = step is None or step >= 0 if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start # GH 16785: If start and end happen to be date strings with UTC offsets # attempt to parse and check that the offsets are the same if isinstance(start, (str, datetime)) and isinstance(end, (str, datetime)): try: ts_start = Timestamp(start) ts_end = Timestamp(end) except (ValueError, TypeError): pass else: if not tz_compare(ts_start.tzinfo, ts_end.tzinfo): raise ValueError("Both dates must have the same UTC offset") start_slice = None if start is not None: start_slice = self.get_slice_bound(start, "left", kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, "right", kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted. Returns ------- new_index : Index """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values. Parameters ---------- loc : int item : object Returns ------- new_index : Index """ _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors="raise"): """ Make new Index with passed list of labels deleted. Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If not all of the labels are found in the selected axis """ arr_dtype = "object" if self.dtype == "object" else None labels = com.index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != "ignore": raise KeyError(f"{labels[mask]} not found in axis") indexer = indexer[~mask] return self.delete(indexer) # -------------------------------------------------------------------- # Generated Arithmetic, Comparison, and Unary Methods @classmethod def _add_comparison_methods(cls): """ Add in comparison methods. """ cls.__eq__ = _make_comparison_op(operator.eq, cls) cls.__ne__ = _make_comparison_op(operator.ne, cls) cls.__lt__ = _make_comparison_op(operator.lt, cls) cls.__gt__ = _make_comparison_op(operator.gt, cls) cls.__le__ = _make_comparison_op(operator.le, cls) cls.__ge__ = _make_comparison_op(operator.ge, cls) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ Add in the numeric add/sub methods to disable. """ cls.__add__ = make_invalid_op("__add__") cls.__radd__ = make_invalid_op("__radd__") cls.__iadd__ = make_invalid_op("__iadd__") cls.__sub__ = make_invalid_op("__sub__") cls.__rsub__ = make_invalid_op("__rsub__") cls.__isub__ = make_invalid_op("__isub__") @classmethod def _add_numeric_methods_disabled(cls): """ Add in numeric methods to disable other than add/sub. """ cls.__pow__ = make_invalid_op("__pow__") cls.__rpow__ = make_invalid_op("__rpow__") cls.__mul__ = make_invalid_op("__mul__") cls.__rmul__ = make_invalid_op("__rmul__") cls.__floordiv__ = make_invalid_op("__floordiv__") cls.__rfloordiv__ = make_invalid_op("__rfloordiv__") cls.__truediv__ = make_invalid_op("__truediv__") cls.__rtruediv__ = make_invalid_op("__rtruediv__") cls.__mod__ = make_invalid_op("__mod__") cls.__divmod__ = make_invalid_op("__divmod__") cls.__neg__ = make_invalid_op("__neg__") cls.__pos__ = make_invalid_op("__pos__") cls.__abs__ = make_invalid_op("__abs__") cls.__inv__ = make_invalid_op("__inv__") @classmethod def _add_numeric_methods_binary(cls): """ Add in numeric methods. """ cls.__add__ = _make_arithmetic_op(operator.add, cls) cls.__radd__ = _make_arithmetic_op(ops.radd, cls) cls.__sub__ = _make_arithmetic_op(operator.sub, cls) cls.__rsub__ = _make_arithmetic_op(ops.rsub, cls) cls.__rpow__ = _make_arithmetic_op(ops.rpow, cls) cls.__pow__ = _make_arithmetic_op(operator.pow, cls) cls.__truediv__ = _make_arithmetic_op(operator.truediv, cls) cls.__rtruediv__ = _make_arithmetic_op(ops.rtruediv, cls) # TODO: rmod? rdivmod? cls.__mod__ = _make_arithmetic_op(operator.mod, cls) cls.__floordiv__ = _make_arithmetic_op(operator.floordiv, cls) cls.__rfloordiv__ = _make_arithmetic_op(ops.rfloordiv, cls) cls.__divmod__ = _make_arithmetic_op(divmod, cls) cls.__mul__ = _make_arithmetic_op(operator.mul, cls) cls.__rmul__ = _make_arithmetic_op(ops.rmul, cls) @classmethod def _add_numeric_methods_unary(cls): """ Add in numeric unary methods. """ def _make_evaluate_unary(op, opstr): def _evaluate_numeric_unary(self): attrs = self._get_attributes_dict() return Index(op(self.values), **attrs) _evaluate_numeric_unary.__name__ = opstr return _evaluate_numeric_unary cls.__neg__ = _make_evaluate_unary(operator.neg, "__neg__") cls.__pos__ = _make_evaluate_unary(operator.pos, "__pos__") cls.__abs__ = _make_evaluate_unary(np.abs, "__abs__") cls.__inv__ = _make_evaluate_unary(lambda x: -x, "__inv__") @classmethod def _add_numeric_methods(cls): cls._add_numeric_methods_unary() cls._add_numeric_methods_binary() @classmethod def _add_logical_methods(cls): """ Add in logical methods. """ _doc = """ %(desc)s Parameters ---------- *args These parameters will be passed to numpy.%(outname)s. **kwargs These parameters will be passed to numpy.%(outname)s. Returns ------- %(outname)s : bool or array_like (if axis is specified) A single element array_like may be converted to bool.""" _index_shared_docs["index_all"] = dedent( """ See Also -------- Index.any : Return whether any element in an Index is True. Series.any : Return whether any element in a Series is True. Series.all : Return whether all elements in a Series are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- **all** True, because nonzero integers are considered True. >>> pd.Index([1, 2, 3]).all() True False, because ``0`` is considered False. >>> pd.Index([0, 1, 2]).all() False **any** True, because ``1`` is considered True. >>> pd.Index([0, 0, 1]).any() True False, because ``0`` is considered False. >>> pd.Index([0, 0, 0]).any() False """ ) _index_shared_docs["index_any"] = dedent( """ See Also -------- Index.all : Return whether all elements are True. Series.all : Return whether all elements are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- >>> index = pd.Index([0, 1, 2]) >>> index.any() True >>> index = pd.Index([0, 0, 0]) >>> index.any() False """ ) def _make_logical_function(name, desc, f): @Substitution(outname=name, desc=desc) @Appender(_index_shared_docs["index_" + name]) @Appender(_doc) def logical_func(self, *args, **kwargs): result = f(self.values) if ( isinstance(result, (np.ndarray, ABCSeries, Index)) and result.ndim == 0 ): # return NumPy type return result.dtype.type(result.item()) else: # pragma: no cover return result logical_func.__name__ = name return logical_func cls.all = _make_logical_function( "all", "Return whether all elements are True.", np.all ) cls.any = _make_logical_function( "any", "Return whether any element is True.", np.any ) @classmethod def _add_logical_methods_disabled(cls): """ Add in logical methods to disable. """ cls.all = make_invalid_op("all") cls.any = make_invalid_op("any") @property def shape(self): """ Return a tuple of the shape of the underlying data. """ # not using "(len(self), )" to return "correct" shape if the values # consists of a >1 D array (see GH-27775) # overridden in MultiIndex.shape to avoid materializing the values return self._values.shape Index._add_numeric_methods_disabled() Index._add_logical_methods() Index._add_comparison_methods() def ensure_index_from_sequences(sequences, names=None): """ Construct an index from sequences of data. A single sequence returns an Index. Many sequences returns a MultiIndex. Parameters ---------- sequences : sequence of sequences names : sequence of str Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index_from_sequences([[1, 2, 3]], names=['name']) Int64Index([1, 2, 3], dtype='int64', name='name') >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']], names=['L1', 'L2']) MultiIndex([('a', 'a'), ('a', 'b')], names=['L1', 'L2']) See Also -------- ensure_index """ from .multi import MultiIndex if len(sequences) == 1: if names is not None: names = names[0] return Index(sequences[0], name=names) else: return MultiIndex.from_arrays(sequences, names=names) def ensure_index(index_like, copy=False): """ Ensure that we have an index from some index-like object. Parameters ---------- index : sequence An Index or other sequence copy : bool Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index(['a', 'b']) Index(['a', 'b'], dtype='object') >>> ensure_index([('a', 'a'), ('b', 'c')]) Index([('a', 'a'), ('b', 'c')], dtype='object') >>> ensure_index([['a', 'a'], ['b', 'c']]) MultiIndex([('a', 'b'), ('a', 'c')], dtype='object') ) See Also -------- ensure_index_from_sequences """ if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, "name"): return Index(index_like, name=index_like.name, copy=copy) if is_iterator(index_like): index_like = list(index_like) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from .multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like) def _ensure_has_len(seq): """ If seq is an iterator, put its values into a list. """ try: len(seq) except TypeError: return list(seq) else: return seq def _trim_front(strings): """ Trims zeros and decimal points. """ trimmed = strings while len(strings) > 0 and all(x[0] == " " for x in trimmed): trimmed = [x[1:] for x in trimmed] return trimmed def _validate_join_method(method): if method not in ["left", "right", "inner", "outer"]: raise ValueError(f"do not recognize join method {method}") def default_index(n): from pandas.core.indexes.range import RangeIndex return RangeIndex(0, n, name=None) def maybe_extract_name(name, obj, cls) -> Optional[Hashable]: """ If no name is passed, then extract it from data, validating hashability. """ if name is None and isinstance(obj, (Index, ABCSeries)): # Note we don't just check for "name" attribute since that would # pick up e.g. dtype.name name = obj.name # GH#29069 if not is_hashable(name): raise TypeError(f"{cls.__name__}.name must be a hashable type") return name def _maybe_cast_with_dtype(data: np.ndarray, dtype: np.dtype, copy: bool) -> np.ndarray: """ If a dtype is passed, cast to the closest matching dtype that is supported by Index. Parameters ---------- data : np.ndarray dtype : np.dtype copy : bool Returns ------- np.ndarray """ # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "integer": data = maybe_cast_to_integer_array(data, dtype, copy=copy) elif inferred in ["floating", "mixed-integer-float"]: if isna(data).any(): raise ValueError("cannot convert float NaN to integer") if inferred == "mixed-integer-float": data = maybe_cast_to_integer_array(data, dtype) # If we are actually all equal to integers, # then coerce to integer. try: data = _try_convert_to_int_array(data, copy, dtype) except ValueError: data = np.array(data, dtype=np.float64, copy=copy) elif inferred == "string": pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "string": pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) return data def _maybe_cast_data_without_dtype(subarr): """ If we have an arraylike input but no passed dtype, try to infer a supported dtype. Parameters ---------- subarr : np.ndarray, Index, or Series Returns ------- converted : np.ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype """ # Runtime import needed bc IntervalArray imports Index from pandas.core.arrays import ( IntervalArray, PeriodArray, DatetimeArray, TimedeltaArray, ) inferred = lib.infer_dtype(subarr, skipna=False) if inferred == "integer": try: data = _try_convert_to_int_array(subarr, False, None) return data, data.dtype except ValueError: pass return subarr, object elif inferred in ["floating", "mixed-integer-float", "integer-na"]: # TODO: Returns IntegerArray for integer-na case in the future return subarr, np.float64 elif inferred == "interval": try: data = IntervalArray._from_sequence(subarr, copy=False) return data, data.dtype except ValueError: # GH27172: mixed closed Intervals --> object dtype pass elif inferred == "boolean": # don't support boolean explicitly ATM pass elif inferred != "string": if inferred.startswith("datetime"): try: data = DatetimeArray._from_sequence(subarr, copy=False) return data, data.dtype except (ValueError, OutOfBoundsDatetime): # GH 27011 # If we have mixed timezones, just send it # down the base constructor pass elif inferred.startswith("timedelta"): data = TimedeltaArray._from_sequence(subarr, copy=False) return data, data.dtype elif inferred == "period": try: data = PeriodArray._from_sequence(subarr) return data, data.dtype except IncompatibleFrequency: pass return subarr, subarr.dtype def _try_convert_to_int_array( data: np.ndarray, copy: bool, dtype: np.dtype ) -> np.ndarray: """ Attempt to convert an array of data into an integer array. Parameters ---------- data : The data to convert. copy : bool Whether to copy the data or not. dtype : np.dtype Returns ------- int_array : data converted to either an ndarray[int64] or ndarray[uint64] Raises ------ ValueError if the conversion was not successful. """ if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desired try: res = data.astype("i8", copy=False) if (res == data).all(): return res # TODO: might still need to copy except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype("u8", copy=False) if (res == data).all(): return res # TODO: might still need to copy except (OverflowError, TypeError, ValueError): pass raise ValueError from datetime import datetime import operator from textwrap import dedent from typing import Dict, FrozenSet, Hashable, Optional, Union import warnings import numpy as np from pandas._libs import algos as libalgos, index as libindex, lib import pandas._libs.join as libjoin from pandas._libs.lib import is_datetime_array from pandas._libs.tslibs import OutOfBoundsDatetime, Timestamp from pandas._libs.tslibs.period import IncompatibleFrequency from pandas._libs.tslibs.timezones import tz_compare from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes import concat as _concat from pandas.core.dtypes.cast import maybe_cast_to_integer_array from pandas.core.dtypes.common import ( ensure_categorical, ensure_int64, ensure_object, ensure_platform_int, is_bool, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_interval_dtype, is_iterator, is_list_like, is_object_dtype, is_period_dtype, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ( ABCCategorical, ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCIndexClass, ABCIntervalIndex, ABCMultiIndex, ABCPandasArray, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas.core.dtypes.missing import array_equivalent, isna from pandas.core import ops from pandas.core.accessor import CachedAccessor import pandas.core.algorithms as algos from pandas.core.arrays import ExtensionArray from pandas.core.base import IndexOpsMixin, PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import maybe_convert_indices from pandas.core.indexes.frozen import FrozenList import pandas.core.missing as missing from pandas.core.ops import get_op_result_name from pandas.core.ops.invalid import make_invalid_op from pandas.core.strings import StringMethods from pandas.io.formats.printing import ( default_pprint, format_object_attrs, format_object_summary, pprint_thing, ) __all__ = ["Index"] _unsortable_types = frozenset(("mixed", "mixed-integer")) _index_doc_kwargs = dict( klass="Index", inplace="", target_klass="Index", raises_section="", unique="Index", duplicated="np.ndarray", ) _index_shared_docs = dict() def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries, ExtensionArray)): if other.ndim > 0 and len(self) != len(other): raise ValueError("Lengths must match to compare") if is_object_dtype(self) and isinstance(other, ABCCategorical): left = type(other)(self._values, dtype=other.dtype) return op(left, other) elif is_object_dtype(self) and not isinstance(self, ABCMultiIndex): # don't pass MultiIndex with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY(op, self.values, other) else: with np.errstate(all="ignore"): result = op(self.values, np.asarray(other)) if is_bool_dtype(result): return result return ops.invalid_comparison(self, other, op) name = f"__{op.__name__}__" return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame, ABCTimedeltaIndex)): return NotImplemented from pandas import Series result = op(Series(self), other) if isinstance(result, tuple): return (Index(result[0]), Index(result[1])) return Index(result) name = f"__{op.__name__}__" # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__. """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) if issubclass(cls, ABCMultiIndex): if "labels" in d and "codes" not in d: # GH#23752 "labels" kwarg has been replaced with "codes" d["codes"] = d.pop("labels") return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects. Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible. See Also -------- RangeIndex : Index implementing a monotonic integer range. CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index. IntervalIndex : An Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') """ # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations: FrozenSet[str] = ( PandasObject._deprecations | IndexOpsMixin._deprecations | frozenset(["contains", "set_value"]) ) # To hand over control to subclasses _join_precedence = 1 # Cython methods; see github.com/cython/cython/issues/2647 # for why we need to wrap these instead of making them class attributes # Moreover, cython will choose the appropriate-dtyped sub-function # given the dtypes of the passed arguments def _left_indexer_unique(self, left, right): return libjoin.left_join_indexer_unique(left, right) def _left_indexer(self, left, right): return libjoin.left_join_indexer(left, right) def _inner_indexer(self, left, right): return libjoin.inner_join_indexer(left, right) def _outer_indexer(self, left, right): return libjoin.outer_join_indexer(left, right) _typ = "index" _data: Union[ExtensionArray, np.ndarray] _id = None _name: Optional[Hashable] = None # MultiIndex.levels previously allowed setting the index name. We # don't allow this anymore, and raise if it happens rather than # failing silently. _no_setting_name: bool = False _comparables = ["name"] _attributes = ["name"] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine # whether we support partial string indexing. Overridden # in DatetimeIndex and PeriodIndex _supports_partial_string_indexing = False _accessors = {"str"} str = CachedAccessor("str", StringMethods) # -------------------------------------------------------------------- # Constructors def __new__( cls, data=None, dtype=None, copy=False, name=None, tupleize_cols=True, **kwargs, ) -> "Index": from .range import RangeIndex from pandas import PeriodIndex, DatetimeIndex, TimedeltaIndex from .numeric import Float64Index, Int64Index, UInt64Index from .interval import IntervalIndex from .category import CategoricalIndex name = maybe_extract_name(name, data, cls) if isinstance(data, ABCPandasArray): # ensure users don't accidentally put a PandasArray in an index. data = data.to_numpy() # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, dtype=dtype, name=name) # categorical elif is_categorical_dtype(data) or is_categorical_dtype(dtype): return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval elif is_interval_dtype(data) or is_interval_dtype(dtype): closed = kwargs.pop("closed", None) if is_dtype_equal(_o_dtype, dtype): return IntervalIndex( data, name=name, copy=copy, closed=closed, **kwargs ).astype(object) return IntervalIndex( data, dtype=dtype, name=name, copy=copy, closed=closed, **kwargs ) elif ( is_datetime64_any_dtype(data) or is_datetime64_any_dtype(dtype) or "tz" in kwargs ): if is_dtype_equal(_o_dtype, dtype): # GH#23524 passing `dtype=object` to DatetimeIndex is invalid, # will raise in the where `data` is already tz-aware. So # we leave it out of this step and cast to object-dtype after # the DatetimeIndex construction. # Note we can pass copy=False because the .astype below # will always make a copy return DatetimeIndex(data, copy=False, name=name, **kwargs).astype( object ) else: return DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) elif is_timedelta64_dtype(data) or is_timedelta64_dtype(dtype): if is_dtype_equal(_o_dtype, dtype): # Note we can pass copy=False because the .astype below # will always make a copy return TimedeltaIndex(data, copy=False, name=name, **kwargs).astype( object ) else: return TimedeltaIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) elif is_period_dtype(data) or is_period_dtype(dtype): if is_dtype_equal(_o_dtype, dtype): return PeriodIndex(data, copy=False, name=name, **kwargs).astype(object) return PeriodIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # extension dtype elif is_extension_array_dtype(data) or is_extension_array_dtype(dtype): if not (dtype is None or is_object_dtype(dtype)): # coerce to the provided dtype ea_cls = dtype.construct_array_type() data = ea_cls._from_sequence(data, dtype=dtype, copy=False) else: data = np.asarray(data, dtype=object) # coerce to the object dtype data = data.astype(object) return Index(data, dtype=object, copy=copy, name=name, **kwargs) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if dtype is not None: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 data = _maybe_cast_with_dtype(data, dtype, copy) dtype = data.dtype # TODO: maybe not for object? # maybe coerce to a sub-class if is_signed_integer_dtype(data.dtype): return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype("object") else: subarr = com.asarray_tuplesafe(data, dtype=object) # asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: new_data, new_dtype = _maybe_cast_data_without_dtype(subarr) if new_dtype is not None: return cls( new_data, dtype=new_dtype, copy=False, name=name, **kwargs ) if kwargs: raise TypeError(f"Unexpected keyword arguments {repr(set(kwargs))}") return cls._simple_new(subarr, name, **kwargs) elif hasattr(data, "__array__"): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): raise cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data): # GH21470: convert iterable to list before determining if empty if is_iterator(data): data = list(data) if data and all(isinstance(e, tuple) for e in data): # we must be all tuples, otherwise don't construct # 10697 from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get("names") ) # other iterable of some kind subarr = com.asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @property def asi8(self): """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ return None @classmethod def _simple_new(cls, values, name=None, dtype=None): """ We require that we have a dtype compat for the values. If we are passed a non-dtype compat, then coerce using the constructor. Must be careful not to recurse. """ if isinstance(values, (ABCSeries, ABCIndexClass)): # Index._data must always be an ndarray. # This is no-copy for when _values is an ndarray, # which should be always at this point. values = np.asarray(values._values) result = object.__new__(cls) result._data = values # _index_data is a (temporary?) fix to ensure that the direct data # manipulation we do in `_libs/reduction.pyx` continues to work. # We need access to the actual ndarray, since we're messing with # data buffers and strides. We don't re-use `_ndarray_values`, since # we actually set this value too. result._index_data = values result._name = name return result._reset_identity() @cache_readonly def _constructor(self): return type(self) # -------------------------------------------------------------------- # Index Internals Methods def _get_attributes_dict(self): """ Return an attributes dict for my class. """ return {k: getattr(self, k, None) for k in self._attributes} _index_shared_docs[ "_shallow_copy" ] = """ Create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs["_shallow_copy"]) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype # _simple_new expects an the type of self._data values = getattr(values, "_values", values) if isinstance(values, ABCDatetimeArray): # `self.values` returns `self` for tz-aware, so we need to unwrap # more specifically values = values.asi8 return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values, **kwargs): """ Create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ attributes = self._get_attributes_dict() attributes.update(kwargs) attributes["copy"] = False if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def is_(self, other) -> bool: """ More flexible, faster check like ``is`` but that works through views. Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr(other, "_id", Ellipsis) and self._id is not None def _reset_identity(self): """ Initializes or resets ``_id`` attribute with new object. """ self._id = _Identity() return self def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _engine(self): # property, for now, slow to look up # to avoid a reference cycle, bind `_ndarray_values` to a local variable, so # `self` is not passed into the lambda. _ndarray_values = self._ndarray_values return self._engine_type(lambda: _ndarray_values, len(self)) # -------------------------------------------------------------------- # Array-Like Methods # ndarray compat def __len__(self) -> int: """ Return the length of the Index. """ return len(self._data) def __array__(self, dtype=None): """ The array interface, return my values. """ return np.asarray(self._data, dtype=dtype) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. """ result = lib.item_from_zerodim(result) if is_bool_dtype(result) or lib.is_scalar(result): return result attrs = self._get_attributes_dict() return Index(result, **attrs) @cache_readonly def dtype(self): """ Return the dtype object of the underlying data. """ return self._data.dtype def ravel(self, order="C"): """ Return an ndarray of the flattened values of the underlying data. Returns ------- numpy.ndarray Flattened array. See Also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, "_typ"): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result _index_shared_docs[ "astype" ] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type Note that any signed integer `dtype` is treated as ``'int64'``, and any unsigned integer `dtype` is treated as ``'uint64'``, regardless of the size. copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. Returns ------- Index Index with values cast to specified dtype. """ @Appender(_index_shared_docs["astype"]) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) elif is_extension_array_dtype(dtype): return Index(np.asarray(self), dtype=dtype, copy=copy) try: return Index( self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype ) except (TypeError, ValueError): raise TypeError(f"Cannot cast {type(self).__name__} to dtype {dtype}") _index_shared_docs[ "take" ] = """ Return a new %(klass)s of the values selected by the indices. For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken. axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError. Returns ------- numpy.ndarray Elements of given indices. See Also -------- numpy.ndarray.take """ @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable( self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value, ) else: if allow_fill and fill_value is not None: cls_name = type(self).__name__ raise ValueError( f"Unable to fill values because {cls_name} cannot contain NA" ) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable( self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan ): """ Internal method to handle NA filling of take. """ indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): raise ValueError( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) taken = algos.take( values, indices, allow_fill=allow_fill, fill_value=na_value ) else: taken = values.take(indices) return taken _index_shared_docs[ "repeat" ] = """ Repeat elements of a %(klass)s. Returns a new %(klass)s where each element of the current %(klass)s is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty %(klass)s. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- repeated_index : %(klass)s Newly created %(klass)s with repeated elements. See Also -------- Series.repeat : Equivalent function for Series. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> idx = pd.Index(['a', 'b', 'c']) >>> idx Index(['a', 'b', 'c'], dtype='object') >>> idx.repeat(2) Index(['a', 'a', 'b', 'b', 'c', 'c'], dtype='object') >>> idx.repeat([1, 2, 3]) Index(['a', 'b', 'b', 'c', 'c', 'c'], dtype='object') """ @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats, axis=None): repeats = ensure_platform_int(repeats) nv.validate_repeat(tuple(), dict(axis=axis)) return self._shallow_copy(self._values.repeat(repeats)) # -------------------------------------------------------------------- # Copying Methods _index_shared_docs[ "copy" ] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : str, optional deep : bool, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs["copy"]) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get("names") names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): """ Parameters ---------- memo, default None Standard signature. Unused """ return self.copy(deep=True) # -------------------------------------------------------------------- # Rendering Methods def __repr__(self): """ Return a string representation for this object. """ klass_name = type(self).__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() attrs_str = [f"{k}={v}" for k, v in attrs] prepr = f",{space}".join(attrs_str) # no data provided, just attributes if data is None: data = "" res = f"{klass_name}({data}{prepr})" return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function. """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string. """ # do we want to justify (only do so for non-objects) is_justify = not ( self.inferred_type in ("string", "unicode") or ( self.inferred_type == "categorical" and is_object_dtype(self.categories) ) ) return format_object_summary( self, self._formatter_func, is_justify=is_justify, name=name ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index. """ header = [] if name: header.append( pprint_thing(self.name, escape_chars=("\t", "\r", "\n")) if self.name is not None else "" ) if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep="NaN", **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=("\t", "\r", "\n")) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify="left")) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values. Returns ------- numpy.ndarray Formatted values. """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep="", quoting=None, **kwargs): """ Actually format specific types of the index. """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def _summary(self, name=None): """ Return a summarized representation. Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if hasattr(head, "format") and not isinstance(head, str): head = head.format() tail = self[-1] if hasattr(tail, "format") and not isinstance(tail, str): tail = tail.format() index_summary = f", {head} to {tail}" else: index_summary = "" if name is None: name = type(self).__name__ return f"{name}: {len(self)} entries{index_summary}" # -------------------------------------------------------------------- # Conversion Methods def to_flat_index(self): """ Identity method. .. versionadded:: 0.24.0 This is implemented for compatibility with subclass implementations when chaining. Returns ------- pd.Index Caller. See Also -------- MultiIndex.to_flat_index : Subclass implementation. """ return self def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index. Parameters ---------- index : Index, optional Index of resulting Series. If None, defaults to original index. name : str, optional Dame of resulting Series. If None, defaults to name of original index. Returns ------- Series The dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self.values.copy(), index=index, name=name) def to_frame(self, index=True, name=None): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original Index. name : object, default None The passed name should substitute for the index name (if it has one). Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow To override the name of the resulting column, specify `name`: >>> idx.to_frame(index=False, name='zoo') zoo 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame if name is None: name = self.name or 0 result = DataFrame({name: self._values.copy()}) if index: result.index = self return result # -------------------------------------------------------------------- # Name-Centric Methods @property def name(self): return self._name @name.setter def name(self, value): if self._no_setting_name: # Used in MultiIndex.levels to avoid silently ignoring name updates. raise RuntimeError( "Cannot set name on a level of a MultiIndex. Use " "'MultiIndex.set_names' instead." ) maybe_extract_name(value, None, type(self)) self._name = value def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def _get_names(self): return FrozenList((self.name,)) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError("Names must be a list-like") if len(values) != 1: raise ValueError(f"Length of new names must be 1, got {len(values)}") # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError(f"{type(self).__name__}.name must be a hashable type") self._name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set Index or MultiIndex name. Able to set new names partially and by level. Parameters ---------- names : label or list of label Name(s) to set. level : int, label or list of int or label, optional If the index is a MultiIndex, level(s) to set (None for all levels). Otherwise level must be None. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.rename : Able to set new names without level. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> idx.set_names('quarter') Int64Index([1, 2, 3, 4], dtype='int64', name='quarter') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]]) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], ) >>> idx.set_names(['kind', 'year'], inplace=True) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.set_names('species', level=0) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) """ if level is not None and not isinstance(self, ABCMultiIndex): raise ValueError("Level must be None for non-MultiIndex") if level is not None and not is_list_like(level) and is_list_like(names): raise TypeError("Names must be a string when a single level is provided.") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Alter Index or MultiIndex name. Able to set new names without level. Defaults to returning new index. Length of names must match number of levels in MultiIndex. Parameters ---------- name : label or list of labels Name(s) to set. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.set_names : Able to set new names partially and by level. Examples -------- >>> idx = pd.Index(['A', 'C', 'A', 'B'], name='score') >>> idx.rename('grade') Index(['A', 'C', 'A', 'B'], dtype='object', name='grade') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]], ... names=['kind', 'year']) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.rename(['species', 'year']) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) >>> idx.rename('species') Traceback (most recent call last): TypeError: Must pass list-like as `names`. """ return self.set_names([name], inplace=inplace) # -------------------------------------------------------------------- # Level-Centric Methods @property def nlevels(self) -> int: """ Number of levels. """ return 1 def _sort_levels_monotonic(self): """ Compat with MultiIndex. """ return self def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError( "Too many levels: Index has only 1 level, " f"{level} is not a valid level number" ) elif level > 0: raise IndexError( f"Too many levels: Index has only 1 level, not {level + 1}" ) elif level != self.name: raise KeyError( f"Requested level ({level}) does not match index name ({self.name})" ) def _get_level_number(self, level): self._validate_index_level(level) return 0 def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API. Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : bool, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- Index """ return self.sort_values(return_indexer=True, ascending=ascending) def _get_level_values(self, level): """ Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters ---------- level : int or str It is either the integer position or the name of the level. Returns ------- Index Calling object, as there is only one level in the Index. See Also -------- MultiIndex.get_level_values : Get values for a level of a MultiIndex. Notes ----- For Index, level should be 0, since there are no multiple levels. Examples -------- >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying `level` as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object') """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError( f"Cannot remove {len(level)} levels from an index with {self.nlevels} " "levels: at least one level must be left." ) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_codes.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_codes[0] == -1 result = new_levels[0].take(new_codes[0]) if mask.any(): result = result.putmask(mask, np.nan) result._name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False, ) _index_shared_docs[ "_get_grouper_for_level" ] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on. labels : ndarray of int or None Array of locations in level_index. uniques : Index or None Index of unique values for level. """ @Appender(_index_shared_docs["_get_grouper_for_level"]) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None # -------------------------------------------------------------------- # Introspection Methods @property def is_monotonic(self) -> bool: """ Alias for is_monotonic_increasing. """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ Return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self) -> bool: """ Return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self) -> bool: """ Return if the index is strictly monotonic increasing (only increasing) values. Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self) -> bool: """ Return if the index is strictly monotonic decreasing (only decreasing) values. Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing @cache_readonly def is_unique(self) -> bool: """ Return if the index has unique values. """ return self._engine.is_unique @property def has_duplicates(self) -> bool: return not self.is_unique def is_boolean(self) -> bool: return self.inferred_type in ["boolean"] def is_integer(self) -> bool: return self.inferred_type in ["integer"] def is_floating(self) -> bool: return self.inferred_type in ["floating", "mixed-integer-float", "integer-na"] def is_numeric(self) -> bool: return self.inferred_type in ["integer", "floating"] def is_object(self) -> bool: return is_object_dtype(self.dtype) def is_categorical(self) -> bool: """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ["categorical"] def is_interval(self) -> bool: return self.inferred_type in ["interval"] def is_mixed(self) -> bool: return self.inferred_type in ["mixed"] def holds_integer(self): """ Whether the type is an integer type. """ return self.inferred_type in ["integer", "mixed-integer"] @cache_readonly def inferred_type(self): """ Return a string of the type inferred from the values. """ return lib.infer_dtype(self, skipna=False) @cache_readonly def is_all_dates(self) -> bool: return is_datetime_array(ensure_object(self.values)) # -------------------------------------------------------------------- # Pickle Methods def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (type(self), d), None def __setstate__(self, state): """ Necessary for making this object picklable. """ if isinstance(state, dict): self._data = state.pop("data") for k, v in state.items(): setattr(self, k, v) elif isinstance(state, tuple): if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self._name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ # -------------------------------------------------------------------- # Null Handling Methods _na_value = np.nan """The expected NA value to use with this index.""" @cache_readonly def _isnan(self): """ Return if each value is NaN. """ if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: return self._isnan.nonzero()[0] else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ Return if I have any nans; enables various perf speedups. """ if self._can_hold_na: return bool(self._isnan.any()) else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- numpy.ndarray A boolean array of whether my values are NA. See Also -------- Index.notna : Boolean inverse of isna. Index.dropna : Omit entries with missing values. isna : Top-level isna. Series.isna : Detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See Also -------- Index.notnull : Alias of notna. Index.isna: Inverse of notna. notna : Top-level notna. Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna _index_shared_docs[ "fillna" ] = """ Fill NA/NaN values with the specified value. Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns ------- filled : Index """ @Appender(_index_shared_docs["fillna"]) def fillna(self, value=None, downcast=None): self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() _index_shared_docs[ "dropna" ] = """ Return Index without NA/NaN values. Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ @Appender(_index_shared_docs["dropna"]) def dropna(self, how="any"): if how not in ("any", "all"): raise ValueError(f"invalid how option: {how}") if self.hasnans: return self._shallow_copy(self.values[~self._isnan]) return self._shallow_copy() # -------------------------------------------------------------------- # Uniqueness Methods _index_shared_docs[ "index_unique" ] = """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex). .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """ @Appender(_index_shared_docs["index_unique"] % _index_doc_kwargs) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = super().unique() return self._shallow_copy(result) def drop_duplicates(self, keep="first"): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : Equivalent method on Series. DataFrame.drop_duplicates : Equivalent method on DataFrame. Index.duplicated : Related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super().drop_duplicates(keep=keep) def duplicated(self, keep="first"): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- numpy.ndarray See Also -------- Series.duplicated : Equivalent method on pandas.Series. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Index.drop_duplicates : Remove duplicate values from Index. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) """ return super().duplicated(keep=keep) def _get_unique_index(self, dropna=False): """ Returns an index containing unique values. Parameters ---------- dropna : bool If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) # -------------------------------------------------------------------- # Arithmetic & Logical Methods def __add__(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented from pandas import Series return Index(Series(self) + other) def __radd__(self, other): from pandas import Series return Index(other + Series(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): return Index(np.array(self) - other) def __rsub__(self, other): # wrap Series to ensure we pin name correctly from pandas import Series return Index(other - Series(self)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def __nonzero__(self): raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." ) __bool__ = __nonzero__ # -------------------------------------------------------------------- # Set Operation Methods def _get_reconciled_name_object(self, other): """ If the result of a set operation will be self, return self, unless the name changes, in which case make a shallow copy of self. """ name = get_op_result_name(self, other) if self.name != name: return self._shallow_copy(name=name) return self def _union_incompatible_dtypes(self, other, sort): """ Casts this and other index to object dtype to allow the formation of a union between incompatible types. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ this = self.astype(object, copy=False) # cast to Index for when `other` is list-like other = Index(other).astype(object, copy=False) return Index.union(this, other, sort=sort).astype(object, copy=False) def _is_compatible_with_other(self, other): """ Check whether this and the other dtype are compatible with each other. Meaning a union can be formed between them without needing to be cast to dtype object. Parameters ---------- other : Index or array-like Returns ------- bool """ return type(self) is type(other) and is_dtype_equal(self.dtype, other.dtype) def _validate_sort_keyword(self, sort): if sort not in [None, False]: raise ValueError( "The 'sort' keyword only takes the values of " f"None or False; {sort} was passed." ) def union(self, other, sort=None): """ Form the union of two Index objects. If the Index objects are incompatible, both Index objects will be cast to dtype('object') first. .. versionchanged:: 0.25.0 Parameters ---------- other : Index or array-like sort : bool or None, default None Whether to sort the resulting Index. * None : Sort the result, except when 1. `self` and `other` are equal. 2. `self` or `other` has length 0. 3. Some values in `self` or `other` cannot be compared. A RuntimeWarning is issued in this case. * False : do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- union : Index Examples -------- Union matching dtypes >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') Union mismatched dtypes >>> idx1 = pd.Index(['a', 'b', 'c', 'd']) >>> idx2 = pd.Index([1, 2, 3, 4]) >>> idx1.union(idx2) Index(['a', 'b', 'c', 'd', 1, 2, 3, 4], dtype='object') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if not self._is_compatible_with_other(other): return self._union_incompatible_dtypes(other, sort=sort) return self._union(other, sort=sort) def _union(self, other, sort): """ Specific union logic should go here. In subclasses, union behavior should be overwritten here rather than in `self.union`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ if not len(other) or self.equals(other): return self._get_reconciled_name_object(other) if not len(self): return other._get_reconciled_name_object(self) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if sort is None and self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: # find indexes of things in "other" that are not in "self" if self.is_unique: indexer = self.get_indexer(other) indexer = (indexer == -1).nonzero()[0] else: indexer = algos.unique1d(self.get_indexer_non_unique(other)[1]) if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = concat_compat((lvals, other_diff)) else: result = lvals if sort is None: try: result = algos.safe_sort(result) except TypeError as err: warnings.warn( f"{err}, sort order is undefined for incomparable objects", RuntimeWarning, stacklevel=3, ) # for subclasses return self._wrap_setop_result(other, result) def _wrap_setop_result(self, other, result): return self._constructor(result, name=get_op_result_name(self, other)) _index_shared_docs[ "intersection" ] = """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default from ``True`` to ``False``, to match the behaviour of 0.23.4 and earlier. Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ # TODO: standardize return type of non-union setops type(self vs other) @Appender(_index_shared_docs["intersection"]) def intersection(self, other, sort=False): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.intersection(other, sort=sort) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_setop_result(other, result) except TypeError: pass try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except (InvalidIndexError, IncompatibleFrequency): # InvalidIndexError raised by get_indexer if non-unique # IncompatibleFrequency raised by PeriodIndex.get_indexer indexer = algos.unique1d(Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if sort is None: taken = algos.safe_sort(taken.values) if self.name != other.name: name = None else: name = self.name return self._shallow_copy(taken, name=name) if self.name != other.name: taken.name = None return taken def difference(self, other, sort=None): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([2, 1, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') >>> idx1.difference(idx2, sort=False) Int64Index([2, 1], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if self.equals(other): # pass an empty np.ndarray with the appropriate dtype return self._shallow_copy(self._data[:0]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name) def symmetric_difference(self, other, result_name=None, sort=None): """ Compute the symmetric difference of two Index objects. Parameters ---------- other : Index or array-like result_name : str sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d( np.arange(this.size), common_indexer, assume_unique=True ) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = concat_compat([left_diff, right_diff]) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs["name"] = result_name if "freq" in attribs: attribs["freq"] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError("Input must be Index or array-like") return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = get_op_result_name(self, other) return other, result_name # -------------------------------------------------------------------- # Indexing Methods _index_shared_docs[ "get_loc" ] = """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : int or float, optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples -------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ @Appender(_index_shared_docs["get_loc"]) def get_loc(self, key, method=None, tolerance=None): if method is None: if tolerance is not None: raise ValueError( "tolerance argument only valid if using pad, " "backfill or nearest lookups" ) try: return self._engine.get_loc(key) except KeyError: return self._engine.get_loc(self._maybe_cast_indexer(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError("get_loc requires scalar valued input") loc = indexer.item() if loc == -1: raise KeyError(key) return loc _index_shared_docs[ "get_indexer" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. %(raises_section)s Examples -------- >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in ``index`` and ``x`` is marked by -1, as it is not in ``index``. """ @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer( ptarget, method=method, limit=limit, tolerance=tolerance ) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) if not self.is_unique: raise InvalidIndexError( "Reindexing only valid with uniquely valued Index objects" ) if method == "pad" or method == "backfill": indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == "nearest": indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError( "tolerance argument only valid if doing pad, " "backfill or nearest reindexing" ) if limit is not None: raise ValueError( "limit argument only valid if doing pad, " "backfill or nearest reindexing" ) indexer = self._engine.get_indexer(target._ndarray_values) return ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError("list-like tolerance size must match target index size") return tolerance def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = ( self._engine.get_pad_indexer if method == "pad" else self._engine.get_backfill_indexer ) indexer = method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance( target._ndarray_values, indexer, tolerance ) return indexer def _get_fill_indexer_searchsorted(self, target, method, limit=None): """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets. """ if limit is not None: raise ValueError( f"limit argument for {repr(method)} method only well-defined " "if index and target are monotonic" ) side = "left" if method == "pad" else "right" # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = indexer == -1 indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == "left": # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, "pad", limit=limit) right_indexer = self.get_indexer(target, "backfill", limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where( op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer, ) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, target, indexer, tolerance): distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer # -------------------------------------------------------------------- # Indexer Conversion Methods _index_shared_docs[ "_convert_scalar_indexer" ] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs["_convert_scalar_indexer"]) def _convert_scalar_indexer(self, key, kind=None): assert kind in ["ix", "loc", "getitem", "iloc", None] if kind == "iloc": return self._validate_indexer("positional", key, kind) if len(self) and not isinstance(self, ABCMultiIndex): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ["getitem", "ix"] and is_float(key): if not self.is_floating(): return self._invalid_indexer("label", key) elif kind in ["loc"] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in [ "floating", "mixed-integer-float", "integer-na", "string", "unicode", "mixed", ]: self._invalid_indexer("label", key) elif kind in ["loc"] and is_integer(key): if not self.holds_integer(): self._invalid_indexer("label", key) return key _index_shared_docs[ "_convert_slice_indexer" ] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs["_convert_slice_indexer"]) def _convert_slice_indexer(self, key: slice, kind=None): assert kind in ["ix", "loc", "getitem", "iloc", None] # validate iloc if kind == "iloc": return slice( self._validate_indexer("slice", key.start, kind), self._validate_indexer("slice", key.stop, kind), self._validate_indexer("slice", key.step, kind), ) # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not ( self.is_integer() or self.is_categorical() ) if kind == "getitem": """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice( self._validate_indexer("slice", key.start, kind), self._validate_indexer("slice", key.stop, kind), self._validate_indexer("slice", key.step, kind), ) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # Validate start & stop if start is not None: self.get_loc(start) if stop is not None: self.get_loc(stop) is_positional = False except KeyError: if self.inferred_type in ["mixed-integer-float", "integer-na"]: raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: indexer = self.slice_indexer(start, stop, step, kind=kind) return indexer def _convert_listlike_indexer(self, keyarr, kind=None): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- indexer : numpy.ndarray or None Return an ndarray or None if cannot convert. keyarr : numpy.ndarray Return tuple-safe keys. """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr _index_shared_docs[ "_convert_arr_indexer" ] = """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ @Appender(_index_shared_docs["_convert_arr_indexer"]) def _convert_arr_indexer(self, keyarr): keyarr = com.asarray_tuplesafe(keyarr) return keyarr _index_shared_docs[ "_convert_index_indexer" ] = """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ @Appender(_index_shared_docs["_convert_index_indexer"]) def _convert_index_indexer(self, keyarr): return keyarr _index_shared_docs[ "_convert_list_indexer" ] = """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, ix, loc, optional Returns ------- positional indexer or None """ @Appender(_index_shared_docs["_convert_list_indexer"]) def _convert_list_indexer(self, keyarr, kind=None): if ( kind in [None, "iloc", "ix"] and is_integer_dtype(keyarr) and not self.is_floating() and not isinstance(keyarr, ABCPeriodIndex) ): if self.inferred_type == "mixed-integer": indexer = self.get_indexer(keyarr) if (indexer >= 0).all(): return indexer # missing values are flagged as -1 by get_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = len(self) return maybe_convert_indices(indexer, len(self)) elif not self.inferred_type == "integer": keyarr = np.where(keyarr < 0, len(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ Consistent invalid indexer message. """ raise TypeError( f"cannot do {form} indexing on {type(self)} with these " f"indexers [{key}] of {type(key)}" ) # -------------------------------------------------------------------- # Reindex Methods def _can_reindex(self, indexer): """ Check if we are allowing reindexing with this particular indexer. Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary). Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "name") # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq values = self._data[:0] # appropriately-dtyped empty array target = self._simple_new(values, dtype=self.dtype, **attrs) else: target = ensure_index(target) if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") _, indexer, _ = self._join_level( target, level, how="right", return_indexers=True ) else: if self.equals(target): indexer = None else: # check is_overlapping for IntervalIndex compat if self.is_unique and not getattr(self, "is_overlapping", False): indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: if method is not None or limit is not None: raise ValueError( "cannot reindex a non-unique index " "with a method or limit" ) indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target. Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ target = ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = -1 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels) return new_index, indexer, new_indexer # -------------------------------------------------------------------- # Join Methods _index_shared_docs[ "join" ] = """ Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : bool, default False sort : bool, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword). Returns ------- join_index, (left_indexer, right_indexer) """ @Appender(_index_shared_docs["join"]) def join(self, other, how="left", level=None, return_indexers=False, sort=False): self_is_mi = isinstance(self, ABCMultiIndex) other_is_mi = isinstance(other, ABCMultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level( other, level, how=how, return_indexers=return_indexers ) other = ensure_index(other) if len(other) == 0 and how in ("left", "outer"): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ("right", "outer"): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {"right": "left", "left": "right"}.get(how, how) result = other.join( self, how=how, level=level, return_indexers=return_indexers ) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) else: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) except TypeError: pass if how == "left": join_index = self elif how == "right": join_index = other elif how == "inner": # TODO: sort=False here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.intersection(other, sort=False) elif how == "outer": # TODO: sort=True here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from .multi import MultiIndex from pandas.core.reshape.merge import _restore_dropped_levels_multijoin # figure out join names self_names = set(com.not_none(*self.names)) other_names = set(com.not_none(*other.names)) overlap = self_names & other_names # need at least 1 in common if not overlap: raise ValueError("cannot join with no overlapping index names") self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) if self_is_mi and other_is_mi: # Drop the non-matching levels from left and right respectively ldrop_names = list(self_names - overlap) rdrop_names = list(other_names - overlap) # if only the order differs if not len(ldrop_names + rdrop_names): self_jnlevels = self other_jnlevels = other.reorder_levels(self.names) else: self_jnlevels = self.droplevel(ldrop_names) other_jnlevels = other.droplevel(rdrop_names) # Join left and right # Join on same leveled multi-index frames is supported join_idx, lidx, ridx = self_jnlevels.join( other_jnlevels, how, return_indexers=True ) # Restore the dropped levels # Returned index level order is # common levels, ldrop_names, rdrop_names dropped_names = ldrop_names + rdrop_names levels, codes, names = _restore_dropped_levels_multijoin( self, other, dropped_names, join_idx, lidx, ridx ) # Re-create the multi-index multi_join_idx = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) multi_join_idx = multi_join_idx.remove_unused_levels() return multi_join_idx, lidx, ridx jl = list(overlap)[0] # Case where only one index is multi # make the indices into mi's that match flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {"right": "left", "left": "right"}.get(how, how) level = other.names.index(jl) result = self._join_level( other, level, how=how, return_indexers=return_indexers ) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result def _join_non_unique(self, other, how="left", return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers( [self._ndarray_values], [other._ndarray_values], how=how, sort=True ) left_idx = ensure_platform_int(left_idx) right_idx = ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level( self, other, level, how="left", return_indexers=False, keep_order=True ): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If ```keep_order == True```, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from .multi import MultiIndex def _get_leaf_sorter(labels): """ Returns sorter for the inner most level while preserving the order of higher levels. """ if labels[0].size == 0: return np.empty(0, dtype="int64") if len(labels) == 1: lab = ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = ensure_int64(labels[-1]) return lib.get_level_sorter(lab, ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError("Join on level between two MultiIndex objects is ambiguous") left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {"right": "left", "left": "right"}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError( "Index._join_level on non-unique index is not implemented" ) new_level, left_lev_indexer, right_lev_indexer = old_level.join( right, how=how, return_indexers=True ) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.codes[: level + 1]) join_index = left[left_indexer] else: left_lev_indexer = ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_codes = algos.take_nd( rev_indexer, left.codes[level], allow_fill=False ) new_codes = list(left.codes) new_codes[level] = new_lev_codes new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_codes != -1 if not mask.all(): new_codes = [lab[mask] for lab in new_codes] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_codes.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_codes, ngroups ) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0] :] new_codes = [lab[left_indexer] for lab in new_codes] else: # sort the leaves mask = new_lev_codes != -1 mask_all = mask.all() if not mask_all: new_codes = [lab[mask] for lab in new_codes] left_indexer = _get_leaf_sorter(new_codes[: level + 1]) new_codes = [lab[left_indexer] for lab in new_codes] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex( levels=new_levels, codes=new_codes, names=left.names, verify_integrity=False, ) if right_lev_indexer is not None: right_indexer = algos.take_nd( right_lev_indexer, join_index.codes[level], allow_fill=False ) else: right_indexer = join_index.codes[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = ( None if left_indexer is None else ensure_platform_int(left_indexer) ) right_indexer = ( None if right_indexer is None else ensure_platform_int(right_indexer) ) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how="left", return_indexers=False): if self.equals(other): ret_index = other if how == "right" else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == "left": join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == "right": join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == "left": join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == "right": join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else ensure_platform_int(lidx) ridx = None if ridx is None else ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = get_op_result_name(self, other) return Index(joined, name=name) # -------------------------------------------------------------------- # Uncategorized Methods @property def values(self): """ Return an array representing the data in the Index. .. warning:: We recommend using :attr:`Index.array` or :meth:`Index.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- array: numpy.ndarray or ExtensionArray See Also -------- Index.array : Reference to the underlying data. Index.to_numpy : A NumPy array representing the underlying data. """ return self._data.view(np.ndarray) @property def _values(self) -> Union[ExtensionArray, ABCIndexClass, np.ndarray]: # TODO(EA): remove index types as they become extension arrays """ The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | --------------- | ------------- | --------------- | Index | ndarray | ndarray | ndarray | CategoricalIndex | Categorical | Categorical | ndarray[int] | DatetimeIndex | ndarray[M8ns] | ndarray[M8ns] | ndarray[M8ns] | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | PeriodIndex | ndarray[object] | PeriodArray | ndarray[int] | IntervalIndex | IntervalArray | IntervalArray | ndarray[object] | See Also -------- values _ndarray_values """ return self._data def _internal_get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that _internal_get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index._internal_get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx._internal_get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx._internal_get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx._internal_get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super().memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result _index_shared_docs[ "where" ] = """ Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : bool array-like with the same length as self other : scalar, or array-like Returns ------- Index """ @Appender(_index_shared_docs["where"]) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) # construction helpers @classmethod def _scalar_data_error(cls, data): # We return the TypeError so that we can raise it from the constructor # in order to keep mypy happy return TypeError( f"{cls.__name__}(...) must be called with a collection of some " f"kind, {repr(data)} was passed" ) @classmethod def _string_data_error(cls, data): raise TypeError( "String dtype not supported, you may need " "to explicitly cast to a numeric type" ) def _coerce_scalar_to_index(self, item): """ We need to coerce a scalar to a compat for our index type. Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) def _to_safe_for_reshape(self): """ Convert to object if we are a categorical. """ return self def _convert_for_op(self, value): """ Convert value to be insertable to ndarray. """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op. """ if not is_scalar(value): raise TypeError(f"'value' must be a scalar, passed: {type(value).__name__}") def _is_memory_usage_qualified(self) -> bool: """ Return a boolean if we need a qualified .info display. """ return self.is_object() def is_type_compatible(self, kind) -> bool: """ Whether the index type is compatible with the provided type. """ return kind == self.inferred_type _index_shared_docs[ "contains" ] = """ Return a boolean indicating whether the provided key is in the index. Parameters ---------- key : label The key to check if it is present in the index. Returns ------- bool Whether the key search is in the index. See Also -------- Index.isin : Returns an ndarray of boolean dtype indicating whether the list-like key is in the index. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> 2 in idx True >>> 6 in idx False """ @Appender(_index_shared_docs["contains"] % _index_doc_kwargs) def __contains__(self, key) -> bool: hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False def __hash__(self): raise TypeError(f"unhashable type: {repr(type(self).__name__)}") def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): key = com.cast_scalar_indexer(key) return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) key = com.values_from_object(key) result = getitem(key) if not is_scalar(result): return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name) -> bool: """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together. Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError("all inputs must be Index") names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return Index._concat_same_dtype(self, to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class. """ # must be overridden in specific classes klasses = ( ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, ExtensionArray, ABCIntervalIndex, ) to_concat = [ x.astype(object) if isinstance(x, klasses) else x for x in to_concat ] self = to_concat[0] attribs = self._get_attributes_dict() attribs["name"] = name to_concat = [x._values if isinstance(x, Index) else x for x in to_concat] return self._shallow_copy_with_infer(np.concatenate(to_concat), **attribs) def putmask(self, mask, value): """ Return a new Index of the values set with the mask. Returns ------- Index See Also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def equals(self, other) -> bool: """ Determine if two Index objects contain the same elements. Returns ------- bool True if "other" is an Index and it has the same elements as calling index; False otherwise. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) if isinstance(other, ABCMultiIndex): # d-level MultiIndex can equal d-tuple Index if not is_object_dtype(self.dtype): if self.nlevels != other.nlevels: return False return array_equivalent( com.values_from_object(self), com.values_from_object(other) ) def identical(self, other) -> bool: """ Similar to equals, but check that other comparable attributes are also equal. Returns ------- bool If two Index objects have equal elements and same type True, otherwise False. """ return ( self.equals(other) and all( ( getattr(self, c, None) == getattr(other, c, None) for c in self._comparables ) ) and type(self) == type(other) ) def asof(self, label): """ Return the label from the index, or, if not present, the previous one. Assuming that the index is sorted, return the passed index label if it is in the index, or return the previous index label if the passed one is not in the index. Parameters ---------- label : object The label up to which the method returns the latest index label. Returns ------- object The passed label if it is in the index. The previous label if the passed label is not in the sorted index or `NaN` if there is no such label. See Also -------- Series.asof : Return the latest value in a Series up to the passed index. merge_asof : Perform an asof merge (similar to left join but it matches on nearest key rather than equal key). Index.get_loc : An `asof` is a thin wrapper around `get_loc` with method='pad'. Examples -------- `Index.asof` returns the latest index label up to the passed label. >>> idx = pd.Index(['2013-12-31', '2014-01-02', '2014-01-03']) >>> idx.asof('2014-01-01') '2013-12-31' If the label is in the index, the method returns the passed label. >>> idx.asof('2014-01-02') '2014-01-02' If all of the labels in the index are later than the passed label, NaN is returned. >>> idx.asof('1999-01-02') nan If the index is not sorted, an error is raised. >>> idx_not_sorted = pd.Index(['2013-12-31', '2015-01-02', ... '2014-01-03']) >>> idx_not_sorted.asof('2013-12-31') Traceback (most recent call last): ValueError: index must be monotonic increasing or decreasing """ try: loc = self.get_loc(label, method="pad") except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ Find the locations (indices) of the labels from the index for every entry in the `where` argument. As in the `asof` function, if the label (a particular entry in `where`) is not in the index, the latest index label up to the passed label is chosen and its index returned. If all of the labels in the index are later than a label in `where`, -1 is returned. `mask` is used to ignore NA values in the index during calculation. Parameters ---------- where : Index An Index consisting of an array of timestamps. mask : array-like Array of booleans denoting where values in the original data are not NA. Returns ------- numpy.ndarray An array of locations (indices) of the labels from the Index which correspond to the return values of the `asof` function for every element in `where`. """ locs = self.values[mask].searchsorted(where.values, side="right") locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where.values < self.values[first])] = -1 return result def sort_values(self, return_indexer=False, ascending=True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- Series.sort_values : Sort values of a Series. DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): """ Use sort_values instead. """ raise TypeError("cannot sort an Index object in-place, use sort_values instead") def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or str, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index Shifted index. See Also -------- Series.shift : Shift values of Series. Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') """ raise NotImplementedError(f"Not supported for type {type(self).__name__}") def argsort(self, *args, **kwargs): """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See Also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) _index_shared_docs[ "get_value" ] = """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing. Returns ------- scalar A value in the Series with the index of the key value in self. """ @Appender(_index_shared_docs["get_value"] % _index_doc_kwargs) def get_value(self, series, key): # if we have something that is Index-like, then # use this, e.g. DatetimeIndex # Things like `Series._get_value` (via .at) pass the EA directly here. s = extract_array(series, extract_numpy=True) if isinstance(s, ExtensionArray): if is_scalar(key): # GH 20882, 21257 # First try to convert the key to a location # If that fails, raise a KeyError if an integer # index, otherwise, see if key is an integer, and # try that try: iloc = self.get_loc(key) return s[iloc] except KeyError: if len(self) > 0 and (self.holds_integer() or self.is_boolean()): raise elif is_integer(key): return s[key] else: # if key is not a scalar, directly raise an error (the code below # would convert to numpy arrays and raise later any way) - GH29926 raise InvalidIndexError(key) s = com.values_from_object(series) k = com.values_from_object(key) k = self._convert_scalar_indexer(k, kind="getitem") try: return self._engine.get_value(s, k, tz=getattr(series.dtype, "tz", None)) except KeyError as e1: if len(self) > 0 and (self.holds_integer() or self.is_boolean()): raise try: return libindex.get_value_at(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: raise e1 except TypeError: # e.g. "[False] is an invalid key" if is_scalar(key): raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. .. deprecated:: 1.0 Notes ----- Only use this if you know what you're doing. """ warnings.warn( ( "The 'set_value' method is deprecated, and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) self._engine.set_value( com.values_from_object(arr), com.values_from_object(key), value ) _index_shared_docs[ "get_indexer_non_unique" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array. """ @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if is_categorical(target): tgt_values = np.asarray(target) elif self.is_all_dates and target.is_all_dates: # GH 30399 tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ Guaranteed return of an indexer even when non-unique. This dispatches to get_indexer or get_indexer_non_unique as appropriate. Returns ------- numpy.ndarray List of indices. """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works if self.inferred_type == "date" and isinstance(other, ABCDatetimeIndex): return type(other)(self), other elif self.inferred_type == "boolean": if not is_object_dtype(self.dtype): return self.astype("object"), other.astype("object") return self, other def groupby(self, values) -> Dict[Hashable, np.ndarray]: """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples if isinstance(values, ABCMultiIndex): values = values.values values = ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in result.items()} return result def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex new_values = super()._map_values(mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get("name"): names = [attributes.get("name")] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes["copy"] = False if not new_values.size: # empty attributes["dtype"] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See Also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], codes=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, default None kind : str, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples -------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index, then try to cast to an int if equivalent. """ if is_float(key) and not self.is_floating(): try: ckey = int(key) if ckey == key: key = ckey except (OverflowError, ValueError, TypeError): pass return key def _validate_indexer(self, form, key, kind): """ If we are positional indexer, validate that we have appropriate typed bounds must be an integer. """ assert kind in ["ix", "loc", "getitem", "iloc"] if key is None: pass elif is_integer(key): pass elif kind in ["iloc", "getitem"]: self._invalid_indexer(form, key) return key _index_shared_docs[ "_maybe_cast_slice_bound" ] = """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ @Appender(_index_shared_docs["_maybe_cast_slice_bound"]) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ["ix", "loc", "getitem", None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): if not (kind in ["ix"] and (self.holds_integer() or self.is_floating())): self._invalid_indexer("slice", label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer("slice", label) return label def _searchsorted_monotonic(self, label, side="left"): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted( label, side="right" if side == "left" else "left" ) return len(self) - pos raise ValueError("index must be monotonic increasing or decreasing") def get_slice_bound(self, label, side, kind): """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- int Index of label. """ assert kind in ["ix", "loc", "getitem", None] if side not in ("left", "right"): raise ValueError( f"Invalid value for side kwarg, must be either" f" 'left' or 'right': {side}" ) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self.get_loc(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view("u1")) else: slc = lib.maybe_indices_to_slice(slc.astype("i8"), len(self)) if isinstance(slc, np.ndarray): raise KeyError( f"Cannot get {side} slice bound for non-unique " f"label: {repr(original_label)}" ) if isinstance(slc, slice): if side == "left": return slc.start else: return slc.stop else: if side == "right": return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, defaults None If None, defaults to 1. kind : {'ix', 'loc', 'getitem'} or None Returns ------- start, end : int See Also -------- Index.get_loc : Get location for a single label. Notes ----- This method only works if the index is monotonic or unique. Examples -------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) """ inc = step is None or step >= 0 if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start # GH 16785: If start and end happen to be date strings with UTC offsets # attempt to parse and check that the offsets are the same if isinstance(start, (str, datetime)) and isinstance(end, (str, datetime)): try: ts_start = Timestamp(start) ts_end = Timestamp(end) except (ValueError, TypeError): pass else: if not tz_compare(ts_start.tzinfo, ts_end.tzinfo): raise ValueError("Both dates must have the same UTC offset") start_slice = None if start is not None: start_slice = self.get_slice_bound(start, "left", kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, "right", kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted. Returns ------- new_index : Index """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values. Parameters ---------- loc : int item : object Returns ------- new_index : Index """ _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors="raise"): """ Make new Index with passed list of labels deleted. Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If not all of the labels are found in the selected axis """ arr_dtype = "object" if self.dtype == "object" else None labels = com.index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != "ignore": raise KeyError(f"{labels[mask]} not found in axis") indexer = indexer[~mask] return self.delete(indexer) # -------------------------------------------------------------------- # Generated Arithmetic, Comparison, and Unary Methods @classmethod def _add_comparison_methods(cls): """ Add in comparison methods. """ cls.__eq__ = _make_comparison_op(operator.eq, cls) cls.__ne__ = _make_comparison_op(operator.ne, cls) cls.__lt__ = _make_comparison_op(operator.lt, cls) cls.__gt__ = _make_comparison_op(operator.gt, cls) cls.__le__ = _make_comparison_op(operator.le, cls) cls.__ge__ = _make_comparison_op(operator.ge, cls) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ Add in the numeric add/sub methods to disable. """ cls.__add__ = make_invalid_op("__add__") cls.__radd__ = make_invalid_op("__radd__") cls.__iadd__ = make_invalid_op("__iadd__") cls.__sub__ = make_invalid_op("__sub__") cls.__rsub__ = make_invalid_op("__rsub__") cls.__isub__ = make_invalid_op("__isub__") @classmethod def _add_numeric_methods_disabled(cls): """ Add in numeric methods to disable other than add/sub. """ cls.__pow__ = make_invalid_op("__pow__") cls.__rpow__ = make_invalid_op("__rpow__") cls.__mul__ = make_invalid_op("__mul__") cls.__rmul__ = make_invalid_op("__rmul__") cls.__floordiv__ = make_invalid_op("__floordiv__") cls.__rfloordiv__ = make_invalid_op("__rfloordiv__") cls.__truediv__ = make_invalid_op("__truediv__") cls.__rtruediv__ = make_invalid_op("__rtruediv__") cls.__mod__ = make_invalid_op("__mod__") cls.__divmod__ = make_invalid_op("__divmod__") cls.__neg__ = make_invalid_op("__neg__") cls.__pos__ = make_invalid_op("__pos__") cls.__abs__ = make_invalid_op("__abs__") cls.__inv__ = make_invalid_op("__inv__") @classmethod def _add_numeric_methods_binary(cls): """ Add in numeric methods. """ cls.__add__ = _make_arithmetic_op(operator.add, cls) cls.__radd__ = _make_arithmetic_op(ops.radd, cls) cls.__sub__ = _make_arithmetic_op(operator.sub, cls) cls.__rsub__ = _make_arithmetic_op(ops.rsub, cls) cls.__rpow__ = _make_arithmetic_op(ops.rpow, cls) cls.__pow__ = _make_arithmetic_op(operator.pow, cls) cls.__truediv__ = _make_arithmetic_op(operator.truediv, cls) cls.__rtruediv__ = _make_arithmetic_op(ops.rtruediv, cls) # TODO: rmod? rdivmod? cls.__mod__ = _make_arithmetic_op(operator.mod, cls) cls.__floordiv__ = _make_arithmetic_op(operator.floordiv, cls) cls.__rfloordiv__ = _make_arithmetic_op(ops.rfloordiv, cls) cls.__divmod__ = _make_arithmetic_op(divmod, cls) cls.__mul__ = _make_arithmetic_op(operator.mul, cls) cls.__rmul__ = _make_arithmetic_op(ops.rmul, cls) @classmethod def _add_numeric_methods_unary(cls): """ Add in numeric unary methods. """ def _make_evaluate_unary(op, opstr): def _evaluate_numeric_unary(self): attrs = self._get_attributes_dict() return Index(op(self.values), **attrs) _evaluate_numeric_unary.__name__ = opstr return _evaluate_numeric_unary cls.__neg__ = _make_evaluate_unary(operator.neg, "__neg__") cls.__pos__ = _make_evaluate_unary(operator.pos, "__pos__") cls.__abs__ = _make_evaluate_unary(np.abs, "__abs__") cls.__inv__ = _make_evaluate_unary(lambda x: -x, "__inv__") @classmethod def _add_numeric_methods(cls): cls._add_numeric_methods_unary() cls._add_numeric_methods_binary() @classmethod def _add_logical_methods(cls): """ Add in logical methods. """ _doc = """ %(desc)s Parameters ---------- *args These parameters will be passed to numpy.%(outname)s. **kwargs These parameters will be passed to numpy.%(outname)s. Returns ------- %(outname)s : bool or array_like (if axis is specified) A single element array_like may be converted to bool.""" _index_shared_docs["index_all"] = dedent( """ See Also -------- Index.any : Return whether any element in an Index is True. Series.any : Return whether any element in a Series is True. Series.all : Return whether all elements in a Series are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- **all** True, because nonzero integers are considered True. >>> pd.Index([1, 2, 3]).all() True False, because ``0`` is considered False. >>> pd.Index([0, 1, 2]).all() False **any** True, because ``1`` is considered True. >>> pd.Index([0, 0, 1]).any() True False, because ``0`` is considered False. >>> pd.Index([0, 0, 0]).any() False """ ) _index_shared_docs["index_any"] = dedent( """ See Also -------- Index.all : Return whether all elements are True. Series.all : Return whether all elements are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- >>> index = pd.Index([0, 1, 2]) >>> index.any() True >>> index = pd.Index([0, 0, 0]) >>> index.any() False """ ) def _make_logical_function(name, desc, f): @Substitution(outname=name, desc=desc) @Appender(_index_shared_docs["index_" + name]) @Appender(_doc) def logical_func(self, *args, **kwargs): result = f(self.values) if ( isinstance(result, (np.ndarray, ABCSeries, Index)) and result.ndim == 0 ): # return NumPy type return result.dtype.type(result.item()) else: # pragma: no cover return result logical_func.__name__ = name return logical_func cls.all = _make_logical_function( "all", "Return whether all elements are True.", np.all ) cls.any = _make_logical_function( "any", "Return whether any element is True.", np.any ) @classmethod def _add_logical_methods_disabled(cls): """ Add in logical methods to disable. """ cls.all = make_invalid_op("all") cls.any = make_invalid_op("any") @property def shape(self): """ Return a tuple of the shape of the underlying data. """ # not using "(len(self), )" to return "correct" shape if the values # consists of a >1 D array (see GH-27775) # overridden in MultiIndex.shape to avoid materializing the values return self._values.shape Index._add_numeric_methods_disabled() Index._add_logical_methods() Index._add_comparison_methods() def ensure_index_from_sequences(sequences, names=None): """ Construct an index from sequences of data. A single sequence returns an Index. Many sequences returns a MultiIndex. Parameters ---------- sequences : sequence of sequences names : sequence of str Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index_from_sequences([[1, 2, 3]], names=['name']) Int64Index([1, 2, 3], dtype='int64', name='name') >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']], names=['L1', 'L2']) MultiIndex([('a', 'a'), ('a', 'b')], names=['L1', 'L2']) See Also -------- ensure_index """ from .multi import MultiIndex if len(sequences) == 1: if names is not None: names = names[0] return Index(sequences[0], name=names) else: return MultiIndex.from_arrays(sequences, names=names) def ensure_index(index_like, copy=False): """ Ensure that we have an index from some index-like object. Parameters ---------- index : sequence An Index or other sequence copy : bool Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index(['a', 'b']) Index(['a', 'b'], dtype='object') >>> ensure_index([('a', 'a'), ('b', 'c')]) Index([('a', 'a'), ('b', 'c')], dtype='object') >>> ensure_index([['a', 'a'], ['b', 'c']]) MultiIndex([('a', 'b'), ('a', 'c')], dtype='object') ) See Also -------- ensure_index_from_sequences """ if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, "name"): return Index(index_like, name=index_like.name, copy=copy) if is_iterator(index_like): index_like = list(index_like) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from .multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like) def _ensure_has_len(seq): """ If seq is an iterator, put its values into a list. """ try: len(seq) except TypeError: return list(seq) else: return seq def _trim_front(strings): """ Trims zeros and decimal points. """ trimmed = strings while len(strings) > 0 and all(x[0] == " " for x in trimmed): trimmed = [x[1:] for x in trimmed] return trimmed def _validate_join_method(method): if method not in ["left", "right", "inner", "outer"]: raise ValueError(f"do not recognize join method {method}") def default_index(n): from pandas.core.indexes.range import RangeIndex return RangeIndex(0, n, name=None) def maybe_extract_name(name, obj, cls) -> Optional[Hashable]: """ If no name is passed, then extract it from data, validating hashability. """ if name is None and isinstance(obj, (Index, ABCSeries)): # Note we don't just check for "name" attribute since that would # pick up e.g. dtype.name name = obj.name # GH#29069 if not is_hashable(name): raise TypeError(f"{cls.__name__}.name must be a hashable type") return name def _maybe_cast_with_dtype(data: np.ndarray, dtype: np.dtype, copy: bool) -> np.ndarray: """ If a dtype is passed, cast to the closest matching dtype that is supported by Index. Parameters ---------- data : np.ndarray dtype : np.dtype copy : bool Returns ------- np.ndarray """ # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "integer": data = maybe_cast_to_integer_array(data, dtype, copy=copy) elif inferred in ["floating", "mixed-integer-float"]: if isna(data).any(): raise ValueError("cannot convert float NaN to integer") if inferred == "mixed-integer-float": data = maybe_cast_to_integer_array(data, dtype) # If we are actually all equal to integers, # then coerce to integer. try: data = _try_convert_to_int_array(data, copy, dtype) except ValueError: data = np.array(data, dtype=np.float64, copy=copy) elif inferred == "string": pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "string": pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) return data def _maybe_cast_data_without_dtype(subarr): """ If we have an arraylike input but no passed dtype, try to infer a supported dtype. Parameters ---------- subarr : np.ndarray, Index, or Series Returns ------- converted : np.ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype """ # Runtime import needed bc IntervalArray imports Index from pandas.core.arrays import ( IntervalArray, PeriodArray, DatetimeArray, TimedeltaArray, ) inferred = lib.infer_dtype(subarr, skipna=False) if inferred == "integer": try: data = _try_convert_to_int_array(subarr, False, None) return data, data.dtype except ValueError: pass return subarr, object elif inferred in ["floating", "mixed-integer-float", "integer-na"]: # TODO: Returns IntegerArray for integer-na case in the future return subarr, np.float64 elif inferred == "interval": try: data = IntervalArray._from_sequence(subarr, copy=False) return data, data.dtype except ValueError: # GH27172: mixed closed Intervals --> object dtype pass elif inferred == "boolean": # don't support boolean explicitly ATM pass elif inferred != "string": if inferred.startswith("datetime"): try: data = DatetimeArray._from_sequence(subarr, copy=False) return data, data.dtype except (ValueError, OutOfBoundsDatetime): # GH 27011 # If we have mixed timezones, just send it # down the base constructor pass elif inferred.startswith("timedelta"): data = TimedeltaArray._from_sequence(subarr, copy=False) return data, data.dtype elif inferred == "period": try: data = PeriodArray._from_sequence(subarr) return data, data.dtype except IncompatibleFrequency: pass return subarr, subarr.dtype def _try_convert_to_int_array( data: np.ndarray, copy: bool, dtype: np.dtype ) -> np.ndarray: """ Attempt to convert an array of data into an integer array. Parameters ---------- data : The data to convert. copy : bool Whether to copy the data or not. dtype : np.dtype Returns ------- int_array : data converted to either an ndarray[int64] or ndarray[uint64] Raises ------ ValueError if the conversion was not successful. """ if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desired try: res = data.astype("i8", copy=False) if (res == data).all(): return res # TODO: might still need to copy except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype("u8", copy=False) if (res == data).all(): return res # TODO: might still need to copy except (OverflowError, TypeError, ValueError): pass raise ValueError
BugsInPy/BugsInPy/temp/projects/pandas/bug-98-fixed/pandas/pandas/core/indexes/base.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-98-buggy/pandas/pandas/core/indexes/base.py
pandas-bug-57
import bz2 from collections import Counter from contextlib import contextmanager from datetime import datetime from functools import wraps import gzip import os from shutil import rmtree import string import tempfile from typing import Any, Callable, List, Optional, Type, Union, cast import warnings import zipfile import numpy as np from numpy.random import rand, randn from pandas._config.localization import ( # noqa:F401 can_set_locale, get_locales, set_locale, ) import pandas._libs.testing as _testing from pandas._typing import FilePathOrBuffer, FrameOrSeries from pandas.compat import _get_lzma_file, _import_lzma from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, bdate_range, ) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArray, period_array, ) from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing lzma = _import_lzma() N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("always", _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("ignore", _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option("^display.", silent=True) def round_trip_pickle( obj: Any, path: Optional[FilePathOrBuffer] = None ) -> FrameOrSeries: """ Pickle an object and then read it again. Parameters ---------- obj : any object The object to pickle and then re-read. path : str, path object or file-like object, default None The path where the pickled object is written and then read. Returns ------- pandas object The original object that was pickled and then re-read. """ _path = path if _path is None: _path = f"__{rands(10)}__.pickle" with ensure_clean(_path) as temp_path: pd.to_pickle(obj, temp_path) return pd.read_pickle(temp_path) def round_trip_pathlib(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip("pathlib").Path if path is None: path = "___pathlib___" with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a py.path LocalPath and read it back. Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip("py.path").local if path is None: path = "___localpath___" with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object. Parameters ---------- path : str The path where the file is read from. compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- file object """ if compression is None: f = open(path, "rb") elif compression == "gzip": f = gzip.open(path, "rb") elif compression == "bz2": f = bz2.BZ2File(path, "rb") elif compression == "xz": f = _get_lzma_file(lzma)(path, "rb") elif compression == "zip": zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError(f"ZIP file {path} error. Only one file per ZIP.") else: raise ValueError(f"Unrecognized compression type: {compression}") try: yield f finally: f.close() if compression == "zip": zip_file.close() def write_to_compressed(compression, path, data, dest="test"): """ Write data to a compressed file. Parameters ---------- compression : {'gzip', 'bz2', 'zip', 'xz'} The compression type to use. path : str The file path to write the data. data : str The data to write. dest : str, default "test" The destination file (for ZIP only) Raises ------ ValueError : An invalid compression value was passed in. """ if compression == "zip": import zipfile compress_method = zipfile.ZipFile elif compression == "gzip": import gzip compress_method = gzip.GzipFile elif compression == "bz2": import bz2 compress_method = bz2.BZ2File elif compression == "xz": compress_method = _get_lzma_file(lzma) else: raise ValueError(f"Unrecognized compression type: {compression}") if compression == "zip": mode = "w" args = (dest, data) method = "writestr" else: mode = "wb" args = (data,) method = "write" with compress_method(path, mode=mode) as f: getattr(f, method)(*args) def assert_almost_equal( left, right, check_dtype: Union[bool, str] = "equiv", check_less_precise: Union[bool, int] = False, **kwargs, ): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool or {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): assert_index_equal( left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs, ) elif isinstance(left, pd.Series): assert_series_equal( left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) elif isinstance(left, pd.DataFrame): assert_frame_equal( left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if isinstance(left, np.ndarray) or isinstance(right, np.ndarray): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(left)} instead" ) if not isinstance(right, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(right)} instead" ) def assert_dict_equal(left, right, compare_keys: bool = True): _check_isinstance(left, right, dict) _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p: float = 0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array( list("".join(map(chr, range(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1), ) def rands_array(nchars, size, dtype="O"): """ Generate an array of byte strings. """ retval = ( np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)) .reshape(size) ) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype="O"): """ Generate an array of unicode strings. """ retval = ( np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)) .reshape(size) ) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return "".join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return "".join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False, **kwargs): """ Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. **kwargs Additional keywords passed in for creating a temporary file. :meth:`tempFile.TemporaryFile` is used when `return_filelike` is ``True``. :meth:`tempfile.mkstemp` is used when `return_filelike` is ``False``. Note that the `filename` parameter will be passed in as the `suffix` argument to either function. See Also -------- tempfile.TemporaryFile tempfile.mkstemp """ filename = filename or "" fd = None kwargs["suffix"] = filename if return_filelike: f = tempfile.TemporaryFile(**kwargs) try: yield f finally: f.close() else: # Don't generate tempfile if using a path with directory specified. if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(**kwargs) except UnicodeEncodeError: import pytest pytest.skip("no unicode file names on this system") try: yield filename finally: try: os.close(fd) except OSError: print(f"Couldn't close file descriptor: {fd} (file: {filename})") try: if os.path.exists(filename): os.remove(filename) except OSError as e: print(f"Exception on removing file: {e}") @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix="") try: yield directory_name finally: try: rmtree(directory_name) except OSError: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2) -> bool: """ Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal( left: Index, right: Index, exact: Union[bool, str] = "equiv", check_names: bool = True, check_less_precise: Union[bool, int] = False, check_exact: bool = True, check_categorical: bool = True, obj: str = "Index", ) -> None: """ Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True def _check_types(l, r, obj="Index"): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal("dtype", l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ("string"): assert r.inferred_type in ("string") else: assert_attr_equal("inferred_type", l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] level_codes = index.codes[level] filled = take_1d(unique._values, level_codes, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = f"{obj} levels are different" msg2 = f"{left.nlevels}, {left}" msg3 = f"{right.nlevels}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = f"{obj} length are different" msg2 = f"{len(left)}, {left}" msg3 = f"{len(right)}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: left = cast(MultiIndex, left) right = cast(MultiIndex, right) for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = f"MultiIndex level [{level}]" assert_index_equal( llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj, ) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values).astype(int)) * 100.0 / len(left) msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal( left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right, ) # metadata comparison if check_names: assert_attr_equal("names", left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal("freq", left, right, obj=obj) if isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex): assert_interval_array_equal(left.values, right.values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj=f"{obj} category") def assert_class_equal(left, right, exact: Union[bool, str] = True, obj="Input"): """ Checks classes are equal. """ __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x try: return type(x).__name__ except AttributeError: return repr(type(x)) if exact == "equiv": if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {"Int64Index", "RangeIndex"}): msg = f"{obj} classes are not equivalent" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = f"{obj} classes are different" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr, left, right, obj="Attributes"): """ checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif ( is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr) ): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = f'Attribute "{attr}" are different' raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ( "one of 'objs' is not a matplotlib Axes instance, " f"type encountered {repr(type(el).__name__)}" ) assert isinstance(el, (plt.Axes, dict)), msg else: msg = ( "objs is neither an ndarray of Artist instances nor a single " "ArtistArtist instance, tuple, or dict, 'objs' is a " f"{repr(type(objs).__name__)}" ) assert isinstance(objs, (plt.Artist, tuple, dict)), msg def isiterable(obj): return hasattr(obj, "__iter__") def assert_is_sorted(seq): """Assert that the sequence is sorted.""" if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal( left, right, check_dtype=True, check_category_order=True, obj="Categorical" ): """ Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj=f"{obj}.categories") assert_numpy_array_equal( left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes", ) else: assert_index_equal( left.categories.sort_values(), right.categories.sort_values(), obj=f"{obj}.categories", ) assert_index_equal( left.categories.take(left.codes), right.categories.take(right.codes), obj=f"{obj}.values", ) assert_attr_equal("ordered", left, right, obj=obj) def assert_interval_array_equal(left, right, exact="equiv", obj="IntervalArray"): """ Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj=f"{obj}.left") assert_index_equal(left.right, right.right, exact=exact, obj=f"{obj}.left") assert_attr_equal("closed", left, right, obj=obj) def assert_period_array_equal(left, right, obj="PeriodArray"): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}.values") assert_attr_equal("freq", left, right, obj=obj) def assert_datetime_array_equal(left, right, obj="DatetimeArray"): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) assert_attr_equal("tz", left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj="TimedeltaArray"): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) msg = f"""{obj} are different {message} [left]: {left} [right]: {right}""" if diff is not None: msg += f"\n[diff]: {diff}" raise AssertionError(msg) def assert_numpy_array_equal( left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj="numpy array", ): """ Check that 'np.ndarray' is equivalent. Parameters ---------- left, right : numpy.ndarray or iterable The two arrays to be compared. strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype : bool, default True Check dtype if both a and b are np.ndarray. err_msg : str, default None If provided, used as assertion message. check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area. obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, "base", None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == "same": if left_base is not right_base: raise AssertionError(f"{repr(left_base)} is not {repr(right_base)}") elif check_same == "copy": if left_base is right_base: raise AssertionError(f"{repr(left_base)} is {repr(right_base)}") def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shapes are different", left.shape, right.shape, ) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal("dtype", left, right, obj=obj) def assert_extension_array_equal( left, right, check_dtype=True, check_less_precise=False, check_exact=False ): """ Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare. check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), "left is not an ExtensionArray" assert isinstance(right, ExtensionArray), "right is not an ExtensionArray" if check_dtype: assert_attr_equal("dtype", left, right, obj="ExtensionArray") if hasattr(left, "asi8") and type(right) == type(left): # Avoid slow object-dtype comparisons assert_numpy_array_equal(left.asi8, right.asi8) return left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj="ExtensionArray NA mask") left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj="ExtensionArray") else: _testing.assert_almost_equal( left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj="ExtensionArray", ) # This could be refactored to use the NDFrame.equals method def assert_series_equal( left, right, check_dtype=True, check_index_type="equiv", check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, obj="Series", ): """ Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: # ToDo: There are some tests using rhs is sparse # lhs is dense. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = f"{len(left)}, {left.index}" msg2 = f"{len(right)}, {right.index}" raise_assert_detail(obj, "Series length are different", msg1, msg2) # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.index", ) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if ( is_categorical_dtype(left) and is_categorical_dtype(right) and not check_categorical ): pass else: assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}") if check_exact: assert_numpy_array_equal( left._internal_get_values(), right._internal_get_values(), check_dtype=check_dtype, obj=str(obj), ) elif check_datetimelike_compat: # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case if needs_i8_conversion(left) or needs_i8_conversion(right): # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left.values).equals(Index(right.values)): msg = ( f"[datetimelike_compat=True] {left.values} " f"is not equal to {right.values}." ) raise AssertionError(msg) else: assert_numpy_array_equal( left._internal_get_values(), right._internal_get_values(), check_dtype=check_dtype, ) elif is_interval_dtype(left) or is_interval_dtype(right): assert_interval_array_equal(left.array, right.array) elif is_extension_array_dtype(left.dtype) and is_datetime64tz_dtype(left.dtype): # .values is an ndarray, but ._values is the ExtensionArray. # TODO: Use .array assert is_extension_array_dtype(right.dtype) assert_extension_array_equal(left._values, right._values) elif ( is_extension_array_dtype(left) and not is_categorical_dtype(left) and is_extension_array_dtype(right) and not is_categorical_dtype(right) ): assert_extension_array_equal(left.array, right.array) else: _testing.assert_almost_equal( left._internal_get_values(), right._internal_get_values(), check_less_precise=check_less_precise, check_dtype=check_dtype, obj=str(obj), ) # metadata comparison if check_names: assert_attr_equal("name", left, right, obj=obj) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj=f"{obj} category") # This could be refactored to use the NDFrame.equals method def assert_frame_equal( left, right, check_dtype=True, check_index_type="equiv", check_column_type="equiv", check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, obj="DataFrame", ): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool or {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas._testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): ... AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}", ) if check_like: left, right = left.reindex_like(right), right # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.index", ) # column comparison assert_index_equal( left.columns, right.columns, exact=check_column_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.columns", ) # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal( lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj=obj ) # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_less_precise=check_less_precise, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, obj=f'{obj}.iloc[:, {i}] (column name="{col}")', ) def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left, right : Index, Series, DataFrame, ExtensionArray, or np.ndarray The two items to be compared. **kwargs All keyword arguments are passed through to the underlying assert method. """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) elif isinstance(left, str): assert kwargs == {} assert left == right else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place if is_period_dtype(obj): return period_array(obj) elif is_datetime64_dtype(obj) or is_datetime64tz_dtype(obj): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(obj): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal( left, right, check_dtype=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, ): """ Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray check_dtype : bool, default True Whether to check the data dtype is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. """ _check_isinstance(left, right, pd.arrays.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values, check_dtype=check_dtype) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) if not check_kind: left_index = left.sp_index.to_block_index() right_index = right.sp_index.to_block_index() else: left_index = left.sp_index right_index = right.sp_index if consolidate_block_indices and left.kind == "block": # we'll probably remove this hack... left_index = left_index.to_int_index().to_block_index() right_index = right_index.to_int_index().to_block_index() if not left_index.equals(right_index): raise_assert_detail( "SparseArray.index", "index are not equal", left_index, right_index ) else: # Just ensure a pass if check_fill_value: assert_attr_equal("fill_value", left, right) if check_dtype: assert_attr_equal("dtype", left, right) assert_numpy_array_equal(left.to_dense(), right.to_dense(), check_dtype=check_dtype) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, f"Did not contain item: {repr(k)}" def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ( f"Expected object {repr(type(elem1))} and object {repr(type(elem2))} to be " "different objects, but they were the same object." ) assert elem1 is not elem2, msg def getCols(k): return string.ascii_uppercase[:k] # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex( Categorical.from_codes(np.arange(k) % n, categories=x), name=name, **kwargs ) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(list(range(k)), name=name) def makeUIntIndex(k=10, name=None): return Index([2 ** 63 + i for i in range(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq="B", name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq="D", name=None, **kwargs): return pd.timedelta_range(start="1 day", periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) dr = pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs) return dr def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product((("foo", "bar"), (1, 2)), names=names, **kwargs) _names = [ "Alice", "Bob", "Charlie", "Dan", "Edith", "Frank", "George", "Hannah", "Ingrid", "Jerry", "Kevin", "Laura", "Michael", "Norbert", "Oliver", "Patricia", "Quinn", "Ray", "Sarah", "Tim", "Ursula", "Victor", "Wendy", "Xavier", "Yvonne", "Zelda", ] def _make_timeseries(start="2000-01-01", end="2000-12-31", freq="1D", seed=None): """ Make a DataFrame with a DatetimeIndex Parameters ---------- start : str or Timestamp, default "2000-01-01" The start of the index. Passed to date_range with `freq`. end : str or Timestamp, default "2000-12-31" The end of the index. Passed to date_range with `freq`. freq : str or Freq The frequency to use for the DatetimeIndex seed : int, optional The random state seed. * name : object dtype with string names * id : int dtype with * x, y : float dtype Examples -------- >>> _make_timeseries() id name x y timestamp 2000-01-01 982 Frank 0.031261 0.986727 2000-01-02 1025 Edith -0.086358 -0.032920 2000-01-03 982 Edith 0.473177 0.298654 2000-01-04 1009 Sarah 0.534344 -0.750377 2000-01-05 963 Zelda -0.271573 0.054424 ... ... ... ... ... 2000-12-27 980 Ingrid -0.132333 -0.422195 2000-12-28 972 Frank -0.376007 -0.298687 2000-12-29 1009 Ursula -0.865047 -0.503133 2000-12-30 1000 Hannah -0.063757 -0.507336 2000-12-31 972 Tim -0.869120 0.531685 """ index = pd.date_range(start=start, end=end, freq=freq, name="timestamp") n = len(index) state = np.random.RandomState(seed) columns = { "name": state.choice(_names, size=n), "id": state.poisson(1000, size=n), "x": state.rand(n) * 2 - 1, "y": state.rand(n) * 2 - 1, } df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def all_index_generator(k=10): """ Generator which can be iterated over to get instances of all the various index classes. Parameters ---------- k: length of each of the index instances """ all_make_index_funcs = [ makeIntIndex, makeFloatIndex, makeStringIndex, makeUnicodeIndex, makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeBoolIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, ] for make_index_func in all_make_index_funcs: yield make_index_func(k=k) def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex, ] for make_index_func in make_index_funcs: yield make_index_func def all_timeseries_index_generator(k=10): """ Generator which can be iterated over to get instances of all the classes which represent time-series. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: yield make_index_func(k=k) # make series def makeFloatSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeObjectSeries(name=None): data = makeStringIndex(N) data = Index(data, dtype=object) index = makeStringIndex(N) return Series(data, index=index, name=name) def getSeriesData(): index = makeStringIndex(N) return {c: Series(randn(N), index=index) for c in getCols(K)} def makeTimeSeries(nper=None, freq="B", name=None): if nper is None: nper = N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq="B"): return {c: makeTimeSeries(nper, freq) for c in getCols(K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(K)} # make frame def makeTimeDataFrame(nper=None, freq="B"): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(["a", "b", "c", "d", "e"]) data = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": bdate_range("1/1/2009", periods=5), } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makeCustomIndex( nentries, nlevels, prefix="#", names=False, ndupe_l=None, idx_type=None ): """ Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert is_sequence(ndupe_l) and len(ndupe_l) <= nlevels assert names is None or names is False or names is True or len(names) is nlevels assert idx_type is None or ( idx_type in ("i", "f", "s", "u", "dt", "p", "td") and nlevels == 1 ) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singleton case uniform if isinstance(names, str) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = dict( i=makeIntIndex, f=makeFloatIndex, s=makeStringIndex, u=makeUnicodeIndex, dt=makeDateIndex, td=makeTimedeltaIndex, p=makePeriodIndex, ).get(idx_type) if idx_func: idx = idx_func(nentries) # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError( f"{repr(idx_type)} is not a legal value for `idx_type`, " "use 'i'/'f'/'s'/'u'/'dt'/'p'/'td'." ) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all(x > 0 for x in ndupe_l) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_") return [int(num) for num in numeric_tuple] # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 cnt = Counter() for j in range(div_factor): label = f"{prefix}_l{i}_g{j}" cnt[label] = ndupe_l[i] # cute Counter trick result = sorted(cnt.elements(), key=keyfunc)[:nentries] tuples.append(result) tuples = list(zip(*tuples)) # convert tuples to index if nentries == 1: # we have a single level of tuples, i.e. a regular Index index = Index(tuples[0], name=names[0]) elif nlevels == 1: name = None if names is None else names[0] index = Index((x[0] for x in tuples), name=name) else: index = MultiIndex.from_tuples(tuples, names=names) return index def makeCustomDataframe( nrows, ncols, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None, ): """ Create a DataFrame using supplied parameters. Parameters ---------- nrows, ncols - number of data rows/cols c_idx_names, idx_names - False/True/list of strings, yields No names , default names or uses the provided names for the levels of the corresponding index. You can provide a single string when c_idx_nlevels ==1. c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex data_gen_f - a function f(row,col) which return the data value at that position, the default generator used yields values of the form "RxCy" based on position. c_ndupe_l, r_ndupe_l - list of integers, determines the number of duplicates for each label at a given level of the corresponding index. The default `None` value produces a multiplicity of 1 across all levels, i.e. a unique index. Will accept a partial list of length N < idx_nlevels, for just the first N levels. If ndupe doesn't divide nrows/ncol, the last label might have lower multiplicity. dtype - passed to the DataFrame constructor as is, in case you wish to have more control in conjunction with a custom `data_gen_f` r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a timedelta index. if unspecified, string labels will be generated. Examples -------- # 5 row, 3 columns, default names on both, single index on both axis >> makeCustomDataframe(5,3) # make the data a random int between 1 and 100 >> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100)) # 2-level multiindex on rows with each label duplicated # twice on first level, default names on both axis, single # index on both axis >> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2]) # DatetimeIndex on row, index with unicode labels on columns # no names on either axis >> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False, r_idx_type="dt",c_idx_type="u") # 4-level multindex on rows with names provided, 2-level multindex # on columns with default labels and default names. >> a=makeCustomDataframe(5,3,r_idx_nlevels=4, r_idx_names=["FEE","FI","FO","FAM"], c_idx_nlevels=2) >> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) """ assert c_idx_nlevels > 0 assert r_idx_nlevels > 0 assert r_idx_type is None or ( r_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and r_idx_nlevels == 1 ) assert c_idx_type is None or ( c_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and c_idx_nlevels == 1 ) columns = makeCustomIndex( ncols, nlevels=c_idx_nlevels, prefix="C", names=c_idx_names, ndupe_l=c_ndupe_l, idx_type=c_idx_type, ) index = makeCustomIndex( nrows, nlevels=r_idx_nlevels, prefix="R", names=r_idx_names, ndupe_l=r_ndupe_l, idx_type=r_idx_type, ) # by default, generate data based on location if data_gen_f is None: data_gen_f = lambda r, c: f"R{r}C{c}" data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)] return DataFrame(data, index, columns, dtype=dtype) def _create_missing_idx(nrows, ncols, density, random_state=None): if random_state is None: random_state = np.random else: random_state = np.random.RandomState(random_state) # below is cribbed from scipy.sparse size = int(np.round((1 - density) * nrows * ncols)) # generate a few more to ensure unique values min_rows = 5 fac = 1.02 extra_size = min(size + min_rows, fac * size) def _gen_unique_rand(rng, _extra_size): ind = rng.rand(int(_extra_size)) return np.unique(np.floor(ind * nrows * ncols))[:size] ind = _gen_unique_rand(random_state, extra_size) while ind.size < size: extra_size *= 1.05 ind = _gen_unique_rand(random_state, extra_size) j = np.floor(ind * 1.0 / nrows).astype(int) i = (ind - j * nrows).astype(int) return i.tolist(), j.tolist() def makeMissingCustomDataframe( nrows, ncols, density=0.9, random_state=None, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None, ): """ Parameters ---------- Density : float, optional Float in (0, 1) that gives the percentage of non-missing numbers in the DataFrame. random_state : {np.random.RandomState, int}, optional Random number generator or random seed. See makeCustomDataframe for descriptions of the rest of the parameters. """ df = makeCustomDataframe( nrows, ncols, c_idx_names=c_idx_names, r_idx_names=r_idx_names, c_idx_nlevels=c_idx_nlevels, r_idx_nlevels=r_idx_nlevels, data_gen_f=data_gen_f, c_ndupe_l=c_ndupe_l, r_ndupe_l=r_ndupe_l, dtype=dtype, c_idx_type=c_idx_type, r_idx_type=r_idx_type, ) i, j = _create_missing_idx(nrows, ncols, density, random_state) df.values[i, j] = np.nan return df def makeMissingDataframe(density=0.9, random_state=None): df = makeDataFrame() i, j = _create_missing_idx(*df.shape, density=density, random_state=random_state) df.values[i, j] = np.nan return df def optional_args(decorator): """ allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, *args, **kwargs) """ @wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and callable(args[0]) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # skip tests on exceptions with this message _network_error_messages = ( # 'urlopen error timed out', # 'timeout: timed out', # 'socket.timeout: timed out', "timed out", "Server Hangup", "HTTP Error 503: Service Unavailable", "502: Proxy Error", "HTTP Error 502: internal error", "HTTP Error 502", "HTTP Error 503", "HTTP Error 403", "HTTP Error 400", "Temporary failure in name resolution", "Name or service not known", "Connection refused", "certificate verify", ) # or this e.errno/e.reason.errno _network_errno_vals = ( 101, # Network is unreachable 111, # Connection refused 110, # Connection timed out 104, # Connection reset Error 54, # Connection reset by peer 60, # urllib.error.URLError: [Errno 60] Connection timed out ) # Both of the above shouldn't mask real issues such as 404's # or refused connections (changed DNS). # But some tests (test_data yahoo) contact incredibly flakey # servers. # and conditionally raise on exception types in _get_default_network_errors def _get_default_network_errors(): # Lazy import for http.client because it imports many things from the stdlib import http.client return (IOError, http.client.HTTPException, TimeoutError) def can_connect(url, error_classes=None): """ Try to connect to the given url. True if succeeds, False if IOError raised Parameters ---------- url : basestring The URL to try to connect to Returns ------- connectable : bool Return True if no IOError (unable to connect) or URLError (bad url) was raised """ if error_classes is None: error_classes = _get_default_network_errors() try: with urlopen(url): pass except error_classes: return False else: return True @optional_args def network( t, url="http://www.google.com", raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT, check_before_test=False, error_classes=None, skip_errnos=_network_errno_vals, _skip_on_messages=_network_error_messages, ): """ Label a test as requiring network connection and, if an error is encountered, only raise if it does not find a network connection. In comparison to ``network``, this assumes an added contract to your test: you must assert that, under normal conditions, your test will ONLY fail if it does not have network connectivity. You can call this in 3 ways: as a standard decorator, with keyword arguments, or with a positional argument that is the url to check. Parameters ---------- t : callable The test requiring network connectivity. url : path The url to test via ``pandas.io.common.urlopen`` to check for connectivity. Defaults to 'http://www.google.com'. raise_on_error : bool If True, never catches errors. check_before_test : bool If True, checks connectivity before running the test case. error_classes : tuple or Exception error classes to ignore. If not in ``error_classes``, raises the error. defaults to IOError. Be careful about changing the error classes here. skip_errnos : iterable of int Any exception that has .errno or .reason.erno set to one of these values will be skipped with an appropriate message. _skip_on_messages: iterable of string any exception e for which one of the strings is a substring of str(e) will be skipped with an appropriate message. Intended to suppress errors where an errno isn't available. Notes ----- * ``raise_on_error`` supercedes ``check_before_test`` Returns ------- t : callable The decorated test ``t``, with checks for connectivity errors. Example ------- Tests decorated with @network will fail if it's possible to make a network connection to another URL (defaults to google.com):: >>> from pandas._testing import network >>> from pandas.io.common import urlopen >>> @network ... def test_network(): ... with urlopen("rabbit://bonanza.com"): ... pass Traceback ... URLError: <urlopen error unknown url type: rabit> You can specify alternative URLs:: >>> @network("http://www.yahoo.com") ... def test_something_with_yahoo(): ... raise IOError("Failure Message") >>> test_something_with_yahoo() Traceback (most recent call last): ... IOError: Failure Message If you set check_before_test, it will check the url first and not run the test on failure:: >>> @network("failing://url.blaher", check_before_test=True) ... def test_something(): ... print("I ran!") ... raise ValueError("Failure") >>> test_something() Traceback (most recent call last): ... Errors not related to networking will always be raised. """ from pytest import skip if error_classes is None: error_classes = _get_default_network_errors() t.network = True @wraps(t) def wrapper(*args, **kwargs): if check_before_test and not raise_on_error: if not can_connect(url, error_classes): skip() try: return t(*args, **kwargs) except Exception as err: errno = getattr(err, "errno", None) if not errno and hasattr(errno, "reason"): errno = getattr(err.reason, "errno", None) if errno in skip_errnos: skip(f"Skipping test due to known errno and error {err}") e_str = str(err) if any(m.lower() in e_str.lower() for m in _skip_on_messages): skip( f"Skipping test because exception message is known and error {err}" ) if not isinstance(err, error_classes): raise if raise_on_error or can_connect(url, error_classes): raise else: skip(f"Skipping test due to lack of connectivity and error {err}") return wrapper with_connectivity_check = network @contextmanager def assert_produces_warning( expected_warning=Warning, filter_level="always", clear=None, check_stacklevel=True, raise_on_extra_warnings=True, ): """ Context manager for running code expected to either raise a specific warning, or not raise any warnings. Verifies that the code raises the expected warning, and that it does not raise any other unexpected warnings. It is basically a wrapper around ``warnings.catch_warnings``. Parameters ---------- expected_warning : {Warning, False, None}, default Warning The type of Exception raised. ``exception.Warning`` is the base class for all warnings. To check that no warning is returned, specify ``False`` or ``None``. filter_level : str or None, default "always" Specifies whether warnings are ignored, displayed, or turned into errors. Valid values are: * "error" - turns matching warnings into exceptions * "ignore" - discard the warning * "always" - always emit a warning * "default" - print the warning the first time it is generated from each location * "module" - print the warning the first time it is generated from each module * "once" - print the warning the first time it is generated clear : str, default None If not ``None`` then remove any previously raised warnings from the ``__warningsregistry__`` to ensure that no warning messages are suppressed by this context manager. If ``None`` is specified, the ``__warningsregistry__`` keeps track of which warnings have been shown, and does not show them again. check_stacklevel : bool, default True If True, displays the line that called the function containing the warning to show were the function is called. Otherwise, the line that implements the function is displayed. raise_on_extra_warnings : bool, default True Whether extra warnings not of the type `expected_warning` should cause the test to fail. Examples -------- >>> import warnings >>> with assert_produces_warning(): ... warnings.warn(UserWarning()) ... >>> with assert_produces_warning(False): ... warnings.warn(RuntimeWarning()) ... Traceback (most recent call last): ... AssertionError: Caused unexpected warning(s): ['RuntimeWarning']. >>> with assert_produces_warning(UserWarning): ... warnings.warn(RuntimeWarning()) Traceback (most recent call last): ... AssertionError: Did not see expected warning of class 'UserWarning'. ..warn:: This is *not* thread-safe. """ __tracebackhide__ = True with warnings.catch_warnings(record=True) as w: if clear is not None: # make sure that we are clearing these warnings # if they have happened before # to guarantee that we will catch them if not is_list_like(clear): clear = [clear] for m in clear: try: m.__warningregistry__.clear() except AttributeError: # module may not have __warningregistry__ pass saw_warning = False warnings.simplefilter(filter_level) yield w extra_warnings = [] for actual_warning in w: if expected_warning and issubclass( actual_warning.category, expected_warning ): saw_warning = True if check_stacklevel and issubclass( actual_warning.category, (FutureWarning, DeprecationWarning) ): from inspect import getframeinfo, stack caller = getframeinfo(stack()[2][0]) msg = ( "Warning not set with correct stacklevel. " f"File where warning is raised: {actual_warning.filename} != " f"{caller.filename}. Warning message: {actual_warning.message}" ) assert actual_warning.filename == caller.filename, msg else: extra_warnings.append( ( actual_warning.category.__name__, actual_warning.message, actual_warning.filename, actual_warning.lineno, ) ) if expected_warning: msg = ( f"Did not see expected warning of class " f"{repr(expected_warning.__name__)}" ) assert saw_warning, msg if raise_on_extra_warnings and extra_warnings: raise AssertionError( f"Caused unexpected warning(s): {repr(extra_warnings)}" ) class RNGContext: """ Context manager to set the numpy random number generator speed. Returns to the original value upon exiting the context manager. Parameters ---------- seed : int Seed for numpy.random.seed Examples -------- with RNGContext(42): np.random.randn() """ def __init__(self, seed): self.seed = seed def __enter__(self): self.start_state = np.random.get_state() np.random.seed(self.seed) def __exit__(self, exc_type, exc_value, traceback): np.random.set_state(self.start_state) @contextmanager def with_csv_dialect(name, **kwargs): """ Context manager to temporarily register a CSV dialect for parsing CSV. Parameters ---------- name : str The name of the dialect. kwargs : mapping The parameters for the dialect. Raises ------ ValueError : the name of the dialect conflicts with a builtin one. See Also -------- csv : Python's CSV library. """ import csv _BUILTIN_DIALECTS = {"excel", "excel-tab", "unix"} if name in _BUILTIN_DIALECTS: raise ValueError("Cannot override builtin dialect.") csv.register_dialect(name, **kwargs) yield csv.unregister_dialect(name) @contextmanager def use_numexpr(use, min_elements=None): from pandas.core.computation import expressions as expr if min_elements is None: min_elements = expr._MIN_ELEMENTS olduse = expr._USE_NUMEXPR oldmin = expr._MIN_ELEMENTS expr.set_use_numexpr(use) expr._MIN_ELEMENTS = min_elements yield expr._MIN_ELEMENTS = oldmin expr.set_use_numexpr(olduse) def test_parallel(num_threads=2, kwargs_list=None): """ Decorator to run the same function multiple times in parallel. Parameters ---------- num_threads : int, optional The number of times the function is run in parallel. kwargs_list : list of dicts, optional The list of kwargs to update original function kwargs on different threads. Notes ----- This decorator does not pass the return value of the decorated function. Original from scikit-image: https://github.com/scikit-image/scikit-image/pull/1519 """ assert num_threads > 0 has_kwargs_list = kwargs_list is not None if has_kwargs_list: assert len(kwargs_list) == num_threads import threading def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner return wrapper class SubclassedSeries(Series): _metadata = ["testattr", "name"] @property def _constructor(self): return SubclassedSeries @property def _constructor_expanddim(self): return SubclassedDataFrame class SubclassedDataFrame(DataFrame): _metadata = ["testattr"] @property def _constructor(self): return SubclassedDataFrame @property def _constructor_sliced(self): return SubclassedSeries class SubclassedCategorical(Categorical): @property def _constructor(self): return SubclassedCategorical @contextmanager def set_timezone(tz: str): """ Context manager for temporarily setting a timezone. Parameters ---------- tz : str A string representing a valid timezone. Examples -------- >>> from datetime import datetime >>> from dateutil.tz import tzlocal >>> tzlocal().tzname(datetime.now()) 'IST' >>> with set_timezone('US/Eastern'): ... tzlocal().tzname(datetime.now()) ... 'EDT' """ import os import time def setTZ(tz): if tz is None: try: del os.environ["TZ"] except KeyError: pass else: os.environ["TZ"] = tz time.tzset() orig_tz = os.environ.get("TZ") setTZ(tz) try: yield finally: setTZ(orig_tz) def _make_skipna_wrapper(alternative, skipna_alternative=None): """ Create a function for calling on an array. Parameters ---------- alternative : function The function to be called on the array with no NaNs. Only used when 'skipna_alternative' is None. skipna_alternative : function The function to be called on the original array Returns ------- function """ if skipna_alternative: def skipna_wrapper(x): return skipna_alternative(x.values) else: def skipna_wrapper(x): nona = x.dropna() if len(nona) == 0: return np.nan return alternative(nona) return skipna_wrapper def convert_rows_list_to_csv_str(rows_list: List[str]): """ Convert list of CSV rows to single CSV-formatted string for current OS. This method is used for creating expected value of to_csv() method. Parameters ---------- rows_list : List[str] Each element represents the row of csv. Returns ------- str Expected output of to_csv() in current OS. """ sep = os.linesep expected = sep.join(rows_list) + sep return expected def external_error_raised( expected_exception: Type[Exception], ) -> Callable[[Type[Exception], None], None]: """ Helper function to mark pytest.raises that have an external error message. Parameters ---------- expected_exception : Exception Expected error to raise. Returns ------- Callable Regular `pytest.raises` function with `match` equal to `None`. """ import pytest return pytest.raises(expected_exception, match=None) import bz2 from collections import Counter from contextlib import contextmanager from datetime import datetime from functools import wraps import gzip import os from shutil import rmtree import string import tempfile from typing import Any, Callable, List, Optional, Type, Union, cast import warnings import zipfile import numpy as np from numpy.random import rand, randn from pandas._config.localization import ( # noqa:F401 can_set_locale, get_locales, set_locale, ) import pandas._libs.testing as _testing from pandas._typing import FilePathOrBuffer, FrameOrSeries from pandas.compat import _get_lzma_file, _import_lzma from pandas.core.dtypes.common import ( is_bool, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_interval_dtype, is_list_like, is_number, is_period_dtype, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import array_equivalent import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, bdate_range, ) from pandas.core.algorithms import take_1d from pandas.core.arrays import ( DatetimeArray, ExtensionArray, IntervalArray, PeriodArray, TimedeltaArray, period_array, ) from pandas.io.common import urlopen from pandas.io.formats.printing import pprint_thing lzma = _import_lzma() N = 30 K = 4 _RAISE_NETWORK_ERROR_DEFAULT = False # set testing_mode _testing_mode_warnings = (DeprecationWarning, ResourceWarning) def set_testing_mode(): # set the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("always", _testing_mode_warnings) def reset_testing_mode(): # reset the testing mode filters testing_mode = os.environ.get("PANDAS_TESTING_MODE", "None") if "deprecate" in testing_mode: warnings.simplefilter("ignore", _testing_mode_warnings) set_testing_mode() def reset_display_options(): """ Reset the display options for printing and representing objects. """ pd.reset_option("^display.", silent=True) def round_trip_pickle( obj: Any, path: Optional[FilePathOrBuffer] = None ) -> FrameOrSeries: """ Pickle an object and then read it again. Parameters ---------- obj : any object The object to pickle and then re-read. path : str, path object or file-like object, default None The path where the pickled object is written and then read. Returns ------- pandas object The original object that was pickled and then re-read. """ _path = path if _path is None: _path = f"__{rands(10)}__.pickle" with ensure_clean(_path) as temp_path: pd.to_pickle(obj, temp_path) return pd.read_pickle(temp_path) def round_trip_pathlib(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a pathlib.Path and read it back Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest Path = pytest.importorskip("pathlib").Path if path is None: path = "___pathlib___" with ensure_clean(path) as path: writer(Path(path)) obj = reader(Path(path)) return obj def round_trip_localpath(writer, reader, path: Optional[str] = None): """ Write an object to file specified by a py.path LocalPath and read it back. Parameters ---------- writer : callable bound to pandas object IO writing function (e.g. DataFrame.to_csv ) reader : callable IO reading function (e.g. pd.read_csv ) path : str, default None The path where the object is written and then read. Returns ------- pandas object The original object that was serialized and then re-read. """ import pytest LocalPath = pytest.importorskip("py.path").local if path is None: path = "___localpath___" with ensure_clean(path) as path: writer(LocalPath(path)) obj = reader(LocalPath(path)) return obj @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object. Parameters ---------- path : str The path where the file is read from. compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- file object """ if compression is None: f = open(path, "rb") elif compression == "gzip": f = gzip.open(path, "rb") elif compression == "bz2": f = bz2.BZ2File(path, "rb") elif compression == "xz": f = _get_lzma_file(lzma)(path, "rb") elif compression == "zip": zip_file = zipfile.ZipFile(path) zip_names = zip_file.namelist() if len(zip_names) == 1: f = zip_file.open(zip_names.pop()) else: raise ValueError(f"ZIP file {path} error. Only one file per ZIP.") else: raise ValueError(f"Unrecognized compression type: {compression}") try: yield f finally: f.close() if compression == "zip": zip_file.close() def write_to_compressed(compression, path, data, dest="test"): """ Write data to a compressed file. Parameters ---------- compression : {'gzip', 'bz2', 'zip', 'xz'} The compression type to use. path : str The file path to write the data. data : str The data to write. dest : str, default "test" The destination file (for ZIP only) Raises ------ ValueError : An invalid compression value was passed in. """ if compression == "zip": import zipfile compress_method = zipfile.ZipFile elif compression == "gzip": import gzip compress_method = gzip.GzipFile elif compression == "bz2": import bz2 compress_method = bz2.BZ2File elif compression == "xz": compress_method = _get_lzma_file(lzma) else: raise ValueError(f"Unrecognized compression type: {compression}") if compression == "zip": mode = "w" args = (dest, data) method = "writestr" else: mode = "wb" args = (data,) method = "write" with compress_method(path, mode=mode) as f: getattr(f, method)(*args) def assert_almost_equal( left, right, check_dtype: Union[bool, str] = "equiv", check_less_precise: Union[bool, int] = False, **kwargs, ): """ Check that the left and right objects are approximately equal. By approximately equal, we refer to objects that are numbers or that contain numbers which may be equivalent to specific levels of precision. Parameters ---------- left : object right : object check_dtype : bool or {'equiv'}, default 'equiv' Check dtype if both a and b are the same type. If 'equiv' is passed in, then `RangeIndex` and `Int64Index` are also considered equivalent when doing type checking. check_less_precise : bool or int, default False Specify comparison precision. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the number of digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. """ if isinstance(left, pd.Index): assert_index_equal( left, right, check_exact=False, exact=check_dtype, check_less_precise=check_less_precise, **kwargs, ) elif isinstance(left, pd.Series): assert_series_equal( left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) elif isinstance(left, pd.DataFrame): assert_frame_equal( left, right, check_exact=False, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) else: # Other sequences. if check_dtype: if is_number(left) and is_number(right): # Do not compare numeric classes, like np.float64 and float. pass elif is_bool(left) and is_bool(right): # Do not compare bool classes, like np.bool_ and bool. pass else: if isinstance(left, np.ndarray) or isinstance(right, np.ndarray): obj = "numpy array" else: obj = "Input" assert_class_equal(left, right, obj=obj) _testing.assert_almost_equal( left, right, check_dtype=check_dtype, check_less_precise=check_less_precise, **kwargs, ) def _check_isinstance(left, right, cls): """ Helper method for our assert_* methods that ensures that the two objects being compared have the right type before proceeding with the comparison. Parameters ---------- left : The first object being compared. right : The second object being compared. cls : The class type to check against. Raises ------ AssertionError : Either `left` or `right` is not an instance of `cls`. """ cls_name = cls.__name__ if not isinstance(left, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(left)} instead" ) if not isinstance(right, cls): raise AssertionError( f"{cls_name} Expected type {cls}, found {type(right)} instead" ) def assert_dict_equal(left, right, compare_keys: bool = True): _check_isinstance(left, right, dict) _testing.assert_dict_equal(left, right, compare_keys=compare_keys) def randbool(size=(), p: float = 0.5): return rand(*size) <= p RANDS_CHARS = np.array(list(string.ascii_letters + string.digits), dtype=(np.str_, 1)) RANDU_CHARS = np.array( list("".join(map(chr, range(1488, 1488 + 26))) + string.digits), dtype=(np.unicode_, 1), ) def rands_array(nchars, size, dtype="O"): """ Generate an array of byte strings. """ retval = ( np.random.choice(RANDS_CHARS, size=nchars * np.prod(size)) .view((np.str_, nchars)) .reshape(size) ) if dtype is None: return retval else: return retval.astype(dtype) def randu_array(nchars, size, dtype="O"): """ Generate an array of unicode strings. """ retval = ( np.random.choice(RANDU_CHARS, size=nchars * np.prod(size)) .view((np.unicode_, nchars)) .reshape(size) ) if dtype is None: return retval else: return retval.astype(dtype) def rands(nchars): """ Generate one random byte string. See `rands_array` if you want to create an array of random strings. """ return "".join(np.random.choice(RANDS_CHARS, nchars)) def randu(nchars): """ Generate one random unicode string. See `randu_array` if you want to create an array of random unicode strings. """ return "".join(np.random.choice(RANDU_CHARS, nchars)) def close(fignum=None): from matplotlib.pyplot import get_fignums, close as _close if fignum is None: for fignum in get_fignums(): _close(fignum) else: _close(fignum) # ----------------------------------------------------------------------------- # contextmanager to ensure the file cleanup @contextmanager def ensure_clean(filename=None, return_filelike=False, **kwargs): """ Gets a temporary path and agrees to remove on close. Parameters ---------- filename : str (optional) if None, creates a temporary file which is then removed when out of scope. if passed, creates temporary file with filename as ending. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. **kwargs Additional keywords passed in for creating a temporary file. :meth:`tempFile.TemporaryFile` is used when `return_filelike` is ``True``. :meth:`tempfile.mkstemp` is used when `return_filelike` is ``False``. Note that the `filename` parameter will be passed in as the `suffix` argument to either function. See Also -------- tempfile.TemporaryFile tempfile.mkstemp """ filename = filename or "" fd = None kwargs["suffix"] = filename if return_filelike: f = tempfile.TemporaryFile(**kwargs) try: yield f finally: f.close() else: # Don't generate tempfile if using a path with directory specified. if len(os.path.dirname(filename)): raise ValueError("Can't pass a qualified name to ensure_clean()") try: fd, filename = tempfile.mkstemp(**kwargs) except UnicodeEncodeError: import pytest pytest.skip("no unicode file names on this system") try: yield filename finally: try: os.close(fd) except OSError: print(f"Couldn't close file descriptor: {fd} (file: {filename})") try: if os.path.exists(filename): os.remove(filename) except OSError as e: print(f"Exception on removing file: {e}") @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix="") try: yield directory_name finally: try: rmtree(directory_name) except OSError: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) # ----------------------------------------------------------------------------- # Comparators def equalContents(arr1, arr2) -> bool: """ Checks if the set of unique elements of arr1 and arr2 are equivalent. """ return frozenset(arr1) == frozenset(arr2) def assert_index_equal( left: Index, right: Index, exact: Union[bool, str] = "equiv", check_names: bool = True, check_less_precise: Union[bool, int] = False, check_exact: bool = True, check_categorical: bool = True, obj: str = "Index", ) -> None: """ Check that left and right Index are equal. Parameters ---------- left : Index right : Index exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default True Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True def _check_types(l, r, obj="Index"): if exact: assert_class_equal(l, r, exact=exact, obj=obj) # Skip exact dtype checking when `check_categorical` is False if check_categorical: assert_attr_equal("dtype", l, r, obj=obj) # allow string-like to have different inferred_types if l.inferred_type in ("string"): assert r.inferred_type in ("string") else: assert_attr_equal("inferred_type", l, r, obj=obj) def _get_ilevel_values(index, level): # accept level number only unique = index.levels[level] level_codes = index.codes[level] filled = take_1d(unique._values, level_codes, fill_value=unique._na_value) values = unique._shallow_copy(filled, name=index.names[level]) return values # instance validation _check_isinstance(left, right, Index) # class / dtype comparison _check_types(left, right, obj=obj) # level comparison if left.nlevels != right.nlevels: msg1 = f"{obj} levels are different" msg2 = f"{left.nlevels}, {left}" msg3 = f"{right.nlevels}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # length comparison if len(left) != len(right): msg1 = f"{obj} length are different" msg2 = f"{len(left)}, {left}" msg3 = f"{len(right)}, {right}" raise_assert_detail(obj, msg1, msg2, msg3) # MultiIndex special comparison for little-friendly error messages if left.nlevels > 1: left = cast(MultiIndex, left) right = cast(MultiIndex, right) for level in range(left.nlevels): # cannot use get_level_values here because it can change dtype llevel = _get_ilevel_values(left, level) rlevel = _get_ilevel_values(right, level) lobj = f"MultiIndex level [{level}]" assert_index_equal( llevel, rlevel, exact=exact, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, obj=lobj, ) # get_level_values may change dtype _check_types(left.levels[level], right.levels[level], obj=obj) # skip exact index checking when `check_categorical` is False if check_exact and check_categorical: if not left.equals(right): diff = np.sum((left.values != right.values).astype(int)) * 100.0 / len(left) msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) else: _testing.assert_almost_equal( left.values, right.values, check_less_precise=check_less_precise, check_dtype=exact, obj=obj, lobj=left, robj=right, ) # metadata comparison if check_names: assert_attr_equal("names", left, right, obj=obj) if isinstance(left, pd.PeriodIndex) or isinstance(right, pd.PeriodIndex): assert_attr_equal("freq", left, right, obj=obj) if isinstance(left, pd.IntervalIndex) or isinstance(right, pd.IntervalIndex): assert_interval_array_equal(left.values, right.values) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal(left.values, right.values, obj=f"{obj} category") def assert_class_equal(left, right, exact: Union[bool, str] = True, obj="Input"): """ Checks classes are equal. """ __tracebackhide__ = True def repr_class(x): if isinstance(x, Index): # return Index as it is to include values in the error message return x try: return type(x).__name__ except AttributeError: return repr(type(x)) if exact == "equiv": if type(left) != type(right): # allow equivalence of Int64Index/RangeIndex types = {type(left).__name__, type(right).__name__} if len(types - {"Int64Index", "RangeIndex"}): msg = f"{obj} classes are not equivalent" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) elif exact: if type(left) != type(right): msg = f"{obj} classes are different" raise_assert_detail(obj, msg, repr_class(left), repr_class(right)) def assert_attr_equal(attr, left, right, obj="Attributes"): """ checks attributes are equal. Both objects must have attribute. Parameters ---------- attr : str Attribute name being compared. left : object right : object obj : str, default 'Attributes' Specify object name being compared, internally used to show appropriate assertion message """ __tracebackhide__ = True left_attr = getattr(left, attr) right_attr = getattr(right, attr) if left_attr is right_attr: return True elif ( is_number(left_attr) and np.isnan(left_attr) and is_number(right_attr) and np.isnan(right_attr) ): # np.nan return True try: result = left_attr == right_attr except TypeError: # datetimetz on rhs may raise TypeError result = False if not isinstance(result, bool): result = result.all() if result: return True else: msg = f'Attribute "{attr}" are different' raise_assert_detail(obj, msg, left_attr, right_attr) def assert_is_valid_plot_return_object(objs): import matplotlib.pyplot as plt if isinstance(objs, (pd.Series, np.ndarray)): for el in objs.ravel(): msg = ( "one of 'objs' is not a matplotlib Axes instance, " f"type encountered {repr(type(el).__name__)}" ) assert isinstance(el, (plt.Axes, dict)), msg else: msg = ( "objs is neither an ndarray of Artist instances nor a single " "ArtistArtist instance, tuple, or dict, 'objs' is a " f"{repr(type(objs).__name__)}" ) assert isinstance(objs, (plt.Artist, tuple, dict)), msg def isiterable(obj): return hasattr(obj, "__iter__") def assert_is_sorted(seq): """Assert that the sequence is sorted.""" if isinstance(seq, (Index, Series)): seq = seq.values # sorting does not change precisions assert_numpy_array_equal(seq, np.sort(np.array(seq))) def assert_categorical_equal( left, right, check_dtype=True, check_category_order=True, obj="Categorical" ): """ Test that Categoricals are equivalent. Parameters ---------- left : Categorical right : Categorical check_dtype : bool, default True Check that integer dtype of the codes are the same check_category_order : bool, default True Whether the order of the categories should be compared, which implies identical integer codes. If False, only the resulting values are compared. The ordered attribute is checked regardless. obj : str, default 'Categorical' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, Categorical) if check_category_order: assert_index_equal(left.categories, right.categories, obj=f"{obj}.categories") assert_numpy_array_equal( left.codes, right.codes, check_dtype=check_dtype, obj=f"{obj}.codes", ) else: assert_index_equal( left.categories.sort_values(), right.categories.sort_values(), obj=f"{obj}.categories", ) assert_index_equal( left.categories.take(left.codes), right.categories.take(right.codes), obj=f"{obj}.values", ) assert_attr_equal("ordered", left, right, obj=obj) def assert_interval_array_equal(left, right, exact="equiv", obj="IntervalArray"): """ Test that two IntervalArrays are equivalent. Parameters ---------- left, right : IntervalArray The IntervalArrays to compare. exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int64Index as well. obj : str, default 'IntervalArray' Specify object name being compared, internally used to show appropriate assertion message """ _check_isinstance(left, right, IntervalArray) assert_index_equal(left.left, right.left, exact=exact, obj=f"{obj}.left") assert_index_equal(left.right, right.right, exact=exact, obj=f"{obj}.left") assert_attr_equal("closed", left, right, obj=obj) def assert_period_array_equal(left, right, obj="PeriodArray"): _check_isinstance(left, right, PeriodArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}.values") assert_attr_equal("freq", left, right, obj=obj) def assert_datetime_array_equal(left, right, obj="DatetimeArray"): __tracebackhide__ = True _check_isinstance(left, right, DatetimeArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) assert_attr_equal("tz", left, right, obj=obj) def assert_timedelta_array_equal(left, right, obj="TimedeltaArray"): __tracebackhide__ = True _check_isinstance(left, right, TimedeltaArray) assert_numpy_array_equal(left._data, right._data, obj=f"{obj}._data") assert_attr_equal("freq", left, right, obj=obj) def raise_assert_detail(obj, message, left, right, diff=None): __tracebackhide__ = True if isinstance(left, np.ndarray): left = pprint_thing(left) elif is_categorical_dtype(left): left = repr(left) if isinstance(right, np.ndarray): right = pprint_thing(right) elif is_categorical_dtype(right): right = repr(right) msg = f"""{obj} are different {message} [left]: {left} [right]: {right}""" if diff is not None: msg += f"\n[diff]: {diff}" raise AssertionError(msg) def assert_numpy_array_equal( left, right, strict_nan=False, check_dtype=True, err_msg=None, check_same=None, obj="numpy array", ): """ Check that 'np.ndarray' is equivalent. Parameters ---------- left, right : numpy.ndarray or iterable The two arrays to be compared. strict_nan : bool, default False If True, consider NaN and None to be different. check_dtype : bool, default True Check dtype if both a and b are np.ndarray. err_msg : str, default None If provided, used as assertion message. check_same : None|'copy'|'same', default None Ensure left and right refer/do not refer to the same memory area. obj : str, default 'numpy array' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation # Show a detailed error message when classes are different assert_class_equal(left, right, obj=obj) # both classes must be an np.ndarray _check_isinstance(left, right, np.ndarray) def _get_base(obj): return obj.base if getattr(obj, "base", None) is not None else obj left_base = _get_base(left) right_base = _get_base(right) if check_same == "same": if left_base is not right_base: raise AssertionError(f"{repr(left_base)} is not {repr(right_base)}") elif check_same == "copy": if left_base is right_base: raise AssertionError(f"{repr(left_base)} is {repr(right_base)}") def _raise(left, right, err_msg): if err_msg is None: if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shapes are different", left.shape, right.shape, ) diff = 0 for l, r in zip(left, right): # count up differences if not array_equivalent(l, r, strict_nan=strict_nan): diff += 1 diff = diff * 100.0 / left.size msg = f"{obj} values are different ({np.round(diff, 5)} %)" raise_assert_detail(obj, msg, left, right) raise AssertionError(err_msg) # compare shape and values if not array_equivalent(left, right, strict_nan=strict_nan): _raise(left, right, err_msg) if check_dtype: if isinstance(left, np.ndarray) and isinstance(right, np.ndarray): assert_attr_equal("dtype", left, right, obj=obj) def assert_extension_array_equal( left, right, check_dtype=True, check_less_precise=False, check_exact=False ): """ Check that left and right ExtensionArrays are equal. Parameters ---------- left, right : ExtensionArray The two arrays to compare. check_dtype : bool, default True Whether to check if the ExtensionArray dtypes are identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. check_exact : bool, default False Whether to compare number exactly. Notes ----- Missing values are checked separately from valid values. A mask of missing values is computed for each and checked to match. The remaining all-valid values are cast to object dtype and checked. """ assert isinstance(left, ExtensionArray), "left is not an ExtensionArray" assert isinstance(right, ExtensionArray), "right is not an ExtensionArray" if check_dtype: assert_attr_equal("dtype", left, right, obj="ExtensionArray") if hasattr(left, "asi8") and type(right) == type(left): # Avoid slow object-dtype comparisons assert_numpy_array_equal(left.asi8, right.asi8) return left_na = np.asarray(left.isna()) right_na = np.asarray(right.isna()) assert_numpy_array_equal(left_na, right_na, obj="ExtensionArray NA mask") left_valid = np.asarray(left[~left_na].astype(object)) right_valid = np.asarray(right[~right_na].astype(object)) if check_exact: assert_numpy_array_equal(left_valid, right_valid, obj="ExtensionArray") else: _testing.assert_almost_equal( left_valid, right_valid, check_dtype=check_dtype, check_less_precise=check_less_precise, obj="ExtensionArray", ) # This could be refactored to use the NDFrame.equals method def assert_series_equal( left, right, check_dtype=True, check_index_type="equiv", check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, obj="Series", ): """ Check that left and right Series are equal. Parameters ---------- left : Series right : Series check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the Series class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. check_names : bool, default True Whether to check the Series and Index names attribute. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_category_order : bool, default True Whether to compare category order of internal Categoricals .. versionadded:: 1.0.2 obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, Series) if check_series_type: # ToDo: There are some tests using rhs is sparse # lhs is dense. Should use assert_class_equal in future assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # length comparison if len(left) != len(right): msg1 = f"{len(left)}, {left.index}" msg2 = f"{len(right)}, {right.index}" raise_assert_detail(obj, "Series length are different", msg1, msg2) # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.index", ) if check_dtype: # We want to skip exact dtype checking when `check_categorical` # is False. We'll still raise if only one is a `Categorical`, # regardless of `check_categorical` if ( is_categorical_dtype(left) and is_categorical_dtype(right) and not check_categorical ): pass else: assert_attr_equal("dtype", left, right, obj=f"Attributes of {obj}") if check_exact: assert_numpy_array_equal( left._internal_get_values(), right._internal_get_values(), check_dtype=check_dtype, obj=str(obj), ) elif check_datetimelike_compat: # we want to check only if we have compat dtypes # e.g. integer and M|m are NOT compat, but we can simply check # the values in that case if needs_i8_conversion(left) or needs_i8_conversion(right): # datetimelike may have different objects (e.g. datetime.datetime # vs Timestamp) but will compare equal if not Index(left.values).equals(Index(right.values)): msg = ( f"[datetimelike_compat=True] {left.values} " f"is not equal to {right.values}." ) raise AssertionError(msg) else: assert_numpy_array_equal( left._internal_get_values(), right._internal_get_values(), check_dtype=check_dtype, ) elif is_interval_dtype(left) or is_interval_dtype(right): assert_interval_array_equal(left.array, right.array) elif is_extension_array_dtype(left.dtype) and is_datetime64tz_dtype(left.dtype): # .values is an ndarray, but ._values is the ExtensionArray. # TODO: Use .array assert is_extension_array_dtype(right.dtype) assert_extension_array_equal(left._values, right._values) elif ( is_extension_array_dtype(left) and not is_categorical_dtype(left) and is_extension_array_dtype(right) and not is_categorical_dtype(right) ): assert_extension_array_equal(left.array, right.array) else: _testing.assert_almost_equal( left._internal_get_values(), right._internal_get_values(), check_less_precise=check_less_precise, check_dtype=check_dtype, obj=str(obj), ) # metadata comparison if check_names: assert_attr_equal("name", left, right, obj=obj) if check_categorical: if is_categorical_dtype(left) or is_categorical_dtype(right): assert_categorical_equal( left.values, right.values, obj=f"{obj} category", check_category_order=check_category_order, ) # This could be refactored to use the NDFrame.equals method def assert_frame_equal( left, right, check_dtype=True, check_index_type="equiv", check_column_type="equiv", check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, obj="DataFrame", ): """ Check that left and right DataFrame are equal. This function is intended to compare two DataFrames and output any differences. Is is mostly intended for use in unit tests. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame First DataFrame to compare. right : DataFrame Second DataFrame to compare. check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool or {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Is passed as the ``exact`` argument of :func:`assert_index_equal`. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_less_precise : bool or int, default False Specify comparison precision. Only used when check_exact is False. 5 digits (False) or 3 digits (True) after decimal points are compared. If int, then specify the digits to compare. When comparing two numbers, if the first number has magnitude less than 1e-5, we compare the two numbers directly and check whether they are equivalent within the specified precision. Otherwise, we compare the **ratio** of the second number to the first number and check whether it is equivalent to 1 within the specified precision. check_names : bool, default True Whether to check that the `names` attribute for both the `index` and `column` attributes of the DataFrame is identical. by_blocks : bool, default False Specify how to compare internal data. If False, compare by columns. If True, compare by blocks. check_exact : bool, default False Whether to compare number exactly. check_datetimelike_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. See Also -------- assert_series_equal : Equivalent method for asserting Series equality. DataFrame.equals : Check DataFrame equality. Examples -------- This example shows comparing two DataFrames that are equal but with columns of differing dtypes. >>> from pandas._testing import assert_frame_equal >>> df1 = pd.DataFrame({'a': [1, 2], 'b': [3, 4]}) >>> df2 = pd.DataFrame({'a': [1, 2], 'b': [3.0, 4.0]}) df1 equals itself. >>> assert_frame_equal(df1, df1) df1 differs from df2 as column 'b' is of a different type. >>> assert_frame_equal(df1, df2) Traceback (most recent call last): ... AssertionError: Attributes of DataFrame.iloc[:, 1] (column name="b") are different Attribute "dtype" are different [left]: int64 [right]: float64 Ignore differing dtypes in columns with check_dtype. >>> assert_frame_equal(df1, df2, check_dtype=False) """ __tracebackhide__ = True # instance validation _check_isinstance(left, right, DataFrame) if check_frame_type: assert isinstance(left, type(right)) # assert_class_equal(left, right, obj=obj) # shape comparison if left.shape != right.shape: raise_assert_detail( obj, f"{obj} shape mismatch", f"{repr(left.shape)}", f"{repr(right.shape)}", ) if check_like: left, right = left.reindex_like(right), right # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.index", ) # column comparison assert_index_equal( left.columns, right.columns, exact=check_column_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, obj=f"{obj}.columns", ) # compare by blocks if by_blocks: rblocks = right._to_dict_of_blocks() lblocks = left._to_dict_of_blocks() for dtype in list(set(list(lblocks.keys()) + list(rblocks.keys()))): assert dtype in lblocks assert dtype in rblocks assert_frame_equal( lblocks[dtype], rblocks[dtype], check_dtype=check_dtype, obj=obj ) # compare by columns else: for i, col in enumerate(left.columns): assert col in right lcol = left.iloc[:, i] rcol = right.iloc[:, i] assert_series_equal( lcol, rcol, check_dtype=check_dtype, check_index_type=check_index_type, check_less_precise=check_less_precise, check_exact=check_exact, check_names=check_names, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, obj=f'{obj}.iloc[:, {i}] (column name="{col}")', ) def assert_equal(left, right, **kwargs): """ Wrapper for tm.assert_*_equal to dispatch to the appropriate test function. Parameters ---------- left, right : Index, Series, DataFrame, ExtensionArray, or np.ndarray The two items to be compared. **kwargs All keyword arguments are passed through to the underlying assert method. """ __tracebackhide__ = True if isinstance(left, pd.Index): assert_index_equal(left, right, **kwargs) elif isinstance(left, pd.Series): assert_series_equal(left, right, **kwargs) elif isinstance(left, pd.DataFrame): assert_frame_equal(left, right, **kwargs) elif isinstance(left, IntervalArray): assert_interval_array_equal(left, right, **kwargs) elif isinstance(left, PeriodArray): assert_period_array_equal(left, right, **kwargs) elif isinstance(left, DatetimeArray): assert_datetime_array_equal(left, right, **kwargs) elif isinstance(left, TimedeltaArray): assert_timedelta_array_equal(left, right, **kwargs) elif isinstance(left, ExtensionArray): assert_extension_array_equal(left, right, **kwargs) elif isinstance(left, np.ndarray): assert_numpy_array_equal(left, right, **kwargs) elif isinstance(left, str): assert kwargs == {} assert left == right else: raise NotImplementedError(type(left)) def box_expected(expected, box_cls, transpose=True): """ Helper function to wrap the expected output of a test in a given box_class. Parameters ---------- expected : np.ndarray, Index, Series box_cls : {Index, Series, DataFrame} Returns ------- subclass of box_cls """ if box_cls is pd.Index: expected = pd.Index(expected) elif box_cls is pd.Series: expected = pd.Series(expected) elif box_cls is pd.DataFrame: expected = pd.Series(expected).to_frame() if transpose: # for vector operations, we we need a DataFrame to be a single-row, # not a single-column, in order to operate against non-DataFrame # vectors of the same length. expected = expected.T elif box_cls is PeriodArray: # the PeriodArray constructor is not as flexible as period_array expected = period_array(expected) elif box_cls is DatetimeArray: expected = DatetimeArray(expected) elif box_cls is TimedeltaArray: expected = TimedeltaArray(expected) elif box_cls is np.ndarray: expected = np.array(expected) elif box_cls is to_array: expected = to_array(expected) else: raise NotImplementedError(box_cls) return expected def to_array(obj): # temporary implementation until we get pd.array in place if is_period_dtype(obj): return period_array(obj) elif is_datetime64_dtype(obj) or is_datetime64tz_dtype(obj): return DatetimeArray._from_sequence(obj) elif is_timedelta64_dtype(obj): return TimedeltaArray._from_sequence(obj) else: return np.array(obj) # ----------------------------------------------------------------------------- # Sparse def assert_sp_array_equal( left, right, check_dtype=True, check_kind=True, check_fill_value=True, consolidate_block_indices=False, ): """ Check that the left and right SparseArray are equal. Parameters ---------- left : SparseArray right : SparseArray check_dtype : bool, default True Whether to check the data dtype is identical. check_kind : bool, default True Whether to just the kind of the sparse index for each column. check_fill_value : bool, default True Whether to check that left.fill_value matches right.fill_value consolidate_block_indices : bool, default False Whether to consolidate contiguous blocks for sparse arrays with a BlockIndex. Some operations, e.g. concat, will end up with block indices that could be consolidated. Setting this to true will create a new BlockIndex for that array, with consolidated block indices. """ _check_isinstance(left, right, pd.arrays.SparseArray) assert_numpy_array_equal(left.sp_values, right.sp_values, check_dtype=check_dtype) # SparseIndex comparison assert isinstance(left.sp_index, pd._libs.sparse.SparseIndex) assert isinstance(right.sp_index, pd._libs.sparse.SparseIndex) if not check_kind: left_index = left.sp_index.to_block_index() right_index = right.sp_index.to_block_index() else: left_index = left.sp_index right_index = right.sp_index if consolidate_block_indices and left.kind == "block": # we'll probably remove this hack... left_index = left_index.to_int_index().to_block_index() right_index = right_index.to_int_index().to_block_index() if not left_index.equals(right_index): raise_assert_detail( "SparseArray.index", "index are not equal", left_index, right_index ) else: # Just ensure a pass if check_fill_value: assert_attr_equal("fill_value", left, right) if check_dtype: assert_attr_equal("dtype", left, right) assert_numpy_array_equal(left.to_dense(), right.to_dense(), check_dtype=check_dtype) # ----------------------------------------------------------------------------- # Others def assert_contains_all(iterable, dic): for k in iterable: assert k in dic, f"Did not contain item: {repr(k)}" def assert_copy(iter1, iter2, **eql_kwargs): """ iter1, iter2: iterables that produce elements comparable with assert_almost_equal Checks that the elements are equal, but not the same object. (Does not check that items in sequences are also not the same object) """ for elem1, elem2 in zip(iter1, iter2): assert_almost_equal(elem1, elem2, **eql_kwargs) msg = ( f"Expected object {repr(type(elem1))} and object {repr(type(elem2))} to be " "different objects, but they were the same object." ) assert elem1 is not elem2, msg def getCols(k): return string.ascii_uppercase[:k] # make index def makeStringIndex(k=10, name=None): return Index(rands_array(nchars=10, size=k), name=name) def makeUnicodeIndex(k=10, name=None): return Index(randu_array(nchars=10, size=k), name=name) def makeCategoricalIndex(k=10, n=3, name=None, **kwargs): """ make a length k index or n categories """ x = rands_array(nchars=4, size=n) return CategoricalIndex( Categorical.from_codes(np.arange(k) % n, categories=x), name=name, **kwargs ) def makeIntervalIndex(k=10, name=None, **kwargs): """ make a length k IntervalIndex """ x = np.linspace(0, 100, num=(k + 1)) return IntervalIndex.from_breaks(x, name=name, **kwargs) def makeBoolIndex(k=10, name=None): if k == 1: return Index([True], name=name) elif k == 2: return Index([False, True], name=name) return Index([False, True] + [False] * (k - 2), name=name) def makeIntIndex(k=10, name=None): return Index(list(range(k)), name=name) def makeUIntIndex(k=10, name=None): return Index([2 ** 63 + i for i in range(k)], name=name) def makeRangeIndex(k=10, name=None, **kwargs): return RangeIndex(0, k, 1, name=name, **kwargs) def makeFloatIndex(k=10, name=None): values = sorted(np.random.random_sample(k)) - np.random.random_sample(1) return Index(values * (10 ** np.random.randint(0, 9)), name=name) def makeDateIndex(k=10, freq="B", name=None, **kwargs): dt = datetime(2000, 1, 1) dr = bdate_range(dt, periods=k, freq=freq, name=name) return DatetimeIndex(dr, name=name, **kwargs) def makeTimedeltaIndex(k=10, freq="D", name=None, **kwargs): return pd.timedelta_range(start="1 day", periods=k, freq=freq, name=name, **kwargs) def makePeriodIndex(k=10, name=None, **kwargs): dt = datetime(2000, 1, 1) dr = pd.period_range(start=dt, periods=k, freq="B", name=name, **kwargs) return dr def makeMultiIndex(k=10, names=None, **kwargs): return MultiIndex.from_product((("foo", "bar"), (1, 2)), names=names, **kwargs) _names = [ "Alice", "Bob", "Charlie", "Dan", "Edith", "Frank", "George", "Hannah", "Ingrid", "Jerry", "Kevin", "Laura", "Michael", "Norbert", "Oliver", "Patricia", "Quinn", "Ray", "Sarah", "Tim", "Ursula", "Victor", "Wendy", "Xavier", "Yvonne", "Zelda", ] def _make_timeseries(start="2000-01-01", end="2000-12-31", freq="1D", seed=None): """ Make a DataFrame with a DatetimeIndex Parameters ---------- start : str or Timestamp, default "2000-01-01" The start of the index. Passed to date_range with `freq`. end : str or Timestamp, default "2000-12-31" The end of the index. Passed to date_range with `freq`. freq : str or Freq The frequency to use for the DatetimeIndex seed : int, optional The random state seed. * name : object dtype with string names * id : int dtype with * x, y : float dtype Examples -------- >>> _make_timeseries() id name x y timestamp 2000-01-01 982 Frank 0.031261 0.986727 2000-01-02 1025 Edith -0.086358 -0.032920 2000-01-03 982 Edith 0.473177 0.298654 2000-01-04 1009 Sarah 0.534344 -0.750377 2000-01-05 963 Zelda -0.271573 0.054424 ... ... ... ... ... 2000-12-27 980 Ingrid -0.132333 -0.422195 2000-12-28 972 Frank -0.376007 -0.298687 2000-12-29 1009 Ursula -0.865047 -0.503133 2000-12-30 1000 Hannah -0.063757 -0.507336 2000-12-31 972 Tim -0.869120 0.531685 """ index = pd.date_range(start=start, end=end, freq=freq, name="timestamp") n = len(index) state = np.random.RandomState(seed) columns = { "name": state.choice(_names, size=n), "id": state.poisson(1000, size=n), "x": state.rand(n) * 2 - 1, "y": state.rand(n) * 2 - 1, } df = pd.DataFrame(columns, index=index, columns=sorted(columns)) if df.index[-1] == end: df = df.iloc[:-1] return df def all_index_generator(k=10): """ Generator which can be iterated over to get instances of all the various index classes. Parameters ---------- k: length of each of the index instances """ all_make_index_funcs = [ makeIntIndex, makeFloatIndex, makeStringIndex, makeUnicodeIndex, makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeBoolIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, ] for make_index_func in all_make_index_funcs: yield make_index_func(k=k) def index_subclass_makers_generator(): make_index_funcs = [ makeDateIndex, makePeriodIndex, makeTimedeltaIndex, makeRangeIndex, makeIntervalIndex, makeCategoricalIndex, makeMultiIndex, ] for make_index_func in make_index_funcs: yield make_index_func def all_timeseries_index_generator(k=10): """ Generator which can be iterated over to get instances of all the classes which represent time-series. Parameters ---------- k: length of each of the index instances """ make_index_funcs = [makeDateIndex, makePeriodIndex, makeTimedeltaIndex] for make_index_func in make_index_funcs: yield make_index_func(k=k) # make series def makeFloatSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeStringSeries(name=None): index = makeStringIndex(N) return Series(randn(N), index=index, name=name) def makeObjectSeries(name=None): data = makeStringIndex(N) data = Index(data, dtype=object) index = makeStringIndex(N) return Series(data, index=index, name=name) def getSeriesData(): index = makeStringIndex(N) return {c: Series(randn(N), index=index) for c in getCols(K)} def makeTimeSeries(nper=None, freq="B", name=None): if nper is None: nper = N return Series(randn(nper), index=makeDateIndex(nper, freq=freq), name=name) def makePeriodSeries(nper=None, name=None): if nper is None: nper = N return Series(randn(nper), index=makePeriodIndex(nper), name=name) def getTimeSeriesData(nper=None, freq="B"): return {c: makeTimeSeries(nper, freq) for c in getCols(K)} def getPeriodData(nper=None): return {c: makePeriodSeries(nper) for c in getCols(K)} # make frame def makeTimeDataFrame(nper=None, freq="B"): data = getTimeSeriesData(nper, freq) return DataFrame(data) def makeDataFrame(): data = getSeriesData() return DataFrame(data) def getMixedTypeDict(): index = Index(["a", "b", "c", "d", "e"]) data = { "A": [0.0, 1.0, 2.0, 3.0, 4.0], "B": [0.0, 1.0, 0.0, 1.0, 0.0], "C": ["foo1", "foo2", "foo3", "foo4", "foo5"], "D": bdate_range("1/1/2009", periods=5), } return index, data def makeMixedDataFrame(): return DataFrame(getMixedTypeDict()[1]) def makePeriodFrame(nper=None): data = getPeriodData(nper) return DataFrame(data) def makeCustomIndex( nentries, nlevels, prefix="#", names=False, ndupe_l=None, idx_type=None ): """ Create an index/multindex with given dimensions, levels, names, etc' nentries - number of entries in index nlevels - number of levels (> 1 produces multindex) prefix - a string prefix for labels names - (Optional), bool or list of strings. if True will use default names, if false will use no names, if a list is given, the name of each level in the index will be taken from the list. ndupe_l - (Optional), list of ints, the number of rows for which the label will repeated at the corresponding level, you can specify just the first few, the rest will use the default ndupe_l of 1. len(ndupe_l) <= nlevels. idx_type - "i"/"f"/"s"/"u"/"dt"/"p"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a datetime index. if unspecified, string labels will be generated. """ if ndupe_l is None: ndupe_l = [1] * nlevels assert is_sequence(ndupe_l) and len(ndupe_l) <= nlevels assert names is None or names is False or names is True or len(names) is nlevels assert idx_type is None or ( idx_type in ("i", "f", "s", "u", "dt", "p", "td") and nlevels == 1 ) if names is True: # build default names names = [prefix + str(i) for i in range(nlevels)] if names is False: # pass None to index constructor for no name names = None # make singleton case uniform if isinstance(names, str) and nlevels == 1: names = [names] # specific 1D index type requested? idx_func = dict( i=makeIntIndex, f=makeFloatIndex, s=makeStringIndex, u=makeUnicodeIndex, dt=makeDateIndex, td=makeTimedeltaIndex, p=makePeriodIndex, ).get(idx_type) if idx_func: idx = idx_func(nentries) # but we need to fill in the name if names: idx.name = names[0] return idx elif idx_type is not None: raise ValueError( f"{repr(idx_type)} is not a legal value for `idx_type`, " "use 'i'/'f'/'s'/'u'/'dt'/'p'/'td'." ) if len(ndupe_l) < nlevels: ndupe_l.extend([1] * (nlevels - len(ndupe_l))) assert len(ndupe_l) == nlevels assert all(x > 0 for x in ndupe_l) tuples = [] for i in range(nlevels): def keyfunc(x): import re numeric_tuple = re.sub(r"[^\d_]_?", "", x).split("_") return [int(num) for num in numeric_tuple] # build a list of lists to create the index from div_factor = nentries // ndupe_l[i] + 1 cnt = Counter() for j in range(div_factor): label = f"{prefix}_l{i}_g{j}" cnt[label] = ndupe_l[i] # cute Counter trick result = sorted(cnt.elements(), key=keyfunc)[:nentries] tuples.append(result) tuples = list(zip(*tuples)) # convert tuples to index if nentries == 1: # we have a single level of tuples, i.e. a regular Index index = Index(tuples[0], name=names[0]) elif nlevels == 1: name = None if names is None else names[0] index = Index((x[0] for x in tuples), name=name) else: index = MultiIndex.from_tuples(tuples, names=names) return index def makeCustomDataframe( nrows, ncols, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None, ): """ Create a DataFrame using supplied parameters. Parameters ---------- nrows, ncols - number of data rows/cols c_idx_names, idx_names - False/True/list of strings, yields No names , default names or uses the provided names for the levels of the corresponding index. You can provide a single string when c_idx_nlevels ==1. c_idx_nlevels - number of levels in columns index. > 1 will yield MultiIndex r_idx_nlevels - number of levels in rows index. > 1 will yield MultiIndex data_gen_f - a function f(row,col) which return the data value at that position, the default generator used yields values of the form "RxCy" based on position. c_ndupe_l, r_ndupe_l - list of integers, determines the number of duplicates for each label at a given level of the corresponding index. The default `None` value produces a multiplicity of 1 across all levels, i.e. a unique index. Will accept a partial list of length N < idx_nlevels, for just the first N levels. If ndupe doesn't divide nrows/ncol, the last label might have lower multiplicity. dtype - passed to the DataFrame constructor as is, in case you wish to have more control in conjunction with a custom `data_gen_f` r_idx_type, c_idx_type - "i"/"f"/"s"/"u"/"dt"/"td". If idx_type is not None, `idx_nlevels` must be 1. "i"/"f" creates an integer/float index, "s"/"u" creates a string/unicode index "dt" create a datetime index. "td" create a timedelta index. if unspecified, string labels will be generated. Examples -------- # 5 row, 3 columns, default names on both, single index on both axis >> makeCustomDataframe(5,3) # make the data a random int between 1 and 100 >> mkdf(5,3,data_gen_f=lambda r,c:randint(1,100)) # 2-level multiindex on rows with each label duplicated # twice on first level, default names on both axis, single # index on both axis >> a=makeCustomDataframe(5,3,r_idx_nlevels=2,r_ndupe_l=[2]) # DatetimeIndex on row, index with unicode labels on columns # no names on either axis >> a=makeCustomDataframe(5,3,c_idx_names=False,r_idx_names=False, r_idx_type="dt",c_idx_type="u") # 4-level multindex on rows with names provided, 2-level multindex # on columns with default labels and default names. >> a=makeCustomDataframe(5,3,r_idx_nlevels=4, r_idx_names=["FEE","FI","FO","FAM"], c_idx_nlevels=2) >> a=mkdf(5,3,r_idx_nlevels=2,c_idx_nlevels=4) """ assert c_idx_nlevels > 0 assert r_idx_nlevels > 0 assert r_idx_type is None or ( r_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and r_idx_nlevels == 1 ) assert c_idx_type is None or ( c_idx_type in ("i", "f", "s", "u", "dt", "p", "td") and c_idx_nlevels == 1 ) columns = makeCustomIndex( ncols, nlevels=c_idx_nlevels, prefix="C", names=c_idx_names, ndupe_l=c_ndupe_l, idx_type=c_idx_type, ) index = makeCustomIndex( nrows, nlevels=r_idx_nlevels, prefix="R", names=r_idx_names, ndupe_l=r_ndupe_l, idx_type=r_idx_type, ) # by default, generate data based on location if data_gen_f is None: data_gen_f = lambda r, c: f"R{r}C{c}" data = [[data_gen_f(r, c) for c in range(ncols)] for r in range(nrows)] return DataFrame(data, index, columns, dtype=dtype) def _create_missing_idx(nrows, ncols, density, random_state=None): if random_state is None: random_state = np.random else: random_state = np.random.RandomState(random_state) # below is cribbed from scipy.sparse size = int(np.round((1 - density) * nrows * ncols)) # generate a few more to ensure unique values min_rows = 5 fac = 1.02 extra_size = min(size + min_rows, fac * size) def _gen_unique_rand(rng, _extra_size): ind = rng.rand(int(_extra_size)) return np.unique(np.floor(ind * nrows * ncols))[:size] ind = _gen_unique_rand(random_state, extra_size) while ind.size < size: extra_size *= 1.05 ind = _gen_unique_rand(random_state, extra_size) j = np.floor(ind * 1.0 / nrows).astype(int) i = (ind - j * nrows).astype(int) return i.tolist(), j.tolist() def makeMissingCustomDataframe( nrows, ncols, density=0.9, random_state=None, c_idx_names=True, r_idx_names=True, c_idx_nlevels=1, r_idx_nlevels=1, data_gen_f=None, c_ndupe_l=None, r_ndupe_l=None, dtype=None, c_idx_type=None, r_idx_type=None, ): """ Parameters ---------- Density : float, optional Float in (0, 1) that gives the percentage of non-missing numbers in the DataFrame. random_state : {np.random.RandomState, int}, optional Random number generator or random seed. See makeCustomDataframe for descriptions of the rest of the parameters. """ df = makeCustomDataframe( nrows, ncols, c_idx_names=c_idx_names, r_idx_names=r_idx_names, c_idx_nlevels=c_idx_nlevels, r_idx_nlevels=r_idx_nlevels, data_gen_f=data_gen_f, c_ndupe_l=c_ndupe_l, r_ndupe_l=r_ndupe_l, dtype=dtype, c_idx_type=c_idx_type, r_idx_type=r_idx_type, ) i, j = _create_missing_idx(nrows, ncols, density, random_state) df.values[i, j] = np.nan return df def makeMissingDataframe(density=0.9, random_state=None): df = makeDataFrame() i, j = _create_missing_idx(*df.shape, density=density, random_state=random_state) df.values[i, j] = np.nan return df def optional_args(decorator): """ allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable, positional argument means that it is decorating a function, i.e. something like this:: @my_decorator def function(): pass Calls decorator with decorator(f, *args, **kwargs) """ @wraps(decorator) def wrapper(*args, **kwargs): def dec(f): return decorator(f, *args, **kwargs) is_decorating = not kwargs and len(args) == 1 and callable(args[0]) if is_decorating: f = args[0] args = [] return dec(f) else: return dec return wrapper # skip tests on exceptions with this message _network_error_messages = ( # 'urlopen error timed out', # 'timeout: timed out', # 'socket.timeout: timed out', "timed out", "Server Hangup", "HTTP Error 503: Service Unavailable", "502: Proxy Error", "HTTP Error 502: internal error", "HTTP Error 502", "HTTP Error 503", "HTTP Error 403", "HTTP Error 400", "Temporary failure in name resolution", "Name or service not known", "Connection refused", "certificate verify", ) # or this e.errno/e.reason.errno _network_errno_vals = ( 101, # Network is unreachable 111, # Connection refused 110, # Connection timed out 104, # Connection reset Error 54, # Connection reset by peer 60, # urllib.error.URLError: [Errno 60] Connection timed out ) # Both of the above shouldn't mask real issues such as 404's # or refused connections (changed DNS). # But some tests (test_data yahoo) contact incredibly flakey # servers. # and conditionally raise on exception types in _get_default_network_errors def _get_default_network_errors(): # Lazy import for http.client because it imports many things from the stdlib import http.client return (IOError, http.client.HTTPException, TimeoutError) def can_connect(url, error_classes=None): """ Try to connect to the given url. True if succeeds, False if IOError raised Parameters ---------- url : basestring The URL to try to connect to Returns ------- connectable : bool Return True if no IOError (unable to connect) or URLError (bad url) was raised """ if error_classes is None: error_classes = _get_default_network_errors() try: with urlopen(url): pass except error_classes: return False else: return True @optional_args def network( t, url="http://www.google.com", raise_on_error=_RAISE_NETWORK_ERROR_DEFAULT, check_before_test=False, error_classes=None, skip_errnos=_network_errno_vals, _skip_on_messages=_network_error_messages, ): """ Label a test as requiring network connection and, if an error is encountered, only raise if it does not find a network connection. In comparison to ``network``, this assumes an added contract to your test: you must assert that, under normal conditions, your test will ONLY fail if it does not have network connectivity. You can call this in 3 ways: as a standard decorator, with keyword arguments, or with a positional argument that is the url to check. Parameters ---------- t : callable The test requiring network connectivity. url : path The url to test via ``pandas.io.common.urlopen`` to check for connectivity. Defaults to 'http://www.google.com'. raise_on_error : bool If True, never catches errors. check_before_test : bool If True, checks connectivity before running the test case. error_classes : tuple or Exception error classes to ignore. If not in ``error_classes``, raises the error. defaults to IOError. Be careful about changing the error classes here. skip_errnos : iterable of int Any exception that has .errno or .reason.erno set to one of these values will be skipped with an appropriate message. _skip_on_messages: iterable of string any exception e for which one of the strings is a substring of str(e) will be skipped with an appropriate message. Intended to suppress errors where an errno isn't available. Notes ----- * ``raise_on_error`` supercedes ``check_before_test`` Returns ------- t : callable The decorated test ``t``, with checks for connectivity errors. Example ------- Tests decorated with @network will fail if it's possible to make a network connection to another URL (defaults to google.com):: >>> from pandas._testing import network >>> from pandas.io.common import urlopen >>> @network ... def test_network(): ... with urlopen("rabbit://bonanza.com"): ... pass Traceback ... URLError: <urlopen error unknown url type: rabit> You can specify alternative URLs:: >>> @network("http://www.yahoo.com") ... def test_something_with_yahoo(): ... raise IOError("Failure Message") >>> test_something_with_yahoo() Traceback (most recent call last): ... IOError: Failure Message If you set check_before_test, it will check the url first and not run the test on failure:: >>> @network("failing://url.blaher", check_before_test=True) ... def test_something(): ... print("I ran!") ... raise ValueError("Failure") >>> test_something() Traceback (most recent call last): ... Errors not related to networking will always be raised. """ from pytest import skip if error_classes is None: error_classes = _get_default_network_errors() t.network = True @wraps(t) def wrapper(*args, **kwargs): if check_before_test and not raise_on_error: if not can_connect(url, error_classes): skip() try: return t(*args, **kwargs) except Exception as err: errno = getattr(err, "errno", None) if not errno and hasattr(errno, "reason"): errno = getattr(err.reason, "errno", None) if errno in skip_errnos: skip(f"Skipping test due to known errno and error {err}") e_str = str(err) if any(m.lower() in e_str.lower() for m in _skip_on_messages): skip( f"Skipping test because exception message is known and error {err}" ) if not isinstance(err, error_classes): raise if raise_on_error or can_connect(url, error_classes): raise else: skip(f"Skipping test due to lack of connectivity and error {err}") return wrapper with_connectivity_check = network @contextmanager def assert_produces_warning( expected_warning=Warning, filter_level="always", clear=None, check_stacklevel=True, raise_on_extra_warnings=True, ): """ Context manager for running code expected to either raise a specific warning, or not raise any warnings. Verifies that the code raises the expected warning, and that it does not raise any other unexpected warnings. It is basically a wrapper around ``warnings.catch_warnings``. Parameters ---------- expected_warning : {Warning, False, None}, default Warning The type of Exception raised. ``exception.Warning`` is the base class for all warnings. To check that no warning is returned, specify ``False`` or ``None``. filter_level : str or None, default "always" Specifies whether warnings are ignored, displayed, or turned into errors. Valid values are: * "error" - turns matching warnings into exceptions * "ignore" - discard the warning * "always" - always emit a warning * "default" - print the warning the first time it is generated from each location * "module" - print the warning the first time it is generated from each module * "once" - print the warning the first time it is generated clear : str, default None If not ``None`` then remove any previously raised warnings from the ``__warningsregistry__`` to ensure that no warning messages are suppressed by this context manager. If ``None`` is specified, the ``__warningsregistry__`` keeps track of which warnings have been shown, and does not show them again. check_stacklevel : bool, default True If True, displays the line that called the function containing the warning to show were the function is called. Otherwise, the line that implements the function is displayed. raise_on_extra_warnings : bool, default True Whether extra warnings not of the type `expected_warning` should cause the test to fail. Examples -------- >>> import warnings >>> with assert_produces_warning(): ... warnings.warn(UserWarning()) ... >>> with assert_produces_warning(False): ... warnings.warn(RuntimeWarning()) ... Traceback (most recent call last): ... AssertionError: Caused unexpected warning(s): ['RuntimeWarning']. >>> with assert_produces_warning(UserWarning): ... warnings.warn(RuntimeWarning()) Traceback (most recent call last): ... AssertionError: Did not see expected warning of class 'UserWarning'. ..warn:: This is *not* thread-safe. """ __tracebackhide__ = True with warnings.catch_warnings(record=True) as w: if clear is not None: # make sure that we are clearing these warnings # if they have happened before # to guarantee that we will catch them if not is_list_like(clear): clear = [clear] for m in clear: try: m.__warningregistry__.clear() except AttributeError: # module may not have __warningregistry__ pass saw_warning = False warnings.simplefilter(filter_level) yield w extra_warnings = [] for actual_warning in w: if expected_warning and issubclass( actual_warning.category, expected_warning ): saw_warning = True if check_stacklevel and issubclass( actual_warning.category, (FutureWarning, DeprecationWarning) ): from inspect import getframeinfo, stack caller = getframeinfo(stack()[2][0]) msg = ( "Warning not set with correct stacklevel. " f"File where warning is raised: {actual_warning.filename} != " f"{caller.filename}. Warning message: {actual_warning.message}" ) assert actual_warning.filename == caller.filename, msg else: extra_warnings.append( ( actual_warning.category.__name__, actual_warning.message, actual_warning.filename, actual_warning.lineno, ) ) if expected_warning: msg = ( f"Did not see expected warning of class " f"{repr(expected_warning.__name__)}" ) assert saw_warning, msg if raise_on_extra_warnings and extra_warnings: raise AssertionError( f"Caused unexpected warning(s): {repr(extra_warnings)}" ) class RNGContext: """ Context manager to set the numpy random number generator speed. Returns to the original value upon exiting the context manager. Parameters ---------- seed : int Seed for numpy.random.seed Examples -------- with RNGContext(42): np.random.randn() """ def __init__(self, seed): self.seed = seed def __enter__(self): self.start_state = np.random.get_state() np.random.seed(self.seed) def __exit__(self, exc_type, exc_value, traceback): np.random.set_state(self.start_state) @contextmanager def with_csv_dialect(name, **kwargs): """ Context manager to temporarily register a CSV dialect for parsing CSV. Parameters ---------- name : str The name of the dialect. kwargs : mapping The parameters for the dialect. Raises ------ ValueError : the name of the dialect conflicts with a builtin one. See Also -------- csv : Python's CSV library. """ import csv _BUILTIN_DIALECTS = {"excel", "excel-tab", "unix"} if name in _BUILTIN_DIALECTS: raise ValueError("Cannot override builtin dialect.") csv.register_dialect(name, **kwargs) yield csv.unregister_dialect(name) @contextmanager def use_numexpr(use, min_elements=None): from pandas.core.computation import expressions as expr if min_elements is None: min_elements = expr._MIN_ELEMENTS olduse = expr._USE_NUMEXPR oldmin = expr._MIN_ELEMENTS expr.set_use_numexpr(use) expr._MIN_ELEMENTS = min_elements yield expr._MIN_ELEMENTS = oldmin expr.set_use_numexpr(olduse) def test_parallel(num_threads=2, kwargs_list=None): """ Decorator to run the same function multiple times in parallel. Parameters ---------- num_threads : int, optional The number of times the function is run in parallel. kwargs_list : list of dicts, optional The list of kwargs to update original function kwargs on different threads. Notes ----- This decorator does not pass the return value of the decorated function. Original from scikit-image: https://github.com/scikit-image/scikit-image/pull/1519 """ assert num_threads > 0 has_kwargs_list = kwargs_list is not None if has_kwargs_list: assert len(kwargs_list) == num_threads import threading def wrapper(func): @wraps(func) def inner(*args, **kwargs): if has_kwargs_list: update_kwargs = lambda i: dict(kwargs, **kwargs_list[i]) else: update_kwargs = lambda i: kwargs threads = [] for i in range(num_threads): updated_kwargs = update_kwargs(i) thread = threading.Thread(target=func, args=args, kwargs=updated_kwargs) threads.append(thread) for thread in threads: thread.start() for thread in threads: thread.join() return inner return wrapper class SubclassedSeries(Series): _metadata = ["testattr", "name"] @property def _constructor(self): return SubclassedSeries @property def _constructor_expanddim(self): return SubclassedDataFrame class SubclassedDataFrame(DataFrame): _metadata = ["testattr"] @property def _constructor(self): return SubclassedDataFrame @property def _constructor_sliced(self): return SubclassedSeries class SubclassedCategorical(Categorical): @property def _constructor(self): return SubclassedCategorical @contextmanager def set_timezone(tz: str): """ Context manager for temporarily setting a timezone. Parameters ---------- tz : str A string representing a valid timezone. Examples -------- >>> from datetime import datetime >>> from dateutil.tz import tzlocal >>> tzlocal().tzname(datetime.now()) 'IST' >>> with set_timezone('US/Eastern'): ... tzlocal().tzname(datetime.now()) ... 'EDT' """ import os import time def setTZ(tz): if tz is None: try: del os.environ["TZ"] except KeyError: pass else: os.environ["TZ"] = tz time.tzset() orig_tz = os.environ.get("TZ") setTZ(tz) try: yield finally: setTZ(orig_tz) def _make_skipna_wrapper(alternative, skipna_alternative=None): """ Create a function for calling on an array. Parameters ---------- alternative : function The function to be called on the array with no NaNs. Only used when 'skipna_alternative' is None. skipna_alternative : function The function to be called on the original array Returns ------- function """ if skipna_alternative: def skipna_wrapper(x): return skipna_alternative(x.values) else: def skipna_wrapper(x): nona = x.dropna() if len(nona) == 0: return np.nan return alternative(nona) return skipna_wrapper def convert_rows_list_to_csv_str(rows_list: List[str]): """ Convert list of CSV rows to single CSV-formatted string for current OS. This method is used for creating expected value of to_csv() method. Parameters ---------- rows_list : List[str] Each element represents the row of csv. Returns ------- str Expected output of to_csv() in current OS. """ sep = os.linesep expected = sep.join(rows_list) + sep return expected def external_error_raised( expected_exception: Type[Exception], ) -> Callable[[Type[Exception], None], None]: """ Helper function to mark pytest.raises that have an external error message. Parameters ---------- expected_exception : Exception Expected error to raise. Returns ------- Callable Regular `pytest.raises` function with `match` equal to `None`. """ import pytest return pytest.raises(expected_exception, match=None)
BugsInPy/BugsInPy/temp/projects/pandas/bug-57-fixed/pandas/pandas/_testing.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-57-buggy/pandas/pandas/_testing.py
pandas-bug-69
from typing import Hashable, List, Tuple, Union import numpy as np from pandas._libs.indexing import _NDFrameIndexerBase from pandas._libs.lib import item_from_zerodim from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender from pandas.core.dtypes.common import ( is_float, is_integer, is_iterator, is_list_like, is_numeric_dtype, is_scalar, is_sequence, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCDataFrame, ABCMultiIndex, ABCSeries from pandas.core.dtypes.missing import _infer_fill_value, isna import pandas.core.common as com from pandas.core.indexers import ( check_array_indexer, is_list_like_indexer, length_of_indexer, ) from pandas.core.indexes.api import Index from pandas.core.indexes.base import InvalidIndexError # "null slice" _NS = slice(None, None) # the public IndexSlicerMaker class _IndexSlice: """ Create an object to more easily perform multi-index slicing. See Also -------- MultiIndex.remove_unused_levels : New MultiIndex with no unused levels. Notes ----- See :ref:`Defined Levels <advanced.shown_levels>` for further info on slicing a MultiIndex. Examples -------- >>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']]) >>> columns = ['foo', 'bar'] >>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))), index=midx, columns=columns) Using the default slice command: >>> dfmi.loc[(slice(None), slice('B0', 'B1')), :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 Using the IndexSlice class for a more intuitive command: >>> idx = pd.IndexSlice >>> dfmi.loc[idx[:, 'B0':'B1'], :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 """ def __getitem__(self, arg): return arg IndexSlice = _IndexSlice() class IndexingError(Exception): pass class IndexingMixin: """Mixin for adding .loc/.iloc/.at/.iat to Datafames and Series. """ @property def iloc(self) -> "_iLocIndexer": """ Purely integer-location based indexing for selection by position. ``.iloc[]`` is primarily integer position based (from ``0`` to ``length-1`` of the axis), but may also be used with a boolean array. Allowed inputs are: - An integer, e.g. ``5``. - A list or array of integers, e.g. ``[4, 3, 0]``. - A slice object with ints, e.g. ``1:7``. - A boolean array. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value. ``.iloc`` will raise ``IndexError`` if a requested indexer is out-of-bounds, except *slice* indexers which allow out-of-bounds indexing (this conforms with python/numpy *slice* semantics). See more at :ref:`Selection by Position <indexing.integer>`. See Also -------- DataFrame.iat : Fast integer location scalar accessor. DataFrame.loc : Purely label-location based indexer for selection by label. Series.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 **Indexing just the rows** With a scalar integer. >>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 With a list of integers. >>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'> >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 With a `slice` object. >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 With a boolean mask the same length as the index. >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 With a callable, useful in method chains. The `x` passed to the ``lambda`` is the DataFrame being sliced. This selects the rows whose index label even. >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 **Indexing both axes** You can mix the indexer types for the index and columns. Use ``:`` to select the entire axis. With scalar integers. >>> df.iloc[0, 1] 2 With lists of integers. >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 With `slice` objects. >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 With a boolean array whose length matches the columns. >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 With a callable function that expects the Series or DataFrame. >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000 """ return _iLocIndexer("iloc", self) @property def loc(self) -> "_LocIndexer": """ Access a group of rows and columns by label(s) or a boolean array. ``.loc[]`` is primarily label based, but may also be used with a boolean array. Allowed inputs are: - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index, and **never** as an integer position along the index). - A list or array of labels, e.g. ``['a', 'b', 'c']``. - A slice object with labels, e.g. ``'a':'f'``. .. warning:: Note that contrary to usual python slices, **both** the start and the stop are included - A boolean array of the same length as the axis being sliced, e.g. ``[True, False, True]``. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above) See more at :ref:`Selection by Label <indexing.label>` Raises ------ KeyError If any items are not found. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.iloc : Access group of rows and columns by integer position(s). DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Series.loc : Access group of values using labels. Examples -------- **Getting values** >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 Single label. Note this returns the row as a Series. >>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64 List of labels. Note using ``[[]]`` returns a DataFrame. >>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 Single label for row and column >>> df.loc['cobra', 'shield'] 2 Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64 Boolean list with the same length as the row axis >>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series >>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series with column labels specified >>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 Callable that returns a boolean Series >>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8 **Setting values** Set value for all items matching the list of labels >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50 Set value for an entire row >>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50 Set value for an entire column >>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50 Set value for rows matching callable condition >>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0 **Getting values on a DataFrame with an index that has integer labels** Another example using integers for the index >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8 Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8 **Getting values with a MultiIndex** A number of examples using a DataFrame with a MultiIndex >>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Single label. Note this returns a DataFrame with a single index. >>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4 Single index tuple. Note this returns a Series. >>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64 Single label for row and column. Similar to passing in a tuple, this returns a Series. >>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64 Single tuple. Note using ``[[]]`` returns a DataFrame. >>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4 Single tuple for the index with a single label for the column >>> df.loc[('cobra', 'mark i'), 'shield'] 2 Slice from index tuple to single label >>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Slice from index tuple to index tuple >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 """ return _LocIndexer("loc", self) @property def at(self) -> "_AtIndexer": """ Access a single value for a row/column label pair. Similar to ``loc``, in that both provide label-based lookups. Use ``at`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ KeyError If 'label' does not exist in DataFrame. See Also -------- DataFrame.iat : Access a single value for a row/column pair by integer position. DataFrame.loc : Access a group of rows and columns by label(s). Series.at : Access a single value using a label. Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 Get value at specified row/column pair >>> df.at[4, 'B'] 2 Set value at specified row/column pair >>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10 Get value within a Series >>> df.loc[5].at['B'] 4 """ return _AtIndexer("at", self) @property def iat(self) -> "_iAtIndexer": """ Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ IndexError When integer position is out of bounds. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s). Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] 1 Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] 10 Get value within a series >>> df.loc[0].iat[1] 2 """ return _iAtIndexer("iat", self) class _NDFrameIndexer(_NDFrameIndexerBase): _valid_types: str axis = None def __call__(self, axis=None): # we need to return a copy of ourselves new_self = type(self)(self.name, self.obj) if axis is not None: axis = self.obj._get_axis_number(axis) new_self.axis = axis return new_self def _get_label(self, label, axis: int): if self.ndim == 1: # for perf reasons we want to try _xs first # as its basically direct indexing # but will fail when the index is not present # see GH5667 return self.obj._xs(label, axis=axis) elif isinstance(label, tuple) and isinstance(label[axis], slice): raise IndexingError("no slices here, handle elsewhere") return self.obj._xs(label, axis=axis) def _get_loc(self, key: int, axis: int): return self.obj._ixs(key, axis=axis) def _slice(self, obj, axis: int, kind=None): return self.obj._slice(obj, axis=axis, kind=kind) def _get_setitem_indexer(self, key): if self.axis is not None: return self._convert_tuple(key) ax = self.obj._get_axis(0) if isinstance(ax, ABCMultiIndex) and self.name != "iloc": try: return ax.get_loc(key) except (TypeError, KeyError, InvalidIndexError): # TypeError e.g. passed a bool pass if isinstance(key, tuple): try: return self._convert_tuple(key) except IndexingError: pass if isinstance(key, range): return list(key) try: return self._convert_to_indexer(key, axis=0) except TypeError as e: # invalid indexer type vs 'other' indexing errors if "cannot do" in str(e): raise raise IndexingError(key) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: key = com.apply_if_callable(key, self.obj) indexer = self._get_setitem_indexer(key) self._setitem_with_indexer(indexer, value) def _validate_key(self, key, axis: int): """ Ensure that key is valid for current indexer. Parameters ---------- key : scalar, slice or list-like Key requested. axis : int Dimension on which the indexing is being made. Raises ------ TypeError If the key (or some element of it) has wrong type. IndexError If the key (or some element of it) is out of bounds. KeyError If the key was not found. """ raise AbstractMethodError(self) def _has_valid_tuple(self, key: Tuple): """ Check the key for valid keys across my indexer. """ for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") try: self._validate_key(k, i) except ValueError: raise ValueError( "Location based indexing can only have " f"[{self._valid_types}] types" ) def _is_nested_tuple_indexer(self, tup: Tuple) -> bool: """ Returns ------- bool """ if any(isinstance(ax, ABCMultiIndex) for ax in self.obj.axes): return any(is_nested_tuple(tup, ax) for ax in self.obj.axes) return False def _convert_tuple(self, key): keyidx = [] if self.axis is not None: axis = self.obj._get_axis_number(self.axis) for i in range(self.ndim): if i == axis: keyidx.append(self._convert_to_indexer(key, axis=axis)) else: keyidx.append(slice(None)) else: for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") idx = self._convert_to_indexer(k, axis=i) keyidx.append(idx) return tuple(keyidx) def _convert_scalar_indexer(self, key, axis: int): # if we are accessing via lowered dim, use the last dim ax = self.obj._get_axis(min(axis, self.ndim - 1)) # a scalar return ax._convert_scalar_indexer(key, kind=self.name) def _convert_slice_indexer(self, key: slice, axis: int): # if we are accessing via lowered dim, use the last dim ax = self.obj._get_axis(min(axis, self.ndim - 1)) return ax._convert_slice_indexer(key, kind=self.name) def _has_valid_setitem_indexer(self, indexer) -> bool: return True def _has_valid_positional_setitem_indexer(self, indexer) -> bool: """ Validate that a positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally. Returns ------- bool """ if isinstance(indexer, dict): raise IndexError(f"{self.name} cannot enlarge its target object") else: if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError( f"{self.name} cannot enlarge its target object" ) elif isinstance(i, dict): raise IndexError(f"{self.name} cannot enlarge its target object") return True def _setitem_with_indexer(self, indexer, value): self._has_valid_setitem_indexer(indexer) # also has the side effect of consolidating in-place from pandas import Series info_axis = self.obj._info_axis_number # maybe partial set take_split_path = self.obj._is_mixed_type # if there is only one block/type, still have to take split path # unless the block is one-dimensional or it can hold the value if not take_split_path and self.obj._data.blocks: (blk,) = self.obj._data.blocks if 1 < blk.ndim: # in case of dict, keys are indices val = list(value.values()) if isinstance(value, dict) else value take_split_path = not blk._can_hold_element(val) # if we have any multi-indexes that have non-trivial slices # (not null slices) then we must take the split path, xref # GH 10360, GH 27841 if isinstance(indexer, tuple) and len(indexer) == len(self.obj.axes): for i, ax in zip(indexer, self.obj.axes): if isinstance(ax, ABCMultiIndex) and not ( is_integer(i) or com.is_null_slice(i) ): take_split_path = True break if isinstance(indexer, tuple): nindexer = [] for i, idx in enumerate(indexer): if isinstance(idx, dict): # reindex the axis to the new value # and set inplace key, _ = convert_missing_indexer(idx) # if this is the items axes, then take the main missing # path first # this correctly sets the dtype and avoids cache issues # essentially this separates out the block that is needed # to possibly be modified if self.ndim > 1 and i == self.obj._info_axis_number: # add the new item, and set the value # must have all defined axes if we have a scalar # or a list-like on the non-info axes if we have a # list-like len_non_info_axes = ( len(_ax) for _i, _ax in enumerate(self.obj.axes) if _i != i ) if any(not l for l in len_non_info_axes): if not is_list_like_indexer(value): raise ValueError( "cannot set a frame with no " "defined index and a scalar" ) self.obj[key] = value return self.obj # add a new item with the dtype setup self.obj[key] = _infer_fill_value(value) new_indexer = convert_from_missing_indexer_tuple( indexer, self.obj.axes ) self._setitem_with_indexer(new_indexer, value) return self.obj # reindex the axis # make sure to clear the cache because we are # just replacing the block manager here # so the object is the same index = self.obj._get_axis(i) labels = index.insert(len(index), key) self.obj._data = self.obj.reindex(labels, axis=i)._data self.obj._maybe_update_cacher(clear=True) self.obj._is_copy = None nindexer.append(labels.get_loc(key)) else: nindexer.append(idx) indexer = tuple(nindexer) else: indexer, missing = convert_missing_indexer(indexer) if missing: return self._setitem_with_indexer_missing(indexer, value) # set item_labels = self.obj._get_axis(info_axis) # align and set the values if take_split_path: # Above we only set take_split_path to True for 2D cases assert self.ndim == 2 assert info_axis == 1 if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) if isinstance(value, ABCSeries): value = self._align_series(indexer, value) info_idx = indexer[info_axis] if is_integer(info_idx): info_idx = [info_idx] labels = item_labels[info_idx] # if we have a partial multiindex, then need to adjust the plane # indexer here if len(labels) == 1 and isinstance( self.obj[labels[0]].axes[0], ABCMultiIndex ): item = labels[0] obj = self.obj[item] index = obj.index idx = indexer[:info_axis][0] plane_indexer = tuple([idx]) + indexer[info_axis + 1 :] lplane_indexer = length_of_indexer(plane_indexer[0], index) # require that we are setting the right number of values that # we are indexing if ( is_list_like_indexer(value) and np.iterable(value) and lplane_indexer != len(value) ): if len(obj[idx]) != len(value): raise ValueError( "cannot set using a multi-index " "selection indexer with a different " "length than the value" ) # make sure we have an ndarray value = getattr(value, "values", value).ravel() # we can directly set the series here # as we select a slice indexer on the mi idx = index._convert_slice_indexer(idx) obj._consolidate_inplace() obj = obj.copy() obj._data = obj._data.setitem(indexer=tuple([idx]), value=value) self.obj[item] = obj return # non-mi else: plane_indexer = indexer[:info_axis] + indexer[info_axis + 1 :] plane_axis = self.obj.axes[:info_axis][0] lplane_indexer = length_of_indexer(plane_indexer[0], plane_axis) def setter(item, v): s = self.obj[item] pi = plane_indexer[0] if lplane_indexer == 1 else plane_indexer # perform the equivalent of a setitem on the info axis # as we have a null slice or a slice with full bounds # which means essentially reassign to the columns of a # multi-dim object # GH6149 (null slice), GH10408 (full bounds) if isinstance(pi, tuple) and all( com.is_null_slice(idx) or com.is_full_slice(idx, len(self.obj)) for idx in pi ): s = v else: # set the item, possibly having a dtype change s._consolidate_inplace() s = s.copy() s._data = s._data.setitem(indexer=pi, value=v) s._maybe_update_cacher(clear=True) # reset the sliced object if unique self.obj[item] = s # we need an iterable, with a ndim of at least 1 # eg. don't pass through np.array(0) if is_list_like_indexer(value) and getattr(value, "ndim", 1) > 0: # we have an equal len Frame if isinstance(value, ABCDataFrame): sub_indexer = list(indexer) multiindex_indexer = isinstance(labels, ABCMultiIndex) for item in labels: if item in value: sub_indexer[info_axis] = item v = self._align_series( tuple(sub_indexer), value[item], multiindex_indexer ) else: v = np.nan setter(item, v) # we have an equal len ndarray/convertible to our labels # hasattr first, to avoid coercing to ndarray without reason. # But we may be relying on the ndarray coercion to check ndim. # Why not just convert to an ndarray earlier on if needed? elif np.ndim(value) == 2: # note that this coerces the dtype if we are mixed # GH 7551 value = np.array(value, dtype=object) if len(labels) != value.shape[1]: raise ValueError( "Must have equal len keys and value " "when setting with an ndarray" ) for i, item in enumerate(labels): # setting with a list, recoerces setter(item, value[:, i].tolist()) # we have an equal len list/ndarray elif _can_do_equal_len( labels, value, plane_indexer, lplane_indexer, self.obj ): setter(labels[0], value) # per label values else: if len(labels) != len(value): raise ValueError( "Must have equal len keys and value " "when setting with an iterable" ) for item, v in zip(labels, value): setter(item, v) else: # scalar for item in labels: setter(item, value) else: if isinstance(indexer, tuple): indexer = maybe_convert_ix(*indexer) # if we are setting on the info axis ONLY # set using those methods to avoid block-splitting # logic here if ( len(indexer) > info_axis and is_integer(indexer[info_axis]) and all( com.is_null_slice(idx) for i, idx in enumerate(indexer) if i != info_axis ) and item_labels.is_unique ): self.obj[item_labels[indexer[info_axis]]] = value return if isinstance(value, (ABCSeries, dict)): # TODO(EA): ExtensionBlock.setitem this causes issues with # setting for extensionarrays that store dicts. Need to decide # if it's worth supporting that. value = self._align_series(indexer, Series(value)) elif isinstance(value, ABCDataFrame): value = self._align_frame(indexer, value) # check for chained assignment self.obj._check_is_chained_assignment_possible() # actually do the set self.obj._consolidate_inplace() self.obj._data = self.obj._data.setitem(indexer=indexer, value=value) self.obj._maybe_update_cacher(clear=True) def _setitem_with_indexer_missing(self, indexer, value): """ Insert new row(s) or column(s) into the Series or DataFrame. """ from pandas import Series # reindex the axis to the new value # and set inplace if self.ndim == 1: index = self.obj.index new_index = index.insert(len(index), indexer) # we have a coerced indexer, e.g. a float # that matches in an Int64Index, so # we will not create a duplicate index, rather # index to that element # e.g. 0.0 -> 0 # GH#12246 if index.is_unique: new_indexer = index.get_indexer([new_index[-1]]) if (new_indexer != -1).any(): return self._setitem_with_indexer(new_indexer, value) # this preserves dtype of the value new_values = Series([value])._values if len(self.obj._values): # GH#22717 handle casting compatibility that np.concatenate # does incorrectly new_values = concat_compat([self.obj._values, new_values]) self.obj._data = self.obj._constructor( new_values, index=new_index, name=self.obj.name )._data self.obj._maybe_update_cacher(clear=True) return self.obj elif self.ndim == 2: if not len(self.obj.columns): # no columns and scalar raise ValueError("cannot set a frame with no defined columns") if isinstance(value, ABCSeries): # append a Series value = value.reindex(index=self.obj.columns, copy=True) value.name = indexer else: # a list-list if is_list_like_indexer(value): # must have conforming columns if len(value) != len(self.obj.columns): raise ValueError("cannot set a row with mismatched columns") value = Series(value, index=self.obj.columns, name=indexer) self.obj._data = self.obj.append(value)._data self.obj._maybe_update_cacher(clear=True) return self.obj def _align_series(self, indexer, ser: ABCSeries, multiindex_indexer: bool = False): """ Parameters ---------- indexer : tuple, slice, scalar Indexer used to get the locations that will be set to `ser`. ser : pd.Series Values to assign to the locations specified by `indexer`. multiindex_indexer : boolean, optional Defaults to False. Should be set to True if `indexer` was from a `pd.MultiIndex`, to avoid unnecessary broadcasting. Returns ------- `np.array` of `ser` broadcast to the appropriate shape for assignment to the locations selected by `indexer` """ if isinstance(indexer, (slice, np.ndarray, list, Index)): indexer = tuple([indexer]) if isinstance(indexer, tuple): # flatten np.ndarray indexers def ravel(i): return i.ravel() if isinstance(i, np.ndarray) else i indexer = tuple(map(ravel, indexer)) aligners = [not com.is_null_slice(idx) for idx in indexer] sum_aligners = sum(aligners) single_aligner = sum_aligners == 1 is_frame = self.ndim == 2 obj = self.obj # are we a single alignable value on a non-primary # dim (e.g. panel: 1,2, or frame: 0) ? # hence need to align to a single axis dimension # rather that find all valid dims # frame if is_frame: single_aligner = single_aligner and aligners[0] # we have a frame, with multiple indexers on both axes; and a # series, so need to broadcast (see GH5206) if sum_aligners == self.ndim and all(is_sequence(_) for _ in indexer): ser = ser.reindex(obj.axes[0][indexer[0]], copy=True)._values # single indexer if len(indexer) > 1 and not multiindex_indexer: len_indexer = len(indexer[1]) ser = np.tile(ser, len_indexer).reshape(len_indexer, -1).T return ser for i, idx in enumerate(indexer): ax = obj.axes[i] # multiple aligners (or null slices) if is_sequence(idx) or isinstance(idx, slice): if single_aligner and com.is_null_slice(idx): continue new_ix = ax[idx] if not is_list_like_indexer(new_ix): new_ix = Index([new_ix]) else: new_ix = Index(new_ix) if ser.index.equals(new_ix) or not len(new_ix): return ser._values.copy() return ser.reindex(new_ix)._values # 2 dims elif single_aligner: # reindex along index ax = self.obj.axes[1] if ser.index.equals(ax) or not len(ax): return ser._values.copy() return ser.reindex(ax)._values elif is_scalar(indexer): ax = self.obj._get_axis(1) if ser.index.equals(ax): return ser._values.copy() return ser.reindex(ax)._values raise ValueError("Incompatible indexer with Series") def _align_frame(self, indexer, df: ABCDataFrame): is_frame = self.ndim == 2 if isinstance(indexer, tuple): idx, cols = None, None sindexers = [] for i, ix in enumerate(indexer): ax = self.obj.axes[i] if is_sequence(ix) or isinstance(ix, slice): if isinstance(ix, np.ndarray): ix = ix.ravel() if idx is None: idx = ax[ix] elif cols is None: cols = ax[ix] else: break else: sindexers.append(i) if idx is not None and cols is not None: if df.index.equals(idx) and df.columns.equals(cols): val = df.copy()._values else: val = df.reindex(idx, columns=cols)._values return val elif (isinstance(indexer, slice) or is_list_like_indexer(indexer)) and is_frame: ax = self.obj.index[indexer] if df.index.equals(ax): val = df.copy()._values else: # we have a multi-index and are trying to align # with a particular, level GH3738 if ( isinstance(ax, ABCMultiIndex) and isinstance(df.index, ABCMultiIndex) and ax.nlevels != df.index.nlevels ): raise TypeError( "cannot align on a multi-index with out " "specifying the join levels" ) val = df.reindex(index=ax)._values return val raise ValueError("Incompatible indexer with DataFrame") def _getitem_tuple(self, tup: Tuple): try: return self._getitem_lowerdim(tup) except IndexingError: pass # no multi-index, so validate all of the indexers self._has_valid_tuple(tup) # ugly hack for GH #836 if self._multi_take_opportunity(tup): return self._multi_take(tup) # no shortcut needed retval = self.obj for i, key in enumerate(tup): if com.is_null_slice(key): continue retval = getattr(retval, self.name)._getitem_axis(key, axis=i) return retval def _multi_take_opportunity(self, tup: Tuple) -> bool: """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed, must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- bool Whether the current indexing, can be passed through `_multi_take`. """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True def _multi_take(self, tup: Tuple): """ Create the indexers for the passed tuple of keys, and executes the take operation. This allows the take operation to be executed all at once, rather than once for each dimension. Improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- values: same type as the object being indexed """ # GH 836 o = self.obj d = { axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, o._AXIS_ORDERS) } return o._reindex_with_indexers(d, copy=True, allow_dups=True) def _handle_lowerdim_multi_index_axis0(self, tup: Tuple): # we have an axis0 multi-index, handle or raise axis = self.axis or 0 try: # fast path for series or for tup devoid of slices return self._get_label(tup, axis=axis) except TypeError: # slices are unhashable pass except KeyError as ek: # raise KeyError if number of indexers match # else IndexingError will be raised if len(tup) <= self.obj.index.nlevels and len(tup) > self.ndim: raise ek return None def _getitem_lowerdim(self, tup: Tuple): # we can directly get the axis result since the axis is specified if self.axis is not None: axis = self.obj._get_axis_number(self.axis) return self._getitem_axis(tup, axis=axis) # we may have a nested tuples indexer here if self._is_nested_tuple_indexer(tup): return self._getitem_nested_tuple(tup) # we maybe be using a tuple to represent multiple dimensions here ax0 = self.obj._get_axis(0) # ...but iloc should handle the tuple as simple integer-location # instead of checking it as multiindex representation (GH 13797) if isinstance(ax0, ABCMultiIndex) and self.name != "iloc": result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result if len(tup) > self.ndim: raise IndexingError("Too many indexers. handle elsewhere") for i, key in enumerate(tup): if is_label_like(key) or isinstance(key, tuple): section = self._getitem_axis(key, axis=i) # we have yielded a scalar ? if not is_list_like_indexer(section): return section elif section.ndim == self.ndim: # we're in the middle of slicing through a MultiIndex # revise the key wrt to `section` by inserting an _NS new_key = tup[:i] + (_NS,) + tup[i + 1 :] else: new_key = tup[:i] + tup[i + 1 :] # unfortunately need an odious kludge here because of # DataFrame transposing convention if ( isinstance(section, ABCDataFrame) and i > 0 and len(new_key) == 2 ): a, b = new_key new_key = b, a if len(new_key) == 1: new_key = new_key[0] # Slices should return views, but calling iloc/loc with a null # slice returns a new object. if com.is_null_slice(new_key): return section # This is an elided recursive call to iloc/loc/etc' return getattr(section, self.name)[new_key] raise IndexingError("not applicable") def _getitem_nested_tuple(self, tup: Tuple): # we have a nested tuple so have at least 1 multi-index level # we should be able to match up the dimensionality here # we have too many indexers for our dim, but have at least 1 # multi-index dimension, try to see if we have something like # a tuple passed to a series with a multi-index if len(tup) > self.ndim: result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result # this is a series with a multi-index specified a tuple of # selectors axis = self.axis or 0 return self._getitem_axis(tup, axis=axis) # handle the multi-axis by taking sections and reducing # this is iterative obj = self.obj axis = 0 for i, key in enumerate(tup): if com.is_null_slice(key): axis += 1 continue current_ndim = obj.ndim obj = getattr(obj, self.name)._getitem_axis(key, axis=axis) axis += 1 # if we have a scalar, we are done if is_scalar(obj) or not hasattr(obj, "ndim"): break # has the dim of the obj changed? # GH 7199 if obj.ndim < current_ndim: axis -= 1 return obj def _get_listlike_indexer(self, key, axis: int, raise_missing: bool = False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Targeted labels. axis: int Dimension on which the indexing is being made. raise_missing: bool, default False Whether to raise a KeyError if some labels were not found. Will be removed in the future, and then this method will always behave as if ``raise_missing=True``. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique). values : array-like Indexer for the return object, -1 denotes keys not found. """ o = self.obj ax = o._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: indexer, keyarr = ax._convert_listlike_indexer(key, kind=self.name) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer(key, indexer, axis, raise_missing=raise_missing) return ax[indexer], indexer if ax.is_unique and not getattr(ax, "is_overlapping", False): indexer = ax.get_indexer_for(key) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, axis, raise_missing=raise_missing) return keyarr, indexer def _getitem_iterable(self, key, axis: int): """ Index current object with an an iterable key. The iterable key can be a boolean indexer or a collection of keys. Parameters ---------- key : iterable Targeted labels or boolean indexer. axis: int Dimension on which the indexing is being made. Raises ------ KeyError If no key was found. Will change in the future to raise if not all keys were found. IndexingError If the boolean indexer is unalignable with the object being indexed. Returns ------- scalar, DataFrame, or Series: indexed value(s). """ # caller is responsible for ensuring non-None axis self._validate_key(key, axis) labels = self.obj._get_axis(axis) if com.is_bool_indexer(key): # A boolean indexer key = check_bool_indexer(labels, key) (inds,) = key.nonzero() return self.obj._take_with_is_copy(inds, axis=axis) else: # A collection of keys keyarr, indexer = self._get_listlike_indexer(key, axis, raise_missing=False) return self.obj._reindex_with_indexers( {axis: [keyarr, indexer]}, copy=True, allow_dups=True ) def _validate_read_indexer( self, key, indexer, axis: int, raise_missing: bool = False ): """ Check that indexer can be used to return a result. e.g. at least one element was found, unless the list of keys was actually empty. Parameters ---------- key : list-like Targeted labels (only used to show correct error message). indexer: array-like of booleans Indices corresponding to the key, (with -1 indicating not found). axis: int Dimension on which the indexing is being made. raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. """ ax = self.obj._get_axis(axis) if len(key) == 0: return # Count missing values: missing = (indexer < 0).sum() if missing: if missing == len(indexer): axis_name = self.obj._get_axis_name(axis) raise KeyError(f"None of [{key}] are in the [{axis_name}]") # We (temporarily) allow for some missing keys with .loc, except in # some cases (e.g. setting) in which "raise_missing" will be False if not (self.name == "loc" and not raise_missing): not_found = list(set(key) - set(ax)) raise KeyError(f"{not_found} not in index") # we skip the warning on Categorical/Interval # as this check is actually done (check for # non-missing values), but a bit later in the # code, so we want to avoid warning & then # just raising if not (ax.is_categorical() or ax.is_interval()): raise KeyError( "Passing list-likes to .loc or [] with any missing labels " "is no longer supported, see " "https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" # noqa:E501 ) def _convert_to_indexer(self, key, axis: int): """ Convert indexing key into something we can use to do actual fancy indexing on a ndarray. Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ labels = self.obj._get_axis(axis) if isinstance(key, slice): return self._convert_slice_indexer(key, axis) # try to find out correct indexer, if not type correct raise try: key = self._convert_scalar_indexer(key, axis) except TypeError: # but we will allow setting pass # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(key) and not is_int_index if is_scalar(key) or isinstance(labels, ABCMultiIndex): # Otherwise get_loc will raise InvalidIndexError # if we are a label return me try: return labels.get_loc(key) except LookupError: if isinstance(key, tuple) and isinstance(labels, ABCMultiIndex): if len(key) == labels.nlevels: return {"key": key} raise except TypeError: pass except ValueError: if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition if self.name == "loc": # always valid return {"key": key} if key >= self.obj.shape[axis] and not isinstance(labels, ABCMultiIndex): # a positional raise ValueError("cannot set by positional indexing with enlargement") return key if is_nested_tuple(key, labels): return labels.get_locs(key) elif is_list_like_indexer(key): if com.is_bool_indexer(key): key = check_bool_indexer(labels, key) (inds,) = key.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: return self._get_listlike_indexer(key, axis, raise_missing=True)[1] else: try: return labels.get_loc(key) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(key): return {"key": key} raise class _LocationIndexer(_NDFrameIndexer): _takeable: bool = False def __getitem__(self, key): if type(key) is tuple: key = tuple(com.apply_if_callable(x, self.obj) for x in key) if self._is_scalar_access(key): try: return self.obj._get_value(*key, takeable=self._takeable) except (KeyError, IndexError, AttributeError): # AttributeError for IntervalTree get_value pass return self._getitem_tuple(key) else: # we by definition only have the 0th axis axis = self.axis or 0 maybe_callable = com.apply_if_callable(key, self.obj) return self._getitem_axis(maybe_callable, axis=axis) def _is_scalar_access(self, key: Tuple): raise NotImplementedError() def _getitem_axis(self, key, axis: int): raise NotImplementedError() def _getbool_axis(self, key, axis: int): # caller is responsible for ensuring non-None axis labels = self.obj._get_axis(axis) key = check_bool_indexer(labels, key) inds = key.nonzero()[0] return self.obj._take_with_is_copy(inds, axis=axis) @Appender(IndexingMixin.loc.__doc__) class _LocIndexer(_LocationIndexer): _valid_types = ( "labels (MUST BE IN THE INDEX), slices of labels (BOTH " "endpoints included! Can be slices of integers if the " "index is integers), listlike of labels, boolean" ) @Appender(_NDFrameIndexer._validate_key.__doc__) def _validate_key(self, key, axis: int): # valid for a collection of labels (we check their presence later) # slice of labels (where start-end in labels) # slice of integers (only if in the labels) # boolean if isinstance(key, slice): return if com.is_bool_indexer(key): return if not is_list_like_indexer(key): self._convert_scalar_indexer(key, axis) def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_scalar(k): return False ax = self.obj.axes[i] if isinstance(ax, ABCMultiIndex): return False if isinstance(k, str) and ax._supports_partial_string_indexing: # partial string indexing, df.loc['2000', 'A'] # should not be considered scalar return False if not ax.is_unique: return False return True def _get_partial_string_timestamp_match_key(self, key, labels): """ Translate any partial string timestamp matches in key, returning the new key. (GH 10331) """ if isinstance(labels, ABCMultiIndex): if ( isinstance(key, str) and labels.levels[0]._supports_partial_string_indexing ): # Convert key '2016-01-01' to # ('2016-01-01'[, slice(None, None, None)]+) key = tuple([key] + [slice(None)] * (len(labels.levels) - 1)) if isinstance(key, tuple): # Convert (..., '2016-01-01', ...) in tuple to # (..., slice('2016-01-01', '2016-01-01', None), ...) new_key = [] for i, component in enumerate(key): if ( isinstance(component, str) and labels.levels[i]._supports_partial_string_indexing ): new_key.append(slice(component, component, None)) else: new_key.append(component) key = tuple(new_key) return key def _getitem_axis(self, key, axis: int): key = item_from_zerodim(key) if is_iterator(key): key = list(key) labels = self.obj._get_axis(axis) key = self._get_partial_string_timestamp_match_key(key, labels) if isinstance(key, slice): self._validate_key(key, axis) return self._get_slice_axis(key, axis=axis) elif com.is_bool_indexer(key): return self._getbool_axis(key, axis=axis) elif is_list_like_indexer(key): # convert various list-like indexers # to a list of keys # we will use the *values* of the object # and NOT the index if its a PandasObject if isinstance(labels, ABCMultiIndex): if isinstance(key, (ABCSeries, np.ndarray)) and key.ndim <= 1: # Series, or 0,1 ndim ndarray # GH 14730 key = list(key) elif isinstance(key, ABCDataFrame): # GH 15438 raise NotImplementedError( "Indexing a MultiIndex with a " "DataFrame key is not " "implemented" ) elif hasattr(key, "ndim") and key.ndim > 1: raise NotImplementedError( "Indexing a MultiIndex with a " "multidimensional key is not " "implemented" ) if ( not isinstance(key, tuple) and len(key) and not isinstance(key[0], tuple) ): key = tuple([key]) # an iterable multi-selection if not (isinstance(key, tuple) and isinstance(labels, ABCMultiIndex)): if hasattr(key, "ndim") and key.ndim > 1: raise ValueError("Cannot index with multidimensional key") return self._getitem_iterable(key, axis=axis) # nested tuple slicing if is_nested_tuple(key, labels): locs = labels.get_locs(key) indexer = [slice(None)] * self.ndim indexer[axis] = locs return self.obj.iloc[tuple(indexer)] # fall thru to straight lookup self._validate_key(key, axis) return self._get_label(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): """ This is pretty simple as we just have to deal with labels. """ # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer( slice_obj.start, slice_obj.stop, slice_obj.step, kind=self.name ) if isinstance(indexer, slice): return self._slice(indexer, axis=axis, kind="iloc") else: # DatetimeIndex overrides Index.slice_indexer and may # return a DatetimeIndex instead of a slice object. return self.obj.take(indexer, axis=axis) @Appender(IndexingMixin.iloc.__doc__) class _iLocIndexer(_LocationIndexer): _valid_types = ( "integer, integer slice (START point is INCLUDED, END " "point is EXCLUDED), listlike of integers, boolean array" ) _takeable = True def _validate_key(self, key, axis: int): if com.is_bool_indexer(key): if hasattr(key, "index") and isinstance(key.index, Index): if key.index.inferred_type == "integer": raise NotImplementedError( "iLocation based boolean " "indexing on an integer type " "is not available" ) raise ValueError( "iLocation based boolean indexing cannot use " "an indexable as a mask" ) return if isinstance(key, slice): return elif is_integer(key): self._validate_integer(key, axis) elif isinstance(key, tuple): # a tuple should already have been caught by this point # so don't treat a tuple as a valid indexer raise IndexingError("Too many indexers") elif is_list_like_indexer(key): arr = np.array(key) len_axis = len(self.obj._get_axis(axis)) # check that the key has a numeric dtype if not is_numeric_dtype(arr.dtype): raise IndexError(f".iloc requires numeric indexers, got {arr}") # check that the key does not exceed the maximum size of the index if len(arr) and (arr.max() >= len_axis or arr.min() < -len_axis): raise IndexError("positional indexers are out-of-bounds") else: raise ValueError(f"Can only index by location with a [{self._valid_types}]") def _has_valid_setitem_indexer(self, indexer): self._has_valid_positional_setitem_indexer(indexer) def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_integer(k): return False ax = self.obj.axes[i] if not ax.is_unique: return False return True def _validate_integer(self, key: int, axis: int) -> None: """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position. axis : int Desired axis. Raises ------ IndexError If 'key' is not a valid position in axis 'axis'. """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds") def _getitem_tuple(self, tup: Tuple): self._has_valid_tuple(tup) try: return self._getitem_lowerdim(tup) except IndexingError: pass retval = self.obj axis = 0 for i, key in enumerate(tup): if com.is_null_slice(key): axis += 1 continue retval = getattr(retval, self.name)._getitem_axis(key, axis=axis) # if the dim was reduced, then pass a lower-dim the next time if retval.ndim < self.ndim: # TODO: this is never reached in tests; can we confirm that # it is impossible? axis -= 1 # try to get for the next axis axis += 1 return retval def _get_list_axis(self, key, axis: int): """ Return Series values by list or array of integers. Parameters ---------- key : list-like positional indexer axis : int Returns ------- Series object Notes ----- `axis` can only be zero. """ try: return self.obj._take_with_is_copy(key, axis=axis) except IndexError: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds") def _getitem_axis(self, key, axis: int): if isinstance(key, slice): return self._get_slice_axis(key, axis=axis) if isinstance(key, list): key = np.asarray(key) if com.is_bool_indexer(key): self._validate_key(key, axis) return self._getbool_axis(key, axis=axis) # a list of integers elif is_list_like_indexer(key): return self._get_list_axis(key, axis=axis) # a single integer else: key = item_from_zerodim(key) if not is_integer(key): raise TypeError("Cannot index by location index with a non-integer key") # validate the location self._validate_integer(key, axis) return self._get_loc(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) indexer = self._convert_slice_indexer(slice_obj, axis) return self._slice(indexer, axis=axis, kind="iloc") def _convert_to_indexer(self, key, axis: int): """ Much simpler as we only have to deal with our valid types. """ # make need to convert a float key if isinstance(key, slice): return self._convert_slice_indexer(key, axis) elif is_float(key): return self._convert_scalar_indexer(key, axis) try: self._validate_key(key, axis) return key except ValueError: raise ValueError(f"Can only index by location with a [{self._valid_types}]") class _ScalarAccessIndexer(_NDFrameIndexerBase): """ Access scalars quickly. """ def _convert_key(self, key, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if not isinstance(key, tuple): # we could have a convertible item here (e.g. Timestamp) if not is_list_like_indexer(key): key = tuple([key]) else: raise ValueError("Invalid call for scalar access (getting)!") key = self._convert_key(key) return self.obj._get_value(*key, takeable=self._takeable) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: # scalar callable may return tuple key = com.apply_if_callable(key, self.obj) if not isinstance(key, tuple): key = _tuplify(self.ndim, key) if len(key) != self.ndim: raise ValueError("Not enough indexers for scalar access (setting)!") key = list(self._convert_key(key, is_setter=True)) self.obj._set_value(*key, value=value, takeable=self._takeable) @Appender(IndexingMixin.at.__doc__) class _AtIndexer(_ScalarAccessIndexer): _takeable = False def _convert_key(self, key, is_setter: bool = False): """ Require they keys to be the same type as the index. (so we don't fallback) """ # allow arbitrary setting if is_setter: return list(key) for ax, i in zip(self.obj.axes, key): if ax.is_integer(): if not is_integer(i): raise ValueError( "At based indexing on an integer index " "can only have integer indexers" ) else: if is_integer(i) and not ax.holds_integer(): raise ValueError( "At based indexing on an non-integer " "index can only have non-integer " "indexers" ) return key @Appender(IndexingMixin.iat.__doc__) class _iAtIndexer(_ScalarAccessIndexer): _takeable = True def _convert_key(self, key, is_setter: bool = False): """ Require integer args. (and convert to label arguments) """ for a, i in zip(self.obj.axes, key): if not is_integer(i): raise ValueError("iAt based indexing can only have integer indexers") return key def _tuplify(ndim: int, loc: Hashable) -> Tuple[Union[Hashable, slice], ...]: """ Given an indexer for the first dimension, create an equivalent tuple for indexing over all dimensions. Parameters ---------- ndim : int loc : object Returns ------- tuple """ _tup: List[Union[Hashable, slice]] _tup = [slice(None, None) for _ in range(ndim)] _tup[0] = loc return tuple(_tup) def convert_to_index_sliceable(obj, key): """ If we are index sliceable, then return my slicer, otherwise return None. """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind="getitem") elif isinstance(key, str): # we are an actual column if key in obj._data.items: return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx._supports_partial_string_indexing: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None def check_bool_indexer(index: Index, key) -> np.ndarray: """ Check if key is a valid boolean indexer for an object with such index and perform reindexing or conversion if needed. This function assumes that is_bool_indexer(key) == True. Parameters ---------- index : Index Index of the object on which the indexing is done. key : list-like Boolean indexer to check. Returns ------- np.array Resulting key. Raises ------ IndexError If the key does not have the same length as index. IndexingError If the index of the key is unalignable to index. """ result = key if isinstance(key, ABCSeries) and not key.index.equals(index): result = result.reindex(index) mask = isna(result._values) if mask.any(): raise IndexingError( "Unalignable boolean Series provided as " "indexer (index of the boolean Series and of " "the indexed object do not match)." ) result = result.astype(bool)._values else: # key might be sparse / object-dtype bool, check_array_indexer needs bool array result = np.asarray(result, dtype=bool) result = check_array_indexer(index, result) return result def convert_missing_indexer(indexer): """ Reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer["key"] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False def convert_from_missing_indexer_tuple(indexer, axes): """ Create a filtered indexer that doesn't have any missing indexers. """ def get_indexer(_i, _idx): return axes[_i].get_loc(_idx["key"]) if isinstance(_idx, dict) else _idx return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer)) def maybe_convert_ix(*args): """ We likely want to take the cross-product. """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args def is_nested_tuple(tup, labels) -> bool: """ Returns ------- bool """ # check for a compatible nested tuple and multiindexes among the axes if not isinstance(tup, tuple): return False for i, k in enumerate(tup): if is_list_like(k) or isinstance(k, slice): return isinstance(labels, ABCMultiIndex) return False def is_label_like(key) -> bool: """ Returns ------- bool """ # select a label or row return not isinstance(key, slice) and not is_list_like_indexer(key) def need_slice(obj) -> bool: """ Returns ------- bool """ return ( obj.start is not None or obj.stop is not None or (obj.step is not None and obj.step != 1) ) def _non_reducing_slice(slice_): """ Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = (ABCSeries, np.ndarray, Index, list, str) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part) -> bool: """ Returns ------- bool True if slice does *not* reduce, False if `part` is a tuple. """ # true when slice does *not* reduce, False when part is a tuple, # i.e. MultiIndex slice return (isinstance(part, slice) or is_list_like(part)) and not isinstance( part, tuple ) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_) def _maybe_numeric_slice(df, slice_, include_bool=False): """ Want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_ def _can_do_equal_len(labels, value, plane_indexer, lplane_indexer, obj) -> bool: """ Returns ------- bool True if we have an equal len settable. """ if not len(labels) == 1 or not np.iterable(value) or is_scalar(plane_indexer[0]): return False item = labels[0] index = obj[item].index values_len = len(value) # equal len list/ndarray if len(index) == values_len: return True elif lplane_indexer == values_len: return True return False from typing import Hashable, List, Tuple, Union import numpy as np from pandas._libs.indexing import _NDFrameIndexerBase from pandas._libs.lib import item_from_zerodim from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender from pandas.core.dtypes.common import ( is_float, is_integer, is_iterator, is_list_like, is_numeric_dtype, is_scalar, is_sequence, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCDataFrame, ABCMultiIndex, ABCSeries from pandas.core.dtypes.missing import _infer_fill_value, isna import pandas.core.common as com from pandas.core.indexers import ( check_array_indexer, is_list_like_indexer, length_of_indexer, ) from pandas.core.indexes.api import Index from pandas.core.indexes.base import InvalidIndexError # "null slice" _NS = slice(None, None) # the public IndexSlicerMaker class _IndexSlice: """ Create an object to more easily perform multi-index slicing. See Also -------- MultiIndex.remove_unused_levels : New MultiIndex with no unused levels. Notes ----- See :ref:`Defined Levels <advanced.shown_levels>` for further info on slicing a MultiIndex. Examples -------- >>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']]) >>> columns = ['foo', 'bar'] >>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))), index=midx, columns=columns) Using the default slice command: >>> dfmi.loc[(slice(None), slice('B0', 'B1')), :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 Using the IndexSlice class for a more intuitive command: >>> idx = pd.IndexSlice >>> dfmi.loc[idx[:, 'B0':'B1'], :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 """ def __getitem__(self, arg): return arg IndexSlice = _IndexSlice() class IndexingError(Exception): pass class IndexingMixin: """Mixin for adding .loc/.iloc/.at/.iat to Datafames and Series. """ @property def iloc(self) -> "_iLocIndexer": """ Purely integer-location based indexing for selection by position. ``.iloc[]`` is primarily integer position based (from ``0`` to ``length-1`` of the axis), but may also be used with a boolean array. Allowed inputs are: - An integer, e.g. ``5``. - A list or array of integers, e.g. ``[4, 3, 0]``. - A slice object with ints, e.g. ``1:7``. - A boolean array. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value. ``.iloc`` will raise ``IndexError`` if a requested indexer is out-of-bounds, except *slice* indexers which allow out-of-bounds indexing (this conforms with python/numpy *slice* semantics). See more at :ref:`Selection by Position <indexing.integer>`. See Also -------- DataFrame.iat : Fast integer location scalar accessor. DataFrame.loc : Purely label-location based indexer for selection by label. Series.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 **Indexing just the rows** With a scalar integer. >>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 With a list of integers. >>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'> >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 With a `slice` object. >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 With a boolean mask the same length as the index. >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 With a callable, useful in method chains. The `x` passed to the ``lambda`` is the DataFrame being sliced. This selects the rows whose index label even. >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 **Indexing both axes** You can mix the indexer types for the index and columns. Use ``:`` to select the entire axis. With scalar integers. >>> df.iloc[0, 1] 2 With lists of integers. >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 With `slice` objects. >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 With a boolean array whose length matches the columns. >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 With a callable function that expects the Series or DataFrame. >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000 """ return _iLocIndexer("iloc", self) @property def loc(self) -> "_LocIndexer": """ Access a group of rows and columns by label(s) or a boolean array. ``.loc[]`` is primarily label based, but may also be used with a boolean array. Allowed inputs are: - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index, and **never** as an integer position along the index). - A list or array of labels, e.g. ``['a', 'b', 'c']``. - A slice object with labels, e.g. ``'a':'f'``. .. warning:: Note that contrary to usual python slices, **both** the start and the stop are included - A boolean array of the same length as the axis being sliced, e.g. ``[True, False, True]``. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above) See more at :ref:`Selection by Label <indexing.label>` Raises ------ KeyError If any items are not found. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.iloc : Access group of rows and columns by integer position(s). DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Series.loc : Access group of values using labels. Examples -------- **Getting values** >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 Single label. Note this returns the row as a Series. >>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64 List of labels. Note using ``[[]]`` returns a DataFrame. >>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 Single label for row and column >>> df.loc['cobra', 'shield'] 2 Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64 Boolean list with the same length as the row axis >>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series >>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series with column labels specified >>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 Callable that returns a boolean Series >>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8 **Setting values** Set value for all items matching the list of labels >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50 Set value for an entire row >>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50 Set value for an entire column >>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50 Set value for rows matching callable condition >>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0 **Getting values on a DataFrame with an index that has integer labels** Another example using integers for the index >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8 Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8 **Getting values with a MultiIndex** A number of examples using a DataFrame with a MultiIndex >>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Single label. Note this returns a DataFrame with a single index. >>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4 Single index tuple. Note this returns a Series. >>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64 Single label for row and column. Similar to passing in a tuple, this returns a Series. >>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64 Single tuple. Note using ``[[]]`` returns a DataFrame. >>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4 Single tuple for the index with a single label for the column >>> df.loc[('cobra', 'mark i'), 'shield'] 2 Slice from index tuple to single label >>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Slice from index tuple to index tuple >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 """ return _LocIndexer("loc", self) @property def at(self) -> "_AtIndexer": """ Access a single value for a row/column label pair. Similar to ``loc``, in that both provide label-based lookups. Use ``at`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ KeyError If 'label' does not exist in DataFrame. See Also -------- DataFrame.iat : Access a single value for a row/column pair by integer position. DataFrame.loc : Access a group of rows and columns by label(s). Series.at : Access a single value using a label. Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 Get value at specified row/column pair >>> df.at[4, 'B'] 2 Set value at specified row/column pair >>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10 Get value within a Series >>> df.loc[5].at['B'] 4 """ return _AtIndexer("at", self) @property def iat(self) -> "_iAtIndexer": """ Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ IndexError When integer position is out of bounds. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s). Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] 1 Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] 10 Get value within a series >>> df.loc[0].iat[1] 2 """ return _iAtIndexer("iat", self) class _NDFrameIndexer(_NDFrameIndexerBase): _valid_types: str axis = None def __call__(self, axis=None): # we need to return a copy of ourselves new_self = type(self)(self.name, self.obj) if axis is not None: axis = self.obj._get_axis_number(axis) new_self.axis = axis return new_self def _get_label(self, label, axis: int): if self.ndim == 1: # for perf reasons we want to try _xs first # as its basically direct indexing # but will fail when the index is not present # see GH5667 return self.obj._xs(label, axis=axis) elif isinstance(label, tuple) and isinstance(label[axis], slice): raise IndexingError("no slices here, handle elsewhere") return self.obj._xs(label, axis=axis) def _get_loc(self, key: int, axis: int): return self.obj._ixs(key, axis=axis) def _slice(self, obj, axis: int, kind=None): return self.obj._slice(obj, axis=axis, kind=kind) def _get_setitem_indexer(self, key): if self.axis is not None: return self._convert_tuple(key) ax = self.obj._get_axis(0) if isinstance(ax, ABCMultiIndex) and self.name != "iloc": try: return ax.get_loc(key) except (TypeError, KeyError, InvalidIndexError): # TypeError e.g. passed a bool pass if isinstance(key, tuple): try: return self._convert_tuple(key) except IndexingError: pass if isinstance(key, range): return list(key) try: return self._convert_to_indexer(key, axis=0) except TypeError as e: # invalid indexer type vs 'other' indexing errors if "cannot do" in str(e): raise raise IndexingError(key) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: key = com.apply_if_callable(key, self.obj) indexer = self._get_setitem_indexer(key) self._setitem_with_indexer(indexer, value) def _validate_key(self, key, axis: int): """ Ensure that key is valid for current indexer. Parameters ---------- key : scalar, slice or list-like Key requested. axis : int Dimension on which the indexing is being made. Raises ------ TypeError If the key (or some element of it) has wrong type. IndexError If the key (or some element of it) is out of bounds. KeyError If the key was not found. """ raise AbstractMethodError(self) def _has_valid_tuple(self, key: Tuple): """ Check the key for valid keys across my indexer. """ for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") try: self._validate_key(k, i) except ValueError: raise ValueError( "Location based indexing can only have " f"[{self._valid_types}] types" ) def _is_nested_tuple_indexer(self, tup: Tuple) -> bool: """ Returns ------- bool """ if any(isinstance(ax, ABCMultiIndex) for ax in self.obj.axes): return any(is_nested_tuple(tup, ax) for ax in self.obj.axes) return False def _convert_tuple(self, key): keyidx = [] if self.axis is not None: axis = self.obj._get_axis_number(self.axis) for i in range(self.ndim): if i == axis: keyidx.append(self._convert_to_indexer(key, axis=axis)) else: keyidx.append(slice(None)) else: for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") idx = self._convert_to_indexer(k, axis=i) keyidx.append(idx) return tuple(keyidx) def _convert_scalar_indexer(self, key, axis: int): # if we are accessing via lowered dim, use the last dim ax = self.obj._get_axis(min(axis, self.ndim - 1)) # a scalar return ax._convert_scalar_indexer(key, kind=self.name) def _convert_slice_indexer(self, key: slice, axis: int): # if we are accessing via lowered dim, use the last dim ax = self.obj._get_axis(min(axis, self.ndim - 1)) return ax._convert_slice_indexer(key, kind=self.name) def _has_valid_setitem_indexer(self, indexer) -> bool: return True def _has_valid_positional_setitem_indexer(self, indexer) -> bool: """ Validate that a positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally. Returns ------- bool """ if isinstance(indexer, dict): raise IndexError(f"{self.name} cannot enlarge its target object") else: if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError( f"{self.name} cannot enlarge its target object" ) elif isinstance(i, dict): raise IndexError(f"{self.name} cannot enlarge its target object") return True def _setitem_with_indexer(self, indexer, value): self._has_valid_setitem_indexer(indexer) # also has the side effect of consolidating in-place from pandas import Series info_axis = self.obj._info_axis_number # maybe partial set take_split_path = self.obj._is_mixed_type # if there is only one block/type, still have to take split path # unless the block is one-dimensional or it can hold the value if not take_split_path and self.obj._data.blocks: (blk,) = self.obj._data.blocks if 1 < blk.ndim: # in case of dict, keys are indices val = list(value.values()) if isinstance(value, dict) else value take_split_path = not blk._can_hold_element(val) # if we have any multi-indexes that have non-trivial slices # (not null slices) then we must take the split path, xref # GH 10360, GH 27841 if isinstance(indexer, tuple) and len(indexer) == len(self.obj.axes): for i, ax in zip(indexer, self.obj.axes): if isinstance(ax, ABCMultiIndex) and not ( is_integer(i) or com.is_null_slice(i) ): take_split_path = True break if isinstance(indexer, tuple): nindexer = [] for i, idx in enumerate(indexer): if isinstance(idx, dict): # reindex the axis to the new value # and set inplace key, _ = convert_missing_indexer(idx) # if this is the items axes, then take the main missing # path first # this correctly sets the dtype and avoids cache issues # essentially this separates out the block that is needed # to possibly be modified if self.ndim > 1 and i == self.obj._info_axis_number: # add the new item, and set the value # must have all defined axes if we have a scalar # or a list-like on the non-info axes if we have a # list-like len_non_info_axes = ( len(_ax) for _i, _ax in enumerate(self.obj.axes) if _i != i ) if any(not l for l in len_non_info_axes): if not is_list_like_indexer(value): raise ValueError( "cannot set a frame with no " "defined index and a scalar" ) self.obj[key] = value return self.obj # add a new item with the dtype setup self.obj[key] = _infer_fill_value(value) new_indexer = convert_from_missing_indexer_tuple( indexer, self.obj.axes ) self._setitem_with_indexer(new_indexer, value) return self.obj # reindex the axis # make sure to clear the cache because we are # just replacing the block manager here # so the object is the same index = self.obj._get_axis(i) labels = index.insert(len(index), key) self.obj._data = self.obj.reindex(labels, axis=i)._data self.obj._maybe_update_cacher(clear=True) self.obj._is_copy = None nindexer.append(labels.get_loc(key)) else: nindexer.append(idx) indexer = tuple(nindexer) else: indexer, missing = convert_missing_indexer(indexer) if missing: return self._setitem_with_indexer_missing(indexer, value) # set item_labels = self.obj._get_axis(info_axis) # align and set the values if take_split_path: # Above we only set take_split_path to True for 2D cases assert self.ndim == 2 assert info_axis == 1 if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) if isinstance(value, ABCSeries): value = self._align_series(indexer, value) info_idx = indexer[info_axis] if is_integer(info_idx): info_idx = [info_idx] labels = item_labels[info_idx] # if we have a partial multiindex, then need to adjust the plane # indexer here if len(labels) == 1 and isinstance( self.obj[labels[0]].axes[0], ABCMultiIndex ): item = labels[0] obj = self.obj[item] index = obj.index idx = indexer[:info_axis][0] plane_indexer = tuple([idx]) + indexer[info_axis + 1 :] lplane_indexer = length_of_indexer(plane_indexer[0], index) # require that we are setting the right number of values that # we are indexing if ( is_list_like_indexer(value) and np.iterable(value) and lplane_indexer != len(value) ): if len(obj[idx]) != len(value): raise ValueError( "cannot set using a multi-index " "selection indexer with a different " "length than the value" ) # make sure we have an ndarray value = getattr(value, "values", value).ravel() # we can directly set the series here # as we select a slice indexer on the mi idx = index._convert_slice_indexer(idx) obj._consolidate_inplace() obj = obj.copy() obj._data = obj._data.setitem(indexer=tuple([idx]), value=value) self.obj[item] = obj return # non-mi else: plane_indexer = indexer[:info_axis] + indexer[info_axis + 1 :] plane_axis = self.obj.axes[:info_axis][0] lplane_indexer = length_of_indexer(plane_indexer[0], plane_axis) def setter(item, v): s = self.obj[item] pi = plane_indexer[0] if lplane_indexer == 1 else plane_indexer # perform the equivalent of a setitem on the info axis # as we have a null slice or a slice with full bounds # which means essentially reassign to the columns of a # multi-dim object # GH6149 (null slice), GH10408 (full bounds) if isinstance(pi, tuple) and all( com.is_null_slice(idx) or com.is_full_slice(idx, len(self.obj)) for idx in pi ): s = v else: # set the item, possibly having a dtype change s._consolidate_inplace() s = s.copy() s._data = s._data.setitem(indexer=pi, value=v) s._maybe_update_cacher(clear=True) # reset the sliced object if unique self.obj[item] = s # we need an iterable, with a ndim of at least 1 # eg. don't pass through np.array(0) if is_list_like_indexer(value) and getattr(value, "ndim", 1) > 0: # we have an equal len Frame if isinstance(value, ABCDataFrame): sub_indexer = list(indexer) multiindex_indexer = isinstance(labels, ABCMultiIndex) for item in labels: if item in value: sub_indexer[info_axis] = item v = self._align_series( tuple(sub_indexer), value[item], multiindex_indexer ) else: v = np.nan setter(item, v) # we have an equal len ndarray/convertible to our labels # hasattr first, to avoid coercing to ndarray without reason. # But we may be relying on the ndarray coercion to check ndim. # Why not just convert to an ndarray earlier on if needed? elif np.ndim(value) == 2: # note that this coerces the dtype if we are mixed # GH 7551 value = np.array(value, dtype=object) if len(labels) != value.shape[1]: raise ValueError( "Must have equal len keys and value " "when setting with an ndarray" ) for i, item in enumerate(labels): # setting with a list, recoerces setter(item, value[:, i].tolist()) # we have an equal len list/ndarray elif _can_do_equal_len( labels, value, plane_indexer, lplane_indexer, self.obj ): setter(labels[0], value) # per label values else: if len(labels) != len(value): raise ValueError( "Must have equal len keys and value " "when setting with an iterable" ) for item, v in zip(labels, value): setter(item, v) else: # scalar for item in labels: setter(item, value) else: if isinstance(indexer, tuple): indexer = maybe_convert_ix(*indexer) # if we are setting on the info axis ONLY # set using those methods to avoid block-splitting # logic here if ( len(indexer) > info_axis and is_integer(indexer[info_axis]) and all( com.is_null_slice(idx) for i, idx in enumerate(indexer) if i != info_axis ) and item_labels.is_unique ): self.obj[item_labels[indexer[info_axis]]] = value return if isinstance(value, (ABCSeries, dict)): # TODO(EA): ExtensionBlock.setitem this causes issues with # setting for extensionarrays that store dicts. Need to decide # if it's worth supporting that. value = self._align_series(indexer, Series(value)) elif isinstance(value, ABCDataFrame): value = self._align_frame(indexer, value) # check for chained assignment self.obj._check_is_chained_assignment_possible() # actually do the set self.obj._consolidate_inplace() self.obj._data = self.obj._data.setitem(indexer=indexer, value=value) self.obj._maybe_update_cacher(clear=True) def _setitem_with_indexer_missing(self, indexer, value): """ Insert new row(s) or column(s) into the Series or DataFrame. """ from pandas import Series # reindex the axis to the new value # and set inplace if self.ndim == 1: index = self.obj.index new_index = index.insert(len(index), indexer) # we have a coerced indexer, e.g. a float # that matches in an Int64Index, so # we will not create a duplicate index, rather # index to that element # e.g. 0.0 -> 0 # GH#12246 if index.is_unique: new_indexer = index.get_indexer([new_index[-1]]) if (new_indexer != -1).any(): return self._setitem_with_indexer(new_indexer, value) # this preserves dtype of the value new_values = Series([value])._values if len(self.obj._values): # GH#22717 handle casting compatibility that np.concatenate # does incorrectly new_values = concat_compat([self.obj._values, new_values]) self.obj._data = self.obj._constructor( new_values, index=new_index, name=self.obj.name )._data self.obj._maybe_update_cacher(clear=True) return self.obj elif self.ndim == 2: if not len(self.obj.columns): # no columns and scalar raise ValueError("cannot set a frame with no defined columns") if isinstance(value, ABCSeries): # append a Series value = value.reindex(index=self.obj.columns, copy=True) value.name = indexer else: # a list-list if is_list_like_indexer(value): # must have conforming columns if len(value) != len(self.obj.columns): raise ValueError("cannot set a row with mismatched columns") value = Series(value, index=self.obj.columns, name=indexer) self.obj._data = self.obj.append(value)._data self.obj._maybe_update_cacher(clear=True) return self.obj def _align_series(self, indexer, ser: ABCSeries, multiindex_indexer: bool = False): """ Parameters ---------- indexer : tuple, slice, scalar Indexer used to get the locations that will be set to `ser`. ser : pd.Series Values to assign to the locations specified by `indexer`. multiindex_indexer : boolean, optional Defaults to False. Should be set to True if `indexer` was from a `pd.MultiIndex`, to avoid unnecessary broadcasting. Returns ------- `np.array` of `ser` broadcast to the appropriate shape for assignment to the locations selected by `indexer` """ if isinstance(indexer, (slice, np.ndarray, list, Index)): indexer = tuple([indexer]) if isinstance(indexer, tuple): # flatten np.ndarray indexers def ravel(i): return i.ravel() if isinstance(i, np.ndarray) else i indexer = tuple(map(ravel, indexer)) aligners = [not com.is_null_slice(idx) for idx in indexer] sum_aligners = sum(aligners) single_aligner = sum_aligners == 1 is_frame = self.ndim == 2 obj = self.obj # are we a single alignable value on a non-primary # dim (e.g. panel: 1,2, or frame: 0) ? # hence need to align to a single axis dimension # rather that find all valid dims # frame if is_frame: single_aligner = single_aligner and aligners[0] # we have a frame, with multiple indexers on both axes; and a # series, so need to broadcast (see GH5206) if sum_aligners == self.ndim and all(is_sequence(_) for _ in indexer): ser = ser.reindex(obj.axes[0][indexer[0]], copy=True)._values # single indexer if len(indexer) > 1 and not multiindex_indexer: len_indexer = len(indexer[1]) ser = np.tile(ser, len_indexer).reshape(len_indexer, -1).T return ser for i, idx in enumerate(indexer): ax = obj.axes[i] # multiple aligners (or null slices) if is_sequence(idx) or isinstance(idx, slice): if single_aligner and com.is_null_slice(idx): continue new_ix = ax[idx] if not is_list_like_indexer(new_ix): new_ix = Index([new_ix]) else: new_ix = Index(new_ix) if ser.index.equals(new_ix) or not len(new_ix): return ser._values.copy() return ser.reindex(new_ix)._values # 2 dims elif single_aligner: # reindex along index ax = self.obj.axes[1] if ser.index.equals(ax) or not len(ax): return ser._values.copy() return ser.reindex(ax)._values elif is_scalar(indexer): ax = self.obj._get_axis(1) if ser.index.equals(ax): return ser._values.copy() return ser.reindex(ax)._values raise ValueError("Incompatible indexer with Series") def _align_frame(self, indexer, df: ABCDataFrame): is_frame = self.ndim == 2 if isinstance(indexer, tuple): idx, cols = None, None sindexers = [] for i, ix in enumerate(indexer): ax = self.obj.axes[i] if is_sequence(ix) or isinstance(ix, slice): if isinstance(ix, np.ndarray): ix = ix.ravel() if idx is None: idx = ax[ix] elif cols is None: cols = ax[ix] else: break else: sindexers.append(i) if idx is not None and cols is not None: if df.index.equals(idx) and df.columns.equals(cols): val = df.copy()._values else: val = df.reindex(idx, columns=cols)._values return val elif (isinstance(indexer, slice) or is_list_like_indexer(indexer)) and is_frame: ax = self.obj.index[indexer] if df.index.equals(ax): val = df.copy()._values else: # we have a multi-index and are trying to align # with a particular, level GH3738 if ( isinstance(ax, ABCMultiIndex) and isinstance(df.index, ABCMultiIndex) and ax.nlevels != df.index.nlevels ): raise TypeError( "cannot align on a multi-index with out " "specifying the join levels" ) val = df.reindex(index=ax)._values return val raise ValueError("Incompatible indexer with DataFrame") def _getitem_tuple(self, tup: Tuple): try: return self._getitem_lowerdim(tup) except IndexingError: pass # no multi-index, so validate all of the indexers self._has_valid_tuple(tup) # ugly hack for GH #836 if self._multi_take_opportunity(tup): return self._multi_take(tup) # no shortcut needed retval = self.obj for i, key in enumerate(tup): if com.is_null_slice(key): continue retval = getattr(retval, self.name)._getitem_axis(key, axis=i) return retval def _multi_take_opportunity(self, tup: Tuple) -> bool: """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed, must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- bool Whether the current indexing, can be passed through `_multi_take`. """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True def _multi_take(self, tup: Tuple): """ Create the indexers for the passed tuple of keys, and executes the take operation. This allows the take operation to be executed all at once, rather than once for each dimension. Improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- values: same type as the object being indexed """ # GH 836 o = self.obj d = { axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, o._AXIS_ORDERS) } return o._reindex_with_indexers(d, copy=True, allow_dups=True) def _handle_lowerdim_multi_index_axis0(self, tup: Tuple): # we have an axis0 multi-index, handle or raise axis = self.axis or 0 try: # fast path for series or for tup devoid of slices return self._get_label(tup, axis=axis) except TypeError: # slices are unhashable pass except KeyError as ek: # raise KeyError if number of indexers match # else IndexingError will be raised if len(tup) <= self.obj.index.nlevels and len(tup) > self.ndim: raise ek return None def _getitem_lowerdim(self, tup: Tuple): # we can directly get the axis result since the axis is specified if self.axis is not None: axis = self.obj._get_axis_number(self.axis) return self._getitem_axis(tup, axis=axis) # we may have a nested tuples indexer here if self._is_nested_tuple_indexer(tup): return self._getitem_nested_tuple(tup) # we maybe be using a tuple to represent multiple dimensions here ax0 = self.obj._get_axis(0) # ...but iloc should handle the tuple as simple integer-location # instead of checking it as multiindex representation (GH 13797) if isinstance(ax0, ABCMultiIndex) and self.name != "iloc": result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result if len(tup) > self.ndim: raise IndexingError("Too many indexers. handle elsewhere") for i, key in enumerate(tup): if is_label_like(key) or isinstance(key, tuple): section = self._getitem_axis(key, axis=i) # we have yielded a scalar ? if not is_list_like_indexer(section): return section elif section.ndim == self.ndim: # we're in the middle of slicing through a MultiIndex # revise the key wrt to `section` by inserting an _NS new_key = tup[:i] + (_NS,) + tup[i + 1 :] else: new_key = tup[:i] + tup[i + 1 :] # unfortunately need an odious kludge here because of # DataFrame transposing convention if ( isinstance(section, ABCDataFrame) and i > 0 and len(new_key) == 2 ): a, b = new_key new_key = b, a if len(new_key) == 1: new_key = new_key[0] # Slices should return views, but calling iloc/loc with a null # slice returns a new object. if com.is_null_slice(new_key): return section # This is an elided recursive call to iloc/loc/etc' return getattr(section, self.name)[new_key] raise IndexingError("not applicable") def _getitem_nested_tuple(self, tup: Tuple): # we have a nested tuple so have at least 1 multi-index level # we should be able to match up the dimensionality here # we have too many indexers for our dim, but have at least 1 # multi-index dimension, try to see if we have something like # a tuple passed to a series with a multi-index if len(tup) > self.ndim: result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result # this is a series with a multi-index specified a tuple of # selectors axis = self.axis or 0 return self._getitem_axis(tup, axis=axis) # handle the multi-axis by taking sections and reducing # this is iterative obj = self.obj axis = 0 for i, key in enumerate(tup): if com.is_null_slice(key): axis += 1 continue current_ndim = obj.ndim obj = getattr(obj, self.name)._getitem_axis(key, axis=axis) axis += 1 # if we have a scalar, we are done if is_scalar(obj) or not hasattr(obj, "ndim"): break # has the dim of the obj changed? # GH 7199 if obj.ndim < current_ndim: axis -= 1 return obj def _get_listlike_indexer(self, key, axis: int, raise_missing: bool = False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Targeted labels. axis: int Dimension on which the indexing is being made. raise_missing: bool, default False Whether to raise a KeyError if some labels were not found. Will be removed in the future, and then this method will always behave as if ``raise_missing=True``. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique). values : array-like Indexer for the return object, -1 denotes keys not found. """ o = self.obj ax = o._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: indexer, keyarr = ax._convert_listlike_indexer(key, kind=self.name) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer(key, indexer, axis, raise_missing=raise_missing) return ax[indexer], indexer if ax.is_unique and not getattr(ax, "is_overlapping", False): indexer = ax.get_indexer_for(key) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, axis, raise_missing=raise_missing) return keyarr, indexer def _getitem_iterable(self, key, axis: int): """ Index current object with an an iterable key. The iterable key can be a boolean indexer or a collection of keys. Parameters ---------- key : iterable Targeted labels or boolean indexer. axis: int Dimension on which the indexing is being made. Raises ------ KeyError If no key was found. Will change in the future to raise if not all keys were found. IndexingError If the boolean indexer is unalignable with the object being indexed. Returns ------- scalar, DataFrame, or Series: indexed value(s). """ # caller is responsible for ensuring non-None axis self._validate_key(key, axis) labels = self.obj._get_axis(axis) if com.is_bool_indexer(key): # A boolean indexer key = check_bool_indexer(labels, key) (inds,) = key.nonzero() return self.obj._take_with_is_copy(inds, axis=axis) else: # A collection of keys keyarr, indexer = self._get_listlike_indexer(key, axis, raise_missing=False) return self.obj._reindex_with_indexers( {axis: [keyarr, indexer]}, copy=True, allow_dups=True ) def _validate_read_indexer( self, key, indexer, axis: int, raise_missing: bool = False ): """ Check that indexer can be used to return a result. e.g. at least one element was found, unless the list of keys was actually empty. Parameters ---------- key : list-like Targeted labels (only used to show correct error message). indexer: array-like of booleans Indices corresponding to the key, (with -1 indicating not found). axis: int Dimension on which the indexing is being made. raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. """ ax = self.obj._get_axis(axis) if len(key) == 0: return # Count missing values: missing = (indexer < 0).sum() if missing: if missing == len(indexer): axis_name = self.obj._get_axis_name(axis) raise KeyError(f"None of [{key}] are in the [{axis_name}]") # We (temporarily) allow for some missing keys with .loc, except in # some cases (e.g. setting) in which "raise_missing" will be False if not (self.name == "loc" and not raise_missing): not_found = list(set(key) - set(ax)) raise KeyError(f"{not_found} not in index") # we skip the warning on Categorical/Interval # as this check is actually done (check for # non-missing values), but a bit later in the # code, so we want to avoid warning & then # just raising if not (ax.is_categorical() or ax.is_interval()): raise KeyError( "Passing list-likes to .loc or [] with any missing labels " "is no longer supported, see " "https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" # noqa:E501 ) def _convert_to_indexer(self, key, axis: int): """ Convert indexing key into something we can use to do actual fancy indexing on a ndarray. Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ labels = self.obj._get_axis(axis) if isinstance(key, slice): return self._convert_slice_indexer(key, axis) # try to find out correct indexer, if not type correct raise try: key = self._convert_scalar_indexer(key, axis) except TypeError: # but we will allow setting pass # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(key) and not is_int_index if is_scalar(key) or isinstance(labels, ABCMultiIndex): # Otherwise get_loc will raise InvalidIndexError # if we are a label return me try: return labels.get_loc(key) except LookupError: if isinstance(key, tuple) and isinstance(labels, ABCMultiIndex): if len(key) == labels.nlevels: return {"key": key} raise except TypeError: pass except ValueError: if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition if self.name == "loc": # always valid return {"key": key} if key >= self.obj.shape[axis] and not isinstance(labels, ABCMultiIndex): # a positional raise ValueError("cannot set by positional indexing with enlargement") return key if is_nested_tuple(key, labels): return labels.get_locs(key) elif is_list_like_indexer(key): if com.is_bool_indexer(key): key = check_bool_indexer(labels, key) (inds,) = key.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: return self._get_listlike_indexer(key, axis, raise_missing=True)[1] else: try: return labels.get_loc(key) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(key): return {"key": key} raise class _LocationIndexer(_NDFrameIndexer): _takeable: bool = False def __getitem__(self, key): if type(key) is tuple: key = tuple(com.apply_if_callable(x, self.obj) for x in key) if self._is_scalar_access(key): try: return self.obj._get_value(*key, takeable=self._takeable) except (KeyError, IndexError, AttributeError): # AttributeError for IntervalTree get_value pass return self._getitem_tuple(key) else: # we by definition only have the 0th axis axis = self.axis or 0 maybe_callable = com.apply_if_callable(key, self.obj) return self._getitem_axis(maybe_callable, axis=axis) def _is_scalar_access(self, key: Tuple): raise NotImplementedError() def _getitem_axis(self, key, axis: int): raise NotImplementedError() def _getbool_axis(self, key, axis: int): # caller is responsible for ensuring non-None axis labels = self.obj._get_axis(axis) key = check_bool_indexer(labels, key) inds = key.nonzero()[0] return self.obj._take_with_is_copy(inds, axis=axis) @Appender(IndexingMixin.loc.__doc__) class _LocIndexer(_LocationIndexer): _valid_types = ( "labels (MUST BE IN THE INDEX), slices of labels (BOTH " "endpoints included! Can be slices of integers if the " "index is integers), listlike of labels, boolean" ) @Appender(_NDFrameIndexer._validate_key.__doc__) def _validate_key(self, key, axis: int): # valid for a collection of labels (we check their presence later) # slice of labels (where start-end in labels) # slice of integers (only if in the labels) # boolean if isinstance(key, slice): return if com.is_bool_indexer(key): return if not is_list_like_indexer(key): self._convert_scalar_indexer(key, axis) def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_scalar(k): return False ax = self.obj.axes[i] if isinstance(ax, ABCMultiIndex): return False if isinstance(k, str) and ax._supports_partial_string_indexing: # partial string indexing, df.loc['2000', 'A'] # should not be considered scalar return False if not ax.is_unique: return False return True def _get_partial_string_timestamp_match_key(self, key, labels): """ Translate any partial string timestamp matches in key, returning the new key. (GH 10331) """ if isinstance(labels, ABCMultiIndex): if ( isinstance(key, str) and labels.levels[0]._supports_partial_string_indexing ): # Convert key '2016-01-01' to # ('2016-01-01'[, slice(None, None, None)]+) key = tuple([key] + [slice(None)] * (len(labels.levels) - 1)) if isinstance(key, tuple): # Convert (..., '2016-01-01', ...) in tuple to # (..., slice('2016-01-01', '2016-01-01', None), ...) new_key = [] for i, component in enumerate(key): if ( isinstance(component, str) and labels.levels[i]._supports_partial_string_indexing ): new_key.append(slice(component, component, None)) else: new_key.append(component) key = tuple(new_key) return key def _getitem_axis(self, key, axis: int): key = item_from_zerodim(key) if is_iterator(key): key = list(key) labels = self.obj._get_axis(axis) key = self._get_partial_string_timestamp_match_key(key, labels) if isinstance(key, slice): self._validate_key(key, axis) return self._get_slice_axis(key, axis=axis) elif com.is_bool_indexer(key): return self._getbool_axis(key, axis=axis) elif is_list_like_indexer(key): # convert various list-like indexers # to a list of keys # we will use the *values* of the object # and NOT the index if its a PandasObject if isinstance(labels, ABCMultiIndex): if isinstance(key, (ABCSeries, np.ndarray)) and key.ndim <= 1: # Series, or 0,1 ndim ndarray # GH 14730 key = list(key) elif isinstance(key, ABCDataFrame): # GH 15438 raise NotImplementedError( "Indexing a MultiIndex with a " "DataFrame key is not " "implemented" ) elif hasattr(key, "ndim") and key.ndim > 1: raise NotImplementedError( "Indexing a MultiIndex with a " "multidimensional key is not " "implemented" ) if ( not isinstance(key, tuple) and len(key) and not isinstance(key[0], tuple) ): key = tuple([key]) # an iterable multi-selection if not (isinstance(key, tuple) and isinstance(labels, ABCMultiIndex)): if hasattr(key, "ndim") and key.ndim > 1: raise ValueError("Cannot index with multidimensional key") return self._getitem_iterable(key, axis=axis) # nested tuple slicing if is_nested_tuple(key, labels): locs = labels.get_locs(key) indexer = [slice(None)] * self.ndim indexer[axis] = locs return self.obj.iloc[tuple(indexer)] # fall thru to straight lookup self._validate_key(key, axis) return self._get_label(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): """ This is pretty simple as we just have to deal with labels. """ # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer( slice_obj.start, slice_obj.stop, slice_obj.step, kind=self.name ) if isinstance(indexer, slice): return self._slice(indexer, axis=axis, kind="iloc") else: # DatetimeIndex overrides Index.slice_indexer and may # return a DatetimeIndex instead of a slice object. return self.obj.take(indexer, axis=axis) @Appender(IndexingMixin.iloc.__doc__) class _iLocIndexer(_LocationIndexer): _valid_types = ( "integer, integer slice (START point is INCLUDED, END " "point is EXCLUDED), listlike of integers, boolean array" ) _takeable = True def _validate_key(self, key, axis: int): if com.is_bool_indexer(key): if hasattr(key, "index") and isinstance(key.index, Index): if key.index.inferred_type == "integer": raise NotImplementedError( "iLocation based boolean " "indexing on an integer type " "is not available" ) raise ValueError( "iLocation based boolean indexing cannot use " "an indexable as a mask" ) return if isinstance(key, slice): return elif is_integer(key): self._validate_integer(key, axis) elif isinstance(key, tuple): # a tuple should already have been caught by this point # so don't treat a tuple as a valid indexer raise IndexingError("Too many indexers") elif is_list_like_indexer(key): arr = np.array(key) len_axis = len(self.obj._get_axis(axis)) # check that the key has a numeric dtype if not is_numeric_dtype(arr.dtype): raise IndexError(f".iloc requires numeric indexers, got {arr}") # check that the key does not exceed the maximum size of the index if len(arr) and (arr.max() >= len_axis or arr.min() < -len_axis): raise IndexError("positional indexers are out-of-bounds") else: raise ValueError(f"Can only index by location with a [{self._valid_types}]") def _has_valid_setitem_indexer(self, indexer): self._has_valid_positional_setitem_indexer(indexer) def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_integer(k): return False ax = self.obj.axes[i] if not ax.is_unique: return False return True def _validate_integer(self, key: int, axis: int) -> None: """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position. axis : int Desired axis. Raises ------ IndexError If 'key' is not a valid position in axis 'axis'. """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds") def _getitem_tuple(self, tup: Tuple): self._has_valid_tuple(tup) try: return self._getitem_lowerdim(tup) except IndexingError: pass retval = self.obj axis = 0 for i, key in enumerate(tup): if com.is_null_slice(key): axis += 1 continue retval = getattr(retval, self.name)._getitem_axis(key, axis=axis) # if the dim was reduced, then pass a lower-dim the next time if retval.ndim < self.ndim: # TODO: this is never reached in tests; can we confirm that # it is impossible? axis -= 1 # try to get for the next axis axis += 1 return retval def _get_list_axis(self, key, axis: int): """ Return Series values by list or array of integers. Parameters ---------- key : list-like positional indexer axis : int Returns ------- Series object Notes ----- `axis` can only be zero. """ try: return self.obj._take_with_is_copy(key, axis=axis) except IndexError: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds") def _getitem_axis(self, key, axis: int): if isinstance(key, slice): return self._get_slice_axis(key, axis=axis) if isinstance(key, list): key = np.asarray(key) if com.is_bool_indexer(key): self._validate_key(key, axis) return self._getbool_axis(key, axis=axis) # a list of integers elif is_list_like_indexer(key): return self._get_list_axis(key, axis=axis) # a single integer else: key = item_from_zerodim(key) if not is_integer(key): raise TypeError("Cannot index by location index with a non-integer key") # validate the location self._validate_integer(key, axis) return self._get_loc(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) indexer = self._convert_slice_indexer(slice_obj, axis) return self._slice(indexer, axis=axis, kind="iloc") def _convert_to_indexer(self, key, axis: int): """ Much simpler as we only have to deal with our valid types. """ # make need to convert a float key if isinstance(key, slice): return self._convert_slice_indexer(key, axis) elif is_float(key): return self._convert_scalar_indexer(key, axis) try: self._validate_key(key, axis) return key except ValueError: raise ValueError(f"Can only index by location with a [{self._valid_types}]") class _ScalarAccessIndexer(_NDFrameIndexerBase): """ Access scalars quickly. """ def _convert_key(self, key, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if not isinstance(key, tuple): # we could have a convertible item here (e.g. Timestamp) if not is_list_like_indexer(key): key = tuple([key]) else: raise ValueError("Invalid call for scalar access (getting)!") key = self._convert_key(key) return self.obj._get_value(*key, takeable=self._takeable) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: # scalar callable may return tuple key = com.apply_if_callable(key, self.obj) if not isinstance(key, tuple): key = _tuplify(self.ndim, key) if len(key) != self.ndim: raise ValueError("Not enough indexers for scalar access (setting)!") key = list(self._convert_key(key, is_setter=True)) self.obj._set_value(*key, value=value, takeable=self._takeable) @Appender(IndexingMixin.at.__doc__) class _AtIndexer(_ScalarAccessIndexer): _takeable = False def _convert_key(self, key, is_setter: bool = False): """ Require they keys to be the same type as the index. (so we don't fallback) """ # allow arbitrary setting if is_setter: return list(key) for ax, i in zip(self.obj.axes, key): if ax.is_integer(): if not is_integer(i): raise ValueError( "At based indexing on an integer index " "can only have integer indexers" ) else: if is_integer(i) and not (ax.holds_integer() or ax.is_floating()): raise ValueError( "At based indexing on an non-integer " "index can only have non-integer " "indexers" ) return key @Appender(IndexingMixin.iat.__doc__) class _iAtIndexer(_ScalarAccessIndexer): _takeable = True def _convert_key(self, key, is_setter: bool = False): """ Require integer args. (and convert to label arguments) """ for a, i in zip(self.obj.axes, key): if not is_integer(i): raise ValueError("iAt based indexing can only have integer indexers") return key def _tuplify(ndim: int, loc: Hashable) -> Tuple[Union[Hashable, slice], ...]: """ Given an indexer for the first dimension, create an equivalent tuple for indexing over all dimensions. Parameters ---------- ndim : int loc : object Returns ------- tuple """ _tup: List[Union[Hashable, slice]] _tup = [slice(None, None) for _ in range(ndim)] _tup[0] = loc return tuple(_tup) def convert_to_index_sliceable(obj, key): """ If we are index sliceable, then return my slicer, otherwise return None. """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind="getitem") elif isinstance(key, str): # we are an actual column if key in obj._data.items: return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx._supports_partial_string_indexing: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None def check_bool_indexer(index: Index, key) -> np.ndarray: """ Check if key is a valid boolean indexer for an object with such index and perform reindexing or conversion if needed. This function assumes that is_bool_indexer(key) == True. Parameters ---------- index : Index Index of the object on which the indexing is done. key : list-like Boolean indexer to check. Returns ------- np.array Resulting key. Raises ------ IndexError If the key does not have the same length as index. IndexingError If the index of the key is unalignable to index. """ result = key if isinstance(key, ABCSeries) and not key.index.equals(index): result = result.reindex(index) mask = isna(result._values) if mask.any(): raise IndexingError( "Unalignable boolean Series provided as " "indexer (index of the boolean Series and of " "the indexed object do not match)." ) result = result.astype(bool)._values else: # key might be sparse / object-dtype bool, check_array_indexer needs bool array result = np.asarray(result, dtype=bool) result = check_array_indexer(index, result) return result def convert_missing_indexer(indexer): """ Reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer["key"] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False def convert_from_missing_indexer_tuple(indexer, axes): """ Create a filtered indexer that doesn't have any missing indexers. """ def get_indexer(_i, _idx): return axes[_i].get_loc(_idx["key"]) if isinstance(_idx, dict) else _idx return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer)) def maybe_convert_ix(*args): """ We likely want to take the cross-product. """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args def is_nested_tuple(tup, labels) -> bool: """ Returns ------- bool """ # check for a compatible nested tuple and multiindexes among the axes if not isinstance(tup, tuple): return False for i, k in enumerate(tup): if is_list_like(k) or isinstance(k, slice): return isinstance(labels, ABCMultiIndex) return False def is_label_like(key) -> bool: """ Returns ------- bool """ # select a label or row return not isinstance(key, slice) and not is_list_like_indexer(key) def need_slice(obj) -> bool: """ Returns ------- bool """ return ( obj.start is not None or obj.stop is not None or (obj.step is not None and obj.step != 1) ) def _non_reducing_slice(slice_): """ Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = (ABCSeries, np.ndarray, Index, list, str) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part) -> bool: """ Returns ------- bool True if slice does *not* reduce, False if `part` is a tuple. """ # true when slice does *not* reduce, False when part is a tuple, # i.e. MultiIndex slice return (isinstance(part, slice) or is_list_like(part)) and not isinstance( part, tuple ) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_) def _maybe_numeric_slice(df, slice_, include_bool=False): """ Want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_ def _can_do_equal_len(labels, value, plane_indexer, lplane_indexer, obj) -> bool: """ Returns ------- bool True if we have an equal len settable. """ if not len(labels) == 1 or not np.iterable(value) or is_scalar(plane_indexer[0]): return False item = labels[0] index = obj[item].index values_len = len(value) # equal len list/ndarray if len(index) == values_len: return True elif lplane_indexer == values_len: return True return False
BugsInPy/BugsInPy/temp/projects/pandas/bug-69-fixed/pandas/pandas/core/indexing.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-69-buggy/pandas/pandas/core/indexing.py
pandas-bug-121
from datetime import datetime, timedelta import functools import inspect import re from typing import Any, List import warnings import numpy as np from pandas._libs import NaT, algos as libalgos, lib, tslib, writers from pandas._libs.index import convert_scalar import pandas._libs.internals as libinternals from pandas._libs.tslibs import Timedelta, conversion from pandas._libs.tslibs.timezones import tz_compare from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( astype_nansafe, find_common_type, infer_dtype_from, infer_dtype_from_scalar, maybe_downcast_numeric, maybe_downcast_to_dtype, maybe_infer_dtype_type, maybe_promote, maybe_upcast, soft_convert_objects, ) from pandas.core.dtypes.common import ( _NS_DTYPE, _TD_DTYPE, ensure_platform_int, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_interval_dtype, is_list_like, is_object_dtype, is_period_dtype, is_re, is_re_compilable, is_sparse, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.concat import concat_categorical, concat_datetime from pandas.core.dtypes.dtypes import CategoricalDtype, ExtensionDtype from pandas.core.dtypes.generic import ( ABCDataFrame, ABCExtensionArray, ABCPandasArray, ABCSeries, ) from pandas.core.dtypes.missing import ( _isna_compat, array_equivalent, is_valid_nat_for_dtype, isna, ) import pandas.core.algorithms as algos from pandas.core.arrays import Categorical, DatetimeArray, PandasDtype, TimedeltaArray from pandas.core.base import PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import ( check_setitem_lengths, is_empty_indexer, is_scalar_indexer, ) import pandas.core.missing as missing from pandas.core.nanops import nanpercentile from pandas.io.formats.printing import pprint_thing class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ["_mgr_locs", "values", "ndim"] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_datetimetz = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_extension = False _can_hold_na = False _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = "dense" _concatenator = staticmethod(np.concatenate) def __init__(self, values, placement, ndim=None): self.ndim = self._check_ndim(values, ndim) self.mgr_locs = placement self.values = values if self._validate_ndim and self.ndim and len(self.mgr_locs) != len(self.values): raise ValueError( "Wrong number of items passed {val}, placement implies " "{mgr}".format(val=len(self.values), mgr=len(self.mgr_locs)) ) def _check_ndim(self, values, ndim): """ ndim inference and validation. Infers ndim from 'values' if not provided to __init__. Validates that values.ndim and ndim are consistent if and only if the class variable '_validate_ndim' is True. Parameters ---------- values : array-like ndim : int or None Returns ------- ndim : int Raises ------ ValueError : the number of dimensions do not match """ if ndim is None: ndim = values.ndim if self._validate_ndim and values.ndim != ndim: msg = "Wrong number of dimensions. values.ndim != ndim [{} != {}]" raise ValueError(msg.format(values.ndim, ndim)) return ndim @property def _holder(self): """The array-like that can hold the underlying values. None for 'Block', overridden by subclasses that don't use an ndarray. """ return None @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if dtype is Categorical or dtype is CategoricalDtype: # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError("invalid type {0} for astype".format(dtype)) elif is_categorical_dtype(dtype): return True return False def external_values(self, dtype=None): """ return an outside world format, currently just the ndarray """ return self.values def internal_values(self, dtype=None): """ return an internal format, currently just the ndarray this should be the pure internal API format """ return self.values def get_values(self, dtype=None): """ return an internal format, currently just the ndarray this is often overridden to handle to_dense like operations """ if is_object_dtype(dtype): return self.values.astype(object) return self.values def get_block_values(self, dtype=None): """ This is used in the JSON C code """ return self.get_values(dtype=dtype) def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, libinternals.BlockPlacement): new_mgr_locs = libinternals.BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block(self, values, placement=None): """ Create a new block, with type inference propagate any values that are not specified """ if placement is None: placement = self.mgr_locs return make_block(values, placement=placement, ndim=self.ndim) def make_block_same_class(self, values, placement=None, ndim=None, dtype=None): """ Wrap given values in a block of same type as self. """ if dtype is not None: # issue 19431 fastparquet is passing this warnings.warn( "dtype argument is deprecated, will be removed in a future release.", FutureWarning, ) if placement is None: placement = self.mgr_locs if ndim is None: ndim = self.ndim return make_block( values, placement=placement, ndim=ndim, klass=self.__class__, dtype=dtype ) def __repr__(self) -> str: # don't want to print out all of the items here name = pprint_thing(self.__class__.__name__) if self._is_single_block: result = "{name}: {len} dtype: {dtype}".format( name=name, len=len(self), dtype=self.dtype ) else: shape = " x ".join(pprint_thing(s) for s in self.shape) result = "{name}: {index}, {shape}, dtype: {dtype}".format( name=name, index=pprint_thing(self.mgr_locs.indexer), shape=shape, dtype=self.dtype, ) return result def __len__(self) -> int: return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = libinternals.BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def dtype(self): return self.values.dtype @property def ftype(self): if getattr(self.values, "_pandas_ftype", False): dtype = self.dtype.subtype else: dtype = self.dtype return "{dtype}:{ftype}".format(dtype=dtype, ftype=self._ftype) def merge(self, other): return _merge_blocks([self, other]) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) return self.make_block_same_class( values, placement=placement or slice(0, len(values), 1) ) def iget(self, i): return self.values[i] def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs): """ apply the function to my values; return a block if we are not one """ with np.errstate(all="ignore"): result = func(self.values, **kwargs) if not isinstance(result, Block): result = self.make_block(values=_block_shape(result, ndim=self.ndim)) return result def fillna(self, value, limit=None, inplace=False, downcast=None): """ fillna on the block with the value. If we fail, then convert to ObjectBlock and try again """ inplace = validate_bool_kwarg(inplace, "inplace") mask = isna(self.values) if limit is not None: limit = libalgos._validate_limit(None, limit=limit) mask[mask.cumsum(self.ndim - 1) > limit] = False if not self._can_hold_na: if inplace: return self else: return self.copy() if self._can_hold_element(value): # equivalent: _try_coerce_args(value) would not raise blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) # we can't process the value, but nothing to do if not mask.any(): return self if inplace else self.copy() # operate column-by-column def f(mask, val, idx): block = self.coerce_to_target_dtype(value) # slice out our block if idx is not None: # i.e. self.ndim == 2 block = block.getitem_block(slice(idx, idx + 1)) return block.fillna(value, limit=limit, inplace=inplace, downcast=None) return self.split_and_operate(None, f, inplace) def split_and_operate(self, mask, f, inplace: bool): """ split the block per-column, and apply the callable f per-column, return a new block for each. Handle masking which will not change a block unless needed. Parameters ---------- mask : 2-d boolean mask f : callable accepting (1d-mask, 1d values, indexer) inplace : boolean Returns ------- list of blocks """ if mask is None: mask = np.broadcast_to(True, shape=self.shape) new_values = self.values def make_a_block(nv, ref_loc): if isinstance(nv, list): assert len(nv) == 1, nv assert isinstance(nv[0], Block) block = nv[0] else: # Put back the dimension that was taken from it and make # a block out of the result. nv = _block_shape(nv, ndim=self.ndim) block = self.make_block(values=nv, placement=ref_loc) return block # ndim == 1 if self.ndim == 1: if mask.any(): nv = f(mask, new_values, None) else: nv = new_values if inplace else new_values.copy() block = make_a_block(nv, self.mgr_locs) return [block] # ndim > 1 new_blocks = [] for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): nv = f(m, v, i) else: nv = v if inplace else v.copy() block = make_a_block(nv, [ref_loc]) new_blocks.append(block) return new_blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: # no need to downcast our float # unless indicated if downcast is None and ( self.is_float or self.is_timedelta or self.is_datetime ): return blocks return _extend_blocks([b.downcast(downcast) for b in blocks]) def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return self values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = "infer" nv = maybe_downcast_to_dtype(values, dtypes) return self.make_block(nv) # ndim > 1 if dtypes is None: return self if not (dtypes == "infer" or isinstance(dtypes, dict)): raise ValueError( "downcast must have a dictionary or 'infer' as its argument" ) elif dtypes != "infer": raise AssertionError("dtypes as dict is not supported yet") # operate column-by-column # this is expensive as it splits the blocks items-by-item def f(mask, val, idx): val = maybe_downcast_to_dtype(val, dtype="infer") return val return self.split_and_operate(None, f, False) def astype(self, dtype, copy=False, errors="raise", **kwargs): return self._astype(dtype, copy=copy, errors=errors, **kwargs) def _astype(self, dtype, copy=False, errors="raise", **kwargs): """Coerce to the new type Parameters ---------- dtype : str, dtype convertible copy : boolean, default False copy if indicated errors : str, {'raise', 'ignore'}, default 'ignore' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object Returns ------- Block """ errors_legal_values = ("raise", "ignore") if errors not in errors_legal_values: invalid_arg = ( "Expected value of kwarg 'errors' to be one of {}. " "Supplied value is '{}'".format(list(errors_legal_values), errors) ) raise ValueError(invalid_arg) if inspect.isclass(dtype) and issubclass(dtype, ExtensionDtype): msg = ( "Expected an instance of {}, but got the class instead. " "Try instantiating 'dtype'.".format(dtype.__name__) ) raise TypeError(msg) # may need to convert to categorical if self.is_categorical_astype(dtype): if is_categorical_dtype(self.values): # GH 10696/18593: update an existing categorical efficiently return self.make_block(self.values.astype(dtype, copy=copy)) return self.make_block(Categorical(self.values, dtype=dtype)) dtype = pandas_dtype(dtype) # astype processing if is_dtype_equal(self.dtype, dtype): if copy: return self.copy() return self # force the copy here if self.is_extension: # TODO: Should we try/except this astype? values = self.values.astype(dtype) else: if issubclass(dtype.type, str): # use native type formatting for datetime/tz/timedelta if self.is_datelike: values = self.to_native_types() # astype formatting else: values = self.get_values() else: values = self.get_values(dtype=dtype) # _astype_nansafe works fine with 1-d only vals1d = values.ravel() try: values = astype_nansafe(vals1d, dtype, copy=True) except (ValueError, TypeError): # e.g. astype_nansafe can fail on object-dtype of strings # trying to convert to float if errors == "raise": raise newb = self.copy() if copy else self return newb # TODO(extension) # should we make this attribute? if isinstance(values, np.ndarray): values = values.reshape(self.shape) newb = make_block(values, placement=self.mgr_locs, ndim=self.ndim) if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError( "cannot set astype for copy = [{copy}] for dtype " "({dtype} [{shape}]) to different shape " "({newb_dtype} [{newb_shape}])".format( copy=copy, dtype=self.dtype.name, shape=self.shape, newb_dtype=newb.dtype.name, newb_shape=newb.shape, ) ) return newb def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return self.copy() if copy else self def _can_hold_element(self, element: Any) -> bool: """ require the same dtype as ourselves """ dtype = self.values.dtype.type tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, dtype) return isinstance(element, dtype) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.get_values() if slicer is not None: values = values[:, slicer] mask = isna(values) if not self.is_object and not quoting: itemsize = writers.word_len(na_rep) values = values.astype("<U{size}".format(size=itemsize)) else: values = np.array(values, dtype="object") values[mask] = na_rep return values # block actions # def copy(self, deep=True): """ copy constructor """ values = self.values if deep: values = values.copy() return self.make_block_same_class(values, ndim=self.ndim) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): """replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility. """ inplace = validate_bool_kwarg(inplace, "inplace") original_to_replace = to_replace # If we cannot replace with own dtype, convert to ObjectBlock and # retry if not self._can_hold_element(to_replace): if not isinstance(to_replace, list): if inplace: return [self] return [self.copy()] to_replace = [x for x in to_replace if self._can_hold_element(x)] if not len(to_replace): # GH#28084 avoid costly checks since we can infer # that there is nothing to replace in this block if inplace: return [self] return [self.copy()] if len(to_replace) == 1: # _can_hold_element checks have reduced this back to the # scalar case and we can avoid a costly object cast return self.replace( to_replace[0], value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise AssertionError # try again with a compatible block block = self.astype(object) return block.replace( to_replace=to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) values = self.values if lib.is_scalar(to_replace) and isinstance(values, np.ndarray): # The only non-DatetimeLike class that also has a non-trivial # try_coerce_args is ObjectBlock, but that overrides replace, # so does not get here. to_replace = convert_scalar(values, to_replace) mask = missing.mask_missing(values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] try: blocks = self.putmask(mask, value, inplace=inplace) # Note: it is _not_ the case that self._can_hold_element(value) # is always true at this point. In particular, that can fail # for: # "2u" with bool-dtype, float-dtype # 0.5 with int64-dtype # np.nan with int64-dtype except (TypeError, ValueError): # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise assert not self._can_hold_element(value), value # try again with a compatible block block = self.astype(object) return block.replace( to_replace=original_to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) if convert: blocks = [b.convert(numeric=False, copy=not inplace) for b in blocks] return blocks def _replace_single(self, *args, **kwargs): """ no-op on a non-ObjectBlock """ return self if kwargs["inplace"] else self.copy() def setitem(self, indexer, value): """ Set the value inplace, returning a a maybe different typed block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ transpose = self.ndim == 2 # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce if block dtype can store value values = self.values if self._can_hold_element(value): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(value): value = convert_scalar(values, value) else: # current dtype cannot store value, coerce to common dtype find_dtype = False if hasattr(value, "dtype"): dtype = value.dtype find_dtype = True elif lib.is_scalar(value) and not isna(value): dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) find_dtype = True if find_dtype: dtype = find_common_type([values.dtype, dtype]) if not is_dtype_equal(self.dtype, dtype): b = self.astype(dtype) return b.setitem(indexer, value) # value must be storeable at this moment if is_extension_array_dtype(getattr(value, "dtype", None)): # We need to be careful not to allow through strings that # can be parsed to EADtypes arr_value = value else: arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = maybe_promote(arr_value.dtype) values = values.astype(dtype) if transpose: values = values.T # length checking check_setitem_lengths(indexer, value, values) if is_empty_indexer(indexer, arr_value): # GH#8669 empty indexers pass elif is_scalar_indexer(indexer, arr_value): # setting a single element for each dim and with a rhs that could # be e.g. a list; see GH#6043 values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif ( len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and arr_value.size == values.size ): values[indexer] = value try: values = values.astype(arr_value.dtype) except ValueError: pass # set else: values[indexer] = value if transpose: values = values.T block = self.make_block(values) return block def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False axis : int transpose : boolean Set to True if self is stored with axes reversed Returns ------- a list of new blocks, the result of the putmask """ new_values = self.values if inplace else self.values.copy() new = getattr(new, "values", new) mask = getattr(mask, "values", mask) # if we are passed a scalar None, convert it here if not is_list_like(new) and isna(new) and not self.is_object: # FIXME: make sure we have compatible NA new = self.fill_value if self._can_hold_element(new): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(new): new = convert_scalar(new_values, new) if transpose: new_values = new_values.T # If the default repeat behavior in np.putmask would go in the # wrong direction, then explicitly repeat and reshape new instead if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim and axis == 1: new = np.repeat(new, new_values.shape[-1]).reshape(self.shape) new = new.astype(new_values.dtype) # we require exact matches between the len of the # values we are setting (or is compat). np.putmask # doesn't check this and will simply truncate / pad # the output, but we want sane error messages # # TODO: this prob needs some better checking # for 2D cases if ( is_list_like(new) and np.any(mask[mask]) and getattr(new, "ndim", 1) == 1 ): if not ( mask.shape[-1] == len(new) or mask[mask].shape[-1] == len(new) or len(new) == 1 ): raise ValueError("cannot assign mismatch length to masked array") np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): if transpose: mask = mask.T if isinstance(new, np.ndarray): new = new.T axis = new_values.ndim - axis - 1 # Pseudo-broadcast if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim: new_shape = list(new.shape) new_shape.insert(axis, 1) new = new.reshape(tuple(new_shape)) # operate column-by-column def f(mask, val, idx): if idx is None: # ndim==1 case. n = new else: if isinstance(new, np.ndarray): n = np.squeeze(new[idx % new.shape[0]]) else: n = np.array(new) # type of the new block dtype, _ = maybe_promote(n.dtype) # we need to explicitly astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(val, mask, n) return nv new_blocks = self.split_and_operate(mask, f, inplace) return new_blocks if inplace: return [self] if transpose: new_values = new_values.T return [self.make_block(new_values)] def coerce_to_target_dtype(self, other): """ coerce the current block to a dtype compat for other we will return a block, possibly object, and not raise we can also safely try to coerce to the same dtype and will receive the same block """ # if we cannot then coerce to object dtype, _ = infer_dtype_from(other, pandas_dtype=True) if is_dtype_equal(self.dtype, dtype): return self if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype): # we don't upcast to bool return self.astype(object) elif (self.is_float or self.is_complex) and ( is_integer_dtype(dtype) or is_float_dtype(dtype) ): # don't coerce float/complex to int return self elif ( self.is_datetime or is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) ): # not a datetime if not ( (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype)) and self.is_datetime ): return self.astype(object) # don't upcast timezone with different timezone or no timezone mytz = getattr(self.dtype, "tz", None) othertz = getattr(dtype, "tz", None) if not tz_compare(mytz, othertz): return self.astype(object) raise AssertionError( "possible recursion in " "coerce_to_target_dtype: {} {}".format(self, other) ) elif self.is_timedelta or is_timedelta64_dtype(dtype): # not a timedelta if not (is_timedelta64_dtype(dtype) and self.is_timedelta): return self.astype(object) raise AssertionError( "possible recursion in " "coerce_to_target_dtype: {} {}".format(self, other) ) try: return self.astype(dtype) except (ValueError, TypeError, OverflowError): return self.astype(object) def interpolate( self, method="pad", axis=0, index=None, values=None, inplace=False, limit=None, limit_direction="forward", limit_area=None, fill_value=None, coerce=False, downcast=None, **kwargs, ): inplace = validate_bool_kwarg(inplace, "inplace") def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = missing.clean_fill_method(method) except ValueError: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill( method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast, ) # validate the interp method m = missing.clean_interp_method(method, **kwargs) r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate( method=m, index=index, values=values, axis=axis, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs, ) def _interpolate_with_fill( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, ): """ fillna but using the interpolate machinery """ inplace = validate_bool_kwarg(inplace, "inplace") # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] values = self.values if inplace else self.values.copy() # We only get here for non-ExtensionBlock fill_value = convert_scalar(self.values, fill_value) values = missing.interpolate_2d( values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype, ) blocks = [self.make_block_same_class(values, ndim=self.ndim)] return self._maybe_downcast(blocks, downcast) def _interpolate( self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, limit_direction="forward", limit_area=None, inplace=False, downcast=None, **kwargs, ): """ interpolate using scipy wrappers """ inplace = validate_bool_kwarg(inplace, "inplace") data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ("krogh", "piecewise_polynomial", "pchip"): if not index.is_monotonic: raise ValueError( "{0} interpolation requires that the " "index be monotonic.".format(method) ) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to missing.interpolate_1d return missing.interpolate_1d( index, x, method=method, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, bounds_error=False, **kwargs, ) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [self.make_block_same_class(interp_values)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ # algos.take_nd dispatches for DatetimeTZBlock, CategoricalBlock # so need to preserve types # sparse is treated like an ndarray, but needs .get_values() shaping values = self.values if fill_tuple is None: fill_value = self.fill_value allow_fill = False else: fill_value = fill_tuple[0] allow_fill = True new_values = algos.take_nd( values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value ) # Called from three places in managers, all of which satisfy # this assertion assert not (axis == 0 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs if not is_dtype_equal(new_values.dtype, self.dtype): return self.make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def diff(self, n: int, axis: int = 1) -> List["Block"]: """ return block for the diff of the values """ new_values = algos.diff(self.values, n, axis=axis) return [self.make_block(values=new_values)] def shift(self, periods, axis=0, fill_value=None): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = maybe_upcast(self.values, fill_value) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, ensure_platform_int(periods), axis=axis) axis_indexer = [slice(None)] * self.ndim if periods > 0: axis_indexer[axis] = slice(None, periods) else: axis_indexer[axis] = slice(periods, None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [self.make_block(new_values)] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond errors : str, {'raise', 'ignore'}, default 'raise' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object axis : int Returns ------- a new block(s), the result of the func """ import pandas.core.computation.expressions as expressions assert errors in ["raise", "ignore"] transpose = self.ndim == 2 values = self.values orig_other = other if transpose: values = values.T other = getattr(other, "_values", getattr(other, "values", other)) cond = getattr(cond, "values", cond) # If the default broadcasting would go in the wrong direction, then # explicitly reshape other instead if getattr(other, "ndim", 0) >= 1: if values.ndim - 1 == other.ndim and axis == 1: other = other.reshape(tuple(other.shape + (1,))) elif transpose and values.ndim == self.ndim - 1: cond = cond.T if not hasattr(cond, "shape"): raise ValueError("where must have a condition that is ndarray like") # our where function def func(cond, values, other): if not ( (self.is_integer or self.is_bool) and lib.is_float(other) and np.isnan(other) ): # np.where will cast integer array to floats in this case if not self._can_hold_element(other): raise TypeError if lib.is_scalar(other) and isinstance(values, np.ndarray): other = convert_scalar(values, other) fastres = expressions.where(cond, values, other) return fastres if cond.ravel().all(): result = values else: # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) try: result = func(cond, values, other) except TypeError: # we cannot coerce, return a compat dtype # we are explicitly ignoring errors block = self.coerce_to_target_dtype(other) blocks = block.where( orig_other, cond, align=align, errors=errors, try_cast=try_cast, axis=axis, ) return self._maybe_downcast(blocks, "infer") if self._can_hold_na or self.ndim == 1: if transpose: result = result.T return [self.make_block(result)] # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): taken = result.take(m.nonzero()[0], axis=axis) r = maybe_downcast_numeric(taken, self.dtype) nb = self.make_block(r.T, placement=self.mgr_locs[m]) result_blocks.append(nb) return result_blocks def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): """Return a list of unstacked blocks of self Parameters ---------- unstacker_func : callable Partially applied unstacker. new_columns : Index All columns of the unstacked BlockManager. n_rows : int Only used in ExtensionBlock._unstack fill_value : int Only used in ExtensionBlock._unstack Returns ------- blocks : list of Block New blocks of unstacked values. mask : array_like of bool The mask of columns of `blocks` we should keep. """ unstacker = unstacker_func(self.values.T) new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) new_values = new_values.T[mask] new_placement = new_placement[mask] blocks = [make_block(new_values, placement=new_placement)] return blocks, mask def quantile(self, qs, interpolation="linear", axis=0): """ compute the quantiles of the Parameters ---------- qs: a scalar or list of the quantiles to be computed interpolation: type of interpolation, default 'linear' axis: axis to compute, default 0 Returns ------- Block """ # We should always have ndim == 2 becase Series dispatches to DataFrame assert self.ndim == 2 values = self.get_values() is_empty = values.shape[axis] == 0 orig_scalar = not is_list_like(qs) if orig_scalar: # make list-like, unpack later qs = [qs] if is_empty: # create the array of na_values # 2d len(values) * len(qs) result = np.repeat( np.array([self.fill_value] * len(qs)), len(values) ).reshape(len(values), len(qs)) else: # asarray needed for Sparse, see GH#24600 mask = np.asarray(isna(values)) result = nanpercentile( values, np.array(qs) * 100, axis=axis, na_value=self.fill_value, mask=mask, ndim=values.ndim, interpolation=interpolation, ) result = np.array(result, copy=False) result = result.T if orig_scalar and not lib.is_scalar(result): # result could be scalar in case with is_empty and self.ndim == 1 assert result.shape[-1] == 1, result.shape result = result[..., 0] result = lib.item_from_zerodim(result) ndim = np.ndim(result) return make_block(result, placement=np.arange(len(result)), ndim=ndim) def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): if not regex: self = self.coerce_to_target_dtype(value) return self.putmask(mask, value, inplace=inplace) else: return self._replace_single( to_replace, value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) return self class NonConsolidatableMixIn: """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False def __init__(self, values, placement, ndim=None): """Initialize a non-consolidatable block. 'ndim' may be inferred from 'placement'. This will call continue to call __init__ for the other base classes mixed in with this Mixin. """ # Placement must be converted to BlockPlacement so that we can check # its length if not isinstance(placement, libinternals.BlockPlacement): placement = libinternals.BlockPlacement(placement) # Maybe infer ndim from placement if ndim is None: if len(placement) != 1: ndim = 1 else: ndim = 2 super().__init__(values, placement, ndim=ndim) @property def shape(self): if self.ndim == 1: return ((len(self.values)),) return (len(self.mgr_locs), len(self.values)) def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if not com.is_null_slice(col) and col != 0: raise IndexError("{0} only contains one item".format(self)) elif isinstance(col, slice): if col != slice(None): raise NotImplementedError(col) return self.values[[loc]] return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False): """ putmask the data to the block; we must be a single block and not generate other blocks return the resulting block Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block, the result of the putmask """ inplace = validate_bool_kwarg(inplace, "inplace") # use block's copy logic. # .values may be an Index which does shallow copy by default new_values = self.values if inplace else self.copy().values if isinstance(new, np.ndarray) and len(new) == len(mask): new = new[mask] mask = _safe_reshape(mask, new_values.shape) new_values[mask] = new return [self.make_block(values=new_values)] def _get_unstack_items(self, unstacker, new_columns): """ Get the placement, values, and mask for a Block unstack. This is shared between ObjectBlock and ExtensionBlock. They differ in that ObjectBlock passes the values, while ExtensionBlock passes the dummy ndarray of positions to be used by a take later. Parameters ---------- unstacker : pandas.core.reshape.reshape._Unstacker new_columns : Index All columns of the unstacked BlockManager. Returns ------- new_placement : ndarray[int] The placement of the new columns in `new_columns`. new_values : Union[ndarray, ExtensionArray] The first return value from _Unstacker.get_new_values. mask : ndarray[bool] The second return value from _Unstacker.get_new_values. """ # shared with ExtensionBlock new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) return new_placement, new_values, mask class ExtensionBlock(NonConsolidatableMixIn, Block): """Block for holding extension types. Notes ----- This holds all 3rd-party extension array types. It's also the immediate parent class for our internal extension types' blocks, CategoricalBlock. ExtensionArrays are limited to 1-D. """ is_extension = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement, ndim) def _maybe_coerce_values(self, values): """ Unbox to an extension array. This will unbox an ExtensionArray stored in an Index or Series. ExtensionArrays pass through. No dtype coercion is done. Parameters ---------- values : Index, Series, ExtensionArray Returns ------- ExtensionArray """ return extract_array(values) @property def _holder(self): # For extension blocks, the holder is values-dependent. return type(self.values) @property def fill_value(self): # Used in reindex_indexer return self.values.dtype.na_value @property def _can_hold_na(self): # The default ExtensionArray._can_hold_na is True return self._holder._can_hold_na @property def is_view(self): """Extension arrays are never treated as views.""" return False @property def is_numeric(self): return self.values.dtype._is_numeric def setitem(self, indexer, value): """Set the value inplace, returning a same-typed block. This differs from Block.setitem by not allowing setitem to change the dtype of the Block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ if isinstance(indexer, tuple): # we are always 1-D indexer = indexer[0] check_setitem_lengths(indexer, value, self.values) self.values[indexer] = value return self def get_values(self, dtype=None): # ExtensionArrays must be iterable, so this works. values = np.asarray(self.values) if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def to_dense(self): return np.asarray(self.values) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """override to use ExtensionArray astype for the conversion""" values = self.values if slicer is not None: values = values[slicer] mask = isna(values) try: values = values.astype(str) values[mask] = na_rep except Exception: # eg SparseArray does not support setitem, needs to be converted to ndarray return super().to_native_types(slicer, na_rep, quoting, **kwargs) # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block. """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take(indexer, fill_value=fill_value, allow_fill=True) # Called from three places in managers, all of which satisfy # this assertion assert not (self.ndim == 1 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def _can_hold_element(self, element: Any) -> bool: # XXX: We may need to think about pushing this onto the array. # We're doing the same as CategoricalBlock here. return True def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have if isinstance(slicer, tuple) and len(slicer) == 2: if not com.is_null_slice(slicer[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") slicer = slicer[1] return self.values[slicer] def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._holder._concat_same_type([blk.values for blk in to_concat]) placement = placement or slice(0, len(values), 1) return self.make_block_same_class(values, ndim=self.ndim, placement=placement) def fillna(self, value, limit=None, inplace=False, downcast=None): values = self.values if inplace else self.values.copy() values = values.fillna(value=value, limit=limit) return [ self.make_block_same_class( values=values, placement=self.mgr_locs, ndim=self.ndim ) ] def interpolate( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, **kwargs ): values = self.values if inplace else self.values.copy() return self.make_block_same_class( values=values.fillna(value=fill_value, method=method, limit=limit), placement=self.mgr_locs, ) def shift( self, periods: int, axis: libinternals.BlockPlacement = 0, fill_value: Any = None, ) -> List["ExtensionBlock"]: """ Shift the block by `periods`. Dispatches to underlying ExtensionArray and re-boxes in an ExtensionBlock. """ return [ self.make_block_same_class( self.values.shift(periods=periods, fill_value=fill_value), placement=self.mgr_locs, ndim=self.ndim, ) ] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: if isinstance(other, ABCDataFrame): # ExtensionArrays are 1-D, so if we get here then # `other` should be a DataFrame with a single column. assert other.shape[1] == 1 other = other.iloc[:, 0] other = extract_array(other, extract_numpy=True) if isinstance(cond, ABCDataFrame): assert cond.shape[1] == 1 cond = cond.iloc[:, 0] cond = extract_array(cond, extract_numpy=True) if lib.is_scalar(other) and isna(other): # The default `other` for Series / Frame is np.nan # we want to replace that with the correct NA value # for the type other = self.dtype.na_value if is_sparse(self.values): # TODO(SparseArray.__setitem__): remove this if condition # We need to re-infer the type of the data after doing the # where, for cases where the subtypes don't match dtype = None else: dtype = self.dtype result = self.values.copy() icond = ~cond if lib.is_scalar(other): set_other = other else: set_other = other[icond] try: result[icond] = set_other except (NotImplementedError, TypeError): # NotImplementedError for class not implementing `__setitem__` # TypeError for SparseArray, which implements just to raise # a TypeError result = self._holder._from_sequence( np.where(cond, self.values, other), dtype=dtype ) return [self.make_block_same_class(result, placement=self.mgr_locs)] @property def _ftype(self): return getattr(self.values, "_pandas_ftype", Block._ftype) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): # ExtensionArray-safe unstack. # We override ObjectBlock._unstack, which unstacks directly on the # values of the array. For EA-backed blocks, this would require # converting to a 2-D ndarray of objects. # Instead, we unstack an ndarray of integer positions, followed by # a `take` on the actual values. dummy_arr = np.arange(n_rows) dummy_unstacker = functools.partial(unstacker_func, fill_value=-1) unstacker = dummy_unstacker(dummy_arr) new_placement, new_values, mask = self._get_unstack_items( unstacker, new_columns ) blocks = [ self.make_block_same_class( self.values.take(indices, allow_fill=True, fill_value=fill_value), [place], ) for indices, place in zip(new_values.T, new_placement) ] return blocks, mask class ObjectValuesExtensionBlock(ExtensionBlock): """ Block providing backwards-compatibility for `.values`. Used by PeriodArray and IntervalArray to ensure that Series[T].values is an ndarray of objects. """ def external_values(self, dtype=None): return self.values.astype(object) class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer)) and not issubclass( tipo.type, (np.datetime64, np.timedelta64) ) return isinstance( element, (float, int, np.floating, np.int_) ) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64), ) def to_native_types( self, slicer=None, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs, ): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] # see gh-13418: no special formatting is desired at the # output (important for appropriate 'quoting' behaviour), # so do not pass it through the FloatArrayFormatter if float_format is None and decimal == ".": mask = isna(values) if not quoting: values = values.astype(str) else: values = np.array(values, dtype="object") values[mask] = na_rep return values from pandas.io.formats.format import FloatArrayFormatter formatter = FloatArrayFormatter( values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False, ) return formatter.get_result_as_array() def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer, np.complexfloating)) return isinstance( element, (float, int, complex, np.float_, np.int_) ) and not isinstance(element, (bool, np.bool_)) def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return ( issubclass(tipo.type, np.integer) and not issubclass(tipo.type, (np.datetime64, np.timedelta64)) and self.dtype.itemsize >= tipo.itemsize ) return is_integer(element) def should_store(self, value): return is_integer_dtype(value) and value.dtype == self.dtype class DatetimeLikeBlockMixin: """Mixin class for DatetimeBlock, DatetimeTZBlock, and TimedeltaBlock.""" @property def _holder(self): return DatetimeArray @property def fill_value(self): return np.datetime64("NaT", "ns") def get_values(self, dtype=None): """ return object dtype as boxed values, such as Timestamps/Timedelta """ if is_object_dtype(dtype): values = self.values.ravel() result = self._holder(values).astype(object) return result.reshape(self.values.shape) return self.values class DatetimeBlock(DatetimeLikeBlockMixin, Block): __slots__ = () is_datetime = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement=placement, ndim=ndim) @property def _can_hold_na(self): return True def _maybe_coerce_values(self, values): """ Input validation for values passed to __init__. Ensure that we have datetime64ns, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : ndarray[datetime64ns] Overridden by DatetimeTZBlock. """ if values.dtype != _NS_DTYPE: values = conversion.ensure_datetime64ns(values) if isinstance(values, DatetimeArray): values = values._data assert isinstance(values, np.ndarray), type(values) return values def _astype(self, dtype, **kwargs): """ these automatically copy, so copy=True has no effect raise on an except if raise == True """ dtype = pandas_dtype(dtype) # if we are passed a datetime64[ns, tz] if is_datetime64tz_dtype(dtype): values = self.values if getattr(values, "tz", None) is None: values = DatetimeArray(values).tz_localize("UTC") values = values.tz_convert(dtype.tz) return self.make_block(values) # delegate return super()._astype(dtype=dtype, **kwargs) def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: if self.is_datetimetz: # require exact match, since non-nano does not exist return is_dtype_equal(tipo, self.dtype) or is_valid_nat_for_dtype( element, self.dtype ) # GH#27419 if we get a non-nano datetime64 object return is_datetime64_dtype(tipo) elif element is NaT: return True elif isinstance(element, datetime): if self.is_datetimetz: return tz_compare(element.tzinfo, self.dtype.tz) return element.tzinfo is None return is_valid_nat_for_dtype(element, self.dtype) def to_native_types( self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs ): """ convert to our native types format, slicing if desired """ values = self.values i8values = self.values.view("i8") if slicer is not None: values = values[..., slicer] i8values = i8values[..., slicer] from pandas.io.formats.format import _get_format_datetime64_from_values fmt = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime( i8values.ravel(), tz=getattr(self.values, "tz", None), format=fmt, na_rep=na_rep, ).reshape(i8values.shape) return np.atleast_2d(result) def should_store(self, value): return ( issubclass(value.dtype.type, np.datetime64) and not is_datetime64tz_dtype(value) and not is_extension_array_dtype(value) ) def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ values = conversion.ensure_datetime64ns(values, copy=False) self.values[locs] = values def external_values(self): return np.asarray(self.values.astype("datetime64[ns]", copy=False)) class DatetimeTZBlock(ExtensionBlock, DatetimeBlock): """ implement a datetime64 block with a tz attribute """ __slots__ = () is_datetimetz = True is_extension = True _can_hold_element = DatetimeBlock._can_hold_element to_native_types = DatetimeBlock.to_native_types fill_value = np.datetime64("NaT", "ns") @property def _holder(self): return DatetimeArray def _maybe_coerce_values(self, values): """Input validation for values passed to __init__. Ensure that we have datetime64TZ, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : DatetimeArray """ if not isinstance(values, self._holder): values = self._holder(values) if values.tz is None: raise ValueError("cannot create a DatetimeTZBlock without a tz") return values @property def is_view(self): """ return a boolean if I am possibly a view """ # check the ndarray values of the DatetimeIndex values return self.values._data.base is not None def get_values(self, dtype=None): """ Returns an ndarray of values. Parameters ---------- dtype : np.dtype Only `object`-like dtypes are respected here (not sure why). Returns ------- values : ndarray When ``dtype=object``, then and object-dtype ndarray of boxed values is returned. Otherwise, an M8[ns] ndarray is returned. DatetimeArray is always 1-d. ``get_values`` will reshape the return value to be the same dimensionality as the block. """ values = self.values if is_object_dtype(dtype): values = values.astype(object) values = np.asarray(values) if self.ndim == 2: # Ensure that our shape is correct for DataFrame. # ExtensionArrays are always 1-D, even in a DataFrame when # the analogous NumPy-backed column would be a 2-D ndarray. values = values.reshape(1, -1) return values def to_dense(self): # we request M8[ns] dtype here, even though it discards tzinfo, # as lots of code (e.g. anything using values_from_object) # expects that behavior. return np.asarray(self.values, dtype=_NS_DTYPE) def _slice(self, slicer): """ return a slice of my values """ if isinstance(slicer, tuple): col, loc = slicer if not com.is_null_slice(col) and col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values[loc] return self.values[slicer] def diff(self, n: int, axis: int = 0) -> List["Block"]: """ 1st discrete difference. Parameters ---------- n : int Number of periods to diff. axis : int, default 0 Axis to diff upon. Returns ------- A list with a new TimeDeltaBlock. Notes ----- The arguments here are mimicking shift so they are called correctly by apply. """ if axis == 0: # Cannot currently calculate diff across multiple blocks since this # function is invoked via apply raise NotImplementedError new_values = (self.values - self.shift(n, axis=axis)[0].values).asi8 # Reshape the new_values like how algos.diff does for timedelta data new_values = new_values.reshape(1, len(new_values)) new_values = new_values.astype("timedelta64[ns]") return [TimeDeltaBlock(new_values, placement=self.mgr_locs.indexer)] def concat_same_type(self, to_concat, placement=None): # need to handle concat([tz1, tz2]) here, since DatetimeArray # only handles cases where all the tzs are the same. # Instead of placing the condition here, it could also go into the # is_uniform_join_units check, but I'm not sure what is better. if len({x.dtype for x in to_concat}) > 1: values = concat_datetime([x.values for x in to_concat]) placement = placement or slice(0, len(values), 1) if self.ndim > 1: values = np.atleast_2d(values) return ObjectBlock(values, ndim=self.ndim, placement=placement) return super().concat_same_type(to_concat, placement) def fillna(self, value, limit=None, inplace=False, downcast=None): # We support filling a DatetimeTZ with a `value` whose timezone # is different by coercing to object. if self._can_hold_element(value): return super().fillna(value, limit, inplace, downcast) # different timezones, or a non-tz return self.astype(object).fillna( value, limit=limit, inplace=inplace, downcast=downcast ) def setitem(self, indexer, value): # https://github.com/pandas-dev/pandas/issues/24020 # Need a dedicated setitem until #24020 (type promotion in setitem # for extension arrays) is designed and implemented. if self._can_hold_element(value) or ( isinstance(indexer, np.ndarray) and indexer.size == 0 ): return super().setitem(indexer, value) obj_vals = self.values.astype(object) newb = make_block( obj_vals, placement=self.mgr_locs, klass=ObjectBlock, ndim=self.ndim ) return newb.setitem(indexer, value) def equals(self, other) -> bool: # override for significant performance improvement if self.dtype != other.dtype or self.shape != other.shape: return False return (self.values.view("i8") == other.values.view("i8")).all() def quantile(self, qs, interpolation="linear", axis=0): naive = self.values.view("M8[ns]") # kludge for 2D block with 1D values naive = naive.reshape(self.shape) blk = self.make_block(naive) res_blk = blk.quantile(qs, interpolation=interpolation, axis=axis) # ravel is kludge for 2D block with 1D values, assumes column-like aware = self._holder(res_blk.values.ravel(), dtype=self.dtype) return self.make_block_same_class(aware, ndim=res_blk.ndim) class TimeDeltaBlock(DatetimeLikeBlockMixin, IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False fill_value = np.timedelta64("NaT", "ns") def __init__(self, values, placement, ndim=None): if values.dtype != _TD_DTYPE: values = conversion.ensure_timedelta64ns(values) if isinstance(values, TimedeltaArray): values = values._data assert isinstance(values, np.ndarray), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return TimedeltaArray def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.timedelta64) elif element is NaT: return True elif isinstance(element, (timedelta, np.timedelta64)): return True return is_valid_nat_for_dtype(element, self.dtype) def fillna(self, value, **kwargs): # allow filling with integers to be # interpreted as nanoseconds if is_integer(value): # Deprecation GH#24694, GH#19233 warnings.warn( "Passing integers to fillna is deprecated, will " "raise a TypeError in a future version. To retain " "the old behavior, pass pd.Timedelta(seconds=n) " "instead.", FutureWarning, stacklevel=6, ) value = Timedelta(value, unit="s") return super().fillna(value, **kwargs) def should_store(self, value): return issubclass( value.dtype.type, np.timedelta64 ) and not is_extension_array_dtype(value) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = "NaT" rvalues[mask] = na_rep imask = (~mask).ravel() # FIXME: # should use the formats.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array( [Timedelta(val)._repr_base(format="all") for val in values.ravel()[imask]], dtype=object, ) return rvalues def external_values(self, dtype=None): return np.asarray(self.values.astype("timedelta64[ns]", copy=False)) class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.bool_) return isinstance(element, (bool, np.bool_)) def should_store(self, value): return issubclass(value.dtype.type, np.bool_) and not is_extension_array_dtype( value ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): inplace = validate_bool_kwarg(inplace, "inplace") to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, placement=None, ndim=2): if issubclass(values.dtype.type, str): values = np.array(values, dtype=object) super().__init__(values, ndim=ndim, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # operate column-by-column def f(mask, val, idx): shape = val.shape values = soft_convert_objects( val.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy, ) if isinstance(values, np.ndarray): # TODO: allow EA once reshape is supported values = values.reshape(shape) values = _block_shape(values, ndim=self.ndim) return values if self.ndim == 2: blocks = self.split_and_operate(None, f, False) else: values = f(None, self.values.ravel(), None) blocks = [make_block(values, ndim=self.ndim, placement=self.mgr_locs)] return blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: if downcast is not None: return blocks # split and convert the blocks return _extend_blocks([b.convert(datetime=True, numeric=False) for b in blocks]) def _can_hold_element(self, element: Any) -> bool: return True def should_store(self, value): return not ( issubclass( value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_), ) or is_extension_array_dtype(value) ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): to_rep_is_list = is_list_like(to_replace) value_is_list = is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list result_blocks = [] blocks = [self] if not either_list and is_re(to_replace): return self._replace_single( to_replace, value, inplace=inplace, filter=filter, regex=True, convert=convert, ) elif not (either_list or regex): return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) elif both_lists: for to_rep, v in zip(to_replace, value): result_blocks = [] for b in blocks: result = b._replace_single( to_rep, v, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks elif to_rep_is_list and regex: for to_rep in to_replace: result_blocks = [] for b in blocks: result = b._replace_single( to_rep, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks return self._replace_single( to_replace, value, inplace=inplace, filter=filter, convert=convert, regex=regex, ) def _replace_single( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mask=None, ): """ Replace elements by the given value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. filter : list, optional regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- a new block, the result after replacing """ inplace = validate_bool_kwarg(inplace, "inplace") # to_replace is regex compilable to_rep_re = regex and is_re_compilable(to_replace) # regex is regex compilable regex_re = is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError( "only one of to_replace and regex can be regex compilable" ) # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string if is_re(to_replace): pattern = to_replace.pattern else: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex ) new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isna(value) or not isinstance(value, str): def re_replacer(s): if is_re(rx) and isinstance(s, str): return value if rx.search(s) is not None else s else: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): if is_re(rx) and isinstance(s, str): return rx.sub(value, s) else: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] if mask is None: new_values[filt] = f(new_values[filt]) else: new_values[filt][mask] = f(new_values[filt][mask]) # convert block = self.make_block(new_values) if convert: block = block.convert(numeric=False) return block def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): block = super()._replace_coerce( to_replace=to_replace, value=value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) if convert: block = [b.convert(numeric=False, copy=True) for b in block] return block return self class CategoricalBlock(ExtensionBlock): __slots__ = () is_categorical = True _verify_integrity = True _can_hold_na = True _concatenator = staticmethod(concat_categorical) def __init__(self, values, placement, ndim=None): # coerce to categorical if we can values = extract_array(values) assert isinstance(values, Categorical), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return Categorical @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def to_dense(self): # Categorical.get_values returns a DatetimeIndex for datetime # categories, so we can't simply use `np.asarray(self.values)` like # other types. return self.values._internal_get_values() def to_native_types(self, slicer=None, na_rep="", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isna(values) values = np.array(values, dtype="object") values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. Note that this CategoricalBlock._concat_same_type *may* not return a CategoricalBlock. When the categories in `to_concat` differ, this will return an object ndarray. If / when we decide we don't like that behavior: 1. Change Categorical._concat_same_type to use union_categoricals 2. Delete this method. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) # not using self.make_block_same_class as values can be object dtype return make_block( values, placement=placement or slice(0, len(values), 1), ndim=self.ndim ) def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: # TODO(CategoricalBlock.where): # This can all be deleted in favor of ExtensionBlock.where once # we enforce the deprecation. object_msg = ( "Implicitly converting categorical to object-dtype ndarray. " "One or more of the values in 'other' are not present in this " "categorical's categories. A future version of pandas will raise " "a ValueError when 'other' contains different categories.\n\n" "To preserve the current behavior, add the new categories to " "the categorical before calling 'where', or convert the " "categorical to a different dtype." ) try: # Attempt to do preserve categorical dtype. result = super().where(other, cond, align, errors, try_cast, axis) except (TypeError, ValueError): warnings.warn(object_msg, FutureWarning, stacklevel=6) result = self.astype(object).where( other, cond, align=align, errors=errors, try_cast=try_cast, axis=axis ) return result def replace( self, to_replace, value, inplace: bool = False, filter=None, regex: bool = False, convert: bool = True, ): inplace = validate_bool_kwarg(inplace, "inplace") result = self if inplace else self.copy() if filter is None: # replace was called on a series result.values.replace(to_replace, value, inplace=True) if convert: return result.convert(numeric=False, copy=not inplace) else: return result else: # replace was called on a DataFrame if not isna(value): result.values.add_categories(value, inplace=True) return super(CategoricalBlock, result).replace( to_replace, value, inplace, filter, regex, convert ) # ----------------------------------------------------------------- # Constructor Helpers def get_block_type(values, dtype=None): """ Find the appropriate Block subclass to use for the given values and dtype. Parameters ---------- values : ndarray-like dtype : numpy or pandas dtype Returns ------- cls : class, subclass of Block """ dtype = dtype or values.dtype vtype = dtype.type if is_sparse(dtype): # Need this first(ish) so that Sparse[datetime] is sparse cls = ExtensionBlock elif is_categorical(values): cls = CategoricalBlock elif issubclass(vtype, np.datetime64): assert not is_datetime64tz_dtype(values) cls = DatetimeBlock elif is_datetime64tz_dtype(values): cls = DatetimeTZBlock elif is_interval_dtype(dtype) or is_period_dtype(dtype): cls = ObjectValuesExtensionBlock elif is_extension_array_dtype(values): cls = ExtensionBlock elif issubclass(vtype, np.floating): cls = FloatBlock elif issubclass(vtype, np.timedelta64): assert issubclass(vtype, np.integer) cls = TimeDeltaBlock elif issubclass(vtype, np.complexfloating): cls = ComplexBlock elif issubclass(vtype, np.integer): cls = IntBlock elif dtype == np.bool_: cls = BoolBlock else: cls = ObjectBlock return cls def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=None): # Ensure that we don't allow PandasArray / PandasDtype in internals. # For now, blocks should be backed by ndarrays when possible. if isinstance(values, ABCPandasArray): values = values.to_numpy() if ndim and ndim > 1: values = np.atleast_2d(values) if isinstance(dtype, PandasDtype): dtype = dtype.numpy_dtype if fastpath is not None: # GH#19265 pyarrow is passing this warnings.warn( "fastpath argument is deprecated, will be removed in a future release.", FutureWarning, ) if klass is None: dtype = dtype or values.dtype klass = get_block_type(values, dtype) elif klass is DatetimeTZBlock and not is_datetime64tz_dtype(values): # TODO: This is no longer hit internally; does it need to be retained # for e.g. pyarrow? values = DatetimeArray._simple_new(values, dtype=dtype) return klass(values, ndim=ndim, placement=placement) # ----------------------------------------------------------------- def _extend_blocks(result, blocks=None): """ return a new extended blocks, givin the result """ from pandas.core.internals import BlockManager if blocks is None: blocks = [] if isinstance(result, list): for r in result: if isinstance(r, list): blocks.extend(r) else: blocks.append(r) elif isinstance(result, BlockManager): blocks.extend(result.blocks) else: blocks.append(result) return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim < ndim: if shape is None: shape = values.shape if not is_extension_array_dtype(values): # TODO: https://github.com/pandas-dev/pandas/issues/23023 # block.shape is incorrect for "2D" ExtensionArrays # We can't, and don't need to, reshape. values = values.reshape(tuple((1,) + shape)) return values def _merge_blocks(blocks, dtype=None, _can_consolidate=True): if len(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if len({b.dtype for b in blocks}) != 1: raise AssertionError("_merge_blocks are invalid!") dtype = blocks[0].dtype # FIXME: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) new_values = np.vstack([b.values for b in blocks]) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, placement=new_mgr_locs) # no merge return blocks def _safe_reshape(arr, new_shape): """ If possible, reshape `arr` to have shape `new_shape`, with a couple of exceptions (see gh-13012): 1) If `arr` is a ExtensionArray or Index, `arr` will be returned as is. 2) If `arr` is a Series, the `_values` attribute will be reshaped and returned. Parameters ---------- arr : array-like, object to be reshaped new_shape : int or tuple of ints, the new shape """ if isinstance(arr, ABCSeries): arr = arr._values if not isinstance(arr, ABCExtensionArray): arr = arr.reshape(new_shape) return arr def _putmask_smart(v, mask, n): """ Return a new ndarray, try to preserve dtype if possible. Parameters ---------- v : `values`, updated in-place (array like) mask : np.ndarray Applies to both sides (array like). n : `new values` either scalar or an array like aligned with `values` Returns ------- values : ndarray with updated values this *may* be a copy of the original See Also -------- ndarray.putmask """ # we cannot use np.asarray() here as we cannot have conversions # that numpy does when numeric are mixed with strings # n should be the length of the mask or a scalar here if not is_list_like(n): n = np.repeat(n, len(mask)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[mask] except TypeError: # TypeError: only integer scalar arrays can be converted to a scalar index pass else: # make sure that we have a nullable type # if we have nulls if not _isna_compat(v, nn[0]): pass elif not (is_float_dtype(nn.dtype) or is_integer_dtype(nn.dtype)): # only compare integers/floats pass elif not (is_float_dtype(v.dtype) or is_integer_dtype(v.dtype)): # only compare integers/floats pass else: # we ignore ComplexWarning here with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", np.ComplexWarning) nn_at = nn.astype(v.dtype) comp = nn == nn_at if is_list_like(comp) and comp.all(): nv = v.copy() nv[mask] = nn_at return nv n = np.asarray(n) def _putmask_preserve(nv, n): try: nv[mask] = n[mask] except (IndexError, ValueError): nv[mask] = n return nv # preserves dtype if possible if v.dtype.kind == n.dtype.kind: return _putmask_preserve(v, n) # change the dtype if needed dtype, _ = maybe_promote(n.dtype) if is_extension_array_dtype(v.dtype) and is_object_dtype(dtype): v = v._internal_get_values(dtype) else: v = v.astype(dtype) return _putmask_preserve(v, n) from datetime import datetime, timedelta import functools import inspect import re from typing import Any, List import warnings import numpy as np from pandas._libs import NaT, algos as libalgos, lib, tslib, writers from pandas._libs.index import convert_scalar import pandas._libs.internals as libinternals from pandas._libs.tslibs import Timedelta, conversion from pandas._libs.tslibs.timezones import tz_compare from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( astype_nansafe, find_common_type, infer_dtype_from, infer_dtype_from_scalar, maybe_downcast_numeric, maybe_downcast_to_dtype, maybe_infer_dtype_type, maybe_promote, maybe_upcast, soft_convert_objects, ) from pandas.core.dtypes.common import ( _NS_DTYPE, _TD_DTYPE, ensure_platform_int, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_interval_dtype, is_list_like, is_object_dtype, is_period_dtype, is_re, is_re_compilable, is_sparse, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.concat import concat_categorical, concat_datetime from pandas.core.dtypes.dtypes import CategoricalDtype, ExtensionDtype from pandas.core.dtypes.generic import ( ABCDataFrame, ABCExtensionArray, ABCPandasArray, ABCSeries, ) from pandas.core.dtypes.missing import ( _isna_compat, array_equivalent, is_valid_nat_for_dtype, isna, ) import pandas.core.algorithms as algos from pandas.core.arrays import Categorical, DatetimeArray, PandasDtype, TimedeltaArray from pandas.core.base import PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import ( check_setitem_lengths, is_empty_indexer, is_scalar_indexer, ) import pandas.core.missing as missing from pandas.core.nanops import nanpercentile from pandas.io.formats.printing import pprint_thing class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ["_mgr_locs", "values", "ndim"] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_datetimetz = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_extension = False _can_hold_na = False _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = "dense" _concatenator = staticmethod(np.concatenate) def __init__(self, values, placement, ndim=None): self.ndim = self._check_ndim(values, ndim) self.mgr_locs = placement self.values = values if self._validate_ndim and self.ndim and len(self.mgr_locs) != len(self.values): raise ValueError( "Wrong number of items passed {val}, placement implies " "{mgr}".format(val=len(self.values), mgr=len(self.mgr_locs)) ) def _check_ndim(self, values, ndim): """ ndim inference and validation. Infers ndim from 'values' if not provided to __init__. Validates that values.ndim and ndim are consistent if and only if the class variable '_validate_ndim' is True. Parameters ---------- values : array-like ndim : int or None Returns ------- ndim : int Raises ------ ValueError : the number of dimensions do not match """ if ndim is None: ndim = values.ndim if self._validate_ndim and values.ndim != ndim: msg = "Wrong number of dimensions. values.ndim != ndim [{} != {}]" raise ValueError(msg.format(values.ndim, ndim)) return ndim @property def _holder(self): """The array-like that can hold the underlying values. None for 'Block', overridden by subclasses that don't use an ndarray. """ return None @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if dtype is Categorical or dtype is CategoricalDtype: # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError("invalid type {0} for astype".format(dtype)) elif is_categorical_dtype(dtype): return True return False def external_values(self, dtype=None): """ return an outside world format, currently just the ndarray """ return self.values def internal_values(self, dtype=None): """ return an internal format, currently just the ndarray this should be the pure internal API format """ return self.values def get_values(self, dtype=None): """ return an internal format, currently just the ndarray this is often overridden to handle to_dense like operations """ if is_object_dtype(dtype): return self.values.astype(object) return self.values def get_block_values(self, dtype=None): """ This is used in the JSON C code """ return self.get_values(dtype=dtype) def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, libinternals.BlockPlacement): new_mgr_locs = libinternals.BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block(self, values, placement=None): """ Create a new block, with type inference propagate any values that are not specified """ if placement is None: placement = self.mgr_locs return make_block(values, placement=placement, ndim=self.ndim) def make_block_same_class(self, values, placement=None, ndim=None, dtype=None): """ Wrap given values in a block of same type as self. """ if dtype is not None: # issue 19431 fastparquet is passing this warnings.warn( "dtype argument is deprecated, will be removed in a future release.", FutureWarning, ) if placement is None: placement = self.mgr_locs if ndim is None: ndim = self.ndim return make_block( values, placement=placement, ndim=ndim, klass=self.__class__, dtype=dtype ) def __repr__(self) -> str: # don't want to print out all of the items here name = pprint_thing(self.__class__.__name__) if self._is_single_block: result = "{name}: {len} dtype: {dtype}".format( name=name, len=len(self), dtype=self.dtype ) else: shape = " x ".join(pprint_thing(s) for s in self.shape) result = "{name}: {index}, {shape}, dtype: {dtype}".format( name=name, index=pprint_thing(self.mgr_locs.indexer), shape=shape, dtype=self.dtype, ) return result def __len__(self) -> int: return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = libinternals.BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def dtype(self): return self.values.dtype @property def ftype(self): if getattr(self.values, "_pandas_ftype", False): dtype = self.dtype.subtype else: dtype = self.dtype return "{dtype}:{ftype}".format(dtype=dtype, ftype=self._ftype) def merge(self, other): return _merge_blocks([self, other]) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) return self.make_block_same_class( values, placement=placement or slice(0, len(values), 1) ) def iget(self, i): return self.values[i] def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs): """ apply the function to my values; return a block if we are not one """ with np.errstate(all="ignore"): result = func(self.values, **kwargs) if not isinstance(result, Block): result = self.make_block(values=_block_shape(result, ndim=self.ndim)) return result def fillna(self, value, limit=None, inplace=False, downcast=None): """ fillna on the block with the value. If we fail, then convert to ObjectBlock and try again """ inplace = validate_bool_kwarg(inplace, "inplace") mask = isna(self.values) if limit is not None: limit = libalgos._validate_limit(None, limit=limit) mask[mask.cumsum(self.ndim - 1) > limit] = False if not self._can_hold_na: if inplace: return self else: return self.copy() if self._can_hold_element(value): # equivalent: _try_coerce_args(value) would not raise blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) # we can't process the value, but nothing to do if not mask.any(): return self if inplace else self.copy() # operate column-by-column def f(mask, val, idx): block = self.coerce_to_target_dtype(value) # slice out our block if idx is not None: # i.e. self.ndim == 2 block = block.getitem_block(slice(idx, idx + 1)) return block.fillna(value, limit=limit, inplace=inplace, downcast=None) return self.split_and_operate(None, f, inplace) def split_and_operate(self, mask, f, inplace: bool): """ split the block per-column, and apply the callable f per-column, return a new block for each. Handle masking which will not change a block unless needed. Parameters ---------- mask : 2-d boolean mask f : callable accepting (1d-mask, 1d values, indexer) inplace : boolean Returns ------- list of blocks """ if mask is None: mask = np.broadcast_to(True, shape=self.shape) new_values = self.values def make_a_block(nv, ref_loc): if isinstance(nv, list): assert len(nv) == 1, nv assert isinstance(nv[0], Block) block = nv[0] else: # Put back the dimension that was taken from it and make # a block out of the result. nv = _block_shape(nv, ndim=self.ndim) block = self.make_block(values=nv, placement=ref_loc) return block # ndim == 1 if self.ndim == 1: if mask.any(): nv = f(mask, new_values, None) else: nv = new_values if inplace else new_values.copy() block = make_a_block(nv, self.mgr_locs) return [block] # ndim > 1 new_blocks = [] for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): nv = f(m, v, i) else: nv = v if inplace else v.copy() block = make_a_block(nv, [ref_loc]) new_blocks.append(block) return new_blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: # no need to downcast our float # unless indicated if downcast is None and ( self.is_float or self.is_timedelta or self.is_datetime ): return blocks return _extend_blocks([b.downcast(downcast) for b in blocks]) def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return self values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = "infer" nv = maybe_downcast_to_dtype(values, dtypes) return self.make_block(nv) # ndim > 1 if dtypes is None: return self if not (dtypes == "infer" or isinstance(dtypes, dict)): raise ValueError( "downcast must have a dictionary or 'infer' as its argument" ) elif dtypes != "infer": raise AssertionError("dtypes as dict is not supported yet") # operate column-by-column # this is expensive as it splits the blocks items-by-item def f(mask, val, idx): val = maybe_downcast_to_dtype(val, dtype="infer") return val return self.split_and_operate(None, f, False) def astype(self, dtype, copy=False, errors="raise", **kwargs): return self._astype(dtype, copy=copy, errors=errors, **kwargs) def _astype(self, dtype, copy=False, errors="raise", **kwargs): """Coerce to the new type Parameters ---------- dtype : str, dtype convertible copy : boolean, default False copy if indicated errors : str, {'raise', 'ignore'}, default 'ignore' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object Returns ------- Block """ errors_legal_values = ("raise", "ignore") if errors not in errors_legal_values: invalid_arg = ( "Expected value of kwarg 'errors' to be one of {}. " "Supplied value is '{}'".format(list(errors_legal_values), errors) ) raise ValueError(invalid_arg) if inspect.isclass(dtype) and issubclass(dtype, ExtensionDtype): msg = ( "Expected an instance of {}, but got the class instead. " "Try instantiating 'dtype'.".format(dtype.__name__) ) raise TypeError(msg) # may need to convert to categorical if self.is_categorical_astype(dtype): if is_categorical_dtype(self.values): # GH 10696/18593: update an existing categorical efficiently return self.make_block(self.values.astype(dtype, copy=copy)) return self.make_block(Categorical(self.values, dtype=dtype)) dtype = pandas_dtype(dtype) # astype processing if is_dtype_equal(self.dtype, dtype): if copy: return self.copy() return self # force the copy here if self.is_extension: # TODO: Should we try/except this astype? values = self.values.astype(dtype) else: if issubclass(dtype.type, str): # use native type formatting for datetime/tz/timedelta if self.is_datelike: values = self.to_native_types() # astype formatting else: values = self.get_values() else: values = self.get_values(dtype=dtype) # _astype_nansafe works fine with 1-d only vals1d = values.ravel() try: values = astype_nansafe(vals1d, dtype, copy=True) except (ValueError, TypeError): # e.g. astype_nansafe can fail on object-dtype of strings # trying to convert to float if errors == "raise": raise newb = self.copy() if copy else self return newb # TODO(extension) # should we make this attribute? if isinstance(values, np.ndarray): values = values.reshape(self.shape) newb = make_block(values, placement=self.mgr_locs, ndim=self.ndim) if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError( "cannot set astype for copy = [{copy}] for dtype " "({dtype} [{shape}]) to different shape " "({newb_dtype} [{newb_shape}])".format( copy=copy, dtype=self.dtype.name, shape=self.shape, newb_dtype=newb.dtype.name, newb_shape=newb.shape, ) ) return newb def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return self.copy() if copy else self def _can_hold_element(self, element: Any) -> bool: """ require the same dtype as ourselves """ dtype = self.values.dtype.type tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, dtype) return isinstance(element, dtype) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.get_values() if slicer is not None: values = values[:, slicer] mask = isna(values) if not self.is_object and not quoting: itemsize = writers.word_len(na_rep) values = values.astype("<U{size}".format(size=itemsize)) else: values = np.array(values, dtype="object") values[mask] = na_rep return values # block actions # def copy(self, deep=True): """ copy constructor """ values = self.values if deep: values = values.copy() return self.make_block_same_class(values, ndim=self.ndim) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): """replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility. """ inplace = validate_bool_kwarg(inplace, "inplace") original_to_replace = to_replace # If we cannot replace with own dtype, convert to ObjectBlock and # retry if not self._can_hold_element(to_replace): if not isinstance(to_replace, list): if inplace: return [self] return [self.copy()] to_replace = [x for x in to_replace if self._can_hold_element(x)] if not len(to_replace): # GH#28084 avoid costly checks since we can infer # that there is nothing to replace in this block if inplace: return [self] return [self.copy()] if len(to_replace) == 1: # _can_hold_element checks have reduced this back to the # scalar case and we can avoid a costly object cast return self.replace( to_replace[0], value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise AssertionError # try again with a compatible block block = self.astype(object) return block.replace( to_replace=to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) values = self.values if lib.is_scalar(to_replace) and isinstance(values, np.ndarray): # The only non-DatetimeLike class that also has a non-trivial # try_coerce_args is ObjectBlock, but that overrides replace, # so does not get here. to_replace = convert_scalar(values, to_replace) mask = missing.mask_missing(values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] try: blocks = self.putmask(mask, value, inplace=inplace) # Note: it is _not_ the case that self._can_hold_element(value) # is always true at this point. In particular, that can fail # for: # "2u" with bool-dtype, float-dtype # 0.5 with int64-dtype # np.nan with int64-dtype except (TypeError, ValueError): # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise assert not self._can_hold_element(value), value # try again with a compatible block block = self.astype(object) return block.replace( to_replace=original_to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) if convert: blocks = [b.convert(numeric=False, copy=not inplace) for b in blocks] return blocks def _replace_single(self, *args, **kwargs): """ no-op on a non-ObjectBlock """ return self if kwargs["inplace"] else self.copy() def setitem(self, indexer, value): """ Set the value inplace, returning a a maybe different typed block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ transpose = self.ndim == 2 # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce if block dtype can store value values = self.values if self._can_hold_element(value): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(value): value = convert_scalar(values, value) else: # current dtype cannot store value, coerce to common dtype find_dtype = False if hasattr(value, "dtype"): dtype = value.dtype find_dtype = True elif lib.is_scalar(value) and not isna(value): dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) find_dtype = True if find_dtype: dtype = find_common_type([values.dtype, dtype]) if not is_dtype_equal(self.dtype, dtype): b = self.astype(dtype) return b.setitem(indexer, value) # value must be storeable at this moment if is_extension_array_dtype(getattr(value, "dtype", None)): # We need to be careful not to allow through strings that # can be parsed to EADtypes arr_value = value else: arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = maybe_promote(arr_value.dtype) values = values.astype(dtype) if transpose: values = values.T # length checking check_setitem_lengths(indexer, value, values) if is_empty_indexer(indexer, arr_value): # GH#8669 empty indexers pass elif is_scalar_indexer(indexer, arr_value): # setting a single element for each dim and with a rhs that could # be e.g. a list; see GH#6043 values[indexer] = value # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif ( len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and arr_value.size == values.size ): values[indexer] = value try: values = values.astype(arr_value.dtype) except ValueError: pass # set else: values[indexer] = value if transpose: values = values.T block = self.make_block(values) return block def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False axis : int transpose : boolean Set to True if self is stored with axes reversed Returns ------- a list of new blocks, the result of the putmask """ new_values = self.values if inplace else self.values.copy() new = getattr(new, "values", new) mask = getattr(mask, "values", mask) # if we are passed a scalar None, convert it here if not is_list_like(new) and isna(new) and not self.is_object: # FIXME: make sure we have compatible NA new = self.fill_value if self._can_hold_element(new): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(new): new = convert_scalar(new_values, new) if transpose: new_values = new_values.T # If the default repeat behavior in np.putmask would go in the # wrong direction, then explicitly repeat and reshape new instead if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim and axis == 1: new = np.repeat(new, new_values.shape[-1]).reshape(self.shape) new = new.astype(new_values.dtype) # we require exact matches between the len of the # values we are setting (or is compat). np.putmask # doesn't check this and will simply truncate / pad # the output, but we want sane error messages # # TODO: this prob needs some better checking # for 2D cases if ( is_list_like(new) and np.any(mask[mask]) and getattr(new, "ndim", 1) == 1 ): if not ( mask.shape[-1] == len(new) or mask[mask].shape[-1] == len(new) or len(new) == 1 ): raise ValueError("cannot assign mismatch length to masked array") np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): if transpose: mask = mask.T if isinstance(new, np.ndarray): new = new.T axis = new_values.ndim - axis - 1 # Pseudo-broadcast if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim: new_shape = list(new.shape) new_shape.insert(axis, 1) new = new.reshape(tuple(new_shape)) # operate column-by-column def f(mask, val, idx): if idx is None: # ndim==1 case. n = new else: if isinstance(new, np.ndarray): n = np.squeeze(new[idx % new.shape[0]]) else: n = np.array(new) # type of the new block dtype, _ = maybe_promote(n.dtype) # we need to explicitly astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(val, mask, n) return nv new_blocks = self.split_and_operate(mask, f, inplace) return new_blocks if inplace: return [self] if transpose: new_values = new_values.T return [self.make_block(new_values)] def coerce_to_target_dtype(self, other): """ coerce the current block to a dtype compat for other we will return a block, possibly object, and not raise we can also safely try to coerce to the same dtype and will receive the same block """ # if we cannot then coerce to object dtype, _ = infer_dtype_from(other, pandas_dtype=True) if is_dtype_equal(self.dtype, dtype): return self if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype): # we don't upcast to bool return self.astype(object) elif (self.is_float or self.is_complex) and ( is_integer_dtype(dtype) or is_float_dtype(dtype) ): # don't coerce float/complex to int return self elif ( self.is_datetime or is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) ): # not a datetime if not ( (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype)) and self.is_datetime ): return self.astype(object) # don't upcast timezone with different timezone or no timezone mytz = getattr(self.dtype, "tz", None) othertz = getattr(dtype, "tz", None) if not tz_compare(mytz, othertz): return self.astype(object) raise AssertionError( "possible recursion in " "coerce_to_target_dtype: {} {}".format(self, other) ) elif self.is_timedelta or is_timedelta64_dtype(dtype): # not a timedelta if not (is_timedelta64_dtype(dtype) and self.is_timedelta): return self.astype(object) raise AssertionError( "possible recursion in " "coerce_to_target_dtype: {} {}".format(self, other) ) try: return self.astype(dtype) except (ValueError, TypeError, OverflowError): return self.astype(object) def interpolate( self, method="pad", axis=0, index=None, values=None, inplace=False, limit=None, limit_direction="forward", limit_area=None, fill_value=None, coerce=False, downcast=None, **kwargs, ): inplace = validate_bool_kwarg(inplace, "inplace") def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = missing.clean_fill_method(method) except ValueError: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill( method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast, ) # validate the interp method m = missing.clean_interp_method(method, **kwargs) r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate( method=m, index=index, values=values, axis=axis, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs, ) def _interpolate_with_fill( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, ): """ fillna but using the interpolate machinery """ inplace = validate_bool_kwarg(inplace, "inplace") # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] values = self.values if inplace else self.values.copy() # We only get here for non-ExtensionBlock fill_value = convert_scalar(self.values, fill_value) values = missing.interpolate_2d( values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype, ) blocks = [self.make_block_same_class(values, ndim=self.ndim)] return self._maybe_downcast(blocks, downcast) def _interpolate( self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, limit_direction="forward", limit_area=None, inplace=False, downcast=None, **kwargs, ): """ interpolate using scipy wrappers """ inplace = validate_bool_kwarg(inplace, "inplace") data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ("krogh", "piecewise_polynomial", "pchip"): if not index.is_monotonic: raise ValueError( "{0} interpolation requires that the " "index be monotonic.".format(method) ) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to missing.interpolate_1d return missing.interpolate_1d( index, x, method=method, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, bounds_error=False, **kwargs, ) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [self.make_block_same_class(interp_values)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ # algos.take_nd dispatches for DatetimeTZBlock, CategoricalBlock # so need to preserve types # sparse is treated like an ndarray, but needs .get_values() shaping values = self.values if fill_tuple is None: fill_value = self.fill_value allow_fill = False else: fill_value = fill_tuple[0] allow_fill = True new_values = algos.take_nd( values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value ) # Called from three places in managers, all of which satisfy # this assertion assert not (axis == 0 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs if not is_dtype_equal(new_values.dtype, self.dtype): return self.make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def diff(self, n: int, axis: int = 1) -> List["Block"]: """ return block for the diff of the values """ new_values = algos.diff(self.values, n, axis=axis) return [self.make_block(values=new_values)] def shift(self, periods, axis=0, fill_value=None): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = maybe_upcast(self.values, fill_value) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, ensure_platform_int(periods), axis=axis) axis_indexer = [slice(None)] * self.ndim if periods > 0: axis_indexer[axis] = slice(None, periods) else: axis_indexer[axis] = slice(periods, None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [self.make_block(new_values)] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond errors : str, {'raise', 'ignore'}, default 'raise' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object axis : int Returns ------- a new block(s), the result of the func """ import pandas.core.computation.expressions as expressions assert errors in ["raise", "ignore"] transpose = self.ndim == 2 values = self.values orig_other = other if transpose: values = values.T other = getattr(other, "_values", getattr(other, "values", other)) cond = getattr(cond, "values", cond) # If the default broadcasting would go in the wrong direction, then # explicitly reshape other instead if getattr(other, "ndim", 0) >= 1: if values.ndim - 1 == other.ndim and axis == 1: other = other.reshape(tuple(other.shape + (1,))) elif transpose and values.ndim == self.ndim - 1: cond = cond.T if not hasattr(cond, "shape"): raise ValueError("where must have a condition that is ndarray like") # our where function def func(cond, values, other): if not ( (self.is_integer or self.is_bool) and lib.is_float(other) and np.isnan(other) ): # np.where will cast integer array to floats in this case if not self._can_hold_element(other): raise TypeError if lib.is_scalar(other) and isinstance(values, np.ndarray): other = convert_scalar(values, other) fastres = expressions.where(cond, values, other) return fastres if cond.ravel().all(): result = values else: # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) try: result = func(cond, values, other) except TypeError: # we cannot coerce, return a compat dtype # we are explicitly ignoring errors block = self.coerce_to_target_dtype(other) blocks = block.where( orig_other, cond, align=align, errors=errors, try_cast=try_cast, axis=axis, ) return self._maybe_downcast(blocks, "infer") if self._can_hold_na or self.ndim == 1: if transpose: result = result.T return [self.make_block(result)] # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): taken = result.take(m.nonzero()[0], axis=axis) r = maybe_downcast_numeric(taken, self.dtype) nb = self.make_block(r.T, placement=self.mgr_locs[m]) result_blocks.append(nb) return result_blocks def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): """Return a list of unstacked blocks of self Parameters ---------- unstacker_func : callable Partially applied unstacker. new_columns : Index All columns of the unstacked BlockManager. n_rows : int Only used in ExtensionBlock._unstack fill_value : int Only used in ExtensionBlock._unstack Returns ------- blocks : list of Block New blocks of unstacked values. mask : array_like of bool The mask of columns of `blocks` we should keep. """ unstacker = unstacker_func(self.values.T) new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) new_values = new_values.T[mask] new_placement = new_placement[mask] blocks = [make_block(new_values, placement=new_placement)] return blocks, mask def quantile(self, qs, interpolation="linear", axis=0): """ compute the quantiles of the Parameters ---------- qs: a scalar or list of the quantiles to be computed interpolation: type of interpolation, default 'linear' axis: axis to compute, default 0 Returns ------- Block """ # We should always have ndim == 2 becase Series dispatches to DataFrame assert self.ndim == 2 values = self.get_values() is_empty = values.shape[axis] == 0 orig_scalar = not is_list_like(qs) if orig_scalar: # make list-like, unpack later qs = [qs] if is_empty: # create the array of na_values # 2d len(values) * len(qs) result = np.repeat( np.array([self.fill_value] * len(qs)), len(values) ).reshape(len(values), len(qs)) else: # asarray needed for Sparse, see GH#24600 mask = np.asarray(isna(values)) result = nanpercentile( values, np.array(qs) * 100, axis=axis, na_value=self.fill_value, mask=mask, ndim=values.ndim, interpolation=interpolation, ) result = np.array(result, copy=False) result = result.T if orig_scalar and not lib.is_scalar(result): # result could be scalar in case with is_empty and self.ndim == 1 assert result.shape[-1] == 1, result.shape result = result[..., 0] result = lib.item_from_zerodim(result) ndim = np.ndim(result) return make_block(result, placement=np.arange(len(result)), ndim=ndim) def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): if not regex: self = self.coerce_to_target_dtype(value) return self.putmask(mask, value, inplace=inplace) else: return self._replace_single( to_replace, value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) return self class NonConsolidatableMixIn: """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False def __init__(self, values, placement, ndim=None): """Initialize a non-consolidatable block. 'ndim' may be inferred from 'placement'. This will call continue to call __init__ for the other base classes mixed in with this Mixin. """ # Placement must be converted to BlockPlacement so that we can check # its length if not isinstance(placement, libinternals.BlockPlacement): placement = libinternals.BlockPlacement(placement) # Maybe infer ndim from placement if ndim is None: if len(placement) != 1: ndim = 1 else: ndim = 2 super().__init__(values, placement, ndim=ndim) @property def shape(self): if self.ndim == 1: return ((len(self.values)),) return (len(self.mgr_locs), len(self.values)) def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if not com.is_null_slice(col) and col != 0: raise IndexError("{0} only contains one item".format(self)) elif isinstance(col, slice): if col != slice(None): raise NotImplementedError(col) return self.values[[loc]] return self.values[loc] else: if col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False): """ putmask the data to the block; we must be a single block and not generate other blocks return the resulting block Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block, the result of the putmask """ inplace = validate_bool_kwarg(inplace, "inplace") # use block's copy logic. # .values may be an Index which does shallow copy by default new_values = self.values if inplace else self.copy().values if isinstance(new, np.ndarray) and len(new) == len(mask): new = new[mask] mask = _safe_reshape(mask, new_values.shape) new_values[mask] = new return [self.make_block(values=new_values)] def _get_unstack_items(self, unstacker, new_columns): """ Get the placement, values, and mask for a Block unstack. This is shared between ObjectBlock and ExtensionBlock. They differ in that ObjectBlock passes the values, while ExtensionBlock passes the dummy ndarray of positions to be used by a take later. Parameters ---------- unstacker : pandas.core.reshape.reshape._Unstacker new_columns : Index All columns of the unstacked BlockManager. Returns ------- new_placement : ndarray[int] The placement of the new columns in `new_columns`. new_values : Union[ndarray, ExtensionArray] The first return value from _Unstacker.get_new_values. mask : ndarray[bool] The second return value from _Unstacker.get_new_values. """ # shared with ExtensionBlock new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) return new_placement, new_values, mask class ExtensionBlock(NonConsolidatableMixIn, Block): """Block for holding extension types. Notes ----- This holds all 3rd-party extension array types. It's also the immediate parent class for our internal extension types' blocks, CategoricalBlock. ExtensionArrays are limited to 1-D. """ is_extension = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement, ndim) def _maybe_coerce_values(self, values): """ Unbox to an extension array. This will unbox an ExtensionArray stored in an Index or Series. ExtensionArrays pass through. No dtype coercion is done. Parameters ---------- values : Index, Series, ExtensionArray Returns ------- ExtensionArray """ return extract_array(values) @property def _holder(self): # For extension blocks, the holder is values-dependent. return type(self.values) @property def fill_value(self): # Used in reindex_indexer return self.values.dtype.na_value @property def _can_hold_na(self): # The default ExtensionArray._can_hold_na is True return self._holder._can_hold_na @property def is_view(self): """Extension arrays are never treated as views.""" return False @property def is_numeric(self): return self.values.dtype._is_numeric def setitem(self, indexer, value): """Set the value inplace, returning a same-typed block. This differs from Block.setitem by not allowing setitem to change the dtype of the Block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ if isinstance(indexer, tuple): # we are always 1-D indexer = indexer[0] check_setitem_lengths(indexer, value, self.values) self.values[indexer] = value return self def get_values(self, dtype=None): # ExtensionArrays must be iterable, so this works. values = np.asarray(self.values) if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def to_dense(self): return np.asarray(self.values) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """override to use ExtensionArray astype for the conversion""" values = self.values if slicer is not None: values = values[slicer] mask = isna(values) try: values = values.astype(str) values[mask] = na_rep except Exception: # eg SparseArray does not support setitem, needs to be converted to ndarray return super().to_native_types(slicer, na_rep, quoting, **kwargs) # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block. """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take(indexer, fill_value=fill_value, allow_fill=True) # Called from three places in managers, all of which satisfy # this assertion assert not (self.ndim == 1 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def _can_hold_element(self, element: Any) -> bool: # XXX: We may need to think about pushing this onto the array. # We're doing the same as CategoricalBlock here. return True def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have if isinstance(slicer, tuple) and len(slicer) == 2: if not com.is_null_slice(slicer[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") slicer = slicer[1] return self.values[slicer] def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._holder._concat_same_type([blk.values for blk in to_concat]) placement = placement or slice(0, len(values), 1) return self.make_block_same_class(values, ndim=self.ndim, placement=placement) def fillna(self, value, limit=None, inplace=False, downcast=None): values = self.values if inplace else self.values.copy() values = values.fillna(value=value, limit=limit) return [ self.make_block_same_class( values=values, placement=self.mgr_locs, ndim=self.ndim ) ] def interpolate( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, **kwargs ): values = self.values if inplace else self.values.copy() return self.make_block_same_class( values=values.fillna(value=fill_value, method=method, limit=limit), placement=self.mgr_locs, ) def shift( self, periods: int, axis: libinternals.BlockPlacement = 0, fill_value: Any = None, ) -> List["ExtensionBlock"]: """ Shift the block by `periods`. Dispatches to underlying ExtensionArray and re-boxes in an ExtensionBlock. """ return [ self.make_block_same_class( self.values.shift(periods=periods, fill_value=fill_value), placement=self.mgr_locs, ndim=self.ndim, ) ] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: if isinstance(other, ABCDataFrame): # ExtensionArrays are 1-D, so if we get here then # `other` should be a DataFrame with a single column. assert other.shape[1] == 1 other = other.iloc[:, 0] other = extract_array(other, extract_numpy=True) if isinstance(cond, ABCDataFrame): assert cond.shape[1] == 1 cond = cond.iloc[:, 0] cond = extract_array(cond, extract_numpy=True) if lib.is_scalar(other) and isna(other): # The default `other` for Series / Frame is np.nan # we want to replace that with the correct NA value # for the type other = self.dtype.na_value if is_sparse(self.values): # TODO(SparseArray.__setitem__): remove this if condition # We need to re-infer the type of the data after doing the # where, for cases where the subtypes don't match dtype = None else: dtype = self.dtype result = self.values.copy() icond = ~cond if lib.is_scalar(other): set_other = other else: set_other = other[icond] try: result[icond] = set_other except (NotImplementedError, TypeError): # NotImplementedError for class not implementing `__setitem__` # TypeError for SparseArray, which implements just to raise # a TypeError result = self._holder._from_sequence( np.where(cond, self.values, other), dtype=dtype ) return [self.make_block_same_class(result, placement=self.mgr_locs)] @property def _ftype(self): return getattr(self.values, "_pandas_ftype", Block._ftype) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): # ExtensionArray-safe unstack. # We override ObjectBlock._unstack, which unstacks directly on the # values of the array. For EA-backed blocks, this would require # converting to a 2-D ndarray of objects. # Instead, we unstack an ndarray of integer positions, followed by # a `take` on the actual values. dummy_arr = np.arange(n_rows) dummy_unstacker = functools.partial(unstacker_func, fill_value=-1) unstacker = dummy_unstacker(dummy_arr) new_placement, new_values, mask = self._get_unstack_items( unstacker, new_columns ) blocks = [ self.make_block_same_class( self.values.take(indices, allow_fill=True, fill_value=fill_value), [place], ) for indices, place in zip(new_values.T, new_placement) ] return blocks, mask class ObjectValuesExtensionBlock(ExtensionBlock): """ Block providing backwards-compatibility for `.values`. Used by PeriodArray and IntervalArray to ensure that Series[T].values is an ndarray of objects. """ def external_values(self, dtype=None): return self.values.astype(object) class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer)) and not issubclass( tipo.type, (np.datetime64, np.timedelta64) ) return isinstance( element, (float, int, np.floating, np.int_) ) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64), ) def to_native_types( self, slicer=None, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs, ): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] # see gh-13418: no special formatting is desired at the # output (important for appropriate 'quoting' behaviour), # so do not pass it through the FloatArrayFormatter if float_format is None and decimal == ".": mask = isna(values) if not quoting: values = values.astype(str) else: values = np.array(values, dtype="object") values[mask] = na_rep return values from pandas.io.formats.format import FloatArrayFormatter formatter = FloatArrayFormatter( values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False, ) return formatter.get_result_as_array() def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer, np.complexfloating)) return isinstance( element, (float, int, complex, np.float_, np.int_) ) and not isinstance(element, (bool, np.bool_)) def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return ( issubclass(tipo.type, np.integer) and not issubclass(tipo.type, (np.datetime64, np.timedelta64)) and self.dtype.itemsize >= tipo.itemsize ) return is_integer(element) def should_store(self, value): return is_integer_dtype(value) and value.dtype == self.dtype class DatetimeLikeBlockMixin: """Mixin class for DatetimeBlock, DatetimeTZBlock, and TimedeltaBlock.""" @property def _holder(self): return DatetimeArray @property def fill_value(self): return np.datetime64("NaT", "ns") def get_values(self, dtype=None): """ return object dtype as boxed values, such as Timestamps/Timedelta """ if is_object_dtype(dtype): values = self.values.ravel() result = self._holder(values).astype(object) return result.reshape(self.values.shape) return self.values class DatetimeBlock(DatetimeLikeBlockMixin, Block): __slots__ = () is_datetime = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement=placement, ndim=ndim) @property def _can_hold_na(self): return True def _maybe_coerce_values(self, values): """ Input validation for values passed to __init__. Ensure that we have datetime64ns, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : ndarray[datetime64ns] Overridden by DatetimeTZBlock. """ if values.dtype != _NS_DTYPE: values = conversion.ensure_datetime64ns(values) if isinstance(values, DatetimeArray): values = values._data assert isinstance(values, np.ndarray), type(values) return values def _astype(self, dtype, **kwargs): """ these automatically copy, so copy=True has no effect raise on an except if raise == True """ dtype = pandas_dtype(dtype) # if we are passed a datetime64[ns, tz] if is_datetime64tz_dtype(dtype): values = self.values if getattr(values, "tz", None) is None: values = DatetimeArray(values).tz_localize("UTC") values = values.tz_convert(dtype.tz) return self.make_block(values) # delegate return super()._astype(dtype=dtype, **kwargs) def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: if self.is_datetimetz: # require exact match, since non-nano does not exist return is_dtype_equal(tipo, self.dtype) or is_valid_nat_for_dtype( element, self.dtype ) # GH#27419 if we get a non-nano datetime64 object return is_datetime64_dtype(tipo) elif element is NaT: return True elif isinstance(element, datetime): if self.is_datetimetz: return tz_compare(element.tzinfo, self.dtype.tz) return element.tzinfo is None return is_valid_nat_for_dtype(element, self.dtype) def to_native_types( self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs ): """ convert to our native types format, slicing if desired """ values = self.values i8values = self.values.view("i8") if slicer is not None: values = values[..., slicer] i8values = i8values[..., slicer] from pandas.io.formats.format import _get_format_datetime64_from_values fmt = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime( i8values.ravel(), tz=getattr(self.values, "tz", None), format=fmt, na_rep=na_rep, ).reshape(i8values.shape) return np.atleast_2d(result) def should_store(self, value): return ( issubclass(value.dtype.type, np.datetime64) and not is_datetime64tz_dtype(value) and not is_extension_array_dtype(value) ) def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ values = conversion.ensure_datetime64ns(values, copy=False) self.values[locs] = values def external_values(self): return np.asarray(self.values.astype("datetime64[ns]", copy=False)) class DatetimeTZBlock(ExtensionBlock, DatetimeBlock): """ implement a datetime64 block with a tz attribute """ __slots__ = () is_datetimetz = True is_extension = True _can_hold_element = DatetimeBlock._can_hold_element to_native_types = DatetimeBlock.to_native_types fill_value = np.datetime64("NaT", "ns") @property def _holder(self): return DatetimeArray def _maybe_coerce_values(self, values): """Input validation for values passed to __init__. Ensure that we have datetime64TZ, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : DatetimeArray """ if not isinstance(values, self._holder): values = self._holder(values) if values.tz is None: raise ValueError("cannot create a DatetimeTZBlock without a tz") return values @property def is_view(self): """ return a boolean if I am possibly a view """ # check the ndarray values of the DatetimeIndex values return self.values._data.base is not None def get_values(self, dtype=None): """ Returns an ndarray of values. Parameters ---------- dtype : np.dtype Only `object`-like dtypes are respected here (not sure why). Returns ------- values : ndarray When ``dtype=object``, then and object-dtype ndarray of boxed values is returned. Otherwise, an M8[ns] ndarray is returned. DatetimeArray is always 1-d. ``get_values`` will reshape the return value to be the same dimensionality as the block. """ values = self.values if is_object_dtype(dtype): values = values.astype(object) values = np.asarray(values) if self.ndim == 2: # Ensure that our shape is correct for DataFrame. # ExtensionArrays are always 1-D, even in a DataFrame when # the analogous NumPy-backed column would be a 2-D ndarray. values = values.reshape(1, -1) return values def to_dense(self): # we request M8[ns] dtype here, even though it discards tzinfo, # as lots of code (e.g. anything using values_from_object) # expects that behavior. return np.asarray(self.values, dtype=_NS_DTYPE) def _slice(self, slicer): """ return a slice of my values """ if isinstance(slicer, tuple): col, loc = slicer if not com.is_null_slice(col) and col != 0: raise IndexError("{0} only contains one item".format(self)) return self.values[loc] return self.values[slicer] def diff(self, n: int, axis: int = 0) -> List["Block"]: """ 1st discrete difference. Parameters ---------- n : int Number of periods to diff. axis : int, default 0 Axis to diff upon. Returns ------- A list with a new TimeDeltaBlock. Notes ----- The arguments here are mimicking shift so they are called correctly by apply. """ if axis == 0: # Cannot currently calculate diff across multiple blocks since this # function is invoked via apply raise NotImplementedError new_values = (self.values - self.shift(n, axis=axis)[0].values).asi8 # Reshape the new_values like how algos.diff does for timedelta data new_values = new_values.reshape(1, len(new_values)) new_values = new_values.astype("timedelta64[ns]") return [TimeDeltaBlock(new_values, placement=self.mgr_locs.indexer)] def concat_same_type(self, to_concat, placement=None): # need to handle concat([tz1, tz2]) here, since DatetimeArray # only handles cases where all the tzs are the same. # Instead of placing the condition here, it could also go into the # is_uniform_join_units check, but I'm not sure what is better. if len({x.dtype for x in to_concat}) > 1: values = concat_datetime([x.values for x in to_concat]) placement = placement or slice(0, len(values), 1) if self.ndim > 1: values = np.atleast_2d(values) return ObjectBlock(values, ndim=self.ndim, placement=placement) return super().concat_same_type(to_concat, placement) def fillna(self, value, limit=None, inplace=False, downcast=None): # We support filling a DatetimeTZ with a `value` whose timezone # is different by coercing to object. if self._can_hold_element(value): return super().fillna(value, limit, inplace, downcast) # different timezones, or a non-tz return self.astype(object).fillna( value, limit=limit, inplace=inplace, downcast=downcast ) def setitem(self, indexer, value): # https://github.com/pandas-dev/pandas/issues/24020 # Need a dedicated setitem until #24020 (type promotion in setitem # for extension arrays) is designed and implemented. if self._can_hold_element(value) or ( isinstance(indexer, np.ndarray) and indexer.size == 0 ): return super().setitem(indexer, value) obj_vals = self.values.astype(object) newb = make_block( obj_vals, placement=self.mgr_locs, klass=ObjectBlock, ndim=self.ndim ) return newb.setitem(indexer, value) def equals(self, other) -> bool: # override for significant performance improvement if self.dtype != other.dtype or self.shape != other.shape: return False return (self.values.view("i8") == other.values.view("i8")).all() def quantile(self, qs, interpolation="linear", axis=0): naive = self.values.view("M8[ns]") # kludge for 2D block with 1D values naive = naive.reshape(self.shape) blk = self.make_block(naive) res_blk = blk.quantile(qs, interpolation=interpolation, axis=axis) # ravel is kludge for 2D block with 1D values, assumes column-like aware = self._holder(res_blk.values.ravel(), dtype=self.dtype) return self.make_block_same_class(aware, ndim=res_blk.ndim) class TimeDeltaBlock(DatetimeLikeBlockMixin, IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False fill_value = np.timedelta64("NaT", "ns") def __init__(self, values, placement, ndim=None): if values.dtype != _TD_DTYPE: values = conversion.ensure_timedelta64ns(values) if isinstance(values, TimedeltaArray): values = values._data assert isinstance(values, np.ndarray), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return TimedeltaArray def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.timedelta64) elif element is NaT: return True elif isinstance(element, (timedelta, np.timedelta64)): return True return is_valid_nat_for_dtype(element, self.dtype) def fillna(self, value, **kwargs): # allow filling with integers to be # interpreted as nanoseconds if is_integer(value): # Deprecation GH#24694, GH#19233 warnings.warn( "Passing integers to fillna is deprecated, will " "raise a TypeError in a future version. To retain " "the old behavior, pass pd.Timedelta(seconds=n) " "instead.", FutureWarning, stacklevel=6, ) value = Timedelta(value, unit="s") return super().fillna(value, **kwargs) def should_store(self, value): return issubclass( value.dtype.type, np.timedelta64 ) and not is_extension_array_dtype(value) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = "NaT" rvalues[mask] = na_rep imask = (~mask).ravel() # FIXME: # should use the formats.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array( [Timedelta(val)._repr_base(format="all") for val in values.ravel()[imask]], dtype=object, ) return rvalues def external_values(self, dtype=None): return np.asarray(self.values.astype("timedelta64[ns]", copy=False)) class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.bool_) return isinstance(element, (bool, np.bool_)) def should_store(self, value): return issubclass(value.dtype.type, np.bool_) and not is_extension_array_dtype( value ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): inplace = validate_bool_kwarg(inplace, "inplace") to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, placement=None, ndim=2): if issubclass(values.dtype.type, str): values = np.array(values, dtype=object) super().__init__(values, ndim=ndim, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # operate column-by-column def f(mask, val, idx): shape = val.shape values = soft_convert_objects( val.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy, ) if isinstance(values, np.ndarray): # TODO: allow EA once reshape is supported values = values.reshape(shape) values = _block_shape(values, ndim=self.ndim) return values if self.ndim == 2: blocks = self.split_and_operate(None, f, False) else: values = f(None, self.values.ravel(), None) blocks = [make_block(values, ndim=self.ndim, placement=self.mgr_locs)] return blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: if downcast is not None: return blocks # split and convert the blocks return _extend_blocks([b.convert(datetime=True, numeric=False) for b in blocks]) def _can_hold_element(self, element: Any) -> bool: return True def should_store(self, value): return not ( issubclass( value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_), ) or is_extension_array_dtype(value) ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): to_rep_is_list = is_list_like(to_replace) value_is_list = is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list result_blocks = [] blocks = [self] if not either_list and is_re(to_replace): return self._replace_single( to_replace, value, inplace=inplace, filter=filter, regex=True, convert=convert, ) elif not (either_list or regex): return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) elif both_lists: for to_rep, v in zip(to_replace, value): result_blocks = [] for b in blocks: result = b._replace_single( to_rep, v, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks elif to_rep_is_list and regex: for to_rep in to_replace: result_blocks = [] for b in blocks: result = b._replace_single( to_rep, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks return self._replace_single( to_replace, value, inplace=inplace, filter=filter, convert=convert, regex=regex, ) def _replace_single( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mask=None, ): """ Replace elements by the given value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. filter : list, optional regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- a new block, the result after replacing """ inplace = validate_bool_kwarg(inplace, "inplace") # to_replace is regex compilable to_rep_re = regex and is_re_compilable(to_replace) # regex is regex compilable regex_re = is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError( "only one of to_replace and regex can be regex compilable" ) # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string if is_re(to_replace): pattern = to_replace.pattern else: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex ) new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isna(value) or not isinstance(value, str): def re_replacer(s): if is_re(rx) and isinstance(s, str): return value if rx.search(s) is not None else s else: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): if is_re(rx) and isinstance(s, str): return rx.sub(value, s) else: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] if mask is None: new_values[filt] = f(new_values[filt]) else: new_values[filt][mask] = f(new_values[filt][mask]) # convert block = self.make_block(new_values) if convert: block = block.convert(numeric=False) return block def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): block = super()._replace_coerce( to_replace=to_replace, value=value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) if convert: block = [b.convert(numeric=False, copy=True) for b in block] return block if convert: return [self.convert(numeric=False, copy=True)] return self class CategoricalBlock(ExtensionBlock): __slots__ = () is_categorical = True _verify_integrity = True _can_hold_na = True _concatenator = staticmethod(concat_categorical) def __init__(self, values, placement, ndim=None): # coerce to categorical if we can values = extract_array(values) assert isinstance(values, Categorical), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return Categorical @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def to_dense(self): # Categorical.get_values returns a DatetimeIndex for datetime # categories, so we can't simply use `np.asarray(self.values)` like # other types. return self.values._internal_get_values() def to_native_types(self, slicer=None, na_rep="", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isna(values) values = np.array(values, dtype="object") values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. Note that this CategoricalBlock._concat_same_type *may* not return a CategoricalBlock. When the categories in `to_concat` differ, this will return an object ndarray. If / when we decide we don't like that behavior: 1. Change Categorical._concat_same_type to use union_categoricals 2. Delete this method. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) # not using self.make_block_same_class as values can be object dtype return make_block( values, placement=placement or slice(0, len(values), 1), ndim=self.ndim ) def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: # TODO(CategoricalBlock.where): # This can all be deleted in favor of ExtensionBlock.where once # we enforce the deprecation. object_msg = ( "Implicitly converting categorical to object-dtype ndarray. " "One or more of the values in 'other' are not present in this " "categorical's categories. A future version of pandas will raise " "a ValueError when 'other' contains different categories.\n\n" "To preserve the current behavior, add the new categories to " "the categorical before calling 'where', or convert the " "categorical to a different dtype." ) try: # Attempt to do preserve categorical dtype. result = super().where(other, cond, align, errors, try_cast, axis) except (TypeError, ValueError): warnings.warn(object_msg, FutureWarning, stacklevel=6) result = self.astype(object).where( other, cond, align=align, errors=errors, try_cast=try_cast, axis=axis ) return result def replace( self, to_replace, value, inplace: bool = False, filter=None, regex: bool = False, convert: bool = True, ): inplace = validate_bool_kwarg(inplace, "inplace") result = self if inplace else self.copy() if filter is None: # replace was called on a series result.values.replace(to_replace, value, inplace=True) if convert: return result.convert(numeric=False, copy=not inplace) else: return result else: # replace was called on a DataFrame if not isna(value): result.values.add_categories(value, inplace=True) return super(CategoricalBlock, result).replace( to_replace, value, inplace, filter, regex, convert ) # ----------------------------------------------------------------- # Constructor Helpers def get_block_type(values, dtype=None): """ Find the appropriate Block subclass to use for the given values and dtype. Parameters ---------- values : ndarray-like dtype : numpy or pandas dtype Returns ------- cls : class, subclass of Block """ dtype = dtype or values.dtype vtype = dtype.type if is_sparse(dtype): # Need this first(ish) so that Sparse[datetime] is sparse cls = ExtensionBlock elif is_categorical(values): cls = CategoricalBlock elif issubclass(vtype, np.datetime64): assert not is_datetime64tz_dtype(values) cls = DatetimeBlock elif is_datetime64tz_dtype(values): cls = DatetimeTZBlock elif is_interval_dtype(dtype) or is_period_dtype(dtype): cls = ObjectValuesExtensionBlock elif is_extension_array_dtype(values): cls = ExtensionBlock elif issubclass(vtype, np.floating): cls = FloatBlock elif issubclass(vtype, np.timedelta64): assert issubclass(vtype, np.integer) cls = TimeDeltaBlock elif issubclass(vtype, np.complexfloating): cls = ComplexBlock elif issubclass(vtype, np.integer): cls = IntBlock elif dtype == np.bool_: cls = BoolBlock else: cls = ObjectBlock return cls def make_block(values, placement, klass=None, ndim=None, dtype=None, fastpath=None): # Ensure that we don't allow PandasArray / PandasDtype in internals. # For now, blocks should be backed by ndarrays when possible. if isinstance(values, ABCPandasArray): values = values.to_numpy() if ndim and ndim > 1: values = np.atleast_2d(values) if isinstance(dtype, PandasDtype): dtype = dtype.numpy_dtype if fastpath is not None: # GH#19265 pyarrow is passing this warnings.warn( "fastpath argument is deprecated, will be removed in a future release.", FutureWarning, ) if klass is None: dtype = dtype or values.dtype klass = get_block_type(values, dtype) elif klass is DatetimeTZBlock and not is_datetime64tz_dtype(values): # TODO: This is no longer hit internally; does it need to be retained # for e.g. pyarrow? values = DatetimeArray._simple_new(values, dtype=dtype) return klass(values, ndim=ndim, placement=placement) # ----------------------------------------------------------------- def _extend_blocks(result, blocks=None): """ return a new extended blocks, givin the result """ from pandas.core.internals import BlockManager if blocks is None: blocks = [] if isinstance(result, list): for r in result: if isinstance(r, list): blocks.extend(r) else: blocks.append(r) elif isinstance(result, BlockManager): blocks.extend(result.blocks) else: blocks.append(result) return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim < ndim: if shape is None: shape = values.shape if not is_extension_array_dtype(values): # TODO: https://github.com/pandas-dev/pandas/issues/23023 # block.shape is incorrect for "2D" ExtensionArrays # We can't, and don't need to, reshape. values = values.reshape(tuple((1,) + shape)) return values def _merge_blocks(blocks, dtype=None, _can_consolidate=True): if len(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if len({b.dtype for b in blocks}) != 1: raise AssertionError("_merge_blocks are invalid!") dtype = blocks[0].dtype # FIXME: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) new_values = np.vstack([b.values for b in blocks]) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, placement=new_mgr_locs) # no merge return blocks def _safe_reshape(arr, new_shape): """ If possible, reshape `arr` to have shape `new_shape`, with a couple of exceptions (see gh-13012): 1) If `arr` is a ExtensionArray or Index, `arr` will be returned as is. 2) If `arr` is a Series, the `_values` attribute will be reshaped and returned. Parameters ---------- arr : array-like, object to be reshaped new_shape : int or tuple of ints, the new shape """ if isinstance(arr, ABCSeries): arr = arr._values if not isinstance(arr, ABCExtensionArray): arr = arr.reshape(new_shape) return arr def _putmask_smart(v, mask, n): """ Return a new ndarray, try to preserve dtype if possible. Parameters ---------- v : `values`, updated in-place (array like) mask : np.ndarray Applies to both sides (array like). n : `new values` either scalar or an array like aligned with `values` Returns ------- values : ndarray with updated values this *may* be a copy of the original See Also -------- ndarray.putmask """ # we cannot use np.asarray() here as we cannot have conversions # that numpy does when numeric are mixed with strings # n should be the length of the mask or a scalar here if not is_list_like(n): n = np.repeat(n, len(mask)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[mask] except TypeError: # TypeError: only integer scalar arrays can be converted to a scalar index pass else: # make sure that we have a nullable type # if we have nulls if not _isna_compat(v, nn[0]): pass elif not (is_float_dtype(nn.dtype) or is_integer_dtype(nn.dtype)): # only compare integers/floats pass elif not (is_float_dtype(v.dtype) or is_integer_dtype(v.dtype)): # only compare integers/floats pass else: # we ignore ComplexWarning here with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", np.ComplexWarning) nn_at = nn.astype(v.dtype) comp = nn == nn_at if is_list_like(comp) and comp.all(): nv = v.copy() nv[mask] = nn_at return nv n = np.asarray(n) def _putmask_preserve(nv, n): try: nv[mask] = n[mask] except (IndexError, ValueError): nv[mask] = n return nv # preserves dtype if possible if v.dtype.kind == n.dtype.kind: return _putmask_preserve(v, n) # change the dtype if needed dtype, _ = maybe_promote(n.dtype) if is_extension_array_dtype(v.dtype) and is_object_dtype(dtype): v = v._internal_get_values(dtype) else: v = v.astype(dtype) return _putmask_preserve(v, n)
BugsInPy/BugsInPy/temp/projects/pandas/bug-121-fixed/pandas/pandas/core/internals/blocks.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-121-buggy/pandas/pandas/core/internals/blocks.py
pandas-bug-63
from typing import Hashable, List, Tuple, Union import numpy as np from pandas._libs.indexing import _NDFrameIndexerBase from pandas._libs.lib import item_from_zerodim from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender from pandas.core.dtypes.common import ( is_float, is_integer, is_iterator, is_list_like, is_numeric_dtype, is_scalar, is_sequence, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCDataFrame, ABCMultiIndex, ABCSeries from pandas.core.dtypes.missing import _infer_fill_value, isna import pandas.core.common as com from pandas.core.indexers import ( check_array_indexer, is_list_like_indexer, length_of_indexer, ) from pandas.core.indexes.api import Index from pandas.core.indexes.base import InvalidIndexError # "null slice" _NS = slice(None, None) # the public IndexSlicerMaker class _IndexSlice: """ Create an object to more easily perform multi-index slicing. See Also -------- MultiIndex.remove_unused_levels : New MultiIndex with no unused levels. Notes ----- See :ref:`Defined Levels <advanced.shown_levels>` for further info on slicing a MultiIndex. Examples -------- >>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']]) >>> columns = ['foo', 'bar'] >>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))), index=midx, columns=columns) Using the default slice command: >>> dfmi.loc[(slice(None), slice('B0', 'B1')), :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 Using the IndexSlice class for a more intuitive command: >>> idx = pd.IndexSlice >>> dfmi.loc[idx[:, 'B0':'B1'], :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 """ def __getitem__(self, arg): return arg IndexSlice = _IndexSlice() class IndexingError(Exception): pass class IndexingMixin: """Mixin for adding .loc/.iloc/.at/.iat to Datafames and Series. """ @property def iloc(self) -> "_iLocIndexer": """ Purely integer-location based indexing for selection by position. ``.iloc[]`` is primarily integer position based (from ``0`` to ``length-1`` of the axis), but may also be used with a boolean array. Allowed inputs are: - An integer, e.g. ``5``. - A list or array of integers, e.g. ``[4, 3, 0]``. - A slice object with ints, e.g. ``1:7``. - A boolean array. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value. ``.iloc`` will raise ``IndexError`` if a requested indexer is out-of-bounds, except *slice* indexers which allow out-of-bounds indexing (this conforms with python/numpy *slice* semantics). See more at :ref:`Selection by Position <indexing.integer>`. See Also -------- DataFrame.iat : Fast integer location scalar accessor. DataFrame.loc : Purely label-location based indexer for selection by label. Series.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 **Indexing just the rows** With a scalar integer. >>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 With a list of integers. >>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'> >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 With a `slice` object. >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 With a boolean mask the same length as the index. >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 With a callable, useful in method chains. The `x` passed to the ``lambda`` is the DataFrame being sliced. This selects the rows whose index label even. >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 **Indexing both axes** You can mix the indexer types for the index and columns. Use ``:`` to select the entire axis. With scalar integers. >>> df.iloc[0, 1] 2 With lists of integers. >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 With `slice` objects. >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 With a boolean array whose length matches the columns. >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 With a callable function that expects the Series or DataFrame. >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000 """ return _iLocIndexer("iloc", self) @property def loc(self) -> "_LocIndexer": """ Access a group of rows and columns by label(s) or a boolean array. ``.loc[]`` is primarily label based, but may also be used with a boolean array. Allowed inputs are: - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index, and **never** as an integer position along the index). - A list or array of labels, e.g. ``['a', 'b', 'c']``. - A slice object with labels, e.g. ``'a':'f'``. .. warning:: Note that contrary to usual python slices, **both** the start and the stop are included - A boolean array of the same length as the axis being sliced, e.g. ``[True, False, True]``. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above) See more at :ref:`Selection by Label <indexing.label>` Raises ------ KeyError If any items are not found. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.iloc : Access group of rows and columns by integer position(s). DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Series.loc : Access group of values using labels. Examples -------- **Getting values** >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 Single label. Note this returns the row as a Series. >>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64 List of labels. Note using ``[[]]`` returns a DataFrame. >>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 Single label for row and column >>> df.loc['cobra', 'shield'] 2 Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64 Boolean list with the same length as the row axis >>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series >>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series with column labels specified >>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 Callable that returns a boolean Series >>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8 **Setting values** Set value for all items matching the list of labels >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50 Set value for an entire row >>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50 Set value for an entire column >>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50 Set value for rows matching callable condition >>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0 **Getting values on a DataFrame with an index that has integer labels** Another example using integers for the index >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8 Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8 **Getting values with a MultiIndex** A number of examples using a DataFrame with a MultiIndex >>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Single label. Note this returns a DataFrame with a single index. >>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4 Single index tuple. Note this returns a Series. >>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64 Single label for row and column. Similar to passing in a tuple, this returns a Series. >>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64 Single tuple. Note using ``[[]]`` returns a DataFrame. >>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4 Single tuple for the index with a single label for the column >>> df.loc[('cobra', 'mark i'), 'shield'] 2 Slice from index tuple to single label >>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Slice from index tuple to index tuple >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 """ return _LocIndexer("loc", self) @property def at(self) -> "_AtIndexer": """ Access a single value for a row/column label pair. Similar to ``loc``, in that both provide label-based lookups. Use ``at`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ KeyError If 'label' does not exist in DataFrame. See Also -------- DataFrame.iat : Access a single value for a row/column pair by integer position. DataFrame.loc : Access a group of rows and columns by label(s). Series.at : Access a single value using a label. Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 Get value at specified row/column pair >>> df.at[4, 'B'] 2 Set value at specified row/column pair >>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10 Get value within a Series >>> df.loc[5].at['B'] 4 """ return _AtIndexer("at", self) @property def iat(self) -> "_iAtIndexer": """ Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ IndexError When integer position is out of bounds. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s). Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] 1 Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] 10 Get value within a series >>> df.loc[0].iat[1] 2 """ return _iAtIndexer("iat", self) class _LocationIndexer(_NDFrameIndexerBase): _valid_types: str axis = None def __call__(self, axis=None): # we need to return a copy of ourselves new_self = type(self)(self.name, self.obj) if axis is not None: axis = self.obj._get_axis_number(axis) new_self.axis = axis return new_self def _get_label(self, label, axis: int): if self.ndim == 1: # for perf reasons we want to try _xs first # as its basically direct indexing # but will fail when the index is not present # see GH5667 return self.obj._xs(label, axis=axis) elif isinstance(label, tuple) and isinstance(label[axis], slice): raise IndexingError("no slices here, handle elsewhere") return self.obj._xs(label, axis=axis) def _get_setitem_indexer(self, key): if self.axis is not None: return self._convert_tuple(key, is_setter=True) ax = self.obj._get_axis(0) if isinstance(ax, ABCMultiIndex) and self.name != "iloc": try: return ax.get_loc(key) except (TypeError, KeyError, InvalidIndexError): # TypeError e.g. passed a bool pass if isinstance(key, tuple): try: return self._convert_tuple(key, is_setter=True) except IndexingError: pass if isinstance(key, range): return list(key) try: return self._convert_to_indexer(key, axis=0, is_setter=True) except TypeError as e: # invalid indexer type vs 'other' indexing errors if "cannot do" in str(e): raise raise IndexingError(key) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: key = com.apply_if_callable(key, self.obj) indexer = self._get_setitem_indexer(key) self._setitem_with_indexer(indexer, value) def _validate_key(self, key, axis: int): """ Ensure that key is valid for current indexer. Parameters ---------- key : scalar, slice or list-like Key requested. axis : int Dimension on which the indexing is being made. Raises ------ TypeError If the key (or some element of it) has wrong type. IndexError If the key (or some element of it) is out of bounds. KeyError If the key was not found. """ raise AbstractMethodError(self) def _has_valid_tuple(self, key: Tuple): """ Check the key for valid keys across my indexer. """ for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") try: self._validate_key(k, i) except ValueError: raise ValueError( "Location based indexing can only have " f"[{self._valid_types}] types" ) def _is_nested_tuple_indexer(self, tup: Tuple) -> bool: """ Returns ------- bool """ if any(isinstance(ax, ABCMultiIndex) for ax in self.obj.axes): return any(is_nested_tuple(tup, ax) for ax in self.obj.axes) return False def _convert_tuple(self, key, is_setter: bool = False): keyidx = [] if self.axis is not None: axis = self.obj._get_axis_number(self.axis) for i in range(self.ndim): if i == axis: keyidx.append( self._convert_to_indexer(key, axis=axis, is_setter=is_setter) ) else: keyidx.append(slice(None)) else: for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") idx = self._convert_to_indexer(k, axis=i, is_setter=is_setter) keyidx.append(idx) return tuple(keyidx) def _has_valid_setitem_indexer(self, indexer) -> bool: return True def _has_valid_positional_setitem_indexer(self, indexer) -> bool: """ Validate that a positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally. Returns ------- bool """ if isinstance(indexer, dict): raise IndexError(f"{self.name} cannot enlarge its target object") else: if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError( f"{self.name} cannot enlarge its target object" ) elif isinstance(i, dict): raise IndexError(f"{self.name} cannot enlarge its target object") return True def _setitem_with_indexer(self, indexer, value): self._has_valid_setitem_indexer(indexer) # also has the side effect of consolidating in-place from pandas import Series info_axis = self.obj._info_axis_number # maybe partial set take_split_path = self.obj._is_mixed_type # if there is only one block/type, still have to take split path # unless the block is one-dimensional or it can hold the value if not take_split_path and self.obj._data.blocks: (blk,) = self.obj._data.blocks if 1 < blk.ndim: # in case of dict, keys are indices val = list(value.values()) if isinstance(value, dict) else value take_split_path = not blk._can_hold_element(val) # if we have any multi-indexes that have non-trivial slices # (not null slices) then we must take the split path, xref # GH 10360, GH 27841 if isinstance(indexer, tuple) and len(indexer) == len(self.obj.axes): for i, ax in zip(indexer, self.obj.axes): if isinstance(ax, ABCMultiIndex) and not ( is_integer(i) or com.is_null_slice(i) ): take_split_path = True break if isinstance(indexer, tuple): nindexer = [] for i, idx in enumerate(indexer): if isinstance(idx, dict): # reindex the axis to the new value # and set inplace key, _ = convert_missing_indexer(idx) # if this is the items axes, then take the main missing # path first # this correctly sets the dtype and avoids cache issues # essentially this separates out the block that is needed # to possibly be modified if self.ndim > 1 and i == self.obj._info_axis_number: # add the new item, and set the value # must have all defined axes if we have a scalar # or a list-like on the non-info axes if we have a # list-like len_non_info_axes = ( len(_ax) for _i, _ax in enumerate(self.obj.axes) if _i != i ) if any(not l for l in len_non_info_axes): if not is_list_like_indexer(value): raise ValueError( "cannot set a frame with no " "defined index and a scalar" ) self.obj[key] = value return self.obj # add a new item with the dtype setup self.obj[key] = _infer_fill_value(value) new_indexer = convert_from_missing_indexer_tuple( indexer, self.obj.axes ) self._setitem_with_indexer(new_indexer, value) return self.obj # reindex the axis # make sure to clear the cache because we are # just replacing the block manager here # so the object is the same index = self.obj._get_axis(i) labels = index.insert(len(index), key) self.obj._data = self.obj.reindex(labels, axis=i)._data self.obj._maybe_update_cacher(clear=True) self.obj._is_copy = None nindexer.append(labels.get_loc(key)) else: nindexer.append(idx) indexer = tuple(nindexer) else: indexer, missing = convert_missing_indexer(indexer) if missing: return self._setitem_with_indexer_missing(indexer, value) # set item_labels = self.obj._get_axis(info_axis) # align and set the values if take_split_path: # Above we only set take_split_path to True for 2D cases assert self.ndim == 2 assert info_axis == 1 if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) if isinstance(value, ABCSeries): value = self._align_series(indexer, value) info_idx = indexer[info_axis] if is_integer(info_idx): info_idx = [info_idx] labels = item_labels[info_idx] # if we have a partial multiindex, then need to adjust the plane # indexer here if len(labels) == 1 and isinstance( self.obj[labels[0]].axes[0], ABCMultiIndex ): item = labels[0] obj = self.obj[item] index = obj.index idx = indexer[:info_axis][0] plane_indexer = tuple([idx]) + indexer[info_axis + 1 :] lplane_indexer = length_of_indexer(plane_indexer[0], index) # require that we are setting the right number of values that # we are indexing if ( is_list_like_indexer(value) and np.iterable(value) and lplane_indexer != len(value) ): if len(obj[idx]) != len(value): raise ValueError( "cannot set using a multi-index " "selection indexer with a different " "length than the value" ) # make sure we have an ndarray value = getattr(value, "values", value).ravel() # we can directly set the series here # as we select a slice indexer on the mi if isinstance(idx, slice): idx = index._convert_slice_indexer(idx) obj._consolidate_inplace() obj = obj.copy() obj._data = obj._data.setitem(indexer=tuple([idx]), value=value) self.obj[item] = obj return # non-mi else: plane_indexer = indexer[:info_axis] + indexer[info_axis + 1 :] plane_axis = self.obj.axes[:info_axis][0] lplane_indexer = length_of_indexer(plane_indexer[0], plane_axis) def setter(item, v): s = self.obj[item] pi = plane_indexer[0] if lplane_indexer == 1 else plane_indexer # perform the equivalent of a setitem on the info axis # as we have a null slice or a slice with full bounds # which means essentially reassign to the columns of a # multi-dim object # GH6149 (null slice), GH10408 (full bounds) if isinstance(pi, tuple) and all( com.is_null_slice(idx) or com.is_full_slice(idx, len(self.obj)) for idx in pi ): s = v else: # set the item, possibly having a dtype change s._consolidate_inplace() s = s.copy() s._data = s._data.setitem(indexer=pi, value=v) s._maybe_update_cacher(clear=True) # reset the sliced object if unique self.obj[item] = s # we need an iterable, with a ndim of at least 1 # eg. don't pass through np.array(0) if is_list_like_indexer(value) and getattr(value, "ndim", 1) > 0: # we have an equal len Frame if isinstance(value, ABCDataFrame): sub_indexer = list(indexer) multiindex_indexer = isinstance(labels, ABCMultiIndex) for item in labels: if item in value: sub_indexer[info_axis] = item v = self._align_series( tuple(sub_indexer), value[item], multiindex_indexer ) else: v = np.nan setter(item, v) # we have an equal len ndarray/convertible to our labels # hasattr first, to avoid coercing to ndarray without reason. # But we may be relying on the ndarray coercion to check ndim. # Why not just convert to an ndarray earlier on if needed? elif np.ndim(value) == 2: # note that this coerces the dtype if we are mixed # GH 7551 value = np.array(value, dtype=object) if len(labels) != value.shape[1]: raise ValueError( "Must have equal len keys and value " "when setting with an ndarray" ) for i, item in enumerate(labels): # setting with a list, recoerces setter(item, value[:, i].tolist()) # we have an equal len list/ndarray elif _can_do_equal_len( labels, value, plane_indexer, lplane_indexer, self.obj ): setter(labels[0], value) # per label values else: if len(labels) != len(value): raise ValueError( "Must have equal len keys and value " "when setting with an iterable" ) for item, v in zip(labels, value): setter(item, v) else: # scalar for item in labels: setter(item, value) else: if isinstance(indexer, tuple): indexer = maybe_convert_ix(*indexer) # if we are setting on the info axis ONLY # set using those methods to avoid block-splitting # logic here if ( len(indexer) > info_axis and is_integer(indexer[info_axis]) and all( com.is_null_slice(idx) for i, idx in enumerate(indexer) if i != info_axis ) and item_labels.is_unique ): self.obj[item_labels[indexer[info_axis]]] = value return if isinstance(value, (ABCSeries, dict)): # TODO(EA): ExtensionBlock.setitem this causes issues with # setting for extensionarrays that store dicts. Need to decide # if it's worth supporting that. value = self._align_series(indexer, Series(value)) elif isinstance(value, ABCDataFrame): value = self._align_frame(indexer, value) # check for chained assignment self.obj._check_is_chained_assignment_possible() # actually do the set self.obj._consolidate_inplace() self.obj._data = self.obj._data.setitem(indexer=indexer, value=value) self.obj._maybe_update_cacher(clear=True) def _setitem_with_indexer_missing(self, indexer, value): """ Insert new row(s) or column(s) into the Series or DataFrame. """ from pandas import Series # reindex the axis to the new value # and set inplace if self.ndim == 1: index = self.obj.index new_index = index.insert(len(index), indexer) # we have a coerced indexer, e.g. a float # that matches in an Int64Index, so # we will not create a duplicate index, rather # index to that element # e.g. 0.0 -> 0 # GH#12246 if index.is_unique: new_indexer = index.get_indexer([new_index[-1]]) if (new_indexer != -1).any(): return self._setitem_with_indexer(new_indexer, value) # this preserves dtype of the value new_values = Series([value])._values if len(self.obj._values): # GH#22717 handle casting compatibility that np.concatenate # does incorrectly new_values = concat_compat([self.obj._values, new_values]) self.obj._data = self.obj._constructor( new_values, index=new_index, name=self.obj.name )._data self.obj._maybe_update_cacher(clear=True) return self.obj elif self.ndim == 2: if not len(self.obj.columns): # no columns and scalar raise ValueError("cannot set a frame with no defined columns") if isinstance(value, ABCSeries): # append a Series value = value.reindex(index=self.obj.columns, copy=True) value.name = indexer else: # a list-list if is_list_like_indexer(value): # must have conforming columns if len(value) != len(self.obj.columns): raise ValueError("cannot set a row with mismatched columns") value = Series(value, index=self.obj.columns, name=indexer) self.obj._data = self.obj.append(value)._data self.obj._maybe_update_cacher(clear=True) return self.obj def _align_series(self, indexer, ser: ABCSeries, multiindex_indexer: bool = False): """ Parameters ---------- indexer : tuple, slice, scalar Indexer used to get the locations that will be set to `ser`. ser : pd.Series Values to assign to the locations specified by `indexer`. multiindex_indexer : boolean, optional Defaults to False. Should be set to True if `indexer` was from a `pd.MultiIndex`, to avoid unnecessary broadcasting. Returns ------- `np.array` of `ser` broadcast to the appropriate shape for assignment to the locations selected by `indexer` """ if isinstance(indexer, (slice, np.ndarray, list, Index)): indexer = tuple([indexer]) if isinstance(indexer, tuple): # flatten np.ndarray indexers def ravel(i): return i.ravel() if isinstance(i, np.ndarray) else i indexer = tuple(map(ravel, indexer)) aligners = [not com.is_null_slice(idx) for idx in indexer] sum_aligners = sum(aligners) single_aligner = sum_aligners == 1 is_frame = self.ndim == 2 obj = self.obj # are we a single alignable value on a non-primary # dim (e.g. panel: 1,2, or frame: 0) ? # hence need to align to a single axis dimension # rather that find all valid dims # frame if is_frame: single_aligner = single_aligner and aligners[0] # we have a frame, with multiple indexers on both axes; and a # series, so need to broadcast (see GH5206) if sum_aligners == self.ndim and all(is_sequence(_) for _ in indexer): ser = ser.reindex(obj.axes[0][indexer[0]], copy=True)._values # single indexer if len(indexer) > 1 and not multiindex_indexer: len_indexer = len(indexer[1]) ser = np.tile(ser, len_indexer).reshape(len_indexer, -1).T return ser for i, idx in enumerate(indexer): ax = obj.axes[i] # multiple aligners (or null slices) if is_sequence(idx) or isinstance(idx, slice): if single_aligner and com.is_null_slice(idx): continue new_ix = ax[idx] if not is_list_like_indexer(new_ix): new_ix = Index([new_ix]) else: new_ix = Index(new_ix) if ser.index.equals(new_ix) or not len(new_ix): return ser._values.copy() return ser.reindex(new_ix)._values # 2 dims elif single_aligner: # reindex along index ax = self.obj.axes[1] if ser.index.equals(ax) or not len(ax): return ser._values.copy() return ser.reindex(ax)._values elif is_scalar(indexer): ax = self.obj._get_axis(1) if ser.index.equals(ax): return ser._values.copy() return ser.reindex(ax)._values raise ValueError("Incompatible indexer with Series") def _align_frame(self, indexer, df: ABCDataFrame): is_frame = self.ndim == 2 if isinstance(indexer, tuple): idx, cols = None, None sindexers = [] for i, ix in enumerate(indexer): ax = self.obj.axes[i] if is_sequence(ix) or isinstance(ix, slice): if isinstance(ix, np.ndarray): ix = ix.ravel() if idx is None: idx = ax[ix] elif cols is None: cols = ax[ix] else: break else: sindexers.append(i) if idx is not None and cols is not None: if df.index.equals(idx) and df.columns.equals(cols): val = df.copy()._values else: val = df.reindex(idx, columns=cols)._values return val elif (isinstance(indexer, slice) or is_list_like_indexer(indexer)) and is_frame: ax = self.obj.index[indexer] if df.index.equals(ax): val = df.copy()._values else: # we have a multi-index and are trying to align # with a particular, level GH3738 if ( isinstance(ax, ABCMultiIndex) and isinstance(df.index, ABCMultiIndex) and ax.nlevels != df.index.nlevels ): raise TypeError( "cannot align on a multi-index with out " "specifying the join levels" ) val = df.reindex(index=ax)._values return val raise ValueError("Incompatible indexer with DataFrame") def _getitem_tuple(self, tup: Tuple): try: return self._getitem_lowerdim(tup) except IndexingError: pass # no multi-index, so validate all of the indexers self._has_valid_tuple(tup) # ugly hack for GH #836 if self._multi_take_opportunity(tup): return self._multi_take(tup) # no shortcut needed retval = self.obj for i, key in enumerate(tup): if com.is_null_slice(key): continue retval = getattr(retval, self.name)._getitem_axis(key, axis=i) return retval def _multi_take_opportunity(self, tup: Tuple) -> bool: """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed, must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- bool Whether the current indexing, can be passed through `_multi_take`. """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True def _multi_take(self, tup: Tuple): """ Create the indexers for the passed tuple of keys, and executes the take operation. This allows the take operation to be executed all at once, rather than once for each dimension. Improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- values: same type as the object being indexed """ # GH 836 o = self.obj d = { axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, o._AXIS_ORDERS) } return o._reindex_with_indexers(d, copy=True, allow_dups=True) def _handle_lowerdim_multi_index_axis0(self, tup: Tuple): # we have an axis0 multi-index, handle or raise axis = self.axis or 0 try: # fast path for series or for tup devoid of slices return self._get_label(tup, axis=axis) except TypeError: # slices are unhashable pass except KeyError as ek: # raise KeyError if number of indexers match # else IndexingError will be raised if len(tup) <= self.obj.index.nlevels and len(tup) > self.ndim: raise ek return None def _getitem_lowerdim(self, tup: Tuple): # we can directly get the axis result since the axis is specified if self.axis is not None: axis = self.obj._get_axis_number(self.axis) return self._getitem_axis(tup, axis=axis) # we may have a nested tuples indexer here if self._is_nested_tuple_indexer(tup): return self._getitem_nested_tuple(tup) # we maybe be using a tuple to represent multiple dimensions here ax0 = self.obj._get_axis(0) # ...but iloc should handle the tuple as simple integer-location # instead of checking it as multiindex representation (GH 13797) if isinstance(ax0, ABCMultiIndex) and self.name != "iloc": result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result if len(tup) > self.ndim: raise IndexingError("Too many indexers. handle elsewhere") for i, key in enumerate(tup): if is_label_like(key) or isinstance(key, tuple): section = self._getitem_axis(key, axis=i) # we have yielded a scalar ? if not is_list_like_indexer(section): return section elif section.ndim == self.ndim: # we're in the middle of slicing through a MultiIndex # revise the key wrt to `section` by inserting an _NS new_key = tup[:i] + (_NS,) + tup[i + 1 :] else: new_key = tup[:i] + tup[i + 1 :] # unfortunately need an odious kludge here because of # DataFrame transposing convention if ( isinstance(section, ABCDataFrame) and i > 0 and len(new_key) == 2 ): a, b = new_key new_key = b, a if len(new_key) == 1: new_key = new_key[0] # Slices should return views, but calling iloc/loc with a null # slice returns a new object. if com.is_null_slice(new_key): return section # This is an elided recursive call to iloc/loc/etc' return getattr(section, self.name)[new_key] raise IndexingError("not applicable") def _getitem_nested_tuple(self, tup: Tuple): # we have a nested tuple so have at least 1 multi-index level # we should be able to match up the dimensionality here # we have too many indexers for our dim, but have at least 1 # multi-index dimension, try to see if we have something like # a tuple passed to a series with a multi-index if len(tup) > self.ndim: result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result # this is a series with a multi-index specified a tuple of # selectors axis = self.axis or 0 return self._getitem_axis(tup, axis=axis) # handle the multi-axis by taking sections and reducing # this is iterative obj = self.obj axis = 0 for i, key in enumerate(tup): if com.is_null_slice(key): axis += 1 continue current_ndim = obj.ndim obj = getattr(obj, self.name)._getitem_axis(key, axis=axis) axis += 1 # if we have a scalar, we are done if is_scalar(obj) or not hasattr(obj, "ndim"): break # has the dim of the obj changed? # GH 7199 if obj.ndim < current_ndim: axis -= 1 return obj def _get_listlike_indexer(self, key, axis: int, raise_missing: bool = False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Targeted labels. axis: int Dimension on which the indexing is being made. raise_missing: bool, default False Whether to raise a KeyError if some labels were not found. Will be removed in the future, and then this method will always behave as if ``raise_missing=True``. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique). values : array-like Indexer for the return object, -1 denotes keys not found. """ o = self.obj ax = o._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: assert self.name == "loc" indexer, keyarr = ax._convert_listlike_indexer(key) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer(key, indexer, axis, raise_missing=raise_missing) return ax[indexer], indexer if ax.is_unique and not getattr(ax, "is_overlapping", False): indexer = ax.get_indexer_for(key) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, axis, raise_missing=raise_missing) return keyarr, indexer def _getitem_iterable(self, key, axis: int): """ Index current object with an an iterable collection of keys. Parameters ---------- key : iterable Targeted labels. axis: int Dimension on which the indexing is being made. Raises ------ KeyError If no key was found. Will change in the future to raise if not all keys were found. Returns ------- scalar, DataFrame, or Series: indexed value(s). """ # we assume that not com.is_bool_indexer(key), as that is # handled before we get here. self._validate_key(key, axis) # A collection of keys keyarr, indexer = self._get_listlike_indexer(key, axis, raise_missing=False) return self.obj._reindex_with_indexers( {axis: [keyarr, indexer]}, copy=True, allow_dups=True ) def _validate_read_indexer( self, key, indexer, axis: int, raise_missing: bool = False ): """ Check that indexer can be used to return a result. e.g. at least one element was found, unless the list of keys was actually empty. Parameters ---------- key : list-like Targeted labels (only used to show correct error message). indexer: array-like of booleans Indices corresponding to the key, (with -1 indicating not found). axis: int Dimension on which the indexing is being made. raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. """ ax = self.obj._get_axis(axis) if len(key) == 0: return # Count missing values: missing = (indexer < 0).sum() if missing: if missing == len(indexer): axis_name = self.obj._get_axis_name(axis) raise KeyError(f"None of [{key}] are in the [{axis_name}]") # We (temporarily) allow for some missing keys with .loc, except in # some cases (e.g. setting) in which "raise_missing" will be False if not (self.name == "loc" and not raise_missing): not_found = list(set(key) - set(ax)) raise KeyError(f"{not_found} not in index") # we skip the warning on Categorical/Interval # as this check is actually done (check for # non-missing values), but a bit later in the # code, so we want to avoid warning & then # just raising if not (ax.is_categorical() or ax.is_interval()): raise KeyError( "Passing list-likes to .loc or [] with any missing labels " "is no longer supported, see " "https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" # noqa:E501 ) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if type(key) is tuple: key = tuple(com.apply_if_callable(x, self.obj) for x in key) if self._is_scalar_access(key): try: return self.obj._get_value(*key, takeable=self._takeable) except (KeyError, IndexError, AttributeError): # AttributeError for IntervalTree get_value pass return self._getitem_tuple(key) else: # we by definition only have the 0th axis axis = self.axis or 0 maybe_callable = com.apply_if_callable(key, self.obj) return self._getitem_axis(maybe_callable, axis=axis) def _is_scalar_access(self, key: Tuple): raise NotImplementedError() def _getitem_axis(self, key, axis: int): raise NotImplementedError() def _getbool_axis(self, key, axis: int): # caller is responsible for ensuring non-None axis labels = self.obj._get_axis(axis) key = check_bool_indexer(labels, key) inds = key.nonzero()[0] return self.obj._take_with_is_copy(inds, axis=axis) @Appender(IndexingMixin.loc.__doc__) class _LocIndexer(_LocationIndexer): _takeable: bool = False _valid_types = ( "labels (MUST BE IN THE INDEX), slices of labels (BOTH " "endpoints included! Can be slices of integers if the " "index is integers), listlike of labels, boolean" ) @Appender(_LocationIndexer._validate_key.__doc__) def _validate_key(self, key, axis: int): # valid for a collection of labels (we check their presence later) # slice of labels (where start-end in labels) # slice of integers (only if in the labels) # boolean if isinstance(key, slice): return if com.is_bool_indexer(key): return if not is_list_like_indexer(key): labels = self.obj._get_axis(axis) labels._convert_scalar_indexer(key, kind="loc") def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_scalar(k): return False ax = self.obj.axes[i] if isinstance(ax, ABCMultiIndex): return False if isinstance(k, str) and ax._supports_partial_string_indexing: # partial string indexing, df.loc['2000', 'A'] # should not be considered scalar return False if not ax.is_unique: return False return True def _get_partial_string_timestamp_match_key(self, key, labels): """ Translate any partial string timestamp matches in key, returning the new key. (GH 10331) """ if isinstance(labels, ABCMultiIndex): if ( isinstance(key, str) and labels.levels[0]._supports_partial_string_indexing ): # Convert key '2016-01-01' to # ('2016-01-01'[, slice(None, None, None)]+) key = tuple([key] + [slice(None)] * (len(labels.levels) - 1)) if isinstance(key, tuple): # Convert (..., '2016-01-01', ...) in tuple to # (..., slice('2016-01-01', '2016-01-01', None), ...) new_key = [] for i, component in enumerate(key): if ( isinstance(component, str) and labels.levels[i]._supports_partial_string_indexing ): new_key.append(slice(component, component, None)) else: new_key.append(component) key = tuple(new_key) return key def _getitem_axis(self, key, axis: int): key = item_from_zerodim(key) if is_iterator(key): key = list(key) labels = self.obj._get_axis(axis) key = self._get_partial_string_timestamp_match_key(key, labels) if isinstance(key, slice): self._validate_key(key, axis) return self._get_slice_axis(key, axis=axis) elif com.is_bool_indexer(key): return self._getbool_axis(key, axis=axis) elif is_list_like_indexer(key): # convert various list-like indexers # to a list of keys # we will use the *values* of the object # and NOT the index if its a PandasObject if isinstance(labels, ABCMultiIndex): if isinstance(key, (ABCSeries, np.ndarray)) and key.ndim <= 1: # Series, or 0,1 ndim ndarray # GH 14730 key = list(key) elif isinstance(key, ABCDataFrame): # GH 15438 raise NotImplementedError( "Indexing a MultiIndex with a " "DataFrame key is not " "implemented" ) elif hasattr(key, "ndim") and key.ndim > 1: raise NotImplementedError( "Indexing a MultiIndex with a " "multidimensional key is not " "implemented" ) if ( not isinstance(key, tuple) and len(key) and not isinstance(key[0], tuple) ): key = tuple([key]) # an iterable multi-selection if not (isinstance(key, tuple) and isinstance(labels, ABCMultiIndex)): if hasattr(key, "ndim") and key.ndim > 1: raise ValueError("Cannot index with multidimensional key") return self._getitem_iterable(key, axis=axis) # nested tuple slicing if is_nested_tuple(key, labels): locs = labels.get_locs(key) indexer = [slice(None)] * self.ndim indexer[axis] = locs return self.obj.iloc[tuple(indexer)] # fall thru to straight lookup self._validate_key(key, axis) return self._get_label(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): """ This is pretty simple as we just have to deal with labels. """ # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer( slice_obj.start, slice_obj.stop, slice_obj.step, kind=self.name ) if isinstance(indexer, slice): return self.obj._slice(indexer, axis=axis, kind="iloc") else: # DatetimeIndex overrides Index.slice_indexer and may # return a DatetimeIndex instead of a slice object. return self.obj.take(indexer, axis=axis) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Convert indexing key into something we can use to do actual fancy indexing on a ndarray. Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ labels = self.obj._get_axis(axis) if isinstance(key, slice): return labels._convert_slice_indexer(key, kind="loc") if is_scalar(key): # try to find out correct indexer, if not type correct raise try: key = labels._convert_scalar_indexer(key, kind="loc") except TypeError: # but we will allow setting if not is_setter: raise # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(key) and not is_int_index if is_scalar(key) or isinstance(labels, ABCMultiIndex): # Otherwise get_loc will raise InvalidIndexError # if we are a label return me try: return labels.get_loc(key) except LookupError: if isinstance(key, tuple) and isinstance(labels, ABCMultiIndex): if len(key) == labels.nlevels: return {"key": key} raise except TypeError: pass except ValueError: if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition # always valid return {"key": key} if is_nested_tuple(key, labels): return labels.get_locs(key) elif is_list_like_indexer(key): if com.is_bool_indexer(key): key = check_bool_indexer(labels, key) (inds,) = key.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: return self._get_listlike_indexer(key, axis, raise_missing=True)[1] else: try: return labels.get_loc(key) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(key): return {"key": key} raise @Appender(IndexingMixin.iloc.__doc__) class _iLocIndexer(_LocationIndexer): _valid_types = ( "integer, integer slice (START point is INCLUDED, END " "point is EXCLUDED), listlike of integers, boolean array" ) _takeable = True def _validate_key(self, key, axis: int): if com.is_bool_indexer(key): if hasattr(key, "index") and isinstance(key.index, Index): if key.index.inferred_type == "integer": raise NotImplementedError( "iLocation based boolean " "indexing on an integer type " "is not available" ) raise ValueError( "iLocation based boolean indexing cannot use " "an indexable as a mask" ) return if isinstance(key, slice): return elif is_integer(key): self._validate_integer(key, axis) elif isinstance(key, tuple): # a tuple should already have been caught by this point # so don't treat a tuple as a valid indexer raise IndexingError("Too many indexers") elif is_list_like_indexer(key): arr = np.array(key) len_axis = len(self.obj._get_axis(axis)) # check that the key has a numeric dtype if not is_numeric_dtype(arr.dtype): raise IndexError(f".iloc requires numeric indexers, got {arr}") # check that the key does not exceed the maximum size of the index if len(arr) and (arr.max() >= len_axis or arr.min() < -len_axis): raise IndexError("positional indexers are out-of-bounds") else: raise ValueError(f"Can only index by location with a [{self._valid_types}]") def _has_valid_setitem_indexer(self, indexer): self._has_valid_positional_setitem_indexer(indexer) def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_integer(k): return False ax = self.obj.axes[i] if not ax.is_unique: return False return True def _validate_integer(self, key: int, axis: int) -> None: """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position. axis : int Desired axis. Raises ------ IndexError If 'key' is not a valid position in axis 'axis'. """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds") def _getitem_tuple(self, tup: Tuple): self._has_valid_tuple(tup) try: return self._getitem_lowerdim(tup) except IndexingError: pass retval = self.obj axis = 0 for i, key in enumerate(tup): if com.is_null_slice(key): axis += 1 continue retval = getattr(retval, self.name)._getitem_axis(key, axis=axis) # if the dim was reduced, then pass a lower-dim the next time if retval.ndim < self.ndim: # TODO: this is never reached in tests; can we confirm that # it is impossible? axis -= 1 # try to get for the next axis axis += 1 return retval def _get_list_axis(self, key, axis: int): """ Return Series values by list or array of integers. Parameters ---------- key : list-like positional indexer axis : int Returns ------- Series object Notes ----- `axis` can only be zero. """ try: return self.obj._take_with_is_copy(key, axis=axis) except IndexError: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds") def _getitem_axis(self, key, axis: int): if isinstance(key, slice): return self._get_slice_axis(key, axis=axis) if isinstance(key, list): key = np.asarray(key) if com.is_bool_indexer(key): self._validate_key(key, axis) return self._getbool_axis(key, axis=axis) # a list of integers elif is_list_like_indexer(key): return self._get_list_axis(key, axis=axis) # a single integer else: key = item_from_zerodim(key) if not is_integer(key): raise TypeError("Cannot index by location index with a non-integer key") # validate the location self._validate_integer(key, axis) return self.obj._ixs(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels._convert_slice_indexer(slice_obj, kind="iloc") return self.obj._slice(indexer, axis=axis, kind="iloc") def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Much simpler as we only have to deal with our valid types. """ labels = self.obj._get_axis(axis) # make need to convert a float key if isinstance(key, slice): return labels._convert_slice_indexer(key, kind="iloc") elif is_float(key): return labels._convert_scalar_indexer(key, kind="iloc") self._validate_key(key, axis) return key class _ScalarAccessIndexer(_NDFrameIndexerBase): """ Access scalars quickly. """ def _convert_key(self, key, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if not isinstance(key, tuple): # we could have a convertible item here (e.g. Timestamp) if not is_list_like_indexer(key): key = tuple([key]) else: raise ValueError("Invalid call for scalar access (getting)!") key = self._convert_key(key) return self.obj._get_value(*key, takeable=self._takeable) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: # scalar callable may return tuple key = com.apply_if_callable(key, self.obj) if not isinstance(key, tuple): key = _tuplify(self.ndim, key) if len(key) != self.ndim: raise ValueError("Not enough indexers for scalar access (setting)!") key = list(self._convert_key(key, is_setter=True)) self.obj._set_value(*key, value=value, takeable=self._takeable) @Appender(IndexingMixin.at.__doc__) class _AtIndexer(_ScalarAccessIndexer): _takeable = False def _convert_key(self, key, is_setter: bool = False): """ Require they keys to be the same type as the index. (so we don't fallback) """ # allow arbitrary setting if is_setter: return list(key) for ax, i in zip(self.obj.axes, key): if ax.is_integer(): if not is_integer(i): raise ValueError( "At based indexing on an integer index " "can only have integer indexers" ) else: if is_integer(i) and not (ax.holds_integer() or ax.is_floating()): raise ValueError( "At based indexing on an non-integer " "index can only have non-integer " "indexers" ) return key @Appender(IndexingMixin.iat.__doc__) class _iAtIndexer(_ScalarAccessIndexer): _takeable = True def _convert_key(self, key, is_setter: bool = False): """ Require integer args. (and convert to label arguments) """ for a, i in zip(self.obj.axes, key): if not is_integer(i): raise ValueError("iAt based indexing can only have integer indexers") return key def _tuplify(ndim: int, loc: Hashable) -> Tuple[Union[Hashable, slice], ...]: """ Given an indexer for the first dimension, create an equivalent tuple for indexing over all dimensions. Parameters ---------- ndim : int loc : object Returns ------- tuple """ _tup: List[Union[Hashable, slice]] _tup = [slice(None, None) for _ in range(ndim)] _tup[0] = loc return tuple(_tup) def convert_to_index_sliceable(obj, key): """ If we are index sliceable, then return my slicer, otherwise return None. """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind="getitem") elif isinstance(key, str): # we are an actual column if key in obj._data.items: return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx._supports_partial_string_indexing: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None def check_bool_indexer(index: Index, key) -> np.ndarray: """ Check if key is a valid boolean indexer for an object with such index and perform reindexing or conversion if needed. This function assumes that is_bool_indexer(key) == True. Parameters ---------- index : Index Index of the object on which the indexing is done. key : list-like Boolean indexer to check. Returns ------- np.array Resulting key. Raises ------ IndexError If the key does not have the same length as index. IndexingError If the index of the key is unalignable to index. """ result = key if isinstance(key, ABCSeries) and not key.index.equals(index): result = result.reindex(index) mask = isna(result._values) if mask.any(): raise IndexingError( "Unalignable boolean Series provided as " "indexer (index of the boolean Series and of " "the indexed object do not match)." ) result = result.astype(bool)._values else: # key might be sparse / object-dtype bool, check_array_indexer needs bool array result = np.asarray(result, dtype=bool) result = check_array_indexer(index, result) return result def convert_missing_indexer(indexer): """ Reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer["key"] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False def convert_from_missing_indexer_tuple(indexer, axes): """ Create a filtered indexer that doesn't have any missing indexers. """ def get_indexer(_i, _idx): return axes[_i].get_loc(_idx["key"]) if isinstance(_idx, dict) else _idx return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer)) def maybe_convert_ix(*args): """ We likely want to take the cross-product. """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args def is_nested_tuple(tup, labels) -> bool: """ Returns ------- bool """ # check for a compatible nested tuple and multiindexes among the axes if not isinstance(tup, tuple): return False for i, k in enumerate(tup): if is_list_like(k) or isinstance(k, slice): return isinstance(labels, ABCMultiIndex) return False def is_label_like(key) -> bool: """ Returns ------- bool """ # select a label or row return not isinstance(key, slice) and not is_list_like_indexer(key) def need_slice(obj) -> bool: """ Returns ------- bool """ return ( obj.start is not None or obj.stop is not None or (obj.step is not None and obj.step != 1) ) def _non_reducing_slice(slice_): """ Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = (ABCSeries, np.ndarray, Index, list, str) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part) -> bool: """ Returns ------- bool True if slice does *not* reduce, False if `part` is a tuple. """ # true when slice does *not* reduce, False when part is a tuple, # i.e. MultiIndex slice return (isinstance(part, slice) or is_list_like(part)) and not isinstance( part, tuple ) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_) def _maybe_numeric_slice(df, slice_, include_bool=False): """ Want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_ def _can_do_equal_len(labels, value, plane_indexer, lplane_indexer, obj) -> bool: """ Returns ------- bool True if we have an equal len settable. """ if not len(labels) == 1 or not np.iterable(value) or is_scalar(plane_indexer[0]): return False item = labels[0] index = obj[item].index values_len = len(value) # equal len list/ndarray if len(index) == values_len: return True elif lplane_indexer == values_len: return True return False from typing import Hashable, List, Tuple, Union import numpy as np from pandas._libs.indexing import _NDFrameIndexerBase from pandas._libs.lib import item_from_zerodim from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender from pandas.core.dtypes.common import ( is_float, is_integer, is_iterator, is_list_like, is_numeric_dtype, is_scalar, is_sequence, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCDataFrame, ABCMultiIndex, ABCSeries from pandas.core.dtypes.missing import _infer_fill_value, isna import pandas.core.common as com from pandas.core.indexers import ( check_array_indexer, is_list_like_indexer, length_of_indexer, ) from pandas.core.indexes.api import Index from pandas.core.indexes.base import InvalidIndexError # "null slice" _NS = slice(None, None) # the public IndexSlicerMaker class _IndexSlice: """ Create an object to more easily perform multi-index slicing. See Also -------- MultiIndex.remove_unused_levels : New MultiIndex with no unused levels. Notes ----- See :ref:`Defined Levels <advanced.shown_levels>` for further info on slicing a MultiIndex. Examples -------- >>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']]) >>> columns = ['foo', 'bar'] >>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))), index=midx, columns=columns) Using the default slice command: >>> dfmi.loc[(slice(None), slice('B0', 'B1')), :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 Using the IndexSlice class for a more intuitive command: >>> idx = pd.IndexSlice >>> dfmi.loc[idx[:, 'B0':'B1'], :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 """ def __getitem__(self, arg): return arg IndexSlice = _IndexSlice() class IndexingError(Exception): pass class IndexingMixin: """Mixin for adding .loc/.iloc/.at/.iat to Datafames and Series. """ @property def iloc(self) -> "_iLocIndexer": """ Purely integer-location based indexing for selection by position. ``.iloc[]`` is primarily integer position based (from ``0`` to ``length-1`` of the axis), but may also be used with a boolean array. Allowed inputs are: - An integer, e.g. ``5``. - A list or array of integers, e.g. ``[4, 3, 0]``. - A slice object with ints, e.g. ``1:7``. - A boolean array. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value. ``.iloc`` will raise ``IndexError`` if a requested indexer is out-of-bounds, except *slice* indexers which allow out-of-bounds indexing (this conforms with python/numpy *slice* semantics). See more at :ref:`Selection by Position <indexing.integer>`. See Also -------- DataFrame.iat : Fast integer location scalar accessor. DataFrame.loc : Purely label-location based indexer for selection by label. Series.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 **Indexing just the rows** With a scalar integer. >>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 With a list of integers. >>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'> >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 With a `slice` object. >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 With a boolean mask the same length as the index. >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 With a callable, useful in method chains. The `x` passed to the ``lambda`` is the DataFrame being sliced. This selects the rows whose index label even. >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 **Indexing both axes** You can mix the indexer types for the index and columns. Use ``:`` to select the entire axis. With scalar integers. >>> df.iloc[0, 1] 2 With lists of integers. >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 With `slice` objects. >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 With a boolean array whose length matches the columns. >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 With a callable function that expects the Series or DataFrame. >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000 """ return _iLocIndexer("iloc", self) @property def loc(self) -> "_LocIndexer": """ Access a group of rows and columns by label(s) or a boolean array. ``.loc[]`` is primarily label based, but may also be used with a boolean array. Allowed inputs are: - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index, and **never** as an integer position along the index). - A list or array of labels, e.g. ``['a', 'b', 'c']``. - A slice object with labels, e.g. ``'a':'f'``. .. warning:: Note that contrary to usual python slices, **both** the start and the stop are included - A boolean array of the same length as the axis being sliced, e.g. ``[True, False, True]``. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above) See more at :ref:`Selection by Label <indexing.label>` Raises ------ KeyError If any items are not found. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.iloc : Access group of rows and columns by integer position(s). DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Series.loc : Access group of values using labels. Examples -------- **Getting values** >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 Single label. Note this returns the row as a Series. >>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64 List of labels. Note using ``[[]]`` returns a DataFrame. >>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 Single label for row and column >>> df.loc['cobra', 'shield'] 2 Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64 Boolean list with the same length as the row axis >>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series >>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series with column labels specified >>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 Callable that returns a boolean Series >>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8 **Setting values** Set value for all items matching the list of labels >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50 Set value for an entire row >>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50 Set value for an entire column >>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50 Set value for rows matching callable condition >>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0 **Getting values on a DataFrame with an index that has integer labels** Another example using integers for the index >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8 Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8 **Getting values with a MultiIndex** A number of examples using a DataFrame with a MultiIndex >>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Single label. Note this returns a DataFrame with a single index. >>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4 Single index tuple. Note this returns a Series. >>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64 Single label for row and column. Similar to passing in a tuple, this returns a Series. >>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64 Single tuple. Note using ``[[]]`` returns a DataFrame. >>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4 Single tuple for the index with a single label for the column >>> df.loc[('cobra', 'mark i'), 'shield'] 2 Slice from index tuple to single label >>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Slice from index tuple to index tuple >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 """ return _LocIndexer("loc", self) @property def at(self) -> "_AtIndexer": """ Access a single value for a row/column label pair. Similar to ``loc``, in that both provide label-based lookups. Use ``at`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ KeyError If 'label' does not exist in DataFrame. See Also -------- DataFrame.iat : Access a single value for a row/column pair by integer position. DataFrame.loc : Access a group of rows and columns by label(s). Series.at : Access a single value using a label. Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 Get value at specified row/column pair >>> df.at[4, 'B'] 2 Set value at specified row/column pair >>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10 Get value within a Series >>> df.loc[5].at['B'] 4 """ return _AtIndexer("at", self) @property def iat(self) -> "_iAtIndexer": """ Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ IndexError When integer position is out of bounds. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s). Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] 1 Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] 10 Get value within a series >>> df.loc[0].iat[1] 2 """ return _iAtIndexer("iat", self) class _LocationIndexer(_NDFrameIndexerBase): _valid_types: str axis = None def __call__(self, axis=None): # we need to return a copy of ourselves new_self = type(self)(self.name, self.obj) if axis is not None: axis = self.obj._get_axis_number(axis) new_self.axis = axis return new_self def _get_label(self, label, axis: int): if self.ndim == 1: # for perf reasons we want to try _xs first # as its basically direct indexing # but will fail when the index is not present # see GH5667 return self.obj._xs(label, axis=axis) elif isinstance(label, tuple) and isinstance(label[axis], slice): raise IndexingError("no slices here, handle elsewhere") return self.obj._xs(label, axis=axis) def _get_setitem_indexer(self, key): if self.axis is not None: return self._convert_tuple(key, is_setter=True) ax = self.obj._get_axis(0) if isinstance(ax, ABCMultiIndex) and self.name != "iloc": try: return ax.get_loc(key) except (TypeError, KeyError, InvalidIndexError): # TypeError e.g. passed a bool pass if isinstance(key, tuple): try: return self._convert_tuple(key, is_setter=True) except IndexingError: pass if isinstance(key, range): return list(key) try: return self._convert_to_indexer(key, axis=0, is_setter=True) except TypeError as e: # invalid indexer type vs 'other' indexing errors if "cannot do" in str(e): raise raise IndexingError(key) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: key = com.apply_if_callable(key, self.obj) indexer = self._get_setitem_indexer(key) self._setitem_with_indexer(indexer, value) def _validate_key(self, key, axis: int): """ Ensure that key is valid for current indexer. Parameters ---------- key : scalar, slice or list-like Key requested. axis : int Dimension on which the indexing is being made. Raises ------ TypeError If the key (or some element of it) has wrong type. IndexError If the key (or some element of it) is out of bounds. KeyError If the key was not found. """ raise AbstractMethodError(self) def _has_valid_tuple(self, key: Tuple): """ Check the key for valid keys across my indexer. """ for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") try: self._validate_key(k, i) except ValueError: raise ValueError( "Location based indexing can only have " f"[{self._valid_types}] types" ) def _is_nested_tuple_indexer(self, tup: Tuple) -> bool: """ Returns ------- bool """ if any(isinstance(ax, ABCMultiIndex) for ax in self.obj.axes): return any(is_nested_tuple(tup, ax) for ax in self.obj.axes) return False def _convert_tuple(self, key, is_setter: bool = False): keyidx = [] if self.axis is not None: axis = self.obj._get_axis_number(self.axis) for i in range(self.ndim): if i == axis: keyidx.append( self._convert_to_indexer(key, axis=axis, is_setter=is_setter) ) else: keyidx.append(slice(None)) else: for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") idx = self._convert_to_indexer(k, axis=i, is_setter=is_setter) keyidx.append(idx) return tuple(keyidx) def _has_valid_setitem_indexer(self, indexer) -> bool: return True def _has_valid_positional_setitem_indexer(self, indexer) -> bool: """ Validate that a positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally. Returns ------- bool """ if isinstance(indexer, dict): raise IndexError(f"{self.name} cannot enlarge its target object") else: if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError( f"{self.name} cannot enlarge its target object" ) elif isinstance(i, dict): raise IndexError(f"{self.name} cannot enlarge its target object") return True def _setitem_with_indexer(self, indexer, value): self._has_valid_setitem_indexer(indexer) # also has the side effect of consolidating in-place from pandas import Series info_axis = self.obj._info_axis_number # maybe partial set take_split_path = self.obj._is_mixed_type # if there is only one block/type, still have to take split path # unless the block is one-dimensional or it can hold the value if not take_split_path and self.obj._data.blocks: (blk,) = self.obj._data.blocks if 1 < blk.ndim: # in case of dict, keys are indices val = list(value.values()) if isinstance(value, dict) else value take_split_path = not blk._can_hold_element(val) # if we have any multi-indexes that have non-trivial slices # (not null slices) then we must take the split path, xref # GH 10360, GH 27841 if isinstance(indexer, tuple) and len(indexer) == len(self.obj.axes): for i, ax in zip(indexer, self.obj.axes): if isinstance(ax, ABCMultiIndex) and not ( is_integer(i) or com.is_null_slice(i) ): take_split_path = True break if isinstance(indexer, tuple): nindexer = [] for i, idx in enumerate(indexer): if isinstance(idx, dict): # reindex the axis to the new value # and set inplace key, _ = convert_missing_indexer(idx) # if this is the items axes, then take the main missing # path first # this correctly sets the dtype and avoids cache issues # essentially this separates out the block that is needed # to possibly be modified if self.ndim > 1 and i == self.obj._info_axis_number: # add the new item, and set the value # must have all defined axes if we have a scalar # or a list-like on the non-info axes if we have a # list-like len_non_info_axes = ( len(_ax) for _i, _ax in enumerate(self.obj.axes) if _i != i ) if any(not l for l in len_non_info_axes): if not is_list_like_indexer(value): raise ValueError( "cannot set a frame with no " "defined index and a scalar" ) self.obj[key] = value return self.obj # add a new item with the dtype setup self.obj[key] = _infer_fill_value(value) new_indexer = convert_from_missing_indexer_tuple( indexer, self.obj.axes ) self._setitem_with_indexer(new_indexer, value) return self.obj # reindex the axis # make sure to clear the cache because we are # just replacing the block manager here # so the object is the same index = self.obj._get_axis(i) labels = index.insert(len(index), key) self.obj._data = self.obj.reindex(labels, axis=i)._data self.obj._maybe_update_cacher(clear=True) self.obj._is_copy = None nindexer.append(labels.get_loc(key)) else: nindexer.append(idx) indexer = tuple(nindexer) else: indexer, missing = convert_missing_indexer(indexer) if missing: return self._setitem_with_indexer_missing(indexer, value) # set item_labels = self.obj._get_axis(info_axis) # align and set the values if take_split_path: # Above we only set take_split_path to True for 2D cases assert self.ndim == 2 assert info_axis == 1 if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) if isinstance(value, ABCSeries): value = self._align_series(indexer, value) info_idx = indexer[info_axis] if is_integer(info_idx): info_idx = [info_idx] labels = item_labels[info_idx] # if we have a partial multiindex, then need to adjust the plane # indexer here if len(labels) == 1 and isinstance( self.obj[labels[0]].axes[0], ABCMultiIndex ): item = labels[0] obj = self.obj[item] index = obj.index idx = indexer[:info_axis][0] plane_indexer = tuple([idx]) + indexer[info_axis + 1 :] lplane_indexer = length_of_indexer(plane_indexer[0], index) # require that we are setting the right number of values that # we are indexing if ( is_list_like_indexer(value) and np.iterable(value) and lplane_indexer != len(value) ): if len(obj[idx]) != len(value): raise ValueError( "cannot set using a multi-index " "selection indexer with a different " "length than the value" ) # make sure we have an ndarray value = getattr(value, "values", value).ravel() # we can directly set the series here # as we select a slice indexer on the mi if isinstance(idx, slice): idx = index._convert_slice_indexer(idx) obj._consolidate_inplace() obj = obj.copy() obj._data = obj._data.setitem(indexer=tuple([idx]), value=value) self.obj[item] = obj return # non-mi else: plane_indexer = indexer[:info_axis] + indexer[info_axis + 1 :] plane_axis = self.obj.axes[:info_axis][0] lplane_indexer = length_of_indexer(plane_indexer[0], plane_axis) def setter(item, v): s = self.obj[item] pi = plane_indexer[0] if lplane_indexer == 1 else plane_indexer # perform the equivalent of a setitem on the info axis # as we have a null slice or a slice with full bounds # which means essentially reassign to the columns of a # multi-dim object # GH6149 (null slice), GH10408 (full bounds) if isinstance(pi, tuple) and all( com.is_null_slice(idx) or com.is_full_slice(idx, len(self.obj)) for idx in pi ): s = v else: # set the item, possibly having a dtype change s._consolidate_inplace() s = s.copy() s._data = s._data.setitem(indexer=pi, value=v) s._maybe_update_cacher(clear=True) # reset the sliced object if unique self.obj[item] = s # we need an iterable, with a ndim of at least 1 # eg. don't pass through np.array(0) if is_list_like_indexer(value) and getattr(value, "ndim", 1) > 0: # we have an equal len Frame if isinstance(value, ABCDataFrame): sub_indexer = list(indexer) multiindex_indexer = isinstance(labels, ABCMultiIndex) for item in labels: if item in value: sub_indexer[info_axis] = item v = self._align_series( tuple(sub_indexer), value[item], multiindex_indexer ) else: v = np.nan setter(item, v) # we have an equal len ndarray/convertible to our labels # hasattr first, to avoid coercing to ndarray without reason. # But we may be relying on the ndarray coercion to check ndim. # Why not just convert to an ndarray earlier on if needed? elif np.ndim(value) == 2: # note that this coerces the dtype if we are mixed # GH 7551 value = np.array(value, dtype=object) if len(labels) != value.shape[1]: raise ValueError( "Must have equal len keys and value " "when setting with an ndarray" ) for i, item in enumerate(labels): # setting with a list, recoerces setter(item, value[:, i].tolist()) # we have an equal len list/ndarray elif _can_do_equal_len( labels, value, plane_indexer, lplane_indexer, self.obj ): setter(labels[0], value) # per label values else: if len(labels) != len(value): raise ValueError( "Must have equal len keys and value " "when setting with an iterable" ) for item, v in zip(labels, value): setter(item, v) else: # scalar for item in labels: setter(item, value) else: if isinstance(indexer, tuple): indexer = maybe_convert_ix(*indexer) # if we are setting on the info axis ONLY # set using those methods to avoid block-splitting # logic here if ( len(indexer) > info_axis and is_integer(indexer[info_axis]) and all( com.is_null_slice(idx) for i, idx in enumerate(indexer) if i != info_axis ) and item_labels.is_unique ): self.obj[item_labels[indexer[info_axis]]] = value return if isinstance(value, (ABCSeries, dict)): # TODO(EA): ExtensionBlock.setitem this causes issues with # setting for extensionarrays that store dicts. Need to decide # if it's worth supporting that. value = self._align_series(indexer, Series(value)) elif isinstance(value, ABCDataFrame): value = self._align_frame(indexer, value) # check for chained assignment self.obj._check_is_chained_assignment_possible() # actually do the set self.obj._consolidate_inplace() self.obj._data = self.obj._data.setitem(indexer=indexer, value=value) self.obj._maybe_update_cacher(clear=True) def _setitem_with_indexer_missing(self, indexer, value): """ Insert new row(s) or column(s) into the Series or DataFrame. """ from pandas import Series # reindex the axis to the new value # and set inplace if self.ndim == 1: index = self.obj.index new_index = index.insert(len(index), indexer) # we have a coerced indexer, e.g. a float # that matches in an Int64Index, so # we will not create a duplicate index, rather # index to that element # e.g. 0.0 -> 0 # GH#12246 if index.is_unique: new_indexer = index.get_indexer([new_index[-1]]) if (new_indexer != -1).any(): return self._setitem_with_indexer(new_indexer, value) # this preserves dtype of the value new_values = Series([value])._values if len(self.obj._values): # GH#22717 handle casting compatibility that np.concatenate # does incorrectly new_values = concat_compat([self.obj._values, new_values]) self.obj._data = self.obj._constructor( new_values, index=new_index, name=self.obj.name )._data self.obj._maybe_update_cacher(clear=True) return self.obj elif self.ndim == 2: if not len(self.obj.columns): # no columns and scalar raise ValueError("cannot set a frame with no defined columns") if isinstance(value, ABCSeries): # append a Series value = value.reindex(index=self.obj.columns, copy=True) value.name = indexer else: # a list-list if is_list_like_indexer(value): # must have conforming columns if len(value) != len(self.obj.columns): raise ValueError("cannot set a row with mismatched columns") value = Series(value, index=self.obj.columns, name=indexer) self.obj._data = self.obj.append(value)._data self.obj._maybe_update_cacher(clear=True) return self.obj def _align_series(self, indexer, ser: ABCSeries, multiindex_indexer: bool = False): """ Parameters ---------- indexer : tuple, slice, scalar Indexer used to get the locations that will be set to `ser`. ser : pd.Series Values to assign to the locations specified by `indexer`. multiindex_indexer : boolean, optional Defaults to False. Should be set to True if `indexer` was from a `pd.MultiIndex`, to avoid unnecessary broadcasting. Returns ------- `np.array` of `ser` broadcast to the appropriate shape for assignment to the locations selected by `indexer` """ if isinstance(indexer, (slice, np.ndarray, list, Index)): indexer = tuple([indexer]) if isinstance(indexer, tuple): # flatten np.ndarray indexers def ravel(i): return i.ravel() if isinstance(i, np.ndarray) else i indexer = tuple(map(ravel, indexer)) aligners = [not com.is_null_slice(idx) for idx in indexer] sum_aligners = sum(aligners) single_aligner = sum_aligners == 1 is_frame = self.ndim == 2 obj = self.obj # are we a single alignable value on a non-primary # dim (e.g. panel: 1,2, or frame: 0) ? # hence need to align to a single axis dimension # rather that find all valid dims # frame if is_frame: single_aligner = single_aligner and aligners[0] # we have a frame, with multiple indexers on both axes; and a # series, so need to broadcast (see GH5206) if sum_aligners == self.ndim and all(is_sequence(_) for _ in indexer): ser = ser.reindex(obj.axes[0][indexer[0]], copy=True)._values # single indexer if len(indexer) > 1 and not multiindex_indexer: len_indexer = len(indexer[1]) ser = np.tile(ser, len_indexer).reshape(len_indexer, -1).T return ser for i, idx in enumerate(indexer): ax = obj.axes[i] # multiple aligners (or null slices) if is_sequence(idx) or isinstance(idx, slice): if single_aligner and com.is_null_slice(idx): continue new_ix = ax[idx] if not is_list_like_indexer(new_ix): new_ix = Index([new_ix]) else: new_ix = Index(new_ix) if ser.index.equals(new_ix) or not len(new_ix): return ser._values.copy() return ser.reindex(new_ix)._values # 2 dims elif single_aligner: # reindex along index ax = self.obj.axes[1] if ser.index.equals(ax) or not len(ax): return ser._values.copy() return ser.reindex(ax)._values elif is_scalar(indexer): ax = self.obj._get_axis(1) if ser.index.equals(ax): return ser._values.copy() return ser.reindex(ax)._values raise ValueError("Incompatible indexer with Series") def _align_frame(self, indexer, df: ABCDataFrame): is_frame = self.ndim == 2 if isinstance(indexer, tuple): idx, cols = None, None sindexers = [] for i, ix in enumerate(indexer): ax = self.obj.axes[i] if is_sequence(ix) or isinstance(ix, slice): if isinstance(ix, np.ndarray): ix = ix.ravel() if idx is None: idx = ax[ix] elif cols is None: cols = ax[ix] else: break else: sindexers.append(i) if idx is not None and cols is not None: if df.index.equals(idx) and df.columns.equals(cols): val = df.copy()._values else: val = df.reindex(idx, columns=cols)._values return val elif (isinstance(indexer, slice) or is_list_like_indexer(indexer)) and is_frame: ax = self.obj.index[indexer] if df.index.equals(ax): val = df.copy()._values else: # we have a multi-index and are trying to align # with a particular, level GH3738 if ( isinstance(ax, ABCMultiIndex) and isinstance(df.index, ABCMultiIndex) and ax.nlevels != df.index.nlevels ): raise TypeError( "cannot align on a multi-index with out " "specifying the join levels" ) val = df.reindex(index=ax)._values return val raise ValueError("Incompatible indexer with DataFrame") def _getitem_tuple(self, tup: Tuple): try: return self._getitem_lowerdim(tup) except IndexingError: pass # no multi-index, so validate all of the indexers self._has_valid_tuple(tup) # ugly hack for GH #836 if self._multi_take_opportunity(tup): return self._multi_take(tup) # no shortcut needed retval = self.obj for i, key in enumerate(tup): if com.is_null_slice(key): continue retval = getattr(retval, self.name)._getitem_axis(key, axis=i) return retval def _multi_take_opportunity(self, tup: Tuple) -> bool: """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed, must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- bool Whether the current indexing, can be passed through `_multi_take`. """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True def _multi_take(self, tup: Tuple): """ Create the indexers for the passed tuple of keys, and executes the take operation. This allows the take operation to be executed all at once, rather than once for each dimension. Improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- values: same type as the object being indexed """ # GH 836 o = self.obj d = { axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, o._AXIS_ORDERS) } return o._reindex_with_indexers(d, copy=True, allow_dups=True) def _handle_lowerdim_multi_index_axis0(self, tup: Tuple): # we have an axis0 multi-index, handle or raise axis = self.axis or 0 try: # fast path for series or for tup devoid of slices return self._get_label(tup, axis=axis) except TypeError: # slices are unhashable pass except KeyError as ek: # raise KeyError if number of indexers match # else IndexingError will be raised if len(tup) <= self.obj.index.nlevels and len(tup) > self.ndim: raise ek return None def _getitem_lowerdim(self, tup: Tuple): # we can directly get the axis result since the axis is specified if self.axis is not None: axis = self.obj._get_axis_number(self.axis) return self._getitem_axis(tup, axis=axis) # we may have a nested tuples indexer here if self._is_nested_tuple_indexer(tup): return self._getitem_nested_tuple(tup) # we maybe be using a tuple to represent multiple dimensions here ax0 = self.obj._get_axis(0) # ...but iloc should handle the tuple as simple integer-location # instead of checking it as multiindex representation (GH 13797) if isinstance(ax0, ABCMultiIndex) and self.name != "iloc": result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result if len(tup) > self.ndim: raise IndexingError("Too many indexers. handle elsewhere") for i, key in enumerate(tup): if is_label_like(key) or isinstance(key, tuple): section = self._getitem_axis(key, axis=i) # we have yielded a scalar ? if not is_list_like_indexer(section): return section elif section.ndim == self.ndim: # we're in the middle of slicing through a MultiIndex # revise the key wrt to `section` by inserting an _NS new_key = tup[:i] + (_NS,) + tup[i + 1 :] else: new_key = tup[:i] + tup[i + 1 :] # unfortunately need an odious kludge here because of # DataFrame transposing convention if ( isinstance(section, ABCDataFrame) and i > 0 and len(new_key) == 2 ): a, b = new_key new_key = b, a if len(new_key) == 1: new_key = new_key[0] # Slices should return views, but calling iloc/loc with a null # slice returns a new object. if com.is_null_slice(new_key): return section # This is an elided recursive call to iloc/loc/etc' return getattr(section, self.name)[new_key] raise IndexingError("not applicable") def _getitem_nested_tuple(self, tup: Tuple): # we have a nested tuple so have at least 1 multi-index level # we should be able to match up the dimensionality here # we have too many indexers for our dim, but have at least 1 # multi-index dimension, try to see if we have something like # a tuple passed to a series with a multi-index if len(tup) > self.ndim: result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result # this is a series with a multi-index specified a tuple of # selectors axis = self.axis or 0 return self._getitem_axis(tup, axis=axis) # handle the multi-axis by taking sections and reducing # this is iterative obj = self.obj axis = 0 for i, key in enumerate(tup): if com.is_null_slice(key): axis += 1 continue current_ndim = obj.ndim obj = getattr(obj, self.name)._getitem_axis(key, axis=axis) axis += 1 # if we have a scalar, we are done if is_scalar(obj) or not hasattr(obj, "ndim"): break # has the dim of the obj changed? # GH 7199 if obj.ndim < current_ndim: axis -= 1 return obj def _get_listlike_indexer(self, key, axis: int, raise_missing: bool = False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Targeted labels. axis: int Dimension on which the indexing is being made. raise_missing: bool, default False Whether to raise a KeyError if some labels were not found. Will be removed in the future, and then this method will always behave as if ``raise_missing=True``. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique). values : array-like Indexer for the return object, -1 denotes keys not found. """ o = self.obj ax = o._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: assert self.name == "loc" indexer, keyarr = ax._convert_listlike_indexer(key) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer(key, indexer, axis, raise_missing=raise_missing) return ax[indexer], indexer if ax.is_unique and not getattr(ax, "is_overlapping", False): indexer = ax.get_indexer_for(key) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, axis, raise_missing=raise_missing) return keyarr, indexer def _getitem_iterable(self, key, axis: int): """ Index current object with an an iterable collection of keys. Parameters ---------- key : iterable Targeted labels. axis: int Dimension on which the indexing is being made. Raises ------ KeyError If no key was found. Will change in the future to raise if not all keys were found. Returns ------- scalar, DataFrame, or Series: indexed value(s). """ # we assume that not com.is_bool_indexer(key), as that is # handled before we get here. self._validate_key(key, axis) # A collection of keys keyarr, indexer = self._get_listlike_indexer(key, axis, raise_missing=False) return self.obj._reindex_with_indexers( {axis: [keyarr, indexer]}, copy=True, allow_dups=True ) def _validate_read_indexer( self, key, indexer, axis: int, raise_missing: bool = False ): """ Check that indexer can be used to return a result. e.g. at least one element was found, unless the list of keys was actually empty. Parameters ---------- key : list-like Targeted labels (only used to show correct error message). indexer: array-like of booleans Indices corresponding to the key, (with -1 indicating not found). axis: int Dimension on which the indexing is being made. raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. """ ax = self.obj._get_axis(axis) if len(key) == 0: return # Count missing values: missing = (indexer < 0).sum() if missing: if missing == len(indexer): axis_name = self.obj._get_axis_name(axis) raise KeyError(f"None of [{key}] are in the [{axis_name}]") # We (temporarily) allow for some missing keys with .loc, except in # some cases (e.g. setting) in which "raise_missing" will be False if not (self.name == "loc" and not raise_missing): not_found = list(set(key) - set(ax)) raise KeyError(f"{not_found} not in index") # we skip the warning on Categorical/Interval # as this check is actually done (check for # non-missing values), but a bit later in the # code, so we want to avoid warning & then # just raising if not (ax.is_categorical() or ax.is_interval()): raise KeyError( "Passing list-likes to .loc or [] with any missing labels " "is no longer supported, see " "https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" # noqa:E501 ) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if type(key) is tuple: key = tuple(com.apply_if_callable(x, self.obj) for x in key) if self._is_scalar_access(key): try: return self.obj._get_value(*key, takeable=self._takeable) except (KeyError, IndexError, AttributeError): # AttributeError for IntervalTree get_value pass return self._getitem_tuple(key) else: # we by definition only have the 0th axis axis = self.axis or 0 maybe_callable = com.apply_if_callable(key, self.obj) return self._getitem_axis(maybe_callable, axis=axis) def _is_scalar_access(self, key: Tuple): raise NotImplementedError() def _getitem_axis(self, key, axis: int): raise NotImplementedError() def _getbool_axis(self, key, axis: int): # caller is responsible for ensuring non-None axis labels = self.obj._get_axis(axis) key = check_bool_indexer(labels, key) inds = key.nonzero()[0] return self.obj._take_with_is_copy(inds, axis=axis) @Appender(IndexingMixin.loc.__doc__) class _LocIndexer(_LocationIndexer): _takeable: bool = False _valid_types = ( "labels (MUST BE IN THE INDEX), slices of labels (BOTH " "endpoints included! Can be slices of integers if the " "index is integers), listlike of labels, boolean" ) @Appender(_LocationIndexer._validate_key.__doc__) def _validate_key(self, key, axis: int): # valid for a collection of labels (we check their presence later) # slice of labels (where start-end in labels) # slice of integers (only if in the labels) # boolean if isinstance(key, slice): return if com.is_bool_indexer(key): return if not is_list_like_indexer(key): labels = self.obj._get_axis(axis) labels._convert_scalar_indexer(key, kind="loc") def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_scalar(k): return False ax = self.obj.axes[i] if isinstance(ax, ABCMultiIndex): return False if isinstance(k, str) and ax._supports_partial_string_indexing: # partial string indexing, df.loc['2000', 'A'] # should not be considered scalar return False if not ax.is_unique: return False return True def _get_partial_string_timestamp_match_key(self, key, labels): """ Translate any partial string timestamp matches in key, returning the new key. (GH 10331) """ if isinstance(labels, ABCMultiIndex): if ( isinstance(key, str) and labels.levels[0]._supports_partial_string_indexing ): # Convert key '2016-01-01' to # ('2016-01-01'[, slice(None, None, None)]+) key = tuple([key] + [slice(None)] * (len(labels.levels) - 1)) if isinstance(key, tuple): # Convert (..., '2016-01-01', ...) in tuple to # (..., slice('2016-01-01', '2016-01-01', None), ...) new_key = [] for i, component in enumerate(key): if ( isinstance(component, str) and labels.levels[i]._supports_partial_string_indexing ): new_key.append(slice(component, component, None)) else: new_key.append(component) key = tuple(new_key) return key def _getitem_axis(self, key, axis: int): key = item_from_zerodim(key) if is_iterator(key): key = list(key) labels = self.obj._get_axis(axis) key = self._get_partial_string_timestamp_match_key(key, labels) if isinstance(key, slice): self._validate_key(key, axis) return self._get_slice_axis(key, axis=axis) elif com.is_bool_indexer(key): return self._getbool_axis(key, axis=axis) elif is_list_like_indexer(key): # convert various list-like indexers # to a list of keys # we will use the *values* of the object # and NOT the index if its a PandasObject if isinstance(labels, ABCMultiIndex): if isinstance(key, (ABCSeries, np.ndarray)) and key.ndim <= 1: # Series, or 0,1 ndim ndarray # GH 14730 key = list(key) elif isinstance(key, ABCDataFrame): # GH 15438 raise NotImplementedError( "Indexing a MultiIndex with a " "DataFrame key is not " "implemented" ) elif hasattr(key, "ndim") and key.ndim > 1: raise NotImplementedError( "Indexing a MultiIndex with a " "multidimensional key is not " "implemented" ) if ( not isinstance(key, tuple) and len(key) and not isinstance(key[0], tuple) ): key = tuple([key]) # an iterable multi-selection if not (isinstance(key, tuple) and isinstance(labels, ABCMultiIndex)): if hasattr(key, "ndim") and key.ndim > 1: raise ValueError("Cannot index with multidimensional key") return self._getitem_iterable(key, axis=axis) # nested tuple slicing if is_nested_tuple(key, labels): locs = labels.get_locs(key) indexer = [slice(None)] * self.ndim indexer[axis] = locs return self.obj.iloc[tuple(indexer)] # fall thru to straight lookup self._validate_key(key, axis) return self._get_label(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): """ This is pretty simple as we just have to deal with labels. """ # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer( slice_obj.start, slice_obj.stop, slice_obj.step, kind=self.name ) if isinstance(indexer, slice): return self.obj._slice(indexer, axis=axis, kind="iloc") else: # DatetimeIndex overrides Index.slice_indexer and may # return a DatetimeIndex instead of a slice object. return self.obj.take(indexer, axis=axis) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Convert indexing key into something we can use to do actual fancy indexing on a ndarray. Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ labels = self.obj._get_axis(axis) if isinstance(key, slice): return labels._convert_slice_indexer(key, kind="loc") if is_scalar(key): # try to find out correct indexer, if not type correct raise try: key = labels._convert_scalar_indexer(key, kind="loc") except TypeError: # but we will allow setting if not is_setter: raise # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(key) and not is_int_index if is_scalar(key) or isinstance(labels, ABCMultiIndex): # Otherwise get_loc will raise InvalidIndexError # if we are a label return me try: return labels.get_loc(key) except LookupError: if isinstance(key, tuple) and isinstance(labels, ABCMultiIndex): if len(key) == labels.nlevels: return {"key": key} raise except TypeError: pass except ValueError: if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition # always valid return {"key": key} if is_nested_tuple(key, labels): return labels.get_locs(key) elif is_list_like_indexer(key): if com.is_bool_indexer(key): key = check_bool_indexer(labels, key) (inds,) = key.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: return self._get_listlike_indexer(key, axis, raise_missing=True)[1] else: try: return labels.get_loc(key) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(key): return {"key": key} raise @Appender(IndexingMixin.iloc.__doc__) class _iLocIndexer(_LocationIndexer): _valid_types = ( "integer, integer slice (START point is INCLUDED, END " "point is EXCLUDED), listlike of integers, boolean array" ) _takeable = True def _validate_key(self, key, axis: int): if com.is_bool_indexer(key): if hasattr(key, "index") and isinstance(key.index, Index): if key.index.inferred_type == "integer": raise NotImplementedError( "iLocation based boolean " "indexing on an integer type " "is not available" ) raise ValueError( "iLocation based boolean indexing cannot use " "an indexable as a mask" ) return if isinstance(key, slice): return elif is_integer(key): self._validate_integer(key, axis) elif isinstance(key, tuple): # a tuple should already have been caught by this point # so don't treat a tuple as a valid indexer raise IndexingError("Too many indexers") elif is_list_like_indexer(key): arr = np.array(key) len_axis = len(self.obj._get_axis(axis)) # check that the key has a numeric dtype if not is_numeric_dtype(arr.dtype): raise IndexError(f".iloc requires numeric indexers, got {arr}") # check that the key does not exceed the maximum size of the index if len(arr) and (arr.max() >= len_axis or arr.min() < -len_axis): raise IndexError("positional indexers are out-of-bounds") else: raise ValueError(f"Can only index by location with a [{self._valid_types}]") def _has_valid_setitem_indexer(self, indexer): self._has_valid_positional_setitem_indexer(indexer) def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_integer(k): return False ax = self.obj.axes[i] if not ax.is_unique: return False return True def _validate_integer(self, key: int, axis: int) -> None: """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position. axis : int Desired axis. Raises ------ IndexError If 'key' is not a valid position in axis 'axis'. """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds") def _getitem_tuple(self, tup: Tuple): self._has_valid_tuple(tup) try: return self._getitem_lowerdim(tup) except IndexingError: pass retval = self.obj axis = 0 for i, key in enumerate(tup): if com.is_null_slice(key): axis += 1 continue retval = getattr(retval, self.name)._getitem_axis(key, axis=axis) # if the dim was reduced, then pass a lower-dim the next time if retval.ndim < self.ndim: # TODO: this is never reached in tests; can we confirm that # it is impossible? axis -= 1 # try to get for the next axis axis += 1 return retval def _get_list_axis(self, key, axis: int): """ Return Series values by list or array of integers. Parameters ---------- key : list-like positional indexer axis : int Returns ------- Series object Notes ----- `axis` can only be zero. """ try: return self.obj._take_with_is_copy(key, axis=axis) except IndexError: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds") def _getitem_axis(self, key, axis: int): if isinstance(key, slice): return self._get_slice_axis(key, axis=axis) if isinstance(key, list): key = np.asarray(key) if com.is_bool_indexer(key): self._validate_key(key, axis) return self._getbool_axis(key, axis=axis) # a list of integers elif is_list_like_indexer(key): return self._get_list_axis(key, axis=axis) # a single integer else: key = item_from_zerodim(key) if not is_integer(key): raise TypeError("Cannot index by location index with a non-integer key") # validate the location self._validate_integer(key, axis) return self.obj._ixs(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels._convert_slice_indexer(slice_obj, kind="iloc") return self.obj._slice(indexer, axis=axis, kind="iloc") def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Much simpler as we only have to deal with our valid types. """ labels = self.obj._get_axis(axis) # make need to convert a float key if isinstance(key, slice): return labels._convert_slice_indexer(key, kind="iloc") elif is_float(key): return labels._convert_scalar_indexer(key, kind="iloc") self._validate_key(key, axis) return key class _ScalarAccessIndexer(_NDFrameIndexerBase): """ Access scalars quickly. """ def _convert_key(self, key, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if not isinstance(key, tuple): # we could have a convertible item here (e.g. Timestamp) if not is_list_like_indexer(key): key = tuple([key]) else: raise ValueError("Invalid call for scalar access (getting)!") key = self._convert_key(key) return self.obj._get_value(*key, takeable=self._takeable) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: # scalar callable may return tuple key = com.apply_if_callable(key, self.obj) if not isinstance(key, tuple): key = _tuplify(self.ndim, key) if len(key) != self.ndim: raise ValueError("Not enough indexers for scalar access (setting)!") key = list(self._convert_key(key, is_setter=True)) self.obj._set_value(*key, value=value, takeable=self._takeable) @Appender(IndexingMixin.at.__doc__) class _AtIndexer(_ScalarAccessIndexer): _takeable = False def _convert_key(self, key, is_setter: bool = False): """ Require they keys to be the same type as the index. (so we don't fallback) """ # allow arbitrary setting if is_setter: return list(key) lkey = list(key) for n, (ax, i) in enumerate(zip(self.obj.axes, key)): lkey[n] = ax._convert_scalar_indexer(i, kind="loc") return tuple(lkey) @Appender(IndexingMixin.iat.__doc__) class _iAtIndexer(_ScalarAccessIndexer): _takeable = True def _convert_key(self, key, is_setter: bool = False): """ Require integer args. (and convert to label arguments) """ for a, i in zip(self.obj.axes, key): if not is_integer(i): raise ValueError("iAt based indexing can only have integer indexers") return key def _tuplify(ndim: int, loc: Hashable) -> Tuple[Union[Hashable, slice], ...]: """ Given an indexer for the first dimension, create an equivalent tuple for indexing over all dimensions. Parameters ---------- ndim : int loc : object Returns ------- tuple """ _tup: List[Union[Hashable, slice]] _tup = [slice(None, None) for _ in range(ndim)] _tup[0] = loc return tuple(_tup) def convert_to_index_sliceable(obj, key): """ If we are index sliceable, then return my slicer, otherwise return None. """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind="getitem") elif isinstance(key, str): # we are an actual column if key in obj._data.items: return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx._supports_partial_string_indexing: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None def check_bool_indexer(index: Index, key) -> np.ndarray: """ Check if key is a valid boolean indexer for an object with such index and perform reindexing or conversion if needed. This function assumes that is_bool_indexer(key) == True. Parameters ---------- index : Index Index of the object on which the indexing is done. key : list-like Boolean indexer to check. Returns ------- np.array Resulting key. Raises ------ IndexError If the key does not have the same length as index. IndexingError If the index of the key is unalignable to index. """ result = key if isinstance(key, ABCSeries) and not key.index.equals(index): result = result.reindex(index) mask = isna(result._values) if mask.any(): raise IndexingError( "Unalignable boolean Series provided as " "indexer (index of the boolean Series and of " "the indexed object do not match)." ) result = result.astype(bool)._values else: # key might be sparse / object-dtype bool, check_array_indexer needs bool array result = np.asarray(result, dtype=bool) result = check_array_indexer(index, result) return result def convert_missing_indexer(indexer): """ Reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer["key"] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False def convert_from_missing_indexer_tuple(indexer, axes): """ Create a filtered indexer that doesn't have any missing indexers. """ def get_indexer(_i, _idx): return axes[_i].get_loc(_idx["key"]) if isinstance(_idx, dict) else _idx return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer)) def maybe_convert_ix(*args): """ We likely want to take the cross-product. """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args def is_nested_tuple(tup, labels) -> bool: """ Returns ------- bool """ # check for a compatible nested tuple and multiindexes among the axes if not isinstance(tup, tuple): return False for i, k in enumerate(tup): if is_list_like(k) or isinstance(k, slice): return isinstance(labels, ABCMultiIndex) return False def is_label_like(key) -> bool: """ Returns ------- bool """ # select a label or row return not isinstance(key, slice) and not is_list_like_indexer(key) def need_slice(obj) -> bool: """ Returns ------- bool """ return ( obj.start is not None or obj.stop is not None or (obj.step is not None and obj.step != 1) ) def _non_reducing_slice(slice_): """ Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = (ABCSeries, np.ndarray, Index, list, str) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part) -> bool: """ Returns ------- bool True if slice does *not* reduce, False if `part` is a tuple. """ # true when slice does *not* reduce, False when part is a tuple, # i.e. MultiIndex slice return (isinstance(part, slice) or is_list_like(part)) and not isinstance( part, tuple ) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_) def _maybe_numeric_slice(df, slice_, include_bool=False): """ Want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_ def _can_do_equal_len(labels, value, plane_indexer, lplane_indexer, obj) -> bool: """ Returns ------- bool True if we have an equal len settable. """ if not len(labels) == 1 or not np.iterable(value) or is_scalar(plane_indexer[0]): return False item = labels[0] index = obj[item].index values_len = len(value) # equal len list/ndarray if len(index) == values_len: return True elif lplane_indexer == values_len: return True return False
BugsInPy/BugsInPy/temp/projects/pandas/bug-63-fixed/pandas/pandas/core/indexing.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-63-buggy/pandas/pandas/core/indexing.py
pandas-bug-46
from sys import getsizeof from typing import ( TYPE_CHECKING, Any, Hashable, Iterable, List, Optional, Sequence, Tuple, Union, ) import warnings import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, index as libindex, lib from pandas._libs.hashtable import duplicated_int64 from pandas._typing import AnyArrayLike, Scalar from pandas.compat.numpy import function as nv from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.util._decorators import Appender, cache_readonly from pandas.core.dtypes.cast import coerce_indexer_dtype from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_categorical_dtype, is_hashable, is_integer, is_iterator, is_list_like, is_object_dtype, is_scalar, pandas_dtype, ) from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.generic import ABCDataFrame from pandas.core.dtypes.missing import array_equivalent, isna import pandas.core.algorithms as algos from pandas.core.arrays import Categorical from pandas.core.arrays.categorical import factorize_from_iterables import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( Index, InvalidIndexError, _index_shared_docs, ensure_index, ) from pandas.core.indexes.frozen import FrozenList from pandas.core.indexes.numeric import Int64Index import pandas.core.missing as missing from pandas.core.sorting import ( get_group_index, indexer_from_factorized, lexsort_indexer, ) from pandas.io.formats.printing import ( format_object_attrs, format_object_summary, pprint_thing, ) if TYPE_CHECKING: from pandas import Series # noqa:F401 _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update( dict(klass="MultiIndex", target_klass="MultiIndex or list of tuples") ) class MultiIndexUIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.UInt64Engine): """ This class manages a MultiIndex by mapping label combinations to positive integers. """ _base = libindex.UInt64Engine def _codes_to_ints(self, codes): """ Transform combination(s) of uint64 in one uint64 (each), in a strictly monotonic way (i.e. respecting the lexicographic order of integer combinations): see BaseMultiIndexCodesEngine documentation. Parameters ---------- codes : 1- or 2-dimensional array of dtype uint64 Combinations of integers (one per row) Returns ------- scalar or 1-dimensional array, of dtype uint64 Integer(s) representing one combination (each). """ # Shift the representation of each level by the pre-calculated number # of bits: codes <<= self.offsets # Now sum and OR are in fact interchangeable. This is a simple # composition of the (disjunct) significant bits of each level (i.e. # each column in "codes") in a single positive integer: if codes.ndim == 1: # Single key return np.bitwise_or.reduce(codes) # Multiple keys return np.bitwise_or.reduce(codes, axis=1) class MultiIndexPyIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.ObjectEngine): """ This class manages those (extreme) cases in which the number of possible label combinations overflows the 64 bits integers, and uses an ObjectEngine containing Python integers. """ _base = libindex.ObjectEngine def _codes_to_ints(self, codes): """ Transform combination(s) of uint64 in one Python integer (each), in a strictly monotonic way (i.e. respecting the lexicographic order of integer combinations): see BaseMultiIndexCodesEngine documentation. Parameters ---------- codes : 1- or 2-dimensional array of dtype uint64 Combinations of integers (one per row) Returns ------- int, or 1-dimensional array of dtype object Integer(s) representing one combination (each). """ # Shift the representation of each level by the pre-calculated number # of bits. Since this can overflow uint64, first make sure we are # working with Python integers: codes = codes.astype("object") << self.offsets # Now sum and OR are in fact interchangeable. This is a simple # composition of the (disjunct) significant bits of each level (i.e. # each column in "codes") in a single positive integer (per row): if codes.ndim == 1: # Single key return np.bitwise_or.reduce(codes) # Multiple keys return np.bitwise_or.reduce(codes, axis=1) class MultiIndex(Index): """ A multi-level, or hierarchical, index object for pandas objects. Parameters ---------- levels : sequence of arrays The unique labels for each level. codes : sequence of arrays Integers for each level designating which label at each location. .. versionadded:: 0.24.0 sortorder : optional int Level of sortedness (must be lexicographically sorted by that level). names : optional sequence of objects Names for each of the index levels. (name is accepted for compat). copy : bool, default False Copy the meta-data. verify_integrity : bool, default True Check that the levels/codes are consistent and valid. Attributes ---------- names levels codes nlevels levshape Methods ------- from_arrays from_tuples from_product from_frame set_levels set_codes to_frame to_flat_index is_lexsorted sortlevel droplevel swaplevel reorder_levels remove_unused_levels get_locs See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_product : Create a MultiIndex from the cartesian product of iterables. MultiIndex.from_tuples : Convert list of tuples to a MultiIndex. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Index : The base pandas Index type. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html>`_ for more. Examples -------- A new ``MultiIndex`` is typically constructed using one of the helper methods :meth:`MultiIndex.from_arrays`, :meth:`MultiIndex.from_product` and :meth:`MultiIndex.from_tuples`. For example (using ``.from_arrays``): >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) See further examples for how to construct a MultiIndex in the doc strings of the mentioned helper methods. """ _deprecations = Index._deprecations | frozenset() # initialize to zero-length tuples to make everything work _typ = "multiindex" _names = FrozenList() _levels = FrozenList() _codes = FrozenList() _comparables = ["names"] rename = Index.set_names _tuples = None sortorder: Optional[int] # -------------------------------------------------------------------- # Constructors def __new__( cls, levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity: bool = True, _set_identity: bool = True, ): # compat with Index if name is not None: names = name if levels is None or codes is None: raise TypeError("Must pass both levels and codes") if len(levels) != len(codes): raise ValueError("Length of levels and codes must be the same.") if len(levels) == 0: raise ValueError("Must pass non-zero number of levels/codes") result = object.__new__(MultiIndex) result._cache = {} # we've already validated levels and codes, so shortcut here result._set_levels(levels, copy=copy, validate=False) result._set_codes(codes, copy=copy, validate=False) result._names = [None] * len(levels) if names is not None: # handles name validation result._set_names(names) if sortorder is not None: result.sortorder = int(sortorder) else: result.sortorder = sortorder if verify_integrity: new_codes = result._verify_integrity() result._codes = new_codes if _set_identity: result._reset_identity() return result def _validate_codes(self, level: List, code: List): """ Reassign code values as -1 if their corresponding levels are NaN. Parameters ---------- code : list Code to reassign. level : list Level to check for missing values (NaN, NaT, None). Returns ------- new code where code value = -1 if it corresponds to a level with missing values (NaN, NaT, None). """ null_mask = isna(level) if np.any(null_mask): code = np.where(null_mask[code], -1, code) return code def _verify_integrity( self, codes: Optional[List] = None, levels: Optional[List] = None ): """ Parameters ---------- codes : optional list Codes to check for validity. Defaults to current codes. levels : optional list Levels to check for validity. Defaults to current levels. Raises ------ ValueError If length of levels and codes don't match, if the codes for any level would exceed level bounds, or there are any duplicate levels. Returns ------- new codes where code value = -1 if it corresponds to a NaN level. """ # NOTE: Currently does not check, among other things, that cached # nlevels matches nor that sortorder matches actually sortorder. codes = codes or self.codes levels = levels or self.levels if len(levels) != len(codes): raise ValueError( "Length of levels and codes must match. NOTE: " "this index is in an inconsistent state." ) codes_length = len(codes[0]) for i, (level, level_codes) in enumerate(zip(levels, codes)): if len(level_codes) != codes_length: raise ValueError( f"Unequal code lengths: {[len(code_) for code_ in codes]}" ) if len(level_codes) and level_codes.max() >= len(level): raise ValueError( f"On level {i}, code max ({level_codes.max()}) >= length of " f"level ({len(level)}). NOTE: this index is in an " "inconsistent state" ) if len(level_codes) and level_codes.min() < -1: raise ValueError(f"On level {i}, code value ({level_codes.min()}) < -1") if not level.is_unique: raise ValueError( f"Level values must be unique: {list(level)} on level {i}" ) if self.sortorder is not None: if self.sortorder > self._lexsort_depth(): raise ValueError( "Value for sortorder must be inferior or equal to actual " f"lexsort_depth: sortorder {self.sortorder} " f"with lexsort_depth {self._lexsort_depth()}" ) codes = [ self._validate_codes(level, code) for level, code in zip(levels, codes) ] new_codes = FrozenList(codes) return new_codes @classmethod def from_arrays(cls, arrays, sortorder=None, names=lib.no_default): """ Convert arrays to MultiIndex. Parameters ---------- arrays : list / sequence of array-likes Each array-like gives one level's value for each data point. len(arrays) is the number of levels. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. Returns ------- MultiIndex See Also -------- MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) """ error_msg = "Input must be a list / sequence of array-likes." if not is_list_like(arrays): raise TypeError(error_msg) elif is_iterator(arrays): arrays = list(arrays) # Check if elements of array are list-like for array in arrays: if not is_list_like(array): raise TypeError(error_msg) # Check if lengths of all arrays are equal or not, # raise ValueError, if not for i in range(1, len(arrays)): if len(arrays[i]) != len(arrays[i - 1]): raise ValueError("all arrays must be same length") codes, levels = factorize_from_iterables(arrays) if names is lib.no_default: names = [getattr(arr, "name", None) for arr in arrays] return MultiIndex( levels=levels, codes=codes, sortorder=sortorder, names=names, verify_integrity=False, ) @classmethod def from_tuples(cls, tuples, sortorder=None, names=None): """ Convert list of tuples to MultiIndex. Parameters ---------- tuples : list / sequence of tuple-likes Each tuple is the index of one row/column. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. Returns ------- MultiIndex See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> tuples = [(1, 'red'), (1, 'blue'), ... (2, 'red'), (2, 'blue')] >>> pd.MultiIndex.from_tuples(tuples, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) """ if not is_list_like(tuples): raise TypeError("Input must be a list / sequence of tuple-likes.") elif is_iterator(tuples): tuples = list(tuples) if len(tuples) == 0: if names is None: raise TypeError("Cannot infer number of levels from empty list") arrays = [[]] * len(names) elif isinstance(tuples, (np.ndarray, Index)): if isinstance(tuples, Index): tuples = tuples._values arrays = list(lib.tuples_to_object_array(tuples).T) elif isinstance(tuples, list): arrays = list(lib.to_object_array_tuples(tuples).T) else: arrays = zip(*tuples) return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names) @classmethod def from_product(cls, iterables, sortorder=None, names=lib.no_default): """ Make a MultiIndex from the cartesian product of multiple iterables. Parameters ---------- iterables : list / sequence of iterables Each iterable has unique labels for each level of the index. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. .. versionchanged:: 1.0.0 If not explicitly provided, names will be inferred from the elements of iterables if an element has a name attribute Returns ------- MultiIndex See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> numbers = [0, 1, 2] >>> colors = ['green', 'purple'] >>> pd.MultiIndex.from_product([numbers, colors], ... names=['number', 'color']) MultiIndex([(0, 'green'), (0, 'purple'), (1, 'green'), (1, 'purple'), (2, 'green'), (2, 'purple')], names=['number', 'color']) """ from pandas.core.reshape.util import cartesian_product if not is_list_like(iterables): raise TypeError("Input must be a list / sequence of iterables.") elif is_iterator(iterables): iterables = list(iterables) codes, levels = factorize_from_iterables(iterables) if names is lib.no_default: names = [getattr(it, "name", None) for it in iterables] codes = cartesian_product(codes) return MultiIndex(levels, codes, sortorder=sortorder, names=names) @classmethod def from_frame(cls, df, sortorder=None, names=None): """ Make a MultiIndex from a DataFrame. .. versionadded:: 0.24.0 Parameters ---------- df : DataFrame DataFrame to be converted to MultiIndex. sortorder : int, optional Level of sortedness (must be lexicographically sorted by that level). names : list-like, optional If no names are provided, use the column names, or tuple of column names if the columns is a MultiIndex. If a sequence, overwrite names with the given sequence. Returns ------- MultiIndex The MultiIndex representation of the given DataFrame. See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. Examples -------- >>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'], ... ['NJ', 'Temp'], ['NJ', 'Precip']], ... columns=['a', 'b']) >>> df a b 0 HI Temp 1 HI Precip 2 NJ Temp 3 NJ Precip >>> pd.MultiIndex.from_frame(df) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['a', 'b']) Using explicit names, instead of the column names >>> pd.MultiIndex.from_frame(df, names=['state', 'observation']) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['state', 'observation']) """ if not isinstance(df, ABCDataFrame): raise TypeError("Input must be a DataFrame") column_names, columns = zip(*df.items()) names = column_names if names is None else names return cls.from_arrays(columns, sortorder=sortorder, names=names) # -------------------------------------------------------------------- @property def _values(self): # We override here, since our parent uses _data, which we don't use. return self.values @property def values(self): if self._tuples is not None: return self._tuples values = [] for i in range(self.nlevels): vals = self._get_level_values(i) if is_categorical_dtype(vals): vals = vals._internal_get_values() if isinstance(vals.dtype, ExtensionDtype) or hasattr(vals, "_box_values"): vals = vals.astype(object) vals = np.array(vals, copy=False) values.append(vals) self._tuples = lib.fast_zip(values) return self._tuples @property def array(self): """ Raises a ValueError for `MultiIndex` because there's no single array backing a MultiIndex. Raises ------ ValueError """ raise ValueError( "MultiIndex has no single backing array. Use " "'MultiIndex.to_numpy()' to get a NumPy array of tuples." ) @property def shape(self): """ Return a tuple of the shape of the underlying data. """ # overriding the base Index.shape definition to avoid materializing # the values (GH-27384, GH-27775) return (len(self),) def __len__(self) -> int: return len(self.codes[0]) # -------------------------------------------------------------------- # Levels Methods @cache_readonly def levels(self): # Use cache_readonly to ensure that self.get_locs doesn't repeatedly # create new IndexEngine # https://github.com/pandas-dev/pandas/issues/31648 result = [ x._shallow_copy(name=name) for x, name in zip(self._levels, self._names) ] for level in result: # disallow midx.levels[0].name = "foo" level._no_setting_name = True return FrozenList(result) def _set_levels( self, levels, level=None, copy=False, validate=True, verify_integrity=False ): # This is NOT part of the levels property because it should be # externally not allowed to set levels. User beware if you change # _levels directly if validate: if len(levels) == 0: raise ValueError("Must set non-zero number of levels.") if level is None and len(levels) != self.nlevels: raise ValueError("Length of levels must match number of levels.") if level is not None and len(levels) != len(level): raise ValueError("Length of levels must match length of level.") if level is None: new_levels = FrozenList( ensure_index(lev, copy=copy)._shallow_copy() for lev in levels ) else: level_numbers = [self._get_level_number(lev) for lev in level] new_levels = list(self._levels) for lev_num, lev in zip(level_numbers, levels): new_levels[lev_num] = ensure_index(lev, copy=copy)._shallow_copy() new_levels = FrozenList(new_levels) if verify_integrity: new_codes = self._verify_integrity(levels=new_levels) self._codes = new_codes names = self.names self._levels = new_levels if any(names): self._set_names(names) self._tuples = None self._reset_cache() def set_levels(self, levels, level=None, inplace=False, verify_integrity=True): """ Set new levels on MultiIndex. Defaults to returning new index. Parameters ---------- levels : sequence or list of sequence New level(s) to apply. level : int, level name, or sequence of int/level names (default None) Level(s) to set (None for all levels). inplace : bool If True, mutates in place. verify_integrity : bool, default True If True, checks that levels and codes are compatible. Returns ------- new index (of same type and class...etc) Examples -------- >>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two'), (3, 'one'), (3, 'two')], names=['foo', 'bar']) >>> idx.set_levels([['a', 'b', 'c'], [1, 2]]) MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['foo', 'bar']) >>> idx.set_levels(['a', 'b', 'c'], level=0) MultiIndex([('a', 'one'), ('a', 'two'), ('b', 'one'), ('b', 'two'), ('c', 'one'), ('c', 'two')], names=['foo', 'bar']) >>> idx.set_levels(['a', 'b'], level='bar') MultiIndex([(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b'), (3, 'a'), (3, 'b')], names=['foo', 'bar']) If any of the levels passed to ``set_levels()`` exceeds the existing length, all of the values from that argument will be stored in the MultiIndex levels, though the values will be truncated in the MultiIndex output. >>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]) MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2)], names=['foo', 'bar']) >>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]).levels FrozenList([['a', 'b', 'c'], [1, 2, 3, 4]]) """ if is_list_like(levels) and not isinstance(levels, Index): levels = list(levels) if level is not None and not is_list_like(level): if not is_list_like(levels): raise TypeError("Levels must be list-like") if is_list_like(levels[0]): raise TypeError("Levels must be list-like") level = [level] levels = [levels] elif level is None or is_list_like(level): if not is_list_like(levels) or not is_list_like(levels[0]): raise TypeError("Levels must be list of lists-like") if inplace: idx = self else: idx = self._shallow_copy() idx._reset_identity() idx._set_levels( levels, level=level, validate=True, verify_integrity=verify_integrity ) if not inplace: return idx @property def nlevels(self) -> int: """ Integer number of levels in this MultiIndex. """ return len(self._levels) @property def levshape(self): """ A tuple with the length of each level. """ return tuple(len(x) for x in self.levels) # -------------------------------------------------------------------- # Codes Methods @property def codes(self): return self._codes def _set_codes( self, codes, level=None, copy=False, validate=True, verify_integrity=False ): if validate: if level is None and len(codes) != self.nlevels: raise ValueError("Length of codes must match number of levels") if level is not None and len(codes) != len(level): raise ValueError("Length of codes must match length of levels.") if level is None: new_codes = FrozenList( _coerce_indexer_frozen(level_codes, lev, copy=copy).view() for lev, level_codes in zip(self._levels, codes) ) else: level_numbers = [self._get_level_number(lev) for lev in level] new_codes = list(self._codes) for lev_num, level_codes in zip(level_numbers, codes): lev = self.levels[lev_num] new_codes[lev_num] = _coerce_indexer_frozen(level_codes, lev, copy=copy) new_codes = FrozenList(new_codes) if verify_integrity: new_codes = self._verify_integrity(codes=new_codes) self._codes = new_codes self._tuples = None self._reset_cache() def set_codes(self, codes, level=None, inplace=False, verify_integrity=True): """ Set new codes on MultiIndex. Defaults to returning new index. .. versionadded:: 0.24.0 New name for deprecated method `set_labels`. Parameters ---------- codes : sequence or list of sequence New codes to apply. level : int, level name, or sequence of int/level names (default None) Level(s) to set (None for all levels). inplace : bool If True, mutates in place. verify_integrity : bool (default True) If True, checks that levels and codes are compatible. Returns ------- new index (of same type and class...etc) Examples -------- >>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')], names=['foo', 'bar']) >>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]]) MultiIndex([(2, 'one'), (1, 'one'), (2, 'two'), (1, 'two')], names=['foo', 'bar']) >>> idx.set_codes([1, 0, 1, 0], level=0) MultiIndex([(2, 'one'), (1, 'two'), (2, 'one'), (1, 'two')], names=['foo', 'bar']) >>> idx.set_codes([0, 0, 1, 1], level='bar') MultiIndex([(1, 'one'), (1, 'one'), (2, 'two'), (2, 'two')], names=['foo', 'bar']) >>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]], level=[0, 1]) MultiIndex([(2, 'one'), (1, 'one'), (2, 'two'), (1, 'two')], names=['foo', 'bar']) """ if level is not None and not is_list_like(level): if not is_list_like(codes): raise TypeError("Codes must be list-like") if is_list_like(codes[0]): raise TypeError("Codes must be list-like") level = [level] codes = [codes] elif level is None or is_list_like(level): if not is_list_like(codes) or not is_list_like(codes[0]): raise TypeError("Codes must be list of lists-like") if inplace: idx = self else: idx = self._shallow_copy() idx._reset_identity() idx._set_codes(codes, level=level, verify_integrity=verify_integrity) if not inplace: return idx # -------------------------------------------------------------------- # Index Internals @cache_readonly def _engine(self): # Calculate the number of bits needed to represent labels in each # level, as log2 of their sizes (including -1 for NaN): sizes = np.ceil(np.log2([len(l) + 1 for l in self.levels])) # Sum bit counts, starting from the _right_.... lev_bits = np.cumsum(sizes[::-1])[::-1] # ... in order to obtain offsets such that sorting the combination of # shifted codes (one for each level, resulting in a unique integer) is # equivalent to sorting lexicographically the codes themselves. Notice # that each level needs to be shifted by the number of bits needed to # represent the _previous_ ones: offsets = np.concatenate([lev_bits[1:], [0]]).astype("uint64") # Check the total number of bits needed for our representation: if lev_bits[0] > 64: # The levels would overflow a 64 bit uint - use Python integers: return MultiIndexPyIntEngine(self.levels, self.codes, offsets) return MultiIndexUIntEngine(self.levels, self.codes, offsets) @property def _constructor(self): return MultiIndex.from_tuples @Appender(Index._shallow_copy.__doc__) def _shallow_copy(self, values=None, **kwargs): if values is not None: names = kwargs.pop("names", kwargs.pop("name", self.names)) # discards freq kwargs.pop("freq", None) return MultiIndex.from_tuples(values, names=names, **kwargs) result = self.copy(**kwargs) result._cache = self._cache.copy() # GH32669 if "levels" in result._cache: del result._cache["levels"] return result def _shallow_copy_with_infer(self, values, **kwargs): # On equal MultiIndexes the difference is empty. # Therefore, an empty MultiIndex is returned GH13490 if len(values) == 0: return MultiIndex( levels=[[] for _ in range(self.nlevels)], codes=[[] for _ in range(self.nlevels)], **kwargs, ) return self._shallow_copy(values, **kwargs) # -------------------------------------------------------------------- def copy( self, names=None, dtype=None, levels=None, codes=None, deep=False, name=None, _set_identity=False, ): """ Make a copy of this object. Names, dtype, levels and codes can be passed and will be set on new copy. Parameters ---------- names : sequence, optional dtype : numpy dtype or pandas type, optional levels : sequence, optional codes : sequence, optional deep : bool, default False name : Label Kept for compatibility with 1-dimensional Index. Should not be used. Returns ------- MultiIndex Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. This could be potentially expensive on large MultiIndex objects. """ names = self._validate_names(name=name, names=names, deep=deep) if deep: from copy import deepcopy if levels is None: levels = deepcopy(self.levels) if codes is None: codes = deepcopy(self.codes) else: if levels is None: levels = self.levels if codes is None: codes = self.codes return MultiIndex( levels=levels, codes=codes, names=names, sortorder=self.sortorder, verify_integrity=False, _set_identity=_set_identity, ) def __array__(self, dtype=None) -> np.ndarray: """ the array interface, return my values """ return self.values def view(self, cls=None): """ this is defined as a copy with the same identity """ result = self.copy() result._id = self._id return result @Appender(Index.__contains__.__doc__) def __contains__(self, key: Any) -> bool: hash(key) try: self.get_loc(key) return True except (LookupError, TypeError, ValueError): return False @cache_readonly def dtype(self) -> np.dtype: return np.dtype("O") def _is_memory_usage_qualified(self) -> bool: """ return a boolean if we need a qualified .info display """ def f(l): return "mixed" in l or "string" in l or "unicode" in l return any(f(l) for l in self._inferred_type_levels) @Appender(Index.memory_usage.__doc__) def memory_usage(self, deep: bool = False) -> int: # we are overwriting our base class to avoid # computing .values here which could materialize # a tuple representation unnecessarily return self._nbytes(deep) @cache_readonly def nbytes(self) -> int: """ return the number of bytes in the underlying data """ return self._nbytes(False) def _nbytes(self, deep: bool = False) -> int: """ return the number of bytes in the underlying data deeply introspect the level data if deep=True include the engine hashtable *this is in internal routine* """ # for implementations with no useful getsizeof (PyPy) objsize = 24 level_nbytes = sum(i.memory_usage(deep=deep) for i in self.levels) label_nbytes = sum(i.nbytes for i in self.codes) names_nbytes = sum(getsizeof(i, objsize) for i in self.names) result = level_nbytes + label_nbytes + names_nbytes # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # -------------------------------------------------------------------- # Rendering Methods def _formatter_func(self, tup): """ Formats each item in tup according to its level's formatter function. """ formatter_funcs = [level._formatter_func for level in self.levels] return tuple(func(val) for func, val in zip(formatter_funcs, tup)) def _format_data(self, name=None): """ Return the formatted data as a unicode string """ return format_object_summary( self, self._formatter_func, name=name, line_break_each_value=True ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self, include_dtype=False) def _format_native_types(self, na_rep="nan", **kwargs): new_levels = [] new_codes = [] # go through the levels and format them for level, level_codes in zip(self.levels, self.codes): level = level._format_native_types(na_rep=na_rep, **kwargs) # add nan values, if there are any mask = level_codes == -1 if mask.any(): nan_index = len(level) level = np.append(level, na_rep) assert not level_codes.flags.writeable # i.e. copy is needed level_codes = level_codes.copy() # make writeable level_codes[mask] = nan_index new_levels.append(level) new_codes.append(level_codes) if len(new_levels) == 1: # a single-level multi-index return Index(new_levels[0].take(new_codes[0]))._format_native_types() else: # reconstruct the multi-index mi = MultiIndex( levels=new_levels, codes=new_codes, names=self.names, sortorder=self.sortorder, verify_integrity=False, ) return mi._values def format( self, space=2, sparsify=None, adjoin=True, names=False, na_rep=None, formatter=None, ): if len(self) == 0: return [] stringified_levels = [] for lev, level_codes in zip(self.levels, self.codes): na = na_rep if na_rep is not None else _get_na_rep(lev.dtype.type) if len(lev) > 0: formatted = lev.take(level_codes).format(formatter=formatter) # we have some NA mask = level_codes == -1 if mask.any(): formatted = np.array(formatted, dtype=object) formatted[mask] = na formatted = formatted.tolist() else: # weird all NA case formatted = [ pprint_thing(na if isna(x) else x, escape_chars=("\t", "\r", "\n")) for x in algos.take_1d(lev._values, level_codes) ] stringified_levels.append(formatted) result_levels = [] for lev, name in zip(stringified_levels, self.names): level = [] if names: level.append( pprint_thing(name, escape_chars=("\t", "\r", "\n")) if name is not None else "" ) level.extend(np.array(lev, dtype=object)) result_levels.append(level) if sparsify is None: sparsify = get_option("display.multi_sparse") if sparsify: sentinel = "" # GH3547 # use value of sparsify as sentinel, unless it's an obvious # "Truthy" value if sparsify not in [True, 1]: sentinel = sparsify # little bit of a kludge job for #1217 result_levels = _sparsify( result_levels, start=int(names), sentinel=sentinel ) if adjoin: from pandas.io.formats.format import _get_adjustment adj = _get_adjustment() return adj.adjoin(space, *result_levels).split("\n") else: return result_levels # -------------------------------------------------------------------- # Names Methods def _get_names(self): return FrozenList(self._names) def _set_names(self, names, level=None, validate=True): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None validate : boolean, default True validate that the names match level lengths Raises ------ TypeError if each name is not hashable. Notes ----- sets names on levels. WARNING: mutates! Note that you generally want to set this *after* changing levels, so that it only acts on copies """ # GH 15110 # Don't allow a single string for names in a MultiIndex if names is not None and not is_list_like(names): raise ValueError("Names should be list-like for a MultiIndex") names = list(names) if validate: if level is not None and len(names) != len(level): raise ValueError("Length of names must match length of level.") if level is None and len(names) != self.nlevels: raise ValueError( "Length of names must match number of levels in MultiIndex." ) if level is None: level = range(self.nlevels) else: level = [self._get_level_number(lev) for lev in level] # set the name for lev, name in zip(level, names): if name is not None: # GH 20527 # All items in 'names' need to be hashable: if not is_hashable(name): raise TypeError( f"{type(self).__name__}.name must be a hashable type" ) self._names[lev] = name # If .levels has been accessed, the names in our cache will be stale. self._reset_cache() names = property( fset=_set_names, fget=_get_names, doc="""\nNames of levels in MultiIndex.\n""" ) # -------------------------------------------------------------------- @Appender(Index._get_grouper_for_level.__doc__) def _get_grouper_for_level(self, mapper, level): indexer = self.codes[level] level_index = self.levels[level] if mapper is not None: # Handle group mapping function and return level_values = self.levels[level].take(indexer) grouper = level_values.map(mapper) return grouper, None, None codes, uniques = algos.factorize(indexer, sort=True) if len(uniques) > 0 and uniques[0] == -1: # Handle NAs mask = indexer != -1 ok_codes, uniques = algos.factorize(indexer[mask], sort=True) codes = np.empty(len(indexer), dtype=indexer.dtype) codes[mask] = ok_codes codes[~mask] = -1 if len(uniques) < len(level_index): # Remove unobserved levels from level_index level_index = level_index.take(uniques) else: # break references back to us so that setting the name # on the output of a groupby doesn't reflect back here. level_index = level_index.copy() if level_index._can_hold_na: grouper = level_index.take(codes, fill_value=True) else: grouper = level_index.take(codes) return grouper, codes, level_index @cache_readonly def inferred_type(self) -> str: return "mixed" def _get_level_number(self, level) -> int: count = self.names.count(level) if (count > 1) and not is_integer(level): raise ValueError( f"The name {level} occurs multiple times, use a level number" ) try: level = self.names.index(level) except ValueError as err: if not is_integer(level): raise KeyError(f"Level {level} not found") from err elif level < 0: level += self.nlevels if level < 0: orig_level = level - self.nlevels raise IndexError( f"Too many levels: Index has only {self.nlevels} levels, " f"{orig_level} is not a valid level number" ) from err # Note: levels are zero-based elif level >= self.nlevels: raise IndexError( f"Too many levels: Index has only {self.nlevels} levels, " f"not {level + 1}" ) from err return level @property def _has_complex_internals(self) -> bool: # used to avoid libreduction code paths, which raise or require conversion return True @cache_readonly def is_monotonic_increasing(self) -> bool: """ return if the index is monotonic increasing (only equal or increasing) values. """ if all(x.is_monotonic for x in self.levels): # If each level is sorted, we can operate on the codes directly. GH27495 return libalgos.is_lexsorted( [x.astype("int64", copy=False) for x in self.codes] ) # reversed() because lexsort() wants the most significant key last. values = [ self._get_level_values(i).values for i in reversed(range(len(self.levels))) ] try: sort_order = np.lexsort(values) return Index(sort_order).is_monotonic except TypeError: # we have mixed types and np.lexsort is not happy return Index(self._values).is_monotonic @cache_readonly def is_monotonic_decreasing(self) -> bool: """ return if the index is monotonic decreasing (only equal or decreasing) values. """ # monotonic decreasing if and only if reverse is monotonic increasing return self[::-1].is_monotonic_increasing @cache_readonly def _inferred_type_levels(self): """ return a list of the inferred types, one for each level """ return [i.inferred_type for i in self.levels] @Appender(Index.duplicated.__doc__) def duplicated(self, keep="first"): shape = map(len, self.levels) ids = get_group_index(self.codes, shape, sort=False, xnull=False) return duplicated_int64(ids, keep) def fillna(self, value=None, downcast=None): """ fillna is not implemented for MultiIndex """ raise NotImplementedError("isna is not defined for MultiIndex") @Appender(Index.dropna.__doc__) def dropna(self, how="any"): nans = [level_codes == -1 for level_codes in self.codes] if how == "any": indexer = np.any(nans, axis=0) elif how == "all": indexer = np.all(nans, axis=0) else: raise ValueError(f"invalid how option: {how}") new_codes = [level_codes[~indexer] for level_codes in self.codes] return self.copy(codes=new_codes, deep=True) def _get_level_values(self, level, unique=False): """ Return vector of label values for requested level, equal to the length of the index **this is an internal method** Parameters ---------- level : int level unique : bool, default False if True, drop duplicated values Returns ------- values : ndarray """ lev = self.levels[level] level_codes = self.codes[level] name = self._names[level] if unique: level_codes = algos.unique(level_codes) filled = algos.take_1d(lev._values, level_codes, fill_value=lev._na_value) return lev._shallow_copy(filled, name=name) def get_level_values(self, level): """ Return vector of label values for requested level, equal to the length of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index Values is a level of this MultiIndex converted to a single :class:`Index` (or subclass thereof). Examples -------- Create a MultiIndex: >>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def'))) >>> mi.names = ['level_1', 'level_2'] Get level values by supplying level as either integer or name: >>> mi.get_level_values(0) Index(['a', 'b', 'c'], dtype='object', name='level_1') >>> mi.get_level_values('level_2') Index(['d', 'e', 'f'], dtype='object', name='level_2') """ level = self._get_level_number(level) values = self._get_level_values(level) return values @Appender(Index.unique.__doc__) def unique(self, level=None): if level is None: return super().unique() else: level = self._get_level_number(level) return self._get_level_values(level=level, unique=True) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self.set_levels([i._to_safe_for_reshape() for i in self.levels]) def to_frame(self, index=True, name=None): """ Create a DataFrame with the levels of the MultiIndex as columns. Column ordering is determined by the DataFrame constructor with data as a dict. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original MultiIndex. name : list / sequence of str, optional The passed names should substitute index level names. Returns ------- DataFrame : a DataFrame containing the original MultiIndex data. See Also -------- DataFrame """ from pandas import DataFrame if name is not None: if not is_list_like(name): raise TypeError("'name' must be a list / sequence of column names.") if len(name) != len(self.levels): raise ValueError( "'name' should have same length as number of levels on index." ) idx_names = name else: idx_names = self.names # Guarantee resulting column order - PY36+ dict maintains insertion order result = DataFrame( { (level if lvlname is None else lvlname): self._get_level_values(level) for lvlname, level in zip(idx_names, range(len(self.levels))) }, copy=False, ) if index: result.index = self return result def to_flat_index(self): """ Convert a MultiIndex to an Index of Tuples containing the level values. .. versionadded:: 0.24.0 Returns ------- pd.Index Index with the MultiIndex data represented in Tuples. Notes ----- This method will simply return the caller if called by anything other than a MultiIndex. Examples -------- >>> index = pd.MultiIndex.from_product( ... [['foo', 'bar'], ['baz', 'qux']], ... names=['a', 'b']) >>> index.to_flat_index() Index([('foo', 'baz'), ('foo', 'qux'), ('bar', 'baz'), ('bar', 'qux')], dtype='object') """ return Index(self._values, tupleize_cols=False) @property def is_all_dates(self) -> bool: return False def is_lexsorted(self) -> bool: """ Return True if the codes are lexicographically sorted. Returns ------- bool """ return self.lexsort_depth == self.nlevels @cache_readonly def lexsort_depth(self): if self.sortorder is not None: return self.sortorder return self._lexsort_depth() def _lexsort_depth(self) -> int: """ Compute and return the lexsort_depth, the number of levels of the MultiIndex that are sorted lexically Returns ------- int """ int64_codes = [ensure_int64(level_codes) for level_codes in self.codes] for k in range(self.nlevels, 0, -1): if libalgos.is_lexsorted(int64_codes[:k]): return k return 0 def _sort_levels_monotonic(self): """ This is an *internal* function. Create a new MultiIndex from the current to monotonically sorted items IN the levels. This does not actually make the entire MultiIndex monotonic, JUST the levels. The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering. It will also be .equals() to the original. Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) >>> mi MultiIndex([('a', 'bb'), ('a', 'aa'), ('b', 'bb'), ('b', 'aa')], ) >>> mi.sort_values() MultiIndex([('a', 'aa'), ('a', 'bb'), ('b', 'aa'), ('b', 'bb')], ) """ if self.is_lexsorted() and self.is_monotonic: return self new_levels = [] new_codes = [] for lev, level_codes in zip(self.levels, self.codes): if not lev.is_monotonic: try: # indexer to reorder the levels indexer = lev.argsort() except TypeError: pass else: lev = lev.take(indexer) # indexer to reorder the level codes indexer = ensure_int64(indexer) ri = lib.get_reverse_indexer(indexer, len(indexer)) level_codes = algos.take_1d(ri, level_codes) new_levels.append(lev) new_codes.append(level_codes) return MultiIndex( new_levels, new_codes, names=self.names, sortorder=self.sortorder, verify_integrity=False, ) def remove_unused_levels(self): """ Create a new MultiIndex from the current that removes unused levels, meaning that they are not expressed in the labels. The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering. It will also be .equals() to the original. Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex.from_product([range(2), list('ab')]) >>> mi MultiIndex([(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')], ) >>> mi[2:] MultiIndex([(1, 'a'), (1, 'b')], ) The 0 from the first level is not represented and can be removed >>> mi2 = mi[2:].remove_unused_levels() >>> mi2.levels FrozenList([[1], ['a', 'b']]) """ new_levels = [] new_codes = [] changed = False for lev, level_codes in zip(self.levels, self.codes): # Since few levels are typically unused, bincount() is more # efficient than unique() - however it only accepts positive values # (and drops order): uniques = np.where(np.bincount(level_codes + 1) > 0)[0] - 1 has_na = int(len(uniques) and (uniques[0] == -1)) if len(uniques) != len(lev) + has_na: # We have unused levels changed = True # Recalculate uniques, now preserving order. # Can easily be cythonized by exploiting the already existing # "uniques" and stop parsing "level_codes" when all items # are found: uniques = algos.unique(level_codes) if has_na: na_idx = np.where(uniques == -1)[0] # Just ensure that -1 is in first position: uniques[[0, na_idx[0]]] = uniques[[na_idx[0], 0]] # codes get mapped from uniques to 0:len(uniques) # -1 (if present) is mapped to last position code_mapping = np.zeros(len(lev) + has_na) # ... and reassigned value -1: code_mapping[uniques] = np.arange(len(uniques)) - has_na level_codes = code_mapping[level_codes] # new levels are simple lev = lev.take(uniques[has_na:]) new_levels.append(lev) new_codes.append(level_codes) result = self.view() if changed: result._reset_identity() result._set_levels(new_levels, validate=False) result._set_codes(new_codes, validate=False) return result # -------------------------------------------------------------------- # Pickling Methods def __reduce__(self): """Necessary for making this object picklable""" d = dict( levels=list(self.levels), codes=list(self.codes), sortorder=self.sortorder, names=list(self.names), ) return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- def __getitem__(self, key): if is_scalar(key): key = com.cast_scalar_indexer(key) retval = [] for lev, level_codes in zip(self.levels, self.codes): if level_codes[key] == -1: retval.append(np.nan) else: retval.append(lev[level_codes[key]]) return tuple(retval) else: if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) sortorder = self.sortorder else: # cannot be sure whether the result will be sorted sortorder = None if isinstance(key, Index): key = np.asarray(key) new_codes = [level_codes[key] for level_codes in self.codes] return MultiIndex( levels=self.levels, codes=new_codes, names=self.names, sortorder=sortorder, verify_integrity=False, ) @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) taken = self._assert_take_fillable( self.codes, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=-1, ) return MultiIndex( levels=self.levels, codes=taken, names=self.names, verify_integrity=False ) def _assert_take_fillable( self, values, indices, allow_fill=True, fill_value=None, na_value=None ): """ Internal method to handle NA filling of take """ # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) raise ValueError(msg) taken = [lab.take(indices) for lab in self.codes] mask = indices == -1 if mask.any(): masked = [] for new_label in taken: label_values = new_label label_values[mask] = na_value masked.append(np.asarray(label_values)) taken = masked else: taken = [lab.take(indices) for lab in self.codes] return taken def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ if not isinstance(other, (list, tuple)): other = [other] if all( (isinstance(o, MultiIndex) and o.nlevels >= self.nlevels) for o in other ): arrays = [] for i in range(self.nlevels): label = self._get_level_values(i) appended = [o._get_level_values(i) for o in other] arrays.append(label.append(appended)) return MultiIndex.from_arrays(arrays, names=self.names) to_concat = (self._values,) + tuple(k._values for k in other) new_tuples = np.concatenate(to_concat) # if all(isinstance(x, MultiIndex) for x in other): try: return MultiIndex.from_tuples(new_tuples, names=self.names) except (TypeError, IndexError): return Index(new_tuples) def argsort(self, *args, **kwargs) -> np.ndarray: return self._values.argsort(*args, **kwargs) @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) repeats = ensure_platform_int(repeats) return MultiIndex( levels=self.levels, codes=[ level_codes.view(np.ndarray).astype(np.intp).repeat(repeats) for level_codes in self.codes ], names=self.names, sortorder=self.sortorder, verify_integrity=False, ) def where(self, cond, other=None): raise NotImplementedError(".where is not supported for MultiIndex operations") def drop(self, codes, level=None, errors="raise"): """ Make new MultiIndex with passed list of codes deleted Parameters ---------- codes : array-like Must be a list of tuples level : int or level name, default None errors : str, default 'raise' Returns ------- dropped : MultiIndex """ if level is not None: return self._drop_from_level(codes, level, errors) if not isinstance(codes, (np.ndarray, Index)): try: codes = com.index_labels_to_array(codes, dtype=object) except ValueError: pass inds = [] for level_codes in codes: try: loc = self.get_loc(level_codes) # get_loc returns either an integer, a slice, or a boolean # mask if isinstance(loc, int): inds.append(loc) elif isinstance(loc, slice): inds.extend(range(loc.start, loc.stop)) elif com.is_bool_indexer(loc): if self.lexsort_depth == 0: warnings.warn( "dropping on a non-lexsorted multi-index " "without a level parameter may impact performance.", PerformanceWarning, stacklevel=3, ) loc = loc.nonzero()[0] inds.extend(loc) else: msg = f"unsupported indexer of type {type(loc)}" raise AssertionError(msg) except KeyError: if errors != "ignore": raise return self.delete(inds) def _drop_from_level(self, codes, level, errors="raise"): codes = com.index_labels_to_array(codes) i = self._get_level_number(level) index = self.levels[i] values = index.get_indexer(codes) mask = ~algos.isin(self.codes[i], values) if mask.all() and errors != "ignore": raise KeyError(f"labels {codes} not found in level") return self[mask] def swaplevel(self, i=-2, j=-1): """ Swap level i with level j. Calling this method does not change the ordering of the values. Parameters ---------- i : int, str, default -2 First level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. j : int, str, default -1 Second level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. Returns ------- MultiIndex A new MultiIndex. See Also -------- Series.swaplevel : Swap levels i and j in a MultiIndex. Dataframe.swaplevel : Swap levels i and j in a MultiIndex on a particular axis. Examples -------- >>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) >>> mi MultiIndex([('a', 'bb'), ('a', 'aa'), ('b', 'bb'), ('b', 'aa')], ) >>> mi.swaplevel(0, 1) MultiIndex([('bb', 'a'), ('aa', 'a'), ('bb', 'b'), ('aa', 'b')], ) """ new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) i = self._get_level_number(i) j = self._get_level_number(j) new_levels[i], new_levels[j] = new_levels[j], new_levels[i] new_codes[i], new_codes[j] = new_codes[j], new_codes[i] new_names[i], new_names[j] = new_names[j], new_names[i] return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) def reorder_levels(self, order): """ Rearrange levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). Returns ------- MultiIndex """ order = [self._get_level_number(i) for i in order] if len(order) != self.nlevels: raise AssertionError( f"Length of order must be same as number of levels ({self.nlevels}), " f"got {len(order)}" ) new_levels = [self.levels[i] for i in order] new_codes = [self.codes[i] for i in order] new_names = [self.names[i] for i in order] return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) def _get_codes_for_sorting(self): """ we categorizing our codes by using the available categories (all, not just observed) excluding any missing ones (-1); this is in preparation for sorting, where we need to disambiguate that -1 is not a valid valid """ def cats(level_codes): return np.arange( np.array(level_codes).max() + 1 if len(level_codes) else 0, dtype=level_codes.dtype, ) return [ Categorical.from_codes(level_codes, cats(level_codes), ordered=True) for level_codes in self.codes ] def sortlevel(self, level=0, ascending=True, sort_remaining=True): """ Sort MultiIndex at the requested level. The result will respect the original ordering of the associated factor at that level. Parameters ---------- level : list-like, int or str, default 0 If a string is given, must be a name of the level. If list-like must be names or ints of levels. ascending : bool, default True False to sort in descending order. Can also be a list to specify a directed ordering. sort_remaining : sort by the remaining levels after level Returns ------- sorted_index : pd.MultiIndex Resulting index. indexer : np.ndarray Indices of output values in original index. """ if isinstance(level, (str, int)): level = [level] level = [self._get_level_number(lev) for lev in level] sortorder = None # we have a directed ordering via ascending if isinstance(ascending, list): if not len(level) == len(ascending): raise ValueError("level must have same length as ascending") indexer = lexsort_indexer( [self.codes[lev] for lev in level], orders=ascending ) # level ordering else: codes = list(self.codes) shape = list(self.levshape) # partition codes and shape primary = tuple(codes[lev] for lev in level) primshp = tuple(shape[lev] for lev in level) # Reverse sorted to retain the order of # smaller indices that needs to be removed for lev in sorted(level, reverse=True): codes.pop(lev) shape.pop(lev) if sort_remaining: primary += primary + tuple(codes) primshp += primshp + tuple(shape) else: sortorder = level[0] indexer = indexer_from_factorized(primary, primshp, compress=False) if not ascending: indexer = indexer[::-1] indexer = ensure_platform_int(indexer) new_codes = [level_codes.take(indexer) for level_codes in self.codes] new_index = MultiIndex( codes=new_codes, levels=self.levels, names=self.names, sortorder=sortorder, verify_integrity=False, ) return new_index, indexer def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Returns ------- new_index : pd.MultiIndex Resulting index indexer : np.ndarray or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "names") if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") # GH7774: preserve dtype/tz if target is empty and not an Index. # target may be an iterator target = ibase._ensure_has_len(target) if len(target) == 0 and not isinstance(target, Index): idx = self.levels[level] attrs = idx._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq target = type(idx)._simple_new(np.empty(0, dtype=idx.dtype), **attrs) else: target = ensure_index(target) target, indexer, _ = self._join_level( target, level, how="right", return_indexers=True, keep_order=False ) else: target = ensure_index(target) if self.equals(target): indexer = None else: if self.is_unique: indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: raise ValueError("cannot handle a non-unique multi-index!") if not isinstance(target, MultiIndex): if indexer is None: target = self elif (indexer >= 0).all(): target = self.take(indexer) else: # hopefully? target = MultiIndex.from_tuples(target) if ( preserve_names and target.nlevels == self.nlevels and target.names != self.names ): target = target.copy(deep=False) target.names = self.names return target, indexer # -------------------------------------------------------------------- # Indexing Methods def get_value(self, series, key): # Label-based if not is_hashable(key) or is_iterator(key): # We allow tuples if they are hashable, whereas other Index # subclasses require scalar. # We have to explicitly exclude generators, as these are hashable. raise InvalidIndexError(key) try: loc = self.get_loc(key) except KeyError: if is_integer(key): loc = key else: raise return self._get_values_for_loc(series, loc, key) def _get_values_for_loc(self, series: "Series", loc, key): """ Do a positional lookup on the given Series, returning either a scalar or a Series. Assumes that `series.index is self` """ new_values = series._values[loc] if is_scalar(loc): return new_values new_index = self[loc] new_index = maybe_droplevels(new_index, key) new_ser = series._constructor(new_values, index=new_index, name=series.name) return new_ser.__finalize__(series) def _convert_listlike_indexer(self, keyarr): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- tuple (indexer, keyarr) indexer is an ndarray or None if cannot convert keyarr are tuple-safe keys """ indexer, keyarr = super()._convert_listlike_indexer(keyarr) # are we indexing a specific level if indexer is None and len(keyarr) and not isinstance(keyarr[0], tuple): level = 0 _, indexer = self.reindex(keyarr, level=level) # take all if indexer is None: indexer = np.arange(len(self)) check = self.levels[0].get_indexer(keyarr) mask = check == -1 if mask.any(): raise KeyError(f"{keyarr[mask]} not in index") return indexer, keyarr def _get_partial_string_timestamp_match_key(self, key): """ Translate any partial string timestamp matches in key, returning the new key. Only relevant for MultiIndex. """ # GH#10331 if isinstance(key, str) and self.levels[0]._supports_partial_string_indexing: # Convert key '2016-01-01' to # ('2016-01-01'[, slice(None, None, None)]+) key = tuple([key] + [slice(None)] * (len(self.levels) - 1)) if isinstance(key, tuple): # Convert (..., '2016-01-01', ...) in tuple to # (..., slice('2016-01-01', '2016-01-01', None), ...) new_key = [] for i, component in enumerate(key): if ( isinstance(component, str) and self.levels[i]._supports_partial_string_indexing ): new_key.append(slice(component, component, None)) else: new_key.append(component) key = tuple(new_key) return key @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = ensure_index(target) # empty indexer if is_list_like(target) and not len(target): return ensure_platform_int(np.array([])) if not isinstance(target, MultiIndex): try: target = MultiIndex.from_tuples(target) except (TypeError, ValueError): # let's instead try with a straight Index if method is None: return Index(self._values).get_indexer( target, method=method, limit=limit, tolerance=tolerance ) if not self.is_unique: raise ValueError("Reindexing only valid with uniquely valued Index objects") if method == "pad" or method == "backfill": if tolerance is not None: raise NotImplementedError( "tolerance not implemented yet for MultiIndex" ) indexer = self._engine.get_indexer(target, method, limit) elif method == "nearest": raise NotImplementedError( "method='nearest' not implemented yet " "for MultiIndex; see GitHub issue 9365" ) else: indexer = self._engine.get_indexer(target) return ensure_platform_int(indexer) @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): return super().get_indexer_non_unique(target) def get_slice_bound( self, label: Union[Hashable, Sequence[Hashable]], side: str, kind: str ) -> int: """ For an ordered MultiIndex, compute slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if `side=='right') position of given label. Parameters ---------- label : object or tuple of objects side : {'left', 'right'} kind : {'loc', 'getitem'} Returns ------- int Index of label. Notes ----- This method only works if level 0 index of the MultiIndex is lexsorted. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abbc'), list('gefd')]) Get the locations from the leftmost 'b' in the first level until the end of the multiindex: >>> mi.get_slice_bound('b', side="left", kind="loc") 1 Like above, but if you get the locations from the rightmost 'b' in the first level and 'f' in the second level: >>> mi.get_slice_bound(('b','f'), side="right", kind="loc") 3 See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. """ if not isinstance(label, tuple): label = (label,) return self._partial_tup_index(label, side=side) def slice_locs(self, start=None, end=None, step=None, kind=None): """ For an ordered MultiIndex, compute the slice locations for input labels. The input labels can be tuples representing partial levels, e.g. for a MultiIndex with 3 levels, you can pass a single value (corresponding to the first level), or a 1-, 2-, or 3-tuple. Parameters ---------- start : label or tuple, default None If None, defaults to the beginning end : label or tuple If None, defaults to the end step : int or None Slice step kind : string, optional, defaults None Returns ------- (start, end) : (int, int) Notes ----- This method only works if the MultiIndex is properly lexsorted. So, if only the first 2 levels of a 3-level MultiIndex are lexsorted, you can only pass two levels to ``.slice_locs``. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abbd'), list('deff')], ... names=['A', 'B']) Get the slice locations from the beginning of 'b' in the first level until the end of the multiindex: >>> mi.slice_locs(start='b') (1, 4) Like above, but stop at the end of 'b' in the first level and 'f' in the second level: >>> mi.slice_locs(start='b', end=('b', 'f')) (1, 3) See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. """ # This function adds nothing to its parent implementation (the magic # happens in get_slice_bound method), but it adds meaningful doc. return super().slice_locs(start, end, step, kind=kind) def _partial_tup_index(self, tup, side="left"): if len(tup) > self.lexsort_depth: raise UnsortedIndexError( f"Key length ({len(tup)}) was greater than MultiIndex lexsort depth " f"({self.lexsort_depth})" ) n = len(tup) start, end = 0, len(self) zipped = zip(tup, self.levels, self.codes) for k, (lab, lev, labs) in enumerate(zipped): section = labs[start:end] if lab not in lev and not isna(lab): if not lev.is_type_compatible(lib.infer_dtype([lab], skipna=False)): raise TypeError(f"Level type mismatch: {lab}") # short circuit loc = lev.searchsorted(lab, side=side) if side == "right" and loc >= 0: loc -= 1 return start + section.searchsorted(loc, side=side) idx = self._get_loc_single_level_index(lev, lab) if k < n - 1: end = start + section.searchsorted(idx, side="right") start = start + section.searchsorted(idx, side="left") else: return start + section.searchsorted(idx, side=side) def _get_loc_single_level_index(self, level_index: Index, key: Hashable) -> int: """ If key is NA value, location of index unify as -1. Parameters ---------- level_index: Index key : label Returns ------- loc : int If key is NA value, loc is -1 Else, location of key in index. See Also -------- Index.get_loc : The get_loc method for (single-level) index. """ if is_scalar(key) and isna(key): return -1 else: return level_index.get_loc(key) def get_loc(self, key, method=None): """ Get location for a label or a tuple of labels as an integer, slice or boolean mask. Parameters ---------- key : label or tuple of labels (one for each level) method : None Returns ------- loc : int, slice object or boolean mask If the key is past the lexsort depth, the return may be a boolean mask array, otherwise it is always a slice or int. See Also -------- Index.get_loc : The get_loc method for (single-level) index. MultiIndex.slice_locs : Get slice location given start label(s) and end label(s). MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. Notes ----- The key cannot be a slice, list of same-level labels, a boolean mask, or a sequence of such. If you want to use those, use :meth:`MultiIndex.get_locs` instead. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')]) >>> mi.get_loc('b') slice(1, 3, None) >>> mi.get_loc(('b', 'e')) 1 """ if method is not None: raise NotImplementedError( "only the default get_loc method is " "currently supported for MultiIndex" ) def _maybe_to_slice(loc): """convert integer indexer to boolean mask or slice if possible""" if not isinstance(loc, np.ndarray) or loc.dtype != "int64": return loc loc = lib.maybe_indices_to_slice(loc, len(self)) if isinstance(loc, slice): return loc mask = np.empty(len(self), dtype="bool") mask.fill(False) mask[loc] = True return mask if not isinstance(key, (tuple, list)): # not including list here breaks some indexing, xref #30892 loc = self._get_level_indexer(key, level=0) return _maybe_to_slice(loc) keylen = len(key) if self.nlevels < keylen: raise KeyError( f"Key length ({keylen}) exceeds index depth ({self.nlevels})" ) if keylen == self.nlevels and self.is_unique: return self._engine.get_loc(key) # -- partial selection or non-unique index # break the key into 2 parts based on the lexsort_depth of the index; # the first part returns a continuous slice of the index; the 2nd part # needs linear search within the slice i = self.lexsort_depth lead_key, follow_key = key[:i], key[i:] start, stop = ( self.slice_locs(lead_key, lead_key) if lead_key else (0, len(self)) ) if start == stop: raise KeyError(key) if not follow_key: return slice(start, stop) warnings.warn( "indexing past lexsort depth may impact performance.", PerformanceWarning, stacklevel=10, ) loc = np.arange(start, stop, dtype="int64") for i, k in enumerate(follow_key, len(lead_key)): mask = self.codes[i][loc] == self._get_loc_single_level_index( self.levels[i], k ) if not mask.all(): loc = loc[mask] if not len(loc): raise KeyError(key) return _maybe_to_slice(loc) if len(loc) != stop - start else slice(start, stop) def get_loc_level(self, key, level=0, drop_level: bool = True): """ Get both the location for the requested label(s) and the resulting sliced index. Parameters ---------- key : label or sequence of labels level : int/level name or list thereof, optional drop_level : bool, default True If ``False``, the resulting index will not drop any level. Returns ------- loc : A 2-tuple where the elements are: Element 0: int, slice object or boolean array Element 1: The resulting sliced multiindex/index. If the key contains all levels, this will be ``None``. See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')], ... names=['A', 'B']) >>> mi.get_loc_level('b') (slice(1, 3, None), Index(['e', 'f'], dtype='object', name='B')) >>> mi.get_loc_level('e', level='B') (array([False, True, False], dtype=bool), Index(['b'], dtype='object', name='A')) >>> mi.get_loc_level(['b', 'e']) (1, None) """ # different name to distinguish from maybe_droplevels def maybe_mi_droplevels(indexer, levels, drop_level: bool): if not drop_level: return self[indexer] # kludgearound orig_index = new_index = self[indexer] levels = [self._get_level_number(i) for i in levels] for i in sorted(levels, reverse=True): try: new_index = new_index.droplevel(i) except ValueError: # no dropping here return orig_index return new_index if isinstance(level, (tuple, list)): if len(key) != len(level): raise AssertionError( "Key for location must have same length as number of levels" ) result = None for lev, k in zip(level, key): loc, new_index = self.get_loc_level(k, level=lev) if isinstance(loc, slice): mask = np.zeros(len(self), dtype=bool) mask[loc] = True loc = mask result = loc if result is None else result & loc return result, maybe_mi_droplevels(result, level, drop_level) level = self._get_level_number(level) # kludge for #1796 if isinstance(key, list): key = tuple(key) if isinstance(key, tuple) and level == 0: try: if key in self.levels[0]: indexer = self._get_level_indexer(key, level=level) new_index = maybe_mi_droplevels(indexer, [0], drop_level) return indexer, new_index except (TypeError, InvalidIndexError): pass if not any(isinstance(k, slice) for k in key): # partial selection # optionally get indexer to avoid re-calculation def partial_selection(key, indexer=None): if indexer is None: indexer = self.get_loc(key) ilevels = [ i for i in range(len(key)) if key[i] != slice(None, None) ] return indexer, maybe_mi_droplevels(indexer, ilevels, drop_level) if len(key) == self.nlevels and self.is_unique: # Complete key in unique index -> standard get_loc try: return (self._engine.get_loc(key), None) except KeyError as e: raise KeyError(key) from e else: return partial_selection(key) else: indexer = None for i, k in enumerate(key): if not isinstance(k, slice): k = self._get_level_indexer(k, level=i) if isinstance(k, slice): # everything if k.start == 0 and k.stop == len(self): k = slice(None, None) else: k_index = k if isinstance(k, slice): if k == slice(None, None): continue else: raise TypeError(key) if indexer is None: indexer = k_index else: # pragma: no cover indexer &= k_index if indexer is None: indexer = slice(None, None) ilevels = [i for i in range(len(key)) if key[i] != slice(None, None)] return indexer, maybe_mi_droplevels(indexer, ilevels, drop_level) else: indexer = self._get_level_indexer(key, level=level) return indexer, maybe_mi_droplevels(indexer, [level], drop_level) def _get_level_indexer(self, key, level=0, indexer=None): # return an indexer, boolean array or a slice showing where the key is # in the totality of values # if the indexer is provided, then use this level_index = self.levels[level] level_codes = self.codes[level] def convert_indexer(start, stop, step, indexer=indexer, codes=level_codes): # given the inputs and the codes/indexer, compute an indexer set # if we have a provided indexer, then this need not consider # the entire labels set r = np.arange(start, stop, step) if indexer is not None and len(indexer) != len(codes): # we have an indexer which maps the locations in the labels # that we have already selected (and is not an indexer for the # entire set) otherwise this is wasteful so we only need to # examine locations that are in this set the only magic here is # that the result are the mappings to the set that we have # selected from pandas import Series mapper = Series(indexer) indexer = codes.take(ensure_platform_int(indexer)) result = Series(Index(indexer).isin(r).nonzero()[0]) m = result.map(mapper) m = np.asarray(m) else: m = np.zeros(len(codes), dtype=bool) m[np.in1d(codes, r, assume_unique=Index(codes).is_unique)] = True return m if isinstance(key, slice): # handle a slice, returning a slice if we can # otherwise a boolean indexer try: if key.start is not None: start = level_index.get_loc(key.start) else: start = 0 if key.stop is not None: stop = level_index.get_loc(key.stop) else: stop = len(level_index) - 1 step = key.step except KeyError: # we have a partial slice (like looking up a partial date # string) start = stop = level_index.slice_indexer( key.start, key.stop, key.step, kind="loc" ) step = start.step if isinstance(start, slice) or isinstance(stop, slice): # we have a slice for start and/or stop # a partial date slicer on a DatetimeIndex generates a slice # note that the stop ALREADY includes the stopped point (if # it was a string sliced) start = getattr(start, "start", start) stop = getattr(stop, "stop", stop) return convert_indexer(start, stop, step) elif level > 0 or self.lexsort_depth == 0 or step is not None: # need to have like semantics here to right # searching as when we are using a slice # so include the stop+1 (so we include stop) return convert_indexer(start, stop + 1, step) else: # sorted, so can return slice object -> view i = level_codes.searchsorted(start, side="left") j = level_codes.searchsorted(stop, side="right") return slice(i, j, step) else: code = self._get_loc_single_level_index(level_index, key) if level > 0 or self.lexsort_depth == 0: # Desired level is not sorted locs = np.array(level_codes == code, dtype=bool, copy=False) if not locs.any(): # The label is present in self.levels[level] but unused: raise KeyError(key) return locs i = level_codes.searchsorted(code, side="left") j = level_codes.searchsorted(code, side="right") if i == j: # The label is present in self.levels[level] but unused: raise KeyError(key) return slice(i, j) def get_locs(self, seq): """ Get location for a sequence of labels. Parameters ---------- seq : label, slice, list, mask or a sequence of such You should use one of the above for each level. If a level should not be used, set it to ``slice(None)``. Returns ------- numpy.ndarray NumPy array of integers suitable for passing to iloc. See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.slice_locs : Get slice location given start label(s) and end label(s). Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')]) >>> mi.get_locs('b') # doctest: +SKIP array([1, 2], dtype=int64) >>> mi.get_locs([slice(None), ['e', 'f']]) # doctest: +SKIP array([1, 2], dtype=int64) >>> mi.get_locs([[True, False, True], slice('e', 'f')]) # doctest: +SKIP array([2], dtype=int64) """ from pandas.core.indexes.numeric import Int64Index # must be lexsorted to at least as many levels true_slices = [i for (i, s) in enumerate(com.is_true_slices(seq)) if s] if true_slices and true_slices[-1] >= self.lexsort_depth: raise UnsortedIndexError( "MultiIndex slicing requires the index to be lexsorted: slicing " f"on levels {true_slices}, lexsort depth {self.lexsort_depth}" ) # indexer # this is the list of all values that we want to select n = len(self) indexer = None def _convert_to_indexer(r) -> Int64Index: # return an indexer if isinstance(r, slice): m = np.zeros(n, dtype=bool) m[r] = True r = m.nonzero()[0] elif com.is_bool_indexer(r): if len(r) != n: raise ValueError( "cannot index with a boolean indexer " "that is not the same length as the " "index" ) r = r.nonzero()[0] return Int64Index(r) def _update_indexer(idxr, indexer=indexer): if indexer is None: indexer = Index(np.arange(n)) if idxr is None: return indexer return indexer & idxr for i, k in enumerate(seq): if com.is_bool_indexer(k): # a boolean indexer, must be the same length! k = np.asarray(k) indexer = _update_indexer(_convert_to_indexer(k), indexer=indexer) elif is_list_like(k): # a collection of labels to include from this level (these # are or'd) indexers = None for x in k: try: idxrs = _convert_to_indexer( self._get_level_indexer(x, level=i, indexer=indexer) ) indexers = idxrs if indexers is None else indexers | idxrs except KeyError: # ignore not founds continue if indexers is not None: indexer = _update_indexer(indexers, indexer=indexer) else: # no matches we are done return np.array([], dtype=np.int64) elif com.is_null_slice(k): # empty slice indexer = _update_indexer(None, indexer=indexer) elif isinstance(k, slice): # a slice, include BOTH of the labels indexer = _update_indexer( _convert_to_indexer( self._get_level_indexer(k, level=i, indexer=indexer) ), indexer=indexer, ) else: # a single label indexer = _update_indexer( _convert_to_indexer( self.get_loc_level(k, level=i, drop_level=False)[0] ), indexer=indexer, ) # empty indexer if indexer is None: return np.array([], dtype=np.int64) assert isinstance(indexer, Int64Index), type(indexer) indexer = self._reorder_indexer(seq, indexer) return indexer._values def _reorder_indexer( self, seq: Tuple[Union[Scalar, Iterable, AnyArrayLike], ...], indexer: Int64Index, ) -> Int64Index: """ Reorder an indexer of a MultiIndex (self) so that the label are in the same order as given in seq Parameters ---------- seq : label/slice/list/mask or a sequence of such indexer: an Int64Index indexer of self Returns ------- indexer : a sorted Int64Index indexer of self ordered as seq """ # If the index is lexsorted and the list_like label in seq are sorted # then we do not need to sort if self.is_lexsorted(): need_sort = False for i, k in enumerate(seq): if is_list_like(k): if not need_sort: k_codes = self.levels[i].get_indexer(k) k_codes = k_codes[k_codes >= 0] # Filter absent keys # True if the given codes are not ordered need_sort = (k_codes[:-1] > k_codes[1:]).any() # Bail out if both index and seq are sorted if not need_sort: return indexer n = len(self) keys: Tuple[np.ndarray, ...] = tuple() # For each level of the sequence in seq, map the level codes with the # order they appears in a list-like sequence # This mapping is then use to reorder the indexer for i, k in enumerate(seq): if com.is_bool_indexer(k): new_order = np.arange(n)[indexer] elif is_list_like(k): # Generate a map with all level codes as sorted initially key_order_map = np.ones(len(self.levels[i]), dtype=np.uint64) * len( self.levels[i] ) # Set order as given in the indexer list level_indexer = self.levels[i].get_indexer(k) level_indexer = level_indexer[level_indexer >= 0] # Filter absent keys key_order_map[level_indexer] = np.arange(len(level_indexer)) new_order = key_order_map[self.codes[i][indexer]] else: # For all other case, use the same order as the level new_order = np.arange(n)[indexer] keys = (new_order,) + keys # Find the reordering using lexsort on the keys mapping ind = np.lexsort(keys) return indexer[ind] def truncate(self, before=None, after=None): """ Slice index between two labels / tuples, return new MultiIndex Parameters ---------- before : label or tuple, can be partial. Default None None defaults to start after : label or tuple, can be partial. Default None None defaults to end Returns ------- truncated : MultiIndex """ if after and before and after < before: raise ValueError("after < before") i, j = self.levels[0].slice_locs(before, after) left, right = self.slice_locs(before, after) new_levels = list(self.levels) new_levels[0] = new_levels[0][i:j] new_codes = [level_codes[left:right] for level_codes in self.codes] new_codes[0] = new_codes[0] - i return MultiIndex(levels=new_levels, codes=new_codes, verify_integrity=False) def equals(self, other) -> bool: """ Determines if two MultiIndex objects have the same labeling information (the levels themselves do not necessarily have to be the same) See Also -------- equal_levels """ if self.is_(other): return True if not isinstance(other, Index): return False if not isinstance(other, MultiIndex): # d-level MultiIndex can equal d-tuple Index if not is_object_dtype(other.dtype): # other cannot contain tuples, so cannot match self return False return array_equivalent(self._values, other._values) if self.nlevels != other.nlevels: return False if len(self) != len(other): return False for i in range(self.nlevels): self_codes = self.codes[i] self_codes = self_codes[self_codes != -1] self_values = algos.take_nd( np.asarray(self.levels[i]._values), self_codes, allow_fill=False ) other_codes = other.codes[i] other_codes = other_codes[other_codes != -1] other_values = algos.take_nd( np.asarray(other.levels[i]._values), other_codes, allow_fill=False ) # since we use NaT both datetime64 and timedelta64 # we can have a situation where a level is typed say # timedelta64 in self (IOW it has other values than NaT) # but types datetime64 in other (where its all NaT) # but these are equivalent if len(self_values) == 0 and len(other_values) == 0: continue if not array_equivalent(self_values, other_values): return False return True def equal_levels(self, other) -> bool: """ Return True if the levels of both MultiIndex objects are the same """ if self.nlevels != other.nlevels: return False for i in range(self.nlevels): if not self.levels[i].equals(other.levels[i]): return False return True # -------------------------------------------------------------------- # Set Methods def union(self, other, sort=None): """ Form the union of two MultiIndex objects Parameters ---------- other : MultiIndex or array / Index of tuples sort : False or None, default None Whether to sort the resulting Index. * None : Sort the result, except when 1. `self` and `other` are equal. 2. `self` has length 0. 3. Some values in `self` or `other` cannot be compared. A RuntimeWarning is issued in this case. * False : do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- Index >>> index.union(index2) """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_names = self._convert_can_do_setop(other) if len(other) == 0 or self.equals(other): return self # TODO: Index.union returns other when `len(self)` is 0. uniq_tuples = lib.fast_unique_multiple( [self._values, other._ndarray_values], sort=sort ) return MultiIndex.from_arrays( zip(*uniq_tuples), sortorder=0, names=result_names ) def intersection(self, other, sort=False): """ Form the intersection of two MultiIndex objects. Parameters ---------- other : MultiIndex or array / Index of tuples sort : False or None, default False Sort the resulting MultiIndex if possible .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default from ``True`` to ``False``, to match behaviour from before 0.24.0 Returns ------- Index """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_names = self._convert_can_do_setop(other) if self.equals(other): return self lvals = self._values rvals = other._ndarray_values uniq_tuples = None # flag whether _inner_indexer was succesful if self.is_monotonic and other.is_monotonic: try: uniq_tuples = self._inner_indexer(lvals, rvals)[0] sort = False # uniq_tuples is already sorted except TypeError: pass if uniq_tuples is None: other_uniq = set(rvals) seen = set() uniq_tuples = [ x for x in lvals if x in other_uniq and not (x in seen or seen.add(x)) ] if sort is None: uniq_tuples = sorted(uniq_tuples) if len(uniq_tuples) == 0: return MultiIndex( levels=self.levels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) else: return MultiIndex.from_arrays( zip(*uniq_tuples), sortorder=0, names=result_names ) def difference(self, other, sort=None): """ Compute set difference of two MultiIndex objects Parameters ---------- other : MultiIndex sort : False or None, default None Sort the resulting MultiIndex if possible .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- diff : MultiIndex """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_names = self._convert_can_do_setop(other) if len(other) == 0: return self if self.equals(other): return MultiIndex( levels=self.levels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) difference = this._values.take(label_diff) if sort is None: difference = sorted(difference) if len(difference) == 0: return MultiIndex( levels=[[]] * self.nlevels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) else: return MultiIndex.from_tuples(difference, sortorder=0, names=result_names) def _convert_can_do_setop(self, other): result_names = self.names if not isinstance(other, Index): if len(other) == 0: other = MultiIndex( levels=[[]] * self.nlevels, codes=[[]] * self.nlevels, verify_integrity=False, ) else: msg = "other must be a MultiIndex or a list of tuples" try: other = MultiIndex.from_tuples(other) except TypeError as err: raise TypeError(msg) from err else: result_names = self.names if self.names == other.names else None return other, result_names # -------------------------------------------------------------------- @Appender(Index.astype.__doc__) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if is_categorical_dtype(dtype): msg = "> 1 ndim Categorical are not supported at this time" raise NotImplementedError(msg) elif not is_object_dtype(dtype): raise TypeError( f"Setting {type(self)} dtype to anything other " "than object is not supported" ) elif copy is True: return self._shallow_copy() return self def insert(self, loc: int, item): """ Make new MultiIndex inserting new item at location Parameters ---------- loc : int item : tuple Must be same length as number of levels in the MultiIndex Returns ------- new_index : Index """ # Pad the key with empty strings if lower levels of the key # aren't specified: if not isinstance(item, tuple): item = (item,) + ("",) * (self.nlevels - 1) elif len(item) != self.nlevels: raise ValueError("Item must have length equal to number of levels.") new_levels = [] new_codes = [] for k, level, level_codes in zip(item, self.levels, self.codes): if k not in level: # have to insert into level # must insert at end otherwise you have to recompute all the # other codes lev_loc = len(level) level = level.insert(lev_loc, k) else: lev_loc = level.get_loc(k) new_levels.append(level) new_codes.append(np.insert(ensure_int64(level_codes), loc, lev_loc)) return MultiIndex( levels=new_levels, codes=new_codes, names=self.names, verify_integrity=False ) def delete(self, loc): """ Make new index with passed location deleted Returns ------- new_index : MultiIndex """ new_codes = [np.delete(level_codes, loc) for level_codes in self.codes] return MultiIndex( levels=self.levels, codes=new_codes, names=self.names, verify_integrity=False, ) def _wrap_joined_index(self, joined, other): names = self.names if self.names == other.names else None return MultiIndex.from_tuples(joined, names=names) @Appender(Index.isin.__doc__) def isin(self, values, level=None): if level is None: values = MultiIndex.from_tuples(values, names=self.names)._values return algos.isin(self._values, values) else: num = self._get_level_number(level) levs = self.get_level_values(num) if levs.size == 0: return np.zeros(len(levs), dtype=np.bool_) return levs.isin(values) MultiIndex._add_numeric_methods_disabled() MultiIndex._add_numeric_methods_add_sub_disabled() MultiIndex._add_logical_methods_disabled() def _sparsify(label_list, start: int = 0, sentinel=""): pivoted = list(zip(*label_list)) k = len(label_list) result = pivoted[: start + 1] prev = pivoted[start] for cur in pivoted[start + 1 :]: sparse_cur = [] for i, (p, t) in enumerate(zip(prev, cur)): if i == k - 1: sparse_cur.append(t) result.append(sparse_cur) break if p == t: sparse_cur.append(sentinel) else: sparse_cur.extend(cur[i:]) result.append(sparse_cur) break prev = cur return list(zip(*result)) def _get_na_rep(dtype) -> str: return {np.datetime64: "NaT", np.timedelta64: "NaT"}.get(dtype, "NaN") def maybe_droplevels(index, key): """ Attempt to drop level or levels from the given index. Parameters ---------- index: Index key : scalar or tuple Returns ------- Index """ # drop levels original_index = index if isinstance(key, tuple): for _ in key: try: index = index.droplevel(0) except ValueError: # we have dropped too much, so back out return original_index else: try: index = index.droplevel(0) except ValueError: pass return index def _coerce_indexer_frozen(array_like, categories, copy: bool = False) -> np.ndarray: """ Coerce the array_like indexer to the smallest integer dtype that can encode all of the given categories. Parameters ---------- array_like : array-like categories : array-like copy : bool Returns ------- np.ndarray Non-writeable. """ array_like = coerce_indexer_dtype(array_like, categories) if copy: array_like = array_like.copy() array_like.flags.writeable = False return array_like from sys import getsizeof from typing import ( TYPE_CHECKING, Any, Hashable, Iterable, List, Optional, Sequence, Tuple, Union, ) import warnings import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, index as libindex, lib from pandas._libs.hashtable import duplicated_int64 from pandas._typing import AnyArrayLike, Scalar from pandas.compat.numpy import function as nv from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.util._decorators import Appender, cache_readonly from pandas.core.dtypes.cast import coerce_indexer_dtype from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_categorical_dtype, is_hashable, is_integer, is_iterator, is_list_like, is_object_dtype, is_scalar, pandas_dtype, ) from pandas.core.dtypes.dtypes import ExtensionDtype from pandas.core.dtypes.generic import ABCDataFrame from pandas.core.dtypes.missing import array_equivalent, isna import pandas.core.algorithms as algos from pandas.core.arrays import Categorical from pandas.core.arrays.categorical import factorize_from_iterables import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( Index, InvalidIndexError, _index_shared_docs, ensure_index, ) from pandas.core.indexes.frozen import FrozenList from pandas.core.indexes.numeric import Int64Index import pandas.core.missing as missing from pandas.core.sorting import ( get_group_index, indexer_from_factorized, lexsort_indexer, ) from pandas.io.formats.printing import ( format_object_attrs, format_object_summary, pprint_thing, ) if TYPE_CHECKING: from pandas import Series # noqa:F401 _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update( dict(klass="MultiIndex", target_klass="MultiIndex or list of tuples") ) class MultiIndexUIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.UInt64Engine): """ This class manages a MultiIndex by mapping label combinations to positive integers. """ _base = libindex.UInt64Engine def _codes_to_ints(self, codes): """ Transform combination(s) of uint64 in one uint64 (each), in a strictly monotonic way (i.e. respecting the lexicographic order of integer combinations): see BaseMultiIndexCodesEngine documentation. Parameters ---------- codes : 1- or 2-dimensional array of dtype uint64 Combinations of integers (one per row) Returns ------- scalar or 1-dimensional array, of dtype uint64 Integer(s) representing one combination (each). """ # Shift the representation of each level by the pre-calculated number # of bits: codes <<= self.offsets # Now sum and OR are in fact interchangeable. This is a simple # composition of the (disjunct) significant bits of each level (i.e. # each column in "codes") in a single positive integer: if codes.ndim == 1: # Single key return np.bitwise_or.reduce(codes) # Multiple keys return np.bitwise_or.reduce(codes, axis=1) class MultiIndexPyIntEngine(libindex.BaseMultiIndexCodesEngine, libindex.ObjectEngine): """ This class manages those (extreme) cases in which the number of possible label combinations overflows the 64 bits integers, and uses an ObjectEngine containing Python integers. """ _base = libindex.ObjectEngine def _codes_to_ints(self, codes): """ Transform combination(s) of uint64 in one Python integer (each), in a strictly monotonic way (i.e. respecting the lexicographic order of integer combinations): see BaseMultiIndexCodesEngine documentation. Parameters ---------- codes : 1- or 2-dimensional array of dtype uint64 Combinations of integers (one per row) Returns ------- int, or 1-dimensional array of dtype object Integer(s) representing one combination (each). """ # Shift the representation of each level by the pre-calculated number # of bits. Since this can overflow uint64, first make sure we are # working with Python integers: codes = codes.astype("object") << self.offsets # Now sum and OR are in fact interchangeable. This is a simple # composition of the (disjunct) significant bits of each level (i.e. # each column in "codes") in a single positive integer (per row): if codes.ndim == 1: # Single key return np.bitwise_or.reduce(codes) # Multiple keys return np.bitwise_or.reduce(codes, axis=1) class MultiIndex(Index): """ A multi-level, or hierarchical, index object for pandas objects. Parameters ---------- levels : sequence of arrays The unique labels for each level. codes : sequence of arrays Integers for each level designating which label at each location. .. versionadded:: 0.24.0 sortorder : optional int Level of sortedness (must be lexicographically sorted by that level). names : optional sequence of objects Names for each of the index levels. (name is accepted for compat). copy : bool, default False Copy the meta-data. verify_integrity : bool, default True Check that the levels/codes are consistent and valid. Attributes ---------- names levels codes nlevels levshape Methods ------- from_arrays from_tuples from_product from_frame set_levels set_codes to_frame to_flat_index is_lexsorted sortlevel droplevel swaplevel reorder_levels remove_unused_levels get_locs See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_product : Create a MultiIndex from the cartesian product of iterables. MultiIndex.from_tuples : Convert list of tuples to a MultiIndex. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Index : The base pandas Index type. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/advanced.html>`_ for more. Examples -------- A new ``MultiIndex`` is typically constructed using one of the helper methods :meth:`MultiIndex.from_arrays`, :meth:`MultiIndex.from_product` and :meth:`MultiIndex.from_tuples`. For example (using ``.from_arrays``): >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) See further examples for how to construct a MultiIndex in the doc strings of the mentioned helper methods. """ _deprecations = Index._deprecations | frozenset() # initialize to zero-length tuples to make everything work _typ = "multiindex" _names = FrozenList() _levels = FrozenList() _codes = FrozenList() _comparables = ["names"] rename = Index.set_names _tuples = None sortorder: Optional[int] # -------------------------------------------------------------------- # Constructors def __new__( cls, levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity: bool = True, _set_identity: bool = True, ): # compat with Index if name is not None: names = name if levels is None or codes is None: raise TypeError("Must pass both levels and codes") if len(levels) != len(codes): raise ValueError("Length of levels and codes must be the same.") if len(levels) == 0: raise ValueError("Must pass non-zero number of levels/codes") result = object.__new__(MultiIndex) result._cache = {} # we've already validated levels and codes, so shortcut here result._set_levels(levels, copy=copy, validate=False) result._set_codes(codes, copy=copy, validate=False) result._names = [None] * len(levels) if names is not None: # handles name validation result._set_names(names) if sortorder is not None: result.sortorder = int(sortorder) else: result.sortorder = sortorder if verify_integrity: new_codes = result._verify_integrity() result._codes = new_codes if _set_identity: result._reset_identity() return result def _validate_codes(self, level: List, code: List): """ Reassign code values as -1 if their corresponding levels are NaN. Parameters ---------- code : list Code to reassign. level : list Level to check for missing values (NaN, NaT, None). Returns ------- new code where code value = -1 if it corresponds to a level with missing values (NaN, NaT, None). """ null_mask = isna(level) if np.any(null_mask): code = np.where(null_mask[code], -1, code) return code def _verify_integrity( self, codes: Optional[List] = None, levels: Optional[List] = None ): """ Parameters ---------- codes : optional list Codes to check for validity. Defaults to current codes. levels : optional list Levels to check for validity. Defaults to current levels. Raises ------ ValueError If length of levels and codes don't match, if the codes for any level would exceed level bounds, or there are any duplicate levels. Returns ------- new codes where code value = -1 if it corresponds to a NaN level. """ # NOTE: Currently does not check, among other things, that cached # nlevels matches nor that sortorder matches actually sortorder. codes = codes or self.codes levels = levels or self.levels if len(levels) != len(codes): raise ValueError( "Length of levels and codes must match. NOTE: " "this index is in an inconsistent state." ) codes_length = len(codes[0]) for i, (level, level_codes) in enumerate(zip(levels, codes)): if len(level_codes) != codes_length: raise ValueError( f"Unequal code lengths: {[len(code_) for code_ in codes]}" ) if len(level_codes) and level_codes.max() >= len(level): raise ValueError( f"On level {i}, code max ({level_codes.max()}) >= length of " f"level ({len(level)}). NOTE: this index is in an " "inconsistent state" ) if len(level_codes) and level_codes.min() < -1: raise ValueError(f"On level {i}, code value ({level_codes.min()}) < -1") if not level.is_unique: raise ValueError( f"Level values must be unique: {list(level)} on level {i}" ) if self.sortorder is not None: if self.sortorder > self._lexsort_depth(): raise ValueError( "Value for sortorder must be inferior or equal to actual " f"lexsort_depth: sortorder {self.sortorder} " f"with lexsort_depth {self._lexsort_depth()}" ) codes = [ self._validate_codes(level, code) for level, code in zip(levels, codes) ] new_codes = FrozenList(codes) return new_codes @classmethod def from_arrays(cls, arrays, sortorder=None, names=lib.no_default): """ Convert arrays to MultiIndex. Parameters ---------- arrays : list / sequence of array-likes Each array-like gives one level's value for each data point. len(arrays) is the number of levels. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. Returns ------- MultiIndex See Also -------- MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> pd.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) """ error_msg = "Input must be a list / sequence of array-likes." if not is_list_like(arrays): raise TypeError(error_msg) elif is_iterator(arrays): arrays = list(arrays) # Check if elements of array are list-like for array in arrays: if not is_list_like(array): raise TypeError(error_msg) # Check if lengths of all arrays are equal or not, # raise ValueError, if not for i in range(1, len(arrays)): if len(arrays[i]) != len(arrays[i - 1]): raise ValueError("all arrays must be same length") codes, levels = factorize_from_iterables(arrays) if names is lib.no_default: names = [getattr(arr, "name", None) for arr in arrays] return MultiIndex( levels=levels, codes=codes, sortorder=sortorder, names=names, verify_integrity=False, ) @classmethod def from_tuples(cls, tuples, sortorder=None, names=None): """ Convert list of tuples to MultiIndex. Parameters ---------- tuples : list / sequence of tuple-likes Each tuple is the index of one row/column. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. Returns ------- MultiIndex See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> tuples = [(1, 'red'), (1, 'blue'), ... (2, 'red'), (2, 'blue')] >>> pd.MultiIndex.from_tuples(tuples, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color']) """ if not is_list_like(tuples): raise TypeError("Input must be a list / sequence of tuple-likes.") elif is_iterator(tuples): tuples = list(tuples) if len(tuples) == 0: if names is None: raise TypeError("Cannot infer number of levels from empty list") arrays = [[]] * len(names) elif isinstance(tuples, (np.ndarray, Index)): if isinstance(tuples, Index): tuples = tuples._values arrays = list(lib.tuples_to_object_array(tuples).T) elif isinstance(tuples, list): arrays = list(lib.to_object_array_tuples(tuples).T) else: arrays = zip(*tuples) return MultiIndex.from_arrays(arrays, sortorder=sortorder, names=names) @classmethod def from_product(cls, iterables, sortorder=None, names=lib.no_default): """ Make a MultiIndex from the cartesian product of multiple iterables. Parameters ---------- iterables : list / sequence of iterables Each iterable has unique labels for each level of the index. sortorder : int or None Level of sortedness (must be lexicographically sorted by that level). names : list / sequence of str, optional Names for the levels in the index. .. versionchanged:: 1.0.0 If not explicitly provided, names will be inferred from the elements of iterables if an element has a name attribute Returns ------- MultiIndex See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_frame : Make a MultiIndex from a DataFrame. Examples -------- >>> numbers = [0, 1, 2] >>> colors = ['green', 'purple'] >>> pd.MultiIndex.from_product([numbers, colors], ... names=['number', 'color']) MultiIndex([(0, 'green'), (0, 'purple'), (1, 'green'), (1, 'purple'), (2, 'green'), (2, 'purple')], names=['number', 'color']) """ from pandas.core.reshape.util import cartesian_product if not is_list_like(iterables): raise TypeError("Input must be a list / sequence of iterables.") elif is_iterator(iterables): iterables = list(iterables) codes, levels = factorize_from_iterables(iterables) if names is lib.no_default: names = [getattr(it, "name", None) for it in iterables] # codes are all ndarrays, so cartesian_product is lossless codes = cartesian_product(codes) return MultiIndex(levels, codes, sortorder=sortorder, names=names) @classmethod def from_frame(cls, df, sortorder=None, names=None): """ Make a MultiIndex from a DataFrame. .. versionadded:: 0.24.0 Parameters ---------- df : DataFrame DataFrame to be converted to MultiIndex. sortorder : int, optional Level of sortedness (must be lexicographically sorted by that level). names : list-like, optional If no names are provided, use the column names, or tuple of column names if the columns is a MultiIndex. If a sequence, overwrite names with the given sequence. Returns ------- MultiIndex The MultiIndex representation of the given DataFrame. See Also -------- MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product of iterables. Examples -------- >>> df = pd.DataFrame([['HI', 'Temp'], ['HI', 'Precip'], ... ['NJ', 'Temp'], ['NJ', 'Precip']], ... columns=['a', 'b']) >>> df a b 0 HI Temp 1 HI Precip 2 NJ Temp 3 NJ Precip >>> pd.MultiIndex.from_frame(df) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['a', 'b']) Using explicit names, instead of the column names >>> pd.MultiIndex.from_frame(df, names=['state', 'observation']) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['state', 'observation']) """ if not isinstance(df, ABCDataFrame): raise TypeError("Input must be a DataFrame") column_names, columns = zip(*df.items()) names = column_names if names is None else names return cls.from_arrays(columns, sortorder=sortorder, names=names) # -------------------------------------------------------------------- @property def _values(self): # We override here, since our parent uses _data, which we don't use. return self.values @property def values(self): if self._tuples is not None: return self._tuples values = [] for i in range(self.nlevels): vals = self._get_level_values(i) if is_categorical_dtype(vals): vals = vals._internal_get_values() if isinstance(vals.dtype, ExtensionDtype) or hasattr(vals, "_box_values"): vals = vals.astype(object) vals = np.array(vals, copy=False) values.append(vals) self._tuples = lib.fast_zip(values) return self._tuples @property def array(self): """ Raises a ValueError for `MultiIndex` because there's no single array backing a MultiIndex. Raises ------ ValueError """ raise ValueError( "MultiIndex has no single backing array. Use " "'MultiIndex.to_numpy()' to get a NumPy array of tuples." ) @property def shape(self): """ Return a tuple of the shape of the underlying data. """ # overriding the base Index.shape definition to avoid materializing # the values (GH-27384, GH-27775) return (len(self),) def __len__(self) -> int: return len(self.codes[0]) # -------------------------------------------------------------------- # Levels Methods @cache_readonly def levels(self): # Use cache_readonly to ensure that self.get_locs doesn't repeatedly # create new IndexEngine # https://github.com/pandas-dev/pandas/issues/31648 result = [ x._shallow_copy(name=name) for x, name in zip(self._levels, self._names) ] for level in result: # disallow midx.levels[0].name = "foo" level._no_setting_name = True return FrozenList(result) def _set_levels( self, levels, level=None, copy=False, validate=True, verify_integrity=False ): # This is NOT part of the levels property because it should be # externally not allowed to set levels. User beware if you change # _levels directly if validate: if len(levels) == 0: raise ValueError("Must set non-zero number of levels.") if level is None and len(levels) != self.nlevels: raise ValueError("Length of levels must match number of levels.") if level is not None and len(levels) != len(level): raise ValueError("Length of levels must match length of level.") if level is None: new_levels = FrozenList( ensure_index(lev, copy=copy)._shallow_copy() for lev in levels ) else: level_numbers = [self._get_level_number(lev) for lev in level] new_levels = list(self._levels) for lev_num, lev in zip(level_numbers, levels): new_levels[lev_num] = ensure_index(lev, copy=copy)._shallow_copy() new_levels = FrozenList(new_levels) if verify_integrity: new_codes = self._verify_integrity(levels=new_levels) self._codes = new_codes names = self.names self._levels = new_levels if any(names): self._set_names(names) self._tuples = None self._reset_cache() def set_levels(self, levels, level=None, inplace=False, verify_integrity=True): """ Set new levels on MultiIndex. Defaults to returning new index. Parameters ---------- levels : sequence or list of sequence New level(s) to apply. level : int, level name, or sequence of int/level names (default None) Level(s) to set (None for all levels). inplace : bool If True, mutates in place. verify_integrity : bool, default True If True, checks that levels and codes are compatible. Returns ------- new index (of same type and class...etc) Examples -------- >>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two'), (3, 'one'), (3, 'two')], names=['foo', 'bar']) >>> idx.set_levels([['a', 'b', 'c'], [1, 2]]) MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)], names=['foo', 'bar']) >>> idx.set_levels(['a', 'b', 'c'], level=0) MultiIndex([('a', 'one'), ('a', 'two'), ('b', 'one'), ('b', 'two'), ('c', 'one'), ('c', 'two')], names=['foo', 'bar']) >>> idx.set_levels(['a', 'b'], level='bar') MultiIndex([(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b'), (3, 'a'), (3, 'b')], names=['foo', 'bar']) If any of the levels passed to ``set_levels()`` exceeds the existing length, all of the values from that argument will be stored in the MultiIndex levels, though the values will be truncated in the MultiIndex output. >>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]) MultiIndex([('a', 1), ('a', 2), ('b', 1), ('b', 2)], names=['foo', 'bar']) >>> idx.set_levels([['a', 'b', 'c'], [1, 2, 3, 4]], level=[0, 1]).levels FrozenList([['a', 'b', 'c'], [1, 2, 3, 4]]) """ if is_list_like(levels) and not isinstance(levels, Index): levels = list(levels) if level is not None and not is_list_like(level): if not is_list_like(levels): raise TypeError("Levels must be list-like") if is_list_like(levels[0]): raise TypeError("Levels must be list-like") level = [level] levels = [levels] elif level is None or is_list_like(level): if not is_list_like(levels) or not is_list_like(levels[0]): raise TypeError("Levels must be list of lists-like") if inplace: idx = self else: idx = self._shallow_copy() idx._reset_identity() idx._set_levels( levels, level=level, validate=True, verify_integrity=verify_integrity ) if not inplace: return idx @property def nlevels(self) -> int: """ Integer number of levels in this MultiIndex. """ return len(self._levels) @property def levshape(self): """ A tuple with the length of each level. """ return tuple(len(x) for x in self.levels) # -------------------------------------------------------------------- # Codes Methods @property def codes(self): return self._codes def _set_codes( self, codes, level=None, copy=False, validate=True, verify_integrity=False ): if validate: if level is None and len(codes) != self.nlevels: raise ValueError("Length of codes must match number of levels") if level is not None and len(codes) != len(level): raise ValueError("Length of codes must match length of levels.") if level is None: new_codes = FrozenList( _coerce_indexer_frozen(level_codes, lev, copy=copy).view() for lev, level_codes in zip(self._levels, codes) ) else: level_numbers = [self._get_level_number(lev) for lev in level] new_codes = list(self._codes) for lev_num, level_codes in zip(level_numbers, codes): lev = self.levels[lev_num] new_codes[lev_num] = _coerce_indexer_frozen(level_codes, lev, copy=copy) new_codes = FrozenList(new_codes) if verify_integrity: new_codes = self._verify_integrity(codes=new_codes) self._codes = new_codes self._tuples = None self._reset_cache() def set_codes(self, codes, level=None, inplace=False, verify_integrity=True): """ Set new codes on MultiIndex. Defaults to returning new index. .. versionadded:: 0.24.0 New name for deprecated method `set_labels`. Parameters ---------- codes : sequence or list of sequence New codes to apply. level : int, level name, or sequence of int/level names (default None) Level(s) to set (None for all levels). inplace : bool If True, mutates in place. verify_integrity : bool (default True) If True, checks that levels and codes are compatible. Returns ------- new index (of same type and class...etc) Examples -------- >>> idx = pd.MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')], names=['foo', 'bar']) >>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]]) MultiIndex([(2, 'one'), (1, 'one'), (2, 'two'), (1, 'two')], names=['foo', 'bar']) >>> idx.set_codes([1, 0, 1, 0], level=0) MultiIndex([(2, 'one'), (1, 'two'), (2, 'one'), (1, 'two')], names=['foo', 'bar']) >>> idx.set_codes([0, 0, 1, 1], level='bar') MultiIndex([(1, 'one'), (1, 'one'), (2, 'two'), (2, 'two')], names=['foo', 'bar']) >>> idx.set_codes([[1, 0, 1, 0], [0, 0, 1, 1]], level=[0, 1]) MultiIndex([(2, 'one'), (1, 'one'), (2, 'two'), (1, 'two')], names=['foo', 'bar']) """ if level is not None and not is_list_like(level): if not is_list_like(codes): raise TypeError("Codes must be list-like") if is_list_like(codes[0]): raise TypeError("Codes must be list-like") level = [level] codes = [codes] elif level is None or is_list_like(level): if not is_list_like(codes) or not is_list_like(codes[0]): raise TypeError("Codes must be list of lists-like") if inplace: idx = self else: idx = self._shallow_copy() idx._reset_identity() idx._set_codes(codes, level=level, verify_integrity=verify_integrity) if not inplace: return idx # -------------------------------------------------------------------- # Index Internals @cache_readonly def _engine(self): # Calculate the number of bits needed to represent labels in each # level, as log2 of their sizes (including -1 for NaN): sizes = np.ceil(np.log2([len(l) + 1 for l in self.levels])) # Sum bit counts, starting from the _right_.... lev_bits = np.cumsum(sizes[::-1])[::-1] # ... in order to obtain offsets such that sorting the combination of # shifted codes (one for each level, resulting in a unique integer) is # equivalent to sorting lexicographically the codes themselves. Notice # that each level needs to be shifted by the number of bits needed to # represent the _previous_ ones: offsets = np.concatenate([lev_bits[1:], [0]]).astype("uint64") # Check the total number of bits needed for our representation: if lev_bits[0] > 64: # The levels would overflow a 64 bit uint - use Python integers: return MultiIndexPyIntEngine(self.levels, self.codes, offsets) return MultiIndexUIntEngine(self.levels, self.codes, offsets) @property def _constructor(self): return MultiIndex.from_tuples @Appender(Index._shallow_copy.__doc__) def _shallow_copy(self, values=None, **kwargs): if values is not None: names = kwargs.pop("names", kwargs.pop("name", self.names)) # discards freq kwargs.pop("freq", None) return MultiIndex.from_tuples(values, names=names, **kwargs) result = self.copy(**kwargs) result._cache = self._cache.copy() # GH32669 if "levels" in result._cache: del result._cache["levels"] return result def _shallow_copy_with_infer(self, values, **kwargs): # On equal MultiIndexes the difference is empty. # Therefore, an empty MultiIndex is returned GH13490 if len(values) == 0: return MultiIndex( levels=[[] for _ in range(self.nlevels)], codes=[[] for _ in range(self.nlevels)], **kwargs, ) return self._shallow_copy(values, **kwargs) # -------------------------------------------------------------------- def copy( self, names=None, dtype=None, levels=None, codes=None, deep=False, name=None, _set_identity=False, ): """ Make a copy of this object. Names, dtype, levels and codes can be passed and will be set on new copy. Parameters ---------- names : sequence, optional dtype : numpy dtype or pandas type, optional levels : sequence, optional codes : sequence, optional deep : bool, default False name : Label Kept for compatibility with 1-dimensional Index. Should not be used. Returns ------- MultiIndex Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. This could be potentially expensive on large MultiIndex objects. """ names = self._validate_names(name=name, names=names, deep=deep) if deep: from copy import deepcopy if levels is None: levels = deepcopy(self.levels) if codes is None: codes = deepcopy(self.codes) else: if levels is None: levels = self.levels if codes is None: codes = self.codes return MultiIndex( levels=levels, codes=codes, names=names, sortorder=self.sortorder, verify_integrity=False, _set_identity=_set_identity, ) def __array__(self, dtype=None) -> np.ndarray: """ the array interface, return my values """ return self.values def view(self, cls=None): """ this is defined as a copy with the same identity """ result = self.copy() result._id = self._id return result @Appender(Index.__contains__.__doc__) def __contains__(self, key: Any) -> bool: hash(key) try: self.get_loc(key) return True except (LookupError, TypeError, ValueError): return False @cache_readonly def dtype(self) -> np.dtype: return np.dtype("O") def _is_memory_usage_qualified(self) -> bool: """ return a boolean if we need a qualified .info display """ def f(l): return "mixed" in l or "string" in l or "unicode" in l return any(f(l) for l in self._inferred_type_levels) @Appender(Index.memory_usage.__doc__) def memory_usage(self, deep: bool = False) -> int: # we are overwriting our base class to avoid # computing .values here which could materialize # a tuple representation unnecessarily return self._nbytes(deep) @cache_readonly def nbytes(self) -> int: """ return the number of bytes in the underlying data """ return self._nbytes(False) def _nbytes(self, deep: bool = False) -> int: """ return the number of bytes in the underlying data deeply introspect the level data if deep=True include the engine hashtable *this is in internal routine* """ # for implementations with no useful getsizeof (PyPy) objsize = 24 level_nbytes = sum(i.memory_usage(deep=deep) for i in self.levels) label_nbytes = sum(i.nbytes for i in self.codes) names_nbytes = sum(getsizeof(i, objsize) for i in self.names) result = level_nbytes + label_nbytes + names_nbytes # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # -------------------------------------------------------------------- # Rendering Methods def _formatter_func(self, tup): """ Formats each item in tup according to its level's formatter function. """ formatter_funcs = [level._formatter_func for level in self.levels] return tuple(func(val) for func, val in zip(formatter_funcs, tup)) def _format_data(self, name=None): """ Return the formatted data as a unicode string """ return format_object_summary( self, self._formatter_func, name=name, line_break_each_value=True ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self, include_dtype=False) def _format_native_types(self, na_rep="nan", **kwargs): new_levels = [] new_codes = [] # go through the levels and format them for level, level_codes in zip(self.levels, self.codes): level = level._format_native_types(na_rep=na_rep, **kwargs) # add nan values, if there are any mask = level_codes == -1 if mask.any(): nan_index = len(level) level = np.append(level, na_rep) assert not level_codes.flags.writeable # i.e. copy is needed level_codes = level_codes.copy() # make writeable level_codes[mask] = nan_index new_levels.append(level) new_codes.append(level_codes) if len(new_levels) == 1: # a single-level multi-index return Index(new_levels[0].take(new_codes[0]))._format_native_types() else: # reconstruct the multi-index mi = MultiIndex( levels=new_levels, codes=new_codes, names=self.names, sortorder=self.sortorder, verify_integrity=False, ) return mi._values def format( self, space=2, sparsify=None, adjoin=True, names=False, na_rep=None, formatter=None, ): if len(self) == 0: return [] stringified_levels = [] for lev, level_codes in zip(self.levels, self.codes): na = na_rep if na_rep is not None else _get_na_rep(lev.dtype.type) if len(lev) > 0: formatted = lev.take(level_codes).format(formatter=formatter) # we have some NA mask = level_codes == -1 if mask.any(): formatted = np.array(formatted, dtype=object) formatted[mask] = na formatted = formatted.tolist() else: # weird all NA case formatted = [ pprint_thing(na if isna(x) else x, escape_chars=("\t", "\r", "\n")) for x in algos.take_1d(lev._values, level_codes) ] stringified_levels.append(formatted) result_levels = [] for lev, name in zip(stringified_levels, self.names): level = [] if names: level.append( pprint_thing(name, escape_chars=("\t", "\r", "\n")) if name is not None else "" ) level.extend(np.array(lev, dtype=object)) result_levels.append(level) if sparsify is None: sparsify = get_option("display.multi_sparse") if sparsify: sentinel = "" # GH3547 # use value of sparsify as sentinel, unless it's an obvious # "Truthy" value if sparsify not in [True, 1]: sentinel = sparsify # little bit of a kludge job for #1217 result_levels = _sparsify( result_levels, start=int(names), sentinel=sentinel ) if adjoin: from pandas.io.formats.format import _get_adjustment adj = _get_adjustment() return adj.adjoin(space, *result_levels).split("\n") else: return result_levels # -------------------------------------------------------------------- # Names Methods def _get_names(self): return FrozenList(self._names) def _set_names(self, names, level=None, validate=True): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None validate : boolean, default True validate that the names match level lengths Raises ------ TypeError if each name is not hashable. Notes ----- sets names on levels. WARNING: mutates! Note that you generally want to set this *after* changing levels, so that it only acts on copies """ # GH 15110 # Don't allow a single string for names in a MultiIndex if names is not None and not is_list_like(names): raise ValueError("Names should be list-like for a MultiIndex") names = list(names) if validate: if level is not None and len(names) != len(level): raise ValueError("Length of names must match length of level.") if level is None and len(names) != self.nlevels: raise ValueError( "Length of names must match number of levels in MultiIndex." ) if level is None: level = range(self.nlevels) else: level = [self._get_level_number(lev) for lev in level] # set the name for lev, name in zip(level, names): if name is not None: # GH 20527 # All items in 'names' need to be hashable: if not is_hashable(name): raise TypeError( f"{type(self).__name__}.name must be a hashable type" ) self._names[lev] = name # If .levels has been accessed, the names in our cache will be stale. self._reset_cache() names = property( fset=_set_names, fget=_get_names, doc="""\nNames of levels in MultiIndex.\n""" ) # -------------------------------------------------------------------- @Appender(Index._get_grouper_for_level.__doc__) def _get_grouper_for_level(self, mapper, level): indexer = self.codes[level] level_index = self.levels[level] if mapper is not None: # Handle group mapping function and return level_values = self.levels[level].take(indexer) grouper = level_values.map(mapper) return grouper, None, None codes, uniques = algos.factorize(indexer, sort=True) if len(uniques) > 0 and uniques[0] == -1: # Handle NAs mask = indexer != -1 ok_codes, uniques = algos.factorize(indexer[mask], sort=True) codes = np.empty(len(indexer), dtype=indexer.dtype) codes[mask] = ok_codes codes[~mask] = -1 if len(uniques) < len(level_index): # Remove unobserved levels from level_index level_index = level_index.take(uniques) else: # break references back to us so that setting the name # on the output of a groupby doesn't reflect back here. level_index = level_index.copy() if level_index._can_hold_na: grouper = level_index.take(codes, fill_value=True) else: grouper = level_index.take(codes) return grouper, codes, level_index @cache_readonly def inferred_type(self) -> str: return "mixed" def _get_level_number(self, level) -> int: count = self.names.count(level) if (count > 1) and not is_integer(level): raise ValueError( f"The name {level} occurs multiple times, use a level number" ) try: level = self.names.index(level) except ValueError as err: if not is_integer(level): raise KeyError(f"Level {level} not found") from err elif level < 0: level += self.nlevels if level < 0: orig_level = level - self.nlevels raise IndexError( f"Too many levels: Index has only {self.nlevels} levels, " f"{orig_level} is not a valid level number" ) from err # Note: levels are zero-based elif level >= self.nlevels: raise IndexError( f"Too many levels: Index has only {self.nlevels} levels, " f"not {level + 1}" ) from err return level @property def _has_complex_internals(self) -> bool: # used to avoid libreduction code paths, which raise or require conversion return True @cache_readonly def is_monotonic_increasing(self) -> bool: """ return if the index is monotonic increasing (only equal or increasing) values. """ if all(x.is_monotonic for x in self.levels): # If each level is sorted, we can operate on the codes directly. GH27495 return libalgos.is_lexsorted( [x.astype("int64", copy=False) for x in self.codes] ) # reversed() because lexsort() wants the most significant key last. values = [ self._get_level_values(i).values for i in reversed(range(len(self.levels))) ] try: sort_order = np.lexsort(values) return Index(sort_order).is_monotonic except TypeError: # we have mixed types and np.lexsort is not happy return Index(self._values).is_monotonic @cache_readonly def is_monotonic_decreasing(self) -> bool: """ return if the index is monotonic decreasing (only equal or decreasing) values. """ # monotonic decreasing if and only if reverse is monotonic increasing return self[::-1].is_monotonic_increasing @cache_readonly def _inferred_type_levels(self): """ return a list of the inferred types, one for each level """ return [i.inferred_type for i in self.levels] @Appender(Index.duplicated.__doc__) def duplicated(self, keep="first"): shape = map(len, self.levels) ids = get_group_index(self.codes, shape, sort=False, xnull=False) return duplicated_int64(ids, keep) def fillna(self, value=None, downcast=None): """ fillna is not implemented for MultiIndex """ raise NotImplementedError("isna is not defined for MultiIndex") @Appender(Index.dropna.__doc__) def dropna(self, how="any"): nans = [level_codes == -1 for level_codes in self.codes] if how == "any": indexer = np.any(nans, axis=0) elif how == "all": indexer = np.all(nans, axis=0) else: raise ValueError(f"invalid how option: {how}") new_codes = [level_codes[~indexer] for level_codes in self.codes] return self.copy(codes=new_codes, deep=True) def _get_level_values(self, level, unique=False): """ Return vector of label values for requested level, equal to the length of the index **this is an internal method** Parameters ---------- level : int level unique : bool, default False if True, drop duplicated values Returns ------- values : ndarray """ lev = self.levels[level] level_codes = self.codes[level] name = self._names[level] if unique: level_codes = algos.unique(level_codes) filled = algos.take_1d(lev._values, level_codes, fill_value=lev._na_value) return lev._shallow_copy(filled, name=name) def get_level_values(self, level): """ Return vector of label values for requested level, equal to the length of the index. Parameters ---------- level : int or str ``level`` is either the integer position of the level in the MultiIndex, or the name of the level. Returns ------- values : Index Values is a level of this MultiIndex converted to a single :class:`Index` (or subclass thereof). Examples -------- Create a MultiIndex: >>> mi = pd.MultiIndex.from_arrays((list('abc'), list('def'))) >>> mi.names = ['level_1', 'level_2'] Get level values by supplying level as either integer or name: >>> mi.get_level_values(0) Index(['a', 'b', 'c'], dtype='object', name='level_1') >>> mi.get_level_values('level_2') Index(['d', 'e', 'f'], dtype='object', name='level_2') """ level = self._get_level_number(level) values = self._get_level_values(level) return values @Appender(Index.unique.__doc__) def unique(self, level=None): if level is None: return super().unique() else: level = self._get_level_number(level) return self._get_level_values(level=level, unique=True) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self.set_levels([i._to_safe_for_reshape() for i in self.levels]) def to_frame(self, index=True, name=None): """ Create a DataFrame with the levels of the MultiIndex as columns. Column ordering is determined by the DataFrame constructor with data as a dict. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original MultiIndex. name : list / sequence of str, optional The passed names should substitute index level names. Returns ------- DataFrame : a DataFrame containing the original MultiIndex data. See Also -------- DataFrame """ from pandas import DataFrame if name is not None: if not is_list_like(name): raise TypeError("'name' must be a list / sequence of column names.") if len(name) != len(self.levels): raise ValueError( "'name' should have same length as number of levels on index." ) idx_names = name else: idx_names = self.names # Guarantee resulting column order - PY36+ dict maintains insertion order result = DataFrame( { (level if lvlname is None else lvlname): self._get_level_values(level) for lvlname, level in zip(idx_names, range(len(self.levels))) }, copy=False, ) if index: result.index = self return result def to_flat_index(self): """ Convert a MultiIndex to an Index of Tuples containing the level values. .. versionadded:: 0.24.0 Returns ------- pd.Index Index with the MultiIndex data represented in Tuples. Notes ----- This method will simply return the caller if called by anything other than a MultiIndex. Examples -------- >>> index = pd.MultiIndex.from_product( ... [['foo', 'bar'], ['baz', 'qux']], ... names=['a', 'b']) >>> index.to_flat_index() Index([('foo', 'baz'), ('foo', 'qux'), ('bar', 'baz'), ('bar', 'qux')], dtype='object') """ return Index(self._values, tupleize_cols=False) @property def is_all_dates(self) -> bool: return False def is_lexsorted(self) -> bool: """ Return True if the codes are lexicographically sorted. Returns ------- bool """ return self.lexsort_depth == self.nlevels @cache_readonly def lexsort_depth(self): if self.sortorder is not None: return self.sortorder return self._lexsort_depth() def _lexsort_depth(self) -> int: """ Compute and return the lexsort_depth, the number of levels of the MultiIndex that are sorted lexically Returns ------- int """ int64_codes = [ensure_int64(level_codes) for level_codes in self.codes] for k in range(self.nlevels, 0, -1): if libalgos.is_lexsorted(int64_codes[:k]): return k return 0 def _sort_levels_monotonic(self): """ This is an *internal* function. Create a new MultiIndex from the current to monotonically sorted items IN the levels. This does not actually make the entire MultiIndex monotonic, JUST the levels. The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering. It will also be .equals() to the original. Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) >>> mi MultiIndex([('a', 'bb'), ('a', 'aa'), ('b', 'bb'), ('b', 'aa')], ) >>> mi.sort_values() MultiIndex([('a', 'aa'), ('a', 'bb'), ('b', 'aa'), ('b', 'bb')], ) """ if self.is_lexsorted() and self.is_monotonic: return self new_levels = [] new_codes = [] for lev, level_codes in zip(self.levels, self.codes): if not lev.is_monotonic: try: # indexer to reorder the levels indexer = lev.argsort() except TypeError: pass else: lev = lev.take(indexer) # indexer to reorder the level codes indexer = ensure_int64(indexer) ri = lib.get_reverse_indexer(indexer, len(indexer)) level_codes = algos.take_1d(ri, level_codes) new_levels.append(lev) new_codes.append(level_codes) return MultiIndex( new_levels, new_codes, names=self.names, sortorder=self.sortorder, verify_integrity=False, ) def remove_unused_levels(self): """ Create a new MultiIndex from the current that removes unused levels, meaning that they are not expressed in the labels. The resulting MultiIndex will have the same outward appearance, meaning the same .values and ordering. It will also be .equals() to the original. Returns ------- MultiIndex Examples -------- >>> mi = pd.MultiIndex.from_product([range(2), list('ab')]) >>> mi MultiIndex([(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')], ) >>> mi[2:] MultiIndex([(1, 'a'), (1, 'b')], ) The 0 from the first level is not represented and can be removed >>> mi2 = mi[2:].remove_unused_levels() >>> mi2.levels FrozenList([[1], ['a', 'b']]) """ new_levels = [] new_codes = [] changed = False for lev, level_codes in zip(self.levels, self.codes): # Since few levels are typically unused, bincount() is more # efficient than unique() - however it only accepts positive values # (and drops order): uniques = np.where(np.bincount(level_codes + 1) > 0)[0] - 1 has_na = int(len(uniques) and (uniques[0] == -1)) if len(uniques) != len(lev) + has_na: # We have unused levels changed = True # Recalculate uniques, now preserving order. # Can easily be cythonized by exploiting the already existing # "uniques" and stop parsing "level_codes" when all items # are found: uniques = algos.unique(level_codes) if has_na: na_idx = np.where(uniques == -1)[0] # Just ensure that -1 is in first position: uniques[[0, na_idx[0]]] = uniques[[na_idx[0], 0]] # codes get mapped from uniques to 0:len(uniques) # -1 (if present) is mapped to last position code_mapping = np.zeros(len(lev) + has_na) # ... and reassigned value -1: code_mapping[uniques] = np.arange(len(uniques)) - has_na level_codes = code_mapping[level_codes] # new levels are simple lev = lev.take(uniques[has_na:]) new_levels.append(lev) new_codes.append(level_codes) result = self.view() if changed: result._reset_identity() result._set_levels(new_levels, validate=False) result._set_codes(new_codes, validate=False) return result # -------------------------------------------------------------------- # Pickling Methods def __reduce__(self): """Necessary for making this object picklable""" d = dict( levels=list(self.levels), codes=list(self.codes), sortorder=self.sortorder, names=list(self.names), ) return ibase._new_Index, (type(self), d), None # -------------------------------------------------------------------- def __getitem__(self, key): if is_scalar(key): key = com.cast_scalar_indexer(key) retval = [] for lev, level_codes in zip(self.levels, self.codes): if level_codes[key] == -1: retval.append(np.nan) else: retval.append(lev[level_codes[key]]) return tuple(retval) else: if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) sortorder = self.sortorder else: # cannot be sure whether the result will be sorted sortorder = None if isinstance(key, Index): key = np.asarray(key) new_codes = [level_codes[key] for level_codes in self.codes] return MultiIndex( levels=self.levels, codes=new_codes, names=self.names, sortorder=sortorder, verify_integrity=False, ) @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) taken = self._assert_take_fillable( self.codes, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=-1, ) return MultiIndex( levels=self.levels, codes=taken, names=self.names, verify_integrity=False ) def _assert_take_fillable( self, values, indices, allow_fill=True, fill_value=None, na_value=None ): """ Internal method to handle NA filling of take """ # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) raise ValueError(msg) taken = [lab.take(indices) for lab in self.codes] mask = indices == -1 if mask.any(): masked = [] for new_label in taken: label_values = new_label label_values[mask] = na_value masked.append(np.asarray(label_values)) taken = masked else: taken = [lab.take(indices) for lab in self.codes] return taken def append(self, other): """ Append a collection of Index options together Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ if not isinstance(other, (list, tuple)): other = [other] if all( (isinstance(o, MultiIndex) and o.nlevels >= self.nlevels) for o in other ): arrays = [] for i in range(self.nlevels): label = self._get_level_values(i) appended = [o._get_level_values(i) for o in other] arrays.append(label.append(appended)) return MultiIndex.from_arrays(arrays, names=self.names) to_concat = (self._values,) + tuple(k._values for k in other) new_tuples = np.concatenate(to_concat) # if all(isinstance(x, MultiIndex) for x in other): try: return MultiIndex.from_tuples(new_tuples, names=self.names) except (TypeError, IndexError): return Index(new_tuples) def argsort(self, *args, **kwargs) -> np.ndarray: return self._values.argsort(*args, **kwargs) @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) repeats = ensure_platform_int(repeats) return MultiIndex( levels=self.levels, codes=[ level_codes.view(np.ndarray).astype(np.intp).repeat(repeats) for level_codes in self.codes ], names=self.names, sortorder=self.sortorder, verify_integrity=False, ) def where(self, cond, other=None): raise NotImplementedError(".where is not supported for MultiIndex operations") def drop(self, codes, level=None, errors="raise"): """ Make new MultiIndex with passed list of codes deleted Parameters ---------- codes : array-like Must be a list of tuples level : int or level name, default None errors : str, default 'raise' Returns ------- dropped : MultiIndex """ if level is not None: return self._drop_from_level(codes, level, errors) if not isinstance(codes, (np.ndarray, Index)): try: codes = com.index_labels_to_array(codes, dtype=object) except ValueError: pass inds = [] for level_codes in codes: try: loc = self.get_loc(level_codes) # get_loc returns either an integer, a slice, or a boolean # mask if isinstance(loc, int): inds.append(loc) elif isinstance(loc, slice): inds.extend(range(loc.start, loc.stop)) elif com.is_bool_indexer(loc): if self.lexsort_depth == 0: warnings.warn( "dropping on a non-lexsorted multi-index " "without a level parameter may impact performance.", PerformanceWarning, stacklevel=3, ) loc = loc.nonzero()[0] inds.extend(loc) else: msg = f"unsupported indexer of type {type(loc)}" raise AssertionError(msg) except KeyError: if errors != "ignore": raise return self.delete(inds) def _drop_from_level(self, codes, level, errors="raise"): codes = com.index_labels_to_array(codes) i = self._get_level_number(level) index = self.levels[i] values = index.get_indexer(codes) mask = ~algos.isin(self.codes[i], values) if mask.all() and errors != "ignore": raise KeyError(f"labels {codes} not found in level") return self[mask] def swaplevel(self, i=-2, j=-1): """ Swap level i with level j. Calling this method does not change the ordering of the values. Parameters ---------- i : int, str, default -2 First level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. j : int, str, default -1 Second level of index to be swapped. Can pass level name as string. Type of parameters can be mixed. Returns ------- MultiIndex A new MultiIndex. See Also -------- Series.swaplevel : Swap levels i and j in a MultiIndex. Dataframe.swaplevel : Swap levels i and j in a MultiIndex on a particular axis. Examples -------- >>> mi = pd.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) >>> mi MultiIndex([('a', 'bb'), ('a', 'aa'), ('b', 'bb'), ('b', 'aa')], ) >>> mi.swaplevel(0, 1) MultiIndex([('bb', 'a'), ('aa', 'a'), ('bb', 'b'), ('aa', 'b')], ) """ new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) i = self._get_level_number(i) j = self._get_level_number(j) new_levels[i], new_levels[j] = new_levels[j], new_levels[i] new_codes[i], new_codes[j] = new_codes[j], new_codes[i] new_names[i], new_names[j] = new_names[j], new_names[i] return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) def reorder_levels(self, order): """ Rearrange levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). Returns ------- MultiIndex """ order = [self._get_level_number(i) for i in order] if len(order) != self.nlevels: raise AssertionError( f"Length of order must be same as number of levels ({self.nlevels}), " f"got {len(order)}" ) new_levels = [self.levels[i] for i in order] new_codes = [self.codes[i] for i in order] new_names = [self.names[i] for i in order] return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False ) def _get_codes_for_sorting(self): """ we categorizing our codes by using the available categories (all, not just observed) excluding any missing ones (-1); this is in preparation for sorting, where we need to disambiguate that -1 is not a valid valid """ def cats(level_codes): return np.arange( np.array(level_codes).max() + 1 if len(level_codes) else 0, dtype=level_codes.dtype, ) return [ Categorical.from_codes(level_codes, cats(level_codes), ordered=True) for level_codes in self.codes ] def sortlevel(self, level=0, ascending=True, sort_remaining=True): """ Sort MultiIndex at the requested level. The result will respect the original ordering of the associated factor at that level. Parameters ---------- level : list-like, int or str, default 0 If a string is given, must be a name of the level. If list-like must be names or ints of levels. ascending : bool, default True False to sort in descending order. Can also be a list to specify a directed ordering. sort_remaining : sort by the remaining levels after level Returns ------- sorted_index : pd.MultiIndex Resulting index. indexer : np.ndarray Indices of output values in original index. """ if isinstance(level, (str, int)): level = [level] level = [self._get_level_number(lev) for lev in level] sortorder = None # we have a directed ordering via ascending if isinstance(ascending, list): if not len(level) == len(ascending): raise ValueError("level must have same length as ascending") indexer = lexsort_indexer( [self.codes[lev] for lev in level], orders=ascending ) # level ordering else: codes = list(self.codes) shape = list(self.levshape) # partition codes and shape primary = tuple(codes[lev] for lev in level) primshp = tuple(shape[lev] for lev in level) # Reverse sorted to retain the order of # smaller indices that needs to be removed for lev in sorted(level, reverse=True): codes.pop(lev) shape.pop(lev) if sort_remaining: primary += primary + tuple(codes) primshp += primshp + tuple(shape) else: sortorder = level[0] indexer = indexer_from_factorized(primary, primshp, compress=False) if not ascending: indexer = indexer[::-1] indexer = ensure_platform_int(indexer) new_codes = [level_codes.take(indexer) for level_codes in self.codes] new_index = MultiIndex( codes=new_codes, levels=self.levels, names=self.names, sortorder=sortorder, verify_integrity=False, ) return new_index, indexer def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary) Returns ------- new_index : pd.MultiIndex Resulting index indexer : np.ndarray or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "names") if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") # GH7774: preserve dtype/tz if target is empty and not an Index. # target may be an iterator target = ibase._ensure_has_len(target) if len(target) == 0 and not isinstance(target, Index): idx = self.levels[level] attrs = idx._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq target = type(idx)._simple_new(np.empty(0, dtype=idx.dtype), **attrs) else: target = ensure_index(target) target, indexer, _ = self._join_level( target, level, how="right", return_indexers=True, keep_order=False ) else: target = ensure_index(target) if self.equals(target): indexer = None else: if self.is_unique: indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: raise ValueError("cannot handle a non-unique multi-index!") if not isinstance(target, MultiIndex): if indexer is None: target = self elif (indexer >= 0).all(): target = self.take(indexer) else: # hopefully? target = MultiIndex.from_tuples(target) if ( preserve_names and target.nlevels == self.nlevels and target.names != self.names ): target = target.copy(deep=False) target.names = self.names return target, indexer # -------------------------------------------------------------------- # Indexing Methods def get_value(self, series, key): # Label-based if not is_hashable(key) or is_iterator(key): # We allow tuples if they are hashable, whereas other Index # subclasses require scalar. # We have to explicitly exclude generators, as these are hashable. raise InvalidIndexError(key) try: loc = self.get_loc(key) except KeyError: if is_integer(key): loc = key else: raise return self._get_values_for_loc(series, loc, key) def _get_values_for_loc(self, series: "Series", loc, key): """ Do a positional lookup on the given Series, returning either a scalar or a Series. Assumes that `series.index is self` """ new_values = series._values[loc] if is_scalar(loc): return new_values new_index = self[loc] new_index = maybe_droplevels(new_index, key) new_ser = series._constructor(new_values, index=new_index, name=series.name) return new_ser.__finalize__(series) def _convert_listlike_indexer(self, keyarr): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- tuple (indexer, keyarr) indexer is an ndarray or None if cannot convert keyarr are tuple-safe keys """ indexer, keyarr = super()._convert_listlike_indexer(keyarr) # are we indexing a specific level if indexer is None and len(keyarr) and not isinstance(keyarr[0], tuple): level = 0 _, indexer = self.reindex(keyarr, level=level) # take all if indexer is None: indexer = np.arange(len(self)) check = self.levels[0].get_indexer(keyarr) mask = check == -1 if mask.any(): raise KeyError(f"{keyarr[mask]} not in index") return indexer, keyarr def _get_partial_string_timestamp_match_key(self, key): """ Translate any partial string timestamp matches in key, returning the new key. Only relevant for MultiIndex. """ # GH#10331 if isinstance(key, str) and self.levels[0]._supports_partial_string_indexing: # Convert key '2016-01-01' to # ('2016-01-01'[, slice(None, None, None)]+) key = tuple([key] + [slice(None)] * (len(self.levels) - 1)) if isinstance(key, tuple): # Convert (..., '2016-01-01', ...) in tuple to # (..., slice('2016-01-01', '2016-01-01', None), ...) new_key = [] for i, component in enumerate(key): if ( isinstance(component, str) and self.levels[i]._supports_partial_string_indexing ): new_key.append(slice(component, component, None)) else: new_key.append(component) key = tuple(new_key) return key @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = ensure_index(target) # empty indexer if is_list_like(target) and not len(target): return ensure_platform_int(np.array([])) if not isinstance(target, MultiIndex): try: target = MultiIndex.from_tuples(target) except (TypeError, ValueError): # let's instead try with a straight Index if method is None: return Index(self._values).get_indexer( target, method=method, limit=limit, tolerance=tolerance ) if not self.is_unique: raise ValueError("Reindexing only valid with uniquely valued Index objects") if method == "pad" or method == "backfill": if tolerance is not None: raise NotImplementedError( "tolerance not implemented yet for MultiIndex" ) indexer = self._engine.get_indexer(target, method, limit) elif method == "nearest": raise NotImplementedError( "method='nearest' not implemented yet " "for MultiIndex; see GitHub issue 9365" ) else: indexer = self._engine.get_indexer(target) return ensure_platform_int(indexer) @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): return super().get_indexer_non_unique(target) def get_slice_bound( self, label: Union[Hashable, Sequence[Hashable]], side: str, kind: str ) -> int: """ For an ordered MultiIndex, compute slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if `side=='right') position of given label. Parameters ---------- label : object or tuple of objects side : {'left', 'right'} kind : {'loc', 'getitem'} Returns ------- int Index of label. Notes ----- This method only works if level 0 index of the MultiIndex is lexsorted. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abbc'), list('gefd')]) Get the locations from the leftmost 'b' in the first level until the end of the multiindex: >>> mi.get_slice_bound('b', side="left", kind="loc") 1 Like above, but if you get the locations from the rightmost 'b' in the first level and 'f' in the second level: >>> mi.get_slice_bound(('b','f'), side="right", kind="loc") 3 See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. """ if not isinstance(label, tuple): label = (label,) return self._partial_tup_index(label, side=side) def slice_locs(self, start=None, end=None, step=None, kind=None): """ For an ordered MultiIndex, compute the slice locations for input labels. The input labels can be tuples representing partial levels, e.g. for a MultiIndex with 3 levels, you can pass a single value (corresponding to the first level), or a 1-, 2-, or 3-tuple. Parameters ---------- start : label or tuple, default None If None, defaults to the beginning end : label or tuple If None, defaults to the end step : int or None Slice step kind : string, optional, defaults None Returns ------- (start, end) : (int, int) Notes ----- This method only works if the MultiIndex is properly lexsorted. So, if only the first 2 levels of a 3-level MultiIndex are lexsorted, you can only pass two levels to ``.slice_locs``. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abbd'), list('deff')], ... names=['A', 'B']) Get the slice locations from the beginning of 'b' in the first level until the end of the multiindex: >>> mi.slice_locs(start='b') (1, 4) Like above, but stop at the end of 'b' in the first level and 'f' in the second level: >>> mi.slice_locs(start='b', end=('b', 'f')) (1, 3) See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. """ # This function adds nothing to its parent implementation (the magic # happens in get_slice_bound method), but it adds meaningful doc. return super().slice_locs(start, end, step, kind=kind) def _partial_tup_index(self, tup, side="left"): if len(tup) > self.lexsort_depth: raise UnsortedIndexError( f"Key length ({len(tup)}) was greater than MultiIndex lexsort depth " f"({self.lexsort_depth})" ) n = len(tup) start, end = 0, len(self) zipped = zip(tup, self.levels, self.codes) for k, (lab, lev, labs) in enumerate(zipped): section = labs[start:end] if lab not in lev and not isna(lab): if not lev.is_type_compatible(lib.infer_dtype([lab], skipna=False)): raise TypeError(f"Level type mismatch: {lab}") # short circuit loc = lev.searchsorted(lab, side=side) if side == "right" and loc >= 0: loc -= 1 return start + section.searchsorted(loc, side=side) idx = self._get_loc_single_level_index(lev, lab) if k < n - 1: end = start + section.searchsorted(idx, side="right") start = start + section.searchsorted(idx, side="left") else: return start + section.searchsorted(idx, side=side) def _get_loc_single_level_index(self, level_index: Index, key: Hashable) -> int: """ If key is NA value, location of index unify as -1. Parameters ---------- level_index: Index key : label Returns ------- loc : int If key is NA value, loc is -1 Else, location of key in index. See Also -------- Index.get_loc : The get_loc method for (single-level) index. """ if is_scalar(key) and isna(key): return -1 else: return level_index.get_loc(key) def get_loc(self, key, method=None): """ Get location for a label or a tuple of labels as an integer, slice or boolean mask. Parameters ---------- key : label or tuple of labels (one for each level) method : None Returns ------- loc : int, slice object or boolean mask If the key is past the lexsort depth, the return may be a boolean mask array, otherwise it is always a slice or int. See Also -------- Index.get_loc : The get_loc method for (single-level) index. MultiIndex.slice_locs : Get slice location given start label(s) and end label(s). MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. Notes ----- The key cannot be a slice, list of same-level labels, a boolean mask, or a sequence of such. If you want to use those, use :meth:`MultiIndex.get_locs` instead. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')]) >>> mi.get_loc('b') slice(1, 3, None) >>> mi.get_loc(('b', 'e')) 1 """ if method is not None: raise NotImplementedError( "only the default get_loc method is " "currently supported for MultiIndex" ) def _maybe_to_slice(loc): """convert integer indexer to boolean mask or slice if possible""" if not isinstance(loc, np.ndarray) or loc.dtype != "int64": return loc loc = lib.maybe_indices_to_slice(loc, len(self)) if isinstance(loc, slice): return loc mask = np.empty(len(self), dtype="bool") mask.fill(False) mask[loc] = True return mask if not isinstance(key, (tuple, list)): # not including list here breaks some indexing, xref #30892 loc = self._get_level_indexer(key, level=0) return _maybe_to_slice(loc) keylen = len(key) if self.nlevels < keylen: raise KeyError( f"Key length ({keylen}) exceeds index depth ({self.nlevels})" ) if keylen == self.nlevels and self.is_unique: return self._engine.get_loc(key) # -- partial selection or non-unique index # break the key into 2 parts based on the lexsort_depth of the index; # the first part returns a continuous slice of the index; the 2nd part # needs linear search within the slice i = self.lexsort_depth lead_key, follow_key = key[:i], key[i:] start, stop = ( self.slice_locs(lead_key, lead_key) if lead_key else (0, len(self)) ) if start == stop: raise KeyError(key) if not follow_key: return slice(start, stop) warnings.warn( "indexing past lexsort depth may impact performance.", PerformanceWarning, stacklevel=10, ) loc = np.arange(start, stop, dtype="int64") for i, k in enumerate(follow_key, len(lead_key)): mask = self.codes[i][loc] == self._get_loc_single_level_index( self.levels[i], k ) if not mask.all(): loc = loc[mask] if not len(loc): raise KeyError(key) return _maybe_to_slice(loc) if len(loc) != stop - start else slice(start, stop) def get_loc_level(self, key, level=0, drop_level: bool = True): """ Get both the location for the requested label(s) and the resulting sliced index. Parameters ---------- key : label or sequence of labels level : int/level name or list thereof, optional drop_level : bool, default True If ``False``, the resulting index will not drop any level. Returns ------- loc : A 2-tuple where the elements are: Element 0: int, slice object or boolean array Element 1: The resulting sliced multiindex/index. If the key contains all levels, this will be ``None``. See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.get_locs : Get location for a label/slice/list/mask or a sequence of such. Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')], ... names=['A', 'B']) >>> mi.get_loc_level('b') (slice(1, 3, None), Index(['e', 'f'], dtype='object', name='B')) >>> mi.get_loc_level('e', level='B') (array([False, True, False], dtype=bool), Index(['b'], dtype='object', name='A')) >>> mi.get_loc_level(['b', 'e']) (1, None) """ # different name to distinguish from maybe_droplevels def maybe_mi_droplevels(indexer, levels, drop_level: bool): if not drop_level: return self[indexer] # kludgearound orig_index = new_index = self[indexer] levels = [self._get_level_number(i) for i in levels] for i in sorted(levels, reverse=True): try: new_index = new_index.droplevel(i) except ValueError: # no dropping here return orig_index return new_index if isinstance(level, (tuple, list)): if len(key) != len(level): raise AssertionError( "Key for location must have same length as number of levels" ) result = None for lev, k in zip(level, key): loc, new_index = self.get_loc_level(k, level=lev) if isinstance(loc, slice): mask = np.zeros(len(self), dtype=bool) mask[loc] = True loc = mask result = loc if result is None else result & loc return result, maybe_mi_droplevels(result, level, drop_level) level = self._get_level_number(level) # kludge for #1796 if isinstance(key, list): key = tuple(key) if isinstance(key, tuple) and level == 0: try: if key in self.levels[0]: indexer = self._get_level_indexer(key, level=level) new_index = maybe_mi_droplevels(indexer, [0], drop_level) return indexer, new_index except (TypeError, InvalidIndexError): pass if not any(isinstance(k, slice) for k in key): # partial selection # optionally get indexer to avoid re-calculation def partial_selection(key, indexer=None): if indexer is None: indexer = self.get_loc(key) ilevels = [ i for i in range(len(key)) if key[i] != slice(None, None) ] return indexer, maybe_mi_droplevels(indexer, ilevels, drop_level) if len(key) == self.nlevels and self.is_unique: # Complete key in unique index -> standard get_loc try: return (self._engine.get_loc(key), None) except KeyError as e: raise KeyError(key) from e else: return partial_selection(key) else: indexer = None for i, k in enumerate(key): if not isinstance(k, slice): k = self._get_level_indexer(k, level=i) if isinstance(k, slice): # everything if k.start == 0 and k.stop == len(self): k = slice(None, None) else: k_index = k if isinstance(k, slice): if k == slice(None, None): continue else: raise TypeError(key) if indexer is None: indexer = k_index else: # pragma: no cover indexer &= k_index if indexer is None: indexer = slice(None, None) ilevels = [i for i in range(len(key)) if key[i] != slice(None, None)] return indexer, maybe_mi_droplevels(indexer, ilevels, drop_level) else: indexer = self._get_level_indexer(key, level=level) return indexer, maybe_mi_droplevels(indexer, [level], drop_level) def _get_level_indexer(self, key, level=0, indexer=None): # return an indexer, boolean array or a slice showing where the key is # in the totality of values # if the indexer is provided, then use this level_index = self.levels[level] level_codes = self.codes[level] def convert_indexer(start, stop, step, indexer=indexer, codes=level_codes): # given the inputs and the codes/indexer, compute an indexer set # if we have a provided indexer, then this need not consider # the entire labels set r = np.arange(start, stop, step) if indexer is not None and len(indexer) != len(codes): # we have an indexer which maps the locations in the labels # that we have already selected (and is not an indexer for the # entire set) otherwise this is wasteful so we only need to # examine locations that are in this set the only magic here is # that the result are the mappings to the set that we have # selected from pandas import Series mapper = Series(indexer) indexer = codes.take(ensure_platform_int(indexer)) result = Series(Index(indexer).isin(r).nonzero()[0]) m = result.map(mapper) m = np.asarray(m) else: m = np.zeros(len(codes), dtype=bool) m[np.in1d(codes, r, assume_unique=Index(codes).is_unique)] = True return m if isinstance(key, slice): # handle a slice, returning a slice if we can # otherwise a boolean indexer try: if key.start is not None: start = level_index.get_loc(key.start) else: start = 0 if key.stop is not None: stop = level_index.get_loc(key.stop) else: stop = len(level_index) - 1 step = key.step except KeyError: # we have a partial slice (like looking up a partial date # string) start = stop = level_index.slice_indexer( key.start, key.stop, key.step, kind="loc" ) step = start.step if isinstance(start, slice) or isinstance(stop, slice): # we have a slice for start and/or stop # a partial date slicer on a DatetimeIndex generates a slice # note that the stop ALREADY includes the stopped point (if # it was a string sliced) start = getattr(start, "start", start) stop = getattr(stop, "stop", stop) return convert_indexer(start, stop, step) elif level > 0 or self.lexsort_depth == 0 or step is not None: # need to have like semantics here to right # searching as when we are using a slice # so include the stop+1 (so we include stop) return convert_indexer(start, stop + 1, step) else: # sorted, so can return slice object -> view i = level_codes.searchsorted(start, side="left") j = level_codes.searchsorted(stop, side="right") return slice(i, j, step) else: code = self._get_loc_single_level_index(level_index, key) if level > 0 or self.lexsort_depth == 0: # Desired level is not sorted locs = np.array(level_codes == code, dtype=bool, copy=False) if not locs.any(): # The label is present in self.levels[level] but unused: raise KeyError(key) return locs i = level_codes.searchsorted(code, side="left") j = level_codes.searchsorted(code, side="right") if i == j: # The label is present in self.levels[level] but unused: raise KeyError(key) return slice(i, j) def get_locs(self, seq): """ Get location for a sequence of labels. Parameters ---------- seq : label, slice, list, mask or a sequence of such You should use one of the above for each level. If a level should not be used, set it to ``slice(None)``. Returns ------- numpy.ndarray NumPy array of integers suitable for passing to iloc. See Also -------- MultiIndex.get_loc : Get location for a label or a tuple of labels. MultiIndex.slice_locs : Get slice location given start label(s) and end label(s). Examples -------- >>> mi = pd.MultiIndex.from_arrays([list('abb'), list('def')]) >>> mi.get_locs('b') # doctest: +SKIP array([1, 2], dtype=int64) >>> mi.get_locs([slice(None), ['e', 'f']]) # doctest: +SKIP array([1, 2], dtype=int64) >>> mi.get_locs([[True, False, True], slice('e', 'f')]) # doctest: +SKIP array([2], dtype=int64) """ from pandas.core.indexes.numeric import Int64Index # must be lexsorted to at least as many levels true_slices = [i for (i, s) in enumerate(com.is_true_slices(seq)) if s] if true_slices and true_slices[-1] >= self.lexsort_depth: raise UnsortedIndexError( "MultiIndex slicing requires the index to be lexsorted: slicing " f"on levels {true_slices}, lexsort depth {self.lexsort_depth}" ) # indexer # this is the list of all values that we want to select n = len(self) indexer = None def _convert_to_indexer(r) -> Int64Index: # return an indexer if isinstance(r, slice): m = np.zeros(n, dtype=bool) m[r] = True r = m.nonzero()[0] elif com.is_bool_indexer(r): if len(r) != n: raise ValueError( "cannot index with a boolean indexer " "that is not the same length as the " "index" ) r = r.nonzero()[0] return Int64Index(r) def _update_indexer(idxr, indexer=indexer): if indexer is None: indexer = Index(np.arange(n)) if idxr is None: return indexer return indexer & idxr for i, k in enumerate(seq): if com.is_bool_indexer(k): # a boolean indexer, must be the same length! k = np.asarray(k) indexer = _update_indexer(_convert_to_indexer(k), indexer=indexer) elif is_list_like(k): # a collection of labels to include from this level (these # are or'd) indexers = None for x in k: try: idxrs = _convert_to_indexer( self._get_level_indexer(x, level=i, indexer=indexer) ) indexers = idxrs if indexers is None else indexers | idxrs except KeyError: # ignore not founds continue if indexers is not None: indexer = _update_indexer(indexers, indexer=indexer) else: # no matches we are done return np.array([], dtype=np.int64) elif com.is_null_slice(k): # empty slice indexer = _update_indexer(None, indexer=indexer) elif isinstance(k, slice): # a slice, include BOTH of the labels indexer = _update_indexer( _convert_to_indexer( self._get_level_indexer(k, level=i, indexer=indexer) ), indexer=indexer, ) else: # a single label indexer = _update_indexer( _convert_to_indexer( self.get_loc_level(k, level=i, drop_level=False)[0] ), indexer=indexer, ) # empty indexer if indexer is None: return np.array([], dtype=np.int64) assert isinstance(indexer, Int64Index), type(indexer) indexer = self._reorder_indexer(seq, indexer) return indexer._values def _reorder_indexer( self, seq: Tuple[Union[Scalar, Iterable, AnyArrayLike], ...], indexer: Int64Index, ) -> Int64Index: """ Reorder an indexer of a MultiIndex (self) so that the label are in the same order as given in seq Parameters ---------- seq : label/slice/list/mask or a sequence of such indexer: an Int64Index indexer of self Returns ------- indexer : a sorted Int64Index indexer of self ordered as seq """ # If the index is lexsorted and the list_like label in seq are sorted # then we do not need to sort if self.is_lexsorted(): need_sort = False for i, k in enumerate(seq): if is_list_like(k): if not need_sort: k_codes = self.levels[i].get_indexer(k) k_codes = k_codes[k_codes >= 0] # Filter absent keys # True if the given codes are not ordered need_sort = (k_codes[:-1] > k_codes[1:]).any() # Bail out if both index and seq are sorted if not need_sort: return indexer n = len(self) keys: Tuple[np.ndarray, ...] = tuple() # For each level of the sequence in seq, map the level codes with the # order they appears in a list-like sequence # This mapping is then use to reorder the indexer for i, k in enumerate(seq): if com.is_bool_indexer(k): new_order = np.arange(n)[indexer] elif is_list_like(k): # Generate a map with all level codes as sorted initially key_order_map = np.ones(len(self.levels[i]), dtype=np.uint64) * len( self.levels[i] ) # Set order as given in the indexer list level_indexer = self.levels[i].get_indexer(k) level_indexer = level_indexer[level_indexer >= 0] # Filter absent keys key_order_map[level_indexer] = np.arange(len(level_indexer)) new_order = key_order_map[self.codes[i][indexer]] else: # For all other case, use the same order as the level new_order = np.arange(n)[indexer] keys = (new_order,) + keys # Find the reordering using lexsort on the keys mapping ind = np.lexsort(keys) return indexer[ind] def truncate(self, before=None, after=None): """ Slice index between two labels / tuples, return new MultiIndex Parameters ---------- before : label or tuple, can be partial. Default None None defaults to start after : label or tuple, can be partial. Default None None defaults to end Returns ------- truncated : MultiIndex """ if after and before and after < before: raise ValueError("after < before") i, j = self.levels[0].slice_locs(before, after) left, right = self.slice_locs(before, after) new_levels = list(self.levels) new_levels[0] = new_levels[0][i:j] new_codes = [level_codes[left:right] for level_codes in self.codes] new_codes[0] = new_codes[0] - i return MultiIndex(levels=new_levels, codes=new_codes, verify_integrity=False) def equals(self, other) -> bool: """ Determines if two MultiIndex objects have the same labeling information (the levels themselves do not necessarily have to be the same) See Also -------- equal_levels """ if self.is_(other): return True if not isinstance(other, Index): return False if not isinstance(other, MultiIndex): # d-level MultiIndex can equal d-tuple Index if not is_object_dtype(other.dtype): # other cannot contain tuples, so cannot match self return False return array_equivalent(self._values, other._values) if self.nlevels != other.nlevels: return False if len(self) != len(other): return False for i in range(self.nlevels): self_codes = self.codes[i] self_codes = self_codes[self_codes != -1] self_values = algos.take_nd( np.asarray(self.levels[i]._values), self_codes, allow_fill=False ) other_codes = other.codes[i] other_codes = other_codes[other_codes != -1] other_values = algos.take_nd( np.asarray(other.levels[i]._values), other_codes, allow_fill=False ) # since we use NaT both datetime64 and timedelta64 # we can have a situation where a level is typed say # timedelta64 in self (IOW it has other values than NaT) # but types datetime64 in other (where its all NaT) # but these are equivalent if len(self_values) == 0 and len(other_values) == 0: continue if not array_equivalent(self_values, other_values): return False return True def equal_levels(self, other) -> bool: """ Return True if the levels of both MultiIndex objects are the same """ if self.nlevels != other.nlevels: return False for i in range(self.nlevels): if not self.levels[i].equals(other.levels[i]): return False return True # -------------------------------------------------------------------- # Set Methods def union(self, other, sort=None): """ Form the union of two MultiIndex objects Parameters ---------- other : MultiIndex or array / Index of tuples sort : False or None, default None Whether to sort the resulting Index. * None : Sort the result, except when 1. `self` and `other` are equal. 2. `self` has length 0. 3. Some values in `self` or `other` cannot be compared. A RuntimeWarning is issued in this case. * False : do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- Index >>> index.union(index2) """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_names = self._convert_can_do_setop(other) if len(other) == 0 or self.equals(other): return self # TODO: Index.union returns other when `len(self)` is 0. uniq_tuples = lib.fast_unique_multiple( [self._values, other._ndarray_values], sort=sort ) return MultiIndex.from_arrays( zip(*uniq_tuples), sortorder=0, names=result_names ) def intersection(self, other, sort=False): """ Form the intersection of two MultiIndex objects. Parameters ---------- other : MultiIndex or array / Index of tuples sort : False or None, default False Sort the resulting MultiIndex if possible .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default from ``True`` to ``False``, to match behaviour from before 0.24.0 Returns ------- Index """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_names = self._convert_can_do_setop(other) if self.equals(other): return self lvals = self._values rvals = other._ndarray_values uniq_tuples = None # flag whether _inner_indexer was succesful if self.is_monotonic and other.is_monotonic: try: uniq_tuples = self._inner_indexer(lvals, rvals)[0] sort = False # uniq_tuples is already sorted except TypeError: pass if uniq_tuples is None: other_uniq = set(rvals) seen = set() uniq_tuples = [ x for x in lvals if x in other_uniq and not (x in seen or seen.add(x)) ] if sort is None: uniq_tuples = sorted(uniq_tuples) if len(uniq_tuples) == 0: return MultiIndex( levels=self.levels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) else: return MultiIndex.from_arrays( zip(*uniq_tuples), sortorder=0, names=result_names ) def difference(self, other, sort=None): """ Compute set difference of two MultiIndex objects Parameters ---------- other : MultiIndex sort : False or None, default None Sort the resulting MultiIndex if possible .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- diff : MultiIndex """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_names = self._convert_can_do_setop(other) if len(other) == 0: return self if self.equals(other): return MultiIndex( levels=self.levels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) difference = this._values.take(label_diff) if sort is None: difference = sorted(difference) if len(difference) == 0: return MultiIndex( levels=[[]] * self.nlevels, codes=[[]] * self.nlevels, names=result_names, verify_integrity=False, ) else: return MultiIndex.from_tuples(difference, sortorder=0, names=result_names) def _convert_can_do_setop(self, other): result_names = self.names if not isinstance(other, Index): if len(other) == 0: other = MultiIndex( levels=[[]] * self.nlevels, codes=[[]] * self.nlevels, verify_integrity=False, ) else: msg = "other must be a MultiIndex or a list of tuples" try: other = MultiIndex.from_tuples(other) except TypeError as err: raise TypeError(msg) from err else: result_names = self.names if self.names == other.names else None return other, result_names # -------------------------------------------------------------------- @Appender(Index.astype.__doc__) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if is_categorical_dtype(dtype): msg = "> 1 ndim Categorical are not supported at this time" raise NotImplementedError(msg) elif not is_object_dtype(dtype): raise TypeError( f"Setting {type(self)} dtype to anything other " "than object is not supported" ) elif copy is True: return self._shallow_copy() return self def insert(self, loc: int, item): """ Make new MultiIndex inserting new item at location Parameters ---------- loc : int item : tuple Must be same length as number of levels in the MultiIndex Returns ------- new_index : Index """ # Pad the key with empty strings if lower levels of the key # aren't specified: if not isinstance(item, tuple): item = (item,) + ("",) * (self.nlevels - 1) elif len(item) != self.nlevels: raise ValueError("Item must have length equal to number of levels.") new_levels = [] new_codes = [] for k, level, level_codes in zip(item, self.levels, self.codes): if k not in level: # have to insert into level # must insert at end otherwise you have to recompute all the # other codes lev_loc = len(level) level = level.insert(lev_loc, k) else: lev_loc = level.get_loc(k) new_levels.append(level) new_codes.append(np.insert(ensure_int64(level_codes), loc, lev_loc)) return MultiIndex( levels=new_levels, codes=new_codes, names=self.names, verify_integrity=False ) def delete(self, loc): """ Make new index with passed location deleted Returns ------- new_index : MultiIndex """ new_codes = [np.delete(level_codes, loc) for level_codes in self.codes] return MultiIndex( levels=self.levels, codes=new_codes, names=self.names, verify_integrity=False, ) def _wrap_joined_index(self, joined, other): names = self.names if self.names == other.names else None return MultiIndex.from_tuples(joined, names=names) @Appender(Index.isin.__doc__) def isin(self, values, level=None): if level is None: values = MultiIndex.from_tuples(values, names=self.names)._values return algos.isin(self._values, values) else: num = self._get_level_number(level) levs = self.get_level_values(num) if levs.size == 0: return np.zeros(len(levs), dtype=np.bool_) return levs.isin(values) MultiIndex._add_numeric_methods_disabled() MultiIndex._add_numeric_methods_add_sub_disabled() MultiIndex._add_logical_methods_disabled() def _sparsify(label_list, start: int = 0, sentinel=""): pivoted = list(zip(*label_list)) k = len(label_list) result = pivoted[: start + 1] prev = pivoted[start] for cur in pivoted[start + 1 :]: sparse_cur = [] for i, (p, t) in enumerate(zip(prev, cur)): if i == k - 1: sparse_cur.append(t) result.append(sparse_cur) break if p == t: sparse_cur.append(sentinel) else: sparse_cur.extend(cur[i:]) result.append(sparse_cur) break prev = cur return list(zip(*result)) def _get_na_rep(dtype) -> str: return {np.datetime64: "NaT", np.timedelta64: "NaT"}.get(dtype, "NaN") def maybe_droplevels(index, key): """ Attempt to drop level or levels from the given index. Parameters ---------- index: Index key : scalar or tuple Returns ------- Index """ # drop levels original_index = index if isinstance(key, tuple): for _ in key: try: index = index.droplevel(0) except ValueError: # we have dropped too much, so back out return original_index else: try: index = index.droplevel(0) except ValueError: pass return index def _coerce_indexer_frozen(array_like, categories, copy: bool = False) -> np.ndarray: """ Coerce the array_like indexer to the smallest integer dtype that can encode all of the given categories. Parameters ---------- array_like : array-like categories : array-like copy : bool Returns ------- np.ndarray Non-writeable. """ array_like = coerce_indexer_dtype(array_like, categories) if copy: array_like = array_like.copy() array_like.flags.writeable = False return array_like
BugsInPy/BugsInPy/temp/projects/pandas/bug-46-fixed/pandas/pandas/core/indexes/multi.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-46-buggy/pandas/pandas/core/indexes/multi.py
pandas-bug-103
""" Define the SeriesGroupBy and DataFrameGroupBy classes that hold the groupby interfaces (and some implementations). These are user facing as the result of the ``df.groupby(...)`` operations, which here returns a DataFrameGroupBy object. """ from collections import OrderedDict, abc, defaultdict, namedtuple import copy from functools import partial from textwrap import dedent import typing from typing import ( TYPE_CHECKING, Any, Callable, FrozenSet, Iterable, List, Mapping, Sequence, Tuple, Type, Union, cast, ) import numpy as np from pandas._libs import Timestamp, lib from pandas._typing import FrameOrSeries from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.cast import ( maybe_convert_objects, maybe_downcast_numeric, maybe_downcast_to_dtype, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_bool, is_dict_like, is_integer_dtype, is_interval_dtype, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, needs_i8_conversion, ) from pandas.core.dtypes.missing import _isna_ndarraylike, isna, notna import pandas.core.algorithms as algorithms from pandas.core.base import DataError, SpecificationError import pandas.core.common as com from pandas.core.construction import create_series_with_explicit_dtype from pandas.core.frame import DataFrame from pandas.core.generic import ABCDataFrame, ABCSeries, NDFrame, _shared_docs from pandas.core.groupby import base from pandas.core.groupby.groupby import ( GroupBy, _apply_docs, _transform_template, get_groupby, ) from pandas.core.indexes.api import Index, MultiIndex, all_indexes_same import pandas.core.indexes.base as ibase from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.plotting import boxplot_frame_groupby if TYPE_CHECKING: from pandas.core.internals import Block NamedAgg = namedtuple("NamedAgg", ["column", "aggfunc"]) # TODO(typing) the return value on this callable should be any *scalar*. AggScalar = Union[str, Callable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = typing.TypeVar("ScalarResult") def generate_property(name: str, klass: Type[FrameOrSeries]): """ Create a property for a GroupBy subclass to dispatch to DataFrame/Series. Parameters ---------- name : str klass : {DataFrame, Series} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = getattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_whitelisted_properties(klass: Type[FrameOrSeries], whitelist: FrozenSet[str]): """ Create GroupBy member defs for DataFrame/Series names in a whitelist. Parameters ---------- klass : DataFrame or Series class class where members are defined. whitelist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, any such name is skipped. """ def pinner(cls): for name in whitelist: if hasattr(cls, name): # don't override anything that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_whitelisted_properties(Series, base.series_apply_whitelist) class SeriesGroupBy(GroupBy): _apply_whitelist = base.series_apply_whitelist def _iterate_slices(self) -> Iterable[Series]: yield self._selected_obj @property def _selection_name(self): """ since we are a series, we by definition only have a single name, but may be the result of a selection or the name of our object """ if self._selection is None: return self.obj.name else: return self._selection _agg_see_also_doc = dedent( """ See Also -------- pandas.Series.groupby.apply pandas.Series.groupby.transform pandas.Series.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.groupby([1, 1, 2, 2]).min() 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg('min') 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) min max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.groupby([1, 1, 2, 2]).agg( ... minimum='min', ... maximum='max', ... ) minimum maximum 1 1 2 2 3 4 """ ) @Appender( _apply_docs["template"].format( input="series", examples=_apply_docs["series_examples"] ) ) def apply(self, func, *args, **kwargs): return super().apply(func, *args, **kwargs) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func=None, *args, **kwargs): relabeling = func is None columns = None no_arg_message = "Must provide 'func' or named aggregation **kwargs." if relabeling: columns = list(kwargs) func = [kwargs[col] for col in columns] kwargs = {} if not columns: raise TypeError(no_arg_message) if isinstance(func, str): return getattr(self, func)(*args, **kwargs) elif isinstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = _maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: ret.columns = columns else: cyfunc = self._get_cython_func(func) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except (ValueError, KeyError): # TODO: KeyError is raised in _python_agg_general, # see see test_groupby.test_basic result = self._aggregate_named(func, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = create_series_with_explicit_dtype( result, index=index, dtype_if_empty=object ) if not self.as_index: # pragma: no cover print("Warning, ignoring as_index=True") if isinstance(ret, dict): from pandas import concat ret = concat(ret, axis=1) return ret agg = aggregate def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 if isinstance(self._selected_obj, Series): raise SpecificationError("nested renamer is not supported") columns = list(arg.keys()) arg = arg.items() elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.append(com.get_callable_name(f) or f) arg = zip(columns, arg) results = OrderedDict() for name, func in arg: obj = self # reset the cache so that we # only include the named selection if name in self._selected_obj: obj = copy.copy(obj) obj._reset_cache() obj._selection = name results[name] = obj.aggregate(func) if any(isinstance(x, DataFrame) for x in results.values()): # let higher level handle return results return DataFrame(results, columns=columns) def _wrap_series_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]], index: Index, ) -> Union[Series, DataFrame]: """ Wraps the output of a SeriesGroupBy operation into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. index : pd.Index Index to apply to the output. Returns ------- Series or DataFrame Notes ----- In the vast majority of cases output and columns will only contain one element. The exception is operations that expand dimensions, like ohlc. """ indexed_output = {key.position: val for key, val in output.items()} columns = Index(key.label for key in output) result: Union[Series, DataFrame] if len(output) > 1: result = DataFrame(indexed_output, index=index) result.columns = columns else: result = Series(indexed_output[0], index=index, name=columns[0]) return result def _wrap_aggregated_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> Union[Series, DataFrame]: """ Wraps the output of a SeriesGroupBy aggregation into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- Series or DataFrame Notes ----- In the vast majority of cases output will only contain one element. The exception is operations that expand dimensions, like ohlc. """ result = self._wrap_series_output( output=output, index=self.grouper.result_index ) return self._reindex_output(result)._convert(datetime=True) def _wrap_transformed_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> Series: """ Wraps the output of a SeriesGroupBy aggregation into the expected result. Parameters ---------- output : dict[base.OutputKey, Union[Series, np.ndarray]] Dict with a sole key of 0 and a value of the result values. Returns ------- Series Notes ----- output should always contain one element. It is specified as a dict for consistency with DataFrame methods and _wrap_aggregated_output. """ assert len(output) == 1 result = self._wrap_series_output(output=output, index=self.obj.index) # No transformations increase the ndim of the result assert isinstance(result, Series) return result def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self._selection_name, index=keys, dtype=np.float64) def _get_index() -> Index: if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 #24880 index = _get_index() result = self._reindex_output(DataFrame(values, index=index)) # if self.observed is False, # keep all-NaN rows created while re-indexing result = result.stack(dropna=self.observed) result.name = self._selection_name return result if isinstance(values[0], Series): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = Series(data=values, index=_get_index(), name=self._selection_name) return self._reindex_output(result) def _aggregate_named(self, func, *args, **kwargs): result = OrderedDict() for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise ValueError("Must produce aggregated value") result[name] = output return result @Substitution(klass="Series", selected="A.") @Appender(_transform_template) def transform(self, func, *args, **kwargs): func = self._get_cython_func(func) or func if not isinstance(func, str): return self._transform_general(func, *args, **kwargs) elif func not in base.transform_kernel_whitelist: msg = f"'{func}' is not a valid function name for transform(name)" raise ValueError(msg) elif func in base.cythonized_kernels: # cythonized transform or canned "agg+broadcast" return getattr(self, func)(*args, **kwargs) # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. result = getattr(self, func)(*args, **kwargs) return self._transform_fast(result, func) def _transform_general(self, func, *args, **kwargs): """ Transform with a non-str `func`. """ klass = type(self._selected_obj) results = [] for name, group in self: object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) if isinstance(res, (ABCDataFrame, ABCSeries)): res = res._values indexer = self._get_index(name) ser = klass(res, indexer) results.append(ser) # check for empty "results" to avoid concat ValueError if results: from pandas.core.reshape.concat import concat result = concat(results).sort_index() else: result = Series(dtype=np.float64) # we will only try to coerce the result type if # we have a numeric dtype, as these are *always* user-defined funcs # the cython take a different path (and casting) dtype = self._selected_obj.dtype if is_numeric_dtype(dtype): result = maybe_downcast_to_dtype(result, dtype) result.name = self._selected_obj.name result.index = self._selected_obj.index return result def _transform_fast(self, result, func_nm: str) -> Series: """ fast version of transform, only applicable to builtin/cythonizable functions """ ids, _, ngroup = self.grouper.group_info cast = self._transform_should_cast(func_nm) out = algorithms.take_1d(result._values, ids) if cast: out = self._try_cast(out, self.obj) return Series(out, index=self.obj.index, name=self.obj.name) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> df.groupby('A').B.filter(lambda x: x.mean() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Series """ if isinstance(func, str): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x, *args, **kwargs) -> bool: b = wrapper(x, *args, **kwargs) return b and notna(b) try: indices = [ self._get_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError): raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def nunique(self, dropna: bool = True) -> Series: """ Return number of unique elements in the group. Returns ------- Series Number of unique values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._internal_get_values() # GH 27951 # temporary fix while we wait for NumPy bug 12629 to be fixed val[isna(val)] = np.datetime64("NaT") try: sorter = np.lexsort((val, ids)) except TypeError: # catches object dtypes msg = f"val.dtype must be object, got {val.dtype}" assert val.dtype == object, msg val, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((val, ids)) _isna = lambda a: a == -1 else: _isna = isna ids, val = ids[sorter], val[sorter] # group boundaries are where group ids change # unique observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, val[1:] != val[:-1]] # 1st item of each group is a new unique observation mask = _isna(val) if dropna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).astype("int64", copy=False) if len(ids): # NaN/NaT group exists if the head of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if len(res) != len(ri): res, out = np.zeros(len(ri), dtype=out.dtype), res res[ids[idx]] = out result = Series(res, index=ri, name=self._selection_name) return self._reindex_output(result, fill_value=0) @Appender(Series.describe.__doc__) def describe(self, **kwargs): result = self.apply(lambda x: x.describe(**kwargs)) if self.axis == 1: return result.T return result.unstack() def value_counts( self, normalize=False, sort=True, ascending=False, bins=None, dropna=True ): from pandas.core.reshape.tile import cut from pandas.core.reshape.merge import _get_join_indexers if bins is not None and not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return self.apply( Series.value_counts, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) ids, _, _ = self.grouper.group_info val = self.obj._internal_get_values() # groupby removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Series(val), bins, include_lowest=True) lev = lab.cat.categories lab = lev.take(lab.cat.codes) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab): # TODO: should we do this inside II? sorter = np.lexsort((lab.left, lab.right, ids)) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] levels = [ping.group_index for ping in self.grouper.groupings] + [lev] names = self.grouper.names + [self._selection_name] if dropna: mask = codes[-1] != -1 if mask.all(): dropna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.astype("float") d = np.diff(np.r_[idx, len(ids)]) if dropna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if dropna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is None: mi = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) if is_integer_dtype(out): out = ensure_int64(out) return Series(out, index=mi, name=self._selection_name) # for compat. with libgroupby.value_counts need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(len(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.sum(), len(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumsum() - 1, codes[-1]] _, idx = _get_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.append(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out): out = ensure_int64(out) return Series(out, index=mi, name=self._selection_name) def count(self) -> Series: """ Compute count of group, excluding missing values. Returns ------- Series Count of values within each group. """ ids, _, ngroups = self.grouper.group_info val = self.obj._internal_get_values() mask = (ids != -1) & ~isna(val) ids = ensure_platform_int(ids) minlength = ngroups or 0 out = np.bincount(ids[mask], minlength=minlength) result = Series( out, index=self.grouper.result_index, name=self._selection_name, dtype="int64", ) return self._reindex_output(result, fill_value=0) def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) def pct_change(self, periods=1, fill_method="pad", limit=None, freq=None): """Calculate pct_change of each value to previous entry in group""" # TODO: Remove this conditional when #23918 is fixed if freq: return self.apply( lambda x: x.pct_change( periods=periods, fill_method=fill_method, limit=limit, freq=freq ) ) filled = getattr(self, fill_method)(limit=limit) fill_grp = filled.groupby(self.grouper.codes) shifted = fill_grp.shift(periods=periods, freq=freq) return (filled / shifted) - 1 @pin_whitelisted_properties(DataFrame, base.dataframe_apply_whitelist) class DataFrameGroupBy(GroupBy): _apply_whitelist = base.dataframe_apply_whitelist _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.groupby.apply pandas.DataFrame.groupby.transform pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame({'A': [1, 1, 2, 2], ... 'B': [1, 2, 3, 4], ... 'C': np.random.randn(4)}) >>> df A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> df.groupby('A').agg('min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> df.groupby('A').agg(['min', 'max']) B C min max min max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> df.groupby('A').B.agg(['min', 'max']) min max A 1 1 2 2 3 4 Different aggregations per column >>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) B C min max sum A 1 1 2 0.590716 2 3 4 0.704907 To control the output names with different aggregations per column, pandas supports "named aggregation" >>> df.groupby("A").agg( ... b_min=pd.NamedAgg(column="B", aggfunc="min"), ... c_sum=pd.NamedAgg(column="C", aggfunc="sum")) b_min c_sum A 1 1 -1.956929 2 3 -0.322183 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias. See :ref:`groupby.aggregate.named` for more. """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func=None, *args, **kwargs): relabeling = func is None and _is_multi_agg_with_relabel(**kwargs) if relabeling: func, columns, order = _normalize_keyword_aggregation(kwargs) kwargs = {} elif isinstance(func, list) and len(func) > len(set(func)): # GH 28426 will raise error if duplicated function names are used and # there is no reassigned name raise SpecificationError( "Function names must be unique if there is no new column " "names assigned" ) elif func is None: # nicer error message raise TypeError("Must provide 'func' or tuples of '(column, aggfunc).") func = _maybe_mangle_lambdas(func) result, how = self._aggregate(func, *args, **kwargs) if how is None: return result if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: result = self._aggregate_frame(func, *args, **kwargs) elif self.axis == 1: # _aggregate_multiple_funcs does not allow self.axis == 1 result = self._aggregate_frame(func) else: # try to treat as if we are passing a list try: result = self._aggregate_multiple_funcs([func], _axis=self.axis) except ValueError as err: if "no results" not in str(err): # raised directly by _aggregate_multiple_funcs raise result = self._aggregate_frame(func) else: result.columns = Index( result.columns.levels[0], name=self._selected_obj.columns.name ) if not self.as_index: self._insert_inaxis_grouper_inplace(result) result.index = np.arange(len(result)) if relabeling: # used reordered index of columns result = result.iloc[:, order] result.columns = columns return result._convert(datetime=True) agg = aggregate def _iterate_slices(self) -> Iterable[Series]: obj = self._selected_obj if self.axis == 1: obj = obj.T if isinstance(obj, Series) and obj.name not in self.exclusions: # Occurs when doing DataFrameGroupBy(...)["X"] yield obj else: for label, values in obj.items(): if label in self.exclusions: continue yield values def _cython_agg_general( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ) -> DataFrame: agg_blocks, agg_items = self._cython_agg_blocks( how, alt=alt, numeric_only=numeric_only, min_count=min_count ) return self._wrap_agged_blocks(agg_blocks, items=agg_items) def _cython_agg_blocks( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ) -> "Tuple[List[Block], Index]": # TODO: the actual managing of mgr_locs is a PITA # here, it should happen via BlockManager.combine data: BlockManager = self._get_data_to_aggregate() if numeric_only: data = data.get_numeric_data(copy=False) agg_blocks: List[Block] = [] new_items: List[np.ndarray] = [] deleted_items: List[np.ndarray] = [] no_result = object() for block in data.blocks: # Avoid inheriting result from earlier in the loop result = no_result locs = block.mgr_locs.as_array try: result, _ = self.grouper.aggregate( block.values, how, axis=1, min_count=min_count ) except NotImplementedError: # generally if we have numeric_only=False # and non-applicable functions # try to python agg if alt is None: # we cannot perform the operation # in an alternate way, exclude the block assert how == "ohlc" deleted_items.append(locs) continue # call our grouper again with only this block obj = self.obj[data.items[locs]] if obj.shape[1] == 1: # Avoid call to self.values that can occur in DataFrame # reductions; see GH#28949 obj = obj.iloc[:, 0] s = get_groupby(obj, self.grouper) try: result = s.aggregate(lambda x: alt(x, axis=self.axis)) except TypeError: # we may have an exception in trying to aggregate # continue and exclude the block deleted_items.append(locs) continue else: result = cast(DataFrame, result) # unwrap DataFrame to get array assert len(result._data.blocks) == 1 result = result._data.blocks[0].values if isinstance(result, np.ndarray) and result.ndim == 1: result = result.reshape(1, -1) finally: assert not isinstance(result, DataFrame) if result is not no_result: # see if we can cast the block back to the original dtype result = maybe_downcast_numeric(result, block.dtype) if block.is_extension and isinstance(result, np.ndarray): # e.g. block.values was an IntegerArray # (1, N) case can occur if block.values was Categorical # and result is ndarray[object] assert result.ndim == 1 or result.shape[0] == 1 try: # Cast back if feasible result = type(block.values)._from_sequence( result.ravel(), dtype=block.values.dtype ) except ValueError: # reshape to be valid for non-Extension Block result = result.reshape(1, -1) agg_block: Block = block.make_block(result) new_items.append(locs) agg_blocks.append(agg_block) if not agg_blocks: raise DataError("No numeric types to aggregate") # reset the locs in the blocks to correspond to our # current ordering indexer = np.concatenate(new_items) agg_items = data.items.take(np.sort(indexer)) if deleted_items: # we need to adjust the indexer to account for the # items we have removed # really should be done in internals :< deleted = np.concatenate(deleted_items) ai = np.arange(len(data)) mask = np.zeros(len(data)) mask[deleted] = 1 indexer = (ai - mask.cumsum())[indexer] offset = 0 for blk in agg_blocks: loc = len(blk.mgr_locs) blk.mgr_locs = indexer[offset : (offset + loc)] offset += loc return agg_blocks, agg_items def _aggregate_frame(self, func, *args, **kwargs) -> DataFrame: if self.grouper.nkeys != 1: raise AssertionError("Number of keys must be 1") axis = self.axis obj = self._obj_with_exclusions result: OrderedDict = OrderedDict() if axis != obj._info_axis_number: for name, data in self: fres = func(data, *args, **kwargs) result[name] = fres else: for name in self.indices: data = self.get_group(name, obj=obj) fres = func(data, *args, **kwargs) result[name] = fres return self._wrap_frame_output(result, obj) def _aggregate_item_by_item(self, func, *args, **kwargs) -> DataFrame: # only for axis==0 obj = self._obj_with_exclusions result: OrderedDict = OrderedDict() cannot_agg = [] for item in obj: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) cast = self._transform_should_cast(func) try: result[item] = colg.aggregate(func, *args, **kwargs) except ValueError as err: if "Must produce aggregated value" in str(err): # raised in _aggregate_named, handle at higher level # see test_apply_with_mutated_index raise # otherwise we get here from an AttributeError in _make_wrapper cannot_agg.append(item) continue else: if cast: result[item] = self._try_cast(result[item], data) result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) return DataFrame(result, columns=result_columns) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: return DataFrame(index=keys) key_names = self.grouper.names # GH12824. def first_not_none(values): try: return next(com.not_none(*values)) except StopIteration: return None v = first_not_none(values) if v is None: # GH9684. If all values are None, then this will throw an error. # We'd prefer it return an empty dataframe. return DataFrame() elif isinstance(v, DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = self.grouper.result_index else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object v = first_not_none(values) if v is None: return DataFrame() elif isinstance(v, NDFrame): # this is to silence a DeprecationWarning # TODO: Remove when default dtype of empty Series is object kwargs = v._construct_axes_dict() if v._constructor is Series: backup = create_series_with_explicit_dtype( **kwargs, dtype_if_empty=object ) else: backup = v._constructor(**kwargs) values = [x if (x is not None) else backup for x in values] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = all_indexes_same([x.index for x in values]) singular_series = len(values) == 1 and applied_index.nlevels == 1 # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.core.reshape.concat import concat return concat(values) if not all_indexed_same: # GH 8467 return self._concat_objects(keys, values, not_indexed_same=True) if self.axis == 0 and isinstance(v, ABCSeries): # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = {v.name for v in values} if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if ( isinstance(v.index, MultiIndex) or key_index is None or isinstance(key_index, MultiIndex) ): stacked_values = np.vstack([np.asarray(v) for v in values]) result = DataFrame( stacked_values, index=key_index, columns=index ) else: # GH5788 instead of stacking; concat gets the # dtypes correct from pandas.core.reshape.concat import concat result = concat( values, keys=key_index, names=key_index.names, axis=self.axis, ).unstack() result.columns = index elif isinstance(v, ABCSeries): stacked_values = np.vstack([np.asarray(v) for v in values]) result = DataFrame( stacked_values.T, index=v.index, columns=key_index ) else: # GH#1738: values is list of arrays of unequal lengths # fall through to the outer else clause # TODO: sure this is right? we used to do this # after raising AttributeError above return Series(values, index=key_index, name=self._selection_name) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here so = self._selected_obj if so.ndim == 2 and so.dtypes.apply(needs_i8_conversion).any(): result = _recast_datetimelike_result(result) else: result = result._convert(datetime=True) return self._reindex_output(result) # values are not series or array-like but scalars else: # only coerce dates if we find at least 1 datetime should_coerce = any(isinstance(x, Timestamp) for x in values) # self._selection_name not passed through to Series as the # result should not take the name of original selection # of columns return Series(values, index=key_index)._convert( datetime=True, coerce=should_coerce ) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.core.reshape.concat import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, "name", name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except ValueError: msg = "transform must return a scalar value for each group" raise ValueError(msg) else: res = path(group) if isinstance(res, Series): # we need to broadcast across the # other dimension; this will preserve dtypes # GH14457 if not np.prod(group.shape): continue elif res.index.is_(obj.index): r = concat([res] * len(group.columns), axis=1) r.columns = group.columns r.index = group.index else: r = DataFrame( np.concatenate([res.values] * len(group.index)).reshape( group.shape ), columns=group.columns, index=group.index, ) applied.append(r) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index other_axis = 1 if self.axis == 0 else 0 # switches between 0 & 1 concatenated = concat(applied, axis=self.axis, verify_integrity=False) concatenated = concatenated.reindex(concat_index, axis=other_axis, copy=False) return self._set_result_index_ordered(concatenated) @Substitution(klass="DataFrame", selected="") @Appender(_transform_template) def transform(self, func, *args, **kwargs): # optimized transforms func = self._get_cython_func(func) or func if not isinstance(func, str): return self._transform_general(func, *args, **kwargs) elif func not in base.transform_kernel_whitelist: msg = f"'{func}' is not a valid function name for transform(name)" raise ValueError(msg) elif func in base.cythonized_kernels: # cythonized transformation or canned "reduction+broadcast" return getattr(self, func)(*args, **kwargs) # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. result = getattr(self, func)(*args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) obj = self._obj_with_exclusions # nuisance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) return self._transform_fast(result, func) def _transform_fast(self, result: DataFrame, func_nm: str) -> DataFrame: """ Fast transform path for aggregations """ # if there were groups with no observations (Categorical only?) # try casting data to original dtype cast = self._transform_should_cast(func_nm) obj = self._obj_with_exclusions # for each col, reshape to to size of original frame # by take operation ids, _, ngroup = self.grouper.group_info output = [] for i, _ in enumerate(result.columns): res = algorithms.take_1d(result.iloc[:, i].values, ids) # TODO: we have no test cases that get here with EA dtypes; # try_cast may not be needed if EAs never get here if cast: res = self._try_cast(res, obj.iloc[:, i]) output.append(res) return DataFrame._from_arrays(output, columns=result.columns, index=obj.index) def _define_paths(self, func, *args, **kwargs): if isinstance(func, str): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis ) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis ) return fast_path, slow_path def _choose_path(self, fast_path: Callable, slow_path: Callable, group: DataFrame): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) except AssertionError: raise except Exception: # GH#29631 For user-defined function, we cant predict what may be # raised; see test_transform.test_transform_fastpath_raises return path, res # verify fast path does not change columns (and names), otherwise # its results cannot be joined with those of the slow path if not isinstance(res_fast, DataFrame): return path, res if not res_fast.columns.equals(group.columns): return path, res if res_fast.equals(res): path = fast_path return path, res def _transform_item_by_item(self, obj: DataFrame, wrapper) -> DataFrame: # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) except TypeError: # e.g. trying to call nanmean with string values pass else: inds.append(i) if len(output) == 0: raise TypeError("Transform function invalid for data types") columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return DataFrame(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- f : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; If False, groups that evaluate False are filled with NaNs. Returns ------- filtered : DataFrame Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.filter(lambda x: x['B'].mean() > 3.) A B C 1 bar 2 5.0 3 bar 4 1.0 5 bar 6 9.0 """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if is_bool(res) or (is_scalar(res) and isna(res)): if res and notna(res): indices.append(self._get_index(name)) else: # non scalars aren't allowed raise TypeError( f"filter function returned a {type(res).__name__}, " "but expected a scalar bool" ) return self._apply_filter(indices, dropna) def _gotitem(self, key, ndim: int, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if ndim == 2: if subset is None: subset = self.obj return DataFrameGroupBy( subset, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index, observed=self.observed, ) elif ndim == 1: if subset is None: subset = self.obj[key] return SeriesGroupBy( subset, selection=key, grouper=self.grouper, observed=self.observed ) raise AssertionError("invalid ndim for _gotitem") def _wrap_frame_output(self, result, obj) -> DataFrame: result_index = self.grouper.levels[0] if self.axis == 0: return DataFrame(result, index=obj.columns, columns=result_index).T else: return DataFrame(result, index=obj.index, columns=result_index) def _get_data_to_aggregate(self) -> BlockManager: obj = self._obj_with_exclusions if self.axis == 1: return obj.T._data else: return obj._data def _insert_inaxis_grouper_inplace(self, result): # zip in reverse so we can always insert at loc 0 izip = zip( *map( reversed, ( self.grouper.names, self.grouper.get_group_levels(), [grp.in_axis for grp in self.grouper.groupings], ), ) ) for name, lev, in_axis in izip: if in_axis: result.insert(0, name, lev) def _wrap_aggregated_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> DataFrame: """ Wraps the output of DataFrameGroupBy aggregations into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- DataFrame """ indexed_output = {key.position: val for key, val in output.items()} columns = Index(key.label for key in output) result = DataFrame(indexed_output) result.columns = columns if not self.as_index: self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index result.index = index if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _wrap_transformed_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> DataFrame: """ Wraps the output of DataFrameGroupBy transformations into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- DataFrame """ indexed_output = {key.position: val for key, val in output.items()} columns = Index(key.label for key in output) result = DataFrame(indexed_output) result.columns = columns result.index = self.obj.index return result def _wrap_agged_blocks(self, blocks: "Sequence[Block]", items: Index) -> DataFrame: if not self.as_index: index = np.arange(blocks[0].values.shape[-1]) mgr = BlockManager(blocks, axes=[items, index]) result = DataFrame(mgr) self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index mgr = BlockManager(blocks, axes=[items, index]) result = DataFrame(mgr) if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _iterate_column_groupbys(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, SeriesGroupBy( self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions, ) def _apply_to_column_groupbys(self, func): from pandas.core.reshape.concat import concat return concat( (func(col_groupby) for _, col_groupby in self._iterate_column_groupbys()), keys=self._selected_obj.columns, axis=1, ) def count(self): """ Compute count of group, excluding missing values. Returns ------- DataFrame Count of values within each group. """ data = self._get_data_to_aggregate() ids, _, ngroups = self.grouper.group_info mask = ids != -1 vals = ( (mask & ~_isna_ndarraylike(np.atleast_2d(blk.get_values()))) for blk in data.blocks ) locs = (blk.mgr_locs for blk in data.blocks) counted = ( lib.count_level_2d(x, labels=ids, max_bin=ngroups, axis=1) for x in vals ) blocks = [make_block(val, placement=loc) for val, loc in zip(counted, locs)] return self._wrap_agged_blocks(blocks, items=data.items) def nunique(self, dropna: bool = True): """ Return DataFrame with number of distinct observations per group for each column. Parameters ---------- dropna : bool, default True Don't include NaN in the counts. Returns ------- nunique: DataFrame Examples -------- >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', ... 'ham', 'ham'], ... 'value1': [1, 5, 5, 2, 5, 5], ... 'value2': list('abbaxy')}) >>> df id value1 value2 0 spam 1 a 1 egg 5 b 2 egg 5 b 3 spam 2 a 4 ham 5 x 5 ham 5 y >>> df.groupby('id').nunique() id value1 value2 id egg 1 1 1 ham 1 1 2 spam 1 2 1 Check for rows with the same id but conflicting values: >>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any()) id value1 value2 0 spam 1 a 3 spam 2 a 4 ham 5 x 5 ham 5 y """ obj = self._selected_obj def groupby_series(obj, col=None): return SeriesGroupBy(obj, selection=col, grouper=self.grouper).nunique( dropna=dropna ) if isinstance(obj, Series): results = groupby_series(obj) else: # TODO: this is duplicative of how GroupBy naturally works # Try to consolidate with normal wrapping functions from pandas.core.reshape.concat import concat axis_number = obj._get_axis_number(self.axis) other_axis = int(not axis_number) if axis_number == 0: iter_func = obj.items else: iter_func = obj.iterrows results = [groupby_series(content, label) for label, content in iter_func()] results = concat(results, axis=1) if axis_number == 1: results = results.T results._get_axis(other_axis).names = obj._get_axis(other_axis).names if not self.as_index: results.index = ibase.default_index(len(results)) return results boxplot = boxplot_frame_groupby def _is_multi_agg_with_relabel(**kwargs) -> bool: """ Check whether kwargs passed to .agg look like multi-agg with relabeling. Parameters ---------- **kwargs : dict Returns ------- bool Examples -------- >>> _is_multi_agg_with_relabel(a='max') False >>> _is_multi_agg_with_relabel(a_max=('a', 'max'), ... a_min=('a', 'min')) True >>> _is_multi_agg_with_relabel() False """ return all(isinstance(v, tuple) and len(v) == 2 for v in kwargs.values()) and ( len(kwargs) > 0 ) def _normalize_keyword_aggregation(kwargs): """ Normalize user-provided "named aggregation" kwargs. Transforms from the new ``Mapping[str, NamedAgg]`` style kwargs to the old OrderedDict[str, List[scalar]]]. Parameters ---------- kwargs : dict Returns ------- aggspec : dict The transformed kwargs. columns : List[str] The user-provided keys. col_idx_order : List[int] List of columns indices. Examples -------- >>> _normalize_keyword_aggregation({'output': ('input', 'sum')}) (OrderedDict([('input', ['sum'])]), ('output',), [('input', 'sum')]) """ # Normalize the aggregation functions as Mapping[column, List[func]], # process normally, then fixup the names. # TODO: aggspec type: typing.OrderedDict[str, List[AggScalar]] # May be hitting https://github.com/python/mypy/issues/5958 # saying it doesn't have an attribute __name__ aggspec = defaultdict(list) order = [] columns, pairs = list(zip(*kwargs.items())) for name, (column, aggfunc) in zip(columns, pairs): aggspec[column].append(aggfunc) order.append((column, com.get_callable_name(aggfunc) or aggfunc)) # uniquify aggfunc name if duplicated in order list uniquified_order = _make_unique(order) # GH 25719, due to aggspec will change the order of assigned columns in aggregation # uniquified_aggspec will store uniquified order list and will compare it with order # based on index aggspec_order = [ (column, com.get_callable_name(aggfunc) or aggfunc) for column, aggfuncs in aggspec.items() for aggfunc in aggfuncs ] uniquified_aggspec = _make_unique(aggspec_order) # get the new indice of columns by comparison col_idx_order = Index(uniquified_aggspec).get_indexer(uniquified_order) return aggspec, columns, col_idx_order def _make_unique(seq): """Uniquify aggfunc name of the pairs in the order list Examples: -------- >>> _make_unique([('a', '<lambda>'), ('a', '<lambda>'), ('b', '<lambda>')]) [('a', '<lambda>_0'), ('a', '<lambda>_1'), ('b', '<lambda>')] """ return [ (pair[0], "_".join([pair[1], str(seq[:i].count(pair))])) if seq.count(pair) > 1 else pair for i, pair in enumerate(seq) ] # TODO: Can't use, because mypy doesn't like us setting __name__ # error: "partial[Any]" has no attribute "__name__" # the type is: # typing.Sequence[Callable[..., ScalarResult]] # -> typing.Sequence[Callable[..., ScalarResult]]: def _managle_lambda_list(aggfuncs: Sequence[Any]) -> Sequence[Any]: """ Possibly mangle a list of aggfuncs. Parameters ---------- aggfuncs : Sequence Returns ------- mangled: list-like A new AggSpec sequence, where lambdas have been converted to have unique names. Notes ----- If just one aggfunc is passed, the name will not be mangled. """ if len(aggfuncs) <= 1: # don't mangle for .agg([lambda x: .]) return aggfuncs i = 0 mangled_aggfuncs = [] for aggfunc in aggfuncs: if com.get_callable_name(aggfunc) == "<lambda>": aggfunc = partial(aggfunc) aggfunc.__name__ = f"<lambda_{i}>" i += 1 mangled_aggfuncs.append(aggfunc) return mangled_aggfuncs def _maybe_mangle_lambdas(agg_spec: Any) -> Any: """ Make new lambdas with unique names. Parameters ---------- agg_spec : Any An argument to GroupBy.agg. Non-dict-like `agg_spec` are pass through as is. For dict-like `agg_spec` a new spec is returned with name-mangled lambdas. Returns ------- mangled : Any Same type as the input. Examples -------- >>> _maybe_mangle_lambdas('sum') 'sum' >>> _maybe_mangle_lambdas([lambda: 1, lambda: 2]) # doctest: +SKIP [<function __main__.<lambda_0>, <function pandas...._make_lambda.<locals>.f(*args, **kwargs)>] """ is_dict = is_dict_like(agg_spec) if not (is_dict or is_list_like(agg_spec)): return agg_spec mangled_aggspec = type(agg_spec)() # dict or OrderdDict if is_dict: for key, aggfuncs in agg_spec.items(): if is_list_like(aggfuncs) and not is_dict_like(aggfuncs): mangled_aggfuncs = _managle_lambda_list(aggfuncs) else: mangled_aggfuncs = aggfuncs mangled_aggspec[key] = mangled_aggfuncs else: mangled_aggspec = _managle_lambda_list(agg_spec) return mangled_aggspec def _recast_datetimelike_result(result: DataFrame) -> DataFrame: """ If we have date/time like in the original, then coerce dates as we are stacking can easily have object dtypes here. Parameters ---------- result : DataFrame Returns ------- DataFrame Notes ----- - Assumes Groupby._selected_obj has ndim==2 and at least one datetimelike column """ result = result.copy() obj_cols = [ idx for idx in range(len(result.columns)) if is_object_dtype(result.dtypes.iloc[idx]) ] # See GH#26285 for n in obj_cols: converted = maybe_convert_objects( result.iloc[:, n].values, convert_numeric=False ) result.iloc[:, n] = converted return result """ Define the SeriesGroupBy and DataFrameGroupBy classes that hold the groupby interfaces (and some implementations). These are user facing as the result of the ``df.groupby(...)`` operations, which here returns a DataFrameGroupBy object. """ from collections import OrderedDict, abc, defaultdict, namedtuple import copy from functools import partial from textwrap import dedent import typing from typing import ( TYPE_CHECKING, Any, Callable, FrozenSet, Iterable, List, Mapping, Sequence, Tuple, Type, Union, cast, ) import numpy as np from pandas._libs import Timestamp, lib from pandas._typing import FrameOrSeries from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.cast import ( maybe_convert_objects, maybe_downcast_numeric, maybe_downcast_to_dtype, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_bool, is_dict_like, is_integer_dtype, is_interval_dtype, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, needs_i8_conversion, ) from pandas.core.dtypes.missing import _isna_ndarraylike, isna, notna import pandas.core.algorithms as algorithms from pandas.core.base import DataError, SpecificationError import pandas.core.common as com from pandas.core.construction import create_series_with_explicit_dtype from pandas.core.frame import DataFrame from pandas.core.generic import ABCDataFrame, ABCSeries, NDFrame, _shared_docs from pandas.core.groupby import base from pandas.core.groupby.groupby import ( GroupBy, _apply_docs, _transform_template, get_groupby, ) from pandas.core.indexes.api import Index, MultiIndex, all_indexes_same import pandas.core.indexes.base as ibase from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.plotting import boxplot_frame_groupby if TYPE_CHECKING: from pandas.core.internals import Block NamedAgg = namedtuple("NamedAgg", ["column", "aggfunc"]) # TODO(typing) the return value on this callable should be any *scalar*. AggScalar = Union[str, Callable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = typing.TypeVar("ScalarResult") def generate_property(name: str, klass: Type[FrameOrSeries]): """ Create a property for a GroupBy subclass to dispatch to DataFrame/Series. Parameters ---------- name : str klass : {DataFrame, Series} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = getattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_whitelisted_properties(klass: Type[FrameOrSeries], whitelist: FrozenSet[str]): """ Create GroupBy member defs for DataFrame/Series names in a whitelist. Parameters ---------- klass : DataFrame or Series class class where members are defined. whitelist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, any such name is skipped. """ def pinner(cls): for name in whitelist: if hasattr(cls, name): # don't override anything that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner @pin_whitelisted_properties(Series, base.series_apply_whitelist) class SeriesGroupBy(GroupBy): _apply_whitelist = base.series_apply_whitelist def _iterate_slices(self) -> Iterable[Series]: yield self._selected_obj @property def _selection_name(self): """ since we are a series, we by definition only have a single name, but may be the result of a selection or the name of our object """ if self._selection is None: return self.obj.name else: return self._selection _agg_see_also_doc = dedent( """ See Also -------- pandas.Series.groupby.apply pandas.Series.groupby.transform pandas.Series.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.groupby([1, 1, 2, 2]).min() 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg('min') 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) min max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.groupby([1, 1, 2, 2]).agg( ... minimum='min', ... maximum='max', ... ) minimum maximum 1 1 2 2 3 4 """ ) @Appender( _apply_docs["template"].format( input="series", examples=_apply_docs["series_examples"] ) ) def apply(self, func, *args, **kwargs): return super().apply(func, *args, **kwargs) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func=None, *args, **kwargs): relabeling = func is None columns = None no_arg_message = "Must provide 'func' or named aggregation **kwargs." if relabeling: columns = list(kwargs) func = [kwargs[col] for col in columns] kwargs = {} if not columns: raise TypeError(no_arg_message) if isinstance(func, str): return getattr(self, func)(*args, **kwargs) elif isinstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = _maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func) if relabeling: ret.columns = columns else: cyfunc = self._get_cython_func(func) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except (ValueError, KeyError): # TODO: KeyError is raised in _python_agg_general, # see see test_groupby.test_basic result = self._aggregate_named(func, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = create_series_with_explicit_dtype( result, index=index, dtype_if_empty=object ) if not self.as_index: # pragma: no cover print("Warning, ignoring as_index=True") if isinstance(ret, dict): from pandas import concat ret = concat(ret, axis=1) return ret agg = aggregate def _aggregate_multiple_funcs(self, arg): if isinstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 if isinstance(self._selected_obj, Series): raise SpecificationError("nested renamer is not supported") columns = list(arg.keys()) arg = arg.items() elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.append(com.get_callable_name(f) or f) arg = zip(columns, arg) results = OrderedDict() for name, func in arg: obj = self # reset the cache so that we # only include the named selection if name in self._selected_obj: obj = copy.copy(obj) obj._reset_cache() obj._selection = name results[name] = obj.aggregate(func) if any(isinstance(x, DataFrame) for x in results.values()): # let higher level handle return results return DataFrame(results, columns=columns) def _wrap_series_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]], index: Index, ) -> Union[Series, DataFrame]: """ Wraps the output of a SeriesGroupBy operation into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. index : pd.Index Index to apply to the output. Returns ------- Series or DataFrame Notes ----- In the vast majority of cases output and columns will only contain one element. The exception is operations that expand dimensions, like ohlc. """ indexed_output = {key.position: val for key, val in output.items()} columns = Index(key.label for key in output) result: Union[Series, DataFrame] if len(output) > 1: result = DataFrame(indexed_output, index=index) result.columns = columns else: result = Series(indexed_output[0], index=index, name=columns[0]) return result def _wrap_aggregated_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> Union[Series, DataFrame]: """ Wraps the output of a SeriesGroupBy aggregation into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- Series or DataFrame Notes ----- In the vast majority of cases output will only contain one element. The exception is operations that expand dimensions, like ohlc. """ result = self._wrap_series_output( output=output, index=self.grouper.result_index ) return self._reindex_output(result)._convert(datetime=True) def _wrap_transformed_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> Series: """ Wraps the output of a SeriesGroupBy aggregation into the expected result. Parameters ---------- output : dict[base.OutputKey, Union[Series, np.ndarray]] Dict with a sole key of 0 and a value of the result values. Returns ------- Series Notes ----- output should always contain one element. It is specified as a dict for consistency with DataFrame methods and _wrap_aggregated_output. """ assert len(output) == 1 result = self._wrap_series_output(output=output, index=self.obj.index) # No transformations increase the ndim of the result assert isinstance(result, Series) return result def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self._selection_name, index=keys, dtype=np.float64) def _get_index() -> Index: if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 #24880 index = _get_index() result = self._reindex_output(DataFrame(values, index=index)) # if self.observed is False, # keep all-NaN rows created while re-indexing result = result.stack(dropna=self.observed) result.name = self._selection_name return result if isinstance(values[0], Series): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = Series(data=values, index=_get_index(), name=self._selection_name) return self._reindex_output(result) def _aggregate_named(self, func, *args, **kwargs): result = OrderedDict() for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise ValueError("Must produce aggregated value") result[name] = output return result @Substitution(klass="Series", selected="A.") @Appender(_transform_template) def transform(self, func, *args, **kwargs): func = self._get_cython_func(func) or func if not isinstance(func, str): return self._transform_general(func, *args, **kwargs) elif func not in base.transform_kernel_whitelist: msg = f"'{func}' is not a valid function name for transform(name)" raise ValueError(msg) elif func in base.cythonized_kernels: # cythonized transform or canned "agg+broadcast" return getattr(self, func)(*args, **kwargs) # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. result = getattr(self, func)(*args, **kwargs) return self._transform_fast(result, func) def _transform_general(self, func, *args, **kwargs): """ Transform with a non-str `func`. """ klass = type(self._selected_obj) results = [] for name, group in self: object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) if isinstance(res, (ABCDataFrame, ABCSeries)): res = res._values indexer = self._get_index(name) ser = klass(res, indexer) results.append(ser) # check for empty "results" to avoid concat ValueError if results: from pandas.core.reshape.concat import concat result = concat(results).sort_index() else: result = Series(dtype=np.float64) # we will only try to coerce the result type if # we have a numeric dtype, as these are *always* user-defined funcs # the cython take a different path (and casting) dtype = self._selected_obj.dtype if is_numeric_dtype(dtype): result = maybe_downcast_to_dtype(result, dtype) result.name = self._selected_obj.name result.index = self._selected_obj.index return result def _transform_fast(self, result, func_nm: str) -> Series: """ fast version of transform, only applicable to builtin/cythonizable functions """ ids, _, ngroup = self.grouper.group_info cast = self._transform_should_cast(func_nm) out = algorithms.take_1d(result._values, ids) if cast: out = self._try_cast(out, self.obj) return Series(out, index=self.obj.index, name=self.obj.name) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> df.groupby('A').B.filter(lambda x: x.mean() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Series """ if isinstance(func, str): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x, *args, **kwargs) -> bool: b = wrapper(x, *args, **kwargs) return b and notna(b) try: indices = [ self._get_index(name) for name, group in self if true_and_notna(group) ] except (ValueError, TypeError): raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def nunique(self, dropna: bool = True) -> Series: """ Return number of unique elements in the group. Returns ------- Series Number of unique values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._internal_get_values() # GH 27951 # temporary fix while we wait for NumPy bug 12629 to be fixed val[isna(val)] = np.datetime64("NaT") try: sorter = np.lexsort((val, ids)) except TypeError: # catches object dtypes msg = f"val.dtype must be object, got {val.dtype}" assert val.dtype == object, msg val, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((val, ids)) _isna = lambda a: a == -1 else: _isna = isna ids, val = ids[sorter], val[sorter] # group boundaries are where group ids change # unique observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, val[1:] != val[:-1]] # 1st item of each group is a new unique observation mask = _isna(val) if dropna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).astype("int64", copy=False) if len(ids): # NaN/NaT group exists if the head of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if len(res) != len(ri): res, out = np.zeros(len(ri), dtype=out.dtype), res res[ids[idx]] = out result = Series(res, index=ri, name=self._selection_name) return self._reindex_output(result, fill_value=0) @Appender(Series.describe.__doc__) def describe(self, **kwargs): result = self.apply(lambda x: x.describe(**kwargs)) if self.axis == 1: return result.T return result.unstack() def value_counts( self, normalize=False, sort=True, ascending=False, bins=None, dropna=True ): from pandas.core.reshape.tile import cut from pandas.core.reshape.merge import _get_join_indexers if bins is not None and not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return self.apply( Series.value_counts, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) ids, _, _ = self.grouper.group_info val = self.obj._internal_get_values() # groupby removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Series(val), bins, include_lowest=True) lev = lab.cat.categories lab = lev.take(lab.cat.codes) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab): # TODO: should we do this inside II? sorter = np.lexsort((lab.left, lab.right, ids)) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components codes = self.grouper.reconstructed_codes codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)] levels = [ping.group_index for ping in self.grouper.groupings] + [lev] names = self.grouper.names + [self._selection_name] if dropna: mask = codes[-1] != -1 if mask.all(): dropna = False else: out, codes = out[mask], [level_codes[mask] for level_codes in codes] if normalize: out = out.astype("float") d = np.diff(np.r_[idx, len(ids)]) if dropna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if dropna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, codes[-1] = out[sorter], codes[-1][sorter] if bins is None: mi = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) if is_integer_dtype(out): out = ensure_int64(out) return Series(out, index=mi, name=self._selection_name) # for compat. with libgroupby.value_counts need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(len(out), dtype="bool") for level_codes in codes[:-1]: diff |= np.r_[True, level_codes[1:] != level_codes[:-1]] ncat, nbin = diff.sum(), len(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumsum() - 1, codes[-1]] _, idx = _get_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels def build_codes(lev_codes: np.ndarray) -> np.ndarray: return np.repeat(lev_codes[diff], nbin) codes = [build_codes(lev_codes) for lev_codes in codes[:-1]] codes.append(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out): out = ensure_int64(out) return Series(out, index=mi, name=self._selection_name) def count(self) -> Series: """ Compute count of group, excluding missing values. Returns ------- Series Count of values within each group. """ ids, _, ngroups = self.grouper.group_info val = self.obj._internal_get_values() mask = (ids != -1) & ~isna(val) ids = ensure_platform_int(ids) minlength = ngroups or 0 out = np.bincount(ids[mask], minlength=minlength) result = Series( out, index=self.grouper.result_index, name=self._selection_name, dtype="int64", ) return self._reindex_output(result, fill_value=0) def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) def pct_change(self, periods=1, fill_method="pad", limit=None, freq=None): """Calculate pct_change of each value to previous entry in group""" # TODO: Remove this conditional when #23918 is fixed if freq: return self.apply( lambda x: x.pct_change( periods=periods, fill_method=fill_method, limit=limit, freq=freq ) ) if fill_method is None: # GH30463 fill_method = "pad" limit = 0 filled = getattr(self, fill_method)(limit=limit) fill_grp = filled.groupby(self.grouper.codes) shifted = fill_grp.shift(periods=periods, freq=freq) return (filled / shifted) - 1 @pin_whitelisted_properties(DataFrame, base.dataframe_apply_whitelist) class DataFrameGroupBy(GroupBy): _apply_whitelist = base.dataframe_apply_whitelist _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.groupby.apply pandas.DataFrame.groupby.transform pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame({'A': [1, 1, 2, 2], ... 'B': [1, 2, 3, 4], ... 'C': np.random.randn(4)}) >>> df A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> df.groupby('A').agg('min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> df.groupby('A').agg(['min', 'max']) B C min max min max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> df.groupby('A').B.agg(['min', 'max']) min max A 1 1 2 2 3 4 Different aggregations per column >>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) B C min max sum A 1 1 2 0.590716 2 3 4 0.704907 To control the output names with different aggregations per column, pandas supports "named aggregation" >>> df.groupby("A").agg( ... b_min=pd.NamedAgg(column="B", aggfunc="min"), ... c_sum=pd.NamedAgg(column="C", aggfunc="sum")) b_min c_sum A 1 1 -1.956929 2 3 -0.322183 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias. See :ref:`groupby.aggregate.named` for more. """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func=None, *args, **kwargs): relabeling = func is None and _is_multi_agg_with_relabel(**kwargs) if relabeling: func, columns, order = _normalize_keyword_aggregation(kwargs) kwargs = {} elif isinstance(func, list) and len(func) > len(set(func)): # GH 28426 will raise error if duplicated function names are used and # there is no reassigned name raise SpecificationError( "Function names must be unique if there is no new column " "names assigned" ) elif func is None: # nicer error message raise TypeError("Must provide 'func' or tuples of '(column, aggfunc).") func = _maybe_mangle_lambdas(func) result, how = self._aggregate(func, *args, **kwargs) if how is None: return result if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: result = self._aggregate_frame(func, *args, **kwargs) elif self.axis == 1: # _aggregate_multiple_funcs does not allow self.axis == 1 result = self._aggregate_frame(func) else: # try to treat as if we are passing a list try: result = self._aggregate_multiple_funcs([func], _axis=self.axis) except ValueError as err: if "no results" not in str(err): # raised directly by _aggregate_multiple_funcs raise result = self._aggregate_frame(func) else: result.columns = Index( result.columns.levels[0], name=self._selected_obj.columns.name ) if not self.as_index: self._insert_inaxis_grouper_inplace(result) result.index = np.arange(len(result)) if relabeling: # used reordered index of columns result = result.iloc[:, order] result.columns = columns return result._convert(datetime=True) agg = aggregate def _iterate_slices(self) -> Iterable[Series]: obj = self._selected_obj if self.axis == 1: obj = obj.T if isinstance(obj, Series) and obj.name not in self.exclusions: # Occurs when doing DataFrameGroupBy(...)["X"] yield obj else: for label, values in obj.items(): if label in self.exclusions: continue yield values def _cython_agg_general( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ) -> DataFrame: agg_blocks, agg_items = self._cython_agg_blocks( how, alt=alt, numeric_only=numeric_only, min_count=min_count ) return self._wrap_agged_blocks(agg_blocks, items=agg_items) def _cython_agg_blocks( self, how: str, alt=None, numeric_only: bool = True, min_count: int = -1 ) -> "Tuple[List[Block], Index]": # TODO: the actual managing of mgr_locs is a PITA # here, it should happen via BlockManager.combine data: BlockManager = self._get_data_to_aggregate() if numeric_only: data = data.get_numeric_data(copy=False) agg_blocks: List[Block] = [] new_items: List[np.ndarray] = [] deleted_items: List[np.ndarray] = [] no_result = object() for block in data.blocks: # Avoid inheriting result from earlier in the loop result = no_result locs = block.mgr_locs.as_array try: result, _ = self.grouper.aggregate( block.values, how, axis=1, min_count=min_count ) except NotImplementedError: # generally if we have numeric_only=False # and non-applicable functions # try to python agg if alt is None: # we cannot perform the operation # in an alternate way, exclude the block assert how == "ohlc" deleted_items.append(locs) continue # call our grouper again with only this block obj = self.obj[data.items[locs]] if obj.shape[1] == 1: # Avoid call to self.values that can occur in DataFrame # reductions; see GH#28949 obj = obj.iloc[:, 0] s = get_groupby(obj, self.grouper) try: result = s.aggregate(lambda x: alt(x, axis=self.axis)) except TypeError: # we may have an exception in trying to aggregate # continue and exclude the block deleted_items.append(locs) continue else: result = cast(DataFrame, result) # unwrap DataFrame to get array assert len(result._data.blocks) == 1 result = result._data.blocks[0].values if isinstance(result, np.ndarray) and result.ndim == 1: result = result.reshape(1, -1) finally: assert not isinstance(result, DataFrame) if result is not no_result: # see if we can cast the block back to the original dtype result = maybe_downcast_numeric(result, block.dtype) if block.is_extension and isinstance(result, np.ndarray): # e.g. block.values was an IntegerArray # (1, N) case can occur if block.values was Categorical # and result is ndarray[object] assert result.ndim == 1 or result.shape[0] == 1 try: # Cast back if feasible result = type(block.values)._from_sequence( result.ravel(), dtype=block.values.dtype ) except ValueError: # reshape to be valid for non-Extension Block result = result.reshape(1, -1) agg_block: Block = block.make_block(result) new_items.append(locs) agg_blocks.append(agg_block) if not agg_blocks: raise DataError("No numeric types to aggregate") # reset the locs in the blocks to correspond to our # current ordering indexer = np.concatenate(new_items) agg_items = data.items.take(np.sort(indexer)) if deleted_items: # we need to adjust the indexer to account for the # items we have removed # really should be done in internals :< deleted = np.concatenate(deleted_items) ai = np.arange(len(data)) mask = np.zeros(len(data)) mask[deleted] = 1 indexer = (ai - mask.cumsum())[indexer] offset = 0 for blk in agg_blocks: loc = len(blk.mgr_locs) blk.mgr_locs = indexer[offset : (offset + loc)] offset += loc return agg_blocks, agg_items def _aggregate_frame(self, func, *args, **kwargs) -> DataFrame: if self.grouper.nkeys != 1: raise AssertionError("Number of keys must be 1") axis = self.axis obj = self._obj_with_exclusions result: OrderedDict = OrderedDict() if axis != obj._info_axis_number: for name, data in self: fres = func(data, *args, **kwargs) result[name] = fres else: for name in self.indices: data = self.get_group(name, obj=obj) fres = func(data, *args, **kwargs) result[name] = fres return self._wrap_frame_output(result, obj) def _aggregate_item_by_item(self, func, *args, **kwargs) -> DataFrame: # only for axis==0 obj = self._obj_with_exclusions result: OrderedDict = OrderedDict() cannot_agg = [] for item in obj: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) cast = self._transform_should_cast(func) try: result[item] = colg.aggregate(func, *args, **kwargs) except ValueError as err: if "Must produce aggregated value" in str(err): # raised in _aggregate_named, handle at higher level # see test_apply_with_mutated_index raise # otherwise we get here from an AttributeError in _make_wrapper cannot_agg.append(item) continue else: if cast: result[item] = self._try_cast(result[item], data) result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) return DataFrame(result, columns=result_columns) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: return DataFrame(index=keys) key_names = self.grouper.names # GH12824. def first_not_none(values): try: return next(com.not_none(*values)) except StopIteration: return None v = first_not_none(values) if v is None: # GH9684. If all values are None, then this will throw an error. # We'd prefer it return an empty dataframe. return DataFrame() elif isinstance(v, DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = self.grouper.result_index else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object v = first_not_none(values) if v is None: return DataFrame() elif isinstance(v, NDFrame): # this is to silence a DeprecationWarning # TODO: Remove when default dtype of empty Series is object kwargs = v._construct_axes_dict() if v._constructor is Series: backup = create_series_with_explicit_dtype( **kwargs, dtype_if_empty=object ) else: backup = v._constructor(**kwargs) values = [x if (x is not None) else backup for x in values] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = all_indexes_same([x.index for x in values]) singular_series = len(values) == 1 and applied_index.nlevels == 1 # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.core.reshape.concat import concat return concat(values) if not all_indexed_same: # GH 8467 return self._concat_objects(keys, values, not_indexed_same=True) if self.axis == 0 and isinstance(v, ABCSeries): # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = {v.name for v in values} if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if ( isinstance(v.index, MultiIndex) or key_index is None or isinstance(key_index, MultiIndex) ): stacked_values = np.vstack([np.asarray(v) for v in values]) result = DataFrame( stacked_values, index=key_index, columns=index ) else: # GH5788 instead of stacking; concat gets the # dtypes correct from pandas.core.reshape.concat import concat result = concat( values, keys=key_index, names=key_index.names, axis=self.axis, ).unstack() result.columns = index elif isinstance(v, ABCSeries): stacked_values = np.vstack([np.asarray(v) for v in values]) result = DataFrame( stacked_values.T, index=v.index, columns=key_index ) else: # GH#1738: values is list of arrays of unequal lengths # fall through to the outer else clause # TODO: sure this is right? we used to do this # after raising AttributeError above return Series(values, index=key_index, name=self._selection_name) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here so = self._selected_obj if so.ndim == 2 and so.dtypes.apply(needs_i8_conversion).any(): result = _recast_datetimelike_result(result) else: result = result._convert(datetime=True) return self._reindex_output(result) # values are not series or array-like but scalars else: # only coerce dates if we find at least 1 datetime should_coerce = any(isinstance(x, Timestamp) for x in values) # self._selection_name not passed through to Series as the # result should not take the name of original selection # of columns return Series(values, index=key_index)._convert( datetime=True, coerce=should_coerce ) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.core.reshape.concat import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, "name", name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except ValueError: msg = "transform must return a scalar value for each group" raise ValueError(msg) else: res = path(group) if isinstance(res, Series): # we need to broadcast across the # other dimension; this will preserve dtypes # GH14457 if not np.prod(group.shape): continue elif res.index.is_(obj.index): r = concat([res] * len(group.columns), axis=1) r.columns = group.columns r.index = group.index else: r = DataFrame( np.concatenate([res.values] * len(group.index)).reshape( group.shape ), columns=group.columns, index=group.index, ) applied.append(r) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index other_axis = 1 if self.axis == 0 else 0 # switches between 0 & 1 concatenated = concat(applied, axis=self.axis, verify_integrity=False) concatenated = concatenated.reindex(concat_index, axis=other_axis, copy=False) return self._set_result_index_ordered(concatenated) @Substitution(klass="DataFrame", selected="") @Appender(_transform_template) def transform(self, func, *args, **kwargs): # optimized transforms func = self._get_cython_func(func) or func if not isinstance(func, str): return self._transform_general(func, *args, **kwargs) elif func not in base.transform_kernel_whitelist: msg = f"'{func}' is not a valid function name for transform(name)" raise ValueError(msg) elif func in base.cythonized_kernels: # cythonized transformation or canned "reduction+broadcast" return getattr(self, func)(*args, **kwargs) # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. result = getattr(self, func)(*args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) obj = self._obj_with_exclusions # nuisance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) return self._transform_fast(result, func) def _transform_fast(self, result: DataFrame, func_nm: str) -> DataFrame: """ Fast transform path for aggregations """ # if there were groups with no observations (Categorical only?) # try casting data to original dtype cast = self._transform_should_cast(func_nm) obj = self._obj_with_exclusions # for each col, reshape to to size of original frame # by take operation ids, _, ngroup = self.grouper.group_info output = [] for i, _ in enumerate(result.columns): res = algorithms.take_1d(result.iloc[:, i].values, ids) # TODO: we have no test cases that get here with EA dtypes; # try_cast may not be needed if EAs never get here if cast: res = self._try_cast(res, obj.iloc[:, i]) output.append(res) return DataFrame._from_arrays(output, columns=result.columns, index=obj.index) def _define_paths(self, func, *args, **kwargs): if isinstance(func, str): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis ) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis ) return fast_path, slow_path def _choose_path(self, fast_path: Callable, slow_path: Callable, group: DataFrame): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) except AssertionError: raise except Exception: # GH#29631 For user-defined function, we cant predict what may be # raised; see test_transform.test_transform_fastpath_raises return path, res # verify fast path does not change columns (and names), otherwise # its results cannot be joined with those of the slow path if not isinstance(res_fast, DataFrame): return path, res if not res_fast.columns.equals(group.columns): return path, res if res_fast.equals(res): path = fast_path return path, res def _transform_item_by_item(self, obj: DataFrame, wrapper) -> DataFrame: # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) except TypeError: # e.g. trying to call nanmean with string values pass else: inds.append(i) if len(output) == 0: raise TypeError("Transform function invalid for data types") columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return DataFrame(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- f : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; If False, groups that evaluate False are filled with NaNs. Returns ------- filtered : DataFrame Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.filter(lambda x: x['B'].mean() > 3.) A B C 1 bar 2 5.0 3 bar 4 1.0 5 bar 6 9.0 """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if is_bool(res) or (is_scalar(res) and isna(res)): if res and notna(res): indices.append(self._get_index(name)) else: # non scalars aren't allowed raise TypeError( f"filter function returned a {type(res).__name__}, " "but expected a scalar bool" ) return self._apply_filter(indices, dropna) def _gotitem(self, key, ndim: int, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if ndim == 2: if subset is None: subset = self.obj return DataFrameGroupBy( subset, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index, observed=self.observed, ) elif ndim == 1: if subset is None: subset = self.obj[key] return SeriesGroupBy( subset, selection=key, grouper=self.grouper, observed=self.observed ) raise AssertionError("invalid ndim for _gotitem") def _wrap_frame_output(self, result, obj) -> DataFrame: result_index = self.grouper.levels[0] if self.axis == 0: return DataFrame(result, index=obj.columns, columns=result_index).T else: return DataFrame(result, index=obj.index, columns=result_index) def _get_data_to_aggregate(self) -> BlockManager: obj = self._obj_with_exclusions if self.axis == 1: return obj.T._data else: return obj._data def _insert_inaxis_grouper_inplace(self, result): # zip in reverse so we can always insert at loc 0 izip = zip( *map( reversed, ( self.grouper.names, self.grouper.get_group_levels(), [grp.in_axis for grp in self.grouper.groupings], ), ) ) for name, lev, in_axis in izip: if in_axis: result.insert(0, name, lev) def _wrap_aggregated_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> DataFrame: """ Wraps the output of DataFrameGroupBy aggregations into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- DataFrame """ indexed_output = {key.position: val for key, val in output.items()} columns = Index(key.label for key in output) result = DataFrame(indexed_output) result.columns = columns if not self.as_index: self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index result.index = index if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _wrap_transformed_output( self, output: Mapping[base.OutputKey, Union[Series, np.ndarray]] ) -> DataFrame: """ Wraps the output of DataFrameGroupBy transformations into the expected result. Parameters ---------- output : Mapping[base.OutputKey, Union[Series, np.ndarray]] Data to wrap. Returns ------- DataFrame """ indexed_output = {key.position: val for key, val in output.items()} columns = Index(key.label for key in output) result = DataFrame(indexed_output) result.columns = columns result.index = self.obj.index return result def _wrap_agged_blocks(self, blocks: "Sequence[Block]", items: Index) -> DataFrame: if not self.as_index: index = np.arange(blocks[0].values.shape[-1]) mgr = BlockManager(blocks, axes=[items, index]) result = DataFrame(mgr) self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index mgr = BlockManager(blocks, axes=[items, index]) result = DataFrame(mgr) if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _iterate_column_groupbys(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, SeriesGroupBy( self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions, ) def _apply_to_column_groupbys(self, func): from pandas.core.reshape.concat import concat return concat( (func(col_groupby) for _, col_groupby in self._iterate_column_groupbys()), keys=self._selected_obj.columns, axis=1, ) def count(self): """ Compute count of group, excluding missing values. Returns ------- DataFrame Count of values within each group. """ data = self._get_data_to_aggregate() ids, _, ngroups = self.grouper.group_info mask = ids != -1 vals = ( (mask & ~_isna_ndarraylike(np.atleast_2d(blk.get_values()))) for blk in data.blocks ) locs = (blk.mgr_locs for blk in data.blocks) counted = ( lib.count_level_2d(x, labels=ids, max_bin=ngroups, axis=1) for x in vals ) blocks = [make_block(val, placement=loc) for val, loc in zip(counted, locs)] return self._wrap_agged_blocks(blocks, items=data.items) def nunique(self, dropna: bool = True): """ Return DataFrame with number of distinct observations per group for each column. Parameters ---------- dropna : bool, default True Don't include NaN in the counts. Returns ------- nunique: DataFrame Examples -------- >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', ... 'ham', 'ham'], ... 'value1': [1, 5, 5, 2, 5, 5], ... 'value2': list('abbaxy')}) >>> df id value1 value2 0 spam 1 a 1 egg 5 b 2 egg 5 b 3 spam 2 a 4 ham 5 x 5 ham 5 y >>> df.groupby('id').nunique() id value1 value2 id egg 1 1 1 ham 1 1 2 spam 1 2 1 Check for rows with the same id but conflicting values: >>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any()) id value1 value2 0 spam 1 a 3 spam 2 a 4 ham 5 x 5 ham 5 y """ obj = self._selected_obj def groupby_series(obj, col=None): return SeriesGroupBy(obj, selection=col, grouper=self.grouper).nunique( dropna=dropna ) if isinstance(obj, Series): results = groupby_series(obj) else: # TODO: this is duplicative of how GroupBy naturally works # Try to consolidate with normal wrapping functions from pandas.core.reshape.concat import concat axis_number = obj._get_axis_number(self.axis) other_axis = int(not axis_number) if axis_number == 0: iter_func = obj.items else: iter_func = obj.iterrows results = [groupby_series(content, label) for label, content in iter_func()] results = concat(results, axis=1) if axis_number == 1: results = results.T results._get_axis(other_axis).names = obj._get_axis(other_axis).names if not self.as_index: results.index = ibase.default_index(len(results)) return results boxplot = boxplot_frame_groupby def _is_multi_agg_with_relabel(**kwargs) -> bool: """ Check whether kwargs passed to .agg look like multi-agg with relabeling. Parameters ---------- **kwargs : dict Returns ------- bool Examples -------- >>> _is_multi_agg_with_relabel(a='max') False >>> _is_multi_agg_with_relabel(a_max=('a', 'max'), ... a_min=('a', 'min')) True >>> _is_multi_agg_with_relabel() False """ return all(isinstance(v, tuple) and len(v) == 2 for v in kwargs.values()) and ( len(kwargs) > 0 ) def _normalize_keyword_aggregation(kwargs): """ Normalize user-provided "named aggregation" kwargs. Transforms from the new ``Mapping[str, NamedAgg]`` style kwargs to the old OrderedDict[str, List[scalar]]]. Parameters ---------- kwargs : dict Returns ------- aggspec : dict The transformed kwargs. columns : List[str] The user-provided keys. col_idx_order : List[int] List of columns indices. Examples -------- >>> _normalize_keyword_aggregation({'output': ('input', 'sum')}) (OrderedDict([('input', ['sum'])]), ('output',), [('input', 'sum')]) """ # Normalize the aggregation functions as Mapping[column, List[func]], # process normally, then fixup the names. # TODO: aggspec type: typing.OrderedDict[str, List[AggScalar]] # May be hitting https://github.com/python/mypy/issues/5958 # saying it doesn't have an attribute __name__ aggspec = defaultdict(list) order = [] columns, pairs = list(zip(*kwargs.items())) for name, (column, aggfunc) in zip(columns, pairs): aggspec[column].append(aggfunc) order.append((column, com.get_callable_name(aggfunc) or aggfunc)) # uniquify aggfunc name if duplicated in order list uniquified_order = _make_unique(order) # GH 25719, due to aggspec will change the order of assigned columns in aggregation # uniquified_aggspec will store uniquified order list and will compare it with order # based on index aggspec_order = [ (column, com.get_callable_name(aggfunc) or aggfunc) for column, aggfuncs in aggspec.items() for aggfunc in aggfuncs ] uniquified_aggspec = _make_unique(aggspec_order) # get the new indice of columns by comparison col_idx_order = Index(uniquified_aggspec).get_indexer(uniquified_order) return aggspec, columns, col_idx_order def _make_unique(seq): """Uniquify aggfunc name of the pairs in the order list Examples: -------- >>> _make_unique([('a', '<lambda>'), ('a', '<lambda>'), ('b', '<lambda>')]) [('a', '<lambda>_0'), ('a', '<lambda>_1'), ('b', '<lambda>')] """ return [ (pair[0], "_".join([pair[1], str(seq[:i].count(pair))])) if seq.count(pair) > 1 else pair for i, pair in enumerate(seq) ] # TODO: Can't use, because mypy doesn't like us setting __name__ # error: "partial[Any]" has no attribute "__name__" # the type is: # typing.Sequence[Callable[..., ScalarResult]] # -> typing.Sequence[Callable[..., ScalarResult]]: def _managle_lambda_list(aggfuncs: Sequence[Any]) -> Sequence[Any]: """ Possibly mangle a list of aggfuncs. Parameters ---------- aggfuncs : Sequence Returns ------- mangled: list-like A new AggSpec sequence, where lambdas have been converted to have unique names. Notes ----- If just one aggfunc is passed, the name will not be mangled. """ if len(aggfuncs) <= 1: # don't mangle for .agg([lambda x: .]) return aggfuncs i = 0 mangled_aggfuncs = [] for aggfunc in aggfuncs: if com.get_callable_name(aggfunc) == "<lambda>": aggfunc = partial(aggfunc) aggfunc.__name__ = f"<lambda_{i}>" i += 1 mangled_aggfuncs.append(aggfunc) return mangled_aggfuncs def _maybe_mangle_lambdas(agg_spec: Any) -> Any: """ Make new lambdas with unique names. Parameters ---------- agg_spec : Any An argument to GroupBy.agg. Non-dict-like `agg_spec` are pass through as is. For dict-like `agg_spec` a new spec is returned with name-mangled lambdas. Returns ------- mangled : Any Same type as the input. Examples -------- >>> _maybe_mangle_lambdas('sum') 'sum' >>> _maybe_mangle_lambdas([lambda: 1, lambda: 2]) # doctest: +SKIP [<function __main__.<lambda_0>, <function pandas...._make_lambda.<locals>.f(*args, **kwargs)>] """ is_dict = is_dict_like(agg_spec) if not (is_dict or is_list_like(agg_spec)): return agg_spec mangled_aggspec = type(agg_spec)() # dict or OrderdDict if is_dict: for key, aggfuncs in agg_spec.items(): if is_list_like(aggfuncs) and not is_dict_like(aggfuncs): mangled_aggfuncs = _managle_lambda_list(aggfuncs) else: mangled_aggfuncs = aggfuncs mangled_aggspec[key] = mangled_aggfuncs else: mangled_aggspec = _managle_lambda_list(agg_spec) return mangled_aggspec def _recast_datetimelike_result(result: DataFrame) -> DataFrame: """ If we have date/time like in the original, then coerce dates as we are stacking can easily have object dtypes here. Parameters ---------- result : DataFrame Returns ------- DataFrame Notes ----- - Assumes Groupby._selected_obj has ndim==2 and at least one datetimelike column """ result = result.copy() obj_cols = [ idx for idx in range(len(result.columns)) if is_object_dtype(result.dtypes.iloc[idx]) ] # See GH#26285 for n in obj_cols: converted = maybe_convert_objects( result.iloc[:, n].values, convert_numeric=False ) result.iloc[:, n] = converted return result
BugsInPy/BugsInPy/temp/projects/pandas/bug-103-fixed/pandas/pandas/core/groupby/generic.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-103-buggy/pandas/pandas/core/groupby/generic.py
pandas-bug-9
import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.util._decorators import cache_readonly, deprecate_kwarg, doc from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_to_datetimelike, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take_1d, unique1d from pandas.core.array_algos.transforms import shift from pandas.core.arrays._mixins import _T, NDArrayBackedExtensionArray from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) class Categorical(NDArrayBackedExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = np.dtype("O") if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values.dtype): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) @property def codes(self) -> np.ndarray: """ The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ------- ndarray[int] A non-writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") fill_value = self._validate_fill_value(fill_value) codes = shift(codes, periods, axis=0, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def _validate_fill_value(self, fill_value): """ Convert a user-facing fill_value to a representation to use with our underlying ndarray, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : int Raises ------ ValueError """ if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) return fill_value def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @doc(_shared_docs["searchsorted"], klass="Categorical") def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories.dtype): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values( self, inplace: bool = False, ascending: bool = True, na_position: str = "last", ): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ warn( "Categorical.to_dense is deprecated and will be removed in " "a future version. Use np.asarray(cat) instead.", FutureWarning, stacklevel=2, ) return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: # TODO: dispatch when self.categories is EA-dtype values = np.asarray(self).reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, (np.ndarray, Categorical, ABCSeries)): # We get ndarray or Categorical if called via Series.fillna, # where it will unwrap another aligned Series before getting here mask = ~algorithms.isin(value, self.categories) if not isna(value[mask]).all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes = codes.copy() codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self: _T, indexer, allow_fill: bool = False, fill_value=None) -> _T: """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (2, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``ValueError``. """ return NDArrayBackedExtensionArray.take( self, indexer, allow_fill=allow_fill, fill_value=fill_value ) # ------------------------------------------------------------------ # NDArrayBackedExtensionArray compat @property def _ndarray(self) -> np.ndarray: return self._codes def _from_backing_data(self, arr: np.ndarray) -> "Categorical": return self._constructor(arr, dtype=self.dtype, fastpath=True) # ------------------------------------------------------------------ def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` See Also -------- pandas.unique CategoricalIndex.unique Series.unique Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list("baabc")).unique() [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list("baabc"), categories=list("abc")).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical( ... list("baabc"), categories=list("abc"), ordered=True ... ).unique() [b, a, c] Categories (3, object): [a < b < c] """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import union_categoricals return union_categoricals(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 2, 3, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() # build a dict of (to replace -> value) pairs if is_list_like(to_replace): # if to_replace is list-like and value is scalar replace_dict = {replace_value: value for replace_value in to_replace} else: # if both to_replace and value are scalar replace_dict = {to_replace: value} # other cases, like if both to_replace and value are list-like or if # to_replace is a dict, are handled separately in NDFrame for replace_value, new_value in replace_dict.items(): if new_value == replace_value: continue if replace_value in cat.categories: if isna(new_value): cat.remove_categories(replace_value, inplace=True) continue categories = cat.categories.tolist() index = categories.index(replace_value) if new_value in cat.categories: value_index = categories.index(new_value) cat._codes[cat._codes == index] = value_index cat.remove_categories(replace_value, inplace=True) else: categories[index] = new_value cat.rename_categories(categories, inplace=True) if not inplace: return cat # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s = pd.Series(list("abbccc")).astype("category") >>> s 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] >>> s.cat.categories Index(['a', 'b', 'c'], dtype='object') >>> s.cat.rename_categories(list("cba")) 0 c 1 b 2 b 3 a 4 a 5 a dtype: category Categories (3, object): [c, b, a] >>> s.cat.reorder_categories(list("cba")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [c, b, a] >>> s.cat.add_categories(["d", "e"]) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): [a, b, c, d, e] >>> s.cat.remove_categories(["a", "c"]) 0 NaN 1 b 2 b 3 NaN 4 NaN 5 NaN dtype: category Categories (1, object): [b] >>> s1 = s.cat.add_categories(["d", "e"]) >>> s1.cat.remove_unused_categories() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] >>> s.cat.set_categories(list("abcde")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): [a, b, c, d, e] >>> s.cat.as_ordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a < b < c] >>> s.cat.as_unordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = maybe_cast_to_extension_array(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) elif not dtype_equal: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1], dtype=int8) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables))) import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.util._decorators import cache_readonly, deprecate_kwarg, doc from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_to_datetimelike, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take_1d, unique1d from pandas.core.array_algos.transforms import shift from pandas.core.arrays._mixins import _T, NDArrayBackedExtensionArray from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) class Categorical(NDArrayBackedExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = np.dtype("O") if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values.dtype): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) @property def codes(self) -> np.ndarray: """ The category codes of this categorical. Codes are an array of integers which are the positions of the actual values in the categories array. There is no setter, use the other categorical methods and the normal item setter to change values in the categorical. Returns ------- ndarray[int] A non-writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") fill_value = self._validate_fill_value(fill_value) codes = shift(codes, periods, axis=0, fill_value=fill_value) return self._constructor(codes, dtype=self.dtype, fastpath=True) def _validate_fill_value(self, fill_value): """ Convert a user-facing fill_value to a representation to use with our underlying ndarray, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : int Raises ------ ValueError """ if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) return fill_value def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @doc(_shared_docs["searchsorted"], klass="Categorical") def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories.dtype): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values( self, inplace: bool = False, ascending: bool = True, na_position: str = "last", ): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ warn( "Categorical.to_dense is deprecated and will be removed in " "a future version. Use np.asarray(cat) instead.", FutureWarning, stacklevel=2, ) return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: # TODO: dispatch when self.categories is EA-dtype values = np.asarray(self).reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, (np.ndarray, Categorical, ABCSeries)): # We get ndarray or Categorical if called via Series.fillna, # where it will unwrap another aligned Series before getting here mask = ~algorithms.isin(value, self.categories) if not isna(value[mask]).all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes = codes.copy() codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self: _T, indexer, allow_fill: bool = False, fill_value=None) -> _T: """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (2, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``ValueError``. """ return NDArrayBackedExtensionArray.take( self, indexer, allow_fill=allow_fill, fill_value=fill_value ) # ------------------------------------------------------------------ # NDArrayBackedExtensionArray compat @property def _ndarray(self) -> np.ndarray: return self._codes def _from_backing_data(self, arr: np.ndarray) -> "Categorical": return self._constructor(arr, dtype=self.dtype, fastpath=True) # ------------------------------------------------------------------ def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_valid_nat_for_dtype(key, self.categories.dtype): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` See Also -------- pandas.unique CategoricalIndex.unique Series.unique Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list("baabc")).unique() [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list("baabc"), categories=list("abc")).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical( ... list("baabc"), categories=list("abc"), ordered=True ... ).unique() [b, a, c] Categories (3, object): [a < b < c] """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import union_categoricals return union_categoricals(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 2, 3, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() # build a dict of (to replace -> value) pairs if is_list_like(to_replace): # if to_replace is list-like and value is scalar replace_dict = {replace_value: value for replace_value in to_replace} else: # if both to_replace and value are scalar replace_dict = {to_replace: value} # other cases, like if both to_replace and value are list-like or if # to_replace is a dict, are handled separately in NDFrame for replace_value, new_value in replace_dict.items(): if new_value == replace_value: continue if replace_value in cat.categories: if isna(new_value): cat.remove_categories(replace_value, inplace=True) continue categories = cat.categories.tolist() index = categories.index(replace_value) if new_value in cat.categories: value_index = categories.index(new_value) cat._codes[cat._codes == index] = value_index cat.remove_categories(replace_value, inplace=True) else: categories[index] = new_value cat.rename_categories(categories, inplace=True) if not inplace: return cat # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s = pd.Series(list("abbccc")).astype("category") >>> s 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] >>> s.cat.categories Index(['a', 'b', 'c'], dtype='object') >>> s.cat.rename_categories(list("cba")) 0 c 1 b 2 b 3 a 4 a 5 a dtype: category Categories (3, object): [c, b, a] >>> s.cat.reorder_categories(list("cba")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [c, b, a] >>> s.cat.add_categories(["d", "e"]) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): [a, b, c, d, e] >>> s.cat.remove_categories(["a", "c"]) 0 NaN 1 b 2 b 3 NaN 4 NaN 5 NaN dtype: category Categories (1, object): [b] >>> s1 = s.cat.add_categories(["d", "e"]) >>> s1.cat.remove_unused_categories() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] >>> s.cat.set_categories(list("abcde")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): [a, b, c, d, e] >>> s.cat.as_ordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a < b < c] >>> s.cat.as_unordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = maybe_cast_to_extension_array(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) elif not dtype_equal: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1], dtype=int8) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables)))
BugsInPy/BugsInPy/temp/projects/pandas/bug-9-fixed/pandas/pandas/core/arrays/categorical.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-9-buggy/pandas/pandas/core/arrays/categorical.py
pandas-bug-140
""" Define the SeriesGroupBy and DataFrameGroupBy classes that hold the groupby interfaces (and some implementations). These are user facing as the result of the ``df.groupby(...)`` operations, which here returns a DataFrameGroupBy object. """ from collections import OrderedDict, abc, namedtuple import copy import functools from functools import partial from textwrap import dedent import typing from typing import Any, Callable, FrozenSet, Sequence, Type, Union import warnings import numpy as np from pandas._libs import Timestamp, lib from pandas.compat import PY36 from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.cast import ( maybe_convert_objects, maybe_downcast_numeric, maybe_downcast_to_dtype, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_bool, is_datetimelike, is_dict_like, is_integer_dtype, is_interval_dtype, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, ) from pandas.core.dtypes.missing import _isna_ndarraylike, isna, notna from pandas._typing import FrameOrSeries import pandas.core.algorithms as algorithms from pandas.core.base import DataError, SpecificationError import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.generic import ABCDataFrame, ABCSeries, NDFrame, _shared_docs from pandas.core.groupby import base from pandas.core.groupby.groupby import ( GroupBy, _apply_docs, _transform_template, groupby, ) from pandas.core.index import Index, MultiIndex, _all_indexes_same import pandas.core.indexes.base as ibase from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.plotting import boxplot_frame_groupby NamedAgg = namedtuple("NamedAgg", ["column", "aggfunc"]) # TODO(typing) the return value on this callable should be any *scalar*. AggScalar = Union[str, Callable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = typing.TypeVar("ScalarResult") def generate_property(name: str, klass: Type[FrameOrSeries]): """ Create a property for a GroupBy subclass to dispatch to DataFrame/Series. Parameters ---------- name : str klass : {DataFrame, Series} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = getattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_whitelisted_properties(klass: Type[FrameOrSeries], whitelist: FrozenSet[str]): """ Create GroupBy member defs for DataFrame/Series names in a whitelist. Parameters ---------- klass : DataFrame or Series class class where members are defined. whitelist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, any such name is skipped. """ def pinner(cls): for name in whitelist: if hasattr(cls, name): # don't override anything that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, alt=None, numeric_only=True, min_count=-1): new_items, new_blocks = self._cython_agg_blocks( how, alt=alt, numeric_only=numeric_only, min_count=min_count ) return self._wrap_agged_blocks(new_items, new_blocks) _block_agg_axis = 0 def _cython_agg_blocks(self, how, alt=None, numeric_only=True, min_count=-1): # TODO: the actual managing of mgr_locs is a PITA # here, it should happen via BlockManager.combine data, agg_axis = self._get_data_to_aggregate() if numeric_only: data = data.get_numeric_data(copy=False) new_blocks = [] new_items = [] deleted_items = [] no_result = object() for block in data.blocks: # Avoid inheriting result from earlier in the loop result = no_result locs = block.mgr_locs.as_array try: result, _ = self.grouper.aggregate( block.values, how, axis=agg_axis, min_count=min_count ) except NotImplementedError: # generally if we have numeric_only=False # and non-applicable functions # try to python agg if alt is None: # we cannot perform the operation # in an alternate way, exclude the block deleted_items.append(locs) continue # call our grouper again with only this block obj = self.obj[data.items[locs]] s = groupby(obj, self.grouper) try: result = s.aggregate(lambda x: alt(x, axis=self.axis)) except TypeError: # we may have an exception in trying to aggregate # continue and exclude the block deleted_items.append(locs) continue finally: if result is not no_result: # see if we can cast the block back to the original dtype result = maybe_downcast_numeric(result, block.dtype) newb = block.make_block(result) new_items.append(locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError("No numeric types to aggregate") # reset the locs in the blocks to correspond to our # current ordering indexer = np.concatenate(new_items) new_items = data.items.take(np.sort(indexer)) if len(deleted_items): # we need to adjust the indexer to account for the # items we have removed # really should be done in internals :< deleted = np.concatenate(deleted_items) ai = np.arange(len(data)) mask = np.zeros(len(data)) mask[deleted] = 1 indexer = (ai - mask.cumsum())[indexer] offset = 0 for b in new_blocks: loc = len(b.mgr_locs) b.mgr_locs = indexer[offset : (offset + loc)] offset += loc return new_items, new_blocks def aggregate(self, func, *args, **kwargs): _level = kwargs.pop("_level", None) relabeling = func is None and _is_multi_agg_with_relabel(**kwargs) if relabeling: func, columns, order = _normalize_keyword_aggregation(kwargs) kwargs = {} elif func is None: # nicer error message raise TypeError("Must provide 'func' or tuples of '(column, aggfunc).") func = _maybe_mangle_lambdas(func) result, how = self._aggregate(func, _level=_level, *args, **kwargs) if how is None: return result if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: result = self._aggregate_generic(func, *args, **kwargs) else: # try to treat as if we are passing a list try: result = self._aggregate_multiple_funcs( [func], _level=_level, _axis=self.axis ) except Exception: result = self._aggregate_generic(func) else: result.columns = Index( result.columns.levels[0], name=self._selected_obj.columns.name ) if not self.as_index: self._insert_inaxis_grouper_inplace(result) result.index = np.arange(len(result)) if relabeling: # used reordered index of columns result = result.iloc[:, order] result.columns = columns return result._convert(datetime=True) agg = aggregate def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError("Number of keys must be 1") axis = self.axis obj = self._obj_with_exclusions result = OrderedDict() if axis != obj._info_axis_number: try: for name, data in self: result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise AbstractMethodError(self) def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = OrderedDict() cannot_agg = [] errors = None for item in obj: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) try: cast = self._transform_should_cast(func) result[item] = colg.aggregate(func, *args, **kwargs) if cast: result[item] = self._try_cast(result[item], data) except ValueError as err: if "Must produce aggregated value" in str(err): # raised in _aggregate_named, handle at higher level # see test_apply_with_mutated_index raise cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors = e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except TypeError: pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: return DataFrame(index=keys) key_names = self.grouper.names # GH12824. def first_not_none(values): try: return next(com.not_none(*values)) except StopIteration: return None v = first_not_none(values) if v is None: # GH9684. If all values are None, then this will throw an error. # We'd prefer it return an empty dataframe. return DataFrame() elif isinstance(v, DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = self.grouper.result_index else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object v = first_not_none(values) if v is None: return DataFrame() elif isinstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = _all_indexes_same([x.index for x in values]) singular_series = len(values) == 1 and applied_index.nlevels == 1 # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.core.reshape.concat import concat return concat(values) if not all_indexed_same: # GH 8467 return self._concat_objects(keys, values, not_indexed_same=True) try: if self.axis == 0: # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = {v.name for v in values} if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if ( isinstance(v.index, MultiIndex) or key_index is None or isinstance(key_index, MultiIndex) ): stacked_values = np.vstack([np.asarray(v) for v in values]) result = DataFrame( stacked_values, index=key_index, columns=index ) else: # GH5788 instead of stacking; concat gets the # dtypes correct from pandas.core.reshape.concat import concat result = concat( values, keys=key_index, names=key_index.names, axis=self.axis, ).unstack() result.columns = index else: stacked_values = np.vstack([np.asarray(v) for v in values]) result = DataFrame( stacked_values.T, index=v.index, columns=key_index ) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengths fall # through to the outer else caluse return Series(values, index=key_index, name=self._selection_name) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here so = self._selected_obj if so.ndim == 2 and so.dtypes.apply(is_datetimelike).any(): result = _recast_datetimelike_result(result) else: result = result._convert(datetime=True) return self._reindex_output(result) # values are not series or array-like but scalars else: # only coerce dates if we find at least 1 datetime coerce = any(isinstance(x, Timestamp) for x in values) # self._selection_name not passed through to Series as the # result should not take the name of original selection # of columns return Series(values, index=key_index)._convert( datetime=True, coerce=coerce ) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.core.reshape.concat import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, "name", name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except ValueError: msg = "transform must return a scalar value for each group" raise ValueError(msg) else: res = path(group) if isinstance(res, Series): # we need to broadcast across the # other dimension; this will preserve dtypes # GH14457 if not np.prod(group.shape): continue elif res.index.is_(obj.index): r = concat([res] * len(group.columns), axis=1) r.columns = group.columns r.index = group.index else: r = DataFrame( np.concatenate([res.values] * len(group.index)).reshape( group.shape ), columns=group.columns, index=group.index, ) applied.append(r) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index other_axis = 1 if self.axis == 0 else 0 # switches between 0 & 1 concatenated = concat(applied, axis=self.axis, verify_integrity=False) concatenated = concatenated.reindex(concat_index, axis=other_axis, copy=False) return self._set_result_index_ordered(concatenated) @Substitution(klass="DataFrame", selected="") @Appender(_transform_template) def transform(self, func, *args, **kwargs): # optimized transforms func = self._get_cython_func(func) or func if isinstance(func, str): if not (func in base.transform_kernel_whitelist): msg = "'{func}' is not a valid function name for transform(name)" raise ValueError(msg.format(func=func)) if func in base.cythonized_kernels: # cythonized transformation or canned "reduction+broadcast" return getattr(self, func)(*args, **kwargs) else: # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. result = getattr(self, func)(*args, **kwargs) else: return self._transform_general(func, *args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) obj = self._obj_with_exclusions # nuisance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) return self._transform_fast(result, obj, func) def _transform_fast(self, result, obj, func_nm): """ Fast transform path for aggregations """ # if there were groups with no observations (Categorical only?) # try casting data to original dtype cast = self._transform_should_cast(func_nm) # for each col, reshape to to size of original frame # by take operation ids, _, ngroup = self.grouper.group_info output = [] for i, _ in enumerate(result.columns): res = algorithms.take_1d(result.iloc[:, i].values, ids) if cast: res = self._try_cast(res, obj.iloc[:, i]) output.append(res) return DataFrame._from_arrays(output, columns=result.columns, index=obj.index) def _define_paths(self, func, *args, **kwargs): if isinstance(func, str): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis ) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis ) return fast_path, slow_path def _choose_path(self, fast_path, slow_path, group): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) except Exception: # Hard to know ex-ante what exceptions `fast_path` might raise return path, res # verify fast path does not change columns (and names), otherwise # its results cannot be joined with those of the slow path if not isinstance(res_fast, DataFrame): return path, res if not res_fast.columns.equals(group.columns): return path, res if res_fast.equals(res): path = fast_path return path, res def _transform_item_by_item(self, obj, wrapper): # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) inds.append(i) except Exception: pass if len(output) == 0: raise TypeError("Transform function invalid for data types") columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return DataFrame(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- f : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; If False, groups that evaluate False are filled with NaNs. Returns ------- filtered : DataFrame Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.filter(lambda x: x['B'].mean() > 3.) A B C 1 bar 2 5.0 3 bar 4 1.0 5 bar 6 9.0 """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if is_bool(res) or (is_scalar(res) and isna(res)): if res and notna(res): indices.append(self._get_index(name)) else: # non scalars aren't allowed raise TypeError( "filter function returned a %s, " "but expected a scalar bool" % type(res).__name__ ) return self._apply_filter(indices, dropna) @pin_whitelisted_properties(Series, base.series_apply_whitelist) class SeriesGroupBy(GroupBy): _apply_whitelist = base.series_apply_whitelist @property def _selection_name(self): """ since we are a series, we by definition only have a single name, but may be the result of a selection or the name of our object """ if self._selection is None: return self.obj.name else: return self._selection _agg_see_also_doc = dedent( """ See Also -------- pandas.Series.groupby.apply pandas.Series.groupby.transform pandas.Series.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.groupby([1, 1, 2, 2]).min() 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg('min') 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) min max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.groupby([1, 1, 2, 2]).agg( ... minimum='min', ... maximum='max', ... ) minimum maximum 1 1 2 2 3 4 """ ) @Appender( _apply_docs["template"].format( input="series", examples=_apply_docs["series_examples"] ) ) def apply(self, func, *args, **kwargs): return super().apply(func, *args, **kwargs) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func=None, *args, **kwargs): _level = kwargs.pop("_level", None) relabeling = func is None columns = None no_arg_message = "Must provide 'func' or named aggregation **kwargs." if relabeling: columns = list(kwargs) if not PY36: # sort for 3.5 and earlier columns = list(sorted(columns)) func = [kwargs[col] for col in columns] kwargs = {} if not columns: raise TypeError(no_arg_message) if isinstance(func, str): return getattr(self, func)(*args, **kwargs) if isinstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = _maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func, (_level or 0) + 1) if relabeling: ret.columns = columns else: cyfunc = self._get_cython_func(func) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except Exception: result = self._aggregate_named(func, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print("Warning, ignoring as_index=True") # _level handled at higher if not _level and isinstance(ret, dict): from pandas import concat ret = concat(ret, axis=1) return ret agg = aggregate def _aggregate_multiple_funcs(self, arg, _level): if isinstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 if isinstance(self._selected_obj, Series) and _level <= 1: msg = dedent( """\ using a dict on a Series for aggregation is deprecated and will be removed in a future version. Use \ named aggregation instead. >>> grouper.agg(name_1=func_1, name_2=func_2) """ ) warnings.warn(msg, FutureWarning, stacklevel=3) columns = list(arg.keys()) arg = arg.items() elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.append(com.get_callable_name(f) or f) arg = zip(columns, arg) results = OrderedDict() for name, func in arg: obj = self if name in results: raise SpecificationError( "Function names must be unique, found multiple named " "{}".format(name) ) # reset the cache so that we # only include the named selection if name in self._selected_obj: obj = copy.copy(obj) obj._reset_cache() obj._selection = name results[name] = obj.aggregate(func) if any(isinstance(x, DataFrame) for x in results.values()): # let higher level handle if _level: return results return DataFrame(results, columns=columns) def _wrap_output(self, output, index, names=None): """ common agg/transform wrapping logic """ output = output[self._selection_name] if names is not None: return DataFrame(output, index=index, columns=names) else: name = self._selection_name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_aggregated_output(self, output, names=None): result = self._wrap_output( output=output, index=self.grouper.result_index, names=names ) return self._reindex_output(result)._convert(datetime=True) def _wrap_transformed_output(self, output, names=None): return self._wrap_output(output=output, index=self.obj.index, names=names) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self._selection_name, index=keys) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 #24880 index = _get_index() result = self._reindex_output(DataFrame(values, index=index)) # if self.observed is False, # keep all-NaN rows created while re-indexing result = result.stack(dropna=self.observed) result.name = self._selection_name return result if isinstance(values[0], Series): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = Series(data=values, index=_get_index(), name=self._selection_name) return self._reindex_output(result) def _aggregate_named(self, func, *args, **kwargs): result = OrderedDict() for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise ValueError("Must produce aggregated value") result[name] = self._try_cast(output, group) return result @Substitution(klass="Series", selected="A.") @Appender(_transform_template) def transform(self, func, *args, **kwargs): func = self._get_cython_func(func) or func if isinstance(func, str): if not (func in base.transform_kernel_whitelist): msg = "'{func}' is not a valid function name for transform(name)" raise ValueError(msg.format(func=func)) if func in base.cythonized_kernels: # cythonized transform or canned "agg+broadcast" return getattr(self, func)(*args, **kwargs) else: # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. return self._transform_fast( lambda: getattr(self, func)(*args, **kwargs), func ) # reg transform klass = self._selected_obj.__class__ results = [] wrapper = lambda x: func(x, *args, **kwargs) for name, group in self: object.__setattr__(group, "name", name) res = wrapper(group) if isinstance(res, (ABCDataFrame, ABCSeries)): res = res._values indexer = self._get_index(name) s = klass(res, indexer) results.append(s) # check for empty "results" to avoid concat ValueError if results: from pandas.core.reshape.concat import concat result = concat(results).sort_index() else: result = Series() # we will only try to coerce the result type if # we have a numeric dtype, as these are *always* udfs # the cython take a different path (and casting) dtype = self._selected_obj.dtype if is_numeric_dtype(dtype): result = maybe_downcast_to_dtype(result, dtype) result.name = self._selected_obj.name result.index = self._selected_obj.index return result def _transform_fast(self, func, func_nm): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, str): func = getattr(self, func) ids, _, ngroup = self.grouper.group_info cast = self._transform_should_cast(func_nm) out = algorithms.take_1d(func()._values, ids) if cast: out = self._try_cast(out, self.obj) return Series(out, index=self.obj.index, name=self.obj.name) def filter(self, func, dropna=True, *args, **kwargs): # noqa """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> df.groupby('A').B.filter(lambda x: x.mean() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Series """ if isinstance(func, str): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notna(b) try: indices = [ self._get_index(name) for name, group in self if true_and_notna(group) ] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def nunique(self, dropna=True): """ Return number of unique elements in the group. Returns ------- Series Number of unique values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._internal_get_values() # GH 27951 # temporary fix while we wait for NumPy bug 12629 to be fixed val[isna(val)] = np.datetime64("NaT") try: sorter = np.lexsort((val, ids)) except TypeError: # catches object dtypes msg = "val.dtype must be object, got {}".format(val.dtype) assert val.dtype == object, msg val, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((val, ids)) _isna = lambda a: a == -1 else: _isna = isna ids, val = ids[sorter], val[sorter] # group boundaries are where group ids change # unique observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, val[1:] != val[:-1]] # 1st item of each group is a new unique observation mask = _isna(val) if dropna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).astype("int64", copy=False) if len(ids): # NaN/NaT group exists if the head of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if len(res) != len(ri): res, out = np.zeros(len(ri), dtype=out.dtype), res res[ids[idx]] = out return Series(res, index=ri, name=self._selection_name) @Appender(Series.describe.__doc__) def describe(self, **kwargs): result = self.apply(lambda x: x.describe(**kwargs)) if self.axis == 1: return result.T return result.unstack() def value_counts( self, normalize=False, sort=True, ascending=False, bins=None, dropna=True ): from pandas.core.reshape.tile import cut from pandas.core.reshape.merge import _get_join_indexers if bins is not None and not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return self.apply( Series.value_counts, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) ids, _, _ = self.grouper.group_info val = self.obj._internal_get_values() # groupby removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Series(val), bins, include_lowest=True) lev = lab.cat.categories lab = lev.take(lab.cat.codes) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab): # TODO: should we do this inside II? sorter = np.lexsort((lab.left, lab.right, ids)) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components labels = list(map(rep, self.grouper.recons_labels)) + [llab(lab, inc)] levels = [ping.group_index for ping in self.grouper.groupings] + [lev] names = self.grouper.names + [self._selection_name] if dropna: mask = labels[-1] != -1 if mask.all(): dropna = False else: out, labels = out[mask], [label[mask] for label in labels] if normalize: out = out.astype("float") d = np.diff(np.r_[idx, len(ids)]) if dropna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if dropna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, labels[-1] = out[sorter], labels[-1][sorter] if bins is None: mi = MultiIndex( levels=levels, codes=labels, names=names, verify_integrity=False ) if is_integer_dtype(out): out = ensure_int64(out) return Series(out, index=mi, name=self._selection_name) # for compat. with libgroupby.value_counts need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(len(out), dtype="bool") for lab in labels[:-1]: diff |= np.r_[True, lab[1:] != lab[:-1]] ncat, nbin = diff.sum(), len(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumsum() - 1, labels[-1]] _, idx = _get_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels codes = list(map(lambda lab: np.repeat(lab[diff], nbin), labels[:-1])) codes.append(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out): out = ensure_int64(out) return Series(out, index=mi, name=self._selection_name) def count(self): """ Compute count of group, excluding missing values. Returns ------- Series Count of values within each group. """ ids, _, ngroups = self.grouper.group_info val = self.obj._internal_get_values() mask = (ids != -1) & ~isna(val) ids = ensure_platform_int(ids) minlength = ngroups or 0 out = np.bincount(ids[mask], minlength=minlength) return Series( out, index=self.grouper.result_index, name=self._selection_name, dtype="int64", ) def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) def pct_change(self, periods=1, fill_method="pad", limit=None, freq=None): """Calculate pct_change of each value to previous entry in group""" # TODO: Remove this conditional when #23918 is fixed if freq: return self.apply( lambda x: x.pct_change( periods=periods, fill_method=fill_method, limit=limit, freq=freq ) ) filled = getattr(self, fill_method)(limit=limit) fill_grp = filled.groupby(self.grouper.labels) shifted = fill_grp.shift(periods=periods, freq=freq) return (filled / shifted) - 1 @pin_whitelisted_properties(DataFrame, base.dataframe_apply_whitelist) class DataFrameGroupBy(NDFrameGroupBy): _apply_whitelist = base.dataframe_apply_whitelist _block_agg_axis = 1 _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.groupby.apply pandas.DataFrame.groupby.transform pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame({'A': [1, 1, 2, 2], ... 'B': [1, 2, 3, 4], ... 'C': np.random.randn(4)}) >>> df A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> df.groupby('A').agg('min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> df.groupby('A').agg(['min', 'max']) B C min max min max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> df.groupby('A').B.agg(['min', 'max']) min max A 1 1 2 2 3 4 Different aggregations per column >>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) B C min max sum A 1 1 2 0.590716 2 3 4 0.704907 To control the output names with different aggregations per column, pandas supports "named aggregation" >>> df.groupby("A").agg( ... b_min=pd.NamedAgg(column="B", aggfunc="min"), ... c_sum=pd.NamedAgg(column="C", aggfunc="sum")) b_min c_sum A 1 1 -1.956929 2 3 -0.322183 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias. See :ref:`groupby.aggregate.named` for more. """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func=None, *args, **kwargs): return super().aggregate(func, *args, **kwargs) agg = aggregate def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if ndim == 2: if subset is None: subset = self.obj return DataFrameGroupBy( subset, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index, observed=self.observed, ) elif ndim == 1: if subset is None: subset = self.obj[key] return SeriesGroupBy( subset, selection=key, grouper=self.grouper, observed=self.observed ) raise AssertionError("invalid ndim for _gotitem") def _wrap_generic_output(self, result, obj): result_index = self.grouper.levels[0] if self.axis == 0: return DataFrame(result, index=obj.columns, columns=result_index).T else: return DataFrame(result, index=obj.index, columns=result_index) def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 1: return obj.T._data, 1 else: return obj._data, 1 def _insert_inaxis_grouper_inplace(self, result): # zip in reverse so we can always insert at loc 0 izip = zip( *map( reversed, ( self.grouper.names, self.grouper.get_group_levels(), [grp.in_axis for grp in self.grouper.groupings], ), ) ) for name, lev, in_axis in izip: if in_axis: result.insert(0, name, lev) def _wrap_aggregated_output(self, output, names=None): agg_axis = 0 if self.axis == 1 else 1 agg_labels = self._obj_with_exclusions._get_axis(agg_axis) output_keys = self._decide_output_index(output, agg_labels) if not self.as_index: result = DataFrame(output, columns=output_keys) self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index result = DataFrame(output, index=index, columns=output_keys) if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _wrap_transformed_output(self, output, names=None): return DataFrame(output, index=self.obj.index) def _wrap_agged_blocks(self, items, blocks): if not self.as_index: index = np.arange(blocks[0].values.shape[-1]) mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _iterate_column_groupbys(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, SeriesGroupBy( self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions, ) def _apply_to_column_groupbys(self, func): from pandas.core.reshape.concat import concat return concat( (func(col_groupby) for _, col_groupby in self._iterate_column_groupbys()), keys=self._selected_obj.columns, axis=1, ) def count(self): """ Compute count of group, excluding missing values. Returns ------- DataFrame Count of values within each group. """ data, _ = self._get_data_to_aggregate() ids, _, ngroups = self.grouper.group_info mask = ids != -1 val = ( (mask & ~_isna_ndarraylike(np.atleast_2d(blk.get_values()))) for blk in data.blocks ) loc = (blk.mgr_locs for blk in data.blocks) counter = partial(lib.count_level_2d, labels=ids, max_bin=ngroups, axis=1) blk = map(make_block, map(counter, val), loc) return self._wrap_agged_blocks(data.items, list(blk)) def nunique(self, dropna=True): """ Return DataFrame with number of distinct observations per group for each column. .. versionadded:: 0.20.0 Parameters ---------- dropna : boolean, default True Don't include NaN in the counts. Returns ------- nunique: DataFrame Examples -------- >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', ... 'ham', 'ham'], ... 'value1': [1, 5, 5, 2, 5, 5], ... 'value2': list('abbaxy')}) >>> df id value1 value2 0 spam 1 a 1 egg 5 b 2 egg 5 b 3 spam 2 a 4 ham 5 x 5 ham 5 y >>> df.groupby('id').nunique() id value1 value2 id egg 1 1 1 ham 1 1 2 spam 1 2 1 Check for rows with the same id but conflicting values: >>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any()) id value1 value2 0 spam 1 a 3 spam 2 a 4 ham 5 x 5 ham 5 y """ obj = self._selected_obj def groupby_series(obj, col=None): return SeriesGroupBy(obj, selection=col, grouper=self.grouper).nunique( dropna=dropna ) if isinstance(obj, Series): results = groupby_series(obj) else: from pandas.core.reshape.concat import concat results = [groupby_series(obj[col], col) for col in obj.columns] results = concat(results, axis=1) results.columns.names = obj.columns.names if not self.as_index: results.index = ibase.default_index(len(results)) return results boxplot = boxplot_frame_groupby def _is_multi_agg_with_relabel(**kwargs): """ Check whether kwargs passed to .agg look like multi-agg with relabeling. Parameters ---------- **kwargs : dict Returns ------- bool Examples -------- >>> _is_multi_agg_with_relabel(a='max') False >>> _is_multi_agg_with_relabel(a_max=('a', 'max'), ... a_min=('a', 'min')) True >>> _is_multi_agg_with_relabel() False """ return all(isinstance(v, tuple) and len(v) == 2 for v in kwargs.values()) and kwargs def _normalize_keyword_aggregation(kwargs): """ Normalize user-provided "named aggregation" kwargs. Transforms from the new ``Dict[str, NamedAgg]`` style kwargs to the old OrderedDict[str, List[scalar]]]. Parameters ---------- kwargs : dict Returns ------- aggspec : dict The transformed kwargs. columns : List[str] The user-provided keys. col_idx_order : List[int] List of columns indices. Examples -------- >>> _normalize_keyword_aggregation({'output': ('input', 'sum')}) (OrderedDict([('input', ['sum'])]), ('output',), [('input', 'sum')]) """ if not PY36: kwargs = OrderedDict(sorted(kwargs.items())) # Normalize the aggregation functions as Dict[column, List[func]], # process normally, then fixup the names. # TODO(Py35): When we drop python 3.5, change this to # defaultdict(list) # TODO: aggspec type: typing.OrderedDict[str, List[AggScalar]] # May be hitting https://github.com/python/mypy/issues/5958 # saying it doesn't have an attribute __name__ aggspec = OrderedDict() order = [] columns, pairs = list(zip(*kwargs.items())) for name, (column, aggfunc) in zip(columns, pairs): if column in aggspec: aggspec[column].append(aggfunc) else: aggspec[column] = [aggfunc] order.append((column, com.get_callable_name(aggfunc) or aggfunc)) # uniquify aggfunc name if duplicated in order list uniquified_order = _make_unique(order) # GH 25719, due to aggspec will change the order of assigned columns in aggregation # uniquified_aggspec will store uniquified order list and will compare it with order # based on index aggspec_order = [ (column, com.get_callable_name(aggfunc) or aggfunc) for column, aggfuncs in aggspec.items() for aggfunc in aggfuncs ] uniquified_aggspec = _make_unique(aggspec_order) # get the new indice of columns by comparison col_idx_order = Index(uniquified_aggspec).get_indexer(uniquified_order) return aggspec, columns, col_idx_order def _make_unique(seq): """Uniquify aggfunc name of the pairs in the order list Examples: -------- >>> _make_unique([('a', '<lambda>'), ('a', '<lambda>'), ('b', '<lambda>')]) [('a', '<lambda>_0'), ('a', '<lambda>_1'), ('b', '<lambda>')] """ return [ (pair[0], "_".join([pair[1], str(seq[:i].count(pair))])) if seq.count(pair) > 1 else pair for i, pair in enumerate(seq) ] # TODO: Can't use, because mypy doesn't like us setting __name__ # error: "partial[Any]" has no attribute "__name__" # the type is: # typing.Sequence[Callable[..., ScalarResult]] # -> typing.Sequence[Callable[..., ScalarResult]]: def _managle_lambda_list(aggfuncs: Sequence[Any]) -> Sequence[Any]: """ Possibly mangle a list of aggfuncs. Parameters ---------- aggfuncs : Sequence Returns ------- mangled: list-like A new AggSpec sequence, where lambdas have been converted to have unique names. Notes ----- If just one aggfunc is passed, the name will not be mangled. """ if len(aggfuncs) <= 1: # don't mangle for .agg([lambda x: .]) return aggfuncs i = 0 mangled_aggfuncs = [] for aggfunc in aggfuncs: if com.get_callable_name(aggfunc) == "<lambda>": aggfunc = functools.partial(aggfunc) aggfunc.__name__ = "<lambda_{}>".format(i) i += 1 mangled_aggfuncs.append(aggfunc) return mangled_aggfuncs def _maybe_mangle_lambdas(agg_spec: Any) -> Any: """ Make new lambdas with unique names. Parameters ---------- agg_spec : Any An argument to NDFrameGroupBy.agg. Non-dict-like `agg_spec` are pass through as is. For dict-like `agg_spec` a new spec is returned with name-mangled lambdas. Returns ------- mangled : Any Same type as the input. Examples -------- >>> _maybe_mangle_lambdas('sum') 'sum' >>> _maybe_mangle_lambdas([lambda: 1, lambda: 2]) # doctest: +SKIP [<function __main__.<lambda_0>, <function pandas...._make_lambda.<locals>.f(*args, **kwargs)>] """ is_dict = is_dict_like(agg_spec) if not (is_dict or is_list_like(agg_spec)): return agg_spec mangled_aggspec = type(agg_spec)() # dict or OrderdDict if is_dict: for key, aggfuncs in agg_spec.items(): if is_list_like(aggfuncs) and not is_dict_like(aggfuncs): mangled_aggfuncs = _managle_lambda_list(aggfuncs) else: mangled_aggfuncs = aggfuncs mangled_aggspec[key] = mangled_aggfuncs else: mangled_aggspec = _managle_lambda_list(agg_spec) return mangled_aggspec def _recast_datetimelike_result(result: DataFrame) -> DataFrame: """ If we have date/time like in the original, then coerce dates as we are stacking can easily have object dtypes here. Parameters ---------- result : DataFrame Returns ------- DataFrame Notes ----- - Assumes Groupby._selected_obj has ndim==2 and at least one datetimelike column """ result = result.copy() obj_cols = [ idx for idx in range(len(result.columns)) if is_object_dtype(result.dtypes[idx]) ] # See GH#26285 for n in obj_cols: converted = maybe_convert_objects( result.iloc[:, n].values, convert_numeric=False ) result.iloc[:, n] = converted return result """ Define the SeriesGroupBy and DataFrameGroupBy classes that hold the groupby interfaces (and some implementations). These are user facing as the result of the ``df.groupby(...)`` operations, which here returns a DataFrameGroupBy object. """ from collections import OrderedDict, abc, namedtuple import copy import functools from functools import partial from textwrap import dedent import typing from typing import Any, Callable, FrozenSet, Sequence, Type, Union import warnings import numpy as np from pandas._libs import Timestamp, lib from pandas.compat import PY36 from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.cast import ( maybe_convert_objects, maybe_downcast_numeric, maybe_downcast_to_dtype, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_platform_int, is_bool, is_datetimelike, is_dict_like, is_integer_dtype, is_interval_dtype, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, ) from pandas.core.dtypes.missing import _isna_ndarraylike, isna, notna from pandas._typing import FrameOrSeries import pandas.core.algorithms as algorithms from pandas.core.base import DataError, SpecificationError import pandas.core.common as com from pandas.core.frame import DataFrame from pandas.core.generic import ABCDataFrame, ABCSeries, NDFrame, _shared_docs from pandas.core.groupby import base from pandas.core.groupby.groupby import ( GroupBy, _apply_docs, _transform_template, groupby, ) from pandas.core.index import Index, MultiIndex, _all_indexes_same import pandas.core.indexes.base as ibase from pandas.core.internals import BlockManager, make_block from pandas.core.series import Series from pandas.plotting import boxplot_frame_groupby NamedAgg = namedtuple("NamedAgg", ["column", "aggfunc"]) # TODO(typing) the return value on this callable should be any *scalar*. AggScalar = Union[str, Callable[..., Any]] # TODO: validate types on ScalarResult and move to _typing # Blocked from using by https://github.com/python/mypy/issues/1484 # See note at _mangle_lambda_list ScalarResult = typing.TypeVar("ScalarResult") def generate_property(name: str, klass: Type[FrameOrSeries]): """ Create a property for a GroupBy subclass to dispatch to DataFrame/Series. Parameters ---------- name : str klass : {DataFrame, Series} Returns ------- property """ def prop(self): return self._make_wrapper(name) parent_method = getattr(klass, name) prop.__doc__ = parent_method.__doc__ or "" prop.__name__ = name return property(prop) def pin_whitelisted_properties(klass: Type[FrameOrSeries], whitelist: FrozenSet[str]): """ Create GroupBy member defs for DataFrame/Series names in a whitelist. Parameters ---------- klass : DataFrame or Series class class where members are defined. whitelist : frozenset[str] Set of names of klass methods to be constructed Returns ------- class decorator Notes ----- Since we don't want to override methods explicitly defined in the base class, any such name is skipped. """ def pinner(cls): for name in whitelist: if hasattr(cls, name): # don't override anything that was explicitly defined # in the base class continue prop = generate_property(name, klass) setattr(cls, name, prop) return cls return pinner class NDFrameGroupBy(GroupBy): def _iterate_slices(self): if self.axis == 0: # kludge if self._selection is None: slice_axis = self.obj.columns else: slice_axis = self._selection_list slicer = lambda x: self.obj[x] else: slice_axis = self.obj.index slicer = self.obj.xs for val in slice_axis: if val in self.exclusions: continue yield val, slicer(val) def _cython_agg_general(self, how, alt=None, numeric_only=True, min_count=-1): new_items, new_blocks = self._cython_agg_blocks( how, alt=alt, numeric_only=numeric_only, min_count=min_count ) return self._wrap_agged_blocks(new_items, new_blocks) _block_agg_axis = 0 def _cython_agg_blocks(self, how, alt=None, numeric_only=True, min_count=-1): # TODO: the actual managing of mgr_locs is a PITA # here, it should happen via BlockManager.combine data, agg_axis = self._get_data_to_aggregate() if numeric_only: data = data.get_numeric_data(copy=False) new_blocks = [] new_items = [] deleted_items = [] no_result = object() for block in data.blocks: # Avoid inheriting result from earlier in the loop result = no_result locs = block.mgr_locs.as_array try: result, _ = self.grouper.aggregate( block.values, how, axis=agg_axis, min_count=min_count ) except NotImplementedError: # generally if we have numeric_only=False # and non-applicable functions # try to python agg if alt is None: # we cannot perform the operation # in an alternate way, exclude the block deleted_items.append(locs) continue # call our grouper again with only this block obj = self.obj[data.items[locs]] s = groupby(obj, self.grouper) try: result = s.aggregate(lambda x: alt(x, axis=self.axis)) except TypeError: # we may have an exception in trying to aggregate # continue and exclude the block deleted_items.append(locs) continue finally: if result is not no_result: # see if we can cast the block back to the original dtype result = maybe_downcast_numeric(result, block.dtype) newb = block.make_block(result) new_items.append(locs) new_blocks.append(newb) if len(new_blocks) == 0: raise DataError("No numeric types to aggregate") # reset the locs in the blocks to correspond to our # current ordering indexer = np.concatenate(new_items) new_items = data.items.take(np.sort(indexer)) if len(deleted_items): # we need to adjust the indexer to account for the # items we have removed # really should be done in internals :< deleted = np.concatenate(deleted_items) ai = np.arange(len(data)) mask = np.zeros(len(data)) mask[deleted] = 1 indexer = (ai - mask.cumsum())[indexer] offset = 0 for b in new_blocks: loc = len(b.mgr_locs) b.mgr_locs = indexer[offset : (offset + loc)] offset += loc return new_items, new_blocks def aggregate(self, func, *args, **kwargs): _level = kwargs.pop("_level", None) relabeling = func is None and _is_multi_agg_with_relabel(**kwargs) if relabeling: func, columns, order = _normalize_keyword_aggregation(kwargs) kwargs = {} elif func is None: # nicer error message raise TypeError("Must provide 'func' or tuples of '(column, aggfunc).") func = _maybe_mangle_lambdas(func) result, how = self._aggregate(func, _level=_level, *args, **kwargs) if how is None: return result if result is None: # grouper specific aggregations if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) elif args or kwargs: result = self._aggregate_generic(func, *args, **kwargs) else: # try to treat as if we are passing a list try: result = self._aggregate_multiple_funcs( [func], _level=_level, _axis=self.axis ) except Exception: result = self._aggregate_generic(func) else: result.columns = Index( result.columns.levels[0], name=self._selected_obj.columns.name ) if not self.as_index: self._insert_inaxis_grouper_inplace(result) result.index = np.arange(len(result)) if relabeling: # used reordered index of columns result = result.iloc[:, order] result.columns = columns return result._convert(datetime=True) agg = aggregate def _aggregate_generic(self, func, *args, **kwargs): if self.grouper.nkeys != 1: raise AssertionError("Number of keys must be 1") axis = self.axis obj = self._obj_with_exclusions result = OrderedDict() if axis != obj._info_axis_number: try: for name, data in self: result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: return self._aggregate_item_by_item(func, *args, **kwargs) else: for name in self.indices: try: data = self.get_group(name, obj=obj) result[name] = self._try_cast(func(data, *args, **kwargs), data) except Exception: wrapper = lambda x: func(x, *args, **kwargs) result[name] = data.apply(wrapper, axis=axis) return self._wrap_generic_output(result, obj) def _wrap_aggregated_output(self, output, names=None): raise AbstractMethodError(self) def _aggregate_item_by_item(self, func, *args, **kwargs): # only for axis==0 obj = self._obj_with_exclusions result = OrderedDict() cannot_agg = [] errors = None for item in obj: data = obj[item] colg = SeriesGroupBy(data, selection=item, grouper=self.grouper) try: cast = self._transform_should_cast(func) result[item] = colg.aggregate(func, *args, **kwargs) if cast: result[item] = self._try_cast(result[item], data) except ValueError as err: if "Must produce aggregated value" in str(err): # raised in _aggregate_named, handle at higher level # see test_apply_with_mutated_index raise cannot_agg.append(item) continue except TypeError as e: cannot_agg.append(item) errors = e continue result_columns = obj.columns if cannot_agg: result_columns = result_columns.drop(cannot_agg) # GH6337 if not len(result_columns) and errors is not None: raise errors return DataFrame(result, columns=result_columns) def _decide_output_index(self, output, labels): if len(output) == len(labels): output_keys = labels else: output_keys = sorted(output) try: output_keys.sort() except TypeError: pass if isinstance(labels, MultiIndex): output_keys = MultiIndex.from_tuples(output_keys, names=labels.names) return output_keys def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: return DataFrame(index=keys) key_names = self.grouper.names # GH12824. def first_not_none(values): try: return next(com.not_none(*values)) except StopIteration: return None v = first_not_none(values) if v is None: # GH9684. If all values are None, then this will throw an error. # We'd prefer it return an empty dataframe. return DataFrame() elif isinstance(v, DataFrame): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif self.grouper.groupings is not None: if len(self.grouper.groupings) > 1: key_index = self.grouper.result_index else: ping = self.grouper.groupings[0] if len(keys) == ping.ngroups: key_index = ping.group_index key_index.name = key_names[0] key_lookup = Index(keys) indexer = key_lookup.get_indexer(key_index) # reorder the values values = [values[i] for i in indexer] else: key_index = Index(keys, name=key_names[0]) # don't use the key indexer if not self.as_index: key_index = None # make Nones an empty object v = first_not_none(values) if v is None: return DataFrame() elif isinstance(v, NDFrame): values = [ x if x is not None else v._constructor(**v._construct_axes_dict()) for x in values ] v = values[0] if isinstance(v, (np.ndarray, Index, Series)): if isinstance(v, Series): applied_index = self._selected_obj._get_axis(self.axis) all_indexed_same = _all_indexes_same([x.index for x in values]) singular_series = len(values) == 1 and applied_index.nlevels == 1 # GH3596 # provide a reduction (Frame -> Series) if groups are # unique if self.squeeze: # assign the name to this series if singular_series: values[0].name = keys[0] # GH2893 # we have series in the values array, we want to # produce a series: # if any of the sub-series are not indexed the same # OR we don't have a multi-index and we have only a # single values return self._concat_objects( keys, values, not_indexed_same=not_indexed_same ) # still a series # path added as of GH 5545 elif all_indexed_same: from pandas.core.reshape.concat import concat return concat(values) if not all_indexed_same: # GH 8467 return self._concat_objects(keys, values, not_indexed_same=True) try: if self.axis == 0: # GH6124 if the list of Series have a consistent name, # then propagate that name to the result. index = v.index.copy() if index.name is None: # Only propagate the series name to the result # if all series have a consistent name. If the # series do not have a consistent name, do # nothing. names = {v.name for v in values} if len(names) == 1: index.name = list(names)[0] # normally use vstack as its faster than concat # and if we have mi-columns if ( isinstance(v.index, MultiIndex) or key_index is None or isinstance(key_index, MultiIndex) ): stacked_values = np.vstack([np.asarray(v) for v in values]) result = DataFrame( stacked_values, index=key_index, columns=index ) else: # GH5788 instead of stacking; concat gets the # dtypes correct from pandas.core.reshape.concat import concat result = concat( values, keys=key_index, names=key_index.names, axis=self.axis, ).unstack() result.columns = index else: stacked_values = np.vstack([np.asarray(v) for v in values]) result = DataFrame( stacked_values.T, index=v.index, columns=key_index ) except (ValueError, AttributeError): # GH1738: values is list of arrays of unequal lengths fall # through to the outer else caluse return Series(values, index=key_index, name=self._selection_name) # if we have date/time like in the original, then coerce dates # as we are stacking can easily have object dtypes here so = self._selected_obj if so.ndim == 2 and so.dtypes.apply(is_datetimelike).any(): result = _recast_datetimelike_result(result) else: result = result._convert(datetime=True) return self._reindex_output(result) # values are not series or array-like but scalars else: # only coerce dates if we find at least 1 datetime coerce = any(isinstance(x, Timestamp) for x in values) # self._selection_name not passed through to Series as the # result should not take the name of original selection # of columns return Series(values, index=key_index)._convert( datetime=True, coerce=coerce ) else: # Handle cases like BinGrouper return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) def _transform_general(self, func, *args, **kwargs): from pandas.core.reshape.concat import concat applied = [] obj = self._obj_with_exclusions gen = self.grouper.get_iterator(obj, axis=self.axis) fast_path, slow_path = self._define_paths(func, *args, **kwargs) path = None for name, group in gen: object.__setattr__(group, "name", name) if path is None: # Try slow path and fast path. try: path, res = self._choose_path(fast_path, slow_path, group) except TypeError: return self._transform_item_by_item(obj, fast_path) except ValueError: msg = "transform must return a scalar value for each group" raise ValueError(msg) else: res = path(group) if isinstance(res, Series): # we need to broadcast across the # other dimension; this will preserve dtypes # GH14457 if not np.prod(group.shape): continue elif res.index.is_(obj.index): r = concat([res] * len(group.columns), axis=1) r.columns = group.columns r.index = group.index else: r = DataFrame( np.concatenate([res.values] * len(group.index)).reshape( group.shape ), columns=group.columns, index=group.index, ) applied.append(r) else: applied.append(res) concat_index = obj.columns if self.axis == 0 else obj.index other_axis = 1 if self.axis == 0 else 0 # switches between 0 & 1 concatenated = concat(applied, axis=self.axis, verify_integrity=False) concatenated = concatenated.reindex(concat_index, axis=other_axis, copy=False) return self._set_result_index_ordered(concatenated) @Substitution(klass="DataFrame", selected="") @Appender(_transform_template) def transform(self, func, *args, **kwargs): # optimized transforms func = self._get_cython_func(func) or func if isinstance(func, str): if not (func in base.transform_kernel_whitelist): msg = "'{func}' is not a valid function name for transform(name)" raise ValueError(msg.format(func=func)) if func in base.cythonized_kernels: # cythonized transformation or canned "reduction+broadcast" return getattr(self, func)(*args, **kwargs) else: # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. result = getattr(self, func)(*args, **kwargs) else: return self._transform_general(func, *args, **kwargs) # a reduction transform if not isinstance(result, DataFrame): return self._transform_general(func, *args, **kwargs) obj = self._obj_with_exclusions # nuisance columns if not result.columns.equals(obj.columns): return self._transform_general(func, *args, **kwargs) return self._transform_fast(result, obj, func) def _transform_fast(self, result, obj, func_nm): """ Fast transform path for aggregations """ # if there were groups with no observations (Categorical only?) # try casting data to original dtype cast = self._transform_should_cast(func_nm) # for each col, reshape to to size of original frame # by take operation ids, _, ngroup = self.grouper.group_info output = [] for i, _ in enumerate(result.columns): res = algorithms.take_1d(result.iloc[:, i].values, ids) if cast: res = self._try_cast(res, obj.iloc[:, i]) output.append(res) return DataFrame._from_arrays(output, columns=result.columns, index=obj.index) def _define_paths(self, func, *args, **kwargs): if isinstance(func, str): fast_path = lambda group: getattr(group, func)(*args, **kwargs) slow_path = lambda group: group.apply( lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis ) else: fast_path = lambda group: func(group, *args, **kwargs) slow_path = lambda group: group.apply( lambda x: func(x, *args, **kwargs), axis=self.axis ) return fast_path, slow_path def _choose_path(self, fast_path, slow_path, group): path = slow_path res = slow_path(group) # if we make it here, test if we can use the fast path try: res_fast = fast_path(group) except Exception: # Hard to know ex-ante what exceptions `fast_path` might raise return path, res # verify fast path does not change columns (and names), otherwise # its results cannot be joined with those of the slow path if not isinstance(res_fast, DataFrame): return path, res if not res_fast.columns.equals(group.columns): return path, res if res_fast.equals(res): path = fast_path return path, res def _transform_item_by_item(self, obj, wrapper): # iterate through columns output = {} inds = [] for i, col in enumerate(obj): try: output[col] = self[col].transform(wrapper) inds.append(i) except Exception: pass if len(output) == 0: raise TypeError("Transform function invalid for data types") columns = obj.columns if len(output) < len(obj.columns): columns = columns.take(inds) return DataFrame(output, index=obj.index, columns=columns) def filter(self, func, dropna=True, *args, **kwargs): """ Return a copy of a DataFrame excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- f : function Function to apply to each subframe. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; If False, groups that evaluate False are filled with NaNs. Returns ------- filtered : DataFrame Notes ----- Each subframe is endowed the attribute 'name' in case you need to know which group you are working on. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> grouped.filter(lambda x: x['B'].mean() > 3.) A B C 1 bar 2 5.0 3 bar 4 1.0 5 bar 6 9.0 """ indices = [] obj = self._selected_obj gen = self.grouper.get_iterator(obj, axis=self.axis) for name, group in gen: object.__setattr__(group, "name", name) res = func(group, *args, **kwargs) try: res = res.squeeze() except AttributeError: # allow e.g., scalars and frames to pass pass # interpret the result of the filter if is_bool(res) or (is_scalar(res) and isna(res)): if res and notna(res): indices.append(self._get_index(name)) else: # non scalars aren't allowed raise TypeError( "filter function returned a %s, " "but expected a scalar bool" % type(res).__name__ ) return self._apply_filter(indices, dropna) @pin_whitelisted_properties(Series, base.series_apply_whitelist) class SeriesGroupBy(GroupBy): _apply_whitelist = base.series_apply_whitelist @property def _selection_name(self): """ since we are a series, we by definition only have a single name, but may be the result of a selection or the name of our object """ if self._selection is None: return self.obj.name else: return self._selection _agg_see_also_doc = dedent( """ See Also -------- pandas.Series.groupby.apply pandas.Series.groupby.transform pandas.Series.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.groupby([1, 1, 2, 2]).min() 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg('min') 1 1 2 3 dtype: int64 >>> s.groupby([1, 1, 2, 2]).agg(['min', 'max']) min max 1 1 2 2 3 4 The output column names can be controlled by passing the desired column names and aggregations as keyword arguments. >>> s.groupby([1, 1, 2, 2]).agg( ... minimum='min', ... maximum='max', ... ) minimum maximum 1 1 2 2 3 4 """ ) @Appender( _apply_docs["template"].format( input="series", examples=_apply_docs["series_examples"] ) ) def apply(self, func, *args, **kwargs): return super().apply(func, *args, **kwargs) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="Series", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func=None, *args, **kwargs): _level = kwargs.pop("_level", None) relabeling = func is None columns = None no_arg_message = "Must provide 'func' or named aggregation **kwargs." if relabeling: columns = list(kwargs) if not PY36: # sort for 3.5 and earlier columns = list(sorted(columns)) func = [kwargs[col] for col in columns] kwargs = {} if not columns: raise TypeError(no_arg_message) if isinstance(func, str): return getattr(self, func)(*args, **kwargs) if isinstance(func, abc.Iterable): # Catch instances of lists / tuples # but not the class list / tuple itself. func = _maybe_mangle_lambdas(func) ret = self._aggregate_multiple_funcs(func, (_level or 0) + 1) if relabeling: ret.columns = columns else: cyfunc = self._get_cython_func(func) if cyfunc and not args and not kwargs: return getattr(self, cyfunc)() if self.grouper.nkeys > 1: return self._python_agg_general(func, *args, **kwargs) try: return self._python_agg_general(func, *args, **kwargs) except Exception: result = self._aggregate_named(func, *args, **kwargs) index = Index(sorted(result), name=self.grouper.names[0]) ret = Series(result, index=index) if not self.as_index: # pragma: no cover print("Warning, ignoring as_index=True") # _level handled at higher if not _level and isinstance(ret, dict): from pandas import concat ret = concat(ret, axis=1) return ret agg = aggregate def _aggregate_multiple_funcs(self, arg, _level): if isinstance(arg, dict): # show the deprecation, but only if we # have not shown a higher level one # GH 15931 if isinstance(self._selected_obj, Series) and _level <= 1: msg = dedent( """\ using a dict on a Series for aggregation is deprecated and will be removed in a future version. Use \ named aggregation instead. >>> grouper.agg(name_1=func_1, name_2=func_2) """ ) warnings.warn(msg, FutureWarning, stacklevel=3) columns = list(arg.keys()) arg = arg.items() elif any(isinstance(x, (tuple, list)) for x in arg): arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg] # indicated column order columns = next(zip(*arg)) else: # list of functions / function names columns = [] for f in arg: columns.append(com.get_callable_name(f) or f) arg = zip(columns, arg) results = OrderedDict() for name, func in arg: obj = self if name in results: raise SpecificationError( "Function names must be unique, found multiple named " "{}".format(name) ) # reset the cache so that we # only include the named selection if name in self._selected_obj: obj = copy.copy(obj) obj._reset_cache() obj._selection = name results[name] = obj.aggregate(func) if any(isinstance(x, DataFrame) for x in results.values()): # let higher level handle if _level: return results return DataFrame(results, columns=columns) def _wrap_output(self, output, index, names=None): """ common agg/transform wrapping logic """ output = output[self._selection_name] if names is not None: return DataFrame(output, index=index, columns=names) else: name = self._selection_name if name is None: name = self._selected_obj.name return Series(output, index=index, name=name) def _wrap_aggregated_output(self, output, names=None): result = self._wrap_output( output=output, index=self.grouper.result_index, names=names ) return self._reindex_output(result)._convert(datetime=True) def _wrap_transformed_output(self, output, names=None): return self._wrap_output(output=output, index=self.obj.index, names=names) def _wrap_applied_output(self, keys, values, not_indexed_same=False): if len(keys) == 0: # GH #6265 return Series([], name=self._selection_name, index=keys) def _get_index(): if self.grouper.nkeys > 1: index = MultiIndex.from_tuples(keys, names=self.grouper.names) else: index = Index(keys, name=self.grouper.names[0]) return index if isinstance(values[0], dict): # GH #823 #24880 index = _get_index() result = self._reindex_output(DataFrame(values, index=index)) # if self.observed is False, # keep all-NaN rows created while re-indexing result = result.stack(dropna=self.observed) result.name = self._selection_name return result if isinstance(values[0], Series): return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) elif isinstance(values[0], DataFrame): # possible that Series -> DataFrame by applied function return self._concat_objects(keys, values, not_indexed_same=not_indexed_same) else: # GH #6265 #24880 result = Series(data=values, index=_get_index(), name=self._selection_name) return self._reindex_output(result) def _aggregate_named(self, func, *args, **kwargs): result = OrderedDict() for name, group in self: group.name = name output = func(group, *args, **kwargs) if isinstance(output, (Series, Index, np.ndarray)): raise ValueError("Must produce aggregated value") result[name] = self._try_cast(output, group) return result @Substitution(klass="Series", selected="A.") @Appender(_transform_template) def transform(self, func, *args, **kwargs): func = self._get_cython_func(func) or func if isinstance(func, str): if not (func in base.transform_kernel_whitelist): msg = "'{func}' is not a valid function name for transform(name)" raise ValueError(msg.format(func=func)) if func in base.cythonized_kernels: # cythonized transform or canned "agg+broadcast" return getattr(self, func)(*args, **kwargs) else: # If func is a reduction, we need to broadcast the # result to the whole group. Compute func result # and deal with possible broadcasting below. return self._transform_fast( lambda: getattr(self, func)(*args, **kwargs), func ) # reg transform klass = self._selected_obj.__class__ results = [] wrapper = lambda x: func(x, *args, **kwargs) for name, group in self: object.__setattr__(group, "name", name) res = wrapper(group) if isinstance(res, (ABCDataFrame, ABCSeries)): res = res._values indexer = self._get_index(name) s = klass(res, indexer) results.append(s) # check for empty "results" to avoid concat ValueError if results: from pandas.core.reshape.concat import concat result = concat(results).sort_index() else: result = Series() # we will only try to coerce the result type if # we have a numeric dtype, as these are *always* udfs # the cython take a different path (and casting) dtype = self._selected_obj.dtype if is_numeric_dtype(dtype): result = maybe_downcast_to_dtype(result, dtype) result.name = self._selected_obj.name result.index = self._selected_obj.index return result def _transform_fast(self, func, func_nm): """ fast version of transform, only applicable to builtin/cythonizable functions """ if isinstance(func, str): func = getattr(self, func) ids, _, ngroup = self.grouper.group_info cast = self._transform_should_cast(func_nm) out = algorithms.take_1d(func()._values, ids) if cast: out = self._try_cast(out, self.obj) return Series(out, index=self.obj.index, name=self.obj.name) def filter(self, func, dropna=True, *args, **kwargs): # noqa """ Return a copy of a Series excluding elements from groups that do not satisfy the boolean criterion specified by func. Parameters ---------- func : function To apply to each group. Should return True or False. dropna : Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. Examples -------- >>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar', ... 'foo', 'bar'], ... 'B' : [1, 2, 3, 4, 5, 6], ... 'C' : [2.0, 5., 8., 1., 2., 9.]}) >>> grouped = df.groupby('A') >>> df.groupby('A').B.filter(lambda x: x.mean() > 3.) 1 2 3 4 5 6 Name: B, dtype: int64 Returns ------- filtered : Series """ if isinstance(func, str): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x, *args, **kwargs): b = wrapper(x, *args, **kwargs) return b and notna(b) try: indices = [ self._get_index(name) for name, group in self if true_and_notna(group) ] except ValueError: raise TypeError("the filter must return a boolean result") except TypeError: raise TypeError("the filter must return a boolean result") filtered = self._apply_filter(indices, dropna) return filtered def nunique(self, dropna=True): """ Return number of unique elements in the group. Returns ------- Series Number of unique values within each group. """ ids, _, _ = self.grouper.group_info val = self.obj._internal_get_values() # GH 27951 # temporary fix while we wait for NumPy bug 12629 to be fixed val[isna(val)] = np.datetime64("NaT") try: sorter = np.lexsort((val, ids)) except TypeError: # catches object dtypes msg = "val.dtype must be object, got {}".format(val.dtype) assert val.dtype == object, msg val, _ = algorithms.factorize(val, sort=False) sorter = np.lexsort((val, ids)) _isna = lambda a: a == -1 else: _isna = isna ids, val = ids[sorter], val[sorter] # group boundaries are where group ids change # unique observations are where sorted values change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] inc = np.r_[1, val[1:] != val[:-1]] # 1st item of each group is a new unique observation mask = _isna(val) if dropna: inc[idx] = 1 inc[mask] = 0 else: inc[mask & np.r_[False, mask[:-1]]] = 0 inc[idx] = 1 out = np.add.reduceat(inc, idx).astype("int64", copy=False) if len(ids): # NaN/NaT group exists if the head of ids is -1, # so remove it from res and exclude its index from idx if ids[0] == -1: res = out[1:] idx = idx[np.flatnonzero(idx)] else: res = out else: res = out[1:] ri = self.grouper.result_index # we might have duplications among the bins if len(res) != len(ri): res, out = np.zeros(len(ri), dtype=out.dtype), res res[ids[idx]] = out return Series(res, index=ri, name=self._selection_name) @Appender(Series.describe.__doc__) def describe(self, **kwargs): result = self.apply(lambda x: x.describe(**kwargs)) if self.axis == 1: return result.T return result.unstack() def value_counts( self, normalize=False, sort=True, ascending=False, bins=None, dropna=True ): from pandas.core.reshape.tile import cut from pandas.core.reshape.merge import _get_join_indexers if bins is not None and not np.iterable(bins): # scalar bins cannot be done at top level # in a backward compatible way return self.apply( Series.value_counts, normalize=normalize, sort=sort, ascending=ascending, bins=bins, ) ids, _, _ = self.grouper.group_info val = self.obj._internal_get_values() # groupby removes null keys from groupings mask = ids != -1 ids, val = ids[mask], val[mask] if bins is None: lab, lev = algorithms.factorize(val, sort=True) llab = lambda lab, inc: lab[inc] else: # lab is a Categorical with categories an IntervalIndex lab = cut(Series(val), bins, include_lowest=True) lev = lab.cat.categories lab = lev.take(lab.cat.codes) llab = lambda lab, inc: lab[inc]._multiindex.codes[-1] if is_interval_dtype(lab): # TODO: should we do this inside II? sorter = np.lexsort((lab.left, lab.right, ids)) else: sorter = np.lexsort((lab, ids)) ids, lab = ids[sorter], lab[sorter] # group boundaries are where group ids change idx = np.r_[0, 1 + np.nonzero(ids[1:] != ids[:-1])[0]] # new values are where sorted labels change lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1)) inc = np.r_[True, lchanges] inc[idx] = True # group boundaries are also new values out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts # num. of times each group should be repeated rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx)) # multi-index components labels = list(map(rep, self.grouper.recons_labels)) + [llab(lab, inc)] levels = [ping.group_index for ping in self.grouper.groupings] + [lev] names = self.grouper.names + [self._selection_name] if dropna: mask = labels[-1] != -1 if mask.all(): dropna = False else: out, labels = out[mask], [label[mask] for label in labels] if normalize: out = out.astype("float") d = np.diff(np.r_[idx, len(ids)]) if dropna: m = ids[lab == -1] np.add.at(d, m, -1) acc = rep(d)[mask] else: acc = rep(d) out /= acc if sort and bins is None: cat = ids[inc][mask] if dropna else ids[inc] sorter = np.lexsort((out if ascending else -out, cat)) out, labels[-1] = out[sorter], labels[-1][sorter] if bins is None: mi = MultiIndex( levels=levels, codes=labels, names=names, verify_integrity=False ) if is_integer_dtype(out): out = ensure_int64(out) return Series(out, index=mi, name=self._selection_name) # for compat. with libgroupby.value_counts need to ensure every # bin is present at every index level, null filled with zeros diff = np.zeros(len(out), dtype="bool") for lab in labels[:-1]: diff |= np.r_[True, lab[1:] != lab[:-1]] ncat, nbin = diff.sum(), len(levels[-1]) left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)] right = [diff.cumsum() - 1, labels[-1]] _, idx = _get_join_indexers(left, right, sort=False, how="left") out = np.where(idx != -1, out[idx], 0) if sort: sorter = np.lexsort((out if ascending else -out, left[0])) out, left[-1] = out[sorter], left[-1][sorter] # build the multi-index w/ full levels codes = list(map(lambda lab: np.repeat(lab[diff], nbin), labels[:-1])) codes.append(left[-1]) mi = MultiIndex(levels=levels, codes=codes, names=names, verify_integrity=False) if is_integer_dtype(out): out = ensure_int64(out) return Series(out, index=mi, name=self._selection_name) def count(self): """ Compute count of group, excluding missing values. Returns ------- Series Count of values within each group. """ ids, _, ngroups = self.grouper.group_info val = self.obj._internal_get_values() mask = (ids != -1) & ~isna(val) ids = ensure_platform_int(ids) minlength = ngroups or 0 out = np.bincount(ids[mask], minlength=minlength) return Series( out, index=self.grouper.result_index, name=self._selection_name, dtype="int64", ) def _apply_to_column_groupbys(self, func): """ return a pass thru """ return func(self) def pct_change(self, periods=1, fill_method="pad", limit=None, freq=None): """Calculate pct_change of each value to previous entry in group""" # TODO: Remove this conditional when #23918 is fixed if freq: return self.apply( lambda x: x.pct_change( periods=periods, fill_method=fill_method, limit=limit, freq=freq ) ) filled = getattr(self, fill_method)(limit=limit) fill_grp = filled.groupby(self.grouper.labels) shifted = fill_grp.shift(periods=periods, freq=freq) return (filled / shifted) - 1 @pin_whitelisted_properties(DataFrame, base.dataframe_apply_whitelist) class DataFrameGroupBy(NDFrameGroupBy): _apply_whitelist = base.dataframe_apply_whitelist _block_agg_axis = 1 _agg_see_also_doc = dedent( """ See Also -------- pandas.DataFrame.groupby.apply pandas.DataFrame.groupby.transform pandas.DataFrame.aggregate """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame({'A': [1, 1, 2, 2], ... 'B': [1, 2, 3, 4], ... 'C': np.random.randn(4)}) >>> df A B C 0 1 1 0.362838 1 1 2 0.227877 2 2 3 1.267767 3 2 4 -0.562860 The aggregation is for each column. >>> df.groupby('A').agg('min') B C A 1 1 0.227877 2 3 -0.562860 Multiple aggregations >>> df.groupby('A').agg(['min', 'max']) B C min max min max A 1 1 2 0.227877 0.362838 2 3 4 -0.562860 1.267767 Select a column for aggregation >>> df.groupby('A').B.agg(['min', 'max']) min max A 1 1 2 2 3 4 Different aggregations per column >>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'}) B C min max sum A 1 1 2 0.590716 2 3 4 0.704907 To control the output names with different aggregations per column, pandas supports "named aggregation" >>> df.groupby("A").agg( ... b_min=pd.NamedAgg(column="B", aggfunc="min"), ... c_sum=pd.NamedAgg(column="C", aggfunc="sum")) b_min c_sum A 1 1 -1.956929 2 3 -0.322183 - The keywords are the *output* column names - The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields ``['column', 'aggfunc']`` to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias. See :ref:`groupby.aggregate.named` for more. """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="", klass="DataFrame", axis="", ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func=None, *args, **kwargs): return super().aggregate(func, *args, **kwargs) agg = aggregate def _gotitem(self, key, ndim, subset=None): """ sub-classes to define return a sliced object Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if ndim == 2: if subset is None: subset = self.obj return DataFrameGroupBy( subset, self.grouper, selection=key, grouper=self.grouper, exclusions=self.exclusions, as_index=self.as_index, observed=self.observed, ) elif ndim == 1: if subset is None: subset = self.obj[key] return SeriesGroupBy( subset, selection=key, grouper=self.grouper, observed=self.observed ) raise AssertionError("invalid ndim for _gotitem") def _wrap_generic_output(self, result, obj): result_index = self.grouper.levels[0] if self.axis == 0: return DataFrame(result, index=obj.columns, columns=result_index).T else: return DataFrame(result, index=obj.index, columns=result_index) def _get_data_to_aggregate(self): obj = self._obj_with_exclusions if self.axis == 1: return obj.T._data, 1 else: return obj._data, 1 def _insert_inaxis_grouper_inplace(self, result): # zip in reverse so we can always insert at loc 0 izip = zip( *map( reversed, ( self.grouper.names, self.grouper.get_group_levels(), [grp.in_axis for grp in self.grouper.groupings], ), ) ) for name, lev, in_axis in izip: if in_axis: result.insert(0, name, lev) def _wrap_aggregated_output(self, output, names=None): agg_axis = 0 if self.axis == 1 else 1 agg_labels = self._obj_with_exclusions._get_axis(agg_axis) output_keys = self._decide_output_index(output, agg_labels) if not self.as_index: result = DataFrame(output, columns=output_keys) self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index result = DataFrame(output, index=index, columns=output_keys) if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _wrap_transformed_output(self, output, names=None): return DataFrame(output, index=self.obj.index) def _wrap_agged_blocks(self, items, blocks): if not self.as_index: index = np.arange(blocks[0].values.shape[-1]) mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) self._insert_inaxis_grouper_inplace(result) result = result._consolidate() else: index = self.grouper.result_index mgr = BlockManager(blocks, [items, index]) result = DataFrame(mgr) if self.axis == 1: result = result.T return self._reindex_output(result)._convert(datetime=True) def _iterate_column_groupbys(self): for i, colname in enumerate(self._selected_obj.columns): yield colname, SeriesGroupBy( self._selected_obj.iloc[:, i], selection=colname, grouper=self.grouper, exclusions=self.exclusions, ) def _apply_to_column_groupbys(self, func): from pandas.core.reshape.concat import concat return concat( (func(col_groupby) for _, col_groupby in self._iterate_column_groupbys()), keys=self._selected_obj.columns, axis=1, ) def count(self): """ Compute count of group, excluding missing values. Returns ------- DataFrame Count of values within each group. """ data, _ = self._get_data_to_aggregate() ids, _, ngroups = self.grouper.group_info mask = ids != -1 val = ( (mask & ~_isna_ndarraylike(np.atleast_2d(blk.get_values()))) for blk in data.blocks ) loc = (blk.mgr_locs for blk in data.blocks) counter = partial(lib.count_level_2d, labels=ids, max_bin=ngroups, axis=1) blk = map(make_block, map(counter, val), loc) return self._wrap_agged_blocks(data.items, list(blk)) def nunique(self, dropna=True): """ Return DataFrame with number of distinct observations per group for each column. .. versionadded:: 0.20.0 Parameters ---------- dropna : boolean, default True Don't include NaN in the counts. Returns ------- nunique: DataFrame Examples -------- >>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam', ... 'ham', 'ham'], ... 'value1': [1, 5, 5, 2, 5, 5], ... 'value2': list('abbaxy')}) >>> df id value1 value2 0 spam 1 a 1 egg 5 b 2 egg 5 b 3 spam 2 a 4 ham 5 x 5 ham 5 y >>> df.groupby('id').nunique() id value1 value2 id egg 1 1 1 ham 1 1 2 spam 1 2 1 Check for rows with the same id but conflicting values: >>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any()) id value1 value2 0 spam 1 a 3 spam 2 a 4 ham 5 x 5 ham 5 y """ obj = self._selected_obj def groupby_series(obj, col=None): return SeriesGroupBy(obj, selection=col, grouper=self.grouper).nunique( dropna=dropna ) if isinstance(obj, Series): results = groupby_series(obj) else: from pandas.core.reshape.concat import concat results = [groupby_series(obj[col], col) for col in obj.columns] results = concat(results, axis=1) results.columns.names = obj.columns.names if not self.as_index: results.index = ibase.default_index(len(results)) return results boxplot = boxplot_frame_groupby def _is_multi_agg_with_relabel(**kwargs): """ Check whether kwargs passed to .agg look like multi-agg with relabeling. Parameters ---------- **kwargs : dict Returns ------- bool Examples -------- >>> _is_multi_agg_with_relabel(a='max') False >>> _is_multi_agg_with_relabel(a_max=('a', 'max'), ... a_min=('a', 'min')) True >>> _is_multi_agg_with_relabel() False """ return all(isinstance(v, tuple) and len(v) == 2 for v in kwargs.values()) and kwargs def _normalize_keyword_aggregation(kwargs): """ Normalize user-provided "named aggregation" kwargs. Transforms from the new ``Dict[str, NamedAgg]`` style kwargs to the old OrderedDict[str, List[scalar]]]. Parameters ---------- kwargs : dict Returns ------- aggspec : dict The transformed kwargs. columns : List[str] The user-provided keys. col_idx_order : List[int] List of columns indices. Examples -------- >>> _normalize_keyword_aggregation({'output': ('input', 'sum')}) (OrderedDict([('input', ['sum'])]), ('output',), [('input', 'sum')]) """ if not PY36: kwargs = OrderedDict(sorted(kwargs.items())) # Normalize the aggregation functions as Dict[column, List[func]], # process normally, then fixup the names. # TODO(Py35): When we drop python 3.5, change this to # defaultdict(list) # TODO: aggspec type: typing.OrderedDict[str, List[AggScalar]] # May be hitting https://github.com/python/mypy/issues/5958 # saying it doesn't have an attribute __name__ aggspec = OrderedDict() order = [] columns, pairs = list(zip(*kwargs.items())) for name, (column, aggfunc) in zip(columns, pairs): if column in aggspec: aggspec[column].append(aggfunc) else: aggspec[column] = [aggfunc] order.append((column, com.get_callable_name(aggfunc) or aggfunc)) # uniquify aggfunc name if duplicated in order list uniquified_order = _make_unique(order) # GH 25719, due to aggspec will change the order of assigned columns in aggregation # uniquified_aggspec will store uniquified order list and will compare it with order # based on index aggspec_order = [ (column, com.get_callable_name(aggfunc) or aggfunc) for column, aggfuncs in aggspec.items() for aggfunc in aggfuncs ] uniquified_aggspec = _make_unique(aggspec_order) # get the new indice of columns by comparison col_idx_order = Index(uniquified_aggspec).get_indexer(uniquified_order) return aggspec, columns, col_idx_order def _make_unique(seq): """Uniquify aggfunc name of the pairs in the order list Examples: -------- >>> _make_unique([('a', '<lambda>'), ('a', '<lambda>'), ('b', '<lambda>')]) [('a', '<lambda>_0'), ('a', '<lambda>_1'), ('b', '<lambda>')] """ return [ (pair[0], "_".join([pair[1], str(seq[:i].count(pair))])) if seq.count(pair) > 1 else pair for i, pair in enumerate(seq) ] # TODO: Can't use, because mypy doesn't like us setting __name__ # error: "partial[Any]" has no attribute "__name__" # the type is: # typing.Sequence[Callable[..., ScalarResult]] # -> typing.Sequence[Callable[..., ScalarResult]]: def _managle_lambda_list(aggfuncs: Sequence[Any]) -> Sequence[Any]: """ Possibly mangle a list of aggfuncs. Parameters ---------- aggfuncs : Sequence Returns ------- mangled: list-like A new AggSpec sequence, where lambdas have been converted to have unique names. Notes ----- If just one aggfunc is passed, the name will not be mangled. """ if len(aggfuncs) <= 1: # don't mangle for .agg([lambda x: .]) return aggfuncs i = 0 mangled_aggfuncs = [] for aggfunc in aggfuncs: if com.get_callable_name(aggfunc) == "<lambda>": aggfunc = functools.partial(aggfunc) aggfunc.__name__ = "<lambda_{}>".format(i) i += 1 mangled_aggfuncs.append(aggfunc) return mangled_aggfuncs def _maybe_mangle_lambdas(agg_spec: Any) -> Any: """ Make new lambdas with unique names. Parameters ---------- agg_spec : Any An argument to NDFrameGroupBy.agg. Non-dict-like `agg_spec` are pass through as is. For dict-like `agg_spec` a new spec is returned with name-mangled lambdas. Returns ------- mangled : Any Same type as the input. Examples -------- >>> _maybe_mangle_lambdas('sum') 'sum' >>> _maybe_mangle_lambdas([lambda: 1, lambda: 2]) # doctest: +SKIP [<function __main__.<lambda_0>, <function pandas...._make_lambda.<locals>.f(*args, **kwargs)>] """ is_dict = is_dict_like(agg_spec) if not (is_dict or is_list_like(agg_spec)): return agg_spec mangled_aggspec = type(agg_spec)() # dict or OrderdDict if is_dict: for key, aggfuncs in agg_spec.items(): if is_list_like(aggfuncs) and not is_dict_like(aggfuncs): mangled_aggfuncs = _managle_lambda_list(aggfuncs) else: mangled_aggfuncs = aggfuncs mangled_aggspec[key] = mangled_aggfuncs else: mangled_aggspec = _managle_lambda_list(agg_spec) return mangled_aggspec def _recast_datetimelike_result(result: DataFrame) -> DataFrame: """ If we have date/time like in the original, then coerce dates as we are stacking can easily have object dtypes here. Parameters ---------- result : DataFrame Returns ------- DataFrame Notes ----- - Assumes Groupby._selected_obj has ndim==2 and at least one datetimelike column """ result = result.copy() obj_cols = [ idx for idx in range(len(result.columns)) if is_object_dtype(result.dtypes.iloc[idx]) ] # See GH#26285 for n in obj_cols: converted = maybe_convert_objects( result.iloc[:, n].values, convert_numeric=False ) result.iloc[:, n] = converted return result
BugsInPy/BugsInPy/temp/projects/pandas/bug-140-fixed/pandas/pandas/core/groupby/generic.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-140-buggy/pandas/pandas/core/groupby/generic.py
pandas-bug-26
import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, doc, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_to_datetimelike, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.arrays.base import ExtensionArray, _extension_array_shared_docs from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = "object" if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self) -> "Categorical": """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @doc(_shared_docs["searchsorted"], klass="Categorical") def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ warn( "Categorical.to_dense is deprecated and will be removed in " "a future version. Use np.asarray(cat) instead.", FutureWarning, stacklevel=2, ) return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: # TODO: dispatch when self.categories is EA-dtype values = np.asarray(self).reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, (np.ndarray, Categorical, ABCSeries)): # We get ndarray or Categorical if called via Series.fillna, # where it will unwrap another aligned Series before getting here mask = ~algorithms.isin(value, self.categories) if not isna(value[mask]).all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes = codes.copy() codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (2, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = ( f"'fill_value' ('{fill_value}') is not in this " "Categorical's categories." ) raise TypeError(msg) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` See Also -------- pandas.unique CategoricalIndex.unique Series.unique Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list("baabc")).unique() [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list("baabc"), categories=list("abc")).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical( ... list("baabc"), categories=list("abc"), ordered=True ... ).unique() [b, a, c] Categories (3, object): [a < b < c] """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 2, 3, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() # build a dict of (to replace -> value) pairs if is_list_like(to_replace): # if to_replace is list-like and value is scalar replace_dict = {replace_value: value for replace_value in to_replace} else: # if both to_replace and value are scalar replace_dict = {to_replace: value} # other cases, like if both to_replace and value are list-like or if # to_replace is a dict, are handled separately in NDFrame for replace_value, new_value in replace_dict.items(): if new_value == replace_value: continue if replace_value in cat.categories: if isna(new_value): cat.remove_categories(replace_value, inplace=True) continue categories = cat.categories.tolist() index = categories.index(replace_value) if new_value in cat.categories: value_index = categories.index(new_value) cat._codes[cat._codes == index] = value_index cat.remove_categories(replace_value, inplace=True) else: categories[index] = new_value cat.rename_categories(categories, inplace=True) if not inplace: return cat # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s = pd.Series(list("abbccc")).astype("category") >>> s 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] >>> s.cat.categories Index(['a', 'b', 'c'], dtype='object') >>> s.cat.rename_categories(list("cba")) 0 c 1 b 2 b 3 a 4 a 5 a dtype: category Categories (3, object): [c, b, a] >>> s.cat.reorder_categories(list("cba")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [c, b, a] >>> s.cat.add_categories(["d", "e"]) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): [a, b, c, d, e] >>> s.cat.remove_categories(["a", "c"]) 0 NaN 1 b 2 b 3 NaN 4 NaN 5 NaN dtype: category Categories (1, object): [b] >>> s1 = s.cat.add_categories(["d", "e"]) >>> s1.cat.remove_unused_categories() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] >>> s.cat.set_categories(list("abcde")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): [a, b, c, d, e] >>> s.cat.as_ordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a < b < c] >>> s.cat.as_unordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = maybe_cast_to_extension_array(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) elif not dtype_equal: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1], dtype=int8) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables))) import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, doc, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import ( coerce_indexer_dtype, maybe_cast_to_extension_array, maybe_infer_to_datetimelike, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.arrays.base import ExtensionArray, _extension_array_shared_docs from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too if opname == "__ne__": ret[(self._codes == -1) & (other_codes == -1)] = True else: ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: sanitize_dtype = "object" if len(values) == 0 else None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError as err: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) from err except ValueError as err: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) from err # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories : Rename categories. add_categories : Add new categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. remove_categories : Remove the specified categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_unused_categories : Remove categories which are not used. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories : Rename categories. reorder_categories : Reorder categories. add_categories : Add new categories. remove_categories : Remove the specified categories. set_categories : Set the categories to the specified ones. """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self) -> "Categorical": """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @doc(_shared_docs["searchsorted"], klass="Categorical") def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes def argsort(self, ascending=True, kind="quicksort", **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2, 2, NaN, 5] Categories (2, int64): [2, 5] >>> c.sort_values() [2, 2, 5, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2, 2, 5] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5, 2, 2] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ warn( "Categorical.to_dense is deprecated and will be removed in " "a future version. Use np.asarray(cat) instead.", FutureWarning, stacklevel=2, ) return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: # TODO: dispatch when self.categories is EA-dtype values = np.asarray(self).reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, (np.ndarray, Categorical, ABCSeries)): # We get ndarray or Categorical if called via Series.fillna, # where it will unwrap another aligned Series before getting here mask = ~algorithms.isin(value, self.categories) if not isna(value[mask]).all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes = codes.copy() codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (2, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = ( f"'fill_value' ('{fill_value}') is not in this " "Categorical's categories." ) raise TypeError(msg) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna and good.any(): pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` See Also -------- pandas.unique CategoricalIndex.unique Series.unique Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list("baabc")).unique() [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list("baabc"), categories=list("abc")).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical( ... list("baabc"), categories=list("abc"), ordered=True ... ).unique() [b, a, c] Categories (3, object): [a < b < c] """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 2, 3, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() # build a dict of (to replace -> value) pairs if is_list_like(to_replace): # if to_replace is list-like and value is scalar replace_dict = {replace_value: value for replace_value in to_replace} else: # if both to_replace and value are scalar replace_dict = {to_replace: value} # other cases, like if both to_replace and value are list-like or if # to_replace is a dict, are handled separately in NDFrame for replace_value, new_value in replace_dict.items(): if new_value == replace_value: continue if replace_value in cat.categories: if isna(new_value): cat.remove_categories(replace_value, inplace=True) continue categories = cat.categories.tolist() index = categories.index(replace_value) if new_value in cat.categories: value_index = categories.index(new_value) cat._codes[cat._codes == index] = value_index cat.remove_categories(replace_value, inplace=True) else: categories[index] = new_value cat.rename_categories(categories, inplace=True) if not inplace: return cat # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s = pd.Series(list("abbccc")).astype("category") >>> s 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] >>> s.cat.categories Index(['a', 'b', 'c'], dtype='object') >>> s.cat.rename_categories(list("cba")) 0 c 1 b 2 b 3 a 4 a 5 a dtype: category Categories (3, object): [c, b, a] >>> s.cat.reorder_categories(list("cba")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [c, b, a] >>> s.cat.add_categories(["d", "e"]) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): [a, b, c, d, e] >>> s.cat.remove_categories(["a", "c"]) 0 NaN 1 b 2 b 3 NaN 4 NaN 5 NaN dtype: category Categories (1, object): [b] >>> s1 = s.cat.add_categories(["d", "e"]) >>> s1.cat.remove_unused_categories() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] >>> s.cat.set_categories(list("abcde")) 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (5, object): [a, b, c, d, e] >>> s.cat.as_ordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a < b < c] >>> s.cat.as_unordered() 0 a 1 b 2 b 3 c 4 c 5 c dtype: category Categories (3, object): [a, b, c] """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = maybe_cast_to_extension_array(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) elif not dtype_equal: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1], dtype=int8) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables)))
BugsInPy/BugsInPy/temp/projects/pandas/bug-26-fixed/pandas/pandas/core/arrays/categorical.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-26-buggy/pandas/pandas/core/arrays/categorical.py
pandas-bug-64
""" Utilities for conversion to writer-agnostic Excel representation. """ from functools import reduce import itertools import re from typing import Callable, Dict, Optional, Sequence, Union import warnings import numpy as np from pandas._typing import Label from pandas.core.dtypes import missing from pandas.core.dtypes.common import is_float, is_scalar from pandas.core.dtypes.generic import ABCIndex, ABCMultiIndex, ABCPeriodIndex from pandas import Index import pandas.core.common as com from pandas.io.common import stringify_path from pandas.io.formats.css import CSSResolver, CSSWarning from pandas.io.formats.format import get_level_lengths from pandas.io.formats.printing import pprint_thing class ExcelCell: __fields__ = ("row", "col", "val", "style", "mergestart", "mergeend") __slots__ = __fields__ def __init__( self, row: int, col: int, val, style=None, mergestart=None, mergeend=None ): self.row = row self.col = col self.val = val self.style = style self.mergestart = mergestart self.mergeend = mergeend class CSSToExcelConverter: """A callable for converting CSS declarations to ExcelWriter styles Supports parts of CSS 2.2, with minimal CSS 3.0 support (e.g. text-shadow), focusing on font styling, backgrounds, borders and alignment. Operates by first computing CSS styles in a fairly generic way (see :meth:`compute_css`) then determining Excel style properties from CSS properties (see :meth:`build_xlstyle`). Parameters ---------- inherited : str, optional CSS declarations understood to be the containing scope for the CSS processed by :meth:`__call__`. """ # NB: Most of the methods here could be classmethods, as only __init__ # and __call__ make use of instance attributes. We leave them as # instancemethods so that users can easily experiment with extensions # without monkey-patching. def __init__(self, inherited: Optional[str] = None): if inherited is not None: inherited = self.compute_css(inherited) self.inherited = inherited compute_css = CSSResolver() def __call__(self, declarations_str: str) -> Dict[str, Dict[str, str]]: """ Convert CSS declarations to ExcelWriter style. Parameters ---------- declarations_str : str List of CSS declarations. e.g. "font-weight: bold; background: blue" Returns ------- xlstyle : dict A style as interpreted by ExcelWriter when found in ExcelCell.style. """ # TODO: memoize? properties = self.compute_css(declarations_str, self.inherited) return self.build_xlstyle(properties) def build_xlstyle(self, props: Dict[str, str]) -> Dict[str, Dict[str, str]]: out = { "alignment": self.build_alignment(props), "border": self.build_border(props), "fill": self.build_fill(props), "font": self.build_font(props), "number_format": self.build_number_format(props), } # TODO: handle cell width and height: needs support in pandas.io.excel def remove_none(d: Dict[str, str]) -> None: """Remove key where value is None, through nested dicts""" for k, v in list(d.items()): if v is None: del d[k] elif isinstance(v, dict): remove_none(v) if not v: del d[k] remove_none(out) return out VERTICAL_MAP = { "top": "top", "text-top": "top", "middle": "center", "baseline": "bottom", "bottom": "bottom", "text-bottom": "bottom", # OpenXML also has 'justify', 'distributed' } def build_alignment(self, props) -> Dict[str, Optional[Union[bool, str]]]: # TODO: text-indent, padding-left -> alignment.indent return { "horizontal": props.get("text-align"), "vertical": self.VERTICAL_MAP.get(props.get("vertical-align")), "wrap_text": ( None if props.get("white-space") is None else props["white-space"] not in ("nowrap", "pre", "pre-line") ), } def build_border(self, props: Dict) -> Dict[str, Dict[str, str]]: return { side: { "style": self._border_style( props.get(f"border-{side}-style"), props.get(f"border-{side}-width"), ), "color": self.color_to_excel(props.get(f"border-{side}-color")), } for side in ["top", "right", "bottom", "left"] } def _border_style(self, style: Optional[str], width): # convert styles and widths to openxml, one of: # 'dashDot' # 'dashDotDot' # 'dashed' # 'dotted' # 'double' # 'hair' # 'medium' # 'mediumDashDot' # 'mediumDashDotDot' # 'mediumDashed' # 'slantDashDot' # 'thick' # 'thin' if width is None and style is None: return None if style == "none" or style == "hidden": return None if width is None: width = "2pt" width = float(width[:-2]) if width < 1e-5: return None elif width < 1.3: width_name = "thin" elif width < 2.8: width_name = "medium" else: width_name = "thick" if style in (None, "groove", "ridge", "inset", "outset"): # not handled style = "solid" if style == "double": return "double" if style == "solid": return width_name if style == "dotted": if width_name in ("hair", "thin"): return "dotted" return "mediumDashDotDot" if style == "dashed": if width_name in ("hair", "thin"): return "dashed" return "mediumDashed" def build_fill(self, props: Dict[str, str]): # TODO: perhaps allow for special properties # -excel-pattern-bgcolor and -excel-pattern-type fill_color = props.get("background-color") if fill_color not in (None, "transparent", "none"): return {"fgColor": self.color_to_excel(fill_color), "patternType": "solid"} BOLD_MAP = { "bold": True, "bolder": True, "600": True, "700": True, "800": True, "900": True, "normal": False, "lighter": False, "100": False, "200": False, "300": False, "400": False, "500": False, } ITALIC_MAP = {"normal": False, "italic": True, "oblique": True} def build_font(self, props) -> Dict[str, Optional[Union[bool, int, str]]]: size = props.get("font-size") if size is not None: assert size.endswith("pt") size = float(size[:-2]) font_names_tmp = re.findall( r"""(?x) ( "(?:[^"]|\\")+" | '(?:[^']|\\')+' | [^'",]+ )(?=,|\s*$) """, props.get("font-family", ""), ) font_names = [] for name in font_names_tmp: if name[:1] == '"': name = name[1:-1].replace('\\"', '"') elif name[:1] == "'": name = name[1:-1].replace("\\'", "'") else: name = name.strip() if name: font_names.append(name) family = None for name in font_names: if name == "serif": family = 1 # roman break elif name == "sans-serif": family = 2 # swiss break elif name == "cursive": family = 4 # script break elif name == "fantasy": family = 5 # decorative break decoration = props.get("text-decoration") if decoration is not None: decoration = decoration.split() else: decoration = () return { "name": font_names[0] if font_names else None, "family": family, "size": size, "bold": self.BOLD_MAP.get(props.get("font-weight")), "italic": self.ITALIC_MAP.get(props.get("font-style")), "underline": ("single" if "underline" in decoration else None), "strike": ("line-through" in decoration) or None, "color": self.color_to_excel(props.get("color")), # shadow if nonzero digit before shadow color "shadow": ( bool(re.search("^[^#(]*[1-9]", props["text-shadow"])) if "text-shadow" in props else None ), # FIXME: dont leave commented-out # 'vertAlign':, # 'charset': , # 'scheme': , # 'outline': , # 'condense': , } NAMED_COLORS = { "maroon": "800000", "brown": "A52A2A", "red": "FF0000", "pink": "FFC0CB", "orange": "FFA500", "yellow": "FFFF00", "olive": "808000", "green": "008000", "purple": "800080", "fuchsia": "FF00FF", "lime": "00FF00", "teal": "008080", "aqua": "00FFFF", "blue": "0000FF", "navy": "000080", "black": "000000", "gray": "808080", "grey": "808080", "silver": "C0C0C0", "white": "FFFFFF", } def color_to_excel(self, val: Optional[str]): if val is None: return None if val.startswith("#") and len(val) == 7: return val[1:].upper() if val.startswith("#") and len(val) == 4: return (val[1] * 2 + val[2] * 2 + val[3] * 2).upper() try: return self.NAMED_COLORS[val] except KeyError: warnings.warn(f"Unhandled color format: {repr(val)}", CSSWarning) def build_number_format(self, props: Dict) -> Dict[str, Optional[str]]: return {"format_code": props.get("number-format")} class ExcelFormatter: """ Class for formatting a DataFrame to a list of ExcelCells, Parameters ---------- df : DataFrame or Styler na_rep: na representation float_format : string, default None Format string for floating point numbers cols : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True output row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. merge_cells : boolean, default False Format MultiIndex and Hierarchical Rows as merged cells. inf_rep : string, default `'inf'` representation for np.inf values (which aren't representable in Excel) A `'-'` sign will be added in front of -inf. style_converter : callable, optional This translates Styler styles (CSS) into ExcelWriter styles. Defaults to ``CSSToExcelConverter()``. It should have signature css_declarations string -> excel style. This is only called for body cells. """ max_rows = 2 ** 20 max_cols = 2 ** 14 def __init__( self, df, na_rep: str = "", float_format: Optional[str] = None, cols: Optional[Sequence[Label]] = None, header: Union[Sequence[Label], bool] = True, index: bool = True, index_label: Optional[Union[Label, Sequence[Label]]] = None, merge_cells: bool = False, inf_rep: str = "inf", style_converter: Optional[Callable] = None, ): self.rowcounter = 0 self.na_rep = na_rep if hasattr(df, "render"): self.styler = df df = df.data if style_converter is None: style_converter = CSSToExcelConverter() self.style_converter = style_converter else: self.styler = None self.df = df if cols is not None: # all missing, raise if not len(Index(cols) & df.columns): raise KeyError("passes columns are not ALL present dataframe") if len(Index(cols) & df.columns) != len(cols): # Deprecated in GH#17295, enforced in 1.0.0 raise KeyError("Not all names specified in 'columns' are found") self.df = df self.columns = self.df.columns self.float_format = float_format self.index = index self.index_label = index_label self.header = header self.merge_cells = merge_cells self.inf_rep = inf_rep @property def header_style(self): return { "font": {"bold": True}, "borders": { "top": "thin", "right": "thin", "bottom": "thin", "left": "thin", }, "alignment": {"horizontal": "center", "vertical": "top"}, } def _format_value(self, val): if is_scalar(val) and missing.isna(val): val = self.na_rep elif is_float(val): if missing.isposinf_scalar(val): val = self.inf_rep elif missing.isneginf_scalar(val): val = f"-{self.inf_rep}" elif self.float_format is not None: val = float(self.float_format % val) if getattr(val, "tzinfo", None) is not None: raise ValueError( "Excel does not support datetimes with " "timezones. Please ensure that datetimes " "are timezone unaware before writing to Excel." ) return val def _format_header_mi(self): if self.columns.nlevels > 1: if not self.index: raise NotImplementedError( "Writing to Excel with MultiIndex columns and no " "index ('index'=False) is not yet implemented." ) has_aliases = isinstance(self.header, (tuple, list, np.ndarray, ABCIndex)) if not (has_aliases or self.header): return columns = self.columns level_strs = columns.format( sparsify=self.merge_cells, adjoin=False, names=False ) level_lengths = get_level_lengths(level_strs) coloffset = 0 lnum = 0 if self.index and isinstance(self.df.index, ABCMultiIndex): coloffset = len(self.df.index[0]) - 1 if self.merge_cells: # Format multi-index as a merged cells. for lnum in range(len(level_lengths)): name = columns.names[lnum] yield ExcelCell(lnum, coloffset, name, self.header_style) for lnum, (spans, levels, level_codes) in enumerate( zip(level_lengths, columns.levels, columns.codes) ): values = levels.take(level_codes) for i in spans: if spans[i] > 1: yield ExcelCell( lnum, coloffset + i + 1, values[i], self.header_style, lnum, coloffset + i + spans[i], ) else: yield ExcelCell( lnum, coloffset + i + 1, values[i], self.header_style ) else: # Format in legacy format with dots to indicate levels. for i, values in enumerate(zip(*level_strs)): v = ".".join(map(pprint_thing, values)) yield ExcelCell(lnum, coloffset + i + 1, v, self.header_style) self.rowcounter = lnum def _format_header_regular(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, ABCIndex)) if has_aliases or self.header: coloffset = 0 if self.index: coloffset = 1 if isinstance(self.df.index, ABCMultiIndex): coloffset = len(self.df.index[0]) colnames = self.columns if has_aliases: if len(self.header) != len(self.columns): raise ValueError( f"Writing {len(self.columns)} cols but got {len(self.header)} " "aliases" ) else: colnames = self.header for colindex, colname in enumerate(colnames): yield ExcelCell( self.rowcounter, colindex + coloffset, colname, self.header_style ) def _format_header(self): if isinstance(self.columns, ABCMultiIndex): gen = self._format_header_mi() else: gen = self._format_header_regular() gen2 = () if self.df.index.names: row = [x if x is not None else "" for x in self.df.index.names] + [ "" ] * len(self.columns) if reduce(lambda x, y: x and y, map(lambda x: x != "", row)): gen2 = ( ExcelCell(self.rowcounter, colindex, val, self.header_style) for colindex, val in enumerate(row) ) self.rowcounter += 1 return itertools.chain(gen, gen2) def _format_body(self): if isinstance(self.df.index, ABCMultiIndex): return self._format_hierarchical_rows() else: return self._format_regular_rows() def _format_regular_rows(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, ABCIndex)) if has_aliases or self.header: self.rowcounter += 1 # output index and index_label? if self.index: # check aliases # if list only take first as this is not a MultiIndex if self.index_label and isinstance( self.index_label, (list, tuple, np.ndarray, Index) ): index_label = self.index_label[0] # if string good to go elif self.index_label and isinstance(self.index_label, str): index_label = self.index_label else: index_label = self.df.index.names[0] if isinstance(self.columns, ABCMultiIndex): self.rowcounter += 1 if index_label and self.header is not False: yield ExcelCell(self.rowcounter - 1, 0, index_label, self.header_style) # write index_values index_values = self.df.index if isinstance(self.df.index, ABCPeriodIndex): index_values = self.df.index.to_timestamp() for idx, idxval in enumerate(index_values): yield ExcelCell(self.rowcounter + idx, 0, idxval, self.header_style) coloffset = 1 else: coloffset = 0 for cell in self._generate_body(coloffset): yield cell def _format_hierarchical_rows(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, ABCIndex)) if has_aliases or self.header: self.rowcounter += 1 gcolidx = 0 if self.index: index_labels = self.df.index.names # check for aliases if self.index_label and isinstance( self.index_label, (list, tuple, np.ndarray, Index) ): index_labels = self.index_label # MultiIndex columns require an extra row # with index names (blank if None) for # unambiguous round-trip, unless not merging, # in which case the names all go on one row Issue #11328 if isinstance(self.columns, ABCMultiIndex) and self.merge_cells: self.rowcounter += 1 # if index labels are not empty go ahead and dump if com.any_not_none(*index_labels) and self.header is not False: for cidx, name in enumerate(index_labels): yield ExcelCell(self.rowcounter - 1, cidx, name, self.header_style) if self.merge_cells: # Format hierarchical rows as merged cells. level_strs = self.df.index.format( sparsify=True, adjoin=False, names=False ) level_lengths = get_level_lengths(level_strs) for spans, levels, level_codes in zip( level_lengths, self.df.index.levels, self.df.index.codes ): values = levels.take( level_codes, allow_fill=levels._can_hold_na, fill_value=True ) for i in spans: if spans[i] > 1: yield ExcelCell( self.rowcounter + i, gcolidx, values[i], self.header_style, self.rowcounter + i + spans[i] - 1, gcolidx, ) else: yield ExcelCell( self.rowcounter + i, gcolidx, values[i], self.header_style, ) gcolidx += 1 else: # Format hierarchical rows with non-merged values. for indexcolvals in zip(*self.df.index): for idx, indexcolval in enumerate(indexcolvals): yield ExcelCell( self.rowcounter + idx, gcolidx, indexcolval, self.header_style, ) gcolidx += 1 for cell in self._generate_body(gcolidx): yield cell def _generate_body(self, coloffset: int): if self.styler is None: styles = None else: styles = self.styler._compute().ctx if not styles: styles = None xlstyle = None # Write the body of the frame data series by series. for colidx in range(len(self.columns)): series = self.df.iloc[:, colidx] for i, val in enumerate(series): if styles is not None: xlstyle = self.style_converter(";".join(styles[i, colidx])) yield ExcelCell(self.rowcounter + i, colidx + coloffset, val, xlstyle) def get_formatted_cells(self): for cell in itertools.chain(self._format_header(), self._format_body()): cell.val = self._format_value(cell.val) yield cell def write( self, writer, sheet_name="Sheet1", startrow=0, startcol=0, freeze_panes=None, engine=None, ): """ writer : string or ExcelWriter object File path or existing ExcelWriter sheet_name : string, default 'Sheet1' Name of sheet which will contain DataFrame startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame freeze_panes : tuple of integer (length 2), default None Specifies the one-based bottommost row and rightmost column that is to be frozen engine : string, default None write engine to use if writer is a path - you can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. """ from pandas.io.excel import ExcelWriter num_rows, num_cols = self.df.shape if num_rows > self.max_rows or num_cols > self.max_cols: raise ValueError( f"This sheet is too large! Your sheet size is: {num_rows}, {num_cols} " f"Max sheet size is: {self.max_rows}, {self.max_cols}" ) if isinstance(writer, ExcelWriter): need_save = False else: writer = ExcelWriter(stringify_path(writer), engine=engine) need_save = True formatted_cells = self.get_formatted_cells() writer.write_cells( formatted_cells, sheet_name, startrow=startrow, startcol=startcol, freeze_panes=freeze_panes, ) if need_save: writer.save() """ Utilities for conversion to writer-agnostic Excel representation. """ from functools import reduce import itertools import re from typing import Callable, Dict, Optional, Sequence, Union import warnings import numpy as np from pandas._typing import Label from pandas.core.dtypes import missing from pandas.core.dtypes.common import is_float, is_scalar from pandas.core.dtypes.generic import ABCIndex, ABCMultiIndex, ABCPeriodIndex from pandas import Index import pandas.core.common as com from pandas.io.common import stringify_path from pandas.io.formats.css import CSSResolver, CSSWarning from pandas.io.formats.format import get_level_lengths from pandas.io.formats.printing import pprint_thing class ExcelCell: __fields__ = ("row", "col", "val", "style", "mergestart", "mergeend") __slots__ = __fields__ def __init__( self, row: int, col: int, val, style=None, mergestart=None, mergeend=None ): self.row = row self.col = col self.val = val self.style = style self.mergestart = mergestart self.mergeend = mergeend class CSSToExcelConverter: """A callable for converting CSS declarations to ExcelWriter styles Supports parts of CSS 2.2, with minimal CSS 3.0 support (e.g. text-shadow), focusing on font styling, backgrounds, borders and alignment. Operates by first computing CSS styles in a fairly generic way (see :meth:`compute_css`) then determining Excel style properties from CSS properties (see :meth:`build_xlstyle`). Parameters ---------- inherited : str, optional CSS declarations understood to be the containing scope for the CSS processed by :meth:`__call__`. """ # NB: Most of the methods here could be classmethods, as only __init__ # and __call__ make use of instance attributes. We leave them as # instancemethods so that users can easily experiment with extensions # without monkey-patching. def __init__(self, inherited: Optional[str] = None): if inherited is not None: inherited = self.compute_css(inherited) self.inherited = inherited compute_css = CSSResolver() def __call__(self, declarations_str: str) -> Dict[str, Dict[str, str]]: """ Convert CSS declarations to ExcelWriter style. Parameters ---------- declarations_str : str List of CSS declarations. e.g. "font-weight: bold; background: blue" Returns ------- xlstyle : dict A style as interpreted by ExcelWriter when found in ExcelCell.style. """ # TODO: memoize? properties = self.compute_css(declarations_str, self.inherited) return self.build_xlstyle(properties) def build_xlstyle(self, props: Dict[str, str]) -> Dict[str, Dict[str, str]]: out = { "alignment": self.build_alignment(props), "border": self.build_border(props), "fill": self.build_fill(props), "font": self.build_font(props), "number_format": self.build_number_format(props), } # TODO: handle cell width and height: needs support in pandas.io.excel def remove_none(d: Dict[str, str]) -> None: """Remove key where value is None, through nested dicts""" for k, v in list(d.items()): if v is None: del d[k] elif isinstance(v, dict): remove_none(v) if not v: del d[k] remove_none(out) return out VERTICAL_MAP = { "top": "top", "text-top": "top", "middle": "center", "baseline": "bottom", "bottom": "bottom", "text-bottom": "bottom", # OpenXML also has 'justify', 'distributed' } def build_alignment(self, props) -> Dict[str, Optional[Union[bool, str]]]: # TODO: text-indent, padding-left -> alignment.indent return { "horizontal": props.get("text-align"), "vertical": self.VERTICAL_MAP.get(props.get("vertical-align")), "wrap_text": ( None if props.get("white-space") is None else props["white-space"] not in ("nowrap", "pre", "pre-line") ), } def build_border(self, props: Dict) -> Dict[str, Dict[str, str]]: return { side: { "style": self._border_style( props.get(f"border-{side}-style"), props.get(f"border-{side}-width"), ), "color": self.color_to_excel(props.get(f"border-{side}-color")), } for side in ["top", "right", "bottom", "left"] } def _border_style(self, style: Optional[str], width): # convert styles and widths to openxml, one of: # 'dashDot' # 'dashDotDot' # 'dashed' # 'dotted' # 'double' # 'hair' # 'medium' # 'mediumDashDot' # 'mediumDashDotDot' # 'mediumDashed' # 'slantDashDot' # 'thick' # 'thin' if width is None and style is None: return None if style == "none" or style == "hidden": return None if width is None: width = "2pt" width = float(width[:-2]) if width < 1e-5: return None elif width < 1.3: width_name = "thin" elif width < 2.8: width_name = "medium" else: width_name = "thick" if style in (None, "groove", "ridge", "inset", "outset"): # not handled style = "solid" if style == "double": return "double" if style == "solid": return width_name if style == "dotted": if width_name in ("hair", "thin"): return "dotted" return "mediumDashDotDot" if style == "dashed": if width_name in ("hair", "thin"): return "dashed" return "mediumDashed" def build_fill(self, props: Dict[str, str]): # TODO: perhaps allow for special properties # -excel-pattern-bgcolor and -excel-pattern-type fill_color = props.get("background-color") if fill_color not in (None, "transparent", "none"): return {"fgColor": self.color_to_excel(fill_color), "patternType": "solid"} BOLD_MAP = { "bold": True, "bolder": True, "600": True, "700": True, "800": True, "900": True, "normal": False, "lighter": False, "100": False, "200": False, "300": False, "400": False, "500": False, } ITALIC_MAP = {"normal": False, "italic": True, "oblique": True} def build_font(self, props) -> Dict[str, Optional[Union[bool, int, str]]]: size = props.get("font-size") if size is not None: assert size.endswith("pt") size = float(size[:-2]) font_names_tmp = re.findall( r"""(?x) ( "(?:[^"]|\\")+" | '(?:[^']|\\')+' | [^'",]+ )(?=,|\s*$) """, props.get("font-family", ""), ) font_names = [] for name in font_names_tmp: if name[:1] == '"': name = name[1:-1].replace('\\"', '"') elif name[:1] == "'": name = name[1:-1].replace("\\'", "'") else: name = name.strip() if name: font_names.append(name) family = None for name in font_names: if name == "serif": family = 1 # roman break elif name == "sans-serif": family = 2 # swiss break elif name == "cursive": family = 4 # script break elif name == "fantasy": family = 5 # decorative break decoration = props.get("text-decoration") if decoration is not None: decoration = decoration.split() else: decoration = () return { "name": font_names[0] if font_names else None, "family": family, "size": size, "bold": self.BOLD_MAP.get(props.get("font-weight")), "italic": self.ITALIC_MAP.get(props.get("font-style")), "underline": ("single" if "underline" in decoration else None), "strike": ("line-through" in decoration) or None, "color": self.color_to_excel(props.get("color")), # shadow if nonzero digit before shadow color "shadow": ( bool(re.search("^[^#(]*[1-9]", props["text-shadow"])) if "text-shadow" in props else None ), # FIXME: dont leave commented-out # 'vertAlign':, # 'charset': , # 'scheme': , # 'outline': , # 'condense': , } NAMED_COLORS = { "maroon": "800000", "brown": "A52A2A", "red": "FF0000", "pink": "FFC0CB", "orange": "FFA500", "yellow": "FFFF00", "olive": "808000", "green": "008000", "purple": "800080", "fuchsia": "FF00FF", "lime": "00FF00", "teal": "008080", "aqua": "00FFFF", "blue": "0000FF", "navy": "000080", "black": "000000", "gray": "808080", "grey": "808080", "silver": "C0C0C0", "white": "FFFFFF", } def color_to_excel(self, val: Optional[str]): if val is None: return None if val.startswith("#") and len(val) == 7: return val[1:].upper() if val.startswith("#") and len(val) == 4: return (val[1] * 2 + val[2] * 2 + val[3] * 2).upper() try: return self.NAMED_COLORS[val] except KeyError: warnings.warn(f"Unhandled color format: {repr(val)}", CSSWarning) def build_number_format(self, props: Dict) -> Dict[str, Optional[str]]: return {"format_code": props.get("number-format")} class ExcelFormatter: """ Class for formatting a DataFrame to a list of ExcelCells, Parameters ---------- df : DataFrame or Styler na_rep: na representation float_format : string, default None Format string for floating point numbers cols : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True output row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. merge_cells : boolean, default False Format MultiIndex and Hierarchical Rows as merged cells. inf_rep : string, default `'inf'` representation for np.inf values (which aren't representable in Excel) A `'-'` sign will be added in front of -inf. style_converter : callable, optional This translates Styler styles (CSS) into ExcelWriter styles. Defaults to ``CSSToExcelConverter()``. It should have signature css_declarations string -> excel style. This is only called for body cells. """ max_rows = 2 ** 20 max_cols = 2 ** 14 def __init__( self, df, na_rep: str = "", float_format: Optional[str] = None, cols: Optional[Sequence[Label]] = None, header: Union[Sequence[Label], bool] = True, index: bool = True, index_label: Optional[Union[Label, Sequence[Label]]] = None, merge_cells: bool = False, inf_rep: str = "inf", style_converter: Optional[Callable] = None, ): self.rowcounter = 0 self.na_rep = na_rep if hasattr(df, "render"): self.styler = df df = df.data if style_converter is None: style_converter = CSSToExcelConverter() self.style_converter = style_converter else: self.styler = None self.df = df if cols is not None: # all missing, raise if not len(Index(cols) & df.columns): raise KeyError("passes columns are not ALL present dataframe") if len(Index(cols) & df.columns) != len(cols): # Deprecated in GH#17295, enforced in 1.0.0 raise KeyError("Not all names specified in 'columns' are found") self.df = df.reindex(columns=cols) self.columns = self.df.columns self.float_format = float_format self.index = index self.index_label = index_label self.header = header self.merge_cells = merge_cells self.inf_rep = inf_rep @property def header_style(self): return { "font": {"bold": True}, "borders": { "top": "thin", "right": "thin", "bottom": "thin", "left": "thin", }, "alignment": {"horizontal": "center", "vertical": "top"}, } def _format_value(self, val): if is_scalar(val) and missing.isna(val): val = self.na_rep elif is_float(val): if missing.isposinf_scalar(val): val = self.inf_rep elif missing.isneginf_scalar(val): val = f"-{self.inf_rep}" elif self.float_format is not None: val = float(self.float_format % val) if getattr(val, "tzinfo", None) is not None: raise ValueError( "Excel does not support datetimes with " "timezones. Please ensure that datetimes " "are timezone unaware before writing to Excel." ) return val def _format_header_mi(self): if self.columns.nlevels > 1: if not self.index: raise NotImplementedError( "Writing to Excel with MultiIndex columns and no " "index ('index'=False) is not yet implemented." ) has_aliases = isinstance(self.header, (tuple, list, np.ndarray, ABCIndex)) if not (has_aliases or self.header): return columns = self.columns level_strs = columns.format( sparsify=self.merge_cells, adjoin=False, names=False ) level_lengths = get_level_lengths(level_strs) coloffset = 0 lnum = 0 if self.index and isinstance(self.df.index, ABCMultiIndex): coloffset = len(self.df.index[0]) - 1 if self.merge_cells: # Format multi-index as a merged cells. for lnum in range(len(level_lengths)): name = columns.names[lnum] yield ExcelCell(lnum, coloffset, name, self.header_style) for lnum, (spans, levels, level_codes) in enumerate( zip(level_lengths, columns.levels, columns.codes) ): values = levels.take(level_codes) for i in spans: if spans[i] > 1: yield ExcelCell( lnum, coloffset + i + 1, values[i], self.header_style, lnum, coloffset + i + spans[i], ) else: yield ExcelCell( lnum, coloffset + i + 1, values[i], self.header_style ) else: # Format in legacy format with dots to indicate levels. for i, values in enumerate(zip(*level_strs)): v = ".".join(map(pprint_thing, values)) yield ExcelCell(lnum, coloffset + i + 1, v, self.header_style) self.rowcounter = lnum def _format_header_regular(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, ABCIndex)) if has_aliases or self.header: coloffset = 0 if self.index: coloffset = 1 if isinstance(self.df.index, ABCMultiIndex): coloffset = len(self.df.index[0]) colnames = self.columns if has_aliases: if len(self.header) != len(self.columns): raise ValueError( f"Writing {len(self.columns)} cols but got {len(self.header)} " "aliases" ) else: colnames = self.header for colindex, colname in enumerate(colnames): yield ExcelCell( self.rowcounter, colindex + coloffset, colname, self.header_style ) def _format_header(self): if isinstance(self.columns, ABCMultiIndex): gen = self._format_header_mi() else: gen = self._format_header_regular() gen2 = () if self.df.index.names: row = [x if x is not None else "" for x in self.df.index.names] + [ "" ] * len(self.columns) if reduce(lambda x, y: x and y, map(lambda x: x != "", row)): gen2 = ( ExcelCell(self.rowcounter, colindex, val, self.header_style) for colindex, val in enumerate(row) ) self.rowcounter += 1 return itertools.chain(gen, gen2) def _format_body(self): if isinstance(self.df.index, ABCMultiIndex): return self._format_hierarchical_rows() else: return self._format_regular_rows() def _format_regular_rows(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, ABCIndex)) if has_aliases or self.header: self.rowcounter += 1 # output index and index_label? if self.index: # check aliases # if list only take first as this is not a MultiIndex if self.index_label and isinstance( self.index_label, (list, tuple, np.ndarray, Index) ): index_label = self.index_label[0] # if string good to go elif self.index_label and isinstance(self.index_label, str): index_label = self.index_label else: index_label = self.df.index.names[0] if isinstance(self.columns, ABCMultiIndex): self.rowcounter += 1 if index_label and self.header is not False: yield ExcelCell(self.rowcounter - 1, 0, index_label, self.header_style) # write index_values index_values = self.df.index if isinstance(self.df.index, ABCPeriodIndex): index_values = self.df.index.to_timestamp() for idx, idxval in enumerate(index_values): yield ExcelCell(self.rowcounter + idx, 0, idxval, self.header_style) coloffset = 1 else: coloffset = 0 for cell in self._generate_body(coloffset): yield cell def _format_hierarchical_rows(self): has_aliases = isinstance(self.header, (tuple, list, np.ndarray, ABCIndex)) if has_aliases or self.header: self.rowcounter += 1 gcolidx = 0 if self.index: index_labels = self.df.index.names # check for aliases if self.index_label and isinstance( self.index_label, (list, tuple, np.ndarray, Index) ): index_labels = self.index_label # MultiIndex columns require an extra row # with index names (blank if None) for # unambiguous round-trip, unless not merging, # in which case the names all go on one row Issue #11328 if isinstance(self.columns, ABCMultiIndex) and self.merge_cells: self.rowcounter += 1 # if index labels are not empty go ahead and dump if com.any_not_none(*index_labels) and self.header is not False: for cidx, name in enumerate(index_labels): yield ExcelCell(self.rowcounter - 1, cidx, name, self.header_style) if self.merge_cells: # Format hierarchical rows as merged cells. level_strs = self.df.index.format( sparsify=True, adjoin=False, names=False ) level_lengths = get_level_lengths(level_strs) for spans, levels, level_codes in zip( level_lengths, self.df.index.levels, self.df.index.codes ): values = levels.take( level_codes, allow_fill=levels._can_hold_na, fill_value=True ) for i in spans: if spans[i] > 1: yield ExcelCell( self.rowcounter + i, gcolidx, values[i], self.header_style, self.rowcounter + i + spans[i] - 1, gcolidx, ) else: yield ExcelCell( self.rowcounter + i, gcolidx, values[i], self.header_style, ) gcolidx += 1 else: # Format hierarchical rows with non-merged values. for indexcolvals in zip(*self.df.index): for idx, indexcolval in enumerate(indexcolvals): yield ExcelCell( self.rowcounter + idx, gcolidx, indexcolval, self.header_style, ) gcolidx += 1 for cell in self._generate_body(gcolidx): yield cell def _generate_body(self, coloffset: int): if self.styler is None: styles = None else: styles = self.styler._compute().ctx if not styles: styles = None xlstyle = None # Write the body of the frame data series by series. for colidx in range(len(self.columns)): series = self.df.iloc[:, colidx] for i, val in enumerate(series): if styles is not None: xlstyle = self.style_converter(";".join(styles[i, colidx])) yield ExcelCell(self.rowcounter + i, colidx + coloffset, val, xlstyle) def get_formatted_cells(self): for cell in itertools.chain(self._format_header(), self._format_body()): cell.val = self._format_value(cell.val) yield cell def write( self, writer, sheet_name="Sheet1", startrow=0, startcol=0, freeze_panes=None, engine=None, ): """ writer : string or ExcelWriter object File path or existing ExcelWriter sheet_name : string, default 'Sheet1' Name of sheet which will contain DataFrame startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame freeze_panes : tuple of integer (length 2), default None Specifies the one-based bottommost row and rightmost column that is to be frozen engine : string, default None write engine to use if writer is a path - you can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. """ from pandas.io.excel import ExcelWriter num_rows, num_cols = self.df.shape if num_rows > self.max_rows or num_cols > self.max_cols: raise ValueError( f"This sheet is too large! Your sheet size is: {num_rows}, {num_cols} " f"Max sheet size is: {self.max_rows}, {self.max_cols}" ) if isinstance(writer, ExcelWriter): need_save = False else: writer = ExcelWriter(stringify_path(writer), engine=engine) need_save = True formatted_cells = self.get_formatted_cells() writer.write_cells( formatted_cells, sheet_name, startrow=startrow, startcol=startcol, freeze_panes=freeze_panes, ) if need_save: writer.save()
BugsInPy/BugsInPy/temp/projects/pandas/bug-64-fixed/pandas/pandas/io/formats/excel.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-64-buggy/pandas/pandas/io/formats/excel.py
pandas-bug-78
""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ import collections from collections import abc from io import StringIO import itertools import sys from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, FrozenSet, Hashable, Iterable, List, Optional, Sequence, Set, Tuple, Type, Union, cast, ) import warnings import numpy as np import numpy.ma as ma from pandas._config import get_option from pandas._libs import algos as libalgos, lib from pandas._typing import Axes, Axis, Dtype, FilePathOrBuffer, Level, Renamer from pandas.compat import PY37 from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, deprecate_kwarg, rewrite_axis_style_signature, ) from pandas.util._validators import ( validate_axis_style_args, validate_bool_kwarg, validate_percentile, ) from pandas.core.dtypes.cast import ( cast_scalar_to_array, coerce_to_dtypes, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_cast_to_datetime, maybe_convert_platform, maybe_downcast_to_dtype, maybe_infer_to_datetimelike, maybe_upcast, maybe_upcast_putmask, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_platform_int, infer_dtype_from_object, is_bool_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_named_tuple, is_object_dtype, is_scalar, is_sequence, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import algorithms, common as com, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import Categorical, ExtensionArray from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin as DatetimeLikeArray from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.generic import NDFrame, _shared_docs from pandas.core.indexes import base as ibase from pandas.core.indexes.api import Index, ensure_index, ensure_index_from_sequences from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.multi import maybe_droplevels from pandas.core.indexes.period import PeriodIndex from pandas.core.indexing import check_bool_indexer, convert_to_index_sliceable from pandas.core.internals import BlockManager from pandas.core.internals.construction import ( arrays_to_mgr, get_names_from_index, init_dict, init_ndarray, masked_rec_array_to_mgr, reorder_arrays, sanitize_index, to_arrays, ) from pandas.core.ops.missing import dispatch_fill_zeros from pandas.core.series import Series from pandas.io.common import get_filepath_or_buffer from pandas.io.formats import console, format as fmt from pandas.io.formats.printing import pprint_thing import pandas.plotting if TYPE_CHECKING: from pandas.core.groupby.generic import DataFrameGroupBy from pandas.io.formats.style import Styler # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes="index, columns", klass="DataFrame", axes_single_arg="{0 or 'index', 1 or 'columns'}", axis="""axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", optional_by=""" by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels. - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels. .. versionchanged:: 0.23.0 Allow specifying index or column level names.""", versionadded_to_excel="", optional_labels="""labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", optional_axis="""axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", ) _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : tuple of (str, str), default ('_x', '_y') Suffix to apply to overlapping column names in the left and right side, respectively. To raise an exception on overlapping columns use (False, False). copy : bool, default True If False, avoid copy if possible. indicator : bool or str, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 0.21.0 Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional, size-mutable, potentially heterogeneous tabular data. Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects. .. versionchanged:: 0.23.0 If data is a dict, column order follows insertion-order for Python 3.6 and later. .. versionchanged:: 0.25.0 If data is a list of dicts, column order follows insertion-order for Python 3.6 and later. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer. copy : bool, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input. See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. read_csv read_table read_clipboard Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 """ _typ = "dataframe" @property def _constructor(self) -> Type["DataFrame"]: return DataFrame _constructor_sliced: Type[Series] = Series _deprecations: FrozenSet[str] = NDFrame._deprecations | frozenset([]) _accessors: Set[str] = {"sparse"} @property def _constructor_expanddim(self): raise NotImplementedError("Not supported for DataFrames!") # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index: Optional[Axes] = None, columns: Optional[Axes] = None, dtype: Optional[Dtype] = None, copy: bool = False, ): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr( data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy ) elif isinstance(data, dict): mgr = init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data.soften_mask() # set hardmask False if it was True data[mask] = fill_value else: data = data.copy() mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = init_dict(data, index, columns, dtype=dtype) elif getattr(data, "name", None) is not None: mgr = init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) # For data is list-like, or Iterable (will consume into list) elif isinstance(data, abc.Iterable) and not isinstance(data, (str, bytes)): if not isinstance(data, (abc.Sequence, ExtensionArray)): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], "ndim", 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = to_arrays(data, columns, dtype=dtype) columns = ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = get_names_from_index(data) elif isinstance(data[0], Categorical): index = ibase.default_index(len(data[0])) else: index = ibase.default_index(len(data)) mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = init_dict({}, index, columns, dtype=dtype) else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as err: exc = TypeError( "DataFrame constructor called with " f"incompatible data and dtype: {err}" ) raise exc from err if arr.ndim == 0 and index is not None and columns is not None: values = cast_scalar_to_array( (len(index), len(columns)), data, dtype=dtype ) mgr = init_ndarray( values, index, columns, dtype=values.dtype, copy=False ) else: raise ValueError("DataFrame constructor not properly called!") NDFrame.__init__(self, mgr, fastpath=True) # ---------------------------------------------------------------------- @property def axes(self) -> List[Index]: """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self) -> Tuple[int, int]: """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self) -> bool: """ Whether all the columns in a DataFrame have the same type. Returns ------- bool See Also -------- Index._is_homogeneous_type : Whether the object has a single dtype. MultiIndex._is_homogeneous_type : Whether all the levels of a MultiIndex have the same dtype. Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ if self._data.any_extension_types: return len({block.dtype for block in self._data.blocks}) == 1 else: return not self._data.is_mixed_type # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self) -> bool: """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width: bool = False) -> bool: """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case off non-interactive session, no boundaries apply. `ignore_width` is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( (not ignore_width) and width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(l) for l in value.split("\n")) return repr_width < width def _info_repr(self) -> bool: """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self) -> str: """ Return a string representation for a particular DataFrame. """ buf = StringIO("") if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") max_colwidth = get_option("display.max_colwidth") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string( buf=buf, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, line_width=width, max_colwidth=max_colwidth, show_dimensions=show_dimensions, ) return buf.getvalue() def _repr_html_(self) -> Optional[str]: """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO("") self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"&lt;", 1) val = val.replace(">", r"&gt;", 1) return "<pre>" + val + "</pre>" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") formatter = fmt.DataFrameFormatter( self, columns=None, col_space=None, na_rep="NaN", formatters=None, float_format=None, sparsify=None, justify=None, index_names=True, header=True, index=True, bold_rows=True, escape=True, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=".", table_id=None, render_links=False, ) return formatter.to_html(notebook=True) else: return None @Substitution( header_type="bool or sequence", header="Write out the column names. If a list of strings " "is given, it is assumed to be aliases for the " "column names", col_space_type="int", col_space="The minimum width of each column", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf: Optional[FilePathOrBuffer[str]] = None, columns: Optional[Sequence[str]] = None, col_space: Optional[int] = None, header: Union[bool, Sequence[str]] = True, index: bool = True, na_rep: str = "NaN", formatters: Optional[fmt.formatters_type] = None, float_format: Optional[fmt.float_format_type] = None, sparsify: Optional[bool] = None, index_names: bool = True, justify: Optional[str] = None, max_rows: Optional[int] = None, min_rows: Optional[int] = None, max_cols: Optional[int] = None, show_dimensions: bool = False, decimal: str = ".", line_width: Optional[int] = None, max_colwidth: Optional[int] = None, encoding: Optional[str] = None, ) -> Optional[str]: """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. max_colwidth : int, optional Max width to truncate each column in characters. By default, no limit. .. versionadded:: 1.0.0 encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ from pandas import option_context with option_context("display.max_colwidth", max_colwidth): formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, line_width=line_width, ) return formatter.to_string(buf=buf, encoding=encoding) # ---------------------------------------------------------------------- @property def style(self) -> "Styler": """ Returns a Styler object. Contains methods for building a styled HTML representation of the DataFrame. a styled HTML representation fo the DataFrame. See Also -------- io.formats.style.Styler """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields ------ label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print('label:', label) ... print('content:', content, sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"]) def items(self) -> Iterable[Tuple[Optional[Hashable], Series]]: if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) @Appender(_shared_docs["items"]) def iteritems(self) -> Iterable[Tuple[Optional[Hashable], Series]]: yield from self.items() def iterrows(self) -> Iterable[Tuple[Optional[Hashable], Series]]: """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. it : generator A generator that iterates over the rows of the frame. See Also -------- DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. On python versions < 3.7 regular tuples are returned for DataFrames with a large number of columns (>254). Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python versions before 3.7 support at most 255 arguments to constructors can_return_named_tuples = PY37 or len(self.columns) + index < 255 if name is not None and can_return_named_tuples: itertuple = collections.namedtuple(name, fields, rename=True) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self) -> int: """ Returns length of info axis, but here we use the index. """ return len(self.index) def dot(self, other): """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Serie. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, DataFrame): return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns ) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.T.dot(np.transpose(other)).T # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient="columns", dtype=None, columns=None) -> "DataFrame": """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """ index = None orient = orient.lower() if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == "columns": if columns is not None: raise ValueError("cannot use columns parameter with orient='columns'") else: # pragma: no cover raise ValueError("only recognize index or columns for orient") return cls(data, index=index, columns=columns, dtype=dtype) def to_numpy(self, dtype=None, copy=False) -> np.ndarray: """ Convert the DataFrame to a NumPy array. .. versionadded:: 0.24.0 By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ result = np.array(self.values, dtype=dtype, copy=copy) return result def to_dict(self, orient="dict", into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn( "DataFrame columns are not unique, some columns will be omitted.", UserWarning, stacklevel=2, ) # GH16122 into_c = com.standardize_mapping(into) if orient.lower().startswith("d"): return into_c((k, v.to_dict(into)) for k, v in self.items()) elif orient.lower().startswith("l"): return into_c((k, v.tolist()) for k, v in self.items()) elif orient.lower().startswith("sp"): return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(com.maybe_box_datetimelike, t)) for t in self.itertuples(index=False, name=None) ], ), ) ) elif orient.lower().startswith("s"): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in self.items()) elif orient.lower().startswith("r"): columns = self.columns.tolist() rows = ( dict(zip(columns, row)) for row in self.itertuples(index=False, name=None) ) return [ into_c((k, com.maybe_box_datetimelike(v)) for k, v in row.items()) for row in rows ] elif orient.lower().startswith("i"): if not self.index.is_unique: raise ValueError("DataFrame index must be unique for orient='index'.") return into_c( (t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None) ) else: raise ValueError(f"orient '{orient}' not understood") def to_gbq( self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists="fail", auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None, ) -> None: """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists raise pandas_gbq.gbq.TableCreationError. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None, ) -> "DataFrame": """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : str, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use. exclude : sequence, default None Columns or fields to exclude. columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns). coerce_float : bool, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. nrows : int, default None Number of rows to read if data is an iterator. Returns ------- DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in data.items(): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = to_arrays(data, columns) if columns is not None: columns = ensure_index(columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns, coerce_float=coerce_float) arr_columns = ensure_index(arr_columns) if columns is not None: columns = ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] except (KeyError, TypeError): # raised by get_loc, see GH#29258 result_index = index else: result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records( self, index=True, column_dtypes=None, index_dtypes=None ) -> np.recarray: """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. column_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = f"<S{df.index.str.len().max()}" >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """ if index: if isinstance(self.index, ABCMultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index.values))) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c]._internal_get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = f"level_{count}" count += 1 elif index_names[0] is None: index_names = ["index"] names = [str(name) for name in itertools.chain(index_names, self.columns)] else: arrays = [self[c]._internal_get_values() for c in self.columns] names = [str(c) for c in self.columns] index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): formats.append(dtype_mapping) else: element = "row" if i < index_len else "column" msg = f"Invalid dtype {dtype_mapping} specified for {element} {name}" raise ValueError(msg) return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats}) @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None) -> "DataFrame": mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_stata( self, path, convert_dates=None, write_index=True, byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None, ): """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- path : str, buffer or path object String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written. .. versionchanged:: 1.0.0 Previously this was "fname" convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {114, 117, 118, 119, None}, default 114 Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Added support for formats 118 and 119. convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. .. versionadded:: 0.23.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ if version not in (114, 117, 118, 119, None): raise ValueError("Only formats 114, 117, 118 and 119 are supported.") if version == 114: if convert_strl is not None: raise ValueError("strl is not supported in format 114") from pandas.io.stata import StataWriter as statawriter elif version == 117: from pandas.io.stata import StataWriter117 as statawriter else: # versions 118 and 119 from pandas.io.stata import StataWriterUTF8 as statawriter kwargs = {} if version is None or version >= 117: # strl conversion is only supported >= 117 kwargs["convert_strl"] = convert_strl if version is None or version >= 118: # Specifying the version is only supported for UTF8 (118 or 119) kwargs["version"] = version writer = statawriter( path, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, **kwargs, ) writer.write_file() @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_feather(self, path) -> None: """ Write out the binary feather-format for DataFrames. Parameters ---------- path : str String file path. """ from pandas.io.feather_format import to_feather to_feather(self, path) @Appender( """ Examples -------- >>> df = pd.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(df.to_markdown()) | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal | """ ) @Substitution(klass="DataFrame") @Appender(_shared_docs["to_markdown"]) def to_markdown( self, buf: Optional[IO[str]] = None, mode: Optional[str] = None, **kwargs ) -> Optional[str]: kwargs.setdefault("headers", "keys") kwargs.setdefault("tablefmt", "pipe") tabulate = import_optional_dependency("tabulate") result = tabulate.tabulate(self, **kwargs) if buf is None: return result buf, _, _, _ = get_filepath_or_buffer(buf, mode=mode) assert buf is not None # Help mypy. buf.writelines(result) return None @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_parquet( self, path, engine="auto", compression="snappy", index=None, partition_cols=None, **kwargs, ) -> None: """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- path : str File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset. .. versionchanged:: 1.0.0 Previously this was "fname" engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``True`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. .. versionadded:: 0.24.0 partition_cols : list, optional, default None Column names by which to partition the dataset. Columns are partitioned in the order they are given. .. versionadded:: 0.24.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 """ from pandas.io.parquet import to_parquet to_parquet( self, path, engine, compression=compression, index=index, partition_cols=partition_cols, **kwargs, ) @Substitution( header_type="bool", header="Whether to print column labels, default True", col_space_type="str or int", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.\n\n" " .. versionadded:: 0.25.0\n" " Ability to use str", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=".", bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, encoding=None, ): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.display.html.border``. encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 table_id : str, optional A css id is included in the opening `<table>` tag if specified. .. versionadded:: 0.23.0 render_links : bool, default False Convert URLs to HTML links. .. versionadded:: 0.24.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, table_id=table_id, render_links=render_links, ) # TODO: a generic formatter wld b in DataFrameFormatter return formatter.to_html( buf=buf, classes=classes, notebook=notebook, border=border, encoding=encoding, ) # ---------------------------------------------------------------------- def info( self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None ) -> None: """ Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage. Parameters ---------- verbose : bool, optional Whether to print the full summary. By default, the setting in ``pandas.options.display.max_info_columns`` is followed. buf : writable buffer, defaults to sys.stdout Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than `max_cols` columns, the truncated output is used. By default, the setting in ``pandas.options.display.max_info_columns`` is used. memory_usage : bool, str, optional Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the ``pandas.options.display.memory_usage`` setting. True always show memory usage. False never shows memory usage. A value of 'deep' is equivalent to "True with deep introspection". Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. null_counts : bool, optional Whether to show the non-null counts. By default, this is shown only if the frame is smaller than ``pandas.options.display.max_info_rows`` and ``pandas.options.display.max_info_columns``. A value of True always shows the counts, and False never shows the counts. Returns ------- None This method prints a summary of a DataFrame and returns None. See Also -------- DataFrame.describe: Generate descriptive statistics of DataFrame columns. DataFrame.memory_usage: Memory usage of DataFrame columns. Examples -------- >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open("df_info.txt", "w", ... encoding="utf-8") as f: # doctest: +SKIP ... f.write(s) 260 The `memory_usage` parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization: >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = pd.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 22.9+ MB >>> df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 188.8 MB """ if buf is None: # pragma: no cover buf = sys.stdout lines = [] lines.append(str(type(self))) lines.append(self.index._summary()) if len(self.columns) == 0: lines.append(f"Empty {type(self).__name__}") fmt.buffer_put_lines(buf, lines) return cols = self.columns col_count = len(self.columns) # hack if max_cols is None: max_cols = get_option("display.max_info_columns", len(self.columns) + 1) max_rows = get_option("display.max_info_rows", len(self) + 1) if null_counts is None: show_counts = (col_count <= max_cols) and (len(self) < max_rows) else: show_counts = null_counts exceeds_info_cols = col_count > max_cols def _verbose_repr(): lines.append(f"Data columns (total {len(self.columns)} columns):") id_head = " # " column_head = "Column" col_space = 2 max_col = max(len(pprint_thing(k)) for k in cols) len_column = len(pprint_thing(column_head)) space = max(max_col, len_column) + col_space max_id = len(pprint_thing(col_count)) len_id = len(pprint_thing(id_head)) space_num = max(max_id, len_id) + col_space counts = None header = _put_str(id_head, space_num) + _put_str(column_head, space) if show_counts: counts = self.count() if len(cols) != len(counts): # pragma: no cover raise AssertionError( f"Columns must equal counts ({len(cols)} != {len(counts)})" ) count_header = "Non-Null Count" len_count = len(count_header) non_null = " non-null" max_count = max(len(pprint_thing(k)) for k in counts) + len(non_null) space_count = max(len_count, max_count) + col_space count_temp = "{count}" + non_null else: count_header = "" space_count = len(count_header) len_count = space_count count_temp = "{count}" dtype_header = "Dtype" len_dtype = len(dtype_header) max_dtypes = max(len(pprint_thing(k)) for k in self.dtypes) space_dtype = max(len_dtype, max_dtypes) header += _put_str(count_header, space_count) + _put_str( dtype_header, space_dtype ) lines.append(header) lines.append( _put_str("-" * len_id, space_num) + _put_str("-" * len_column, space) + _put_str("-" * len_count, space_count) + _put_str("-" * len_dtype, space_dtype) ) for i, col in enumerate(self.columns): dtype = self.dtypes.iloc[i] col = pprint_thing(col) line_no = _put_str(f" {i}", space_num) count = "" if show_counts: count = counts.iloc[i] lines.append( line_no + _put_str(col, space) + _put_str(count_temp.format(count=count), space_count) + _put_str(dtype, space_dtype) ) def _non_verbose_repr(): lines.append(self.columns._summary(name="Columns")) def _sizeof_fmt(num, size_qualifier): # returns size in human readable format for x in ["bytes", "KB", "MB", "GB", "TB"]: if num < 1024.0: return f"{num:3.1f}{size_qualifier} {x}" num /= 1024.0 return f"{num:3.1f}{size_qualifier} PB" if verbose: _verbose_repr() elif verbose is False: # specifically set to False, not nesc None _non_verbose_repr() else: if exceeds_info_cols: _non_verbose_repr() else: _verbose_repr() counts = self._data.get_dtype_counts() dtypes = [f"{k[0]}({k[1]:d})" for k in sorted(counts.items())] lines.append(f"dtypes: {', '.join(dtypes)}") if memory_usage is None: memory_usage = get_option("display.memory_usage") if memory_usage: # append memory usage of df to display size_qualifier = "" if memory_usage == "deep": deep = True else: # size_qualifier is just a best effort; not guaranteed to catch # all cases (e.g., it misses categorical data even with object # categories) deep = False if "object" in counts or self.index._is_memory_usage_qualified(): size_qualifier = "+" mem_usage = self.memory_usage(index=True, deep=deep).sum() lines.append(f"memory usage: {_sizeof_fmt(mem_usage, size_qualifier)}\n") fmt.buffer_put_lines(buf, lines) def memory_usage(self, index=True, deep=False) -> Series: """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.000000+0.000000j 1 True 1 1 1.0 1.000000+0.000000j 1 True 2 1 1.0 1.000000+0.000000j 1 True 3 1 1.0 1.000000+0.000000j 1 True 4 1 1.0 1.000000+0.000000j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5216 """ result = Series( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, ) if index: result = Series(self.index.memory_usage(deep=deep), index=["Index"]).append( result ) return result def transpose(self, *args, copy: bool = False) -> "DataFrame": """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- *args : tuple, optional Accepted for compatibility with NumPy. copy : bool, default False Whether to copy the data after transposing, even for DataFrames with a single dtype. Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, dict()) # construct the args dtypes = list(self.dtypes) if self._is_homogeneous_type and dtypes and is_extension_array_dtype(dtypes[0]): # We have EAs with the same dtype. We can preserve that dtype in transpose. dtype = dtypes[0] arr_type = dtype.construct_array_type() values = self.values new_values = [arr_type._from_sequence(row, dtype=dtype) for row in values] result = self._constructor( dict(zip(self.index, new_values)), index=self.columns ) else: new_values = self.values.T if copy: new_values = new_values.copy() result = self._constructor( new_values, index=self.columns, columns=self.index ) return result.__finalize__(self) T = property(transpose) # ---------------------------------------------------------------------- # Indexing Methods def _ixs(self, i: int, axis: int = 0): """ Parameters ---------- i : int axis : int Notes ----- If slice passed, the resulting data will be a view. """ # irow if axis == 0: new_values = self._data.fast_xs(i) # if we are a copy, mark as such copy = isinstance(new_values, np.ndarray) and new_values.base is None result = self._constructor_sliced( new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype, ) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] values = self._data.iget(i) result = self._box_col_values(values, label) # this is a cached value, mark it so result._set_as_cached(label, self) return result def __getitem__(self, key): key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key): # shortcut if the key is in columns if self.columns.is_unique and key in self.columns: if self.columns.nlevels > 1: return self._getitem_multilevel(key) return self._get_item_cache(key) # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self.where(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self.take(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, ABCMultiIndex): data = data[key] return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match DataFrame index.", UserWarning, stacklevel=3, ) elif len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}." ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self.take(indexer, axis=0) def _getitem_multilevel(self, key): # self.columns is a MultiIndex loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor( new_values, index=self.index, columns=result_columns ) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _get_value(self, index, col, takeable: bool = False): """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar """ if takeable: series = self._iget_item_cache(col) return com.maybe_box_datetimelike(series._values[index]) series = self._get_item_cache(col) engine = self.index._engine try: if isinstance(series._values, np.ndarray): # i.e. not EA, we can use engine return engine.get_value(series._values, index) else: loc = series.index.get_loc(index) return series._values[loc] except KeyError: # GH 20629 if self.index.nlevels > 1: # partial indexing forbidden raise # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key, value): self._check_setitem_copy() self.loc[key] = value def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}!" ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.loc._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError("Columns must be same length as key") for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: indexer = self.loc._get_listlike_indexer( key, axis=1, raise_missing=False )[1] self._check_setitem_copy() self.loc._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict()) if key.values.size and not is_bool_dtype(key.values): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_value(self, index, col, value, takeable: bool = False): """ Put single value at passed column and index. Parameters ---------- index : row label col : column label value : scalar takeable : interpret the index/col as indexers, default False Returns ------- DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object. """ try: if takeable is True: series = self._iget_item_cache(col) return series._set_value(index, value, takeable=True) series = self._get_item_cache(col) engine = self.index._engine engine.set_value(series._values, index, value) return self except (KeyError, TypeError): # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) return self def _ensure_valid_index(self, value): """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value) and len(value): try: value = Series(value) except (ValueError, NotImplementedError, TypeError): raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a Series" ) self._data = self._data.reindex_axis( value.index.copy(), axis=1, fill_value=np.nan ) def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ Provide boxed values for a column. """ klass = self._constructor_sliced return klass(values, index=self.index, name=items, fastpath=True) # ---------------------------------------------------------------------- # Unsorted def query(self, expr, inplace=False, **kwargs): """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. You can refer to column names that contain spaces or operators by surrounding them in backticks. This way you can also escape names that start with a digit, or those that are a Python keyword. Basically when it is not valid Python identifier. See notes down for more details. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. .. versionadded:: 0.25.0 Backtick quoting introduced. .. versionadded:: 1.0.0 Expanding functionality of backtick quoting for more than only spaces. inplace : bool Whether the query should modify the data in place or return a modified copy. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame DataFrame resulting from the provided query expression. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. *Backtick quoted variables* Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems. During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped). In a special case, quotes that make a pair around a backtick can confuse the parser. For example, ```it's` > `that's``` will raise an error, as it forms a quoted string (``'s > `that'``) with a backtick inside. See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in :mod:`pandas.core.computation.parsing`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = f"expr must be a string to be evaluated, {type(expr)} given" raise ValueError(msg) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, or pandas object The result of the evaluation. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") resolvers = kwargs.pop("resolvers", None) kwargs["level"] = kwargs.pop("level", 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() column_resolvers = self._get_cleaned_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None) -> "DataFrame": """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = (frozenset(include), frozenset(exclude)) if not any(selection): raise ValueError("at least one of include or exclude must be nonempty") # convert the myriad valid dtypes object to a single representation include = frozenset(infer_dtype_from_object(x) for x in include) exclude = frozenset(infer_dtype_from_object(x) for x in exclude) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError(f"include and exclude overlap on {(include & exclude)}") # We raise when both include and exclude are empty # Hence, we can just shrink the columns we want to keep keep_these = np.full(self.shape[1], True) def extract_unique_dtypes_from_dtypes_set( dtypes_set: FrozenSet[Dtype], unique_dtypes: np.ndarray ) -> List[Dtype]: extracted_dtypes = [ unique_dtype for unique_dtype in unique_dtypes if issubclass(unique_dtype.type, tuple(dtypes_set)) # type: ignore ] return extracted_dtypes unique_dtypes = self.dtypes.unique() if include: included_dtypes = extract_unique_dtypes_from_dtypes_set( include, unique_dtypes ) keep_these &= self.dtypes.isin(included_dtypes) if exclude: excluded_dtypes = extract_unique_dtypes_from_dtypes_set( exclude, unique_dtypes ) keep_these &= ~self.dtypes.isin(excluded_dtypes) return self.iloc[:, keep_these.values] def insert(self, loc, column, value, allow_duplicates=False) -> None: """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns). column : str, number, or hashable object Label of the inserted column. value : int, Series, or array-like allow_duplicates : bool, optional """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs) -> "DataFrame": r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. Later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. .. versionchanged:: 0.23.0 Keyword argument order is maintained. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy() for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- numpy.ndarray """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except ValueError as err: # raised in MultiIndex.from_tuples, see test_insert_error_msmgs if not value.index.is_unique: # duplicate axis raise err # other raise TypeError( "incompatible index of inserted column with frame index" ) return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, ABCMultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, ExtensionArray): # Explicitly copy here, instead of in sanitize_index, # as sanitize_index won't copy an EA, even with copy=True value = value.copy() value = sanitize_index(value, self.index) elif isinstance(value, Index) or is_sequence(value): # turn me into an ndarray value = sanitize_index(value, self.index) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com.asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: # cast ignores pandas dtypes. so save the dtype first infer_dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) # upcast value = cast_scalar_to_array(len(self.index), value) value = maybe_cast_to_datetime(value, infer_dtype) # return internal types directly if is_extension_array_dtype(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if not self.columns.is_unique or isinstance(self.columns, ABCMultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): return { item: Series(self._data.iget(idx), index=self.index, name=item) for idx, item in enumerate(self.columns) } def lookup(self, row_labels, col_labels) -> np.ndarray: """ Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup. col_labels : sequence The column labels to use for lookup. Returns ------- numpy.ndarray The found values. """ n = len(row_labels) if n != len(col_labels): raise ValueError("Row labels must have same size as column labels") thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError("One or more row labels was not found") if (cidx == -1).any(): raise KeyError("One or more column labels was not found") flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype="O") for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes["columns"] if columns is not None: frame = frame._reindex_columns( columns, method, copy, level, fill_value, limit, tolerance ) index = axes["index"] if index is not None: frame = frame._reindex_index( index, method, copy, level, fill_value, limit, tolerance ) return frame def _reindex_index( self, new_index, method, copy, level, fill_value=np.nan, limit=None, tolerance=None, ): new_index, indexer = self.index.reindex( new_index, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_columns( self, new_columns, method, copy, level, fill_value=None, limit=None, tolerance=None, ): new_columns, indexer = self.columns.reindex( new_columns, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_multi(self, axes, copy, fill_value) -> "DataFrame": """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi( self.values, indexer, fill_value=fill_value ) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @Appender(_shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ) -> "DataFrame": return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) @Appender( """ >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6 Now, update the labels inplace. >>> df.set_axis(['i', 'ii'], axis='columns', inplace=True) >>> df i ii 0 1 4 1 2 5 2 3 6 """ ) @Substitution( **_shared_doc_kwargs, extended_summary_sub=" column or", axis_description_sub=", and 1 identifies the columns", see_also_sub=" or columns", ) @Appender(NDFrame.set_axis.__doc__) def set_axis(self, labels, axis=0, inplace=False): return super().set_axis(labels, axis=axis, inplace=inplace) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.reindex.__doc__) @rewrite_axis_style_signature( "labels", [ ("method", None), ("copy", True), ("level", None), ("fill_value", np.nan), ("limit", None), ("tolerance", None), ], ) def reindex(self, *args, **kwargs) -> "DataFrame": axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("labels", None) return self._ensure_type(super().reindex(**kwargs)) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). .. versionadded:: 0.21.0 columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame DataFrame without the removed index or column labels. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @rewrite_axis_style_signature( "mapper", [("copy", True), ("inplace", False), ("level", None), ("errors", "ignore")], ) def rename( self, mapper: Optional[Renamer] = None, *, index: Optional[Renamer] = None, columns: Optional[Renamer] = None, axis: Optional[Axis] = None, copy: bool = True, inplace: bool = False, level: Optional[Level] = None, errors: str = "ignore", ) -> Optional["DataFrame"]: """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper : dict-like or function Dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : int or str Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame DataFrame with the renamed axis labels. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ return super().rename( mapper=mapper, index=index, columns=columns, axis=axis, copy=copy, inplace=inplace, level=level, errors=errors, ) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.fillna.__doc__) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, ) -> Optional["DataFrame"]: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) @Appender(_shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @Appender(_shared_docs["shift"] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None) -> "DataFrame": return self._ensure_type( super().shift(periods=periods, freq=freq, axis=axis, fill_value=fill_value) ) def set_index( self, keys, drop=True, append=False, inplace=False, verify_integrity=False ): """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing: List[Optional[Hashable]] = [] for col in keys: if isinstance( col, (ABCIndexClass, ABCSeries, np.ndarray, list, abc.Iterator) ): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError: raise TypeError(f"{err_msg}. Received column of type {type(col)}") else: if not found: missing.append(col) if missing: raise KeyError(f"None of {missing} are in the columns") if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove: List[Optional[Hashable]] = [] for col in keys: if isinstance(col, ABCMultiIndex): for n in range(col.nlevels): arrays.append(col._get_level_values(n)) names.extend(col.names) elif isinstance(col, (ABCIndexClass, ABCSeries)): # if Index then not MultiIndex (treated above) arrays.append(col) names.append(col.name) elif isinstance(col, (list, np.ndarray)): arrays.append(col) names.append(None) elif isinstance(col, abc.Iterator): arrays.append(list(col)) names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( f"Length mismatch: Expected {len(self)} rows, " f"received array of length {len(arrays[-1])}" ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError(f"Index has duplicate keys: {duplicates}") # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index( self, level: Optional[Union[Hashable, Sequence[Hashable]]] = None, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Optional[Hashable] = "", ) -> Optional["DataFrame"]: """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame or None DataFrame with the new index or None if ``inplace=True``. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): values = index._values if not isinstance(index, (PeriodIndex, DatetimeIndex)): if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 # we can have situations where the whole mask is -1, # meaning there is nothing found in labels, so make all nan's if mask.all(): values = np.empty(len(mask)) values.fill(np.nan) else: values = values.take(labels) # TODO(https://github.com/pandas-dev/pandas/issues/24206) # Push this into maybe_upcast_putmask? # We can't pass EAs there right now. Looks a bit # complicated. # So we unbox the ndarray_values, op, re-box. values_type = type(values) values_dtype = values.dtype if issubclass(values_type, DatetimeLikeArray): values = values._data if mask.any(): values, _ = maybe_upcast_putmask(values, mask, np.nan) if issubclass(values_type, DatetimeLikeArray): values = values_type(values, dtype=values_dtype) return values new_index = ibase.default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: to_insert: Iterable[Tuple[Any, Optional[Any]]] if isinstance(self.index, ABCMultiIndex): names = [ (n if n is not None else f"level_{i}") for i, n in enumerate(self.index.names) ] to_insert = zip(self.index.levels, self.index.codes) else: default = "index" if "index" not in self else "level_0" names = [default] if self.index.name is None else [self.index.name] to_insert = ((self.index, None),) multi_col = isinstance(self.columns, ABCMultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if not (level is None or i in level): continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " f"with incomplete column name {name}" ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj return None # ---------------------------------------------------------------------- # Reindex-based selection methods @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isna(self) -> "DataFrame": return super().isna() @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isnull(self) -> "DataFrame": return super().isnull() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notna(self) -> "DataFrame": return super().notna() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notnull(self) -> "DataFrame": return super().notnull() def dropna(self, axis=0, how="any", thresh=None, subset=None, inplace=False): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. versionchanged:: 1.0.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 raise TypeError("supplying multiple axes to axis is no longer supported.") axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == "any": mask = count == len(agg_obj._get_axis(agg_axis)) elif how == "all": mask = count > 0 else: if how is not None: raise ValueError(f"invalid how option: {how}") else: raise TypeError("must specify how or thresh") result = self.loc(axis=axis)[mask] if inplace: self._update_inplace(result) else: return result def drop_duplicates( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", inplace: bool = False, ignore_index: bool = False, ) -> Optional["DataFrame"]: """ Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to keep. - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : bool, default False Whether to drop duplicates in place or to return a copy. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- DataFrame DataFrame with duplicates removed or None if ``inplace=True``. """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, "inplace") duplicated = self.duplicated(subset, keep=keep) if inplace: (inds,) = (-duplicated)._ndarray_values.nonzero() new_data = self._data.take(inds) if ignore_index: new_data.axes[1] = ibase.default_index(len(inds)) self._update_inplace(new_data) else: result = self[-duplicated] if ignore_index: result.index = ibase.default_index(len(result)) return result return None def duplicated( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", ) -> "Series": """ Return boolean Series denoting duplicate rows. Considering certain columns is optional. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to mark. - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series """ from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT if self.empty: return Series(dtype=bool) def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT) ) return labels.astype("i8", copy=False), len(shape) if subset is None: subset = self.columns elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # needed for mypy since can't narrow types using np.iterable subset = cast(Iterable, subset) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_values.__doc__) def sort_values( self, by, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ignore_index=False, ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError( f"Length of ascending ({len(ascending)}) != length of by ({len(by)})" ) if len(by) > 1: from pandas.core.sorting import lexsort_indexer keys = [self._get_label_or_level_values(x, axis=axis) for x in by] indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) else: from pandas.core.sorting import nargsort by = by[0] k = self._get_label_or_level_values(by, axis=axis) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position ) new_data = self._data.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def sort_index( self, axis=0, level=None, ascending: bool = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, ): """ Sort object by labels (along an axis). Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns. level : int or level name or list of ints or list of level names If not None, sort on values in specified index level(s). ascending : bool, default True Sort ascending vs. descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- sorted_obj : DataFrame or None DataFrame with sorted index if inplace=False, None otherwise. """ # TODO: this can be combined with Series.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) labels = self._get_axis(axis) # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer labels = labels._sort_levels_monotonic() if level is not None: new_axis, indexer = labels.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(labels, ABCMultiIndex): from pandas.core.sorting import lexsort_indexer indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and labels.is_monotonic_increasing) or ( not ascending and labels.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( labels, kind=kind, ascending=ascending, na_position=na_position ) baxis = self._get_block_manager_axis(axis) new_data = self._data.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def nlargest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "a". >>> df.nsmallest(3, 'population') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 11300 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Nauru 11300 182 NR Anguilla 11300 311 AI """ return algorithms.SelectNFrame( self, n=n, keep=keep, columns=columns ).nsmallest() def swaplevel(self, i=-2, j=-1, axis=0) -> "DataFrame": """ Swap levels i and j in a MultiIndex on a particular axis. Parameters ---------- i, j : int or str Levels of the indices to be swapped. Can pass level name as string. Returns ------- DataFrame """ result = self.copy() axis = self._get_axis_number(axis) if axis == 0: result.index = result.index.swaplevel(i, j) else: result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0) -> "DataFrame": """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- DataFrame """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), ABCMultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy() if axis == 0: result.index = result.index.reorder_levels(order) else: result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other, func, fill_value=None, level=None): # at this point we have `self._indexed_same(other)` if fill_value is None: # since _arith_op may be called in a loop, avoid function call # overhead if possible by doing this check once _arith_op = func else: def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) if ops.should_series_dispatch(self, other, func): # iterate over columns new_data = ops.dispatch_to_series(self, other, _arith_op) else: with np.errstate(all="ignore"): res_values = _arith_op(self.values, other.values) new_data = dispatch_fill_zeros(func, self.values, other.values, res_values) return new_data def _combine_match_index(self, other, func): # at this point we have `self.index.equals(other.index)` if ops.should_series_dispatch(self, other, func): # operate column-wise; avoid costly object-casting in `.values` new_data = ops.dispatch_to_series(self, other, func) else: # fastpath --> operate directly on values with np.errstate(all="ignore"): new_data = func(self.values.T, other.values).T return new_data def _construct_result(self, result) -> "DataFrame": """ Wrap the result of an arithmetic, comparison, or logical operation. Parameters ---------- result : DataFrame Returns ------- DataFrame """ out = self._constructor(result, index=self.index, copy=False) # Pin columns instead of passing to constructor for compat with # non-unique columns case out.columns = self.columns return out def combine( self, other: "DataFrame", func, fill_value=None, overwrite=True ) -> "DataFrame": """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) arr = func(series, otherSeries) arr = maybe_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns) def combine_first(self, other: "DataFrame") -> "DataFrame": """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ import pandas.core.computation.expressions as expressions def extract_values(arr): # Does two things: # 1. maybe gets the values from the Series / Index # 2. convert datelike to i8 if isinstance(arr, (ABCIndexClass, ABCSeries)): arr = arr._values if needs_i8_conversion(arr): if is_extension_array_dtype(arr.dtype): arr = arr.asi8 else: arr = arr.view("i8") return arr def combiner(x, y): mask = isna(x) if isinstance(mask, (ABCIndexClass, ABCSeries)): mask = mask._values x_values = extract_values(x) y_values = extract_values(y) # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) return self.combine(other, combiner, overwrite=False) def update( self, other, join="left", overwrite=True, filter_func=None, errors="ignore" ) -> None: """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. .. versionchanged:: 0.24.0 Changed from `raise_conflict=False|True` to `errors='ignore'|'raise'`. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError("The parameter errors must be either 'ignore' or 'raise'") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all="ignore"): mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping @Appender( """ Examples -------- >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0 **Hierarchical Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Captive 210.0 Wild 185.0 """ ) @Appender(_shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, ) -> "DataFrameGroupBy": from pandas.core.groupby.generic import DataFrameGroupBy if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return DataFrameGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, ) _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ----------%s index : str or object, optional Column to use to make new frame's index. If None, uses existing index. columns : str or object Column to use to make new frame's columns. values : str, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. .. versionchanged:: 0.23.0 Also accept list of column names. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot(self, index=None, columns=None, values=None) -> "DataFrame": from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with. margins : bool, default False Add all row / columns (e.g. for subtotal / grand totals). dropna : bool, default True Do not include columns whose entries are all NaN. margins_name : str, default 'All' Name of the row / column that will contain the totals when margins is True. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionchanged:: 0.25.0 Returns ------- DataFrame An Excel style pivot table. See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9.0 7.500000 6.0 small 5.500000 9.0 8.500000 8.0 foo large 2.000000 5.0 4.500000 4.0 small 2.333333 6.0 4.333333 2.0 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ) -> "DataFrame": from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) def stack(self, level=-1, dropna=True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. The new index levels are sorted. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def explode(self, column: Union[str, Tuple]) -> "DataFrame": """ Transform each element of a list-like to a row, replicating index values. .. versionadded:: 0.25.0 Parameters ---------- column : str or tuple Column to explode. Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : if columns of the frame are not unique. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels. DataFrame.melt : Unpivot a DataFrame from wide format to long format. Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 foo 1 2 [] 1 3 [3, 4] 1 >>> df.explode('A') A B 0 1 1 0 2 1 0 3 1 1 foo 1 2 NaN 1 3 3 1 3 4 1 """ if not (is_scalar(column) or isinstance(column, tuple)): raise ValueError("column must be a scalar") if not self.columns.is_unique: raise ValueError("columns must be unique") df = self.reset_index(drop=True) # TODO: use overload to refine return type of reset_index assert df is not None # needed for mypy result = df[column].explode() result = df.drop([column], axis=1).join(result) result.index = self.index.take(result.index) result = result.reindex(columns=self.columns, copy=False) return result def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, str, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name. fill_value : int, str or dict Replace NaN with this value if the unstack produces missing values. Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) _shared_docs[ "melt" ] = """ Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. %(versionadded)s Parameters ---------- id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or str, optional If columns are a MultiIndex then use this level to melt. Returns ------- DataFrame Unpivoted DataFrame. See Also -------- %(other)s pivot_table DataFrame.pivot Series.explode Examples -------- >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ @Appender( _shared_docs["melt"] % dict( caller="df.melt(", versionadded=".. versionadded:: 0.20.0\n", other="melt" ) ) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ) -> "DataFrame": from pandas.core.reshape.melt import melt return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0) -> "DataFrame": """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). Returns ------- DataFrame See Also -------- Series.diff: First discrete difference for a Series. DataFrame.pct_change: Percent change over given number of periods. DataFrame.shift: Shift index by desired number of periods with an optional time freq. Notes ----- For boolean dtypes, this uses :meth:`operator.xor` rather than :meth:`operator.sub`. Examples -------- Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0.0 0.0 1 NaN -1.0 3.0 2 NaN -1.0 7.0 3 NaN -1.0 13.0 4 NaN 0.0 20.0 5 NaN 2.0 28.0 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: Union[str, List[str]], ndim: int, subset: Optional[Union[Series, ABCDataFrame]] = None, ) -> Union[Series, ABCDataFrame]: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_summary_and_see_also_doc = dedent( """ The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.EWM : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @Substitution( see_also=_agg_summary_and_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs, ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) result = None try: result, how = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, axis=0, *args, **kwargs): if axis == 1: # NDFrame.aggregate returns a tuple, and we need to transpose # only result result, how = self.T._aggregate(arg, *args, **kwargs) result = result.T if result is not None else result return result, how return super()._aggregate(arg, *args, **kwargs) agg = aggregate @Appender(_shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs) -> "DataFrame": axis = self._get_axis_number(axis) if axis == 1: return self.T.transform(func, *args, **kwargs).T return super().transform(func, *args, **kwargs) def apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. raw : bool, default False Determines if row or column is passed as a Series or ndarray object: * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing result_type='expand' will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, raw=raw, result_type=result_type, args=args, kwds=kwds, ) return op.get_result() def applymap(self, func) -> "DataFrame": """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. Notes ----- In the current implementation applymap calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func) return lib.map_infer(x.astype(object).values, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append( self, other, ignore_index=False, verify_integrity=False, sort=False ) -> "DataFrame": """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : bool, default False If True, do not use the index labels. verify_integrity : bool, default False If True, raise ValueError on creating index with duplicates. sort : bool, default False Sort columns if the columns of `self` and `other` are not aligned. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Changed to not sort by default. Returns ------- DataFrame See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): if not ignore_index: raise TypeError("Can only append a dict if ignore_index=True") other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True " "or if the Series has a name" ) index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) try: combined_columns = self.columns.append(idx_diff) except TypeError: combined_columns = self.columns.astype(object).append(idx_diff) other = ( other.reindex(combined_columns, copy=False) .to_frame() .T.infer_objects() .rename_axis(index.names, copy=False) ) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list): if not other: pass elif not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.reindex(columns=self.columns) from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self, *other] else: to_concat = [self, other] return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) def join( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ) -> "DataFrame": """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it. lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Support for specifying index levels as the `on` parameter was added in version 0.23.0. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN """ return self._join_compat( other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort ) def _join_compat( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ): from pandas.core.reshape.merge import merge from pandas.core.reshape.concat import concat if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported for joining on index" ) frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat( frames, axis=1, join="outer", verify_integrity=True, sort=sort ) return res.reindex(self.index, copy=False) else: return concat( frames, axis=1, join=how, verify_integrity=True, sort=sort ) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ) -> "DataFrame": from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round(self, decimals=0, *args, **kwargs) -> "DataFrame": """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = list(_dict_round(self, decimals)) elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.items()] else: raise TypeError("decimals must be an integer, a dict-like or a Series") if len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method="pearson", min_periods=1) -> "DataFrame": """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith Series.corr Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if method == "pearson": correl = libalgos.nancorr(ensure_float64(mat), minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(ensure_float64(mat), minp=min_periods) elif method == "kendall" or callable(method): if min_periods is None: min_periods = 1 mat = ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods=None) -> "DataFrame": """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.EWM.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if notna(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = libalgos.nancorr(ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=idx, columns=cols) def corrwith(self, other, axis=0, drop=False, method="pearson") -> Series: """ Compute pairwise correlation. Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series( map(c, zip(left.values.T, right.values.T)), index=left.columns ) else: raise ValueError( f"Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable" ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype("int64") def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, ABCMultiIndex): raise TypeError( f"Can only count levels on hierarchical {self._get_axis_name(axis)}." ) if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notna(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, str): level = count_axis._get_level_number(level) level_name = count_axis._names[level] level_index = count_axis.levels[level]._shallow_copy(name=level_name) level_codes = ensure_int64(count_axis.codes[level]) counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): if axis is None and filter_type == "bool": labels = None constructor = None else: # TODO: Make other agg func handle axis=None properly axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) constructor = self._constructor def f(x): return op(x, axis=axis, skipna=skipna, **kwds) def _get_data(axis_matters): if filter_type is None or filter_type == "numeric": data = self._get_numeric_data() elif filter_type == "bool": if axis_matters: # GH#25101, GH#24434 data = self._get_bool_data() if axis == 0 else self else: data = self._get_bool_data() else: # pragma: no cover msg = ( f"Generating numeric_only data with filter_type {filter_type} " "not supported." ) raise NotImplementedError(msg) return data if numeric_only is not None and axis in [0, 1]: df = self if numeric_only is True: df = _get_data(axis_matters=True) if axis == 1: df = df.T axis = 0 out_dtype = "bool" if filter_type == "bool" else None # After possibly _get_data and transposing, we are now in the # simple case where we can use BlockManager._reduce res = df._data.reduce(op, axis=1, skipna=skipna, **kwds) assert isinstance(res, dict) if len(res): assert len(res) == max(list(res.keys())) + 1, res.keys() out = df._constructor_sliced(res, index=range(len(res)), dtype=out_dtype) out.index = df.columns return out if numeric_only is None: values = self.values try: result = f(values) if filter_type == "bool" and is_object_dtype(values) and axis is None: # work around https://github.com/numpy/numpy/issues/10489 # TODO: combine with hasattr(result, 'dtype') further down # hard since we don't have `values` down there. result = np.bool_(result) except TypeError: # e.g. in nanops trying to convert strs to float # try by-column first if filter_type is None and axis == 0: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series # we only end up here if we have not specified # numeric_only and yet we have tried a # column-by-column reduction, where we have mixed type. # So let's just do what we can from pandas.core.apply import frame_apply opa = frame_apply( self, func=f, result_type="expand", ignore_failures=True ) result = opa.get_result() if result.ndim == self.ndim: result = result.iloc[0] return result # TODO: why doesnt axis matter here? data = _get_data(axis_matters=False) with np.errstate(all="ignore"): result = f(data.values) labels = data._get_agg_axis(axis) else: if numeric_only: data = _get_data(axis_matters=True) values = data.values labels = data._get_agg_axis(axis) else: values = self.values result = f(values) if hasattr(result, "dtype") and is_object_dtype(result.dtype): try: if filter_type is None or filter_type == "numeric": result = result.astype(np.float64) elif filter_type == "bool" and notna(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = coerce_to_dtypes(result, self.dtypes) if constructor is not None: result = Series(result, index=labels) return result def nunique(self, axis=0, dropna=True) -> Series: """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin Notes ----- This method is the DataFrame version of ``ndarray.argmin``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax Notes ----- This method is the DataFrame version of ``ndarray.argmax``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError(f"Axis must be 0 or 1 (got {repr(axis_num)})") def mode(self, axis=0, numeric_only=False, dropna=True) -> "DataFrame": """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row. numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains ``NaN``, because they have only one mode, but the DataFrame has two rows. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation="linear"): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ validate_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T if len(data.columns) == 0: # GH#23925 _get_numeric_data may have dropped all columns cols = Index([], name=self.columns.name) if is_list_like(q): return self._constructor([], index=q, columns=cols) return self._constructor_sliced([], index=cols, name=q, dtype=np.float64) result = data._data.quantile( qs=q, axis=1, interpolation=interpolation, transposed=is_transposed ) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp(self, freq=None, how="start", axis=0, copy=True) -> "DataFrame": """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with DatetimeIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how)) elif axis == 1: new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how)) else: # pragma: no cover raise AssertionError(f"Axis must be 0 or 1. Got {axis}") return self._constructor(new_data) def to_period(self, freq=None, axis=0, copy=True) -> "DataFrame": """ Convert DataFrame from DatetimeIndex to PeriodIndex. Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- TimeSeries with PeriodIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_period(freq=freq)) elif axis == 1: new_data.set_axis(0, self.columns.to_period(freq=freq)) else: # pragma: no cover raise AssertionError(f"Axis must be 0 or 1. Got {axis}") return self._constructor(new_data) def isin(self, values) -> "DataFrame": """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return self._ensure_type( concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are allowed " "to be passed to DataFrame.isin(), " f"you passed a '{type(values).__name__}'" ) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns, ) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) DataFrame._setup_axes( ["index", "columns"], docs={ "index": "The index (row labels) of the DataFrame.", "columns": "The column labels of the DataFrame.", }, ) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() ops.add_flex_arithmetic_methods(DataFrame) ops.add_special_arithmetic_methods(DataFrame) def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = {} for index, s in data.items(): for col, v in s.items(): new_data[col] = new_data.get(col, {}) new_data[col][index] = v return new_data def _put_str(s, space): return str(s)[:space].ljust(space) """ DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ import collections from collections import abc from io import StringIO import itertools import sys from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, FrozenSet, Hashable, Iterable, List, Optional, Sequence, Set, Tuple, Type, Union, cast, ) import warnings import numpy as np import numpy.ma as ma from pandas._config import get_option from pandas._libs import algos as libalgos, lib from pandas._typing import Axes, Axis, Dtype, FilePathOrBuffer, Level, Renamer from pandas.compat import PY37 from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, deprecate_kwarg, rewrite_axis_style_signature, ) from pandas.util._validators import ( validate_axis_style_args, validate_bool_kwarg, validate_percentile, ) from pandas.core.dtypes.cast import ( cast_scalar_to_array, coerce_to_dtypes, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_cast_to_datetime, maybe_convert_platform, maybe_downcast_to_dtype, maybe_infer_to_datetimelike, maybe_upcast, maybe_upcast_putmask, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_platform_int, infer_dtype_from_object, is_bool_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_named_tuple, is_object_dtype, is_scalar, is_sequence, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import algorithms, common as com, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import Categorical, ExtensionArray from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin as DatetimeLikeArray from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.generic import NDFrame, _shared_docs from pandas.core.indexes import base as ibase from pandas.core.indexes.api import Index, ensure_index, ensure_index_from_sequences from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.multi import maybe_droplevels from pandas.core.indexes.period import PeriodIndex from pandas.core.indexing import check_bool_indexer, convert_to_index_sliceable from pandas.core.internals import BlockManager from pandas.core.internals.construction import ( arrays_to_mgr, get_names_from_index, init_dict, init_ndarray, masked_rec_array_to_mgr, reorder_arrays, sanitize_index, to_arrays, ) from pandas.core.ops.missing import dispatch_fill_zeros from pandas.core.series import Series from pandas.io.common import get_filepath_or_buffer from pandas.io.formats import console, format as fmt from pandas.io.formats.printing import pprint_thing import pandas.plotting if TYPE_CHECKING: from pandas.core.groupby.generic import DataFrameGroupBy from pandas.io.formats.style import Styler # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes="index, columns", klass="DataFrame", axes_single_arg="{0 or 'index', 1 or 'columns'}", axis="""axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", optional_by=""" by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels. - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels. .. versionchanged:: 0.23.0 Allow specifying index or column level names.""", versionadded_to_excel="", optional_labels="""labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", optional_axis="""axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", ) _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : tuple of (str, str), default ('_x', '_y') Suffix to apply to overlapping column names in the left and right side, respectively. To raise an exception on overlapping columns use (False, False). copy : bool, default True If False, avoid copy if possible. indicator : bool or str, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 0.21.0 Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional, size-mutable, potentially heterogeneous tabular data. Data structure also contains labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects. .. versionchanged:: 0.23.0 If data is a dict, column order follows insertion-order for Python 3.6 and later. .. versionchanged:: 0.25.0 If data is a list of dicts, column order follows insertion-order for Python 3.6 and later. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer. copy : bool, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input. See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. read_csv read_table read_clipboard Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 """ _typ = "dataframe" @property def _constructor(self) -> Type["DataFrame"]: return DataFrame _constructor_sliced: Type[Series] = Series _deprecations: FrozenSet[str] = NDFrame._deprecations | frozenset([]) _accessors: Set[str] = {"sparse"} @property def _constructor_expanddim(self): raise NotImplementedError("Not supported for DataFrames!") # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index: Optional[Axes] = None, columns: Optional[Axes] = None, dtype: Optional[Dtype] = None, copy: bool = False, ): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr( data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy ) elif isinstance(data, dict): mgr = init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data.soften_mask() # set hardmask False if it was True data[mask] = fill_value else: data = data.copy() mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = init_dict(data, index, columns, dtype=dtype) elif getattr(data, "name", None) is not None: mgr = init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) # For data is list-like, or Iterable (will consume into list) elif isinstance(data, abc.Iterable) and not isinstance(data, (str, bytes)): if not isinstance(data, (abc.Sequence, ExtensionArray)): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], "ndim", 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = to_arrays(data, columns, dtype=dtype) columns = ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = get_names_from_index(data) elif isinstance(data[0], Categorical): index = ibase.default_index(len(data[0])) else: index = ibase.default_index(len(data)) mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = init_dict({}, index, columns, dtype=dtype) else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as err: exc = TypeError( "DataFrame constructor called with " f"incompatible data and dtype: {err}" ) raise exc from err if arr.ndim == 0 and index is not None and columns is not None: values = cast_scalar_to_array( (len(index), len(columns)), data, dtype=dtype ) mgr = init_ndarray( values, index, columns, dtype=values.dtype, copy=False ) else: raise ValueError("DataFrame constructor not properly called!") NDFrame.__init__(self, mgr, fastpath=True) # ---------------------------------------------------------------------- @property def axes(self) -> List[Index]: """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self) -> Tuple[int, int]: """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self) -> bool: """ Whether all the columns in a DataFrame have the same type. Returns ------- bool See Also -------- Index._is_homogeneous_type : Whether the object has a single dtype. MultiIndex._is_homogeneous_type : Whether all the levels of a MultiIndex have the same dtype. Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ if self._data.any_extension_types: return len({block.dtype for block in self._data.blocks}) == 1 else: return not self._data.is_mixed_type # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self) -> bool: """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width: bool = False) -> bool: """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case off non-interactive session, no boundaries apply. `ignore_width` is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( (not ignore_width) and width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(l) for l in value.split("\n")) return repr_width < width def _info_repr(self) -> bool: """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self) -> str: """ Return a string representation for a particular DataFrame. """ buf = StringIO("") if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") max_colwidth = get_option("display.max_colwidth") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string( buf=buf, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, line_width=width, max_colwidth=max_colwidth, show_dimensions=show_dimensions, ) return buf.getvalue() def _repr_html_(self) -> Optional[str]: """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO("") self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"&lt;", 1) val = val.replace(">", r"&gt;", 1) return "<pre>" + val + "</pre>" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") formatter = fmt.DataFrameFormatter( self, columns=None, col_space=None, na_rep="NaN", formatters=None, float_format=None, sparsify=None, justify=None, index_names=True, header=True, index=True, bold_rows=True, escape=True, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=".", table_id=None, render_links=False, ) return formatter.to_html(notebook=True) else: return None @Substitution( header_type="bool or sequence", header="Write out the column names. If a list of strings " "is given, it is assumed to be aliases for the " "column names", col_space_type="int", col_space="The minimum width of each column", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf: Optional[FilePathOrBuffer[str]] = None, columns: Optional[Sequence[str]] = None, col_space: Optional[int] = None, header: Union[bool, Sequence[str]] = True, index: bool = True, na_rep: str = "NaN", formatters: Optional[fmt.formatters_type] = None, float_format: Optional[fmt.float_format_type] = None, sparsify: Optional[bool] = None, index_names: bool = True, justify: Optional[str] = None, max_rows: Optional[int] = None, min_rows: Optional[int] = None, max_cols: Optional[int] = None, show_dimensions: bool = False, decimal: str = ".", line_width: Optional[int] = None, max_colwidth: Optional[int] = None, encoding: Optional[str] = None, ) -> Optional[str]: """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. max_colwidth : int, optional Max width to truncate each column in characters. By default, no limit. .. versionadded:: 1.0.0 encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ from pandas import option_context with option_context("display.max_colwidth", max_colwidth): formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, line_width=line_width, ) return formatter.to_string(buf=buf, encoding=encoding) # ---------------------------------------------------------------------- @property def style(self) -> "Styler": """ Returns a Styler object. Contains methods for building a styled HTML representation of the DataFrame. a styled HTML representation fo the DataFrame. See Also -------- io.formats.style.Styler """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterate over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. Yields ------ label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print('label:', label) ... print('content:', content, sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"]) def items(self) -> Iterable[Tuple[Optional[Hashable], Series]]: if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) @Appender(_shared_docs["items"]) def iteritems(self) -> Iterable[Tuple[Optional[Hashable], Series]]: yield from self.items() def iterrows(self) -> Iterable[Tuple[Optional[Hashable], Series]]: """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. it : generator A generator that iterates over the rows of the frame. See Also -------- DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. On python versions < 3.7 regular tuples are returned for DataFrames with a large number of columns (>254). Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python versions before 3.7 support at most 255 arguments to constructors can_return_named_tuples = PY37 or len(self.columns) + index < 255 if name is not None and can_return_named_tuples: itertuple = collections.namedtuple(name, fields, rename=True) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self) -> int: """ Returns length of info axis, but here we use the index. """ return len(self.index) def dot(self, other): """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Serie. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, DataFrame): return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns ) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.T.dot(np.transpose(other)).T # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient="columns", dtype=None, columns=None) -> "DataFrame": """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """ index = None orient = orient.lower() if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == "columns": if columns is not None: raise ValueError("cannot use columns parameter with orient='columns'") else: # pragma: no cover raise ValueError("only recognize index or columns for orient") return cls(data, index=index, columns=columns, dtype=dtype) def to_numpy(self, dtype=None, copy=False) -> np.ndarray: """ Convert the DataFrame to a NumPy array. .. versionadded:: 0.24.0 By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogeneous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ result = np.array(self.values, dtype=dtype, copy=copy) return result def to_dict(self, orient="dict", into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn( "DataFrame columns are not unique, some columns will be omitted.", UserWarning, stacklevel=2, ) # GH16122 into_c = com.standardize_mapping(into) if orient.lower().startswith("d"): return into_c((k, v.to_dict(into)) for k, v in self.items()) elif orient.lower().startswith("l"): return into_c((k, v.tolist()) for k, v in self.items()) elif orient.lower().startswith("sp"): return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(com.maybe_box_datetimelike, t)) for t in self.itertuples(index=False, name=None) ], ), ) ) elif orient.lower().startswith("s"): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in self.items()) elif orient.lower().startswith("r"): columns = self.columns.tolist() rows = ( dict(zip(columns, row)) for row in self.itertuples(index=False, name=None) ) return [ into_c((k, com.maybe_box_datetimelike(v)) for k, v in row.items()) for row in rows ] elif orient.lower().startswith("i"): if not self.index.is_unique: raise ValueError("DataFrame index must be unique for orient='index'.") return into_c( (t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None) ) else: raise ValueError(f"orient '{orient}' not understood") def to_gbq( self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists="fail", auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None, ) -> None: """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists raise pandas_gbq.gbq.TableCreationError. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None, ) -> "DataFrame": """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : str, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use. exclude : sequence, default None Columns or fields to exclude. columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns). coerce_float : bool, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets. nrows : int, default None Number of rows to read if data is an iterator. Returns ------- DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in data.items(): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = to_arrays(data, columns) if columns is not None: columns = ensure_index(columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns, coerce_float=coerce_float) arr_columns = ensure_index(arr_columns) if columns is not None: columns = ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] except (KeyError, TypeError): # raised by get_loc, see GH#29258 result_index = index else: result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records( self, index=True, column_dtypes=None, index_dtypes=None ) -> np.recarray: """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. column_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = f"<S{df.index.str.len().max()}" >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """ if index: if isinstance(self.index, ABCMultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index.values))) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c]._internal_get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = f"level_{count}" count += 1 elif index_names[0] is None: index_names = ["index"] names = [str(name) for name in itertools.chain(index_names, self.columns)] else: arrays = [self[c]._internal_get_values() for c in self.columns] names = [str(c) for c in self.columns] index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): formats.append(dtype_mapping) else: element = "row" if i < index_len else "column" msg = f"Invalid dtype {dtype_mapping} specified for {element} {name}" raise ValueError(msg) return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats}) @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None) -> "DataFrame": mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_stata( self, path, convert_dates=None, write_index=True, byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None, ): """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- path : str, buffer or path object String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written. .. versionchanged:: 1.0.0 Previously this was "fname" convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {114, 117, 118, 119, None}, default 114 Version to use in the output dta file. Set to None to let pandas decide between 118 or 119 formats depending on the number of columns in the frame. Version 114 can be read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 118 is supported in Stata 14 and later. Version 119 is supported in Stata 15 and later. Version 114 limits string variables to 244 characters or fewer while versions 117 and later allow strings with lengths up to 2,000,000 characters. Versions 118 and 119 support Unicode characters, and version 119 supports more than 32,767 variables. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Added support for formats 118 and 119. convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. .. versionadded:: 0.23.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ if version not in (114, 117, 118, 119, None): raise ValueError("Only formats 114, 117, 118 and 119 are supported.") if version == 114: if convert_strl is not None: raise ValueError("strl is not supported in format 114") from pandas.io.stata import StataWriter as statawriter elif version == 117: from pandas.io.stata import StataWriter117 as statawriter else: # versions 118 and 119 from pandas.io.stata import StataWriterUTF8 as statawriter kwargs = {} if version is None or version >= 117: # strl conversion is only supported >= 117 kwargs["convert_strl"] = convert_strl if version is None or version >= 118: # Specifying the version is only supported for UTF8 (118 or 119) kwargs["version"] = version writer = statawriter( path, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, **kwargs, ) writer.write_file() @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_feather(self, path) -> None: """ Write out the binary feather-format for DataFrames. Parameters ---------- path : str String file path. """ from pandas.io.feather_format import to_feather to_feather(self, path) @Appender( """ Examples -------- >>> df = pd.DataFrame( ... data={"animal_1": ["elk", "pig"], "animal_2": ["dog", "quetzal"]} ... ) >>> print(df.to_markdown()) | | animal_1 | animal_2 | |---:|:-----------|:-----------| | 0 | elk | dog | | 1 | pig | quetzal | """ ) @Substitution(klass="DataFrame") @Appender(_shared_docs["to_markdown"]) def to_markdown( self, buf: Optional[IO[str]] = None, mode: Optional[str] = None, **kwargs ) -> Optional[str]: kwargs.setdefault("headers", "keys") kwargs.setdefault("tablefmt", "pipe") tabulate = import_optional_dependency("tabulate") result = tabulate.tabulate(self, **kwargs) if buf is None: return result buf, _, _, _ = get_filepath_or_buffer(buf, mode=mode) assert buf is not None # Help mypy. buf.writelines(result) return None @deprecate_kwarg(old_arg_name="fname", new_arg_name="path") def to_parquet( self, path, engine="auto", compression="snappy", index=None, partition_cols=None, **kwargs, ) -> None: """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- path : str File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset. .. versionchanged:: 1.0.0 Previously this was "fname" engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``True`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. .. versionadded:: 0.24.0 partition_cols : list, optional, default None Column names by which to partition the dataset. Columns are partitioned in the order they are given. .. versionadded:: 0.24.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 """ from pandas.io.parquet import to_parquet to_parquet( self, path, engine, compression=compression, index=index, partition_cols=partition_cols, **kwargs, ) @Substitution( header_type="bool", header="Whether to print column labels, default True", col_space_type="str or int", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.\n\n" " .. versionadded:: 0.25.0\n" " Ability to use str", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=".", bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, encoding=None, ): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.display.html.border``. encoding : str, default "utf-8" Set character encoding. .. versionadded:: 1.0 table_id : str, optional A css id is included in the opening `<table>` tag if specified. .. versionadded:: 0.23.0 render_links : bool, default False Convert URLs to HTML links. .. versionadded:: 0.24.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, table_id=table_id, render_links=render_links, ) # TODO: a generic formatter wld b in DataFrameFormatter return formatter.to_html( buf=buf, classes=classes, notebook=notebook, border=border, encoding=encoding, ) # ---------------------------------------------------------------------- def info( self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None ) -> None: """ Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage. Parameters ---------- verbose : bool, optional Whether to print the full summary. By default, the setting in ``pandas.options.display.max_info_columns`` is followed. buf : writable buffer, defaults to sys.stdout Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than `max_cols` columns, the truncated output is used. By default, the setting in ``pandas.options.display.max_info_columns`` is used. memory_usage : bool, str, optional Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the ``pandas.options.display.memory_usage`` setting. True always show memory usage. False never shows memory usage. A value of 'deep' is equivalent to "True with deep introspection". Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. null_counts : bool, optional Whether to show the non-null counts. By default, this is shown only if the frame is smaller than ``pandas.options.display.max_info_rows`` and ``pandas.options.display.max_info_columns``. A value of True always shows the counts, and False never shows the counts. Returns ------- None This method prints a summary of a DataFrame and returns None. See Also -------- DataFrame.describe: Generate descriptive statistics of DataFrame columns. DataFrame.memory_usage: Memory usage of DataFrame columns. Examples -------- >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open("df_info.txt", "w", ... encoding="utf-8") as f: # doctest: +SKIP ... f.write(s) 260 The `memory_usage` parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization: >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = pd.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 22.9+ MB >>> df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 188.8 MB """ if buf is None: # pragma: no cover buf = sys.stdout lines = [] lines.append(str(type(self))) lines.append(self.index._summary()) if len(self.columns) == 0: lines.append(f"Empty {type(self).__name__}") fmt.buffer_put_lines(buf, lines) return cols = self.columns col_count = len(self.columns) # hack if max_cols is None: max_cols = get_option("display.max_info_columns", len(self.columns) + 1) max_rows = get_option("display.max_info_rows", len(self) + 1) if null_counts is None: show_counts = (col_count <= max_cols) and (len(self) < max_rows) else: show_counts = null_counts exceeds_info_cols = col_count > max_cols def _verbose_repr(): lines.append(f"Data columns (total {len(self.columns)} columns):") id_head = " # " column_head = "Column" col_space = 2 max_col = max(len(pprint_thing(k)) for k in cols) len_column = len(pprint_thing(column_head)) space = max(max_col, len_column) + col_space max_id = len(pprint_thing(col_count)) len_id = len(pprint_thing(id_head)) space_num = max(max_id, len_id) + col_space counts = None header = _put_str(id_head, space_num) + _put_str(column_head, space) if show_counts: counts = self.count() if len(cols) != len(counts): # pragma: no cover raise AssertionError( f"Columns must equal counts ({len(cols)} != {len(counts)})" ) count_header = "Non-Null Count" len_count = len(count_header) non_null = " non-null" max_count = max(len(pprint_thing(k)) for k in counts) + len(non_null) space_count = max(len_count, max_count) + col_space count_temp = "{count}" + non_null else: count_header = "" space_count = len(count_header) len_count = space_count count_temp = "{count}" dtype_header = "Dtype" len_dtype = len(dtype_header) max_dtypes = max(len(pprint_thing(k)) for k in self.dtypes) space_dtype = max(len_dtype, max_dtypes) header += _put_str(count_header, space_count) + _put_str( dtype_header, space_dtype ) lines.append(header) lines.append( _put_str("-" * len_id, space_num) + _put_str("-" * len_column, space) + _put_str("-" * len_count, space_count) + _put_str("-" * len_dtype, space_dtype) ) for i, col in enumerate(self.columns): dtype = self.dtypes.iloc[i] col = pprint_thing(col) line_no = _put_str(f" {i}", space_num) count = "" if show_counts: count = counts.iloc[i] lines.append( line_no + _put_str(col, space) + _put_str(count_temp.format(count=count), space_count) + _put_str(dtype, space_dtype) ) def _non_verbose_repr(): lines.append(self.columns._summary(name="Columns")) def _sizeof_fmt(num, size_qualifier): # returns size in human readable format for x in ["bytes", "KB", "MB", "GB", "TB"]: if num < 1024.0: return f"{num:3.1f}{size_qualifier} {x}" num /= 1024.0 return f"{num:3.1f}{size_qualifier} PB" if verbose: _verbose_repr() elif verbose is False: # specifically set to False, not nesc None _non_verbose_repr() else: if exceeds_info_cols: _non_verbose_repr() else: _verbose_repr() counts = self._data.get_dtype_counts() dtypes = [f"{k[0]}({k[1]:d})" for k in sorted(counts.items())] lines.append(f"dtypes: {', '.join(dtypes)}") if memory_usage is None: memory_usage = get_option("display.memory_usage") if memory_usage: # append memory usage of df to display size_qualifier = "" if memory_usage == "deep": deep = True else: # size_qualifier is just a best effort; not guaranteed to catch # all cases (e.g., it misses categorical data even with object # categories) deep = False if "object" in counts or self.index._is_memory_usage_qualified(): size_qualifier = "+" mem_usage = self.memory_usage(index=True, deep=deep).sum() lines.append(f"memory usage: {_sizeof_fmt(mem_usage, size_qualifier)}\n") fmt.buffer_put_lines(buf, lines) def memory_usage(self, index=True, deep=False) -> Series: """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.000000+0.000000j 1 True 1 1 1.0 1.000000+0.000000j 1 True 2 1 1.0 1.000000+0.000000j 1 True 3 1 1.0 1.000000+0.000000j 1 True 4 1 1.0 1.000000+0.000000j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5216 """ result = Series( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, ) if index: result = Series(self.index.memory_usage(deep=deep), index=["Index"]).append( result ) return result def transpose(self, *args, copy: bool = False) -> "DataFrame": """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- *args : tuple, optional Accepted for compatibility with NumPy. copy : bool, default False Whether to copy the data after transposing, even for DataFrames with a single dtype. Note that a copy is always required for mixed dtype DataFrames, or for DataFrames with any extension types. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, dict()) # construct the args dtypes = list(self.dtypes) if self._is_homogeneous_type and dtypes and is_extension_array_dtype(dtypes[0]): # We have EAs with the same dtype. We can preserve that dtype in transpose. dtype = dtypes[0] arr_type = dtype.construct_array_type() values = self.values new_values = [arr_type._from_sequence(row, dtype=dtype) for row in values] result = self._constructor( dict(zip(self.index, new_values)), index=self.columns ) else: new_values = self.values.T if copy: new_values = new_values.copy() result = self._constructor( new_values, index=self.columns, columns=self.index ) return result.__finalize__(self) T = property(transpose) # ---------------------------------------------------------------------- # Indexing Methods def _ixs(self, i: int, axis: int = 0): """ Parameters ---------- i : int axis : int Notes ----- If slice passed, the resulting data will be a view. """ # irow if axis == 0: new_values = self._data.fast_xs(i) # if we are a copy, mark as such copy = isinstance(new_values, np.ndarray) and new_values.base is None result = self._constructor_sliced( new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype, ) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] values = self._data.iget(i) result = self._box_col_values(values, label) # this is a cached value, mark it so result._set_as_cached(label, self) return result def __getitem__(self, key): key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key): # shortcut if the key is in columns if self.columns.is_unique and key in self.columns: if self.columns.nlevels > 1: return self._getitem_multilevel(key) return self._get_item_cache(key) # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self.where(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self.take(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, ABCMultiIndex): data = data[key] return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match DataFrame index.", UserWarning, stacklevel=3, ) elif len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}." ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self.take(indexer, axis=0) def _getitem_multilevel(self, key): # self.columns is a MultiIndex loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor( new_values, index=self.index, columns=result_columns ) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _get_value(self, index, col, takeable: bool = False): """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar """ if takeable: series = self._iget_item_cache(col) return com.maybe_box_datetimelike(series._values[index]) series = self._get_item_cache(col) engine = self.index._engine try: if isinstance(series._values, np.ndarray): # i.e. not EA, we can use engine return engine.get_value(series._values, index) else: loc = series.index.get_loc(index) return series._values[loc] except KeyError: # GH 20629 if self.index.nlevels > 1: # partial indexing forbidden raise # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: # either we have a slice or we have a string that can be converted # to a slice for partial-string date indexing return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key, value): self._check_setitem_copy() self.loc[key] = value def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError( f"Item wrong length {len(key)} instead of {len(self.index)}!" ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.loc._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError("Columns must be same length as key") for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: indexer = self.loc._get_listlike_indexer( key, axis=1, raise_missing=False )[1] self._check_setitem_copy() self.loc._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict()) if key.values.size and not is_bool_dtype(key.values): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def _set_value(self, index, col, value, takeable: bool = False): """ Put single value at passed column and index. Parameters ---------- index : row label col : column label value : scalar takeable : interpret the index/col as indexers, default False Returns ------- DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object. """ try: if takeable is True: series = self._iget_item_cache(col) return series._set_value(index, value, takeable=True) series = self._get_item_cache(col) engine = self.index._engine engine.set_value(series._values, index, value) return self except (KeyError, TypeError): # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) return self def _ensure_valid_index(self, value): """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value) and len(value): try: value = Series(value) except (ValueError, NotImplementedError, TypeError): raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a Series" ) self._data = self._data.reindex_axis( value.index.copy(), axis=1, fill_value=np.nan ) def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ Provide boxed values for a column. """ klass = self._constructor_sliced return klass(values, index=self.index, name=items, fastpath=True) # ---------------------------------------------------------------------- # Unsorted def query(self, expr, inplace=False, **kwargs): """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. You can refer to column names that contain spaces or operators by surrounding them in backticks. This way you can also escape names that start with a digit, or those that are a Python keyword. Basically when it is not valid Python identifier. See notes down for more details. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. .. versionadded:: 0.25.0 Backtick quoting introduced. .. versionadded:: 1.0.0 Expanding functionality of backtick quoting for more than only spaces. inplace : bool Whether the query should modify the data in place or return a modified copy. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame DataFrame resulting from the provided query expression. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. *Backtick quoted variables* Backtick quoted variables are parsed as literal Python code and are converted internally to a Python valid identifier. This can lead to the following problems. During parsing a number of disallowed characters inside the backtick quoted string are replaced by strings that are allowed as a Python identifier. These characters include all operators in Python, the space character, the question mark, the exclamation mark, the dollar sign, and the euro sign. For other characters that fall outside the ASCII range (U+0001..U+007F) and those that are not further specified in PEP 3131, the query parser will raise an error. This excludes whitespace different than the space character, but also the hashtag (as it is used for comments) and the backtick itself (backtick can also not be escaped). In a special case, quotes that make a pair around a backtick can confuse the parser. For example, ```it's` > `that's``` will raise an error, as it forms a quoted string (``'s > `that'``) with a backtick inside. See also the Python documentation about lexical analysis (https://docs.python.org/3/reference/lexical_analysis.html) in combination with the source code in :mod:`pandas.core.computation.parsing`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = f"expr must be a string to be evaluated, {type(expr)} given" raise ValueError(msg) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, or pandas object The result of the evaluation. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") resolvers = kwargs.pop("resolvers", None) kwargs["level"] = kwargs.pop("level", 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() column_resolvers = self._get_cleaned_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None) -> "DataFrame": """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = (frozenset(include), frozenset(exclude)) if not any(selection): raise ValueError("at least one of include or exclude must be nonempty") # convert the myriad valid dtypes object to a single representation include = frozenset(infer_dtype_from_object(x) for x in include) exclude = frozenset(infer_dtype_from_object(x) for x in exclude) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError(f"include and exclude overlap on {(include & exclude)}") # We raise when both include and exclude are empty # Hence, we can just shrink the columns we want to keep keep_these = np.full(self.shape[1], True) def extract_unique_dtypes_from_dtypes_set( dtypes_set: FrozenSet[Dtype], unique_dtypes: np.ndarray ) -> List[Dtype]: extracted_dtypes = [ unique_dtype for unique_dtype in unique_dtypes if issubclass(unique_dtype.type, tuple(dtypes_set)) # type: ignore ] return extracted_dtypes unique_dtypes = self.dtypes.unique() if include: included_dtypes = extract_unique_dtypes_from_dtypes_set( include, unique_dtypes ) keep_these &= self.dtypes.isin(included_dtypes) if exclude: excluded_dtypes = extract_unique_dtypes_from_dtypes_set( exclude, unique_dtypes ) keep_these &= ~self.dtypes.isin(excluded_dtypes) return self.iloc[:, keep_these.values] def insert(self, loc, column, value, allow_duplicates=False) -> None: """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns). column : str, number, or hashable object Label of the inserted column. value : int, Series, or array-like allow_duplicates : bool, optional """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs) -> "DataFrame": r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. Later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. .. versionchanged:: 0.23.0 Keyword argument order is maintained. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 You can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy() for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- numpy.ndarray """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except ValueError as err: # raised in MultiIndex.from_tuples, see test_insert_error_msmgs if not value.index.is_unique: # duplicate axis raise err # other raise TypeError( "incompatible index of inserted column with frame index" ) return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, ABCMultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, ExtensionArray): # Explicitly copy here, instead of in sanitize_index, # as sanitize_index won't copy an EA, even with copy=True value = value.copy() value = sanitize_index(value, self.index) elif isinstance(value, Index) or is_sequence(value): # turn me into an ndarray value = sanitize_index(value, self.index) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com.asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: # cast ignores pandas dtypes. so save the dtype first infer_dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) # upcast value = cast_scalar_to_array(len(self.index), value) value = maybe_cast_to_datetime(value, infer_dtype) # return internal types directly if is_extension_array_dtype(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if not self.columns.is_unique or isinstance(self.columns, ABCMultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): return { item: Series(self._data.iget(idx), index=self.index, name=item) for idx, item in enumerate(self.columns) } def lookup(self, row_labels, col_labels) -> np.ndarray: """ Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup. col_labels : sequence The column labels to use for lookup. Returns ------- numpy.ndarray The found values. """ n = len(row_labels) if n != len(col_labels): raise ValueError("Row labels must have same size as column labels") thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError("One or more row labels was not found") if (cidx == -1).any(): raise KeyError("One or more column labels was not found") flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype="O") for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes["columns"] if columns is not None: frame = frame._reindex_columns( columns, method, copy, level, fill_value, limit, tolerance ) index = axes["index"] if index is not None: frame = frame._reindex_index( index, method, copy, level, fill_value, limit, tolerance ) return frame def _reindex_index( self, new_index, method, copy, level, fill_value=np.nan, limit=None, tolerance=None, ): new_index, indexer = self.index.reindex( new_index, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_columns( self, new_columns, method, copy, level, fill_value=None, limit=None, tolerance=None, ): new_columns, indexer = self.columns.reindex( new_columns, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_multi(self, axes, copy, fill_value) -> "DataFrame": """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi( self.values, indexer, fill_value=fill_value ) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @Appender(_shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ) -> "DataFrame": return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) @Appender( """ >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) Change the row labels. >>> df.set_axis(['a', 'b', 'c'], axis='index') A B a 1 4 b 2 5 c 3 6 Change the column labels. >>> df.set_axis(['I', 'II'], axis='columns') I II 0 1 4 1 2 5 2 3 6 Now, update the labels inplace. >>> df.set_axis(['i', 'ii'], axis='columns', inplace=True) >>> df i ii 0 1 4 1 2 5 2 3 6 """ ) @Substitution( **_shared_doc_kwargs, extended_summary_sub=" column or", axis_description_sub=", and 1 identifies the columns", see_also_sub=" or columns", ) @Appender(NDFrame.set_axis.__doc__) def set_axis(self, labels, axis=0, inplace=False): return super().set_axis(labels, axis=axis, inplace=inplace) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.reindex.__doc__) @rewrite_axis_style_signature( "labels", [ ("method", None), ("copy", True), ("level", None), ("fill_value", np.nan), ("limit", None), ("tolerance", None), ], ) def reindex(self, *args, **kwargs) -> "DataFrame": axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("labels", None) return self._ensure_type(super().reindex(**kwargs)) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). .. versionadded:: 0.21.0 columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame DataFrame without the removed index or column labels. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @rewrite_axis_style_signature( "mapper", [("copy", True), ("inplace", False), ("level", None), ("errors", "ignore")], ) def rename( self, mapper: Optional[Renamer] = None, *, index: Optional[Renamer] = None, columns: Optional[Renamer] = None, axis: Optional[Axis] = None, copy: bool = True, inplace: bool = False, level: Optional[Level] = None, errors: str = "ignore", ) -> Optional["DataFrame"]: """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper : dict-like or function Dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : int or str Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame DataFrame with the renamed axis labels. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ return super().rename( mapper=mapper, index=index, columns=columns, axis=axis, copy=copy, inplace=inplace, level=level, errors=errors, ) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.fillna.__doc__) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, ) -> Optional["DataFrame"]: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) @Appender(_shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @Appender(_shared_docs["shift"] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None) -> "DataFrame": return self._ensure_type( super().shift(periods=periods, freq=freq, axis=axis, fill_value=fill_value) ) def set_index( self, keys, drop=True, append=False, inplace=False, verify_integrity=False ): """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing: List[Optional[Hashable]] = [] for col in keys: if isinstance( col, (ABCIndexClass, ABCSeries, np.ndarray, list, abc.Iterator) ): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError: raise TypeError(f"{err_msg}. Received column of type {type(col)}") else: if not found: missing.append(col) if missing: raise KeyError(f"None of {missing} are in the columns") if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = list(self.index.names) if isinstance(self.index, ABCMultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove: List[Optional[Hashable]] = [] for col in keys: if isinstance(col, ABCMultiIndex): for n in range(col.nlevels): arrays.append(col._get_level_values(n)) names.extend(col.names) elif isinstance(col, (ABCIndexClass, ABCSeries)): # if Index then not MultiIndex (treated above) arrays.append(col) names.append(col.name) elif isinstance(col, (list, np.ndarray)): arrays.append(col) names.append(None) elif isinstance(col, abc.Iterator): arrays.append(list(col)) names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( f"Length mismatch: Expected {len(self)} rows, " f"received array of length {len(arrays[-1])}" ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError(f"Index has duplicate keys: {duplicates}") # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index( self, level: Optional[Union[Hashable, Sequence[Hashable]]] = None, drop: bool = False, inplace: bool = False, col_level: Hashable = 0, col_fill: Optional[Hashable] = "", ) -> Optional["DataFrame"]: """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame or None DataFrame with the new index or None if ``inplace=True``. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): values = index._values if not isinstance(index, (PeriodIndex, DatetimeIndex)): if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 # we can have situations where the whole mask is -1, # meaning there is nothing found in labels, so make all nan's if mask.all(): values = np.empty(len(mask)) values.fill(np.nan) else: values = values.take(labels) # TODO(https://github.com/pandas-dev/pandas/issues/24206) # Push this into maybe_upcast_putmask? # We can't pass EAs there right now. Looks a bit # complicated. # So we unbox the ndarray_values, op, re-box. values_type = type(values) values_dtype = values.dtype if issubclass(values_type, DatetimeLikeArray): values = values._data if mask.any(): values, _ = maybe_upcast_putmask(values, mask, np.nan) if issubclass(values_type, DatetimeLikeArray): values = values_type(values, dtype=values_dtype) return values new_index = ibase.default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: to_insert: Iterable[Tuple[Any, Optional[Any]]] if isinstance(self.index, ABCMultiIndex): names = [ (n if n is not None else f"level_{i}") for i, n in enumerate(self.index.names) ] to_insert = zip(self.index.levels, self.index.codes) else: default = "index" if "index" not in self else "level_0" names = [default] if self.index.name is None else [self.index.name] to_insert = ((self.index, None),) multi_col = isinstance(self.columns, ABCMultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if not (level is None or i in level): continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " f"with incomplete column name {name}" ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj return None # ---------------------------------------------------------------------- # Reindex-based selection methods @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isna(self) -> "DataFrame": return super().isna() @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isnull(self) -> "DataFrame": return super().isnull() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notna(self) -> "DataFrame": return super().notna() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notnull(self) -> "DataFrame": return super().notnull() def dropna(self, axis=0, how="any", thresh=None, subset=None, inplace=False): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. versionchanged:: 1.0.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 raise TypeError("supplying multiple axes to axis is no longer supported.") axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == "any": mask = count == len(agg_obj._get_axis(agg_axis)) elif how == "all": mask = count > 0 else: if how is not None: raise ValueError(f"invalid how option: {how}") else: raise TypeError("must specify how or thresh") result = self.loc(axis=axis)[mask] if inplace: self._update_inplace(result) else: return result def drop_duplicates( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", inplace: bool = False, ignore_index: bool = False, ) -> Optional["DataFrame"]: """ Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to keep. - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : bool, default False Whether to drop duplicates in place or to return a copy. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- DataFrame DataFrame with duplicates removed or None if ``inplace=True``. """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, "inplace") duplicated = self.duplicated(subset, keep=keep) if inplace: (inds,) = (-duplicated)._ndarray_values.nonzero() new_data = self._data.take(inds) if ignore_index: new_data.axes[1] = ibase.default_index(len(inds)) self._update_inplace(new_data) else: result = self[-duplicated] if ignore_index: result.index = ibase.default_index(len(result)) return result return None def duplicated( self, subset: Optional[Union[Hashable, Sequence[Hashable]]] = None, keep: Union[str, bool] = "first", ) -> "Series": """ Return boolean Series denoting duplicate rows. Considering certain columns is optional. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', False}, default 'first' Determines which duplicates (if any) to mark. - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series """ from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT if self.empty: return Series(dtype=bool) def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT) ) return labels.astype("i8", copy=False), len(shape) if subset is None: subset = self.columns elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # needed for mypy since can't narrow types using np.iterable subset = cast(Iterable, subset) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_values.__doc__) def sort_values( self, by, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ignore_index=False, ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError( f"Length of ascending ({len(ascending)}) != length of by ({len(by)})" ) if len(by) > 1: from pandas.core.sorting import lexsort_indexer keys = [self._get_label_or_level_values(x, axis=axis) for x in by] indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) else: from pandas.core.sorting import nargsort by = by[0] k = self._get_label_or_level_values(by, axis=axis) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position ) new_data = self._data.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def sort_index( self, axis=0, level=None, ascending: bool = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, ): """ Sort object by labels (along an axis). Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns. level : int or level name or list of ints or list of level names If not None, sort on values in specified index level(s). ascending : bool, default True Sort ascending vs. descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- sorted_obj : DataFrame or None DataFrame with sorted index if inplace=False, None otherwise. """ # TODO: this can be combined with Series.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) labels = self._get_axis(axis) # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer labels = labels._sort_levels_monotonic() if level is not None: new_axis, indexer = labels.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(labels, ABCMultiIndex): from pandas.core.sorting import lexsort_indexer indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and labels.is_monotonic_increasing) or ( not ascending and labels.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( labels, kind=kind, ascending=ascending, na_position=na_position ) baxis = self._get_block_manager_axis(axis) new_data = self._data.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if ignore_index: new_data.axes[1] = ibase.default_index(len(indexer)) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def nlargest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep="first") -> "DataFrame": """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "a". >>> df.nsmallest(3, 'population') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 11300 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Nauru 11300 182 NR Anguilla 11300 311 AI """ return algorithms.SelectNFrame( self, n=n, keep=keep, columns=columns ).nsmallest() def swaplevel(self, i=-2, j=-1, axis=0) -> "DataFrame": """ Swap levels i and j in a MultiIndex on a particular axis. Parameters ---------- i, j : int or str Levels of the indices to be swapped. Can pass level name as string. Returns ------- DataFrame """ result = self.copy() axis = self._get_axis_number(axis) if axis == 0: result.index = result.index.swaplevel(i, j) else: result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0) -> "DataFrame": """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- DataFrame """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), ABCMultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy() if axis == 0: result.index = result.index.reorder_levels(order) else: result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other, func, fill_value=None, level=None): # at this point we have `self._indexed_same(other)` if fill_value is None: # since _arith_op may be called in a loop, avoid function call # overhead if possible by doing this check once _arith_op = func else: def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) if ops.should_series_dispatch(self, other, func): # iterate over columns new_data = ops.dispatch_to_series(self, other, _arith_op) else: with np.errstate(all="ignore"): res_values = _arith_op(self.values, other.values) new_data = dispatch_fill_zeros(func, self.values, other.values, res_values) return new_data def _combine_match_index(self, other, func): # at this point we have `self.index.equals(other.index)` if ops.should_series_dispatch(self, other, func): # operate column-wise; avoid costly object-casting in `.values` new_data = ops.dispatch_to_series(self, other, func) else: # fastpath --> operate directly on values with np.errstate(all="ignore"): new_data = func(self.values.T, other.values).T return new_data def _construct_result(self, result) -> "DataFrame": """ Wrap the result of an arithmetic, comparison, or logical operation. Parameters ---------- result : DataFrame Returns ------- DataFrame """ out = self._constructor(result, index=self.index, copy=False) # Pin columns instead of passing to constructor for compat with # non-unique columns case out.columns = self.columns return out def combine( self, other: "DataFrame", func, fill_value=None, overwrite=True ) -> "DataFrame": """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) arr = func(series, otherSeries) arr = maybe_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns) def combine_first(self, other: "DataFrame") -> "DataFrame": """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ import pandas.core.computation.expressions as expressions def extract_values(arr): # Does two things: # 1. maybe gets the values from the Series / Index # 2. convert datelike to i8 if isinstance(arr, (ABCIndexClass, ABCSeries)): arr = arr._values if needs_i8_conversion(arr): if is_extension_array_dtype(arr.dtype): arr = arr.asi8 else: arr = arr.view("i8") return arr def combiner(x, y): mask = isna(x) if isinstance(mask, (ABCIndexClass, ABCSeries)): mask = mask._values x_values = extract_values(x) y_values = extract_values(y) # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) return self.combine(other, combiner, overwrite=False) def update( self, other, join="left", overwrite=True, filter_func=None, errors="ignore" ) -> None: """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. .. versionchanged:: 0.24.0 Changed from `raise_conflict=False|True` to `errors='ignore'|'raise'`. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError("The parameter errors must be either 'ignore' or 'raise'") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all="ignore"): mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping @Appender( """ Examples -------- >>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', ... 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.]}) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0 **Hierarchical Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Captive 210.0 Wild 185.0 """ ) @Appender(_shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, ) -> "DataFrameGroupBy": from pandas.core.groupby.generic import DataFrameGroupBy if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return DataFrameGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, ) _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ----------%s index : str or object, optional Column to use to make new frame's index. If None, uses existing index. columns : str or object Column to use to make new frame's columns. values : str, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. .. versionchanged:: 0.23.0 Also accept list of column names. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot(self, index=None, columns=None, values=None) -> "DataFrame": from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions. fill_value : scalar, default None Value to replace missing values with. margins : bool, default False Add all row / columns (e.g. for subtotal / grand totals). dropna : bool, default True Do not include columns whose entries are all NaN. margins_name : str, default 'All' Name of the row / column that will contain the totals when margins is True. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionchanged:: 0.25.0 Returns ------- DataFrame An Excel style pivot table. See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9.0 7.500000 6.0 small 5.500000 9.0 8.500000 8.0 foo large 2.000000 5.0 4.500000 4.0 small 2.333333 6.0 4.333333 2.0 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ) -> "DataFrame": from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) def stack(self, level=-1, dropna=True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. The new index levels are sorted. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def explode(self, column: Union[str, Tuple]) -> "DataFrame": """ Transform each element of a list-like to a row, replicating index values. .. versionadded:: 0.25.0 Parameters ---------- column : str or tuple Column to explode. Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : if columns of the frame are not unique. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels. DataFrame.melt : Unpivot a DataFrame from wide format to long format. Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 foo 1 2 [] 1 3 [3, 4] 1 >>> df.explode('A') A B 0 1 1 0 2 1 0 3 1 1 foo 1 2 NaN 1 3 3 1 3 4 1 """ if not (is_scalar(column) or isinstance(column, tuple)): raise ValueError("column must be a scalar") if not self.columns.is_unique: raise ValueError("columns must be unique") df = self.reset_index(drop=True) # TODO: use overload to refine return type of reset_index assert df is not None # needed for mypy result = df[column].explode() result = df.drop([column], axis=1).join(result) result.index = self.index.take(result.index) result = result.reindex(columns=self.columns, copy=False) return result def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels. Returns a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, str, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name. fill_value : int, str or dict Replace NaN with this value if the unstack produces missing values. Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) _shared_docs[ "melt" ] = """ Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. %(versionadded)s Parameters ---------- id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or str, optional If columns are a MultiIndex then use this level to melt. Returns ------- DataFrame Unpivoted DataFrame. See Also -------- %(other)s pivot_table DataFrame.pivot Series.explode Examples -------- >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ @Appender( _shared_docs["melt"] % dict( caller="df.melt(", versionadded=".. versionadded:: 0.20.0\n", other="melt" ) ) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ) -> "DataFrame": from pandas.core.reshape.melt import melt return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0) -> "DataFrame": """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). Returns ------- DataFrame See Also -------- Series.diff: First discrete difference for a Series. DataFrame.pct_change: Percent change over given number of periods. DataFrame.shift: Shift index by desired number of periods with an optional time freq. Notes ----- For boolean dtypes, this uses :meth:`operator.xor` rather than :meth:`operator.sub`. Examples -------- Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0.0 0.0 1 NaN -1.0 3.0 2 NaN -1.0 7.0 3 NaN -1.0 13.0 4 NaN 0.0 20.0 5 NaN 2.0 28.0 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: Union[str, List[str]], ndim: int, subset: Optional[Union[Series, ABCDataFrame]] = None, ) -> Union[Series, ABCDataFrame]: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_summary_and_see_also_doc = dedent( """ The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.EWM : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @Substitution( see_also=_agg_summary_and_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs, ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) result = None try: result, how = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, axis=0, *args, **kwargs): if axis == 1: # NDFrame.aggregate returns a tuple, and we need to transpose # only result result, how = self.T._aggregate(arg, *args, **kwargs) result = result.T if result is not None else result return result, how return super()._aggregate(arg, *args, **kwargs) agg = aggregate @Appender(_shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs) -> "DataFrame": axis = self._get_axis_number(axis) if axis == 1: return self.T.transform(func, *args, **kwargs).T return super().transform(func, *args, **kwargs) def apply(self, func, axis=0, raw=False, result_type=None, args=(), **kwds): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. raw : bool, default False Determines if row or column is passed as a Series or ndarray object: * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing result_type='expand' will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, raw=raw, result_type=result_type, args=args, kwds=kwds, ) return op.get_result() def applymap(self, func) -> "DataFrame": """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. Notes ----- In the current implementation applymap calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func) return lib.map_infer(x.astype(object).values, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append( self, other, ignore_index=False, verify_integrity=False, sort=False ) -> "DataFrame": """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : bool, default False If True, do not use the index labels. verify_integrity : bool, default False If True, raise ValueError on creating index with duplicates. sort : bool, default False Sort columns if the columns of `self` and `other` are not aligned. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Changed to not sort by default. Returns ------- DataFrame See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): if not ignore_index: raise TypeError("Can only append a dict if ignore_index=True") other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True " "or if the Series has a name" ) index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) try: combined_columns = self.columns.append(idx_diff) except TypeError: combined_columns = self.columns.astype(object).append(idx_diff) other = ( other.reindex(combined_columns, copy=False) .to_frame() .T.infer_objects() .rename_axis(index.names, copy=False) ) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list): if not other: pass elif not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.reindex(columns=self.columns) from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self, *other] else: to_concat = [self, other] return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) def join( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ) -> "DataFrame": """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it. lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Support for specifying index levels as the `on` parameter was added in version 0.23.0. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN """ return self._join_compat( other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort ) def _join_compat( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ): from pandas.core.reshape.merge import merge from pandas.core.reshape.concat import concat if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported for joining on index" ) frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat( frames, axis=1, join="outer", verify_integrity=True, sort=sort ) return res.reindex(self.index, copy=False) else: return concat( frames, axis=1, join=how, verify_integrity=True, sort=sort ) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ) -> "DataFrame": from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round(self, decimals=0, *args, **kwargs) -> "DataFrame": """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = list(_dict_round(self, decimals)) elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.items()] else: raise TypeError("decimals must be an integer, a dict-like or a Series") if len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method="pearson", min_periods=1) -> "DataFrame": """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith Series.corr Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if method == "pearson": correl = libalgos.nancorr(ensure_float64(mat), minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(ensure_float64(mat), minp=min_periods) elif method == "kendall" or callable(method): if min_periods is None: min_periods = 1 mat = ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods=None) -> "DataFrame": """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.EWM.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if notna(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = libalgos.nancorr(ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=idx, columns=cols) def corrwith(self, other, axis=0, drop=False, method="pearson") -> Series: """ Compute pairwise correlation. Pairwise correlation is computed between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable Method of correlation: * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series( map(c, zip(left.values.T, right.values.T)), index=left.columns ) else: raise ValueError( f"Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable" ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype("int64") def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, ABCMultiIndex): raise TypeError( f"Can only count levels on hierarchical {self._get_axis_name(axis)}." ) if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notna(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, str): level = count_axis._get_level_number(level) level_name = count_axis._names[level] level_index = count_axis.levels[level]._shallow_copy(name=level_name) level_codes = ensure_int64(count_axis.codes[level]) counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): if axis is None and filter_type == "bool": labels = None constructor = None else: # TODO: Make other agg func handle axis=None properly axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) constructor = self._constructor def f(x): return op(x, axis=axis, skipna=skipna, **kwds) def _get_data(axis_matters): if filter_type is None or filter_type == "numeric": data = self._get_numeric_data() elif filter_type == "bool": if axis_matters: # GH#25101, GH#24434 data = self._get_bool_data() if axis == 0 else self else: data = self._get_bool_data() else: # pragma: no cover msg = ( f"Generating numeric_only data with filter_type {filter_type} " "not supported." ) raise NotImplementedError(msg) return data if numeric_only is not None and axis in [0, 1]: df = self if numeric_only is True: df = _get_data(axis_matters=True) if axis == 1: df = df.T axis = 0 out_dtype = "bool" if filter_type == "bool" else None # After possibly _get_data and transposing, we are now in the # simple case where we can use BlockManager._reduce res = df._data.reduce(op, axis=1, skipna=skipna, **kwds) assert isinstance(res, dict) if len(res): assert len(res) == max(list(res.keys())) + 1, res.keys() out = df._constructor_sliced(res, index=range(len(res)), dtype=out_dtype) out.index = df.columns return out if numeric_only is None: values = self.values try: result = f(values) if filter_type == "bool" and is_object_dtype(values) and axis is None: # work around https://github.com/numpy/numpy/issues/10489 # TODO: combine with hasattr(result, 'dtype') further down # hard since we don't have `values` down there. result = np.bool_(result) except TypeError: # e.g. in nanops trying to convert strs to float # try by-column first if filter_type is None and axis == 0: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series # we only end up here if we have not specified # numeric_only and yet we have tried a # column-by-column reduction, where we have mixed type. # So let's just do what we can from pandas.core.apply import frame_apply opa = frame_apply( self, func=f, result_type="expand", ignore_failures=True ) result = opa.get_result() if result.ndim == self.ndim: result = result.iloc[0] return result # TODO: why doesnt axis matter here? data = _get_data(axis_matters=False) with np.errstate(all="ignore"): result = f(data.values) labels = data._get_agg_axis(axis) else: if numeric_only: data = _get_data(axis_matters=True) values = data.values labels = data._get_agg_axis(axis) else: values = self.values result = f(values) if hasattr(result, "dtype") and is_object_dtype(result.dtype): try: if filter_type is None or filter_type == "numeric": result = result.astype(np.float64) elif filter_type == "bool" and notna(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = coerce_to_dtypes(result, self.dtypes) if constructor is not None: result = self._constructor_sliced(result, index=labels) return result def nunique(self, axis=0, dropna=True) -> Series: """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin Notes ----- This method is the DataFrame version of ``ndarray.argmin``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True) -> Series: """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax Notes ----- This method is the DataFrame version of ``ndarray.argmax``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError(f"Axis must be 0 or 1 (got {repr(axis_num)})") def mode(self, axis=0, numeric_only=False, dropna=True) -> "DataFrame": """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row. numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains ``NaN``, because they have only one mode, but the DataFrame has two rows. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation="linear"): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ validate_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T if len(data.columns) == 0: # GH#23925 _get_numeric_data may have dropped all columns cols = Index([], name=self.columns.name) if is_list_like(q): return self._constructor([], index=q, columns=cols) return self._constructor_sliced([], index=cols, name=q, dtype=np.float64) result = data._data.quantile( qs=q, axis=1, interpolation=interpolation, transposed=is_transposed ) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp(self, freq=None, how="start", axis=0, copy=True) -> "DataFrame": """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with DatetimeIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how)) elif axis == 1: new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how)) else: # pragma: no cover raise AssertionError(f"Axis must be 0 or 1. Got {axis}") return self._constructor(new_data) def to_period(self, freq=None, axis=0, copy=True) -> "DataFrame": """ Convert DataFrame from DatetimeIndex to PeriodIndex. Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- TimeSeries with PeriodIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_period(freq=freq)) elif axis == 1: new_data.set_axis(0, self.columns.to_period(freq=freq)) else: # pragma: no cover raise AssertionError(f"Axis must be 0 or 1. Got {axis}") return self._constructor(new_data) def isin(self, values) -> "DataFrame": """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return self._ensure_type( concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are allowed " "to be passed to DataFrame.isin(), " f"you passed a '{type(values).__name__}'" ) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns, ) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) DataFrame._setup_axes( ["index", "columns"], docs={ "index": "The index (row labels) of the DataFrame.", "columns": "The column labels of the DataFrame.", }, ) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() ops.add_flex_arithmetic_methods(DataFrame) ops.add_special_arithmetic_methods(DataFrame) def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = {} for index, s in data.items(): for col, v in s.items(): new_data[col] = new_data.get(col, {}) new_data[col][index] = v return new_data def _put_str(s, space): return str(s)[:space].ljust(space)
BugsInPy/BugsInPy/temp/projects/pandas/bug-78-fixed/pandas/pandas/core/frame.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-78-buggy/pandas/pandas/core/frame.py
pandas-bug-95
from datetime import timedelta import operator from typing import Any, Callable, List, Optional, Sequence, Union import numpy as np from pandas._libs.tslibs import ( NaT, NaTType, frequencies as libfrequencies, iNaT, period as libperiod, ) from pandas._libs.tslibs.fields import isleapyear_arr from pandas._libs.tslibs.period import ( DIFFERENT_FREQ, IncompatibleFrequency, Period, get_period_field_arr, period_asfreq_arr, ) from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds import pandas.compat as compat from pandas.util._decorators import Appender, cache_readonly from pandas.core.dtypes.common import ( _TD_DTYPE, ensure_object, is_datetime64_dtype, is_float_dtype, is_list_like, is_object_dtype, is_period_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import PeriodDtype from pandas.core.dtypes.generic import ( ABCIndexClass, ABCPeriodArray, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import ops import pandas.core.algorithms as algos from pandas.core.arrays import datetimelike as dtl import pandas.core.common as com from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.ops.invalid import invalid_comparison from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick, _delta_to_tick def _field_accessor(name, alias, docstring=None): def f(self): base, mult = libfrequencies.get_freq_code(self.freq) result = get_period_field_arr(alias, self.asi8, base) return result f.__name__ = name f.__doc__ = docstring return property(f) def _period_array_cmp(cls, op): """ Wrap comparison operations to convert Period-like to PeriodDtype """ opname = f"__{op.__name__}__" nat_result = opname == "__ne__" @unpack_zerodim_and_defer(opname) def wrapper(self, other): ordinal_op = getattr(self.asi8, opname) if isinstance(other, str): try: other = self._scalar_from_string(other) except ValueError: # string that can't be parsed as Period return invalid_comparison(self, other, op) elif isinstance(other, int): # TODO: sure we want to allow this? we dont for DTA/TDA # 2 tests rely on this other = Period(other, freq=self.freq) result = ordinal_op(other.ordinal) if isinstance(other, self._recognized_scalars) or other is NaT: other = self._scalar_type(other) self._check_compatible_with(other) other_i8 = self._unbox_scalar(other) result = op(self.view("i8"), other_i8) if isna(other): result.fill(nat_result) elif not is_list_like(other): return invalid_comparison(self, other, op) elif len(other) != len(self): raise ValueError("Lengths must match") else: if isinstance(other, list): # TODO: could use pd.Index to do inference? other = np.array(other) if not isinstance(other, (np.ndarray, cls)): return invalid_comparison(self, other, op) if is_object_dtype(other): with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY( op, self.astype(object), other ) o_mask = isna(other) elif not cls._is_recognized_dtype(other.dtype): # e.g. is_timedelta64_dtype(other) return invalid_comparison(self, other, op) else: assert isinstance(other, cls), type(other) self._check_compatible_with(other) result = op(self.view("i8"), other.view("i8")) o_mask = other._isnan if o_mask.any(): result[o_mask] = nat_result if self._hasnans: result[self._isnan] = nat_result return result return compat.set_function_name(wrapper, opname, cls) class PeriodArray(dtl.DatetimeLikeArrayMixin, dtl.DatelikeOps): """ Pandas ExtensionArray for storing Period data. Users should use :func:`period_array` to create new instances. Parameters ---------- values : Union[PeriodArray, Series[period], ndarray[int], PeriodIndex] The data to store. These should be arrays that can be directly converted to ordinals without inference or copy (PeriodArray, ndarray[int64]), or a box around such an array (Series[period], PeriodIndex). freq : str or DateOffset The `freq` to use for the array. Mostly applicable when `values` is an ndarray of integers, when `freq` is required. When `values` is a PeriodArray (or box around), it's checked that ``values.freq`` matches `freq`. dtype : PeriodDtype, optional A PeriodDtype instance from which to extract a `freq`. If both `freq` and `dtype` are specified, then the frequencies must match. copy : bool, default False Whether to copy the ordinals before storing. Attributes ---------- None Methods ------- None See Also -------- period_array : Create a new PeriodArray. PeriodIndex : Immutable Index for period data. Notes ----- There are two components to a PeriodArray - ordinals : integer ndarray - freq : pd.tseries.offsets.Offset The values are physically stored as a 1-D ndarray of integers. These are called "ordinals" and represent some kind of offset from a base. The `freq` indicates the span covered by each element of the array. All elements in the PeriodArray have the same `freq`. """ # array priority higher than numpy scalars __array_priority__ = 1000 _typ = "periodarray" # ABCPeriodArray _scalar_type = Period _recognized_scalars = (Period,) _is_recognized_dtype = is_period_dtype # Names others delegate to us _other_ops: List[str] = [] _bool_ops = ["is_leap_year"] _object_ops = ["start_time", "end_time", "freq"] _field_ops = [ "year", "month", "day", "hour", "minute", "second", "weekofyear", "weekday", "week", "dayofweek", "dayofyear", "quarter", "qyear", "days_in_month", "daysinmonth", ] _datetimelike_ops = _field_ops + _object_ops + _bool_ops _datetimelike_methods = ["strftime", "to_timestamp", "asfreq"] # -------------------------------------------------------------------- # Constructors def __init__(self, values, freq=None, dtype=None, copy=False): freq = validate_dtype_freq(dtype, freq) if freq is not None: freq = Period._maybe_convert_freq(freq) if isinstance(values, ABCSeries): values = values._values if not isinstance(values, type(self)): raise TypeError("Incorrect dtype") elif isinstance(values, ABCPeriodIndex): values = values._values if isinstance(values, type(self)): if freq is not None and freq != values.freq: raise raise_on_incompatible(values, freq) values, freq = values._data, values.freq values = np.array(values, dtype="int64", copy=copy) self._data = values if freq is None: raise ValueError("freq is not specified and cannot be inferred") self._dtype = PeriodDtype(freq) @classmethod def _simple_new(cls, values, freq=None, **kwargs): # alias for PeriodArray.__init__ return cls(values, freq=freq, **kwargs) @classmethod def _from_sequence( cls, scalars: Sequence[Optional[Period]], dtype: Optional[PeriodDtype] = None, copy: bool = False, ) -> ABCPeriodArray: if dtype: freq = dtype.freq else: freq = None if isinstance(scalars, cls): validate_dtype_freq(scalars.dtype, freq) if copy: scalars = scalars.copy() return scalars periods = np.asarray(scalars, dtype=object) if copy: periods = periods.copy() freq = freq or libperiod.extract_freq(periods) ordinals = libperiod.extract_ordinals(periods, freq) return cls(ordinals, freq=freq) @classmethod def _from_sequence_of_strings(cls, strings, dtype=None, copy=False): return cls._from_sequence(strings, dtype, copy) @classmethod def _from_datetime64(cls, data, freq, tz=None): """ Construct a PeriodArray from a datetime64 array Parameters ---------- data : ndarray[datetime64[ns], datetime64[ns, tz]] freq : str or Tick tz : tzinfo, optional Returns ------- PeriodArray[freq] """ data, freq = dt64arr_to_periodarr(data, freq, tz) return cls(data, freq=freq) @classmethod def _generate_range(cls, start, end, periods, freq, fields): periods = dtl.validate_periods(periods) if freq is not None: freq = Period._maybe_convert_freq(freq) field_count = len(fields) if start is not None or end is not None: if field_count > 0: raise ValueError( "Can either instantiate from fields or endpoints, but not both" ) subarr, freq = _get_ordinal_range(start, end, periods, freq) elif field_count > 0: subarr, freq = _range_from_fields(freq=freq, **fields) else: raise ValueError("Not enough parameters to construct Period range") return subarr, freq # ----------------------------------------------------------------- # DatetimeLike Interface def _unbox_scalar(self, value: Union[Period, NaTType]) -> int: if value is NaT: return value.value elif isinstance(value, self._scalar_type): if not isna(value): self._check_compatible_with(value) return value.ordinal else: raise ValueError(f"'value' should be a Period. Got '{value}' instead.") def _scalar_from_string(self, value: str) -> Period: return Period(value, freq=self.freq) def _check_compatible_with(self, other, setitem: bool = False): if other is NaT: return if self.freqstr != other.freqstr: raise raise_on_incompatible(self, other) # -------------------------------------------------------------------- # Data / Attributes @cache_readonly def dtype(self): return self._dtype # error: Read-only property cannot override read-write property [misc] @property # type: ignore def freq(self): """ Return the frequency object for this PeriodArray. """ return self.dtype.freq def __array__(self, dtype=None): # overriding DatetimelikeArray return np.array(list(self), dtype=object) # -------------------------------------------------------------------- # Vectorized analogues of Period properties year = _field_accessor( "year", 0, """ The year of the period. """, ) month = _field_accessor( "month", 3, """ The month as January=1, December=12. """, ) day = _field_accessor( "day", 4, """ The days of the period. """, ) hour = _field_accessor( "hour", 5, """ The hour of the period. """, ) minute = _field_accessor( "minute", 6, """ The minute of the period. """, ) second = _field_accessor( "second", 7, """ The second of the period. """, ) weekofyear = _field_accessor( "week", 8, """ The week ordinal of the year. """, ) week = weekofyear dayofweek = _field_accessor( "dayofweek", 10, """ The day of the week with Monday=0, Sunday=6. """, ) weekday = dayofweek dayofyear = day_of_year = _field_accessor( "dayofyear", 9, """ The ordinal day of the year. """, ) quarter = _field_accessor( "quarter", 2, """ The quarter of the date. """, ) qyear = _field_accessor("qyear", 1) days_in_month = _field_accessor( "days_in_month", 11, """ The number of days in the month. """, ) daysinmonth = days_in_month @property def is_leap_year(self): """ Logical indicating if the date belongs to a leap year. """ return isleapyear_arr(np.asarray(self.year)) @property def start_time(self): return self.to_timestamp(how="start") @property def end_time(self): return self.to_timestamp(how="end") def to_timestamp(self, freq=None, how="start"): """ Cast to DatetimeArray/Index. Parameters ---------- freq : str or DateOffset, optional Target frequency. The default is 'D' for week or longer, 'S' otherwise. how : {'s', 'e', 'start', 'end'} Whether to use the start or end of the time period being converted. Returns ------- DatetimeArray/Index """ from pandas.core.arrays import DatetimeArray how = libperiod._validate_end_alias(how) end = how == "E" if end: if freq == "B": # roll forward to ensure we land on B date adjust = Timedelta(1, "D") - Timedelta(1, "ns") return self.to_timestamp(how="start") + adjust else: adjust = Timedelta(1, "ns") return (self + self.freq).to_timestamp(how="start") - adjust if freq is None: base, mult = libfrequencies.get_freq_code(self.freq) freq = libfrequencies.get_to_timestamp_base(base) else: freq = Period._maybe_convert_freq(freq) base, mult = libfrequencies.get_freq_code(freq) new_data = self.asfreq(freq, how=how) new_data = libperiod.periodarr_to_dt64arr(new_data.asi8, base) return DatetimeArray._from_sequence(new_data, freq="infer") # -------------------------------------------------------------------- # Array-like / EA-Interface Methods @Appender(dtl.DatetimeLikeArrayMixin._validate_fill_value.__doc__) def _validate_fill_value(self, fill_value): if isna(fill_value): fill_value = iNaT elif isinstance(fill_value, Period): self._check_compatible_with(fill_value) fill_value = fill_value.ordinal else: raise ValueError(f"'fill_value' should be a Period. Got '{fill_value}'.") return fill_value def _values_for_argsort(self): return self._data # -------------------------------------------------------------------- def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None: raise TypeError( "`freq` argument is not supported for " f"{type(self).__name__}._time_shift" ) values = self.asi8 + periods * self.freq.n if self._hasnans: values[self._isnan] = iNaT return type(self)(values, freq=self.freq) @property def _box_func(self): return lambda x: Period._from_ordinal(ordinal=x, freq=self.freq) def asfreq(self, freq=None, how="E"): """ Convert the Period Array/Index to the specified frequency `freq`. Parameters ---------- freq : str A frequency. how : str {'E', 'S'} Whether the elements should be aligned to the end or start within pa period. * 'E', 'END', or 'FINISH' for end, * 'S', 'START', or 'BEGIN' for start. January 31st ('END') vs. January 1st ('START') for example. Returns ------- Period Array/Index Constructed with the new frequency. Examples -------- >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A') >>> pidx PeriodIndex(['2010', '2011', '2012', '2013', '2014', '2015'], dtype='period[A-DEC]', freq='A-DEC') >>> pidx.asfreq('M') PeriodIndex(['2010-12', '2011-12', '2012-12', '2013-12', '2014-12', '2015-12'], dtype='period[M]', freq='M') >>> pidx.asfreq('M', how='S') PeriodIndex(['2010-01', '2011-01', '2012-01', '2013-01', '2014-01', '2015-01'], dtype='period[M]', freq='M') """ how = libperiod._validate_end_alias(how) freq = Period._maybe_convert_freq(freq) base1, mult1 = libfrequencies.get_freq_code(self.freq) base2, mult2 = libfrequencies.get_freq_code(freq) asi8 = self.asi8 # mult1 can't be negative or 0 end = how == "E" if end: ordinal = asi8 + mult1 - 1 else: ordinal = asi8 new_data = period_asfreq_arr(ordinal, base1, base2, end) if self._hasnans: new_data[self._isnan] = iNaT return type(self)(new_data, freq=freq) # ------------------------------------------------------------------ # Rendering Methods def _formatter(self, boxed=False): if boxed: return str return "'{}'".format def _format_native_types(self, na_rep="NaT", date_format=None, **kwargs): """ actually format my specific types """ values = self.astype(object) if date_format: formatter = lambda dt: dt.strftime(date_format) else: formatter = lambda dt: str(dt) if self._hasnans: mask = self._isnan values[mask] = na_rep imask = ~mask values[imask] = np.array([formatter(dt) for dt in values[imask]]) else: values = np.array([formatter(dt) for dt in values]) return values # ------------------------------------------------------------------ def astype(self, dtype, copy=True): # We handle Period[T] -> Period[U] # Our parent handles everything else. dtype = pandas_dtype(dtype) if is_period_dtype(dtype): return self.asfreq(dtype.freq) return super().astype(dtype, copy=copy) # ------------------------------------------------------------------ # Arithmetic Methods _create_comparison_method = classmethod(_period_array_cmp) def _sub_datelike(self, other): assert other is not NaT return NotImplemented def _sub_period(self, other): # If the operation is well-defined, we return an object-Index # of DateOffsets. Null entries are filled with pd.NaT self._check_compatible_with(other) asi8 = self.asi8 new_data = asi8 - other.ordinal new_data = np.array([self.freq * x for x in new_data]) if self._hasnans: new_data[self._isnan] = NaT return new_data def _addsub_int_array( self, other: np.ndarray, op: Callable[[Any, Any], Any], ) -> "PeriodArray": """ Add or subtract array of integers; equivalent to applying `_time_shift` pointwise. Parameters ---------- other : np.ndarray[integer-dtype] op : {operator.add, operator.sub} Returns ------- result : PeriodArray """ assert op in [operator.add, operator.sub] if op is operator.sub: other = -other res_values = algos.checked_add_with_arr(self.asi8, other, arr_mask=self._isnan) res_values = res_values.view("i8") res_values[self._isnan] = iNaT return type(self)(res_values, freq=self.freq) def _add_offset(self, other): assert not isinstance(other, Tick) base = libfrequencies.get_base_alias(other.rule_code) if base != self.freq.rule_code: raise raise_on_incompatible(self, other) # Note: when calling parent class's _add_timedeltalike_scalar, # it will call delta_to_nanoseconds(delta). Because delta here # is an integer, delta_to_nanoseconds will return it unchanged. result = super()._add_timedeltalike_scalar(other.n) return type(self)(result, freq=self.freq) def _add_timedeltalike_scalar(self, other): """ Parameters ---------- other : timedelta, Tick, np.timedelta64 Returns ------- result : ndarray[int64] """ assert isinstance(self.freq, Tick) # checked by calling function assert isinstance(other, (timedelta, np.timedelta64, Tick)) if notna(other): # special handling for np.timedelta64("NaT"), avoid calling # _check_timedeltalike_freq_compat as that would raise TypeError other = self._check_timedeltalike_freq_compat(other) # Note: when calling parent class's _add_timedeltalike_scalar, # it will call delta_to_nanoseconds(delta). Because delta here # is an integer, delta_to_nanoseconds will return it unchanged. ordinals = super()._add_timedeltalike_scalar(other) return ordinals def _add_delta_tdi(self, other): """ Parameters ---------- other : TimedeltaArray or ndarray[timedelta64] Returns ------- result : ndarray[int64] """ assert isinstance(self.freq, Tick) # checked by calling function if not np.all(isna(other)): delta = self._check_timedeltalike_freq_compat(other) else: # all-NaT TimedeltaIndex is equivalent to a single scalar td64 NaT return self + np.timedelta64("NaT") return self._addsub_int_array(delta, operator.add).asi8 def _add_delta(self, other): """ Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new PeriodArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : PeriodArray """ if not isinstance(self.freq, Tick): # We cannot add timedelta-like to non-tick PeriodArray raise raise_on_incompatible(self, other) new_ordinals = super()._add_delta(other) return type(self)(new_ordinals, freq=self.freq) def _check_timedeltalike_freq_compat(self, other): """ Arithmetic operations with timedelta-like scalars or array `other` are only valid if `other` is an integer multiple of `self.freq`. If the operation is valid, find that integer multiple. Otherwise, raise because the operation is invalid. Parameters ---------- other : timedelta, np.timedelta64, Tick, ndarray[timedelta64], TimedeltaArray, TimedeltaIndex Returns ------- multiple : int or ndarray[int64] Raises ------ IncompatibleFrequency """ assert isinstance(self.freq, Tick) # checked by calling function own_offset = frequencies.to_offset(self.freq.rule_code) base_nanos = delta_to_nanoseconds(own_offset) if isinstance(other, (timedelta, np.timedelta64, Tick)): nanos = delta_to_nanoseconds(other) elif isinstance(other, np.ndarray): # numpy timedelta64 array; all entries must be compatible assert other.dtype.kind == "m" if other.dtype != _TD_DTYPE: # i.e. non-nano unit # TODO: disallow unit-less timedelta64 other = other.astype(_TD_DTYPE) nanos = other.view("i8") else: # TimedeltaArray/Index nanos = other.asi8 if np.all(nanos % base_nanos == 0): # nanos being added is an integer multiple of the # base-frequency to self.freq delta = nanos // base_nanos # delta is the integer (or integer-array) number of periods # by which will be added to self. return delta raise raise_on_incompatible(self, other) PeriodArray._add_comparison_ops() def raise_on_incompatible(left, right): """ Helper function to render a consistent error message when raising IncompatibleFrequency. Parameters ---------- left : PeriodArray right : None, DateOffset, Period, ndarray, or timedelta-like Returns ------ IncompatibleFrequency Exception to be raised by the caller. """ # GH#24283 error message format depends on whether right is scalar if isinstance(right, np.ndarray) or right is None: other_freq = None elif isinstance(right, (ABCPeriodIndex, PeriodArray, Period, DateOffset)): other_freq = right.freqstr else: other_freq = _delta_to_tick(Timedelta(right)).freqstr msg = DIFFERENT_FREQ.format( cls=type(left).__name__, own_freq=left.freqstr, other_freq=other_freq ) return IncompatibleFrequency(msg) # ------------------------------------------------------------------- # Constructor Helpers def period_array( data: Sequence[Optional[Period]], freq: Optional[Union[str, Tick]] = None, copy: bool = False, ) -> PeriodArray: """ Construct a new PeriodArray from a sequence of Period scalars. Parameters ---------- data : Sequence of Period objects A sequence of Period objects. These are required to all have the same ``freq.`` Missing values can be indicated by ``None`` or ``pandas.NaT``. freq : str, Tick, or Offset The frequency of every element of the array. This can be specified to avoid inferring the `freq` from `data`. copy : bool, default False Whether to ensure a copy of the data is made. Returns ------- PeriodArray See Also -------- PeriodArray pandas.PeriodIndex Examples -------- >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A')]) <PeriodArray> ['2017', '2018'] Length: 2, dtype: period[A-DEC] >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A'), ... pd.NaT]) <PeriodArray> ['2017', '2018', 'NaT'] Length: 3, dtype: period[A-DEC] Integers that look like years are handled >>> period_array([2000, 2001, 2002], freq='D') ['2000-01-01', '2001-01-01', '2002-01-01'] Length: 3, dtype: period[D] Datetime-like strings may also be passed >>> period_array(['2000-Q1', '2000-Q2', '2000-Q3', '2000-Q4'], freq='Q') <PeriodArray> ['2000Q1', '2000Q2', '2000Q3', '2000Q4'] Length: 4, dtype: period[Q-DEC] """ if is_datetime64_dtype(data): return PeriodArray._from_datetime64(data, freq) if isinstance(data, (ABCPeriodIndex, ABCSeries, PeriodArray)): return PeriodArray(data, freq) # other iterable of some kind if not isinstance(data, (np.ndarray, list, tuple)): data = list(data) data = np.asarray(data) dtype: Optional[PeriodDtype] if freq: dtype = PeriodDtype(freq) else: dtype = None if is_float_dtype(data) and len(data) > 0: raise TypeError("PeriodIndex does not allow floating point in construction") data = ensure_object(data) return PeriodArray._from_sequence(data, dtype=dtype) def validate_dtype_freq(dtype, freq): """ If both a dtype and a freq are available, ensure they match. If only dtype is available, extract the implied freq. Parameters ---------- dtype : dtype freq : DateOffset or None Returns ------- freq : DateOffset Raises ------ ValueError : non-period dtype IncompatibleFrequency : mismatch between dtype and freq """ if freq is not None: freq = frequencies.to_offset(freq) if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError("dtype must be PeriodDtype") if freq is None: freq = dtype.freq elif freq != dtype.freq: raise IncompatibleFrequency("specified freq and dtype are different") return freq def dt64arr_to_periodarr(data, freq, tz=None): """ Convert an datetime-like array to values Period ordinals. Parameters ---------- data : Union[Series[datetime64[ns]], DatetimeIndex, ndarray[datetime64ns]] freq : Optional[Union[str, Tick]] Must match the `freq` on the `data` if `data` is a DatetimeIndex or Series. tz : Optional[tzinfo] Returns ------- ordinals : ndarray[int] freq : Tick The frequency extracted from the Series or DatetimeIndex if that's used. """ if data.dtype != np.dtype("M8[ns]"): raise ValueError(f"Wrong dtype: {data.dtype}") if freq is None: if isinstance(data, ABCIndexClass): data, freq = data._values, data.freq elif isinstance(data, ABCSeries): data, freq = data._values, data.dt.freq freq = Period._maybe_convert_freq(freq) if isinstance(data, (ABCIndexClass, ABCSeries)): data = data._values base, mult = libfrequencies.get_freq_code(freq) return libperiod.dt64arr_to_periodarr(data.view("i8"), base, tz), freq def _get_ordinal_range(start, end, periods, freq, mult=1): if com.count_not_none(start, end, periods) != 2: raise ValueError( "Of the three parameters: start, end, and periods, " "exactly two must be specified" ) if freq is not None: _, mult = libfrequencies.get_freq_code(freq) if start is not None: start = Period(start, freq) if end is not None: end = Period(end, freq) is_start_per = isinstance(start, Period) is_end_per = isinstance(end, Period) if is_start_per and is_end_per and start.freq != end.freq: raise ValueError("start and end must have same freq") if start is NaT or end is NaT: raise ValueError("start and end must not be NaT") if freq is None: if is_start_per: freq = start.freq elif is_end_per: freq = end.freq else: # pragma: no cover raise ValueError("Could not infer freq from start/end") if periods is not None: periods = periods * mult if start is None: data = np.arange( end.ordinal - periods + mult, end.ordinal + 1, mult, dtype=np.int64 ) else: data = np.arange( start.ordinal, start.ordinal + periods, mult, dtype=np.int64 ) else: data = np.arange(start.ordinal, end.ordinal + 1, mult, dtype=np.int64) return data, freq def _range_from_fields( year=None, month=None, quarter=None, day=None, hour=None, minute=None, second=None, freq=None, ): if hour is None: hour = 0 if minute is None: minute = 0 if second is None: second = 0 if day is None: day = 1 ordinals = [] if quarter is not None: if freq is None: freq = "Q" base = libfrequencies.FreqGroup.FR_QTR else: base, mult = libfrequencies.get_freq_code(freq) if base != libfrequencies.FreqGroup.FR_QTR: raise AssertionError("base must equal FR_QTR") year, quarter = _make_field_arrays(year, quarter) for y, q in zip(year, quarter): y, m = libperiod.quarter_to_myear(y, q, freq) val = libperiod.period_ordinal(y, m, 1, 1, 1, 1, 0, 0, base) ordinals.append(val) else: base, mult = libfrequencies.get_freq_code(freq) arrays = _make_field_arrays(year, month, day, hour, minute, second) for y, mth, d, h, mn, s in zip(*arrays): ordinals.append(libperiod.period_ordinal(y, mth, d, h, mn, s, 0, 0, base)) return np.array(ordinals, dtype=np.int64), freq def _make_field_arrays(*fields): length = None for x in fields: if isinstance(x, (list, np.ndarray, ABCSeries)): if length is not None and len(x) != length: raise ValueError("Mismatched Period array lengths") elif length is None: length = len(x) arrays = [ np.asarray(x) if isinstance(x, (np.ndarray, list, ABCSeries)) else np.repeat(x, length) for x in fields ] return arrays from datetime import timedelta import operator from typing import Any, Callable, List, Optional, Sequence, Union import numpy as np from pandas._libs.tslibs import ( NaT, NaTType, frequencies as libfrequencies, iNaT, period as libperiod, ) from pandas._libs.tslibs.fields import isleapyear_arr from pandas._libs.tslibs.period import ( DIFFERENT_FREQ, IncompatibleFrequency, Period, get_period_field_arr, period_asfreq_arr, ) from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds import pandas.compat as compat from pandas.util._decorators import Appender, cache_readonly from pandas.core.dtypes.common import ( _TD_DTYPE, ensure_object, is_datetime64_dtype, is_float_dtype, is_list_like, is_object_dtype, is_period_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import PeriodDtype from pandas.core.dtypes.generic import ( ABCIndexClass, ABCPeriodArray, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import ops import pandas.core.algorithms as algos from pandas.core.arrays import datetimelike as dtl import pandas.core.common as com from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.ops.invalid import invalid_comparison from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick, _delta_to_tick def _field_accessor(name, alias, docstring=None): def f(self): base, mult = libfrequencies.get_freq_code(self.freq) result = get_period_field_arr(alias, self.asi8, base) return result f.__name__ = name f.__doc__ = docstring return property(f) def _period_array_cmp(cls, op): """ Wrap comparison operations to convert Period-like to PeriodDtype """ opname = f"__{op.__name__}__" nat_result = opname == "__ne__" @unpack_zerodim_and_defer(opname) def wrapper(self, other): if isinstance(other, str): try: other = self._scalar_from_string(other) except ValueError: # string that can't be parsed as Period return invalid_comparison(self, other, op) if isinstance(other, self._recognized_scalars) or other is NaT: other = self._scalar_type(other) self._check_compatible_with(other) other_i8 = self._unbox_scalar(other) result = op(self.view("i8"), other_i8) if isna(other): result.fill(nat_result) elif not is_list_like(other): return invalid_comparison(self, other, op) elif len(other) != len(self): raise ValueError("Lengths must match") else: if isinstance(other, list): # TODO: could use pd.Index to do inference? other = np.array(other) if not isinstance(other, (np.ndarray, cls)): return invalid_comparison(self, other, op) if is_object_dtype(other): with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY( op, self.astype(object), other ) o_mask = isna(other) elif not cls._is_recognized_dtype(other.dtype): # e.g. is_timedelta64_dtype(other) return invalid_comparison(self, other, op) else: assert isinstance(other, cls), type(other) self._check_compatible_with(other) result = op(self.view("i8"), other.view("i8")) o_mask = other._isnan if o_mask.any(): result[o_mask] = nat_result if self._hasnans: result[self._isnan] = nat_result return result return compat.set_function_name(wrapper, opname, cls) class PeriodArray(dtl.DatetimeLikeArrayMixin, dtl.DatelikeOps): """ Pandas ExtensionArray for storing Period data. Users should use :func:`period_array` to create new instances. Parameters ---------- values : Union[PeriodArray, Series[period], ndarray[int], PeriodIndex] The data to store. These should be arrays that can be directly converted to ordinals without inference or copy (PeriodArray, ndarray[int64]), or a box around such an array (Series[period], PeriodIndex). freq : str or DateOffset The `freq` to use for the array. Mostly applicable when `values` is an ndarray of integers, when `freq` is required. When `values` is a PeriodArray (or box around), it's checked that ``values.freq`` matches `freq`. dtype : PeriodDtype, optional A PeriodDtype instance from which to extract a `freq`. If both `freq` and `dtype` are specified, then the frequencies must match. copy : bool, default False Whether to copy the ordinals before storing. Attributes ---------- None Methods ------- None See Also -------- period_array : Create a new PeriodArray. PeriodIndex : Immutable Index for period data. Notes ----- There are two components to a PeriodArray - ordinals : integer ndarray - freq : pd.tseries.offsets.Offset The values are physically stored as a 1-D ndarray of integers. These are called "ordinals" and represent some kind of offset from a base. The `freq` indicates the span covered by each element of the array. All elements in the PeriodArray have the same `freq`. """ # array priority higher than numpy scalars __array_priority__ = 1000 _typ = "periodarray" # ABCPeriodArray _scalar_type = Period _recognized_scalars = (Period,) _is_recognized_dtype = is_period_dtype # Names others delegate to us _other_ops: List[str] = [] _bool_ops = ["is_leap_year"] _object_ops = ["start_time", "end_time", "freq"] _field_ops = [ "year", "month", "day", "hour", "minute", "second", "weekofyear", "weekday", "week", "dayofweek", "dayofyear", "quarter", "qyear", "days_in_month", "daysinmonth", ] _datetimelike_ops = _field_ops + _object_ops + _bool_ops _datetimelike_methods = ["strftime", "to_timestamp", "asfreq"] # -------------------------------------------------------------------- # Constructors def __init__(self, values, freq=None, dtype=None, copy=False): freq = validate_dtype_freq(dtype, freq) if freq is not None: freq = Period._maybe_convert_freq(freq) if isinstance(values, ABCSeries): values = values._values if not isinstance(values, type(self)): raise TypeError("Incorrect dtype") elif isinstance(values, ABCPeriodIndex): values = values._values if isinstance(values, type(self)): if freq is not None and freq != values.freq: raise raise_on_incompatible(values, freq) values, freq = values._data, values.freq values = np.array(values, dtype="int64", copy=copy) self._data = values if freq is None: raise ValueError("freq is not specified and cannot be inferred") self._dtype = PeriodDtype(freq) @classmethod def _simple_new(cls, values, freq=None, **kwargs): # alias for PeriodArray.__init__ return cls(values, freq=freq, **kwargs) @classmethod def _from_sequence( cls, scalars: Sequence[Optional[Period]], dtype: Optional[PeriodDtype] = None, copy: bool = False, ) -> ABCPeriodArray: if dtype: freq = dtype.freq else: freq = None if isinstance(scalars, cls): validate_dtype_freq(scalars.dtype, freq) if copy: scalars = scalars.copy() return scalars periods = np.asarray(scalars, dtype=object) if copy: periods = periods.copy() freq = freq or libperiod.extract_freq(periods) ordinals = libperiod.extract_ordinals(periods, freq) return cls(ordinals, freq=freq) @classmethod def _from_sequence_of_strings(cls, strings, dtype=None, copy=False): return cls._from_sequence(strings, dtype, copy) @classmethod def _from_datetime64(cls, data, freq, tz=None): """ Construct a PeriodArray from a datetime64 array Parameters ---------- data : ndarray[datetime64[ns], datetime64[ns, tz]] freq : str or Tick tz : tzinfo, optional Returns ------- PeriodArray[freq] """ data, freq = dt64arr_to_periodarr(data, freq, tz) return cls(data, freq=freq) @classmethod def _generate_range(cls, start, end, periods, freq, fields): periods = dtl.validate_periods(periods) if freq is not None: freq = Period._maybe_convert_freq(freq) field_count = len(fields) if start is not None or end is not None: if field_count > 0: raise ValueError( "Can either instantiate from fields or endpoints, but not both" ) subarr, freq = _get_ordinal_range(start, end, periods, freq) elif field_count > 0: subarr, freq = _range_from_fields(freq=freq, **fields) else: raise ValueError("Not enough parameters to construct Period range") return subarr, freq # ----------------------------------------------------------------- # DatetimeLike Interface def _unbox_scalar(self, value: Union[Period, NaTType]) -> int: if value is NaT: return value.value elif isinstance(value, self._scalar_type): if not isna(value): self._check_compatible_with(value) return value.ordinal else: raise ValueError(f"'value' should be a Period. Got '{value}' instead.") def _scalar_from_string(self, value: str) -> Period: return Period(value, freq=self.freq) def _check_compatible_with(self, other, setitem: bool = False): if other is NaT: return if self.freqstr != other.freqstr: raise raise_on_incompatible(self, other) # -------------------------------------------------------------------- # Data / Attributes @cache_readonly def dtype(self): return self._dtype # error: Read-only property cannot override read-write property [misc] @property # type: ignore def freq(self): """ Return the frequency object for this PeriodArray. """ return self.dtype.freq def __array__(self, dtype=None): # overriding DatetimelikeArray return np.array(list(self), dtype=object) # -------------------------------------------------------------------- # Vectorized analogues of Period properties year = _field_accessor( "year", 0, """ The year of the period. """, ) month = _field_accessor( "month", 3, """ The month as January=1, December=12. """, ) day = _field_accessor( "day", 4, """ The days of the period. """, ) hour = _field_accessor( "hour", 5, """ The hour of the period. """, ) minute = _field_accessor( "minute", 6, """ The minute of the period. """, ) second = _field_accessor( "second", 7, """ The second of the period. """, ) weekofyear = _field_accessor( "week", 8, """ The week ordinal of the year. """, ) week = weekofyear dayofweek = _field_accessor( "dayofweek", 10, """ The day of the week with Monday=0, Sunday=6. """, ) weekday = dayofweek dayofyear = day_of_year = _field_accessor( "dayofyear", 9, """ The ordinal day of the year. """, ) quarter = _field_accessor( "quarter", 2, """ The quarter of the date. """, ) qyear = _field_accessor("qyear", 1) days_in_month = _field_accessor( "days_in_month", 11, """ The number of days in the month. """, ) daysinmonth = days_in_month @property def is_leap_year(self): """ Logical indicating if the date belongs to a leap year. """ return isleapyear_arr(np.asarray(self.year)) @property def start_time(self): return self.to_timestamp(how="start") @property def end_time(self): return self.to_timestamp(how="end") def to_timestamp(self, freq=None, how="start"): """ Cast to DatetimeArray/Index. Parameters ---------- freq : str or DateOffset, optional Target frequency. The default is 'D' for week or longer, 'S' otherwise. how : {'s', 'e', 'start', 'end'} Whether to use the start or end of the time period being converted. Returns ------- DatetimeArray/Index """ from pandas.core.arrays import DatetimeArray how = libperiod._validate_end_alias(how) end = how == "E" if end: if freq == "B": # roll forward to ensure we land on B date adjust = Timedelta(1, "D") - Timedelta(1, "ns") return self.to_timestamp(how="start") + adjust else: adjust = Timedelta(1, "ns") return (self + self.freq).to_timestamp(how="start") - adjust if freq is None: base, mult = libfrequencies.get_freq_code(self.freq) freq = libfrequencies.get_to_timestamp_base(base) else: freq = Period._maybe_convert_freq(freq) base, mult = libfrequencies.get_freq_code(freq) new_data = self.asfreq(freq, how=how) new_data = libperiod.periodarr_to_dt64arr(new_data.asi8, base) return DatetimeArray._from_sequence(new_data, freq="infer") # -------------------------------------------------------------------- # Array-like / EA-Interface Methods @Appender(dtl.DatetimeLikeArrayMixin._validate_fill_value.__doc__) def _validate_fill_value(self, fill_value): if isna(fill_value): fill_value = iNaT elif isinstance(fill_value, Period): self._check_compatible_with(fill_value) fill_value = fill_value.ordinal else: raise ValueError(f"'fill_value' should be a Period. Got '{fill_value}'.") return fill_value def _values_for_argsort(self): return self._data # -------------------------------------------------------------------- def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None: raise TypeError( "`freq` argument is not supported for " f"{type(self).__name__}._time_shift" ) values = self.asi8 + periods * self.freq.n if self._hasnans: values[self._isnan] = iNaT return type(self)(values, freq=self.freq) @property def _box_func(self): return lambda x: Period._from_ordinal(ordinal=x, freq=self.freq) def asfreq(self, freq=None, how="E"): """ Convert the Period Array/Index to the specified frequency `freq`. Parameters ---------- freq : str A frequency. how : str {'E', 'S'} Whether the elements should be aligned to the end or start within pa period. * 'E', 'END', or 'FINISH' for end, * 'S', 'START', or 'BEGIN' for start. January 31st ('END') vs. January 1st ('START') for example. Returns ------- Period Array/Index Constructed with the new frequency. Examples -------- >>> pidx = pd.period_range('2010-01-01', '2015-01-01', freq='A') >>> pidx PeriodIndex(['2010', '2011', '2012', '2013', '2014', '2015'], dtype='period[A-DEC]', freq='A-DEC') >>> pidx.asfreq('M') PeriodIndex(['2010-12', '2011-12', '2012-12', '2013-12', '2014-12', '2015-12'], dtype='period[M]', freq='M') >>> pidx.asfreq('M', how='S') PeriodIndex(['2010-01', '2011-01', '2012-01', '2013-01', '2014-01', '2015-01'], dtype='period[M]', freq='M') """ how = libperiod._validate_end_alias(how) freq = Period._maybe_convert_freq(freq) base1, mult1 = libfrequencies.get_freq_code(self.freq) base2, mult2 = libfrequencies.get_freq_code(freq) asi8 = self.asi8 # mult1 can't be negative or 0 end = how == "E" if end: ordinal = asi8 + mult1 - 1 else: ordinal = asi8 new_data = period_asfreq_arr(ordinal, base1, base2, end) if self._hasnans: new_data[self._isnan] = iNaT return type(self)(new_data, freq=freq) # ------------------------------------------------------------------ # Rendering Methods def _formatter(self, boxed=False): if boxed: return str return "'{}'".format def _format_native_types(self, na_rep="NaT", date_format=None, **kwargs): """ actually format my specific types """ values = self.astype(object) if date_format: formatter = lambda dt: dt.strftime(date_format) else: formatter = lambda dt: str(dt) if self._hasnans: mask = self._isnan values[mask] = na_rep imask = ~mask values[imask] = np.array([formatter(dt) for dt in values[imask]]) else: values = np.array([formatter(dt) for dt in values]) return values # ------------------------------------------------------------------ def astype(self, dtype, copy=True): # We handle Period[T] -> Period[U] # Our parent handles everything else. dtype = pandas_dtype(dtype) if is_period_dtype(dtype): return self.asfreq(dtype.freq) return super().astype(dtype, copy=copy) # ------------------------------------------------------------------ # Arithmetic Methods _create_comparison_method = classmethod(_period_array_cmp) def _sub_datelike(self, other): assert other is not NaT return NotImplemented def _sub_period(self, other): # If the operation is well-defined, we return an object-Index # of DateOffsets. Null entries are filled with pd.NaT self._check_compatible_with(other) asi8 = self.asi8 new_data = asi8 - other.ordinal new_data = np.array([self.freq * x for x in new_data]) if self._hasnans: new_data[self._isnan] = NaT return new_data def _addsub_int_array( self, other: np.ndarray, op: Callable[[Any, Any], Any], ) -> "PeriodArray": """ Add or subtract array of integers; equivalent to applying `_time_shift` pointwise. Parameters ---------- other : np.ndarray[integer-dtype] op : {operator.add, operator.sub} Returns ------- result : PeriodArray """ assert op in [operator.add, operator.sub] if op is operator.sub: other = -other res_values = algos.checked_add_with_arr(self.asi8, other, arr_mask=self._isnan) res_values = res_values.view("i8") res_values[self._isnan] = iNaT return type(self)(res_values, freq=self.freq) def _add_offset(self, other): assert not isinstance(other, Tick) base = libfrequencies.get_base_alias(other.rule_code) if base != self.freq.rule_code: raise raise_on_incompatible(self, other) # Note: when calling parent class's _add_timedeltalike_scalar, # it will call delta_to_nanoseconds(delta). Because delta here # is an integer, delta_to_nanoseconds will return it unchanged. result = super()._add_timedeltalike_scalar(other.n) return type(self)(result, freq=self.freq) def _add_timedeltalike_scalar(self, other): """ Parameters ---------- other : timedelta, Tick, np.timedelta64 Returns ------- result : ndarray[int64] """ assert isinstance(self.freq, Tick) # checked by calling function assert isinstance(other, (timedelta, np.timedelta64, Tick)) if notna(other): # special handling for np.timedelta64("NaT"), avoid calling # _check_timedeltalike_freq_compat as that would raise TypeError other = self._check_timedeltalike_freq_compat(other) # Note: when calling parent class's _add_timedeltalike_scalar, # it will call delta_to_nanoseconds(delta). Because delta here # is an integer, delta_to_nanoseconds will return it unchanged. ordinals = super()._add_timedeltalike_scalar(other) return ordinals def _add_delta_tdi(self, other): """ Parameters ---------- other : TimedeltaArray or ndarray[timedelta64] Returns ------- result : ndarray[int64] """ assert isinstance(self.freq, Tick) # checked by calling function if not np.all(isna(other)): delta = self._check_timedeltalike_freq_compat(other) else: # all-NaT TimedeltaIndex is equivalent to a single scalar td64 NaT return self + np.timedelta64("NaT") return self._addsub_int_array(delta, operator.add).asi8 def _add_delta(self, other): """ Add a timedelta-like, Tick, or TimedeltaIndex-like object to self, yielding a new PeriodArray Parameters ---------- other : {timedelta, np.timedelta64, Tick, TimedeltaIndex, ndarray[timedelta64]} Returns ------- result : PeriodArray """ if not isinstance(self.freq, Tick): # We cannot add timedelta-like to non-tick PeriodArray raise raise_on_incompatible(self, other) new_ordinals = super()._add_delta(other) return type(self)(new_ordinals, freq=self.freq) def _check_timedeltalike_freq_compat(self, other): """ Arithmetic operations with timedelta-like scalars or array `other` are only valid if `other` is an integer multiple of `self.freq`. If the operation is valid, find that integer multiple. Otherwise, raise because the operation is invalid. Parameters ---------- other : timedelta, np.timedelta64, Tick, ndarray[timedelta64], TimedeltaArray, TimedeltaIndex Returns ------- multiple : int or ndarray[int64] Raises ------ IncompatibleFrequency """ assert isinstance(self.freq, Tick) # checked by calling function own_offset = frequencies.to_offset(self.freq.rule_code) base_nanos = delta_to_nanoseconds(own_offset) if isinstance(other, (timedelta, np.timedelta64, Tick)): nanos = delta_to_nanoseconds(other) elif isinstance(other, np.ndarray): # numpy timedelta64 array; all entries must be compatible assert other.dtype.kind == "m" if other.dtype != _TD_DTYPE: # i.e. non-nano unit # TODO: disallow unit-less timedelta64 other = other.astype(_TD_DTYPE) nanos = other.view("i8") else: # TimedeltaArray/Index nanos = other.asi8 if np.all(nanos % base_nanos == 0): # nanos being added is an integer multiple of the # base-frequency to self.freq delta = nanos // base_nanos # delta is the integer (or integer-array) number of periods # by which will be added to self. return delta raise raise_on_incompatible(self, other) PeriodArray._add_comparison_ops() def raise_on_incompatible(left, right): """ Helper function to render a consistent error message when raising IncompatibleFrequency. Parameters ---------- left : PeriodArray right : None, DateOffset, Period, ndarray, or timedelta-like Returns ------ IncompatibleFrequency Exception to be raised by the caller. """ # GH#24283 error message format depends on whether right is scalar if isinstance(right, np.ndarray) or right is None: other_freq = None elif isinstance(right, (ABCPeriodIndex, PeriodArray, Period, DateOffset)): other_freq = right.freqstr else: other_freq = _delta_to_tick(Timedelta(right)).freqstr msg = DIFFERENT_FREQ.format( cls=type(left).__name__, own_freq=left.freqstr, other_freq=other_freq ) return IncompatibleFrequency(msg) # ------------------------------------------------------------------- # Constructor Helpers def period_array( data: Sequence[Optional[Period]], freq: Optional[Union[str, Tick]] = None, copy: bool = False, ) -> PeriodArray: """ Construct a new PeriodArray from a sequence of Period scalars. Parameters ---------- data : Sequence of Period objects A sequence of Period objects. These are required to all have the same ``freq.`` Missing values can be indicated by ``None`` or ``pandas.NaT``. freq : str, Tick, or Offset The frequency of every element of the array. This can be specified to avoid inferring the `freq` from `data`. copy : bool, default False Whether to ensure a copy of the data is made. Returns ------- PeriodArray See Also -------- PeriodArray pandas.PeriodIndex Examples -------- >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A')]) <PeriodArray> ['2017', '2018'] Length: 2, dtype: period[A-DEC] >>> period_array([pd.Period('2017', freq='A'), ... pd.Period('2018', freq='A'), ... pd.NaT]) <PeriodArray> ['2017', '2018', 'NaT'] Length: 3, dtype: period[A-DEC] Integers that look like years are handled >>> period_array([2000, 2001, 2002], freq='D') ['2000-01-01', '2001-01-01', '2002-01-01'] Length: 3, dtype: period[D] Datetime-like strings may also be passed >>> period_array(['2000-Q1', '2000-Q2', '2000-Q3', '2000-Q4'], freq='Q') <PeriodArray> ['2000Q1', '2000Q2', '2000Q3', '2000Q4'] Length: 4, dtype: period[Q-DEC] """ if is_datetime64_dtype(data): return PeriodArray._from_datetime64(data, freq) if isinstance(data, (ABCPeriodIndex, ABCSeries, PeriodArray)): return PeriodArray(data, freq) # other iterable of some kind if not isinstance(data, (np.ndarray, list, tuple)): data = list(data) data = np.asarray(data) dtype: Optional[PeriodDtype] if freq: dtype = PeriodDtype(freq) else: dtype = None if is_float_dtype(data) and len(data) > 0: raise TypeError("PeriodIndex does not allow floating point in construction") data = ensure_object(data) return PeriodArray._from_sequence(data, dtype=dtype) def validate_dtype_freq(dtype, freq): """ If both a dtype and a freq are available, ensure they match. If only dtype is available, extract the implied freq. Parameters ---------- dtype : dtype freq : DateOffset or None Returns ------- freq : DateOffset Raises ------ ValueError : non-period dtype IncompatibleFrequency : mismatch between dtype and freq """ if freq is not None: freq = frequencies.to_offset(freq) if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError("dtype must be PeriodDtype") if freq is None: freq = dtype.freq elif freq != dtype.freq: raise IncompatibleFrequency("specified freq and dtype are different") return freq def dt64arr_to_periodarr(data, freq, tz=None): """ Convert an datetime-like array to values Period ordinals. Parameters ---------- data : Union[Series[datetime64[ns]], DatetimeIndex, ndarray[datetime64ns]] freq : Optional[Union[str, Tick]] Must match the `freq` on the `data` if `data` is a DatetimeIndex or Series. tz : Optional[tzinfo] Returns ------- ordinals : ndarray[int] freq : Tick The frequency extracted from the Series or DatetimeIndex if that's used. """ if data.dtype != np.dtype("M8[ns]"): raise ValueError(f"Wrong dtype: {data.dtype}") if freq is None: if isinstance(data, ABCIndexClass): data, freq = data._values, data.freq elif isinstance(data, ABCSeries): data, freq = data._values, data.dt.freq freq = Period._maybe_convert_freq(freq) if isinstance(data, (ABCIndexClass, ABCSeries)): data = data._values base, mult = libfrequencies.get_freq_code(freq) return libperiod.dt64arr_to_periodarr(data.view("i8"), base, tz), freq def _get_ordinal_range(start, end, periods, freq, mult=1): if com.count_not_none(start, end, periods) != 2: raise ValueError( "Of the three parameters: start, end, and periods, " "exactly two must be specified" ) if freq is not None: _, mult = libfrequencies.get_freq_code(freq) if start is not None: start = Period(start, freq) if end is not None: end = Period(end, freq) is_start_per = isinstance(start, Period) is_end_per = isinstance(end, Period) if is_start_per and is_end_per and start.freq != end.freq: raise ValueError("start and end must have same freq") if start is NaT or end is NaT: raise ValueError("start and end must not be NaT") if freq is None: if is_start_per: freq = start.freq elif is_end_per: freq = end.freq else: # pragma: no cover raise ValueError("Could not infer freq from start/end") if periods is not None: periods = periods * mult if start is None: data = np.arange( end.ordinal - periods + mult, end.ordinal + 1, mult, dtype=np.int64 ) else: data = np.arange( start.ordinal, start.ordinal + periods, mult, dtype=np.int64 ) else: data = np.arange(start.ordinal, end.ordinal + 1, mult, dtype=np.int64) return data, freq def _range_from_fields( year=None, month=None, quarter=None, day=None, hour=None, minute=None, second=None, freq=None, ): if hour is None: hour = 0 if minute is None: minute = 0 if second is None: second = 0 if day is None: day = 1 ordinals = [] if quarter is not None: if freq is None: freq = "Q" base = libfrequencies.FreqGroup.FR_QTR else: base, mult = libfrequencies.get_freq_code(freq) if base != libfrequencies.FreqGroup.FR_QTR: raise AssertionError("base must equal FR_QTR") year, quarter = _make_field_arrays(year, quarter) for y, q in zip(year, quarter): y, m = libperiod.quarter_to_myear(y, q, freq) val = libperiod.period_ordinal(y, m, 1, 1, 1, 1, 0, 0, base) ordinals.append(val) else: base, mult = libfrequencies.get_freq_code(freq) arrays = _make_field_arrays(year, month, day, hour, minute, second) for y, mth, d, h, mn, s in zip(*arrays): ordinals.append(libperiod.period_ordinal(y, mth, d, h, mn, s, 0, 0, base)) return np.array(ordinals, dtype=np.int64), freq def _make_field_arrays(*fields): length = None for x in fields: if isinstance(x, (list, np.ndarray, ABCSeries)): if length is not None and len(x) != length: raise ValueError("Mismatched Period array lengths") elif length is None: length = len(x) arrays = [ np.asarray(x) if isinstance(x, (np.ndarray, list, ABCSeries)) else np.repeat(x, length) for x in fields ] return arrays
BugsInPy/BugsInPy/temp/projects/pandas/bug-95-fixed/pandas/pandas/core/arrays/period.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-95-buggy/pandas/pandas/core/arrays/period.py
pandas-bug-33
import numbers from typing import TYPE_CHECKING, Tuple, Type, Union import warnings import numpy as np from pandas._libs import lib, missing as libmissing from pandas._typing import ArrayLike from pandas.compat import set_function_name from pandas.util._decorators import cache_readonly from pandas.core.dtypes.base import ExtensionDtype from pandas.core.dtypes.cast import astype_nansafe from pandas.core.dtypes.common import ( is_bool_dtype, is_datetime64_dtype, is_float, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, pandas_dtype, ) from pandas.core.dtypes.dtypes import register_extension_dtype from pandas.core.dtypes.missing import isna from pandas.core import nanops, ops from pandas.core.array_algos import masked_reductions import pandas.core.common as com from pandas.core.indexers import check_array_indexer from pandas.core.ops import invalid_comparison from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.tools.numeric import to_numeric from .masked import BaseMaskedArray if TYPE_CHECKING: import pyarrow # noqa: F401 class _IntegerDtype(ExtensionDtype): """ An ExtensionDtype to hold a single size & kind of integer dtype. These specific implementations are subclasses of the non-public _IntegerDtype. For example we have Int8Dtype to represent signed int 8s. The attributes name & type are set when these subclasses are created. """ name: str base = None type: Type na_value = libmissing.NA def __repr__(self) -> str: sign = "U" if self.is_unsigned_integer else "" return f"{sign}Int{8 * self.itemsize}Dtype()" @cache_readonly def is_signed_integer(self) -> bool: return self.kind == "i" @cache_readonly def is_unsigned_integer(self) -> bool: return self.kind == "u" @property def _is_numeric(self) -> bool: return True @cache_readonly def numpy_dtype(self) -> np.dtype: """ Return an instance of our numpy dtype """ return np.dtype(self.type) @cache_readonly def kind(self) -> str: return self.numpy_dtype.kind @cache_readonly def itemsize(self) -> int: """ Return the number of bytes in this dtype """ return self.numpy_dtype.itemsize @classmethod def construct_array_type(cls) -> Type["IntegerArray"]: """ Return the array type associated with this dtype. Returns ------- type """ return IntegerArray def __from_arrow__( self, array: Union["pyarrow.Array", "pyarrow.ChunkedArray"] ) -> "IntegerArray": """ Construct IntegerArray from pyarrow Array/ChunkedArray. """ import pyarrow # noqa: F811 from pandas.core.arrays._arrow_utils import pyarrow_array_to_numpy_and_mask pyarrow_type = pyarrow.from_numpy_dtype(self.type) if not array.type.equals(pyarrow_type): array = array.cast(pyarrow_type) if isinstance(array, pyarrow.Array): chunks = [array] else: # pyarrow.ChunkedArray chunks = array.chunks results = [] for arr in chunks: data, mask = pyarrow_array_to_numpy_and_mask(arr, dtype=self.type) int_arr = IntegerArray(data.copy(), ~mask, copy=False) results.append(int_arr) return IntegerArray._concat_same_type(results) def integer_array(values, dtype=None, copy: bool = False,) -> "IntegerArray": """ Infer and return an integer array of the values. Parameters ---------- values : 1D list-like dtype : dtype, optional dtype to coerce copy : bool, default False Returns ------- IntegerArray Raises ------ TypeError if incompatible types """ values, mask = coerce_to_array(values, dtype=dtype, copy=copy) return IntegerArray(values, mask) def safe_cast(values, dtype, copy: bool): """ Safely cast the values to the dtype if they are equivalent, meaning floats must be equivalent to the ints. """ try: return values.astype(dtype, casting="safe", copy=copy) except TypeError as err: casted = values.astype(dtype, copy=copy) if (casted == values).all(): return casted raise TypeError( f"cannot safely cast non-equivalent {values.dtype} to {np.dtype(dtype)}" ) from err def coerce_to_array( values, dtype, mask=None, copy: bool = False, ) -> Tuple[np.ndarray, np.ndarray]: """ Coerce the input values array to numpy arrays with a mask Parameters ---------- values : 1D list-like dtype : integer dtype mask : bool 1D array, optional copy : bool, default False if True, copy the input Returns ------- tuple of (values, mask) """ # if values is integer numpy array, preserve it's dtype if dtype is None and hasattr(values, "dtype"): if is_integer_dtype(values.dtype): dtype = values.dtype if dtype is not None: if isinstance(dtype, str) and ( dtype.startswith("Int") or dtype.startswith("UInt") ): # Avoid DeprecationWarning from NumPy about np.dtype("Int64") # https://github.com/numpy/numpy/pull/7476 dtype = dtype.lower() if not issubclass(type(dtype), _IntegerDtype): try: dtype = _dtypes[str(np.dtype(dtype))] except KeyError as err: raise ValueError(f"invalid dtype specified {dtype}") from err if isinstance(values, IntegerArray): values, mask = values._data, values._mask if dtype is not None: values = values.astype(dtype.numpy_dtype, copy=False) if copy: values = values.copy() mask = mask.copy() return values, mask values = np.array(values, copy=copy) if is_object_dtype(values): inferred_type = lib.infer_dtype(values, skipna=True) if inferred_type == "empty": values = np.empty(len(values)) values.fill(np.nan) elif inferred_type not in [ "floating", "integer", "mixed-integer", "integer-na", "mixed-integer-float", ]: raise TypeError(f"{values.dtype} cannot be converted to an IntegerDtype") elif is_bool_dtype(values) and is_integer_dtype(dtype): values = np.array(values, dtype=int, copy=copy) elif not (is_integer_dtype(values) or is_float_dtype(values)): raise TypeError(f"{values.dtype} cannot be converted to an IntegerDtype") if mask is None: mask = isna(values) else: assert len(mask) == len(values) if not values.ndim == 1: raise TypeError("values must be a 1D list-like") if not mask.ndim == 1: raise TypeError("mask must be a 1D list-like") # infer dtype if needed if dtype is None: dtype = np.dtype("int64") else: dtype = dtype.type # if we are float, let's make sure that we can # safely cast # we copy as need to coerce here if mask.any(): values = values.copy() values[mask] = 1 values = safe_cast(values, dtype, copy=False) else: values = safe_cast(values, dtype, copy=False) return values, mask class IntegerArray(BaseMaskedArray): """ Array of integer (optional missing) values. .. versionadded:: 0.24.0 .. versionchanged:: 1.0.0 Now uses :attr:`pandas.NA` as the missing value rather than :attr:`numpy.nan`. .. warning:: IntegerArray is currently experimental, and its API or internal implementation may change without warning. We represent an IntegerArray with 2 numpy arrays: - data: contains a numpy integer array of the appropriate dtype - mask: a boolean array holding a mask on the data, True is missing To construct an IntegerArray from generic array-like input, use :func:`pandas.array` with one of the integer dtypes (see examples). See :ref:`integer_na` for more. Parameters ---------- values : numpy.ndarray A 1-d integer-dtype array. mask : numpy.ndarray A 1-d boolean-dtype array indicating missing values. copy : bool, default False Whether to copy the `values` and `mask`. Attributes ---------- None Methods ------- None Returns ------- IntegerArray Examples -------- Create an IntegerArray with :func:`pandas.array`. >>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype()) >>> int_array <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32 String aliases for the dtypes are also available. They are capitalized. >>> pd.array([1, None, 3], dtype='Int32') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32 >>> pd.array([1, None, 3], dtype='UInt16') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: UInt16 """ # The value used to fill '_data' to avoid upcasting _internal_fill_value = 1 @cache_readonly def dtype(self) -> _IntegerDtype: return _dtypes[str(self._data.dtype)] def __init__(self, values: np.ndarray, mask: np.ndarray, copy: bool = False): if not (isinstance(values, np.ndarray) and is_integer_dtype(values.dtype)): raise TypeError( "values should be integer numpy array. Use " "the 'integer_array' function instead" ) if not (isinstance(mask, np.ndarray) and is_bool_dtype(mask.dtype)): raise TypeError( "mask should be boolean numpy array. Use " "the 'integer_array' function instead" ) super().__init__(values, mask, copy=copy) @classmethod def _from_sequence(cls, scalars, dtype=None, copy: bool = False) -> "IntegerArray": return integer_array(scalars, dtype=dtype, copy=copy) @classmethod def _from_sequence_of_strings( cls, strings, dtype=None, copy: bool = False ) -> "IntegerArray": scalars = to_numeric(strings, errors="raise") return cls._from_sequence(scalars, dtype, copy) @classmethod def _from_factorized(cls, values, original) -> "IntegerArray": return integer_array(values, dtype=original.dtype) _HANDLED_TYPES = (np.ndarray, numbers.Number) def __array_ufunc__(self, ufunc, method: str, *inputs, **kwargs): # For IntegerArray inputs, we apply the ufunc to ._data # and mask the result. if method == "reduce": # Not clear how to handle missing values in reductions. Raise. raise NotImplementedError("The 'reduce' method is not supported.") out = kwargs.get("out", ()) for x in inputs + out: if not isinstance(x, self._HANDLED_TYPES + (IntegerArray,)): return NotImplemented # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result mask = np.zeros(len(self), dtype=bool) inputs2 = [] for x in inputs: if isinstance(x, IntegerArray): mask |= x._mask inputs2.append(x._data) else: inputs2.append(x) def reconstruct(x): # we don't worry about scalar `x` here, since we # raise for reduce up above. if is_integer_dtype(x.dtype): m = mask.copy() return IntegerArray(x, m) else: x[mask] = np.nan return x result = getattr(ufunc, method)(*inputs2, **kwargs) if isinstance(result, tuple): tuple(reconstruct(x) for x in result) else: return reconstruct(result) def __setitem__(self, key, value) -> None: _is_scalar = is_scalar(value) if _is_scalar: value = [value] value, mask = coerce_to_array(value, dtype=self.dtype) if _is_scalar: value = value[0] mask = mask[0] key = check_array_indexer(self, key) self._data[key] = value self._mask[key] = mask def astype(self, dtype, copy: bool = True) -> ArrayLike: """ Cast to a NumPy array or ExtensionArray with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- ndarray or ExtensionArray NumPy ndarray, BooleanArray or IntegerArray with 'dtype' for its dtype. Raises ------ TypeError if incompatible type with an IntegerDtype, equivalent of same_kind casting """ from pandas.core.arrays.boolean import BooleanArray, BooleanDtype dtype = pandas_dtype(dtype) # if we are astyping to an existing IntegerDtype we can fastpath if isinstance(dtype, _IntegerDtype): result = self._data.astype(dtype.numpy_dtype, copy=False) return type(self)(result, mask=self._mask, copy=False) elif isinstance(dtype, BooleanDtype): result = self._data.astype("bool", copy=False) return BooleanArray(result, mask=self._mask, copy=False) # coerce if is_float_dtype(dtype): # In astype, we consider dtype=float to also mean na_value=np.nan kwargs = dict(na_value=np.nan) elif is_datetime64_dtype(dtype): kwargs = dict(na_value=np.datetime64("NaT")) else: kwargs = {} data = self.to_numpy(dtype=dtype, **kwargs) return astype_nansafe(data, dtype, copy=False) def _values_for_factorize(self) -> Tuple[np.ndarray, float]: # TODO: https://github.com/pandas-dev/pandas/issues/30037 # use masked algorithms, rather than object-dtype / np.nan. return self.to_numpy(na_value=np.nan), np.nan def _values_for_argsort(self) -> np.ndarray: """ Return values for sorting. Returns ------- ndarray The transformed values should maintain the ordering between values within the array. See Also -------- ExtensionArray.argsort """ data = self._data.copy() data[self._mask] = data.min() - 1 return data @classmethod def _create_comparison_method(cls, op): op_name = op.__name__ @unpack_zerodim_and_defer(op.__name__) def cmp_method(self, other): from pandas.arrays import BooleanArray mask = None if isinstance(other, (BooleanArray, IntegerArray)): other, mask = other._data, other._mask elif is_list_like(other): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError( "can only perform ops with 1-d structures" ) if len(self) != len(other): raise ValueError("Lengths must match to compare") if other is libmissing.NA: # numpy does not handle pd.NA well as "other" scalar (it returns # a scalar False instead of an array) # This may be fixed by NA.__array_ufunc__. Revisit this check # once that's implemented. result = np.zeros(self._data.shape, dtype="bool") mask = np.ones(self._data.shape, dtype="bool") else: with warnings.catch_warnings(): # numpy may show a FutureWarning: # elementwise comparison failed; returning scalar instead, # but in the future will perform elementwise comparison # before returning NotImplemented. We fall back to the correct # behavior today, so that should be fine to ignore. warnings.filterwarnings("ignore", "elementwise", FutureWarning) with np.errstate(all="ignore"): method = getattr(self._data, f"__{op_name}__") result = method(other) if result is NotImplemented: result = invalid_comparison(self._data, other, op) # nans propagate if mask is None: mask = self._mask.copy() else: mask = self._mask | mask return BooleanArray(result, mask) name = f"__{op.__name__}__" return set_function_name(cmp_method, name, cls) def _reduce(self, name: str, skipna: bool = True, **kwargs): data = self._data mask = self._mask if name == "sum": return masked_reductions.sum(data, mask, skipna=skipna, **kwargs) # coerce to a nan-aware float if needed # (we explicitly use NaN within reductions) if self._hasna: data = self.to_numpy("float64", na_value=np.nan) op = getattr(nanops, "nan" + name) result = op(data, axis=0, skipna=skipna, mask=mask, **kwargs) if np.isnan(result): return libmissing.NA # if we have a boolean op, don't coerce if name in ["any", "all"]: pass # if we have a preservable numeric op, # provide coercion back to an integer type if possible elif name in ["min", "max", "prod"]: # GH#31409 more performant than casting-then-checking result = com.cast_scalar_indexer(result) return result def _maybe_mask_result(self, result, mask, other, op_name: str): """ Parameters ---------- result : array-like mask : array-like bool other : scalar or array-like op_name : str """ # if we have a float operand we are by-definition # a float result # or our op is a divide if (is_float_dtype(other) or is_float(other)) or ( op_name in ["rtruediv", "truediv"] ): result[mask] = np.nan return result return type(self)(result, mask, copy=False) @classmethod def _create_arithmetic_method(cls, op): op_name = op.__name__ @unpack_zerodim_and_defer(op.__name__) def integer_arithmetic_method(self, other): omask = None if getattr(other, "ndim", 0) > 1: raise NotImplementedError("can only perform ops with 1-d structures") if isinstance(other, IntegerArray): other, omask = other._data, other._mask elif is_list_like(other): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError( "can only perform ops with 1-d structures" ) if len(self) != len(other): raise ValueError("Lengths must match") if not (is_float_dtype(other) or is_integer_dtype(other)): raise TypeError("can only perform ops with numeric values") else: if not (is_float(other) or is_integer(other) or other is libmissing.NA): raise TypeError("can only perform ops with numeric values") if omask is None: mask = self._mask.copy() if other is libmissing.NA: mask |= True else: mask = self._mask | omask if op_name == "pow": # 1 ** x is 1. mask = np.where((self._data == 1) & ~self._mask, False, mask) # x ** 0 is 1. if omask is not None: mask = np.where((other == 0) & ~omask, False, mask) elif other is not libmissing.NA: mask = np.where(other == 0, False, mask) elif op_name == "rpow": # 1 ** x is 1. if omask is not None: mask = np.where((other == 1) & ~omask, False, mask) elif other is not libmissing.NA: mask = np.where(other == 1, False, mask) # x ** 0 is 1. mask = np.where((self._data == 0) & ~self._mask, False, mask) if other is libmissing.NA: result = np.ones_like(self._data) else: with np.errstate(all="ignore"): result = op(self._data, other) # divmod returns a tuple if op_name == "divmod": div, mod = result return ( self._maybe_mask_result(div, mask, other, "floordiv"), self._maybe_mask_result(mod, mask, other, "mod"), ) return self._maybe_mask_result(result, mask, other, op_name) name = f"__{op.__name__}__" return set_function_name(integer_arithmetic_method, name, cls) IntegerArray._add_arithmetic_ops() IntegerArray._add_comparison_ops() _dtype_docstring = """ An ExtensionDtype for {dtype} integer data. .. versionchanged:: 1.0.0 Now uses :attr:`pandas.NA` as its missing value, rather than :attr:`numpy.nan`. Attributes ---------- None Methods ------- None """ # create the Dtype @register_extension_dtype class Int8Dtype(_IntegerDtype): type = np.int8 name = "Int8" __doc__ = _dtype_docstring.format(dtype="int8") @register_extension_dtype class Int16Dtype(_IntegerDtype): type = np.int16 name = "Int16" __doc__ = _dtype_docstring.format(dtype="int16") @register_extension_dtype class Int32Dtype(_IntegerDtype): type = np.int32 name = "Int32" __doc__ = _dtype_docstring.format(dtype="int32") @register_extension_dtype class Int64Dtype(_IntegerDtype): type = np.int64 name = "Int64" __doc__ = _dtype_docstring.format(dtype="int64") @register_extension_dtype class UInt8Dtype(_IntegerDtype): type = np.uint8 name = "UInt8" __doc__ = _dtype_docstring.format(dtype="uint8") @register_extension_dtype class UInt16Dtype(_IntegerDtype): type = np.uint16 name = "UInt16" __doc__ = _dtype_docstring.format(dtype="uint16") @register_extension_dtype class UInt32Dtype(_IntegerDtype): type = np.uint32 name = "UInt32" __doc__ = _dtype_docstring.format(dtype="uint32") @register_extension_dtype class UInt64Dtype(_IntegerDtype): type = np.uint64 name = "UInt64" __doc__ = _dtype_docstring.format(dtype="uint64") _dtypes = { "int8": Int8Dtype(), "int16": Int16Dtype(), "int32": Int32Dtype(), "int64": Int64Dtype(), "uint8": UInt8Dtype(), "uint16": UInt16Dtype(), "uint32": UInt32Dtype(), "uint64": UInt64Dtype(), } import numbers from typing import TYPE_CHECKING, Tuple, Type, Union import warnings import numpy as np from pandas._libs import lib, missing as libmissing from pandas._typing import ArrayLike from pandas.compat import set_function_name from pandas.util._decorators import cache_readonly from pandas.core.dtypes.base import ExtensionDtype from pandas.core.dtypes.cast import astype_nansafe from pandas.core.dtypes.common import ( is_bool_dtype, is_datetime64_dtype, is_float, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, pandas_dtype, ) from pandas.core.dtypes.dtypes import register_extension_dtype from pandas.core.dtypes.missing import isna from pandas.core import nanops, ops from pandas.core.array_algos import masked_reductions import pandas.core.common as com from pandas.core.indexers import check_array_indexer from pandas.core.ops import invalid_comparison from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.tools.numeric import to_numeric from .masked import BaseMaskedArray if TYPE_CHECKING: import pyarrow # noqa: F401 class _IntegerDtype(ExtensionDtype): """ An ExtensionDtype to hold a single size & kind of integer dtype. These specific implementations are subclasses of the non-public _IntegerDtype. For example we have Int8Dtype to represent signed int 8s. The attributes name & type are set when these subclasses are created. """ name: str base = None type: Type na_value = libmissing.NA def __repr__(self) -> str: sign = "U" if self.is_unsigned_integer else "" return f"{sign}Int{8 * self.itemsize}Dtype()" @cache_readonly def is_signed_integer(self) -> bool: return self.kind == "i" @cache_readonly def is_unsigned_integer(self) -> bool: return self.kind == "u" @property def _is_numeric(self) -> bool: return True @cache_readonly def numpy_dtype(self) -> np.dtype: """ Return an instance of our numpy dtype """ return np.dtype(self.type) @cache_readonly def kind(self) -> str: return self.numpy_dtype.kind @cache_readonly def itemsize(self) -> int: """ Return the number of bytes in this dtype """ return self.numpy_dtype.itemsize @classmethod def construct_array_type(cls) -> Type["IntegerArray"]: """ Return the array type associated with this dtype. Returns ------- type """ return IntegerArray def __from_arrow__( self, array: Union["pyarrow.Array", "pyarrow.ChunkedArray"] ) -> "IntegerArray": """ Construct IntegerArray from pyarrow Array/ChunkedArray. """ import pyarrow # noqa: F811 from pandas.core.arrays._arrow_utils import pyarrow_array_to_numpy_and_mask pyarrow_type = pyarrow.from_numpy_dtype(self.type) if not array.type.equals(pyarrow_type): array = array.cast(pyarrow_type) if isinstance(array, pyarrow.Array): chunks = [array] else: # pyarrow.ChunkedArray chunks = array.chunks results = [] for arr in chunks: data, mask = pyarrow_array_to_numpy_and_mask(arr, dtype=self.type) int_arr = IntegerArray(data.copy(), ~mask, copy=False) results.append(int_arr) return IntegerArray._concat_same_type(results) def integer_array(values, dtype=None, copy: bool = False,) -> "IntegerArray": """ Infer and return an integer array of the values. Parameters ---------- values : 1D list-like dtype : dtype, optional dtype to coerce copy : bool, default False Returns ------- IntegerArray Raises ------ TypeError if incompatible types """ values, mask = coerce_to_array(values, dtype=dtype, copy=copy) return IntegerArray(values, mask) def safe_cast(values, dtype, copy: bool): """ Safely cast the values to the dtype if they are equivalent, meaning floats must be equivalent to the ints. """ try: return values.astype(dtype, casting="safe", copy=copy) except TypeError as err: casted = values.astype(dtype, copy=copy) if (casted == values).all(): return casted raise TypeError( f"cannot safely cast non-equivalent {values.dtype} to {np.dtype(dtype)}" ) from err def coerce_to_array( values, dtype, mask=None, copy: bool = False, ) -> Tuple[np.ndarray, np.ndarray]: """ Coerce the input values array to numpy arrays with a mask Parameters ---------- values : 1D list-like dtype : integer dtype mask : bool 1D array, optional copy : bool, default False if True, copy the input Returns ------- tuple of (values, mask) """ # if values is integer numpy array, preserve it's dtype if dtype is None and hasattr(values, "dtype"): if is_integer_dtype(values.dtype): dtype = values.dtype if dtype is not None: if isinstance(dtype, str) and ( dtype.startswith("Int") or dtype.startswith("UInt") ): # Avoid DeprecationWarning from NumPy about np.dtype("Int64") # https://github.com/numpy/numpy/pull/7476 dtype = dtype.lower() if not issubclass(type(dtype), _IntegerDtype): try: dtype = _dtypes[str(np.dtype(dtype))] except KeyError as err: raise ValueError(f"invalid dtype specified {dtype}") from err if isinstance(values, IntegerArray): values, mask = values._data, values._mask if dtype is not None: values = values.astype(dtype.numpy_dtype, copy=False) if copy: values = values.copy() mask = mask.copy() return values, mask values = np.array(values, copy=copy) if is_object_dtype(values): inferred_type = lib.infer_dtype(values, skipna=True) if inferred_type == "empty": values = np.empty(len(values)) values.fill(np.nan) elif inferred_type not in [ "floating", "integer", "mixed-integer", "integer-na", "mixed-integer-float", ]: raise TypeError(f"{values.dtype} cannot be converted to an IntegerDtype") elif is_bool_dtype(values) and is_integer_dtype(dtype): values = np.array(values, dtype=int, copy=copy) elif not (is_integer_dtype(values) or is_float_dtype(values)): raise TypeError(f"{values.dtype} cannot be converted to an IntegerDtype") if mask is None: mask = isna(values) else: assert len(mask) == len(values) if not values.ndim == 1: raise TypeError("values must be a 1D list-like") if not mask.ndim == 1: raise TypeError("mask must be a 1D list-like") # infer dtype if needed if dtype is None: dtype = np.dtype("int64") else: dtype = dtype.type # if we are float, let's make sure that we can # safely cast # we copy as need to coerce here if mask.any(): values = values.copy() values[mask] = 1 values = safe_cast(values, dtype, copy=False) else: values = safe_cast(values, dtype, copy=False) return values, mask class IntegerArray(BaseMaskedArray): """ Array of integer (optional missing) values. .. versionadded:: 0.24.0 .. versionchanged:: 1.0.0 Now uses :attr:`pandas.NA` as the missing value rather than :attr:`numpy.nan`. .. warning:: IntegerArray is currently experimental, and its API or internal implementation may change without warning. We represent an IntegerArray with 2 numpy arrays: - data: contains a numpy integer array of the appropriate dtype - mask: a boolean array holding a mask on the data, True is missing To construct an IntegerArray from generic array-like input, use :func:`pandas.array` with one of the integer dtypes (see examples). See :ref:`integer_na` for more. Parameters ---------- values : numpy.ndarray A 1-d integer-dtype array. mask : numpy.ndarray A 1-d boolean-dtype array indicating missing values. copy : bool, default False Whether to copy the `values` and `mask`. Attributes ---------- None Methods ------- None Returns ------- IntegerArray Examples -------- Create an IntegerArray with :func:`pandas.array`. >>> int_array = pd.array([1, None, 3], dtype=pd.Int32Dtype()) >>> int_array <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32 String aliases for the dtypes are also available. They are capitalized. >>> pd.array([1, None, 3], dtype='Int32') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: Int32 >>> pd.array([1, None, 3], dtype='UInt16') <IntegerArray> [1, <NA>, 3] Length: 3, dtype: UInt16 """ # The value used to fill '_data' to avoid upcasting _internal_fill_value = 1 @cache_readonly def dtype(self) -> _IntegerDtype: return _dtypes[str(self._data.dtype)] def __init__(self, values: np.ndarray, mask: np.ndarray, copy: bool = False): if not (isinstance(values, np.ndarray) and is_integer_dtype(values.dtype)): raise TypeError( "values should be integer numpy array. Use " "the 'integer_array' function instead" ) if not (isinstance(mask, np.ndarray) and is_bool_dtype(mask.dtype)): raise TypeError( "mask should be boolean numpy array. Use " "the 'integer_array' function instead" ) super().__init__(values, mask, copy=copy) @classmethod def _from_sequence(cls, scalars, dtype=None, copy: bool = False) -> "IntegerArray": return integer_array(scalars, dtype=dtype, copy=copy) @classmethod def _from_sequence_of_strings( cls, strings, dtype=None, copy: bool = False ) -> "IntegerArray": scalars = to_numeric(strings, errors="raise") return cls._from_sequence(scalars, dtype, copy) @classmethod def _from_factorized(cls, values, original) -> "IntegerArray": return integer_array(values, dtype=original.dtype) _HANDLED_TYPES = (np.ndarray, numbers.Number) def __array_ufunc__(self, ufunc, method: str, *inputs, **kwargs): # For IntegerArray inputs, we apply the ufunc to ._data # and mask the result. if method == "reduce": # Not clear how to handle missing values in reductions. Raise. raise NotImplementedError("The 'reduce' method is not supported.") out = kwargs.get("out", ()) for x in inputs + out: if not isinstance(x, self._HANDLED_TYPES + (IntegerArray,)): return NotImplemented # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result mask = np.zeros(len(self), dtype=bool) inputs2 = [] for x in inputs: if isinstance(x, IntegerArray): mask |= x._mask inputs2.append(x._data) else: inputs2.append(x) def reconstruct(x): # we don't worry about scalar `x` here, since we # raise for reduce up above. if is_integer_dtype(x.dtype): m = mask.copy() return IntegerArray(x, m) else: x[mask] = np.nan return x result = getattr(ufunc, method)(*inputs2, **kwargs) if isinstance(result, tuple): tuple(reconstruct(x) for x in result) else: return reconstruct(result) def __setitem__(self, key, value) -> None: _is_scalar = is_scalar(value) if _is_scalar: value = [value] value, mask = coerce_to_array(value, dtype=self.dtype) if _is_scalar: value = value[0] mask = mask[0] key = check_array_indexer(self, key) self._data[key] = value self._mask[key] = mask def astype(self, dtype, copy: bool = True) -> ArrayLike: """ Cast to a NumPy array or ExtensionArray with 'dtype'. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. copy : bool, default True Whether to copy the data, even if not necessary. If False, a copy is made only if the old dtype does not match the new dtype. Returns ------- ndarray or ExtensionArray NumPy ndarray, BooleanArray or IntegerArray with 'dtype' for its dtype. Raises ------ TypeError if incompatible type with an IntegerDtype, equivalent of same_kind casting """ from pandas.core.arrays.boolean import BooleanArray, BooleanDtype dtype = pandas_dtype(dtype) # if we are astyping to an existing IntegerDtype we can fastpath if isinstance(dtype, _IntegerDtype): result = self._data.astype(dtype.numpy_dtype, copy=False) return type(self)(result, mask=self._mask, copy=False) elif isinstance(dtype, BooleanDtype): result = self._data.astype("bool", copy=False) return BooleanArray(result, mask=self._mask, copy=False) # coerce if is_float_dtype(dtype): # In astype, we consider dtype=float to also mean na_value=np.nan kwargs = dict(na_value=np.nan) elif is_datetime64_dtype(dtype): kwargs = dict(na_value=np.datetime64("NaT")) else: kwargs = {} data = self.to_numpy(dtype=dtype, **kwargs) return astype_nansafe(data, dtype, copy=False) def _values_for_factorize(self) -> Tuple[np.ndarray, float]: # TODO: https://github.com/pandas-dev/pandas/issues/30037 # use masked algorithms, rather than object-dtype / np.nan. return self.to_numpy(na_value=np.nan), np.nan def _values_for_argsort(self) -> np.ndarray: """ Return values for sorting. Returns ------- ndarray The transformed values should maintain the ordering between values within the array. See Also -------- ExtensionArray.argsort """ data = self._data.copy() if self._mask.any(): data[self._mask] = data.min() - 1 return data @classmethod def _create_comparison_method(cls, op): op_name = op.__name__ @unpack_zerodim_and_defer(op.__name__) def cmp_method(self, other): from pandas.arrays import BooleanArray mask = None if isinstance(other, (BooleanArray, IntegerArray)): other, mask = other._data, other._mask elif is_list_like(other): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError( "can only perform ops with 1-d structures" ) if len(self) != len(other): raise ValueError("Lengths must match to compare") if other is libmissing.NA: # numpy does not handle pd.NA well as "other" scalar (it returns # a scalar False instead of an array) # This may be fixed by NA.__array_ufunc__. Revisit this check # once that's implemented. result = np.zeros(self._data.shape, dtype="bool") mask = np.ones(self._data.shape, dtype="bool") else: with warnings.catch_warnings(): # numpy may show a FutureWarning: # elementwise comparison failed; returning scalar instead, # but in the future will perform elementwise comparison # before returning NotImplemented. We fall back to the correct # behavior today, so that should be fine to ignore. warnings.filterwarnings("ignore", "elementwise", FutureWarning) with np.errstate(all="ignore"): method = getattr(self._data, f"__{op_name}__") result = method(other) if result is NotImplemented: result = invalid_comparison(self._data, other, op) # nans propagate if mask is None: mask = self._mask.copy() else: mask = self._mask | mask return BooleanArray(result, mask) name = f"__{op.__name__}__" return set_function_name(cmp_method, name, cls) def _reduce(self, name: str, skipna: bool = True, **kwargs): data = self._data mask = self._mask if name == "sum": return masked_reductions.sum(data, mask, skipna=skipna, **kwargs) # coerce to a nan-aware float if needed # (we explicitly use NaN within reductions) if self._hasna: data = self.to_numpy("float64", na_value=np.nan) op = getattr(nanops, "nan" + name) result = op(data, axis=0, skipna=skipna, mask=mask, **kwargs) if np.isnan(result): return libmissing.NA # if we have a boolean op, don't coerce if name in ["any", "all"]: pass # if we have a preservable numeric op, # provide coercion back to an integer type if possible elif name in ["min", "max", "prod"]: # GH#31409 more performant than casting-then-checking result = com.cast_scalar_indexer(result) return result def _maybe_mask_result(self, result, mask, other, op_name: str): """ Parameters ---------- result : array-like mask : array-like bool other : scalar or array-like op_name : str """ # if we have a float operand we are by-definition # a float result # or our op is a divide if (is_float_dtype(other) or is_float(other)) or ( op_name in ["rtruediv", "truediv"] ): result[mask] = np.nan return result return type(self)(result, mask, copy=False) @classmethod def _create_arithmetic_method(cls, op): op_name = op.__name__ @unpack_zerodim_and_defer(op.__name__) def integer_arithmetic_method(self, other): omask = None if getattr(other, "ndim", 0) > 1: raise NotImplementedError("can only perform ops with 1-d structures") if isinstance(other, IntegerArray): other, omask = other._data, other._mask elif is_list_like(other): other = np.asarray(other) if other.ndim > 1: raise NotImplementedError( "can only perform ops with 1-d structures" ) if len(self) != len(other): raise ValueError("Lengths must match") if not (is_float_dtype(other) or is_integer_dtype(other)): raise TypeError("can only perform ops with numeric values") else: if not (is_float(other) or is_integer(other) or other is libmissing.NA): raise TypeError("can only perform ops with numeric values") if omask is None: mask = self._mask.copy() if other is libmissing.NA: mask |= True else: mask = self._mask | omask if op_name == "pow": # 1 ** x is 1. mask = np.where((self._data == 1) & ~self._mask, False, mask) # x ** 0 is 1. if omask is not None: mask = np.where((other == 0) & ~omask, False, mask) elif other is not libmissing.NA: mask = np.where(other == 0, False, mask) elif op_name == "rpow": # 1 ** x is 1. if omask is not None: mask = np.where((other == 1) & ~omask, False, mask) elif other is not libmissing.NA: mask = np.where(other == 1, False, mask) # x ** 0 is 1. mask = np.where((self._data == 0) & ~self._mask, False, mask) if other is libmissing.NA: result = np.ones_like(self._data) else: with np.errstate(all="ignore"): result = op(self._data, other) # divmod returns a tuple if op_name == "divmod": div, mod = result return ( self._maybe_mask_result(div, mask, other, "floordiv"), self._maybe_mask_result(mod, mask, other, "mod"), ) return self._maybe_mask_result(result, mask, other, op_name) name = f"__{op.__name__}__" return set_function_name(integer_arithmetic_method, name, cls) IntegerArray._add_arithmetic_ops() IntegerArray._add_comparison_ops() _dtype_docstring = """ An ExtensionDtype for {dtype} integer data. .. versionchanged:: 1.0.0 Now uses :attr:`pandas.NA` as its missing value, rather than :attr:`numpy.nan`. Attributes ---------- None Methods ------- None """ # create the Dtype @register_extension_dtype class Int8Dtype(_IntegerDtype): type = np.int8 name = "Int8" __doc__ = _dtype_docstring.format(dtype="int8") @register_extension_dtype class Int16Dtype(_IntegerDtype): type = np.int16 name = "Int16" __doc__ = _dtype_docstring.format(dtype="int16") @register_extension_dtype class Int32Dtype(_IntegerDtype): type = np.int32 name = "Int32" __doc__ = _dtype_docstring.format(dtype="int32") @register_extension_dtype class Int64Dtype(_IntegerDtype): type = np.int64 name = "Int64" __doc__ = _dtype_docstring.format(dtype="int64") @register_extension_dtype class UInt8Dtype(_IntegerDtype): type = np.uint8 name = "UInt8" __doc__ = _dtype_docstring.format(dtype="uint8") @register_extension_dtype class UInt16Dtype(_IntegerDtype): type = np.uint16 name = "UInt16" __doc__ = _dtype_docstring.format(dtype="uint16") @register_extension_dtype class UInt32Dtype(_IntegerDtype): type = np.uint32 name = "UInt32" __doc__ = _dtype_docstring.format(dtype="uint32") @register_extension_dtype class UInt64Dtype(_IntegerDtype): type = np.uint64 name = "UInt64" __doc__ = _dtype_docstring.format(dtype="uint64") _dtypes = { "int8": Int8Dtype(), "int16": Int16Dtype(), "int32": Int32Dtype(), "int64": Int64Dtype(), "uint8": UInt8Dtype(), "uint16": UInt16Dtype(), "uint32": UInt32Dtype(), "uint64": UInt64Dtype(), }
BugsInPy/BugsInPy/temp/projects/pandas/bug-33-fixed/pandas/pandas/core/arrays/integer.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-33-buggy/pandas/pandas/core/arrays/integer.py
pandas-bug-17
from datetime import datetime, timedelta import operator from typing import Any, Sequence, Type, Union, cast import warnings import numpy as np from pandas._libs import NaT, NaTType, Timestamp, algos, iNaT, lib from pandas._libs.tslibs.c_timestamp import integer_op_not_supported from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from pandas._libs.tslibs.timestamps import RoundTo, round_nsint64 from pandas._typing import DatetimeLikeScalar from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError, NullFrequencyError, PerformanceWarning from pandas.util._decorators import Appender, Substitution from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_period_dtype, is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna from pandas.core import missing, nanops, ops from pandas.core.algorithms import checked_add_with_arr, unique1d, value_counts from pandas.core.array_algos.transforms import shift from pandas.core.arrays._mixins import _T, NDArrayBackedExtensionArray from pandas.core.arrays.base import ExtensionArray, ExtensionOpsMixin import pandas.core.common as com from pandas.core.construction import array, extract_array from pandas.core.indexers import check_array_indexer from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.ops.invalid import invalid_comparison, make_invalid_op from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick def _datetimelike_array_cmp(cls, op): """ Wrap comparison operations to convert Timestamp/Timedelta/Period-like to boxed scalars/arrays. """ opname = f"__{op.__name__}__" nat_result = opname == "__ne__" class InvalidComparison(Exception): pass def _validate_comparison_value(self, other): if isinstance(other, str): try: # GH#18435 strings get a pass from tzawareness compat other = self._scalar_from_string(other) except ValueError: # failed to parse as Timestamp/Timedelta/Period raise InvalidComparison(other) if isinstance(other, self._recognized_scalars) or other is NaT: other = self._scalar_type(other) self._check_compatible_with(other) elif not is_list_like(other): raise InvalidComparison(other) elif len(other) != len(self): raise ValueError("Lengths must match") else: if isinstance(other, list): # TODO: could use pd.Index to do inference? other = np.array(other) if not isinstance(other, (np.ndarray, type(self))): raise InvalidComparison(other) elif is_object_dtype(other.dtype): pass elif not type(self)._is_recognized_dtype(other.dtype): raise InvalidComparison(other) else: # For PeriodDType this casting is unnecessary # TODO: use Index to do inference? other = type(self)._from_sequence(other) self._check_compatible_with(other) return other @unpack_zerodim_and_defer(opname) def wrapper(self, other): try: other = _validate_comparison_value(self, other) except InvalidComparison: return invalid_comparison(self, other, op) dtype = getattr(other, "dtype", None) if is_object_dtype(dtype): # We have to use comp_method_OBJECT_ARRAY instead of numpy # comparison otherwise it would fail to raise when # comparing tz-aware and tz-naive with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY(op, self.astype(object), other) return result if isinstance(other, self._scalar_type) or other is NaT: other_i8 = self._unbox_scalar(other) else: # Then type(other) == type(self) other_i8 = other.asi8 result = op(self.asi8, other_i8) o_mask = isna(other) if self._hasnans | np.any(o_mask): result[self._isnan | o_mask] = nat_result return result return set_function_name(wrapper, opname, cls) class AttributesMixin: _data: np.ndarray @classmethod def _simple_new(cls, values: np.ndarray, **kwargs): raise AbstractMethodError(cls) @property def _scalar_type(self) -> Type[DatetimeLikeScalar]: """ The scalar associated with this datelike * PeriodArray : Period * DatetimeArray : Timestamp * TimedeltaArray : Timedelta """ raise AbstractMethodError(self) def _scalar_from_string( self, value: str ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self) def _unbox_scalar(self, value: Union[Period, Timestamp, Timedelta, NaTType]) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta("10s")) # doctest: +SKIP 10000000000 """ raise AbstractMethodError(self) def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType], setitem: bool = False ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other setitem : bool, default False For __setitem__ we may have stricter compatibility resrictions than for comparisons. Raises ------ Exception """ raise AbstractMethodError(self) class DatelikeOps: """ Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex. """ @Substitution( URL="https://docs.python.org/3/library/datetime.html" "#strftime-and-strptime-behavior" ) def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- ndarray NumPy ndarray of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ result = self._format_native_types(date_format=date_format, na_rep=np.nan) return result.astype(object) class TimelikeOps: """ Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex. """ _round_doc = """ Perform {op} operation on the data to the specified `freq`. Parameters ---------- freq : str or Offset The frequency level to {op} the index to. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timeseries.offset_aliases>` for a list of possible `freq` values. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' Only relevant for DatetimeIndex: - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. .. versionadded:: 0.24.0 nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- DatetimeIndex, TimedeltaIndex, or Series Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ------ ValueError if the `freq` cannot be converted. Examples -------- **DatetimeIndex** >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') """ _round_example = """>>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _floor_example = """>>> rng.floor('H') DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _ceil_example = """>>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.ceil("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] """ def _round(self, freq, mode, ambiguous, nonexistent): # round the local times if is_datetime64tz_dtype(self): # operate on naive timestamps, then convert back to aware naive = self.tz_localize(None) result = naive._round(freq, mode, ambiguous, nonexistent) aware = result.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return aware values = self.view("i8") result = round_nsint64(values, mode, freq) result = self._maybe_mask_results(result, fill_value=NaT) return self._simple_new(result, dtype=self.dtype) @Appender((_round_doc + _round_example).format(op="round")) def round(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.NEAREST_HALF_EVEN, ambiguous, nonexistent) @Appender((_round_doc + _floor_example).format(op="floor")) def floor(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.MINUS_INFTY, ambiguous, nonexistent) @Appender((_round_doc + _ceil_example).format(op="ceil")) def ceil(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.PLUS_INFTY, ambiguous, nonexistent) def _with_freq(self, freq): """ Helper to set our freq in-place, returning self to allow method chaining. Parameters ---------- freq : DateOffset, None, or "infer" Returns ------- self """ # GH#29843 if freq is None: # Always valid pass elif len(self) == 0 and isinstance(freq, DateOffset): # Always valid. In the TimedeltaArray case, we assume this # is a Tick offset. pass else: # As an internal method, we can ensure this assertion always holds assert freq == "infer" freq = frequencies.to_offset(self.inferred_freq) self._freq = freq return self class DatetimeLikeArrayMixin( ExtensionOpsMixin, AttributesMixin, NDArrayBackedExtensionArray ): """ Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray Assumes that __new__/__init__ defines: _data _freq and that the inheriting class has methods: _generate_range """ # ------------------------------------------------------------------ # NDArrayBackedExtensionArray compat @property def _ndarray(self) -> np.ndarray: # NB: A bunch of Interval tests fail if we use ._data return self.asi8 def _from_backing_data(self: _T, arr: np.ndarray) -> _T: # Note: we do not retain `freq` return type(self)(arr, dtype=self.dtype) # type: ignore # ------------------------------------------------------------------ @property def ndim(self) -> int: return self._data.ndim @property def shape(self): return self._data.shape def reshape(self, *args, **kwargs): # Note: we drop any freq data = self._data.reshape(*args, **kwargs) return type(self)(data, dtype=self.dtype) def ravel(self, *args, **kwargs): # Note: we drop any freq data = self._data.ravel(*args, **kwargs) return type(self)(data, dtype=self.dtype) @property def _box_func(self): """ box function to get object from internal representation """ raise AbstractMethodError(self) def _box_values(self, values): """ apply box func to passed values """ return lib.map_infer(values, self._box_func) def __iter__(self): return (self._box_func(v) for v in self.asi8) @property def asi8(self) -> np.ndarray: """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ # do not cache or you'll create a memory leak return self._data.view("i8") # ---------------------------------------------------------------- # Rendering Methods def _format_native_types(self, na_rep="NaT", date_format=None): """ Helper method for astype when converting to strings. Returns ------- ndarray[str] """ raise AbstractMethodError(self) def _formatter(self, boxed=False): # TODO: Remove Datetime & DatetimeTZ formatters. return "'{}'".format # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods @property def nbytes(self): return self._data.nbytes def __array__(self, dtype=None) -> np.ndarray: # used for Timedelta/DatetimeArray, overwritten by PeriodArray if is_object_dtype(dtype): return np.array(list(self), dtype=object) return self._data @property def size(self) -> int: """The number of elements in this array.""" return np.prod(self.shape) def __len__(self) -> int: return len(self._data) def __getitem__(self, key): """ This getitem defers to the underlying array, which by-definition can only handle list-likes, slices, and integer scalars """ if com.is_bool_indexer(key): # first convert to boolean, because check_array_indexer doesn't # allow object dtype if is_object_dtype(key): key = np.asarray(key, dtype=bool) key = check_array_indexer(self, key) key = lib.maybe_booleans_to_slice(key.view(np.uint8)) elif isinstance(key, list) and len(key) == 1 and isinstance(key[0], slice): # see https://github.com/pandas-dev/pandas/issues/31299, need to allow # this for now (would otherwise raise in check_array_indexer) pass else: key = check_array_indexer(self, key) freq = self._get_getitem_freq(key) result = self._data[key] if lib.is_scalar(result): return self._box_func(result) return self._simple_new(result, dtype=self.dtype, freq=freq) def _get_getitem_freq(self, key): """ Find the `freq` attribute to assign to the result of a __getitem__ lookup. """ is_period = is_period_dtype(self.dtype) if is_period: freq = self.freq else: freq = None if isinstance(key, slice): if self.freq is not None and key.step is not None: freq = key.step * self.freq else: freq = self.freq elif key is Ellipsis: # GH#21282 indexing with Ellipsis is similar to a full slice, # should preserve `freq` attribute freq = self.freq return freq def __setitem__( self, key: Union[int, Sequence[int], Sequence[bool], slice], value: Union[NaTType, Any, Sequence[Any]], ) -> None: # I'm fudging the types a bit here. "Any" above really depends # on type(self). For PeriodArray, it's Period (or stuff coercible # to a period in from_sequence). For DatetimeArray, it's Timestamp... # I don't know if mypy can do that, possibly with Generics. # https://mypy.readthedocs.io/en/latest/generics.html if is_list_like(value): is_slice = isinstance(key, slice) if lib.is_scalar(key): raise ValueError("setting an array element with a sequence.") if not is_slice: key = cast(Sequence, key) if len(key) != len(value) and not com.is_bool_indexer(key): msg = ( f"shape mismatch: value array of length '{len(key)}' " "does not match indexing result of length " f"'{len(value)}'." ) raise ValueError(msg) elif not len(key): return value = self._validate_setitem_value(value) key = check_array_indexer(self, key) self._data[key] = value self._maybe_clear_freq() def _maybe_clear_freq(self): # inplace operations like __setitem__ may invalidate the freq of # DatetimeArray and TimedeltaArray pass def astype(self, dtype, copy=True): # Some notes on cases we don't have to handle here in the base class: # 1. PeriodArray.astype handles period -> period # 2. DatetimeArray.astype handles conversion between tz. # 3. DatetimeArray.astype handles datetime -> period dtype = pandas_dtype(dtype) if is_object_dtype(dtype): return self._box_values(self.asi8.ravel()).reshape(self.shape) elif is_string_dtype(dtype) and not is_categorical_dtype(dtype): return self._format_native_types() elif is_integer_dtype(dtype): # we deliberately ignore int32 vs. int64 here. # See https://github.com/pandas-dev/pandas/issues/24381 for more. values = self.asi8 if is_unsigned_integer_dtype(dtype): # Again, we ignore int32 vs. int64 values = values.view("uint64") if copy: values = values.copy() return values elif ( is_datetime_or_timedelta_dtype(dtype) and not is_dtype_equal(self.dtype, dtype) ) or is_float_dtype(dtype): # disallow conversion between datetime/timedelta, # and conversions for any datetimelike to float msg = f"Cannot cast {type(self).__name__} to dtype {dtype}" raise TypeError(msg) elif is_categorical_dtype(dtype): arr_cls = dtype.construct_array_type() return arr_cls(self, dtype=dtype) else: return np.asarray(self, dtype=dtype) def view(self, dtype=None): if dtype is None or dtype is self.dtype: return type(self)(self._data, dtype=self.dtype) return self._data.view(dtype=dtype) # ------------------------------------------------------------------ # ExtensionArray Interface def unique(self): result = unique1d(self.asi8) return type(self)(result, dtype=self.dtype) @classmethod def _concat_same_type(cls, to_concat, axis: int = 0): # do not pass tz to set because tzlocal cannot be hashed dtypes = {str(x.dtype) for x in to_concat} if len(dtypes) != 1: raise ValueError("to_concat must have the same dtype (tz)", dtypes) obj = to_concat[0] dtype = obj.dtype i8values = [x.asi8 for x in to_concat] values = np.concatenate(i8values, axis=axis) new_freq = None if is_period_dtype(dtype): new_freq = obj.freq elif axis == 0: # GH 3232: If the concat result is evenly spaced, we can retain the # original frequency to_concat = [x for x in to_concat if len(x)] if obj.freq is not None and all(x.freq == obj.freq for x in to_concat): pairs = zip(to_concat[:-1], to_concat[1:]) if all(pair[0][-1] + obj.freq == pair[1][0] for pair in pairs): new_freq = obj.freq return cls._simple_new(values, dtype=dtype, freq=new_freq) def copy(self): values = self.asi8.copy() return type(self)._simple_new(values, dtype=self.dtype, freq=self.freq) def _values_for_factorize(self): return self.asi8, iNaT @classmethod def _from_factorized(cls, values, original): return cls(values, dtype=original.dtype) def _values_for_argsort(self): return self._data @Appender(ExtensionArray.shift.__doc__) def shift(self, periods=1, fill_value=None, axis=0): if not self.size or periods == 0: return self.copy() fill_value = self._validate_shift_value(fill_value) new_values = shift(self._data, periods, axis, fill_value) return type(self)._simple_new(new_values, dtype=self.dtype) # ------------------------------------------------------------------ # Validation Methods # TODO: try to de-duplicate these, ensure identical behavior def _validate_fill_value(self, fill_value): """ If a fill_value is passed to `take` convert it to an i8 representation, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : np.int64 Raises ------ ValueError """ if is_valid_nat_for_dtype(fill_value, self.dtype): fill_value = iNaT elif isinstance(fill_value, self._recognized_scalars): self._check_compatible_with(fill_value) fill_value = self._scalar_type(fill_value) fill_value = self._unbox_scalar(fill_value) else: raise ValueError( f"'fill_value' should be a {self._scalar_type}. " f"Got '{str(fill_value)}'." ) return fill_value def _validate_shift_value(self, fill_value): # TODO(2.0): once this deprecation is enforced, used _validate_fill_value if is_valid_nat_for_dtype(fill_value, self.dtype): fill_value = NaT elif not isinstance(fill_value, self._recognized_scalars): # only warn if we're not going to raise if self._scalar_type is Period and lib.is_integer(fill_value): # kludge for #31971 since Period(integer) tries to cast to str new_fill = Period._from_ordinal(fill_value, freq=self.freq) else: new_fill = self._scalar_type(fill_value) # stacklevel here is chosen to be correct when called from # DataFrame.shift or Series.shift warnings.warn( f"Passing {type(fill_value)} to shift is deprecated and " "will raise in a future version, pass " f"{self._scalar_type.__name__} instead.", FutureWarning, stacklevel=10, ) fill_value = new_fill fill_value = self._unbox_scalar(fill_value) return fill_value def _validate_searchsorted_value(self, value): if isinstance(value, str): try: value = self._scalar_from_string(value) except ValueError as err: raise TypeError( "searchsorted requires compatible dtype or scalar" ) from err elif is_valid_nat_for_dtype(value, self.dtype): value = NaT elif isinstance(value, self._recognized_scalars): value = self._scalar_type(value) elif is_list_like(value) and not isinstance(value, type(self)): value = array(value) if not type(self)._is_recognized_dtype(value): raise TypeError( "searchsorted requires compatible dtype or scalar, " f"not {type(value).__name__}" ) if not (isinstance(value, (self._scalar_type, type(self))) or (value is NaT)): raise TypeError(f"Unexpected type for 'value': {type(value)}") if isinstance(value, type(self)): self._check_compatible_with(value) value = value.asi8 else: value = self._unbox_scalar(value) return value def _validate_setitem_value(self, value): if lib.is_scalar(value) and not isna(value): value = com.maybe_box_datetimelike(value) if is_list_like(value): value = type(self)._from_sequence(value, dtype=self.dtype) self._check_compatible_with(value, setitem=True) value = value.asi8 elif isinstance(value, self._scalar_type): self._check_compatible_with(value, setitem=True) value = self._unbox_scalar(value) elif is_valid_nat_for_dtype(value, self.dtype): value = iNaT else: msg = ( f"'value' should be a '{self._scalar_type.__name__}', 'NaT', " f"or array of those. Got '{type(value).__name__}' instead." ) raise TypeError(msg) return value def _validate_insert_value(self, value): if isinstance(value, self._recognized_scalars): value = self._scalar_type(value) elif is_valid_nat_for_dtype(value, self.dtype): # GH#18295 value = NaT elif lib.is_scalar(value) and isna(value): raise TypeError( f"cannot insert {type(self).__name__} with incompatible label" ) return value def _validate_where_value(self, other): if is_valid_nat_for_dtype(other, self.dtype): other = NaT elif isinstance(other, self._recognized_scalars): other = self._scalar_type(other) self._check_compatible_with(other, setitem=True) elif not is_list_like(other): raise TypeError(f"Where requires matching dtype, not {type(other)}") else: # Do type inference if necessary up front # e.g. we passed PeriodIndex.values and got an ndarray of Periods other = array(other) other = extract_array(other, extract_numpy=True) if is_categorical_dtype(other.dtype): # e.g. we have a Categorical holding self.dtype if is_dtype_equal(other.categories.dtype, self.dtype): other = other._internal_get_values() if not type(self)._is_recognized_dtype(other.dtype): raise TypeError(f"Where requires matching dtype, not {other.dtype}") self._check_compatible_with(other, setitem=True) if lib.is_scalar(other): other = self._unbox_scalar(other) else: other = other.view("i8") return other # ------------------------------------------------------------------ # Additional array methods # These are not part of the EA API, but we implement them because # pandas assumes they're there. def searchsorted(self, value, side="left", sorter=None): """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted array `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- indices : array of ints Array of insertion points with the same shape as `value`. """ value = self._validate_searchsorted_value(value) # TODO: Use datetime64 semantics for sorting, xref GH#29844 return self.asi8.searchsorted(value, side=side, sorter=sorter) def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) values = self._data.repeat(repeats) return type(self)(values.view("i8"), dtype=self.dtype) def value_counts(self, dropna=False): """ Return a Series containing counts of unique values. Parameters ---------- dropna : bool, default True Don't include counts of NaT values. Returns ------- Series """ from pandas import Series, Index if dropna: values = self[~self.isna()]._data else: values = self._data cls = type(self) result = value_counts(values, sort=False, dropna=dropna) index = Index( cls(result.index.view("i8"), dtype=self.dtype), name=result.index.name ) return Series(result._values, index=index, name=result.name) def map(self, mapper): # TODO(GH-23179): Add ExtensionArray.map # Need to figure out if we want ExtensionArray.map first. # If so, then we can refactor IndexOpsMixin._map_values to # a standalone function and call from here.. # Else, just rewrite _map_infer_values to do the right thing. from pandas import Index return Index(self).map(mapper).array # ------------------------------------------------------------------ # Null Handling def isna(self): return self._isnan @property # NB: override with cache_readonly in immutable subclasses def _isnan(self): """ return if each value is nan """ return self.asi8 == iNaT @property # NB: override with cache_readonly in immutable subclasses def _hasnans(self): """ return if I have any nans; enables various perf speedups """ return bool(self._isnan.any()) def _maybe_mask_results(self, result, fill_value=iNaT, convert=None): """ Parameters ---------- result : a ndarray fill_value : object, default iNaT convert : str, dtype or None Returns ------- result : ndarray with values replace by the fill_value mask the result if needed, convert to the provided dtype if its not None This is an internal routine. """ if self._hasnans: if convert: result = result.astype(convert) if fill_value is None: fill_value = np.nan result[self._isnan] = fill_value return result def fillna(self, value=None, method=None, limit=None): # TODO(GH-20300): remove this # Just overriding to ensure that we avoid an astype(object). # Either 20300 or a `_values_for_fillna` would avoid this duplication. if isinstance(value, ABCSeries): value = value.array value, method = validate_fillna_kwargs(value, method) mask = self.isna() if is_array_like(value): if len(value) != len(self): raise ValueError( f"Length of 'value' does not match. Got ({len(value)}) " f" expected {len(self)}" ) value = value[mask] if mask.any(): if method is not None: if method == "pad": func = missing.pad_1d else: func = missing.backfill_1d values = self._data if not is_period_dtype(self): # For PeriodArray self._data is i8, which gets copied # by `func`. Otherwise we need to make a copy manually # to avoid modifying `self` in-place. values = values.copy() new_values = func(values, limit=limit, mask=mask) if is_datetime64tz_dtype(self): # we need to pass int64 values to the constructor to avoid # re-localizing incorrectly new_values = new_values.view("i8") new_values = type(self)(new_values, dtype=self.dtype) else: # fill with value new_values = self.copy() new_values[mask] = value else: new_values = self.copy() return new_values # ------------------------------------------------------------------ # Frequency Properties/Methods @property def freq(self): """ Return the frequency object if it is set, otherwise None. """ return self._freq @freq.setter def freq(self, value): if value is not None: value = frequencies.to_offset(value) self._validate_frequency(self, value) self._freq = value @property def freqstr(self): """ Return the frequency object as a string if its set, otherwise None. """ if self.freq is None: return None return self.freq.freqstr @property # NB: override with cache_readonly in immutable subclasses def inferred_freq(self): """ Tryies to return a string representing a frequency guess, generated by infer_freq. Returns None if it can't autodetect the frequency. """ if self.ndim != 1: return None try: return frequencies.infer_freq(self) except ValueError: return None @property # NB: override with cache_readonly in immutable subclasses def _resolution(self): return frequencies.Resolution.get_reso_from_freq(self.freqstr) @property # NB: override with cache_readonly in immutable subclasses def resolution(self): """ Returns day, hour, minute, second, millisecond or microsecond """ return frequencies.Resolution.get_str(self._resolution) @classmethod def _validate_frequency(cls, index, freq, **kwargs): """ Validate that a frequency is compatible with the values of a given Datetime Array/Index or Timedelta Array/Index Parameters ---------- index : DatetimeIndex or TimedeltaIndex The index on which to determine if the given frequency is valid freq : DateOffset The frequency to validate """ if is_period_dtype(cls): # Frequency validation is not meaningful for Period Array/Index return None inferred = index.inferred_freq if index.size == 0 or inferred == freq.freqstr: return None try: on_freq = cls._generate_range( start=index[0], end=None, periods=len(index), freq=freq, **kwargs ) if not np.array_equal(index.asi8, on_freq.asi8): raise ValueError except ValueError as e: if "non-fixed" in str(e): # non-fixed frequencies are not meaningful for timedelta64; # we retain that error message raise e # GH#11587 the main way this is reached is if the `np.array_equal` # check above is False. This can also be reached if index[0] # is `NaT`, in which case the call to `cls._generate_range` will # raise a ValueError, which we re-raise with a more targeted # message. raise ValueError( f"Inferred frequency {inferred} from passed values " f"does not conform to passed frequency {freq.freqstr}" ) from e # monotonicity/uniqueness properties are called via frequencies.infer_freq, # see GH#23789 @property def _is_monotonic_increasing(self): return algos.is_monotonic(self.asi8, timelike=True)[0] @property def _is_monotonic_decreasing(self): return algos.is_monotonic(self.asi8, timelike=True)[1] @property def _is_unique(self): return len(unique1d(self.asi8)) == len(self) # ------------------------------------------------------------------ # Arithmetic Methods _create_comparison_method = classmethod(_datetimelike_array_cmp) # pow is invalid for all three subclasses; TimedeltaArray will override # the multiplication and division ops __pow__ = make_invalid_op("__pow__") __rpow__ = make_invalid_op("__rpow__") __mul__ = make_invalid_op("__mul__") __rmul__ = make_invalid_op("__rmul__") __truediv__ = make_invalid_op("__truediv__") __rtruediv__ = make_invalid_op("__rtruediv__") __floordiv__ = make_invalid_op("__floordiv__") __rfloordiv__ = make_invalid_op("__rfloordiv__") __mod__ = make_invalid_op("__mod__") __rmod__ = make_invalid_op("__rmod__") __divmod__ = make_invalid_op("__divmod__") __rdivmod__ = make_invalid_op("__rdivmod__") def _add_datetimelike_scalar(self, other): # Overridden by TimedeltaArray raise TypeError(f"cannot add {type(self).__name__} and {type(other).__name__}") _add_datetime_arraylike = _add_datetimelike_scalar def _sub_datetimelike_scalar(self, other): # Overridden by DatetimeArray assert other is not NaT raise TypeError(f"cannot subtract a datelike from a {type(self).__name__}") _sub_datetime_arraylike = _sub_datetimelike_scalar def _sub_period(self, other): # Overridden by PeriodArray raise TypeError(f"cannot subtract Period from a {type(self).__name__}") def _add_offset(self, offset): raise AbstractMethodError(self) def _add_timedeltalike_scalar(self, other): """ Add a delta of a timedeltalike Returns ------- Same type as self """ if isna(other): # i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds new_values = np.empty(self.shape, dtype="i8") new_values[:] = iNaT return type(self)(new_values, dtype=self.dtype) inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan).view( "i8" ) new_values = self._maybe_mask_results(new_values) new_freq = None if isinstance(self.freq, Tick) or is_period_dtype(self.dtype): # adding a scalar preserves freq new_freq = self.freq return type(self)(new_values, dtype=self.dtype, freq=new_freq) def _add_timedelta_arraylike(self, other): """ Add a delta of a TimedeltaIndex Returns ------- Same type as self """ # overridden by PeriodArray if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): # ndarray[timedelta64]; wrap in TimedeltaIndex for op from pandas.core.arrays import TimedeltaArray other = TimedeltaArray._from_sequence(other) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr( self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan ) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return type(self)(new_values, dtype=self.dtype) def _add_nat(self): """ Add pd.NaT to self """ if is_period_dtype(self): raise TypeError( f"Cannot add {type(self).__name__} and {type(NaT).__name__}" ) # GH#19124 pd.NaT is treated like a timedelta for both timedelta # and datetime dtypes result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return type(self)(result, dtype=self.dtype, freq=None) def _sub_nat(self): """ Subtract pd.NaT from self """ # GH#19124 Timedelta - datetime is not in general well-defined. # We make an exception for pd.NaT, which in this case quacks # like a timedelta. # For datetime64 dtypes by convention we treat NaT as a datetime, so # this subtraction returns a timedelta64 dtype. # For period dtype, timedelta64 is a close-enough return dtype. result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return result.view("timedelta64[ns]") def _sub_period_array(self, other): """ Subtract a Period Array/Index from self. This is only valid if self is itself a Period Array/Index, raises otherwise. Both objects must have the same frequency. Parameters ---------- other : PeriodIndex or PeriodArray Returns ------- result : np.ndarray[object] Array of DateOffset objects; nulls represented by NaT. """ if not is_period_dtype(self): raise TypeError( f"cannot subtract {other.dtype}-dtype from {type(self).__name__}" ) if self.freq != other.freq: msg = DIFFERENT_FREQ.format( cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr ) raise IncompatibleFrequency(msg) new_values = checked_add_with_arr( self.asi8, -other.asi8, arr_mask=self._isnan, b_mask=other._isnan ) new_values = np.array([self.freq.base * x for x in new_values]) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = NaT return new_values def _addsub_object_array(self, other: np.ndarray, op): """ Add or subtract array-like of DateOffset objects Parameters ---------- other : np.ndarray[object] op : {operator.add, operator.sub} Returns ------- result : same class as self """ assert op in [operator.add, operator.sub] if len(other) == 1: return op(self, other[0]) warnings.warn( "Adding/subtracting array of DateOffsets to " f"{type(self).__name__} not vectorized", PerformanceWarning, ) # Caller is responsible for broadcasting if necessary assert self.shape == other.shape, (self.shape, other.shape) res_values = op(self.astype("O"), np.array(other)) result = array(res_values.ravel()) result = extract_array(result, extract_numpy=True).reshape(self.shape) return result def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None and freq != self.freq: if isinstance(freq, str): freq = frequencies.to_offset(freq) offset = periods * freq result = self + offset return result if periods == 0: # immutable so OK return self.copy() if self.freq is None: raise NullFrequencyError("Cannot shift with no freq") start = self[0] + periods * self.freq end = self[-1] + periods * self.freq # Note: in the DatetimeTZ case, _generate_range will infer the # appropriate timezone from `start` and `end`, so tz does not need # to be passed explicitly. return self._generate_range(start=start, end=end, periods=None, freq=self.freq) @unpack_zerodim_and_defer("__add__") def __add__(self, other): # scalar others if other is NaT: result = self._add_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_timedeltalike_scalar(other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(other) elif isinstance(other, (datetime, np.datetime64)): result = self._add_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_timedelta_arraylike(other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.add) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] return self._add_datetime_arraylike(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._addsub_int_array(other, operator.add) else: # Includes Categorical, other ExtensionArrays # For PeriodDtype, if self is a TimedeltaArray and other is a # PeriodArray with a timedelta-like (i.e. Tick) freq, this # operation is valid. Defer to the PeriodArray implementation. # In remaining cases, this will end up raising TypeError. return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __radd__(self, other): # alias for __add__ return self.__add__(other) @unpack_zerodim_and_defer("__sub__") def __sub__(self, other): # scalar others if other is NaT: result = self._sub_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_timedeltalike_scalar(-other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(-other) elif isinstance(other, (datetime, np.datetime64)): result = self._sub_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(-other) elif isinstance(other, Period): result = self._sub_period(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_timedelta_arraylike(-other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.sub) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] result = self._sub_datetime_arraylike(other) elif is_period_dtype(other): # PeriodIndex result = self._sub_period_array(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._addsub_int_array(other, operator.sub) else: # Includes ExtensionArrays, float_dtype return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __rsub__(self, other): if is_datetime64_any_dtype(other) and is_timedelta64_dtype(self.dtype): # ndarray[datetime64] cannot be subtracted from self, so # we need to wrap in DatetimeArray/Index and flip the operation if lib.is_scalar(other): # i.e. np.datetime64 object return Timestamp(other) - self if not isinstance(other, DatetimeLikeArrayMixin): # Avoid down-casting DatetimeIndex from pandas.core.arrays import DatetimeArray other = DatetimeArray(other) return other - self elif ( is_datetime64_any_dtype(self.dtype) and hasattr(other, "dtype") and not is_datetime64_any_dtype(other.dtype) ): # GH#19959 datetime - datetime is well-defined as timedelta, # but any other type - datetime is not well-defined. raise TypeError( f"cannot subtract {type(self).__name__} from {type(other).__name__}" ) elif is_period_dtype(self.dtype) and is_timedelta64_dtype(other): # TODO: Can we simplify/generalize these cases at all? raise TypeError(f"cannot subtract {type(self).__name__} from {other.dtype}") elif is_timedelta64_dtype(self.dtype): if lib.is_integer(other) or is_integer_dtype(other): # need to subtract before negating, since that flips freq # -self flips self.freq, messing up results return -(self - other) return (-self) + other return -(self - other) def __iadd__(self, other): result = self + other self[:] = result[:] if not is_period_dtype(self): # restore freq, which is invalidated by setitem self._freq = result._freq return self def __isub__(self, other): result = self - other self[:] = result[:] if not is_period_dtype(self): # restore freq, which is invalidated by setitem self._freq = result._freq return self # -------------------------------------------------------------- # Reductions def _reduce(self, name, axis=0, skipna=True, **kwargs): op = getattr(self, name, None) if op: return op(skipna=skipna, **kwargs) else: return super()._reduce(name, skipna, **kwargs) def min(self, axis=None, skipna=True, *args, **kwargs): """ Return the minimum value of the Array or minimum along an axis. See Also -------- numpy.ndarray.min Index.min : Return the minimum value in an Index. Series.min : Return the minimum value in a Series. """ nv.validate_min(args, kwargs) nv.validate_minmax_axis(axis) result = nanops.nanmin(self.asi8, skipna=skipna, mask=self.isna()) if isna(result): # Period._from_ordinal does not handle np.nan gracefully return NaT return self._box_func(result) def max(self, axis=None, skipna=True, *args, **kwargs): """ Return the maximum value of the Array or maximum along an axis. See Also -------- numpy.ndarray.max Index.max : Return the maximum value in an Index. Series.max : Return the maximum value in a Series. """ # TODO: skipna is broken with max. # See https://github.com/pandas-dev/pandas/issues/24265 nv.validate_max(args, kwargs) nv.validate_minmax_axis(axis) mask = self.isna() if skipna: values = self[~mask].asi8 elif mask.any(): return NaT else: values = self.asi8 if not len(values): # short-circuit for empty max / min return NaT result = nanops.nanmax(values, skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result) def mean(self, skipna=True): """ Return the mean value of the Array. .. versionadded:: 0.25.0 Parameters ---------- skipna : bool, default True Whether to ignore any NaT elements. Returns ------- scalar Timestamp or Timedelta. See Also -------- numpy.ndarray.mean : Returns the average of array elements along a given axis. Series.mean : Return the mean value in a Series. Notes ----- mean is only defined for Datetime and Timedelta dtypes, not for Period. """ if is_period_dtype(self): # See discussion in GH#24757 raise TypeError( f"mean is not implemented for {type(self).__name__} since the " "meaning is ambiguous. An alternative is " "obj.to_timestamp(how='start').mean()" ) mask = self.isna() if skipna: values = self[~mask] elif mask.any(): return NaT else: values = self if not len(values): # short-circuit for empty max / min return NaT result = nanops.nanmean(values.view("i8"), skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result) DatetimeLikeArrayMixin._add_comparison_ops() # ------------------------------------------------------------------- # Shared Constructor Helpers def validate_periods(periods): """ If a `periods` argument is passed to the Datetime/Timedelta Array/Index constructor, cast it to an integer. Parameters ---------- periods : None, float, int Returns ------- periods : None or int Raises ------ TypeError if periods is None, float, or int """ if periods is not None: if lib.is_float(periods): periods = int(periods) elif not lib.is_integer(periods): raise TypeError(f"periods must be a number, got {periods}") return periods def validate_endpoints(closed): """ Check that the `closed` argument is among [None, "left", "right"] Parameters ---------- closed : {None, "left", "right"} Returns ------- left_closed : bool right_closed : bool Raises ------ ValueError : if argument is not among valid values """ left_closed = False right_closed = False if closed is None: left_closed = True right_closed = True elif closed == "left": left_closed = True elif closed == "right": right_closed = True else: raise ValueError("Closed has to be either 'left', 'right' or None") return left_closed, right_closed def validate_inferred_freq(freq, inferred_freq, freq_infer): """ If the user passes a freq and another freq is inferred from passed data, require that they match. Parameters ---------- freq : DateOffset or None inferred_freq : DateOffset or None freq_infer : bool Returns ------- freq : DateOffset or None freq_infer : bool Notes ----- We assume at this point that `maybe_infer_freq` has been called, so `freq` is either a DateOffset object or None. """ if inferred_freq is not None: if freq is not None and freq != inferred_freq: raise ValueError( f"Inferred frequency {inferred_freq} from passed " "values does not conform to passed frequency " f"{freq.freqstr}" ) elif freq is None: freq = inferred_freq freq_infer = False return freq, freq_infer def maybe_infer_freq(freq): """ Comparing a DateOffset to the string "infer" raises, so we need to be careful about comparisons. Make a dummy variable `freq_infer` to signify the case where the given freq is "infer" and set freq to None to avoid comparison trouble later on. Parameters ---------- freq : {DateOffset, None, str} Returns ------- freq : {DateOffset, None} freq_infer : bool Whether we should inherit the freq of passed data. """ freq_infer = False if not isinstance(freq, DateOffset): # if a passed freq is None, don't infer automatically if freq != "infer": freq = frequencies.to_offset(freq) else: freq_infer = True freq = None return freq, freq_infer from datetime import datetime, timedelta import operator from typing import Any, Sequence, Type, Union, cast import warnings import numpy as np from pandas._libs import NaT, NaTType, Timestamp, algos, iNaT, lib from pandas._libs.tslibs.c_timestamp import integer_op_not_supported from pandas._libs.tslibs.period import DIFFERENT_FREQ, IncompatibleFrequency, Period from pandas._libs.tslibs.timedeltas import Timedelta, delta_to_nanoseconds from pandas._libs.tslibs.timestamps import RoundTo, round_nsint64 from pandas._typing import DatetimeLikeScalar from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError, NullFrequencyError, PerformanceWarning from pandas.util._decorators import Appender, Substitution from pandas.util._validators import validate_fillna_kwargs from pandas.core.dtypes.common import ( is_categorical_dtype, is_datetime64_any_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_dtype_equal, is_float_dtype, is_integer_dtype, is_list_like, is_object_dtype, is_period_dtype, is_string_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.dtypes.inference import is_array_like from pandas.core.dtypes.missing import is_valid_nat_for_dtype, isna from pandas.core import missing, nanops, ops from pandas.core.algorithms import checked_add_with_arr, unique1d, value_counts from pandas.core.array_algos.transforms import shift from pandas.core.arrays._mixins import _T, NDArrayBackedExtensionArray from pandas.core.arrays.base import ExtensionArray, ExtensionOpsMixin import pandas.core.common as com from pandas.core.construction import array, extract_array from pandas.core.indexers import check_array_indexer from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.ops.invalid import invalid_comparison, make_invalid_op from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick def _datetimelike_array_cmp(cls, op): """ Wrap comparison operations to convert Timestamp/Timedelta/Period-like to boxed scalars/arrays. """ opname = f"__{op.__name__}__" nat_result = opname == "__ne__" class InvalidComparison(Exception): pass def _validate_comparison_value(self, other): if isinstance(other, str): try: # GH#18435 strings get a pass from tzawareness compat other = self._scalar_from_string(other) except ValueError: # failed to parse as Timestamp/Timedelta/Period raise InvalidComparison(other) if isinstance(other, self._recognized_scalars) or other is NaT: other = self._scalar_type(other) self._check_compatible_with(other) elif not is_list_like(other): raise InvalidComparison(other) elif len(other) != len(self): raise ValueError("Lengths must match") else: if isinstance(other, list): # TODO: could use pd.Index to do inference? other = np.array(other) if not isinstance(other, (np.ndarray, type(self))): raise InvalidComparison(other) elif is_object_dtype(other.dtype): pass elif not type(self)._is_recognized_dtype(other.dtype): raise InvalidComparison(other) else: # For PeriodDType this casting is unnecessary # TODO: use Index to do inference? other = type(self)._from_sequence(other) self._check_compatible_with(other) return other @unpack_zerodim_and_defer(opname) def wrapper(self, other): try: other = _validate_comparison_value(self, other) except InvalidComparison: return invalid_comparison(self, other, op) dtype = getattr(other, "dtype", None) if is_object_dtype(dtype): # We have to use comp_method_OBJECT_ARRAY instead of numpy # comparison otherwise it would fail to raise when # comparing tz-aware and tz-naive with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY(op, self.astype(object), other) return result if isinstance(other, self._scalar_type) or other is NaT: other_i8 = self._unbox_scalar(other) else: # Then type(other) == type(self) other_i8 = other.asi8 result = op(self.asi8, other_i8) o_mask = isna(other) if self._hasnans | np.any(o_mask): result[self._isnan | o_mask] = nat_result return result return set_function_name(wrapper, opname, cls) class AttributesMixin: _data: np.ndarray @classmethod def _simple_new(cls, values: np.ndarray, **kwargs): raise AbstractMethodError(cls) @property def _scalar_type(self) -> Type[DatetimeLikeScalar]: """ The scalar associated with this datelike * PeriodArray : Period * DatetimeArray : Timestamp * TimedeltaArray : Timedelta """ raise AbstractMethodError(self) def _scalar_from_string( self, value: str ) -> Union[Period, Timestamp, Timedelta, NaTType]: """ Construct a scalar type from a string. Parameters ---------- value : str Returns ------- Period, Timestamp, or Timedelta, or NaT Whatever the type of ``self._scalar_type`` is. Notes ----- This should call ``self._check_compatible_with`` before unboxing the result. """ raise AbstractMethodError(self) def _unbox_scalar(self, value: Union[Period, Timestamp, Timedelta, NaTType]) -> int: """ Unbox the integer value of a scalar `value`. Parameters ---------- value : Union[Period, Timestamp, Timedelta] Returns ------- int Examples -------- >>> self._unbox_scalar(Timedelta("10s")) # doctest: +SKIP 10000000000 """ raise AbstractMethodError(self) def _check_compatible_with( self, other: Union[Period, Timestamp, Timedelta, NaTType], setitem: bool = False ) -> None: """ Verify that `self` and `other` are compatible. * DatetimeArray verifies that the timezones (if any) match * PeriodArray verifies that the freq matches * Timedelta has no verification In each case, NaT is considered compatible. Parameters ---------- other setitem : bool, default False For __setitem__ we may have stricter compatibility resrictions than for comparisons. Raises ------ Exception """ raise AbstractMethodError(self) class DatelikeOps: """ Common ops for DatetimeIndex/PeriodIndex, but not TimedeltaIndex. """ @Substitution( URL="https://docs.python.org/3/library/datetime.html" "#strftime-and-strptime-behavior" ) def strftime(self, date_format): """ Convert to Index using specified date_format. Return an Index of formatted strings specified by date_format, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <%(URL)s>`__. Parameters ---------- date_format : str Date format string (e.g. "%%Y-%%m-%%d"). Returns ------- ndarray NumPy ndarray of formatted strings. See Also -------- to_datetime : Convert the given argument to datetime. DatetimeIndex.normalize : Return DatetimeIndex with times to midnight. DatetimeIndex.round : Round the DatetimeIndex to the specified freq. DatetimeIndex.floor : Floor the DatetimeIndex to the specified freq. Examples -------- >>> rng = pd.date_range(pd.Timestamp("2018-03-10 09:00"), ... periods=3, freq='s') >>> rng.strftime('%%B %%d, %%Y, %%r') Index(['March 10, 2018, 09:00:00 AM', 'March 10, 2018, 09:00:01 AM', 'March 10, 2018, 09:00:02 AM'], dtype='object') """ result = self._format_native_types(date_format=date_format, na_rep=np.nan) return result.astype(object) class TimelikeOps: """ Common ops for TimedeltaIndex/DatetimeIndex, but not PeriodIndex. """ _round_doc = """ Perform {op} operation on the data to the specified `freq`. Parameters ---------- freq : str or Offset The frequency level to {op} the index to. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See :ref:`frequency aliases <timeseries.offset_aliases>` for a list of possible `freq` values. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' Only relevant for DatetimeIndex: - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. .. versionadded:: 0.24.0 nonexistent : 'shift_forward', 'shift_backward', 'NaT', timedelta, \ default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- DatetimeIndex, TimedeltaIndex, or Series Index of the same type for a DatetimeIndex or TimedeltaIndex, or a Series with the same index for a Series. Raises ------ ValueError if the `freq` cannot be converted. Examples -------- **DatetimeIndex** >>> rng = pd.date_range('1/1/2018 11:59:00', periods=3, freq='min') >>> rng DatetimeIndex(['2018-01-01 11:59:00', '2018-01-01 12:00:00', '2018-01-01 12:01:00'], dtype='datetime64[ns]', freq='T') """ _round_example = """>>> rng.round('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.round("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _floor_example = """>>> rng.floor('H') DatetimeIndex(['2018-01-01 11:00:00', '2018-01-01 12:00:00', '2018-01-01 12:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.floor("H") 0 2018-01-01 11:00:00 1 2018-01-01 12:00:00 2 2018-01-01 12:00:00 dtype: datetime64[ns] """ _ceil_example = """>>> rng.ceil('H') DatetimeIndex(['2018-01-01 12:00:00', '2018-01-01 12:00:00', '2018-01-01 13:00:00'], dtype='datetime64[ns]', freq=None) **Series** >>> pd.Series(rng).dt.ceil("H") 0 2018-01-01 12:00:00 1 2018-01-01 12:00:00 2 2018-01-01 13:00:00 dtype: datetime64[ns] """ def _round(self, freq, mode, ambiguous, nonexistent): # round the local times if is_datetime64tz_dtype(self): # operate on naive timestamps, then convert back to aware naive = self.tz_localize(None) result = naive._round(freq, mode, ambiguous, nonexistent) aware = result.tz_localize( self.tz, ambiguous=ambiguous, nonexistent=nonexistent ) return aware values = self.view("i8") result = round_nsint64(values, mode, freq) result = self._maybe_mask_results(result, fill_value=NaT) return self._simple_new(result, dtype=self.dtype) @Appender((_round_doc + _round_example).format(op="round")) def round(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.NEAREST_HALF_EVEN, ambiguous, nonexistent) @Appender((_round_doc + _floor_example).format(op="floor")) def floor(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.MINUS_INFTY, ambiguous, nonexistent) @Appender((_round_doc + _ceil_example).format(op="ceil")) def ceil(self, freq, ambiguous="raise", nonexistent="raise"): return self._round(freq, RoundTo.PLUS_INFTY, ambiguous, nonexistent) def _with_freq(self, freq): """ Helper to set our freq in-place, returning self to allow method chaining. Parameters ---------- freq : DateOffset, None, or "infer" Returns ------- self """ # GH#29843 if freq is None: # Always valid pass elif len(self) == 0 and isinstance(freq, DateOffset): # Always valid. In the TimedeltaArray case, we assume this # is a Tick offset. pass else: # As an internal method, we can ensure this assertion always holds assert freq == "infer" freq = frequencies.to_offset(self.inferred_freq) self._freq = freq return self class DatetimeLikeArrayMixin( ExtensionOpsMixin, AttributesMixin, NDArrayBackedExtensionArray ): """ Shared Base/Mixin class for DatetimeArray, TimedeltaArray, PeriodArray Assumes that __new__/__init__ defines: _data _freq and that the inheriting class has methods: _generate_range """ # ------------------------------------------------------------------ # NDArrayBackedExtensionArray compat @property def _ndarray(self) -> np.ndarray: # NB: A bunch of Interval tests fail if we use ._data return self.asi8 def _from_backing_data(self: _T, arr: np.ndarray) -> _T: # Note: we do not retain `freq` return type(self)(arr, dtype=self.dtype) # type: ignore # ------------------------------------------------------------------ @property def ndim(self) -> int: return self._data.ndim @property def shape(self): return self._data.shape def reshape(self, *args, **kwargs): # Note: we drop any freq data = self._data.reshape(*args, **kwargs) return type(self)(data, dtype=self.dtype) def ravel(self, *args, **kwargs): # Note: we drop any freq data = self._data.ravel(*args, **kwargs) return type(self)(data, dtype=self.dtype) @property def _box_func(self): """ box function to get object from internal representation """ raise AbstractMethodError(self) def _box_values(self, values): """ apply box func to passed values """ return lib.map_infer(values, self._box_func) def __iter__(self): return (self._box_func(v) for v in self.asi8) @property def asi8(self) -> np.ndarray: """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ # do not cache or you'll create a memory leak return self._data.view("i8") # ---------------------------------------------------------------- # Rendering Methods def _format_native_types(self, na_rep="NaT", date_format=None): """ Helper method for astype when converting to strings. Returns ------- ndarray[str] """ raise AbstractMethodError(self) def _formatter(self, boxed=False): # TODO: Remove Datetime & DatetimeTZ formatters. return "'{}'".format # ---------------------------------------------------------------- # Array-Like / EA-Interface Methods @property def nbytes(self): return self._data.nbytes def __array__(self, dtype=None) -> np.ndarray: # used for Timedelta/DatetimeArray, overwritten by PeriodArray if is_object_dtype(dtype): return np.array(list(self), dtype=object) return self._data @property def size(self) -> int: """The number of elements in this array.""" return np.prod(self.shape) def __len__(self) -> int: return len(self._data) def __getitem__(self, key): """ This getitem defers to the underlying array, which by-definition can only handle list-likes, slices, and integer scalars """ if com.is_bool_indexer(key): # first convert to boolean, because check_array_indexer doesn't # allow object dtype if is_object_dtype(key): key = np.asarray(key, dtype=bool) key = check_array_indexer(self, key) key = lib.maybe_booleans_to_slice(key.view(np.uint8)) elif isinstance(key, list) and len(key) == 1 and isinstance(key[0], slice): # see https://github.com/pandas-dev/pandas/issues/31299, need to allow # this for now (would otherwise raise in check_array_indexer) pass else: key = check_array_indexer(self, key) freq = self._get_getitem_freq(key) result = self._data[key] if lib.is_scalar(result): return self._box_func(result) return self._simple_new(result, dtype=self.dtype, freq=freq) def _get_getitem_freq(self, key): """ Find the `freq` attribute to assign to the result of a __getitem__ lookup. """ is_period = is_period_dtype(self.dtype) if is_period: freq = self.freq else: freq = None if isinstance(key, slice): if self.freq is not None and key.step is not None: freq = key.step * self.freq else: freq = self.freq elif key is Ellipsis: # GH#21282 indexing with Ellipsis is similar to a full slice, # should preserve `freq` attribute freq = self.freq return freq def __setitem__( self, key: Union[int, Sequence[int], Sequence[bool], slice], value: Union[NaTType, Any, Sequence[Any]], ) -> None: # I'm fudging the types a bit here. "Any" above really depends # on type(self). For PeriodArray, it's Period (or stuff coercible # to a period in from_sequence). For DatetimeArray, it's Timestamp... # I don't know if mypy can do that, possibly with Generics. # https://mypy.readthedocs.io/en/latest/generics.html if is_list_like(value): is_slice = isinstance(key, slice) if lib.is_scalar(key): raise ValueError("setting an array element with a sequence.") if not is_slice: key = cast(Sequence, key) if len(key) != len(value) and not com.is_bool_indexer(key): msg = ( f"shape mismatch: value array of length '{len(key)}' " "does not match indexing result of length " f"'{len(value)}'." ) raise ValueError(msg) elif not len(key): return value = self._validate_setitem_value(value) key = check_array_indexer(self, key) self._data[key] = value self._maybe_clear_freq() def _maybe_clear_freq(self): # inplace operations like __setitem__ may invalidate the freq of # DatetimeArray and TimedeltaArray pass def astype(self, dtype, copy=True): # Some notes on cases we don't have to handle here in the base class: # 1. PeriodArray.astype handles period -> period # 2. DatetimeArray.astype handles conversion between tz. # 3. DatetimeArray.astype handles datetime -> period dtype = pandas_dtype(dtype) if is_object_dtype(dtype): return self._box_values(self.asi8.ravel()).reshape(self.shape) elif is_string_dtype(dtype) and not is_categorical_dtype(dtype): return self._format_native_types() elif is_integer_dtype(dtype): # we deliberately ignore int32 vs. int64 here. # See https://github.com/pandas-dev/pandas/issues/24381 for more. values = self.asi8 if is_unsigned_integer_dtype(dtype): # Again, we ignore int32 vs. int64 values = values.view("uint64") if copy: values = values.copy() return values elif ( is_datetime_or_timedelta_dtype(dtype) and not is_dtype_equal(self.dtype, dtype) ) or is_float_dtype(dtype): # disallow conversion between datetime/timedelta, # and conversions for any datetimelike to float msg = f"Cannot cast {type(self).__name__} to dtype {dtype}" raise TypeError(msg) elif is_categorical_dtype(dtype): arr_cls = dtype.construct_array_type() return arr_cls(self, dtype=dtype) else: return np.asarray(self, dtype=dtype) def view(self, dtype=None): if dtype is None or dtype is self.dtype: return type(self)(self._data, dtype=self.dtype) return self._data.view(dtype=dtype) # ------------------------------------------------------------------ # ExtensionArray Interface def unique(self): result = unique1d(self.asi8) return type(self)(result, dtype=self.dtype) @classmethod def _concat_same_type(cls, to_concat, axis: int = 0): # do not pass tz to set because tzlocal cannot be hashed dtypes = {str(x.dtype) for x in to_concat} if len(dtypes) != 1: raise ValueError("to_concat must have the same dtype (tz)", dtypes) obj = to_concat[0] dtype = obj.dtype i8values = [x.asi8 for x in to_concat] values = np.concatenate(i8values, axis=axis) new_freq = None if is_period_dtype(dtype): new_freq = obj.freq elif axis == 0: # GH 3232: If the concat result is evenly spaced, we can retain the # original frequency to_concat = [x for x in to_concat if len(x)] if obj.freq is not None and all(x.freq == obj.freq for x in to_concat): pairs = zip(to_concat[:-1], to_concat[1:]) if all(pair[0][-1] + obj.freq == pair[1][0] for pair in pairs): new_freq = obj.freq return cls._simple_new(values, dtype=dtype, freq=new_freq) def copy(self): values = self.asi8.copy() return type(self)._simple_new(values, dtype=self.dtype, freq=self.freq) def _values_for_factorize(self): return self.asi8, iNaT @classmethod def _from_factorized(cls, values, original): return cls(values, dtype=original.dtype) def _values_for_argsort(self): return self._data @Appender(ExtensionArray.shift.__doc__) def shift(self, periods=1, fill_value=None, axis=0): if not self.size or periods == 0: return self.copy() fill_value = self._validate_shift_value(fill_value) new_values = shift(self._data, periods, axis, fill_value) return type(self)._simple_new(new_values, dtype=self.dtype) # ------------------------------------------------------------------ # Validation Methods # TODO: try to de-duplicate these, ensure identical behavior def _validate_fill_value(self, fill_value): """ If a fill_value is passed to `take` convert it to an i8 representation, raising ValueError if this is not possible. Parameters ---------- fill_value : object Returns ------- fill_value : np.int64 Raises ------ ValueError """ if is_valid_nat_for_dtype(fill_value, self.dtype): fill_value = iNaT elif isinstance(fill_value, self._recognized_scalars): self._check_compatible_with(fill_value) fill_value = self._scalar_type(fill_value) fill_value = self._unbox_scalar(fill_value) else: raise ValueError( f"'fill_value' should be a {self._scalar_type}. " f"Got '{str(fill_value)}'." ) return fill_value def _validate_shift_value(self, fill_value): # TODO(2.0): once this deprecation is enforced, used _validate_fill_value if is_valid_nat_for_dtype(fill_value, self.dtype): fill_value = NaT elif not isinstance(fill_value, self._recognized_scalars): # only warn if we're not going to raise if self._scalar_type is Period and lib.is_integer(fill_value): # kludge for #31971 since Period(integer) tries to cast to str new_fill = Period._from_ordinal(fill_value, freq=self.freq) else: new_fill = self._scalar_type(fill_value) # stacklevel here is chosen to be correct when called from # DataFrame.shift or Series.shift warnings.warn( f"Passing {type(fill_value)} to shift is deprecated and " "will raise in a future version, pass " f"{self._scalar_type.__name__} instead.", FutureWarning, stacklevel=10, ) fill_value = new_fill fill_value = self._unbox_scalar(fill_value) return fill_value def _validate_searchsorted_value(self, value): if isinstance(value, str): try: value = self._scalar_from_string(value) except ValueError as err: raise TypeError( "searchsorted requires compatible dtype or scalar" ) from err elif is_valid_nat_for_dtype(value, self.dtype): value = NaT elif isinstance(value, self._recognized_scalars): value = self._scalar_type(value) elif is_list_like(value) and not isinstance(value, type(self)): value = array(value) if not type(self)._is_recognized_dtype(value): raise TypeError( "searchsorted requires compatible dtype or scalar, " f"not {type(value).__name__}" ) if not (isinstance(value, (self._scalar_type, type(self))) or (value is NaT)): raise TypeError(f"Unexpected type for 'value': {type(value)}") if isinstance(value, type(self)): self._check_compatible_with(value) value = value.asi8 else: value = self._unbox_scalar(value) return value def _validate_setitem_value(self, value): if lib.is_scalar(value) and not isna(value): value = com.maybe_box_datetimelike(value) if is_list_like(value): value = type(self)._from_sequence(value, dtype=self.dtype) self._check_compatible_with(value, setitem=True) value = value.asi8 elif isinstance(value, self._scalar_type): self._check_compatible_with(value, setitem=True) value = self._unbox_scalar(value) elif is_valid_nat_for_dtype(value, self.dtype): value = iNaT else: msg = ( f"'value' should be a '{self._scalar_type.__name__}', 'NaT', " f"or array of those. Got '{type(value).__name__}' instead." ) raise TypeError(msg) return value def _validate_insert_value(self, value): if isinstance(value, self._recognized_scalars): value = self._scalar_type(value) self._check_compatible_with(value, setitem=True) # TODO: if we dont have compat, should we raise or astype(object)? # PeriodIndex does astype(object) elif is_valid_nat_for_dtype(value, self.dtype): # GH#18295 value = NaT else: raise TypeError( f"cannot insert {type(self).__name__} with incompatible label" ) return value def _validate_where_value(self, other): if is_valid_nat_for_dtype(other, self.dtype): other = NaT elif isinstance(other, self._recognized_scalars): other = self._scalar_type(other) self._check_compatible_with(other, setitem=True) elif not is_list_like(other): raise TypeError(f"Where requires matching dtype, not {type(other)}") else: # Do type inference if necessary up front # e.g. we passed PeriodIndex.values and got an ndarray of Periods other = array(other) other = extract_array(other, extract_numpy=True) if is_categorical_dtype(other.dtype): # e.g. we have a Categorical holding self.dtype if is_dtype_equal(other.categories.dtype, self.dtype): other = other._internal_get_values() if not type(self)._is_recognized_dtype(other.dtype): raise TypeError(f"Where requires matching dtype, not {other.dtype}") self._check_compatible_with(other, setitem=True) if lib.is_scalar(other): other = self._unbox_scalar(other) else: other = other.view("i8") return other # ------------------------------------------------------------------ # Additional array methods # These are not part of the EA API, but we implement them because # pandas assumes they're there. def searchsorted(self, value, side="left", sorter=None): """ Find indices where elements should be inserted to maintain order. Find the indices into a sorted array `self` such that, if the corresponding elements in `value` were inserted before the indices, the order of `self` would be preserved. Parameters ---------- value : array_like Values to insert into `self`. side : {'left', 'right'}, optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `self`). sorter : 1-D array_like, optional Optional array of integer indices that sort `self` into ascending order. They are typically the result of ``np.argsort``. Returns ------- indices : array of ints Array of insertion points with the same shape as `value`. """ value = self._validate_searchsorted_value(value) # TODO: Use datetime64 semantics for sorting, xref GH#29844 return self.asi8.searchsorted(value, side=side, sorter=sorter) def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an array. See Also -------- numpy.ndarray.repeat """ nv.validate_repeat(args, kwargs) values = self._data.repeat(repeats) return type(self)(values.view("i8"), dtype=self.dtype) def value_counts(self, dropna=False): """ Return a Series containing counts of unique values. Parameters ---------- dropna : bool, default True Don't include counts of NaT values. Returns ------- Series """ from pandas import Series, Index if dropna: values = self[~self.isna()]._data else: values = self._data cls = type(self) result = value_counts(values, sort=False, dropna=dropna) index = Index( cls(result.index.view("i8"), dtype=self.dtype), name=result.index.name ) return Series(result._values, index=index, name=result.name) def map(self, mapper): # TODO(GH-23179): Add ExtensionArray.map # Need to figure out if we want ExtensionArray.map first. # If so, then we can refactor IndexOpsMixin._map_values to # a standalone function and call from here.. # Else, just rewrite _map_infer_values to do the right thing. from pandas import Index return Index(self).map(mapper).array # ------------------------------------------------------------------ # Null Handling def isna(self): return self._isnan @property # NB: override with cache_readonly in immutable subclasses def _isnan(self): """ return if each value is nan """ return self.asi8 == iNaT @property # NB: override with cache_readonly in immutable subclasses def _hasnans(self): """ return if I have any nans; enables various perf speedups """ return bool(self._isnan.any()) def _maybe_mask_results(self, result, fill_value=iNaT, convert=None): """ Parameters ---------- result : a ndarray fill_value : object, default iNaT convert : str, dtype or None Returns ------- result : ndarray with values replace by the fill_value mask the result if needed, convert to the provided dtype if its not None This is an internal routine. """ if self._hasnans: if convert: result = result.astype(convert) if fill_value is None: fill_value = np.nan result[self._isnan] = fill_value return result def fillna(self, value=None, method=None, limit=None): # TODO(GH-20300): remove this # Just overriding to ensure that we avoid an astype(object). # Either 20300 or a `_values_for_fillna` would avoid this duplication. if isinstance(value, ABCSeries): value = value.array value, method = validate_fillna_kwargs(value, method) mask = self.isna() if is_array_like(value): if len(value) != len(self): raise ValueError( f"Length of 'value' does not match. Got ({len(value)}) " f" expected {len(self)}" ) value = value[mask] if mask.any(): if method is not None: if method == "pad": func = missing.pad_1d else: func = missing.backfill_1d values = self._data if not is_period_dtype(self): # For PeriodArray self._data is i8, which gets copied # by `func`. Otherwise we need to make a copy manually # to avoid modifying `self` in-place. values = values.copy() new_values = func(values, limit=limit, mask=mask) if is_datetime64tz_dtype(self): # we need to pass int64 values to the constructor to avoid # re-localizing incorrectly new_values = new_values.view("i8") new_values = type(self)(new_values, dtype=self.dtype) else: # fill with value new_values = self.copy() new_values[mask] = value else: new_values = self.copy() return new_values # ------------------------------------------------------------------ # Frequency Properties/Methods @property def freq(self): """ Return the frequency object if it is set, otherwise None. """ return self._freq @freq.setter def freq(self, value): if value is not None: value = frequencies.to_offset(value) self._validate_frequency(self, value) self._freq = value @property def freqstr(self): """ Return the frequency object as a string if its set, otherwise None. """ if self.freq is None: return None return self.freq.freqstr @property # NB: override with cache_readonly in immutable subclasses def inferred_freq(self): """ Tryies to return a string representing a frequency guess, generated by infer_freq. Returns None if it can't autodetect the frequency. """ if self.ndim != 1: return None try: return frequencies.infer_freq(self) except ValueError: return None @property # NB: override with cache_readonly in immutable subclasses def _resolution(self): return frequencies.Resolution.get_reso_from_freq(self.freqstr) @property # NB: override with cache_readonly in immutable subclasses def resolution(self): """ Returns day, hour, minute, second, millisecond or microsecond """ return frequencies.Resolution.get_str(self._resolution) @classmethod def _validate_frequency(cls, index, freq, **kwargs): """ Validate that a frequency is compatible with the values of a given Datetime Array/Index or Timedelta Array/Index Parameters ---------- index : DatetimeIndex or TimedeltaIndex The index on which to determine if the given frequency is valid freq : DateOffset The frequency to validate """ if is_period_dtype(cls): # Frequency validation is not meaningful for Period Array/Index return None inferred = index.inferred_freq if index.size == 0 or inferred == freq.freqstr: return None try: on_freq = cls._generate_range( start=index[0], end=None, periods=len(index), freq=freq, **kwargs ) if not np.array_equal(index.asi8, on_freq.asi8): raise ValueError except ValueError as e: if "non-fixed" in str(e): # non-fixed frequencies are not meaningful for timedelta64; # we retain that error message raise e # GH#11587 the main way this is reached is if the `np.array_equal` # check above is False. This can also be reached if index[0] # is `NaT`, in which case the call to `cls._generate_range` will # raise a ValueError, which we re-raise with a more targeted # message. raise ValueError( f"Inferred frequency {inferred} from passed values " f"does not conform to passed frequency {freq.freqstr}" ) from e # monotonicity/uniqueness properties are called via frequencies.infer_freq, # see GH#23789 @property def _is_monotonic_increasing(self): return algos.is_monotonic(self.asi8, timelike=True)[0] @property def _is_monotonic_decreasing(self): return algos.is_monotonic(self.asi8, timelike=True)[1] @property def _is_unique(self): return len(unique1d(self.asi8)) == len(self) # ------------------------------------------------------------------ # Arithmetic Methods _create_comparison_method = classmethod(_datetimelike_array_cmp) # pow is invalid for all three subclasses; TimedeltaArray will override # the multiplication and division ops __pow__ = make_invalid_op("__pow__") __rpow__ = make_invalid_op("__rpow__") __mul__ = make_invalid_op("__mul__") __rmul__ = make_invalid_op("__rmul__") __truediv__ = make_invalid_op("__truediv__") __rtruediv__ = make_invalid_op("__rtruediv__") __floordiv__ = make_invalid_op("__floordiv__") __rfloordiv__ = make_invalid_op("__rfloordiv__") __mod__ = make_invalid_op("__mod__") __rmod__ = make_invalid_op("__rmod__") __divmod__ = make_invalid_op("__divmod__") __rdivmod__ = make_invalid_op("__rdivmod__") def _add_datetimelike_scalar(self, other): # Overridden by TimedeltaArray raise TypeError(f"cannot add {type(self).__name__} and {type(other).__name__}") _add_datetime_arraylike = _add_datetimelike_scalar def _sub_datetimelike_scalar(self, other): # Overridden by DatetimeArray assert other is not NaT raise TypeError(f"cannot subtract a datelike from a {type(self).__name__}") _sub_datetime_arraylike = _sub_datetimelike_scalar def _sub_period(self, other): # Overridden by PeriodArray raise TypeError(f"cannot subtract Period from a {type(self).__name__}") def _add_offset(self, offset): raise AbstractMethodError(self) def _add_timedeltalike_scalar(self, other): """ Add a delta of a timedeltalike Returns ------- Same type as self """ if isna(other): # i.e np.timedelta64("NaT"), not recognized by delta_to_nanoseconds new_values = np.empty(self.shape, dtype="i8") new_values[:] = iNaT return type(self)(new_values, dtype=self.dtype) inc = delta_to_nanoseconds(other) new_values = checked_add_with_arr(self.asi8, inc, arr_mask=self._isnan).view( "i8" ) new_values = self._maybe_mask_results(new_values) new_freq = None if isinstance(self.freq, Tick) or is_period_dtype(self.dtype): # adding a scalar preserves freq new_freq = self.freq return type(self)(new_values, dtype=self.dtype, freq=new_freq) def _add_timedelta_arraylike(self, other): """ Add a delta of a TimedeltaIndex Returns ------- Same type as self """ # overridden by PeriodArray if len(self) != len(other): raise ValueError("cannot add indices of unequal length") if isinstance(other, np.ndarray): # ndarray[timedelta64]; wrap in TimedeltaIndex for op from pandas.core.arrays import TimedeltaArray other = TimedeltaArray._from_sequence(other) self_i8 = self.asi8 other_i8 = other.asi8 new_values = checked_add_with_arr( self_i8, other_i8, arr_mask=self._isnan, b_mask=other._isnan ) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = iNaT return type(self)(new_values, dtype=self.dtype) def _add_nat(self): """ Add pd.NaT to self """ if is_period_dtype(self): raise TypeError( f"Cannot add {type(self).__name__} and {type(NaT).__name__}" ) # GH#19124 pd.NaT is treated like a timedelta for both timedelta # and datetime dtypes result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return type(self)(result, dtype=self.dtype, freq=None) def _sub_nat(self): """ Subtract pd.NaT from self """ # GH#19124 Timedelta - datetime is not in general well-defined. # We make an exception for pd.NaT, which in this case quacks # like a timedelta. # For datetime64 dtypes by convention we treat NaT as a datetime, so # this subtraction returns a timedelta64 dtype. # For period dtype, timedelta64 is a close-enough return dtype. result = np.zeros(self.shape, dtype=np.int64) result.fill(iNaT) return result.view("timedelta64[ns]") def _sub_period_array(self, other): """ Subtract a Period Array/Index from self. This is only valid if self is itself a Period Array/Index, raises otherwise. Both objects must have the same frequency. Parameters ---------- other : PeriodIndex or PeriodArray Returns ------- result : np.ndarray[object] Array of DateOffset objects; nulls represented by NaT. """ if not is_period_dtype(self): raise TypeError( f"cannot subtract {other.dtype}-dtype from {type(self).__name__}" ) if self.freq != other.freq: msg = DIFFERENT_FREQ.format( cls=type(self).__name__, own_freq=self.freqstr, other_freq=other.freqstr ) raise IncompatibleFrequency(msg) new_values = checked_add_with_arr( self.asi8, -other.asi8, arr_mask=self._isnan, b_mask=other._isnan ) new_values = np.array([self.freq.base * x for x in new_values]) if self._hasnans or other._hasnans: mask = (self._isnan) | (other._isnan) new_values[mask] = NaT return new_values def _addsub_object_array(self, other: np.ndarray, op): """ Add or subtract array-like of DateOffset objects Parameters ---------- other : np.ndarray[object] op : {operator.add, operator.sub} Returns ------- result : same class as self """ assert op in [operator.add, operator.sub] if len(other) == 1: return op(self, other[0]) warnings.warn( "Adding/subtracting array of DateOffsets to " f"{type(self).__name__} not vectorized", PerformanceWarning, ) # Caller is responsible for broadcasting if necessary assert self.shape == other.shape, (self.shape, other.shape) res_values = op(self.astype("O"), np.array(other)) result = array(res_values.ravel()) result = extract_array(result, extract_numpy=True).reshape(self.shape) return result def _time_shift(self, periods, freq=None): """ Shift each value by `periods`. Note this is different from ExtensionArray.shift, which shifts the *position* of each element, padding the end with missing values. Parameters ---------- periods : int Number of periods to shift by. freq : pandas.DateOffset, pandas.Timedelta, or str Frequency increment to shift by. """ if freq is not None and freq != self.freq: if isinstance(freq, str): freq = frequencies.to_offset(freq) offset = periods * freq result = self + offset return result if periods == 0: # immutable so OK return self.copy() if self.freq is None: raise NullFrequencyError("Cannot shift with no freq") start = self[0] + periods * self.freq end = self[-1] + periods * self.freq # Note: in the DatetimeTZ case, _generate_range will infer the # appropriate timezone from `start` and `end`, so tz does not need # to be passed explicitly. return self._generate_range(start=start, end=end, periods=None, freq=self.freq) @unpack_zerodim_and_defer("__add__") def __add__(self, other): # scalar others if other is NaT: result = self._add_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_timedeltalike_scalar(other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(other) elif isinstance(other, (datetime, np.datetime64)): result = self._add_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_timedelta_arraylike(other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.add) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] return self._add_datetime_arraylike(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._addsub_int_array(other, operator.add) else: # Includes Categorical, other ExtensionArrays # For PeriodDtype, if self is a TimedeltaArray and other is a # PeriodArray with a timedelta-like (i.e. Tick) freq, this # operation is valid. Defer to the PeriodArray implementation. # In remaining cases, this will end up raising TypeError. return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __radd__(self, other): # alias for __add__ return self.__add__(other) @unpack_zerodim_and_defer("__sub__") def __sub__(self, other): # scalar others if other is NaT: result = self._sub_nat() elif isinstance(other, (Tick, timedelta, np.timedelta64)): result = self._add_timedeltalike_scalar(-other) elif isinstance(other, DateOffset): # specifically _not_ a Tick result = self._add_offset(-other) elif isinstance(other, (datetime, np.datetime64)): result = self._sub_datetimelike_scalar(other) elif lib.is_integer(other): # This check must come after the check for np.timedelta64 # as is_integer returns True for these if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._time_shift(-other) elif isinstance(other, Period): result = self._sub_period(other) # array-like others elif is_timedelta64_dtype(other): # TimedeltaIndex, ndarray[timedelta64] result = self._add_timedelta_arraylike(-other) elif is_object_dtype(other): # e.g. Array/Index of DateOffset objects result = self._addsub_object_array(other, operator.sub) elif is_datetime64_dtype(other) or is_datetime64tz_dtype(other): # DatetimeIndex, ndarray[datetime64] result = self._sub_datetime_arraylike(other) elif is_period_dtype(other): # PeriodIndex result = self._sub_period_array(other) elif is_integer_dtype(other): if not is_period_dtype(self): raise integer_op_not_supported(self) result = self._addsub_int_array(other, operator.sub) else: # Includes ExtensionArrays, float_dtype return NotImplemented if is_timedelta64_dtype(result) and isinstance(result, np.ndarray): from pandas.core.arrays import TimedeltaArray return TimedeltaArray(result) return result def __rsub__(self, other): if is_datetime64_any_dtype(other) and is_timedelta64_dtype(self.dtype): # ndarray[datetime64] cannot be subtracted from self, so # we need to wrap in DatetimeArray/Index and flip the operation if lib.is_scalar(other): # i.e. np.datetime64 object return Timestamp(other) - self if not isinstance(other, DatetimeLikeArrayMixin): # Avoid down-casting DatetimeIndex from pandas.core.arrays import DatetimeArray other = DatetimeArray(other) return other - self elif ( is_datetime64_any_dtype(self.dtype) and hasattr(other, "dtype") and not is_datetime64_any_dtype(other.dtype) ): # GH#19959 datetime - datetime is well-defined as timedelta, # but any other type - datetime is not well-defined. raise TypeError( f"cannot subtract {type(self).__name__} from {type(other).__name__}" ) elif is_period_dtype(self.dtype) and is_timedelta64_dtype(other): # TODO: Can we simplify/generalize these cases at all? raise TypeError(f"cannot subtract {type(self).__name__} from {other.dtype}") elif is_timedelta64_dtype(self.dtype): if lib.is_integer(other) or is_integer_dtype(other): # need to subtract before negating, since that flips freq # -self flips self.freq, messing up results return -(self - other) return (-self) + other return -(self - other) def __iadd__(self, other): result = self + other self[:] = result[:] if not is_period_dtype(self): # restore freq, which is invalidated by setitem self._freq = result._freq return self def __isub__(self, other): result = self - other self[:] = result[:] if not is_period_dtype(self): # restore freq, which is invalidated by setitem self._freq = result._freq return self # -------------------------------------------------------------- # Reductions def _reduce(self, name, axis=0, skipna=True, **kwargs): op = getattr(self, name, None) if op: return op(skipna=skipna, **kwargs) else: return super()._reduce(name, skipna, **kwargs) def min(self, axis=None, skipna=True, *args, **kwargs): """ Return the minimum value of the Array or minimum along an axis. See Also -------- numpy.ndarray.min Index.min : Return the minimum value in an Index. Series.min : Return the minimum value in a Series. """ nv.validate_min(args, kwargs) nv.validate_minmax_axis(axis) result = nanops.nanmin(self.asi8, skipna=skipna, mask=self.isna()) if isna(result): # Period._from_ordinal does not handle np.nan gracefully return NaT return self._box_func(result) def max(self, axis=None, skipna=True, *args, **kwargs): """ Return the maximum value of the Array or maximum along an axis. See Also -------- numpy.ndarray.max Index.max : Return the maximum value in an Index. Series.max : Return the maximum value in a Series. """ # TODO: skipna is broken with max. # See https://github.com/pandas-dev/pandas/issues/24265 nv.validate_max(args, kwargs) nv.validate_minmax_axis(axis) mask = self.isna() if skipna: values = self[~mask].asi8 elif mask.any(): return NaT else: values = self.asi8 if not len(values): # short-circuit for empty max / min return NaT result = nanops.nanmax(values, skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result) def mean(self, skipna=True): """ Return the mean value of the Array. .. versionadded:: 0.25.0 Parameters ---------- skipna : bool, default True Whether to ignore any NaT elements. Returns ------- scalar Timestamp or Timedelta. See Also -------- numpy.ndarray.mean : Returns the average of array elements along a given axis. Series.mean : Return the mean value in a Series. Notes ----- mean is only defined for Datetime and Timedelta dtypes, not for Period. """ if is_period_dtype(self): # See discussion in GH#24757 raise TypeError( f"mean is not implemented for {type(self).__name__} since the " "meaning is ambiguous. An alternative is " "obj.to_timestamp(how='start').mean()" ) mask = self.isna() if skipna: values = self[~mask] elif mask.any(): return NaT else: values = self if not len(values): # short-circuit for empty max / min return NaT result = nanops.nanmean(values.view("i8"), skipna=skipna) # Don't have to worry about NA `result`, since no NA went in. return self._box_func(result) DatetimeLikeArrayMixin._add_comparison_ops() # ------------------------------------------------------------------- # Shared Constructor Helpers def validate_periods(periods): """ If a `periods` argument is passed to the Datetime/Timedelta Array/Index constructor, cast it to an integer. Parameters ---------- periods : None, float, int Returns ------- periods : None or int Raises ------ TypeError if periods is None, float, or int """ if periods is not None: if lib.is_float(periods): periods = int(periods) elif not lib.is_integer(periods): raise TypeError(f"periods must be a number, got {periods}") return periods def validate_endpoints(closed): """ Check that the `closed` argument is among [None, "left", "right"] Parameters ---------- closed : {None, "left", "right"} Returns ------- left_closed : bool right_closed : bool Raises ------ ValueError : if argument is not among valid values """ left_closed = False right_closed = False if closed is None: left_closed = True right_closed = True elif closed == "left": left_closed = True elif closed == "right": right_closed = True else: raise ValueError("Closed has to be either 'left', 'right' or None") return left_closed, right_closed def validate_inferred_freq(freq, inferred_freq, freq_infer): """ If the user passes a freq and another freq is inferred from passed data, require that they match. Parameters ---------- freq : DateOffset or None inferred_freq : DateOffset or None freq_infer : bool Returns ------- freq : DateOffset or None freq_infer : bool Notes ----- We assume at this point that `maybe_infer_freq` has been called, so `freq` is either a DateOffset object or None. """ if inferred_freq is not None: if freq is not None and freq != inferred_freq: raise ValueError( f"Inferred frequency {inferred_freq} from passed " "values does not conform to passed frequency " f"{freq.freqstr}" ) elif freq is None: freq = inferred_freq freq_infer = False return freq, freq_infer def maybe_infer_freq(freq): """ Comparing a DateOffset to the string "infer" raises, so we need to be careful about comparisons. Make a dummy variable `freq_infer` to signify the case where the given freq is "infer" and set freq to None to avoid comparison trouble later on. Parameters ---------- freq : {DateOffset, None, str} Returns ------- freq : {DateOffset, None} freq_infer : bool Whether we should inherit the freq of passed data. """ freq_infer = False if not isinstance(freq, DateOffset): # if a passed freq is None, don't infer automatically if freq != "infer": freq = frequencies.to_offset(freq) else: freq_infer = True freq = None return freq, freq_infer
BugsInPy/BugsInPy/temp/projects/pandas/bug-17-fixed/pandas/pandas/core/arrays/datetimelike.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-17-buggy/pandas/pandas/core/arrays/datetimelike.py
pandas-bug-53
from datetime import datetime import operator from textwrap import dedent from typing import TYPE_CHECKING, Any, FrozenSet, Hashable, Optional, Union import warnings import numpy as np from pandas._libs import algos as libalgos, index as libindex, lib import pandas._libs.join as libjoin from pandas._libs.lib import is_datetime_array from pandas._libs.tslibs import OutOfBoundsDatetime, Timestamp from pandas._libs.tslibs.period import IncompatibleFrequency from pandas._libs.tslibs.timezones import tz_compare from pandas._typing import Label from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes import concat as _concat from pandas.core.dtypes.cast import ( maybe_cast_to_integer_array, validate_numeric_casting, ) from pandas.core.dtypes.common import ( ensure_categorical, ensure_int64, ensure_object, ensure_platform_int, is_bool, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_interval_dtype, is_iterator, is_list_like, is_object_dtype, is_period_dtype, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ( ABCCategorical, ABCDataFrame, ABCDatetimeIndex, ABCIntervalIndex, ABCMultiIndex, ABCPandasArray, ABCPeriodIndex, ABCRangeIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas.core.dtypes.missing import array_equivalent, isna from pandas.core import ops from pandas.core.accessor import CachedAccessor import pandas.core.algorithms as algos from pandas.core.arrays import ExtensionArray from pandas.core.base import IndexOpsMixin, PandasObject import pandas.core.common as com from pandas.core.indexers import deprecate_ndim_indexing from pandas.core.indexes.frozen import FrozenList import pandas.core.missing as missing from pandas.core.ops import get_op_result_name from pandas.core.ops.invalid import make_invalid_op from pandas.core.strings import StringMethods from pandas.io.formats.printing import ( PrettyDict, default_pprint, format_object_attrs, format_object_summary, pprint_thing, ) if TYPE_CHECKING: from pandas import Series __all__ = ["Index"] _unsortable_types = frozenset(("mixed", "mixed-integer")) _index_doc_kwargs = dict( klass="Index", inplace="", target_klass="Index", raises_section="", unique="Index", duplicated="np.ndarray", ) _index_shared_docs = dict() str_t = str def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries, ExtensionArray)): if other.ndim > 0 and len(self) != len(other): raise ValueError("Lengths must match to compare") if is_object_dtype(self) and isinstance(other, ABCCategorical): left = type(other)(self._values, dtype=other.dtype) return op(left, other) elif is_object_dtype(self) and isinstance(other, ExtensionArray): # e.g. PeriodArray with np.errstate(all="ignore"): result = op(self.values, other) elif is_object_dtype(self) and not isinstance(self, ABCMultiIndex): # don't pass MultiIndex with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY(op, self.values, other) else: with np.errstate(all="ignore"): result = op(self.values, np.asarray(other)) if is_bool_dtype(result): return result return ops.invalid_comparison(self, other, op) name = f"__{op.__name__}__" return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame, ABCTimedeltaIndex)): return NotImplemented from pandas import Series result = op(Series(self), other) if isinstance(result, tuple): return (Index(result[0]), Index(result[1])) return Index(result) name = f"__{op.__name__}__" # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__. """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) if issubclass(cls, ABCMultiIndex): if "labels" in d and "codes" not in d: # GH#23752 "labels" kwarg has been replaced with "codes" d["codes"] = d.pop("labels") return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects. Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible. See Also -------- RangeIndex : Index implementing a monotonic integer range. CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index. IntervalIndex : An Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') """ # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations: FrozenSet[str] = ( PandasObject._deprecations | IndexOpsMixin._deprecations | frozenset(["contains", "set_value"]) ) # To hand over control to subclasses _join_precedence = 1 # Cython methods; see github.com/cython/cython/issues/2647 # for why we need to wrap these instead of making them class attributes # Moreover, cython will choose the appropriate-dtyped sub-function # given the dtypes of the passed arguments def _left_indexer_unique(self, left, right): return libjoin.left_join_indexer_unique(left, right) def _left_indexer(self, left, right): return libjoin.left_join_indexer(left, right) def _inner_indexer(self, left, right): return libjoin.inner_join_indexer(left, right) def _outer_indexer(self, left, right): return libjoin.outer_join_indexer(left, right) _typ = "index" _data: Union[ExtensionArray, np.ndarray] _id = None _name: Label = None # MultiIndex.levels previously allowed setting the index name. We # don't allow this anymore, and raise if it happens rather than # failing silently. _no_setting_name: bool = False _comparables = ["name"] _attributes = ["name"] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine # whether we support partial string indexing. Overridden # in DatetimeIndex and PeriodIndex _supports_partial_string_indexing = False _accessors = {"str"} str = CachedAccessor("str", StringMethods) # -------------------------------------------------------------------- # Constructors def __new__( cls, data=None, dtype=None, copy=False, name=None, tupleize_cols=True, **kwargs, ) -> "Index": from pandas.core.indexes.range import RangeIndex name = maybe_extract_name(name, data, cls) if isinstance(data, ABCPandasArray): # ensure users don't accidentally put a PandasArray in an index. data = data.to_numpy() # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, dtype=dtype, name=name) # categorical elif is_categorical_dtype(data) or is_categorical_dtype(dtype): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas.core.indexes.category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval elif is_interval_dtype(data) or is_interval_dtype(dtype): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas.core.indexes.interval import IntervalIndex return _maybe_asobject(dtype, IntervalIndex, data, copy, name, **kwargs) elif ( is_datetime64_any_dtype(data) or is_datetime64_any_dtype(dtype) or "tz" in kwargs ): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas import DatetimeIndex return _maybe_asobject(dtype, DatetimeIndex, data, copy, name, **kwargs) elif is_timedelta64_dtype(data) or is_timedelta64_dtype(dtype): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas import TimedeltaIndex return _maybe_asobject(dtype, TimedeltaIndex, data, copy, name, **kwargs) elif is_period_dtype(data) or is_period_dtype(dtype): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas import PeriodIndex return _maybe_asobject(dtype, PeriodIndex, data, copy, name, **kwargs) # extension dtype elif is_extension_array_dtype(data) or is_extension_array_dtype(dtype): if not (dtype is None or is_object_dtype(dtype)): # coerce to the provided dtype ea_cls = dtype.construct_array_type() data = ea_cls._from_sequence(data, dtype=dtype, copy=False) else: data = np.asarray(data, dtype=object) # coerce to the object dtype data = data.astype(object) return Index(data, dtype=object, copy=copy, name=name, **kwargs) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas.core.indexes.numeric import ( Float64Index, Int64Index, UInt64Index, ) if dtype is not None: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 data = _maybe_cast_with_dtype(data, dtype, copy) dtype = data.dtype # TODO: maybe not for object? # maybe coerce to a sub-class if is_signed_integer_dtype(data.dtype): return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype("object") else: subarr = com.asarray_tuplesafe(data, dtype=object) # asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: new_data, new_dtype = _maybe_cast_data_without_dtype(subarr) if new_dtype is not None: return cls( new_data, dtype=new_dtype, copy=False, name=name, **kwargs ) if kwargs: raise TypeError(f"Unexpected keyword arguments {repr(set(kwargs))}") if subarr.ndim > 1: # GH#13601, GH#20285, GH#27125 raise ValueError("Index data must be 1-dimensional") return cls._simple_new(subarr, name) elif hasattr(data, "__array__"): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): raise cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data): # GH21470: convert iterable to list before determining if empty if is_iterator(data): data = list(data) if data and all(isinstance(e, tuple) for e in data): # we must be all tuples, otherwise don't construct # 10697 from pandas.core.indexes.multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get("names") ) # other iterable of some kind subarr = com.asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @property def asi8(self): """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ return None @classmethod def _simple_new(cls, values, name=None, dtype=None): """ We require that we have a dtype compat for the values. If we are passed a non-dtype compat, then coerce using the constructor. Must be careful not to recurse. """ assert isinstance(values, np.ndarray), type(values) result = object.__new__(cls) result._data = values # _index_data is a (temporary?) fix to ensure that the direct data # manipulation we do in `_libs/reduction.pyx` continues to work. # We need access to the actual ndarray, since we're messing with # data buffers and strides. We don't re-use `_ndarray_values`, since # we actually set this value too. result._index_data = values result._name = name return result._reset_identity() @cache_readonly def _constructor(self): return type(self) # -------------------------------------------------------------------- # Index Internals Methods def _get_attributes_dict(self): """ Return an attributes dict for my class. """ return {k: getattr(self, k, None) for k in self._attributes} def _shallow_copy(self, values=None, **kwargs): """ Create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values, **kwargs): """ Create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ attributes = self._get_attributes_dict() attributes.update(kwargs) attributes["copy"] = False if not len(values) and "dtype" not in kwargs: # TODO: what if hasattr(values, "dtype")? attributes["dtype"] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def is_(self, other) -> bool: """ More flexible, faster check like ``is`` but that works through views. Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr(other, "_id", Ellipsis) and self._id is not None def _reset_identity(self): """ Initializes or resets ``_id`` attribute with new object. """ self._id = _Identity() return self def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _engine(self): # property, for now, slow to look up # to avoid a reference cycle, bind `_ndarray_values` to a local variable, so # `self` is not passed into the lambda. _ndarray_values = self._ndarray_values return self._engine_type(lambda: _ndarray_values, len(self)) # -------------------------------------------------------------------- # Array-Like Methods # ndarray compat def __len__(self) -> int: """ Return the length of the Index. """ return len(self._data) def __array__(self, dtype=None) -> np.ndarray: """ The array interface, return my values. """ return np.asarray(self._data, dtype=dtype) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. """ result = lib.item_from_zerodim(result) if is_bool_dtype(result) or lib.is_scalar(result) or np.ndim(result) > 1: return result attrs = self._get_attributes_dict() return Index(result, **attrs) @cache_readonly def dtype(self): """ Return the dtype object of the underlying data. """ return self._data.dtype def ravel(self, order="C"): """ Return an ndarray of the flattened values of the underlying data. Returns ------- numpy.ndarray Flattened array. See Also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, "_typ"): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def astype(self, dtype, copy=True): """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type Note that any signed integer `dtype` is treated as ``'int64'``, and any unsigned integer `dtype` is treated as ``'uint64'``, regardless of the size. copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. Returns ------- Index Index with values cast to specified dtype. """ if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from pandas.core.indexes.category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) elif is_extension_array_dtype(dtype): return Index(np.asarray(self), dtype=dtype, copy=copy) try: casted = self.values.astype(dtype, copy=copy) except (TypeError, ValueError): raise TypeError(f"Cannot cast {type(self).__name__} to dtype {dtype}") return Index(casted, name=self.name, dtype=dtype) _index_shared_docs[ "take" ] = """ Return a new %(klass)s of the values selected by the indices. For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken. axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError. Returns ------- numpy.ndarray Elements of given indices. See Also -------- numpy.ndarray.take """ @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable( self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value, ) else: if allow_fill and fill_value is not None: cls_name = type(self).__name__ raise ValueError( f"Unable to fill values because {cls_name} cannot contain NA" ) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable( self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan ): """ Internal method to handle NA filling of take. """ indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): raise ValueError( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) taken = algos.take( values, indices, allow_fill=allow_fill, fill_value=na_value ) else: taken = values.take(indices) return taken _index_shared_docs[ "repeat" ] = """ Repeat elements of a %(klass)s. Returns a new %(klass)s where each element of the current %(klass)s is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty %(klass)s. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- repeated_index : %(klass)s Newly created %(klass)s with repeated elements. See Also -------- Series.repeat : Equivalent function for Series. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> idx = pd.Index(['a', 'b', 'c']) >>> idx Index(['a', 'b', 'c'], dtype='object') >>> idx.repeat(2) Index(['a', 'a', 'b', 'b', 'c', 'c'], dtype='object') >>> idx.repeat([1, 2, 3]) Index(['a', 'b', 'b', 'c', 'c', 'c'], dtype='object') """ @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats, axis=None): repeats = ensure_platform_int(repeats) nv.validate_repeat(tuple(), dict(axis=axis)) return self._shallow_copy(self._values.repeat(repeats)) # -------------------------------------------------------------------- # Copying Methods def copy(self, name=None, deep=False, dtype=None, names=None): """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : Label deep : bool, default False dtype : numpy dtype or pandas type, optional names : list-like, optional Kept for compatibility with MultiIndex. Should not be used. Returns ------- Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): """ Parameters ---------- memo, default None Standard signature. Unused """ return self.copy(deep=True) # -------------------------------------------------------------------- # Rendering Methods def __repr__(self) -> str_t: """ Return a string representation for this object. """ klass_name = type(self).__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() attrs_str = [f"{k}={v}" for k, v in attrs] prepr = f",{space}".join(attrs_str) # no data provided, just attributes if data is None: data = "" res = f"{klass_name}({data}{prepr})" return res def _format_space(self) -> str_t: # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function. """ return default_pprint def _format_data(self, name=None) -> str_t: """ Return the formatted data as a unicode string. """ # do we want to justify (only do so for non-objects) is_justify = True if self.inferred_type == "string": is_justify = False elif self.inferred_type == "categorical": if is_object_dtype(self.categories): # type: ignore is_justify = False return format_object_summary( self, self._formatter_func, is_justify=is_justify, name=name ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values def format(self, name: bool = False, formatter=None, **kwargs): """ Render a string representation of the Index. """ header = [] if name: header.append( pprint_thing(self.name, escape_chars=("\t", "\r", "\n")) if self.name is not None else "" ) if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep="NaN", **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=("\t", "\r", "\n")) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify="left")) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values. Returns ------- numpy.ndarray Formatted values. """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep="", quoting=None, **kwargs): """ Actually format specific types of the index. """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def _summary(self, name=None) -> str_t: """ Return a summarized representation. Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if hasattr(head, "format") and not isinstance(head, str): head = head.format() tail = self[-1] if hasattr(tail, "format") and not isinstance(tail, str): tail = tail.format() index_summary = f", {head} to {tail}" else: index_summary = "" if name is None: name = type(self).__name__ return f"{name}: {len(self)} entries{index_summary}" # -------------------------------------------------------------------- # Conversion Methods def to_flat_index(self): """ Identity method. .. versionadded:: 0.24.0 This is implemented for compatibility with subclass implementations when chaining. Returns ------- pd.Index Caller. See Also -------- MultiIndex.to_flat_index : Subclass implementation. """ return self def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index. Parameters ---------- index : Index, optional Index of resulting Series. If None, defaults to original index. name : str, optional Dame of resulting Series. If None, defaults to name of original index. Returns ------- Series The dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self.values.copy(), index=index, name=name) def to_frame(self, index: bool = True, name=None): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original Index. name : object, default None The passed name should substitute for the index name (if it has one). Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow To override the name of the resulting column, specify `name`: >>> idx.to_frame(index=False, name='zoo') zoo 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame if name is None: name = self.name or 0 result = DataFrame({name: self._values.copy()}) if index: result.index = self return result # -------------------------------------------------------------------- # Name-Centric Methods @property def name(self): """ Return Index or MultiIndex name. """ return self._name @name.setter def name(self, value): if self._no_setting_name: # Used in MultiIndex.levels to avoid silently ignoring name updates. raise RuntimeError( "Cannot set name on a level of a MultiIndex. Use " "'MultiIndex.set_names' instead." ) maybe_extract_name(value, None, type(self)) self._name = value def _validate_names(self, name=None, names=None, deep: bool = False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def _get_names(self): return FrozenList((self.name,)) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError("Names must be a list-like") if len(values) != 1: raise ValueError(f"Length of new names must be 1, got {len(values)}") # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError(f"{type(self).__name__}.name must be a hashable type") self._name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace: bool = False): """ Set Index or MultiIndex name. Able to set new names partially and by level. Parameters ---------- names : label or list of label Name(s) to set. level : int, label or list of int or label, optional If the index is a MultiIndex, level(s) to set (None for all levels). Otherwise level must be None. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.rename : Able to set new names without level. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> idx.set_names('quarter') Int64Index([1, 2, 3, 4], dtype='int64', name='quarter') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]]) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], ) >>> idx.set_names(['kind', 'year'], inplace=True) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.set_names('species', level=0) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) """ if level is not None and not isinstance(self, ABCMultiIndex): raise ValueError("Level must be None for non-MultiIndex") if level is not None and not is_list_like(level) and is_list_like(names): raise TypeError("Names must be a string when a single level is provided.") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Alter Index or MultiIndex name. Able to set new names without level. Defaults to returning new index. Length of names must match number of levels in MultiIndex. Parameters ---------- name : label or list of labels Name(s) to set. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.set_names : Able to set new names partially and by level. Examples -------- >>> idx = pd.Index(['A', 'C', 'A', 'B'], name='score') >>> idx.rename('grade') Index(['A', 'C', 'A', 'B'], dtype='object', name='grade') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]], ... names=['kind', 'year']) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.rename(['species', 'year']) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) >>> idx.rename('species') Traceback (most recent call last): TypeError: Must pass list-like as `names`. """ return self.set_names([name], inplace=inplace) # -------------------------------------------------------------------- # Level-Centric Methods @property def nlevels(self) -> int: """ Number of levels. """ return 1 def _sort_levels_monotonic(self): """ Compat with MultiIndex. """ return self def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError( "Too many levels: Index has only 1 level, " f"{level} is not a valid level number" ) elif level > 0: raise IndexError( f"Too many levels: Index has only 1 level, not {level + 1}" ) elif level != self.name: raise KeyError( f"Requested level ({level}) does not match index name ({self.name})" ) def _get_level_number(self, level) -> int: self._validate_index_level(level) return 0 def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API. Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : bool, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- Index """ return self.sort_values(return_indexer=True, ascending=ascending) def _get_level_values(self, level): """ Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters ---------- level : int or str It is either the integer position or the name of the level. Returns ------- Index Calling object, as there is only one level in the Index. See Also -------- MultiIndex.get_level_values : Get values for a level of a MultiIndex. Notes ----- For Index, level should be 0, since there are no multiple levels. Examples -------- >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying `level` as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object') """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError( f"Cannot remove {len(level)} levels from an index with {self.nlevels} " "levels: at least one level must be left." ) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_codes.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_codes[0] == -1 result = new_levels[0].take(new_codes[0]) if mask.any(): result = result.putmask(mask, np.nan) result._name = new_names[0] return result else: from pandas.core.indexes.multi import MultiIndex return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False, ) def _get_grouper_for_level(self, mapper, level=None): """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on. labels : ndarray of int or None Array of locations in level_index. uniques : Index or None Index of unique values for level. """ assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None # -------------------------------------------------------------------- # Introspection Methods @property def is_monotonic(self) -> bool: """ Alias for is_monotonic_increasing. """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self) -> bool: """ Return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self) -> bool: """ Return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self) -> bool: """ Return if the index is strictly monotonic increasing (only increasing) values. Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self) -> bool: """ Return if the index is strictly monotonic decreasing (only decreasing) values. Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing @cache_readonly def is_unique(self) -> bool: """ Return if the index has unique values. """ return self._engine.is_unique @property def has_duplicates(self) -> bool: """ Check if the Index has duplicate values. Returns ------- bool Whether or not the Index has duplicate values. Examples -------- >>> idx = pd.Index([1, 5, 7, 7]) >>> idx.has_duplicates True >>> idx = pd.Index([1, 5, 7]) >>> idx.has_duplicates False >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.has_duplicates True >>> idx = pd.Index(["Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.has_duplicates False """ return not self.is_unique def is_boolean(self) -> bool: """ Check if the Index only consists of booleans. Returns ------- bool Whether or not the Index only consists of booleans. See Also -------- is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([True, False, True]) >>> idx.is_boolean() True >>> idx = pd.Index(["True", "False", "True"]) >>> idx.is_boolean() False >>> idx = pd.Index([True, False, "True"]) >>> idx.is_boolean() False """ return self.inferred_type in ["boolean"] def is_integer(self) -> bool: """ Check if the Index only consists of integers. Returns ------- bool Whether or not the Index only consists of integers. See Also -------- is_boolean : Check if the Index only consists of booleans. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx.is_integer() True >>> idx = pd.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_integer() False >>> idx = pd.Index(["Apple", "Mango", "Watermelon"]) >>> idx.is_integer() False """ return self.inferred_type in ["integer"] def is_floating(self) -> bool: """ Check if the Index is a floating type. The Index may consist of only floats, NaNs, or a mix of floats, integers, or NaNs. Returns ------- bool Whether or not the Index only consists of only consists of floats, NaNs, or a mix of floats, integers, or NaNs. See Also -------- is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_floating() True >>> idx = pd.Index([1.0, 2.0, np.nan, 4.0]) >>> idx.is_floating() True >>> idx = pd.Index([1, 2, 3, 4, np.nan]) >>> idx.is_floating() True >>> idx = pd.Index([1, 2, 3, 4]) >>> idx.is_floating() False """ return self.inferred_type in ["floating", "mixed-integer-float", "integer-na"] def is_numeric(self) -> bool: """ Check if the Index only consists of numeric data. Returns ------- bool Whether or not the Index only consists of numeric data. See Also -------- is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_numeric() True >>> idx = pd.Index([1, 2, 3, 4.0]) >>> idx.is_numeric() True >>> idx = pd.Index([1, 2, 3, 4]) >>> idx.is_numeric() True >>> idx = pd.Index([1, 2, 3, 4.0, np.nan]) >>> idx.is_numeric() True >>> idx = pd.Index([1, 2, 3, 4.0, np.nan, "Apple"]) >>> idx.is_numeric() False """ return self.inferred_type in ["integer", "floating"] def is_object(self) -> bool: """ Check if the Index is of the object dtype. Returns ------- bool Whether or not the Index is of the object dtype. See Also -------- is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index(["Apple", "Mango", "Watermelon"]) >>> idx.is_object() True >>> idx = pd.Index(["Apple", "Mango", 2.0]) >>> idx.is_object() True >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.object() False >>> idx = pd.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_object() False """ return is_object_dtype(self.dtype) def is_categorical(self) -> bool: """ Check if the Index holds categorical data. Returns ------- bool True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ["categorical"] def is_interval(self) -> bool: """ Check if the Index holds Interval objects. Returns ------- bool Whether or not the Index holds Interval objects. See Also -------- IntervalIndex : Index for Interval objects. is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([pd.Interval(left=0, right=5), ... pd.Interval(left=5, right=10)]) >>> idx.is_interval() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_interval() False """ return self.inferred_type in ["interval"] def is_mixed(self) -> bool: """ Check if the Index holds data with mixed data types. Returns ------- bool Whether or not the Index holds data with mixed data types. See Also -------- is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. Examples -------- >>> idx = pd.Index(['a', np.nan, 'b']) >>> idx.is_mixed() True >>> idx = pd.Index([1.0, 2.0, 3.0, 5.0]) >>> idx.is_mixed() False """ return self.inferred_type in ["mixed"] def holds_integer(self) -> bool: """ Whether the type is an integer type. """ return self.inferred_type in ["integer", "mixed-integer"] @cache_readonly def inferred_type(self) -> str_t: """ Return a string of the type inferred from the values. """ return lib.infer_dtype(self, skipna=False) @cache_readonly def is_all_dates(self) -> bool: """ Whether or not the index values only consist of dates. """ return is_datetime_array(ensure_object(self.values)) # -------------------------------------------------------------------- # Pickle Methods def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (type(self), d), None # -------------------------------------------------------------------- # Null Handling Methods _na_value = np.nan """The expected NA value to use with this index.""" @cache_readonly def _isnan(self): """ Return if each value is NaN. """ if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: return self._isnan.nonzero()[0] else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self) -> bool: """ Return if I have any nans; enables various perf speedups. """ if self._can_hold_na: return bool(self._isnan.any()) else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- numpy.ndarray A boolean array of whether my values are NA. See Also -------- Index.notna : Boolean inverse of isna. Index.dropna : Omit entries with missing values. isna : Top-level isna. Series.isna : Detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See Also -------- Index.notnull : Alias of notna. Index.isna: Inverse of notna. notna : Top-level notna. Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna def fillna(self, value=None, downcast=None): """ Fill NA/NaN values with the specified value. Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns ------- filled : Index """ self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() def dropna(self, how="any"): """ Return Index without NA/NaN values. Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ if how not in ("any", "all"): raise ValueError(f"invalid how option: {how}") if self.hasnans: return self._shallow_copy(self._values[~self._isnan]) return self._shallow_copy() # -------------------------------------------------------------------- # Uniqueness Methods def unique(self, level=None): """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex). .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """ if level is not None: self._validate_index_level(level) result = super().unique() return self._shallow_copy(result) def drop_duplicates(self, keep="first"): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : Equivalent method on Series. DataFrame.drop_duplicates : Equivalent method on DataFrame. Index.duplicated : Related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super().drop_duplicates(keep=keep) def duplicated(self, keep="first"): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- numpy.ndarray See Also -------- Series.duplicated : Equivalent method on pandas.Series. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Index.drop_duplicates : Remove duplicate values from Index. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) """ return super().duplicated(keep=keep) def _get_unique_index(self, dropna: bool = False): """ Returns an index containing unique values. Parameters ---------- dropna : bool, default False If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if not isinstance(self, ABCMultiIndex): # extract an array to pass to _shallow_copy values = values._data if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) # -------------------------------------------------------------------- # Arithmetic & Logical Methods def __add__(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented from pandas import Series return Index(Series(self) + other) def __radd__(self, other): from pandas import Series return Index(other + Series(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): return Index(np.array(self) - other) def __rsub__(self, other): # wrap Series to ensure we pin name correctly from pandas import Series return Index(other - Series(self)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def __nonzero__(self): raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." ) __bool__ = __nonzero__ # -------------------------------------------------------------------- # Set Operation Methods def _get_reconciled_name_object(self, other): """ If the result of a set operation will be self, return self, unless the name changes, in which case make a shallow copy of self. """ name = get_op_result_name(self, other) if self.name != name: return self._shallow_copy(name=name) return self def _union_incompatible_dtypes(self, other, sort): """ Casts this and other index to object dtype to allow the formation of a union between incompatible types. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ this = self.astype(object, copy=False) # cast to Index for when `other` is list-like other = Index(other).astype(object, copy=False) return Index.union(this, other, sort=sort).astype(object, copy=False) def _is_compatible_with_other(self, other) -> bool: """ Check whether this and the other dtype are compatible with each other. Meaning a union can be formed between them without needing to be cast to dtype object. Parameters ---------- other : Index or array-like Returns ------- bool """ return type(self) is type(other) and is_dtype_equal(self.dtype, other.dtype) def _validate_sort_keyword(self, sort): if sort not in [None, False]: raise ValueError( "The 'sort' keyword only takes the values of " f"None or False; {sort} was passed." ) def union(self, other, sort=None): """ Form the union of two Index objects. If the Index objects are incompatible, both Index objects will be cast to dtype('object') first. .. versionchanged:: 0.25.0 Parameters ---------- other : Index or array-like sort : bool or None, default None Whether to sort the resulting Index. * None : Sort the result, except when 1. `self` and `other` are equal. 2. `self` or `other` has length 0. 3. Some values in `self` or `other` cannot be compared. A RuntimeWarning is issued in this case. * False : do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- union : Index Examples -------- Union matching dtypes >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') Union mismatched dtypes >>> idx1 = pd.Index(['a', 'b', 'c', 'd']) >>> idx2 = pd.Index([1, 2, 3, 4]) >>> idx1.union(idx2) Index(['a', 'b', 'c', 'd', 1, 2, 3, 4], dtype='object') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if not self._is_compatible_with_other(other): return self._union_incompatible_dtypes(other, sort=sort) return self._union(other, sort=sort) def _union(self, other, sort): """ Specific union logic should go here. In subclasses, union behavior should be overwritten here rather than in `self.union`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ if not len(other) or self.equals(other): return self._get_reconciled_name_object(other) if not len(self): return other._get_reconciled_name_object(self) # TODO(EA): setops-refactor, clean all this up if is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if sort is None and self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) result = Index(result)._values # do type inference here else: # find indexes of things in "other" that are not in "self" if self.is_unique: indexer = self.get_indexer(other) indexer = (indexer == -1).nonzero()[0] else: indexer = algos.unique1d(self.get_indexer_non_unique(other)[1]) if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = concat_compat((lvals, other_diff)) else: result = lvals if sort is None: try: result = algos.safe_sort(result) except TypeError as err: warnings.warn( f"{err}, sort order is undefined for incomparable objects", RuntimeWarning, stacklevel=3, ) # for subclasses return self._wrap_setop_result(other, result) def _wrap_setop_result(self, other, result): name = get_op_result_name(self, other) return self._shallow_copy(result, name=name) # TODO: standardize return type of non-union setops type(self vs other) def intersection(self, other, sort=False): """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default from ``True`` to ``False``, to match the behaviour of 0.23.4 and earlier. Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.intersection(other, sort=sort) # TODO(EA): setops-refactor, clean all this up lvals = self._values rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] except TypeError: pass else: return self._wrap_setop_result(other, result) try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except (InvalidIndexError, IncompatibleFrequency): # InvalidIndexError raised by get_indexer if non-unique # IncompatibleFrequency raised by PeriodIndex.get_indexer indexer = algos.unique1d(Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) res_name = get_op_result_name(self, other) if sort is None: taken = algos.safe_sort(taken.values) return self._shallow_copy(taken, name=res_name) taken.name = res_name return taken def difference(self, other, sort=None): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([2, 1, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') >>> idx1.difference(idx2, sort=False) Int64Index([2, 1], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if self.equals(other): # pass an empty np.ndarray with the appropriate dtype return self._shallow_copy(self._data[:0]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name) def symmetric_difference(self, other, result_name=None, sort=None): """ Compute the symmetric difference of two Index objects. Parameters ---------- other : Index or array-like result_name : str sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d( np.arange(this.size), common_indexer, assume_unique=True ) left_diff = this._values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other._values.take(right_indexer) the_diff = concat_compat([left_diff, right_diff]) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs["name"] = result_name if "freq" in attribs: attribs["freq"] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError("Input must be Index or array-like") return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = get_op_result_name(self, other) return other, result_name # -------------------------------------------------------------------- # Indexing Methods def get_loc(self, key, method=None, tolerance=None): """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : int or float, optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples -------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ if method is None: if tolerance is not None: raise ValueError( "tolerance argument only valid if using pad, " "backfill or nearest lookups" ) casted_key = self._maybe_cast_indexer(key) try: return self._engine.get_loc(casted_key) except KeyError: raise KeyError(key) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, np.asarray(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError("get_loc requires scalar valued input") loc = indexer.item() if loc == -1: raise KeyError(key) return loc _index_shared_docs[ "get_indexer" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. %(raises_section)s Examples -------- >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in ``index`` and ``x`` is marked by -1, as it is not in ``index``. """ @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer( self, target, method=None, limit=None, tolerance=None ) -> np.ndarray: method = missing.clean_reindex_fill_method(method) target = ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer( ptarget, method=method, limit=limit, tolerance=tolerance ) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) if not self.is_unique: raise InvalidIndexError( "Reindexing only valid with uniquely valued Index objects" ) if method == "pad" or method == "backfill": indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == "nearest": indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError( "tolerance argument only valid if doing pad, " "backfill or nearest reindexing" ) if limit is not None: raise ValueError( "limit argument only valid if doing pad, " "backfill or nearest reindexing" ) indexer = self._engine.get_indexer(target._ndarray_values) return ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError("list-like tolerance size must match target index size") return tolerance def _get_fill_indexer( self, target: "Index", method: str_t, limit=None, tolerance=None ) -> np.ndarray: if self.is_monotonic_increasing and target.is_monotonic_increasing: engine_method = ( self._engine.get_pad_indexer if method == "pad" else self._engine.get_backfill_indexer ) indexer = engine_method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance( target._ndarray_values, indexer, tolerance ) return indexer def _get_fill_indexer_searchsorted( self, target: "Index", method: str_t, limit=None ) -> np.ndarray: """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets. """ if limit is not None: raise ValueError( f"limit argument for {repr(method)} method only well-defined " "if index and target are monotonic" ) side = "left" if method == "pad" else "right" # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = indexer == -1 indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == "left": # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target: "Index", limit, tolerance) -> np.ndarray: """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, "pad", limit=limit) right_indexer = self.get_indexer(target, "backfill", limit=limit) left_distances = np.abs(self[left_indexer] - target) right_distances = np.abs(self[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where( op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer, ) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance( self, target: "Index", indexer: np.ndarray, tolerance ) -> np.ndarray: distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer # -------------------------------------------------------------------- # Indexer Conversion Methods def _get_partial_string_timestamp_match_key(self, key): """ Translate any partial string timestamp matches in key, returning the new key. Only relevant for MultiIndex. """ # GH#10331 return key def _convert_scalar_indexer(self, key, kind: str_t): """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'loc', 'getitem'} """ assert kind in ["loc", "getitem"] if len(self) and not isinstance(self, ABCMultiIndex): # we can raise here if we are definitive that this # is positional indexing (eg. .loc on with a float) # or label indexing if we are using a type able # to be represented in the index if kind == "getitem" and is_float(key): if not self.is_floating(): self._invalid_indexer("label", key) elif kind == "loc" and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in [ "floating", "mixed-integer-float", "integer-na", "string", "mixed", ]: self._invalid_indexer("label", key) elif kind == "loc" and is_integer(key): if not self.holds_integer(): self._invalid_indexer("label", key) return key def _validate_positional_slice(self, key: slice): """ For positional indexing, a slice must have either int or None for each of start, stop, and step. """ self._validate_indexer("positional", key.start, "iloc") self._validate_indexer("positional", key.stop, "iloc") self._validate_indexer("positional", key.step, "iloc") def _convert_slice_indexer(self, key: slice, kind: str_t): """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'loc', 'getitem'} """ assert kind in ["loc", "getitem"], kind # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not ( self.is_integer() or self.is_categorical() ) if kind == "getitem": """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: self._validate_indexer("slice", key.start, "getitem") self._validate_indexer("slice", key.stop, "getitem") self._validate_indexer("slice", key.step, "getitem") return key # convert the slice to an indexer here # if we are mixed and have integers if is_positional and self.is_mixed(): try: # Validate start & stop if start is not None: self.get_loc(start) if stop is not None: self.get_loc(stop) is_positional = False except KeyError: pass if is_null_slicer: indexer = key elif is_positional: indexer = key else: indexer = self.slice_indexer(start, stop, step, kind=kind) return indexer def _convert_listlike_indexer(self, keyarr): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- indexer : numpy.ndarray or None Return an ndarray or None if cannot convert. keyarr : numpy.ndarray Return tuple-safe keys. """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr) return indexer, keyarr def _convert_arr_indexer(self, keyarr): """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ keyarr = com.asarray_tuplesafe(keyarr) return keyarr def _convert_index_indexer(self, keyarr): """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ return keyarr def _convert_list_indexer(self, keyarr): """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, loc, optional Returns ------- positional indexer or None """ return None def _invalid_indexer(self, form: str_t, key): """ Consistent invalid indexer message. """ raise TypeError( f"cannot do {form} indexing on {type(self).__name__} with these " f"indexers [{key}] of type {type(key).__name__}" ) # -------------------------------------------------------------------- # Reindex Methods def _can_reindex(self, indexer): """ Check if we are allowing reindexing with this particular indexer. Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary). Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "name") # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq if isinstance(self, ABCRangeIndex): values = range(0) else: values = self._data[:0] # appropriately-dtyped empty array target = self._simple_new(values, dtype=self.dtype, **attrs) else: target = ensure_index(target) if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") _, indexer, _ = self._join_level( target, level, how="right", return_indexers=True ) else: if self.equals(target): indexer = None else: # check is_overlapping for IntervalIndex compat if self.is_unique and not getattr(self, "is_overlapping", False): indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: if method is not None or limit is not None: raise ValueError( "cannot reindex a non-unique index " "with a method or limit" ) indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target. Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ target = ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = -1 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels) return new_index, indexer, new_indexer # -------------------------------------------------------------------- # Join Methods def join(self, other, how="left", level=None, return_indexers=False, sort=False): """ Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : bool, default False sort : bool, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword). Returns ------- join_index, (left_indexer, right_indexer) """ self_is_mi = isinstance(self, ABCMultiIndex) other_is_mi = isinstance(other, ABCMultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level( other, level, how=how, return_indexers=return_indexers ) other = ensure_index(other) if len(other) == 0 and how in ("left", "outer"): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ("right", "outer"): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {"right": "left", "left": "right"}.get(how, how) result = other.join( self, how=how, level=level, return_indexers=return_indexers ) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) else: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) except TypeError: pass if how == "left": join_index = self elif how == "right": join_index = other elif how == "inner": # TODO: sort=False here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.intersection(other, sort=False) elif how == "outer": # TODO: sort=True here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from pandas.core.indexes.multi import MultiIndex from pandas.core.reshape.merge import _restore_dropped_levels_multijoin # figure out join names self_names = set(com.not_none(*self.names)) other_names = set(com.not_none(*other.names)) overlap = self_names & other_names # need at least 1 in common if not overlap: raise ValueError("cannot join with no overlapping index names") self_is_mi = isinstance(self, ABCMultiIndex) other_is_mi = isinstance(other, ABCMultiIndex) if self_is_mi and other_is_mi: # Drop the non-matching levels from left and right respectively ldrop_names = list(self_names - overlap) rdrop_names = list(other_names - overlap) # if only the order differs if not len(ldrop_names + rdrop_names): self_jnlevels = self other_jnlevels = other.reorder_levels(self.names) else: self_jnlevels = self.droplevel(ldrop_names) other_jnlevels = other.droplevel(rdrop_names) # Join left and right # Join on same leveled multi-index frames is supported join_idx, lidx, ridx = self_jnlevels.join( other_jnlevels, how, return_indexers=True ) # Restore the dropped levels # Returned index level order is # common levels, ldrop_names, rdrop_names dropped_names = ldrop_names + rdrop_names levels, codes, names = _restore_dropped_levels_multijoin( self, other, dropped_names, join_idx, lidx, ridx ) # Re-create the multi-index multi_join_idx = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) multi_join_idx = multi_join_idx.remove_unused_levels() return multi_join_idx, lidx, ridx jl = list(overlap)[0] # Case where only one index is multi # make the indices into mi's that match flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {"right": "left", "left": "right"}.get(how, how) level = other.names.index(jl) result = self._join_level( other, level, how=how, return_indexers=return_indexers ) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result def _join_non_unique(self, other, how="left", return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers( [self._ndarray_values], [other._ndarray_values], how=how, sort=True ) left_idx = ensure_platform_int(left_idx) right_idx = ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level( self, other, level, how="left", return_indexers=False, keep_order=True ): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If ```keep_order == True```, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from pandas.core.indexes.multi import MultiIndex def _get_leaf_sorter(labels): """ Returns sorter for the inner most level while preserving the order of higher levels. """ if labels[0].size == 0: return np.empty(0, dtype="int64") if len(labels) == 1: lab = ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = ensure_int64(labels[-1]) return lib.get_level_sorter(lab, ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError("Join on level between two MultiIndex objects is ambiguous") left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {"right": "left", "left": "right"}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError( "Index._join_level on non-unique index is not implemented" ) new_level, left_lev_indexer, right_lev_indexer = old_level.join( right, how=how, return_indexers=True ) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.codes[: level + 1]) join_index = left[left_indexer] else: left_lev_indexer = ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_codes = algos.take_nd( rev_indexer, left.codes[level], allow_fill=False ) new_codes = list(left.codes) new_codes[level] = new_lev_codes new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_codes != -1 if not mask.all(): new_codes = [lab[mask] for lab in new_codes] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_codes.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_codes, ngroups ) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0] :] new_codes = [lab[left_indexer] for lab in new_codes] else: # sort the leaves mask = new_lev_codes != -1 mask_all = mask.all() if not mask_all: new_codes = [lab[mask] for lab in new_codes] left_indexer = _get_leaf_sorter(new_codes[: level + 1]) new_codes = [lab[left_indexer] for lab in new_codes] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex( levels=new_levels, codes=new_codes, names=left.names, verify_integrity=False, ) if right_lev_indexer is not None: right_indexer = algos.take_nd( right_lev_indexer, join_index.codes[level], allow_fill=False ) else: right_indexer = join_index.codes[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = ( None if left_indexer is None else ensure_platform_int(left_indexer) ) right_indexer = ( None if right_indexer is None else ensure_platform_int(right_indexer) ) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how="left", return_indexers=False): if self.equals(other): ret_index = other if how == "right" else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == "left": join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == "right": join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == "left": join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == "right": join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else ensure_platform_int(lidx) ridx = None if ridx is None else ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = get_op_result_name(self, other) return Index(joined, name=name) # -------------------------------------------------------------------- # Uncategorized Methods @property def values(self) -> np.ndarray: """ Return an array representing the data in the Index. .. warning:: We recommend using :attr:`Index.array` or :meth:`Index.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- array: numpy.ndarray or ExtensionArray See Also -------- Index.array : Reference to the underlying data. Index.to_numpy : A NumPy array representing the underlying data. """ return self._data.view(np.ndarray) @cache_readonly @Appender(IndexOpsMixin.array.__doc__) # type: ignore def array(self) -> ExtensionArray: array = self._data if isinstance(array, np.ndarray): from pandas.core.arrays.numpy_ import PandasArray array = PandasArray(array) return array @property def _values(self) -> Union[ExtensionArray, np.ndarray]: """ The best array representation. This is an ndarray or ExtensionArray. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index`` (except for datetime64[ns], which returns a DatetimeArray for _values on the Index, but ndarray[M8ns] on the Series). It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | --------------- | ------------- | --------------- | Index | ndarray | ndarray | ndarray | CategoricalIndex | Categorical | Categorical | ndarray[int] | DatetimeIndex | ndarray[M8ns] | DatetimeArray | ndarray[M8ns] | DatetimeIndex[tz] | ndarray[M8ns] | DatetimeArray | ndarray[M8ns] | PeriodIndex | ndarray[object] | PeriodArray | ndarray[int] | IntervalIndex | IntervalArray | IntervalArray | ndarray[object] | See Also -------- values _ndarray_values """ return self._data def _internal_get_values(self) -> np.ndarray: """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that _internal_get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index._internal_get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx._internal_get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx._internal_get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx._internal_get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep: bool = False) -> int: result = super().memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result def where(self, cond, other=None): """ Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : bool array-like with the same length as self other : scalar, or array-like Returns ------- Index """ if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) # construction helpers @classmethod def _scalar_data_error(cls, data): # We return the TypeError so that we can raise it from the constructor # in order to keep mypy happy return TypeError( f"{cls.__name__}(...) must be called with a collection of some " f"kind, {repr(data)} was passed" ) @classmethod def _string_data_error(cls, data): raise TypeError( "String dtype not supported, you may need " "to explicitly cast to a numeric type" ) def _coerce_scalar_to_index(self, item): """ We need to coerce a scalar to a compat for our index type. Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) def _to_safe_for_reshape(self): """ Convert to object if we are a categorical. """ return self def _convert_for_op(self, value): """ Convert value to be insertable to ndarray. """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op. """ if not is_scalar(value): raise TypeError(f"'value' must be a scalar, passed: {type(value).__name__}") @property def _has_complex_internals(self) -> bool: """ Indicates if an index is not directly backed by a numpy array """ # used to avoid libreduction code paths, which raise or require conversion return False def _is_memory_usage_qualified(self) -> bool: """ Return a boolean if we need a qualified .info display. """ return self.is_object() def is_type_compatible(self, kind) -> bool: """ Whether the index type is compatible with the provided type. """ return kind == self.inferred_type def __contains__(self, key: Any) -> bool: """ Return a boolean indicating whether the provided key is in the index. Parameters ---------- key : label The key to check if it is present in the index. Returns ------- bool Whether the key search is in the index. Raises ------ TypeError If the key is not hashable. See Also -------- Index.isin : Returns an ndarray of boolean dtype indicating whether the list-like key is in the index. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> 2 in idx True >>> 6 in idx False """ hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False def __hash__(self): raise TypeError(f"unhashable type: {repr(type(self).__name__)}") def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): key = com.cast_scalar_indexer(key) return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) key = com.values_from_object(key) result = getitem(key) if not is_scalar(result): if np.ndim(result) > 1: deprecate_ndim_indexing(result) return result return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name) -> bool: """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together. Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError("all inputs must be Index") names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return Index._concat_same_dtype(self, to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class. """ # must be overridden in specific classes klasses = ( ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, ExtensionArray, ABCIntervalIndex, ) to_concat = [ x.astype(object) if isinstance(x, klasses) else x for x in to_concat ] self = to_concat[0] attribs = self._get_attributes_dict() attribs["name"] = name to_concat = [x._values if isinstance(x, Index) else x for x in to_concat] return self._shallow_copy_with_infer(np.concatenate(to_concat), **attribs) def putmask(self, mask, value): """ Return a new Index of the values set with the mask. Returns ------- Index See Also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def equals(self, other) -> bool: """ Determine if two Index objects contain the same elements. Returns ------- bool True if "other" is an Index and it has the same elements as calling index; False otherwise. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) if isinstance(other, ABCMultiIndex): # d-level MultiIndex can equal d-tuple Index if not is_object_dtype(self.dtype): if self.nlevels != other.nlevels: return False return array_equivalent( com.values_from_object(self), com.values_from_object(other) ) def identical(self, other) -> bool: """ Similar to equals, but check that other comparable attributes are also equal. Returns ------- bool If two Index objects have equal elements and same type True, otherwise False. """ return ( self.equals(other) and all( ( getattr(self, c, None) == getattr(other, c, None) for c in self._comparables ) ) and type(self) == type(other) ) def asof(self, label): """ Return the label from the index, or, if not present, the previous one. Assuming that the index is sorted, return the passed index label if it is in the index, or return the previous index label if the passed one is not in the index. Parameters ---------- label : object The label up to which the method returns the latest index label. Returns ------- object The passed label if it is in the index. The previous label if the passed label is not in the sorted index or `NaN` if there is no such label. See Also -------- Series.asof : Return the latest value in a Series up to the passed index. merge_asof : Perform an asof merge (similar to left join but it matches on nearest key rather than equal key). Index.get_loc : An `asof` is a thin wrapper around `get_loc` with method='pad'. Examples -------- `Index.asof` returns the latest index label up to the passed label. >>> idx = pd.Index(['2013-12-31', '2014-01-02', '2014-01-03']) >>> idx.asof('2014-01-01') '2013-12-31' If the label is in the index, the method returns the passed label. >>> idx.asof('2014-01-02') '2014-01-02' If all of the labels in the index are later than the passed label, NaN is returned. >>> idx.asof('1999-01-02') nan If the index is not sorted, an error is raised. >>> idx_not_sorted = pd.Index(['2013-12-31', '2015-01-02', ... '2014-01-03']) >>> idx_not_sorted.asof('2013-12-31') Traceback (most recent call last): ValueError: index must be monotonic increasing or decreasing """ try: loc = self.get_loc(label, method="pad") except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ Find the locations (indices) of the labels from the index for every entry in the `where` argument. As in the `asof` function, if the label (a particular entry in `where`) is not in the index, the latest index label up to the passed label is chosen and its index returned. If all of the labels in the index are later than a label in `where`, -1 is returned. `mask` is used to ignore NA values in the index during calculation. Parameters ---------- where : Index An Index consisting of an array of timestamps. mask : array-like Array of booleans denoting where values in the original data are not NA. Returns ------- numpy.ndarray An array of locations (indices) of the labels from the Index which correspond to the return values of the `asof` function for every element in `where`. """ locs = self.values[mask].searchsorted(where.values, side="right") locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where.values < self.values[first])] = -1 return result def sort_values(self, return_indexer: bool = False, ascending: bool = True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- Series.sort_values : Sort values of a Series. DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): """ Use sort_values instead. """ raise TypeError("cannot sort an Index object in-place, use sort_values instead") def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or str, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index Shifted index. See Also -------- Series.shift : Shift values of Series. Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') """ raise NotImplementedError(f"Not supported for type {type(self).__name__}") def argsort(self, *args, **kwargs) -> np.ndarray: """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See Also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) def get_value(self, series: "Series", key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing. Returns ------- scalar or Series """ if not is_scalar(key): # if key is not a scalar, directly raise an error (the code below # would convert to numpy arrays and raise later any way) - GH29926 raise InvalidIndexError(key) try: # GH 20882, 21257 # First try to convert the key to a location # If that fails, raise a KeyError if an integer # index, otherwise, see if key is an integer, and # try that loc = self.get_loc(key) except KeyError: if not self._should_fallback_to_positional(): raise elif is_integer(key): # If the Index cannot hold integer, then this is unambiguously # a locational lookup. loc = key else: raise return self._get_values_for_loc(series, loc, key) def _should_fallback_to_positional(self) -> bool: """ If an integer key is not found, should we fall back to positional indexing? """ if len(self) > 0 and (self.holds_integer() or self.is_boolean()): return False return True def _get_values_for_loc(self, series: "Series", loc, key): """ Do a positional lookup on the given Series, returning either a scalar or a Series. Assumes that `series.index is self` key is included for MultiIndex compat. """ if is_integer(loc): return series._values[loc] return series.iloc[loc] def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. .. deprecated:: 1.0 Notes ----- Only use this if you know what you're doing. """ warnings.warn( ( "The 'set_value' method is deprecated, and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) loc = self._engine.get_loc(key) validate_numeric_casting(arr.dtype, value) arr[loc] = value _index_shared_docs[ "get_indexer_non_unique" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array. """ @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if is_categorical(target): tgt_values = np.asarray(target) elif self.is_all_dates and target.is_all_dates: # GH 30399 tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ Guaranteed return of an indexer even when non-unique. This dispatches to get_indexer or get_indexer_non_unique as appropriate. Returns ------- numpy.ndarray List of indices. """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works if self.inferred_type == "date" and isinstance(other, ABCDatetimeIndex): return type(other)(self), other elif self.inferred_type == "boolean": if not is_object_dtype(self.dtype): return self.astype("object"), other.astype("object") return self, other def groupby(self, values) -> PrettyDict[Hashable, np.ndarray]: """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples if isinstance(values, ABCMultiIndex): values = values.values values = ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in result.items()} return PrettyDict(result) def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from pandas.core.indexes.multi import MultiIndex new_values = super()._map_values(mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get("name"): names = [attributes.get("name")] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes["copy"] = False if not new_values.size: # empty attributes["dtype"] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See Also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], codes=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _get_string_slice(self, key: str_t, use_lhs: bool = True, use_rhs: bool = True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, default None kind : str, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples -------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index, then try to cast to an int if equivalent. """ if not self.is_floating(): return com.cast_scalar_indexer(key) return key def _validate_indexer(self, form: str_t, key, kind: str_t): """ If we are positional indexer, validate that we have appropriate typed bounds must be an integer. """ assert kind in ["getitem", "iloc"] if key is None: pass elif is_integer(key): pass else: self._invalid_indexer(form, key) def _maybe_cast_slice_bound(self, label, side: str_t, kind): """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} or None Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ["loc", "getitem", None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): self._invalid_indexer("slice", label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer("slice", label) return label def _searchsorted_monotonic(self, label, side="left"): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted( label, side="right" if side == "left" else "left" ) return len(self) - pos raise ValueError("index must be monotonic increasing or decreasing") def get_slice_bound(self, label, side: str_t, kind) -> int: """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} or None Returns ------- int Index of label. """ assert kind in ["loc", "getitem", None] if side not in ("left", "right"): raise ValueError( "Invalid value for side kwarg, must be either " f"'left' or 'right': {side}" ) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self.get_loc(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view("u1")) else: slc = lib.maybe_indices_to_slice(slc.astype("i8"), len(self)) if isinstance(slc, np.ndarray): raise KeyError( f"Cannot get {side} slice bound for non-unique " f"label: {repr(original_label)}" ) if isinstance(slc, slice): if side == "left": return slc.start else: return slc.stop else: if side == "right": return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, defaults None If None, defaults to 1. kind : {'loc', 'getitem'} or None Returns ------- start, end : int See Also -------- Index.get_loc : Get location for a single label. Notes ----- This method only works if the index is monotonic or unique. Examples -------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) """ inc = step is None or step >= 0 if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start # GH 16785: If start and end happen to be date strings with UTC offsets # attempt to parse and check that the offsets are the same if isinstance(start, (str, datetime)) and isinstance(end, (str, datetime)): try: ts_start = Timestamp(start) ts_end = Timestamp(end) except (ValueError, TypeError): pass else: if not tz_compare(ts_start.tzinfo, ts_end.tzinfo): raise ValueError("Both dates must have the same UTC offset") start_slice = None if start is not None: start_slice = self.get_slice_bound(start, "left", kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, "right", kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted. Parameters ---------- loc : int or list of int Location of item(-s) which will be deleted. Use a list of locations to delete more than one value at the same time. Returns ------- Index New Index with passed location(-s) deleted. See Also -------- numpy.delete : Delete any rows and column from NumPy array (ndarray). Examples -------- >>> idx = pd.Index(['a', 'b', 'c']) >>> idx.delete(1) Index(['a', 'c'], dtype='object') >>> idx = pd.Index(['a', 'b', 'c']) >>> idx.delete([0, 2]) Index(['b'], dtype='object') """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc: int, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values. Parameters ---------- loc : int item : object Returns ------- new_index : Index """ _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors: str_t = "raise"): """ Make new Index with passed list of labels deleted. Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If not all of the labels are found in the selected axis """ arr_dtype = "object" if self.dtype == "object" else None labels = com.index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != "ignore": raise KeyError(f"{labels[mask]} not found in axis") indexer = indexer[~mask] return self.delete(indexer) # -------------------------------------------------------------------- # Generated Arithmetic, Comparison, and Unary Methods @classmethod def _add_comparison_methods(cls): """ Add in comparison methods. """ cls.__eq__ = _make_comparison_op(operator.eq, cls) cls.__ne__ = _make_comparison_op(operator.ne, cls) cls.__lt__ = _make_comparison_op(operator.lt, cls) cls.__gt__ = _make_comparison_op(operator.gt, cls) cls.__le__ = _make_comparison_op(operator.le, cls) cls.__ge__ = _make_comparison_op(operator.ge, cls) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ Add in the numeric add/sub methods to disable. """ cls.__add__ = make_invalid_op("__add__") cls.__radd__ = make_invalid_op("__radd__") cls.__iadd__ = make_invalid_op("__iadd__") cls.__sub__ = make_invalid_op("__sub__") cls.__rsub__ = make_invalid_op("__rsub__") cls.__isub__ = make_invalid_op("__isub__") @classmethod def _add_numeric_methods_disabled(cls): """ Add in numeric methods to disable other than add/sub. """ cls.__pow__ = make_invalid_op("__pow__") cls.__rpow__ = make_invalid_op("__rpow__") cls.__mul__ = make_invalid_op("__mul__") cls.__rmul__ = make_invalid_op("__rmul__") cls.__floordiv__ = make_invalid_op("__floordiv__") cls.__rfloordiv__ = make_invalid_op("__rfloordiv__") cls.__truediv__ = make_invalid_op("__truediv__") cls.__rtruediv__ = make_invalid_op("__rtruediv__") cls.__mod__ = make_invalid_op("__mod__") cls.__divmod__ = make_invalid_op("__divmod__") cls.__neg__ = make_invalid_op("__neg__") cls.__pos__ = make_invalid_op("__pos__") cls.__abs__ = make_invalid_op("__abs__") cls.__inv__ = make_invalid_op("__inv__") @classmethod def _add_numeric_methods_binary(cls): """ Add in numeric methods. """ cls.__add__ = _make_arithmetic_op(operator.add, cls) cls.__radd__ = _make_arithmetic_op(ops.radd, cls) cls.__sub__ = _make_arithmetic_op(operator.sub, cls) cls.__rsub__ = _make_arithmetic_op(ops.rsub, cls) cls.__rpow__ = _make_arithmetic_op(ops.rpow, cls) cls.__pow__ = _make_arithmetic_op(operator.pow, cls) cls.__truediv__ = _make_arithmetic_op(operator.truediv, cls) cls.__rtruediv__ = _make_arithmetic_op(ops.rtruediv, cls) # TODO: rmod? rdivmod? cls.__mod__ = _make_arithmetic_op(operator.mod, cls) cls.__floordiv__ = _make_arithmetic_op(operator.floordiv, cls) cls.__rfloordiv__ = _make_arithmetic_op(ops.rfloordiv, cls) cls.__divmod__ = _make_arithmetic_op(divmod, cls) cls.__mul__ = _make_arithmetic_op(operator.mul, cls) cls.__rmul__ = _make_arithmetic_op(ops.rmul, cls) @classmethod def _add_numeric_methods_unary(cls): """ Add in numeric unary methods. """ def _make_evaluate_unary(op, opstr): def _evaluate_numeric_unary(self): attrs = self._get_attributes_dict() return Index(op(self.values), **attrs) _evaluate_numeric_unary.__name__ = opstr return _evaluate_numeric_unary cls.__neg__ = _make_evaluate_unary(operator.neg, "__neg__") cls.__pos__ = _make_evaluate_unary(operator.pos, "__pos__") cls.__abs__ = _make_evaluate_unary(np.abs, "__abs__") cls.__inv__ = _make_evaluate_unary(lambda x: -x, "__inv__") @classmethod def _add_numeric_methods(cls): cls._add_numeric_methods_unary() cls._add_numeric_methods_binary() @classmethod def _add_logical_methods(cls): """ Add in logical methods. """ _doc = """ %(desc)s Parameters ---------- *args These parameters will be passed to numpy.%(outname)s. **kwargs These parameters will be passed to numpy.%(outname)s. Returns ------- %(outname)s : bool or array_like (if axis is specified) A single element array_like may be converted to bool.""" _index_shared_docs["index_all"] = dedent( """ See Also -------- Index.any : Return whether any element in an Index is True. Series.any : Return whether any element in a Series is True. Series.all : Return whether all elements in a Series are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- **all** True, because nonzero integers are considered True. >>> pd.Index([1, 2, 3]).all() True False, because ``0`` is considered False. >>> pd.Index([0, 1, 2]).all() False **any** True, because ``1`` is considered True. >>> pd.Index([0, 0, 1]).any() True False, because ``0`` is considered False. >>> pd.Index([0, 0, 0]).any() False """ ) _index_shared_docs["index_any"] = dedent( """ See Also -------- Index.all : Return whether all elements are True. Series.all : Return whether all elements are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- >>> index = pd.Index([0, 1, 2]) >>> index.any() True >>> index = pd.Index([0, 0, 0]) >>> index.any() False """ ) def _make_logical_function(name, desc, f): @Substitution(outname=name, desc=desc) @Appender(_index_shared_docs["index_" + name]) @Appender(_doc) def logical_func(self, *args, **kwargs): result = f(self.values) if ( isinstance(result, (np.ndarray, ABCSeries, Index)) and result.ndim == 0 ): # return NumPy type return result.dtype.type(result.item()) else: # pragma: no cover return result logical_func.__name__ = name return logical_func cls.all = _make_logical_function( "all", "Return whether all elements are True.", np.all ) cls.any = _make_logical_function( "any", "Return whether any element is True.", np.any ) @classmethod def _add_logical_methods_disabled(cls): """ Add in logical methods to disable. """ cls.all = make_invalid_op("all") cls.any = make_invalid_op("any") @property def shape(self): """ Return a tuple of the shape of the underlying data. """ # not using "(len(self), )" to return "correct" shape if the values # consists of a >1 D array (see GH-27775) # overridden in MultiIndex.shape to avoid materializing the values return self._values.shape Index._add_numeric_methods_disabled() Index._add_logical_methods() Index._add_comparison_methods() def ensure_index_from_sequences(sequences, names=None): """ Construct an index from sequences of data. A single sequence returns an Index. Many sequences returns a MultiIndex. Parameters ---------- sequences : sequence of sequences names : sequence of str Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index_from_sequences([[1, 2, 3]], names=['name']) Int64Index([1, 2, 3], dtype='int64', name='name') >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']], names=['L1', 'L2']) MultiIndex([('a', 'a'), ('a', 'b')], names=['L1', 'L2']) See Also -------- ensure_index """ from pandas.core.indexes.multi import MultiIndex if len(sequences) == 1: if names is not None: names = names[0] return Index(sequences[0], name=names) else: return MultiIndex.from_arrays(sequences, names=names) def ensure_index(index_like, copy=False): """ Ensure that we have an index from some index-like object. Parameters ---------- index : sequence An Index or other sequence copy : bool Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index(['a', 'b']) Index(['a', 'b'], dtype='object') >>> ensure_index([('a', 'a'), ('b', 'c')]) Index([('a', 'a'), ('b', 'c')], dtype='object') >>> ensure_index([['a', 'a'], ['b', 'c']]) MultiIndex([('a', 'b'), ('a', 'c')], dtype='object') ) See Also -------- ensure_index_from_sequences """ if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, "name"): return Index(index_like, name=index_like.name, copy=copy) if is_iterator(index_like): index_like = list(index_like) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from pandas.core.indexes.multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like) def _ensure_has_len(seq): """ If seq is an iterator, put its values into a list. """ try: len(seq) except TypeError: return list(seq) else: return seq def _trim_front(strings): """ Trims zeros and decimal points. """ trimmed = strings while len(strings) > 0 and all(x[0] == " " for x in trimmed): trimmed = [x[1:] for x in trimmed] return trimmed def _validate_join_method(method): if method not in ["left", "right", "inner", "outer"]: raise ValueError(f"do not recognize join method {method}") def default_index(n): from pandas.core.indexes.range import RangeIndex return RangeIndex(0, n, name=None) def maybe_extract_name(name, obj, cls) -> Optional[Hashable]: """ If no name is passed, then extract it from data, validating hashability. """ if name is None and isinstance(obj, (Index, ABCSeries)): # Note we don't just check for "name" attribute since that would # pick up e.g. dtype.name name = obj.name # GH#29069 if not is_hashable(name): raise TypeError(f"{cls.__name__}.name must be a hashable type") return name def _maybe_cast_with_dtype(data: np.ndarray, dtype: np.dtype, copy: bool) -> np.ndarray: """ If a dtype is passed, cast to the closest matching dtype that is supported by Index. Parameters ---------- data : np.ndarray dtype : np.dtype copy : bool Returns ------- np.ndarray """ # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "integer": data = maybe_cast_to_integer_array(data, dtype, copy=copy) elif inferred in ["floating", "mixed-integer-float"]: if isna(data).any(): raise ValueError("cannot convert float NaN to integer") if inferred == "mixed-integer-float": data = maybe_cast_to_integer_array(data, dtype) # If we are actually all equal to integers, # then coerce to integer. try: data = _try_convert_to_int_array(data, copy, dtype) except ValueError: data = np.array(data, dtype=np.float64, copy=copy) elif inferred == "string": pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "string": pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) return data def _maybe_cast_data_without_dtype(subarr): """ If we have an arraylike input but no passed dtype, try to infer a supported dtype. Parameters ---------- subarr : np.ndarray, Index, or Series Returns ------- converted : np.ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype """ # Runtime import needed bc IntervalArray imports Index from pandas.core.arrays import ( IntervalArray, PeriodArray, DatetimeArray, TimedeltaArray, ) inferred = lib.infer_dtype(subarr, skipna=False) if inferred == "integer": try: data = _try_convert_to_int_array(subarr, False, None) return data, data.dtype except ValueError: pass return subarr, object elif inferred in ["floating", "mixed-integer-float", "integer-na"]: # TODO: Returns IntegerArray for integer-na case in the future return subarr, np.float64 elif inferred == "interval": try: data = IntervalArray._from_sequence(subarr, copy=False) return data, data.dtype except ValueError: # GH27172: mixed closed Intervals --> object dtype pass elif inferred == "boolean": # don't support boolean explicitly ATM pass elif inferred != "string": if inferred.startswith("datetime"): try: data = DatetimeArray._from_sequence(subarr, copy=False) return data, data.dtype except (ValueError, OutOfBoundsDatetime): # GH 27011 # If we have mixed timezones, just send it # down the base constructor pass elif inferred.startswith("timedelta"): data = TimedeltaArray._from_sequence(subarr, copy=False) return data, data.dtype elif inferred == "period": try: data = PeriodArray._from_sequence(subarr) return data, data.dtype except IncompatibleFrequency: pass return subarr, subarr.dtype def _try_convert_to_int_array( data: np.ndarray, copy: bool, dtype: np.dtype ) -> np.ndarray: """ Attempt to convert an array of data into an integer array. Parameters ---------- data : The data to convert. copy : bool Whether to copy the data or not. dtype : np.dtype Returns ------- int_array : data converted to either an ndarray[int64] or ndarray[uint64] Raises ------ ValueError if the conversion was not successful. """ if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desired try: res = data.astype("i8", copy=False) if (res == data).all(): return res # TODO: might still need to copy except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype("u8", copy=False) if (res == data).all(): return res # TODO: might still need to copy except (OverflowError, TypeError, ValueError): pass raise ValueError def _maybe_asobject(dtype, klass, data, copy: bool, name: Label, **kwargs): """ If an object dtype was specified, create the non-object Index and then convert it to object. Parameters ---------- dtype : np.dtype, ExtensionDtype, str klass : Index subclass data : list-like copy : bool name : hashable **kwargs Returns ------- Index Notes ----- We assume that calling .astype(object) on this klass will make a copy. """ # GH#23524 passing `dtype=object` to DatetimeIndex is invalid, # will raise in the where `data` is already tz-aware. So # we leave it out of this step and cast to object-dtype after # the DatetimeIndex construction. if is_dtype_equal(_o_dtype, dtype): # Note we can pass copy=False because the .astype below # will always make a copy index = klass(data, copy=False, name=name, **kwargs) return index.astype(object) return klass(data, dtype=dtype, copy=copy, name=name, **kwargs) from datetime import datetime import operator from textwrap import dedent from typing import TYPE_CHECKING, Any, FrozenSet, Hashable, Optional, Union import warnings import numpy as np from pandas._libs import algos as libalgos, index as libindex, lib import pandas._libs.join as libjoin from pandas._libs.lib import is_datetime_array from pandas._libs.tslibs import OutOfBoundsDatetime, Timestamp from pandas._libs.tslibs.period import IncompatibleFrequency from pandas._libs.tslibs.timezones import tz_compare from pandas._typing import Label from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes import concat as _concat from pandas.core.dtypes.cast import ( maybe_cast_to_integer_array, validate_numeric_casting, ) from pandas.core.dtypes.common import ( ensure_categorical, ensure_int64, ensure_object, ensure_platform_int, is_bool, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_interval_dtype, is_iterator, is_list_like, is_object_dtype, is_period_dtype, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ( ABCCategorical, ABCDataFrame, ABCDatetimeIndex, ABCIntervalIndex, ABCMultiIndex, ABCPandasArray, ABCPeriodIndex, ABCRangeIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas.core.dtypes.missing import array_equivalent, isna from pandas.core import ops from pandas.core.accessor import CachedAccessor import pandas.core.algorithms as algos from pandas.core.arrays import ExtensionArray from pandas.core.base import IndexOpsMixin, PandasObject import pandas.core.common as com from pandas.core.indexers import deprecate_ndim_indexing from pandas.core.indexes.frozen import FrozenList import pandas.core.missing as missing from pandas.core.ops import get_op_result_name from pandas.core.ops.invalid import make_invalid_op from pandas.core.strings import StringMethods from pandas.io.formats.printing import ( PrettyDict, default_pprint, format_object_attrs, format_object_summary, pprint_thing, ) if TYPE_CHECKING: from pandas import Series __all__ = ["Index"] _unsortable_types = frozenset(("mixed", "mixed-integer")) _index_doc_kwargs = dict( klass="Index", inplace="", target_klass="Index", raises_section="", unique="Index", duplicated="np.ndarray", ) _index_shared_docs = dict() str_t = str def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries, ExtensionArray)): if other.ndim > 0 and len(self) != len(other): raise ValueError("Lengths must match to compare") if is_object_dtype(self) and isinstance(other, ABCCategorical): left = type(other)(self._values, dtype=other.dtype) return op(left, other) elif is_object_dtype(self) and isinstance(other, ExtensionArray): # e.g. PeriodArray with np.errstate(all="ignore"): result = op(self.values, other) elif is_object_dtype(self) and not isinstance(self, ABCMultiIndex): # don't pass MultiIndex with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY(op, self.values, other) else: with np.errstate(all="ignore"): result = op(self.values, np.asarray(other)) if is_bool_dtype(result): return result return ops.invalid_comparison(self, other, op) name = f"__{op.__name__}__" return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame, ABCTimedeltaIndex)): return NotImplemented from pandas import Series result = op(Series(self), other) if isinstance(result, tuple): return (Index(result[0]), Index(result[1])) return Index(result) name = f"__{op.__name__}__" # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__. """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) if issubclass(cls, ABCMultiIndex): if "labels" in d and "codes" not in d: # GH#23752 "labels" kwarg has been replaced with "codes" d["codes"] = d.pop("labels") return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects. Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible. See Also -------- RangeIndex : Index implementing a monotonic integer range. CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index. IntervalIndex : An Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') """ # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations: FrozenSet[str] = ( PandasObject._deprecations | IndexOpsMixin._deprecations | frozenset(["contains", "set_value"]) ) # To hand over control to subclasses _join_precedence = 1 # Cython methods; see github.com/cython/cython/issues/2647 # for why we need to wrap these instead of making them class attributes # Moreover, cython will choose the appropriate-dtyped sub-function # given the dtypes of the passed arguments def _left_indexer_unique(self, left, right): return libjoin.left_join_indexer_unique(left, right) def _left_indexer(self, left, right): return libjoin.left_join_indexer(left, right) def _inner_indexer(self, left, right): return libjoin.inner_join_indexer(left, right) def _outer_indexer(self, left, right): return libjoin.outer_join_indexer(left, right) _typ = "index" _data: Union[ExtensionArray, np.ndarray] _id = None _name: Label = None # MultiIndex.levels previously allowed setting the index name. We # don't allow this anymore, and raise if it happens rather than # failing silently. _no_setting_name: bool = False _comparables = ["name"] _attributes = ["name"] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine # whether we support partial string indexing. Overridden # in DatetimeIndex and PeriodIndex _supports_partial_string_indexing = False _accessors = {"str"} str = CachedAccessor("str", StringMethods) # -------------------------------------------------------------------- # Constructors def __new__( cls, data=None, dtype=None, copy=False, name=None, tupleize_cols=True, **kwargs, ) -> "Index": from pandas.core.indexes.range import RangeIndex name = maybe_extract_name(name, data, cls) if isinstance(data, ABCPandasArray): # ensure users don't accidentally put a PandasArray in an index. data = data.to_numpy() # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, dtype=dtype, name=name) # categorical elif is_categorical_dtype(data) or is_categorical_dtype(dtype): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas.core.indexes.category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval elif is_interval_dtype(data) or is_interval_dtype(dtype): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas.core.indexes.interval import IntervalIndex return _maybe_asobject(dtype, IntervalIndex, data, copy, name, **kwargs) elif ( is_datetime64_any_dtype(data) or is_datetime64_any_dtype(dtype) or "tz" in kwargs ): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas import DatetimeIndex return _maybe_asobject(dtype, DatetimeIndex, data, copy, name, **kwargs) elif is_timedelta64_dtype(data) or is_timedelta64_dtype(dtype): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas import TimedeltaIndex return _maybe_asobject(dtype, TimedeltaIndex, data, copy, name, **kwargs) elif is_period_dtype(data) or is_period_dtype(dtype): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas import PeriodIndex return _maybe_asobject(dtype, PeriodIndex, data, copy, name, **kwargs) # extension dtype elif is_extension_array_dtype(data) or is_extension_array_dtype(dtype): if not (dtype is None or is_object_dtype(dtype)): # coerce to the provided dtype ea_cls = dtype.construct_array_type() data = ea_cls._from_sequence(data, dtype=dtype, copy=False) else: data = np.asarray(data, dtype=object) # coerce to the object dtype data = data.astype(object) return Index(data, dtype=object, copy=copy, name=name, **kwargs) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): # Delay import for perf. https://github.com/pandas-dev/pandas/pull/31423 from pandas.core.indexes.numeric import ( Float64Index, Int64Index, UInt64Index, ) if dtype is not None: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 data = _maybe_cast_with_dtype(data, dtype, copy) dtype = data.dtype # TODO: maybe not for object? # maybe coerce to a sub-class if is_signed_integer_dtype(data.dtype): return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype("object") else: subarr = com.asarray_tuplesafe(data, dtype=object) # asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: new_data, new_dtype = _maybe_cast_data_without_dtype(subarr) if new_dtype is not None: return cls( new_data, dtype=new_dtype, copy=False, name=name, **kwargs ) if kwargs: raise TypeError(f"Unexpected keyword arguments {repr(set(kwargs))}") if subarr.ndim > 1: # GH#13601, GH#20285, GH#27125 raise ValueError("Index data must be 1-dimensional") return cls._simple_new(subarr, name) elif hasattr(data, "__array__"): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): raise cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data): # GH21470: convert iterable to list before determining if empty if is_iterator(data): data = list(data) if data and all(isinstance(e, tuple) for e in data): # we must be all tuples, otherwise don't construct # 10697 from pandas.core.indexes.multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get("names") ) # other iterable of some kind subarr = com.asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @property def asi8(self): """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ return None @classmethod def _simple_new(cls, values, name=None, dtype=None): """ We require that we have a dtype compat for the values. If we are passed a non-dtype compat, then coerce using the constructor. Must be careful not to recurse. """ assert isinstance(values, np.ndarray), type(values) result = object.__new__(cls) result._data = values # _index_data is a (temporary?) fix to ensure that the direct data # manipulation we do in `_libs/reduction.pyx` continues to work. # We need access to the actual ndarray, since we're messing with # data buffers and strides. We don't re-use `_ndarray_values`, since # we actually set this value too. result._index_data = values result._name = name return result._reset_identity() @cache_readonly def _constructor(self): return type(self) # -------------------------------------------------------------------- # Index Internals Methods def _get_attributes_dict(self): """ Return an attributes dict for my class. """ return {k: getattr(self, k, None) for k in self._attributes} def _shallow_copy(self, values=None, **kwargs): """ Create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values, **kwargs): """ Create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ attributes = self._get_attributes_dict() attributes.update(kwargs) attributes["copy"] = False if not len(values) and "dtype" not in kwargs: # TODO: what if hasattr(values, "dtype")? attributes["dtype"] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def is_(self, other) -> bool: """ More flexible, faster check like ``is`` but that works through views. Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr(other, "_id", Ellipsis) and self._id is not None def _reset_identity(self): """ Initializes or resets ``_id`` attribute with new object. """ self._id = _Identity() return self def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _engine(self): # property, for now, slow to look up # to avoid a reference cycle, bind `_ndarray_values` to a local variable, so # `self` is not passed into the lambda. _ndarray_values = self._ndarray_values return self._engine_type(lambda: _ndarray_values, len(self)) # -------------------------------------------------------------------- # Array-Like Methods # ndarray compat def __len__(self) -> int: """ Return the length of the Index. """ return len(self._data) def __array__(self, dtype=None) -> np.ndarray: """ The array interface, return my values. """ return np.asarray(self._data, dtype=dtype) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. """ result = lib.item_from_zerodim(result) if is_bool_dtype(result) or lib.is_scalar(result) or np.ndim(result) > 1: return result attrs = self._get_attributes_dict() return Index(result, **attrs) @cache_readonly def dtype(self): """ Return the dtype object of the underlying data. """ return self._data.dtype def ravel(self, order="C"): """ Return an ndarray of the flattened values of the underlying data. Returns ------- numpy.ndarray Flattened array. See Also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, "_typ"): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def astype(self, dtype, copy=True): """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type Note that any signed integer `dtype` is treated as ``'int64'``, and any unsigned integer `dtype` is treated as ``'uint64'``, regardless of the size. copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. Returns ------- Index Index with values cast to specified dtype. """ if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from pandas.core.indexes.category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) elif is_extension_array_dtype(dtype): return Index(np.asarray(self), dtype=dtype, copy=copy) try: casted = self.values.astype(dtype, copy=copy) except (TypeError, ValueError): raise TypeError(f"Cannot cast {type(self).__name__} to dtype {dtype}") return Index(casted, name=self.name, dtype=dtype) _index_shared_docs[ "take" ] = """ Return a new %(klass)s of the values selected by the indices. For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken. axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError. Returns ------- numpy.ndarray Elements of given indices. See Also -------- numpy.ndarray.take """ @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable( self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value, ) else: if allow_fill and fill_value is not None: cls_name = type(self).__name__ raise ValueError( f"Unable to fill values because {cls_name} cannot contain NA" ) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable( self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan ): """ Internal method to handle NA filling of take. """ indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): raise ValueError( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) taken = algos.take( values, indices, allow_fill=allow_fill, fill_value=na_value ) else: taken = values.take(indices) return taken _index_shared_docs[ "repeat" ] = """ Repeat elements of a %(klass)s. Returns a new %(klass)s where each element of the current %(klass)s is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty %(klass)s. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- repeated_index : %(klass)s Newly created %(klass)s with repeated elements. See Also -------- Series.repeat : Equivalent function for Series. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> idx = pd.Index(['a', 'b', 'c']) >>> idx Index(['a', 'b', 'c'], dtype='object') >>> idx.repeat(2) Index(['a', 'a', 'b', 'b', 'c', 'c'], dtype='object') >>> idx.repeat([1, 2, 3]) Index(['a', 'b', 'b', 'c', 'c', 'c'], dtype='object') """ @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats, axis=None): repeats = ensure_platform_int(repeats) nv.validate_repeat(tuple(), dict(axis=axis)) return self._shallow_copy(self._values.repeat(repeats)) # -------------------------------------------------------------------- # Copying Methods def copy(self, name=None, deep=False, dtype=None, names=None): """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : Label deep : bool, default False dtype : numpy dtype or pandas type, optional names : list-like, optional Kept for compatibility with MultiIndex. Should not be used. Returns ------- Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): """ Parameters ---------- memo, default None Standard signature. Unused """ return self.copy(deep=True) # -------------------------------------------------------------------- # Rendering Methods def __repr__(self) -> str_t: """ Return a string representation for this object. """ klass_name = type(self).__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() attrs_str = [f"{k}={v}" for k, v in attrs] prepr = f",{space}".join(attrs_str) # no data provided, just attributes if data is None: data = "" res = f"{klass_name}({data}{prepr})" return res def _format_space(self) -> str_t: # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function. """ return default_pprint def _format_data(self, name=None) -> str_t: """ Return the formatted data as a unicode string. """ # do we want to justify (only do so for non-objects) is_justify = True if self.inferred_type == "string": is_justify = False elif self.inferred_type == "categorical": if is_object_dtype(self.categories): # type: ignore is_justify = False return format_object_summary( self, self._formatter_func, is_justify=is_justify, name=name ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values def format(self, name: bool = False, formatter=None, **kwargs): """ Render a string representation of the Index. """ header = [] if name: header.append( pprint_thing(self.name, escape_chars=("\t", "\r", "\n")) if self.name is not None else "" ) if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep="NaN", **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=("\t", "\r", "\n")) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify="left")) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values. Returns ------- numpy.ndarray Formatted values. """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep="", quoting=None, **kwargs): """ Actually format specific types of the index. """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def _summary(self, name=None) -> str_t: """ Return a summarized representation. Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if hasattr(head, "format") and not isinstance(head, str): head = head.format() tail = self[-1] if hasattr(tail, "format") and not isinstance(tail, str): tail = tail.format() index_summary = f", {head} to {tail}" else: index_summary = "" if name is None: name = type(self).__name__ return f"{name}: {len(self)} entries{index_summary}" # -------------------------------------------------------------------- # Conversion Methods def to_flat_index(self): """ Identity method. .. versionadded:: 0.24.0 This is implemented for compatibility with subclass implementations when chaining. Returns ------- pd.Index Caller. See Also -------- MultiIndex.to_flat_index : Subclass implementation. """ return self def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index. Parameters ---------- index : Index, optional Index of resulting Series. If None, defaults to original index. name : str, optional Dame of resulting Series. If None, defaults to name of original index. Returns ------- Series The dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self.values.copy(), index=index, name=name) def to_frame(self, index: bool = True, name=None): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original Index. name : object, default None The passed name should substitute for the index name (if it has one). Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow To override the name of the resulting column, specify `name`: >>> idx.to_frame(index=False, name='zoo') zoo 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame if name is None: name = self.name or 0 result = DataFrame({name: self._values.copy()}) if index: result.index = self return result # -------------------------------------------------------------------- # Name-Centric Methods @property def name(self): """ Return Index or MultiIndex name. """ return self._name @name.setter def name(self, value): if self._no_setting_name: # Used in MultiIndex.levels to avoid silently ignoring name updates. raise RuntimeError( "Cannot set name on a level of a MultiIndex. Use " "'MultiIndex.set_names' instead." ) maybe_extract_name(value, None, type(self)) self._name = value def _validate_names(self, name=None, names=None, deep: bool = False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def _get_names(self): return FrozenList((self.name,)) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError("Names must be a list-like") if len(values) != 1: raise ValueError(f"Length of new names must be 1, got {len(values)}") # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError(f"{type(self).__name__}.name must be a hashable type") self._name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace: bool = False): """ Set Index or MultiIndex name. Able to set new names partially and by level. Parameters ---------- names : label or list of label Name(s) to set. level : int, label or list of int or label, optional If the index is a MultiIndex, level(s) to set (None for all levels). Otherwise level must be None. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.rename : Able to set new names without level. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> idx.set_names('quarter') Int64Index([1, 2, 3, 4], dtype='int64', name='quarter') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]]) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], ) >>> idx.set_names(['kind', 'year'], inplace=True) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.set_names('species', level=0) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) """ if level is not None and not isinstance(self, ABCMultiIndex): raise ValueError("Level must be None for non-MultiIndex") if level is not None and not is_list_like(level) and is_list_like(names): raise TypeError("Names must be a string when a single level is provided.") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Alter Index or MultiIndex name. Able to set new names without level. Defaults to returning new index. Length of names must match number of levels in MultiIndex. Parameters ---------- name : label or list of labels Name(s) to set. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.set_names : Able to set new names partially and by level. Examples -------- >>> idx = pd.Index(['A', 'C', 'A', 'B'], name='score') >>> idx.rename('grade') Index(['A', 'C', 'A', 'B'], dtype='object', name='grade') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]], ... names=['kind', 'year']) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.rename(['species', 'year']) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) >>> idx.rename('species') Traceback (most recent call last): TypeError: Must pass list-like as `names`. """ return self.set_names([name], inplace=inplace) # -------------------------------------------------------------------- # Level-Centric Methods @property def nlevels(self) -> int: """ Number of levels. """ return 1 def _sort_levels_monotonic(self): """ Compat with MultiIndex. """ return self def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError( "Too many levels: Index has only 1 level, " f"{level} is not a valid level number" ) elif level > 0: raise IndexError( f"Too many levels: Index has only 1 level, not {level + 1}" ) elif level != self.name: raise KeyError( f"Requested level ({level}) does not match index name ({self.name})" ) def _get_level_number(self, level) -> int: self._validate_index_level(level) return 0 def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API. Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : bool, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- Index """ return self.sort_values(return_indexer=True, ascending=ascending) def _get_level_values(self, level): """ Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters ---------- level : int or str It is either the integer position or the name of the level. Returns ------- Index Calling object, as there is only one level in the Index. See Also -------- MultiIndex.get_level_values : Get values for a level of a MultiIndex. Notes ----- For Index, level should be 0, since there are no multiple levels. Examples -------- >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying `level` as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object') """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError( f"Cannot remove {len(level)} levels from an index with {self.nlevels} " "levels: at least one level must be left." ) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_codes.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_codes[0] == -1 result = new_levels[0].take(new_codes[0]) if mask.any(): result = result.putmask(mask, np.nan) result._name = new_names[0] return result else: from pandas.core.indexes.multi import MultiIndex return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False, ) def _get_grouper_for_level(self, mapper, level=None): """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on. labels : ndarray of int or None Array of locations in level_index. uniques : Index or None Index of unique values for level. """ assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None # -------------------------------------------------------------------- # Introspection Methods @property def is_monotonic(self) -> bool: """ Alias for is_monotonic_increasing. """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self) -> bool: """ Return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self) -> bool: """ Return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self) -> bool: """ Return if the index is strictly monotonic increasing (only increasing) values. Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self) -> bool: """ Return if the index is strictly monotonic decreasing (only decreasing) values. Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing @cache_readonly def is_unique(self) -> bool: """ Return if the index has unique values. """ return self._engine.is_unique @property def has_duplicates(self) -> bool: """ Check if the Index has duplicate values. Returns ------- bool Whether or not the Index has duplicate values. Examples -------- >>> idx = pd.Index([1, 5, 7, 7]) >>> idx.has_duplicates True >>> idx = pd.Index([1, 5, 7]) >>> idx.has_duplicates False >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.has_duplicates True >>> idx = pd.Index(["Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.has_duplicates False """ return not self.is_unique def is_boolean(self) -> bool: """ Check if the Index only consists of booleans. Returns ------- bool Whether or not the Index only consists of booleans. See Also -------- is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([True, False, True]) >>> idx.is_boolean() True >>> idx = pd.Index(["True", "False", "True"]) >>> idx.is_boolean() False >>> idx = pd.Index([True, False, "True"]) >>> idx.is_boolean() False """ return self.inferred_type in ["boolean"] def is_integer(self) -> bool: """ Check if the Index only consists of integers. Returns ------- bool Whether or not the Index only consists of integers. See Also -------- is_boolean : Check if the Index only consists of booleans. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx.is_integer() True >>> idx = pd.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_integer() False >>> idx = pd.Index(["Apple", "Mango", "Watermelon"]) >>> idx.is_integer() False """ return self.inferred_type in ["integer"] def is_floating(self) -> bool: """ Check if the Index is a floating type. The Index may consist of only floats, NaNs, or a mix of floats, integers, or NaNs. Returns ------- bool Whether or not the Index only consists of only consists of floats, NaNs, or a mix of floats, integers, or NaNs. See Also -------- is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_floating() True >>> idx = pd.Index([1.0, 2.0, np.nan, 4.0]) >>> idx.is_floating() True >>> idx = pd.Index([1, 2, 3, 4, np.nan]) >>> idx.is_floating() True >>> idx = pd.Index([1, 2, 3, 4]) >>> idx.is_floating() False """ return self.inferred_type in ["floating", "mixed-integer-float", "integer-na"] def is_numeric(self) -> bool: """ Check if the Index only consists of numeric data. Returns ------- bool Whether or not the Index only consists of numeric data. See Also -------- is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_numeric() True >>> idx = pd.Index([1, 2, 3, 4.0]) >>> idx.is_numeric() True >>> idx = pd.Index([1, 2, 3, 4]) >>> idx.is_numeric() True >>> idx = pd.Index([1, 2, 3, 4.0, np.nan]) >>> idx.is_numeric() True >>> idx = pd.Index([1, 2, 3, 4.0, np.nan, "Apple"]) >>> idx.is_numeric() False """ return self.inferred_type in ["integer", "floating"] def is_object(self) -> bool: """ Check if the Index is of the object dtype. Returns ------- bool Whether or not the Index is of the object dtype. See Also -------- is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index(["Apple", "Mango", "Watermelon"]) >>> idx.is_object() True >>> idx = pd.Index(["Apple", "Mango", 2.0]) >>> idx.is_object() True >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.object() False >>> idx = pd.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_object() False """ return is_object_dtype(self.dtype) def is_categorical(self) -> bool: """ Check if the Index holds categorical data. Returns ------- bool True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_interval : Check if the Index holds Interval objects. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ["categorical"] def is_interval(self) -> bool: """ Check if the Index holds Interval objects. Returns ------- bool Whether or not the Index holds Interval objects. See Also -------- IntervalIndex : Index for Interval objects. is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_mixed : Check if the Index holds data with mixed data types. Examples -------- >>> idx = pd.Index([pd.Interval(left=0, right=5), ... pd.Interval(left=5, right=10)]) >>> idx.is_interval() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_interval() False """ return self.inferred_type in ["interval"] def is_mixed(self) -> bool: """ Check if the Index holds data with mixed data types. Returns ------- bool Whether or not the Index holds data with mixed data types. See Also -------- is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects. Examples -------- >>> idx = pd.Index(['a', np.nan, 'b']) >>> idx.is_mixed() True >>> idx = pd.Index([1.0, 2.0, 3.0, 5.0]) >>> idx.is_mixed() False """ return self.inferred_type in ["mixed"] def holds_integer(self) -> bool: """ Whether the type is an integer type. """ return self.inferred_type in ["integer", "mixed-integer"] @cache_readonly def inferred_type(self) -> str_t: """ Return a string of the type inferred from the values. """ return lib.infer_dtype(self, skipna=False) @cache_readonly def is_all_dates(self) -> bool: """ Whether or not the index values only consist of dates. """ return is_datetime_array(ensure_object(self.values)) # -------------------------------------------------------------------- # Pickle Methods def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (type(self), d), None # -------------------------------------------------------------------- # Null Handling Methods _na_value = np.nan """The expected NA value to use with this index.""" @cache_readonly def _isnan(self): """ Return if each value is NaN. """ if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: return self._isnan.nonzero()[0] else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self) -> bool: """ Return if I have any nans; enables various perf speedups. """ if self._can_hold_na: return bool(self._isnan.any()) else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- numpy.ndarray A boolean array of whether my values are NA. See Also -------- Index.notna : Boolean inverse of isna. Index.dropna : Omit entries with missing values. isna : Top-level isna. Series.isna : Detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See Also -------- Index.notnull : Alias of notna. Index.isna: Inverse of notna. notna : Top-level notna. Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna def fillna(self, value=None, downcast=None): """ Fill NA/NaN values with the specified value. Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns ------- filled : Index """ self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() def dropna(self, how="any"): """ Return Index without NA/NaN values. Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ if how not in ("any", "all"): raise ValueError(f"invalid how option: {how}") if self.hasnans: return self._shallow_copy(self._values[~self._isnan]) return self._shallow_copy() # -------------------------------------------------------------------- # Uniqueness Methods def unique(self, level=None): """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex). .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """ if level is not None: self._validate_index_level(level) result = super().unique() return self._shallow_copy(result) def drop_duplicates(self, keep="first"): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : Equivalent method on Series. DataFrame.drop_duplicates : Equivalent method on DataFrame. Index.duplicated : Related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super().drop_duplicates(keep=keep) def duplicated(self, keep="first"): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- numpy.ndarray See Also -------- Series.duplicated : Equivalent method on pandas.Series. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Index.drop_duplicates : Remove duplicate values from Index. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) """ return super().duplicated(keep=keep) def _get_unique_index(self, dropna: bool = False): """ Returns an index containing unique values. Parameters ---------- dropna : bool, default False If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if not isinstance(self, ABCMultiIndex): # extract an array to pass to _shallow_copy values = values._data if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) # -------------------------------------------------------------------- # Arithmetic & Logical Methods def __add__(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented from pandas import Series return Index(Series(self) + other) def __radd__(self, other): from pandas import Series return Index(other + Series(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): return Index(np.array(self) - other) def __rsub__(self, other): # wrap Series to ensure we pin name correctly from pandas import Series return Index(other - Series(self)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def __nonzero__(self): raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." ) __bool__ = __nonzero__ # -------------------------------------------------------------------- # Set Operation Methods def _get_reconciled_name_object(self, other): """ If the result of a set operation will be self, return self, unless the name changes, in which case make a shallow copy of self. """ name = get_op_result_name(self, other) if self.name != name: return self._shallow_copy(name=name) return self def _union_incompatible_dtypes(self, other, sort): """ Casts this and other index to object dtype to allow the formation of a union between incompatible types. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ this = self.astype(object, copy=False) # cast to Index for when `other` is list-like other = Index(other).astype(object, copy=False) return Index.union(this, other, sort=sort).astype(object, copy=False) def _is_compatible_with_other(self, other) -> bool: """ Check whether this and the other dtype are compatible with each other. Meaning a union can be formed between them without needing to be cast to dtype object. Parameters ---------- other : Index or array-like Returns ------- bool """ return type(self) is type(other) and is_dtype_equal(self.dtype, other.dtype) def _validate_sort_keyword(self, sort): if sort not in [None, False]: raise ValueError( "The 'sort' keyword only takes the values of " f"None or False; {sort} was passed." ) def union(self, other, sort=None): """ Form the union of two Index objects. If the Index objects are incompatible, both Index objects will be cast to dtype('object') first. .. versionchanged:: 0.25.0 Parameters ---------- other : Index or array-like sort : bool or None, default None Whether to sort the resulting Index. * None : Sort the result, except when 1. `self` and `other` are equal. 2. `self` or `other` has length 0. 3. Some values in `self` or `other` cannot be compared. A RuntimeWarning is issued in this case. * False : do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- union : Index Examples -------- Union matching dtypes >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') Union mismatched dtypes >>> idx1 = pd.Index(['a', 'b', 'c', 'd']) >>> idx2 = pd.Index([1, 2, 3, 4]) >>> idx1.union(idx2) Index(['a', 'b', 'c', 'd', 1, 2, 3, 4], dtype='object') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if not self._is_compatible_with_other(other): return self._union_incompatible_dtypes(other, sort=sort) return self._union(other, sort=sort) def _union(self, other, sort): """ Specific union logic should go here. In subclasses, union behavior should be overwritten here rather than in `self.union`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ if not len(other) or self.equals(other): return self._get_reconciled_name_object(other) if not len(self): return other._get_reconciled_name_object(self) # TODO(EA): setops-refactor, clean all this up if is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if sort is None and self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) result = Index(result)._values # do type inference here else: # find indexes of things in "other" that are not in "self" if self.is_unique: indexer = self.get_indexer(other) indexer = (indexer == -1).nonzero()[0] else: indexer = algos.unique1d(self.get_indexer_non_unique(other)[1]) if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = concat_compat((lvals, other_diff)) else: result = lvals if sort is None: try: result = algos.safe_sort(result) except TypeError as err: warnings.warn( f"{err}, sort order is undefined for incomparable objects", RuntimeWarning, stacklevel=3, ) # for subclasses return self._wrap_setop_result(other, result) def _wrap_setop_result(self, other, result): name = get_op_result_name(self, other) return self._shallow_copy(result, name=name) # TODO: standardize return type of non-union setops type(self vs other) def intersection(self, other, sort=False): """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default from ``True`` to ``False``, to match the behaviour of 0.23.4 and earlier. Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.intersection(other, sort=sort) # TODO(EA): setops-refactor, clean all this up lvals = self._values rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] except TypeError: pass else: return self._wrap_setop_result(other, result) try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except (InvalidIndexError, IncompatibleFrequency): # InvalidIndexError raised by get_indexer if non-unique # IncompatibleFrequency raised by PeriodIndex.get_indexer indexer = algos.unique1d(Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) res_name = get_op_result_name(self, other) if sort is None: taken = algos.safe_sort(taken.values) return self._shallow_copy(taken, name=res_name) taken.name = res_name return taken def difference(self, other, sort=None): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([2, 1, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') >>> idx1.difference(idx2, sort=False) Int64Index([2, 1], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if self.equals(other): # pass an empty np.ndarray with the appropriate dtype return self._shallow_copy(self._data[:0]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name) def symmetric_difference(self, other, result_name=None, sort=None): """ Compute the symmetric difference of two Index objects. Parameters ---------- other : Index or array-like result_name : str sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d( np.arange(this.size), common_indexer, assume_unique=True ) left_diff = this._values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other._values.take(right_indexer) the_diff = concat_compat([left_diff, right_diff]) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs["name"] = result_name if "freq" in attribs: attribs["freq"] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError("Input must be Index or array-like") return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = get_op_result_name(self, other) return other, result_name # -------------------------------------------------------------------- # Indexing Methods def get_loc(self, key, method=None, tolerance=None): """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : int or float, optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples -------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ if method is None: if tolerance is not None: raise ValueError( "tolerance argument only valid if using pad, " "backfill or nearest lookups" ) casted_key = self._maybe_cast_indexer(key) try: return self._engine.get_loc(casted_key) except KeyError: raise KeyError(key) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, np.asarray(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError("get_loc requires scalar valued input") loc = indexer.item() if loc == -1: raise KeyError(key) return loc _index_shared_docs[ "get_indexer" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. %(raises_section)s Examples -------- >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in ``index`` and ``x`` is marked by -1, as it is not in ``index``. """ @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer( self, target, method=None, limit=None, tolerance=None ) -> np.ndarray: method = missing.clean_reindex_fill_method(method) target = ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer( ptarget, method=method, limit=limit, tolerance=tolerance ) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) if not self.is_unique: raise InvalidIndexError( "Reindexing only valid with uniquely valued Index objects" ) if method == "pad" or method == "backfill": indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == "nearest": indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError( "tolerance argument only valid if doing pad, " "backfill or nearest reindexing" ) if limit is not None: raise ValueError( "limit argument only valid if doing pad, " "backfill or nearest reindexing" ) indexer = self._engine.get_indexer(target._ndarray_values) return ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError("list-like tolerance size must match target index size") return tolerance def _get_fill_indexer( self, target: "Index", method: str_t, limit=None, tolerance=None ) -> np.ndarray: if self.is_monotonic_increasing and target.is_monotonic_increasing: engine_method = ( self._engine.get_pad_indexer if method == "pad" else self._engine.get_backfill_indexer ) indexer = engine_method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance( target._ndarray_values, indexer, tolerance ) return indexer def _get_fill_indexer_searchsorted( self, target: "Index", method: str_t, limit=None ) -> np.ndarray: """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets. """ if limit is not None: raise ValueError( f"limit argument for {repr(method)} method only well-defined " "if index and target are monotonic" ) side = "left" if method == "pad" else "right" # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = indexer == -1 indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == "left": # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target: "Index", limit, tolerance) -> np.ndarray: """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, "pad", limit=limit) right_indexer = self.get_indexer(target, "backfill", limit=limit) left_distances = np.abs(self[left_indexer] - target) right_distances = np.abs(self[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where( op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer, ) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance( self, target: "Index", indexer: np.ndarray, tolerance ) -> np.ndarray: distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer # -------------------------------------------------------------------- # Indexer Conversion Methods def _get_partial_string_timestamp_match_key(self, key): """ Translate any partial string timestamp matches in key, returning the new key. Only relevant for MultiIndex. """ # GH#10331 return key def _convert_scalar_indexer(self, key, kind: str_t): """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'loc', 'getitem'} """ assert kind in ["loc", "getitem"] if len(self) and not isinstance(self, ABCMultiIndex): # we can raise here if we are definitive that this # is positional indexing (eg. .loc on with a float) # or label indexing if we are using a type able # to be represented in the index if kind == "getitem" and is_float(key): if not self.is_floating(): self._invalid_indexer("label", key) elif kind == "loc" and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in [ "floating", "mixed-integer-float", "integer-na", "string", "mixed", ]: self._invalid_indexer("label", key) elif kind == "loc" and is_integer(key): if not (is_integer_dtype(self.dtype) or is_object_dtype(self.dtype)): self._invalid_indexer("label", key) return key def _validate_positional_slice(self, key: slice): """ For positional indexing, a slice must have either int or None for each of start, stop, and step. """ self._validate_indexer("positional", key.start, "iloc") self._validate_indexer("positional", key.stop, "iloc") self._validate_indexer("positional", key.step, "iloc") def _convert_slice_indexer(self, key: slice, kind: str_t): """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'loc', 'getitem'} """ assert kind in ["loc", "getitem"], kind # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not ( self.is_integer() or self.is_categorical() ) if kind == "getitem": """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: self._validate_indexer("slice", key.start, "getitem") self._validate_indexer("slice", key.stop, "getitem") self._validate_indexer("slice", key.step, "getitem") return key # convert the slice to an indexer here # if we are mixed and have integers if is_positional and self.is_mixed(): try: # Validate start & stop if start is not None: self.get_loc(start) if stop is not None: self.get_loc(stop) is_positional = False except KeyError: pass if is_null_slicer: indexer = key elif is_positional: indexer = key else: indexer = self.slice_indexer(start, stop, step, kind=kind) return indexer def _convert_listlike_indexer(self, keyarr): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- indexer : numpy.ndarray or None Return an ndarray or None if cannot convert. keyarr : numpy.ndarray Return tuple-safe keys. """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr) return indexer, keyarr def _convert_arr_indexer(self, keyarr): """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ keyarr = com.asarray_tuplesafe(keyarr) return keyarr def _convert_index_indexer(self, keyarr): """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ return keyarr def _convert_list_indexer(self, keyarr): """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, loc, optional Returns ------- positional indexer or None """ return None def _invalid_indexer(self, form: str_t, key): """ Consistent invalid indexer message. """ raise TypeError( f"cannot do {form} indexing on {type(self).__name__} with these " f"indexers [{key}] of type {type(key).__name__}" ) # -------------------------------------------------------------------- # Reindex Methods def _can_reindex(self, indexer): """ Check if we are allowing reindexing with this particular indexer. Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary). Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "name") # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq if isinstance(self, ABCRangeIndex): values = range(0) else: values = self._data[:0] # appropriately-dtyped empty array target = self._simple_new(values, dtype=self.dtype, **attrs) else: target = ensure_index(target) if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") _, indexer, _ = self._join_level( target, level, how="right", return_indexers=True ) else: if self.equals(target): indexer = None else: # check is_overlapping for IntervalIndex compat if self.is_unique and not getattr(self, "is_overlapping", False): indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: if method is not None or limit is not None: raise ValueError( "cannot reindex a non-unique index " "with a method or limit" ) indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target. Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ target = ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = -1 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels) return new_index, indexer, new_indexer # -------------------------------------------------------------------- # Join Methods def join(self, other, how="left", level=None, return_indexers=False, sort=False): """ Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : bool, default False sort : bool, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword). Returns ------- join_index, (left_indexer, right_indexer) """ self_is_mi = isinstance(self, ABCMultiIndex) other_is_mi = isinstance(other, ABCMultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level( other, level, how=how, return_indexers=return_indexers ) other = ensure_index(other) if len(other) == 0 and how in ("left", "outer"): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ("right", "outer"): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {"right": "left", "left": "right"}.get(how, how) result = other.join( self, how=how, level=level, return_indexers=return_indexers ) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) else: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) except TypeError: pass if how == "left": join_index = self elif how == "right": join_index = other elif how == "inner": # TODO: sort=False here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.intersection(other, sort=False) elif how == "outer": # TODO: sort=True here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from pandas.core.indexes.multi import MultiIndex from pandas.core.reshape.merge import _restore_dropped_levels_multijoin # figure out join names self_names = set(com.not_none(*self.names)) other_names = set(com.not_none(*other.names)) overlap = self_names & other_names # need at least 1 in common if not overlap: raise ValueError("cannot join with no overlapping index names") self_is_mi = isinstance(self, ABCMultiIndex) other_is_mi = isinstance(other, ABCMultiIndex) if self_is_mi and other_is_mi: # Drop the non-matching levels from left and right respectively ldrop_names = list(self_names - overlap) rdrop_names = list(other_names - overlap) # if only the order differs if not len(ldrop_names + rdrop_names): self_jnlevels = self other_jnlevels = other.reorder_levels(self.names) else: self_jnlevels = self.droplevel(ldrop_names) other_jnlevels = other.droplevel(rdrop_names) # Join left and right # Join on same leveled multi-index frames is supported join_idx, lidx, ridx = self_jnlevels.join( other_jnlevels, how, return_indexers=True ) # Restore the dropped levels # Returned index level order is # common levels, ldrop_names, rdrop_names dropped_names = ldrop_names + rdrop_names levels, codes, names = _restore_dropped_levels_multijoin( self, other, dropped_names, join_idx, lidx, ridx ) # Re-create the multi-index multi_join_idx = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) multi_join_idx = multi_join_idx.remove_unused_levels() return multi_join_idx, lidx, ridx jl = list(overlap)[0] # Case where only one index is multi # make the indices into mi's that match flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {"right": "left", "left": "right"}.get(how, how) level = other.names.index(jl) result = self._join_level( other, level, how=how, return_indexers=return_indexers ) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result def _join_non_unique(self, other, how="left", return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers( [self._ndarray_values], [other._ndarray_values], how=how, sort=True ) left_idx = ensure_platform_int(left_idx) right_idx = ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level( self, other, level, how="left", return_indexers=False, keep_order=True ): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If ```keep_order == True```, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from pandas.core.indexes.multi import MultiIndex def _get_leaf_sorter(labels): """ Returns sorter for the inner most level while preserving the order of higher levels. """ if labels[0].size == 0: return np.empty(0, dtype="int64") if len(labels) == 1: lab = ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = ensure_int64(labels[-1]) return lib.get_level_sorter(lab, ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError("Join on level between two MultiIndex objects is ambiguous") left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {"right": "left", "left": "right"}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError( "Index._join_level on non-unique index is not implemented" ) new_level, left_lev_indexer, right_lev_indexer = old_level.join( right, how=how, return_indexers=True ) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.codes[: level + 1]) join_index = left[left_indexer] else: left_lev_indexer = ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_codes = algos.take_nd( rev_indexer, left.codes[level], allow_fill=False ) new_codes = list(left.codes) new_codes[level] = new_lev_codes new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_codes != -1 if not mask.all(): new_codes = [lab[mask] for lab in new_codes] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_codes.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_codes, ngroups ) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0] :] new_codes = [lab[left_indexer] for lab in new_codes] else: # sort the leaves mask = new_lev_codes != -1 mask_all = mask.all() if not mask_all: new_codes = [lab[mask] for lab in new_codes] left_indexer = _get_leaf_sorter(new_codes[: level + 1]) new_codes = [lab[left_indexer] for lab in new_codes] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex( levels=new_levels, codes=new_codes, names=left.names, verify_integrity=False, ) if right_lev_indexer is not None: right_indexer = algos.take_nd( right_lev_indexer, join_index.codes[level], allow_fill=False ) else: right_indexer = join_index.codes[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = ( None if left_indexer is None else ensure_platform_int(left_indexer) ) right_indexer = ( None if right_indexer is None else ensure_platform_int(right_indexer) ) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how="left", return_indexers=False): if self.equals(other): ret_index = other if how == "right" else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == "left": join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == "right": join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == "left": join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == "right": join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else ensure_platform_int(lidx) ridx = None if ridx is None else ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = get_op_result_name(self, other) return Index(joined, name=name) # -------------------------------------------------------------------- # Uncategorized Methods @property def values(self) -> np.ndarray: """ Return an array representing the data in the Index. .. warning:: We recommend using :attr:`Index.array` or :meth:`Index.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- array: numpy.ndarray or ExtensionArray See Also -------- Index.array : Reference to the underlying data. Index.to_numpy : A NumPy array representing the underlying data. """ return self._data.view(np.ndarray) @cache_readonly @Appender(IndexOpsMixin.array.__doc__) # type: ignore def array(self) -> ExtensionArray: array = self._data if isinstance(array, np.ndarray): from pandas.core.arrays.numpy_ import PandasArray array = PandasArray(array) return array @property def _values(self) -> Union[ExtensionArray, np.ndarray]: """ The best array representation. This is an ndarray or ExtensionArray. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index`` (except for datetime64[ns], which returns a DatetimeArray for _values on the Index, but ndarray[M8ns] on the Series). It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | --------------- | ------------- | --------------- | Index | ndarray | ndarray | ndarray | CategoricalIndex | Categorical | Categorical | ndarray[int] | DatetimeIndex | ndarray[M8ns] | DatetimeArray | ndarray[M8ns] | DatetimeIndex[tz] | ndarray[M8ns] | DatetimeArray | ndarray[M8ns] | PeriodIndex | ndarray[object] | PeriodArray | ndarray[int] | IntervalIndex | IntervalArray | IntervalArray | ndarray[object] | See Also -------- values _ndarray_values """ return self._data def _internal_get_values(self) -> np.ndarray: """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that _internal_get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index._internal_get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx._internal_get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx._internal_get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx._internal_get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep: bool = False) -> int: result = super().memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result def where(self, cond, other=None): """ Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : bool array-like with the same length as self other : scalar, or array-like Returns ------- Index """ if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) # construction helpers @classmethod def _scalar_data_error(cls, data): # We return the TypeError so that we can raise it from the constructor # in order to keep mypy happy return TypeError( f"{cls.__name__}(...) must be called with a collection of some " f"kind, {repr(data)} was passed" ) @classmethod def _string_data_error(cls, data): raise TypeError( "String dtype not supported, you may need " "to explicitly cast to a numeric type" ) def _coerce_scalar_to_index(self, item): """ We need to coerce a scalar to a compat for our index type. Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) def _to_safe_for_reshape(self): """ Convert to object if we are a categorical. """ return self def _convert_for_op(self, value): """ Convert value to be insertable to ndarray. """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op. """ if not is_scalar(value): raise TypeError(f"'value' must be a scalar, passed: {type(value).__name__}") @property def _has_complex_internals(self) -> bool: """ Indicates if an index is not directly backed by a numpy array """ # used to avoid libreduction code paths, which raise or require conversion return False def _is_memory_usage_qualified(self) -> bool: """ Return a boolean if we need a qualified .info display. """ return self.is_object() def is_type_compatible(self, kind) -> bool: """ Whether the index type is compatible with the provided type. """ return kind == self.inferred_type def __contains__(self, key: Any) -> bool: """ Return a boolean indicating whether the provided key is in the index. Parameters ---------- key : label The key to check if it is present in the index. Returns ------- bool Whether the key search is in the index. Raises ------ TypeError If the key is not hashable. See Also -------- Index.isin : Returns an ndarray of boolean dtype indicating whether the list-like key is in the index. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> 2 in idx True >>> 6 in idx False """ hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False def __hash__(self): raise TypeError(f"unhashable type: {repr(type(self).__name__)}") def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): key = com.cast_scalar_indexer(key) return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) key = com.values_from_object(key) result = getitem(key) if not is_scalar(result): if np.ndim(result) > 1: deprecate_ndim_indexing(result) return result return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name) -> bool: """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together. Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError("all inputs must be Index") names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return Index._concat_same_dtype(self, to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class. """ # must be overridden in specific classes klasses = ( ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, ExtensionArray, ABCIntervalIndex, ) to_concat = [ x.astype(object) if isinstance(x, klasses) else x for x in to_concat ] self = to_concat[0] attribs = self._get_attributes_dict() attribs["name"] = name to_concat = [x._values if isinstance(x, Index) else x for x in to_concat] return self._shallow_copy_with_infer(np.concatenate(to_concat), **attribs) def putmask(self, mask, value): """ Return a new Index of the values set with the mask. Returns ------- Index See Also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def equals(self, other) -> bool: """ Determine if two Index objects contain the same elements. Returns ------- bool True if "other" is an Index and it has the same elements as calling index; False otherwise. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) if isinstance(other, ABCMultiIndex): # d-level MultiIndex can equal d-tuple Index if not is_object_dtype(self.dtype): if self.nlevels != other.nlevels: return False return array_equivalent( com.values_from_object(self), com.values_from_object(other) ) def identical(self, other) -> bool: """ Similar to equals, but check that other comparable attributes are also equal. Returns ------- bool If two Index objects have equal elements and same type True, otherwise False. """ return ( self.equals(other) and all( ( getattr(self, c, None) == getattr(other, c, None) for c in self._comparables ) ) and type(self) == type(other) ) def asof(self, label): """ Return the label from the index, or, if not present, the previous one. Assuming that the index is sorted, return the passed index label if it is in the index, or return the previous index label if the passed one is not in the index. Parameters ---------- label : object The label up to which the method returns the latest index label. Returns ------- object The passed label if it is in the index. The previous label if the passed label is not in the sorted index or `NaN` if there is no such label. See Also -------- Series.asof : Return the latest value in a Series up to the passed index. merge_asof : Perform an asof merge (similar to left join but it matches on nearest key rather than equal key). Index.get_loc : An `asof` is a thin wrapper around `get_loc` with method='pad'. Examples -------- `Index.asof` returns the latest index label up to the passed label. >>> idx = pd.Index(['2013-12-31', '2014-01-02', '2014-01-03']) >>> idx.asof('2014-01-01') '2013-12-31' If the label is in the index, the method returns the passed label. >>> idx.asof('2014-01-02') '2014-01-02' If all of the labels in the index are later than the passed label, NaN is returned. >>> idx.asof('1999-01-02') nan If the index is not sorted, an error is raised. >>> idx_not_sorted = pd.Index(['2013-12-31', '2015-01-02', ... '2014-01-03']) >>> idx_not_sorted.asof('2013-12-31') Traceback (most recent call last): ValueError: index must be monotonic increasing or decreasing """ try: loc = self.get_loc(label, method="pad") except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ Find the locations (indices) of the labels from the index for every entry in the `where` argument. As in the `asof` function, if the label (a particular entry in `where`) is not in the index, the latest index label up to the passed label is chosen and its index returned. If all of the labels in the index are later than a label in `where`, -1 is returned. `mask` is used to ignore NA values in the index during calculation. Parameters ---------- where : Index An Index consisting of an array of timestamps. mask : array-like Array of booleans denoting where values in the original data are not NA. Returns ------- numpy.ndarray An array of locations (indices) of the labels from the Index which correspond to the return values of the `asof` function for every element in `where`. """ locs = self.values[mask].searchsorted(where.values, side="right") locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where.values < self.values[first])] = -1 return result def sort_values(self, return_indexer: bool = False, ascending: bool = True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- Series.sort_values : Sort values of a Series. DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): """ Use sort_values instead. """ raise TypeError("cannot sort an Index object in-place, use sort_values instead") def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or str, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index Shifted index. See Also -------- Series.shift : Shift values of Series. Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') """ raise NotImplementedError(f"Not supported for type {type(self).__name__}") def argsort(self, *args, **kwargs) -> np.ndarray: """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See Also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) def get_value(self, series: "Series", key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing. Returns ------- scalar or Series """ if not is_scalar(key): # if key is not a scalar, directly raise an error (the code below # would convert to numpy arrays and raise later any way) - GH29926 raise InvalidIndexError(key) try: # GH 20882, 21257 # First try to convert the key to a location # If that fails, raise a KeyError if an integer # index, otherwise, see if key is an integer, and # try that loc = self.get_loc(key) except KeyError: if not self._should_fallback_to_positional(): raise elif is_integer(key): # If the Index cannot hold integer, then this is unambiguously # a locational lookup. loc = key else: raise return self._get_values_for_loc(series, loc, key) def _should_fallback_to_positional(self) -> bool: """ If an integer key is not found, should we fall back to positional indexing? """ if len(self) > 0 and (self.holds_integer() or self.is_boolean()): return False return True def _get_values_for_loc(self, series: "Series", loc, key): """ Do a positional lookup on the given Series, returning either a scalar or a Series. Assumes that `series.index is self` key is included for MultiIndex compat. """ if is_integer(loc): return series._values[loc] return series.iloc[loc] def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. .. deprecated:: 1.0 Notes ----- Only use this if you know what you're doing. """ warnings.warn( ( "The 'set_value' method is deprecated, and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) loc = self._engine.get_loc(key) validate_numeric_casting(arr.dtype, value) arr[loc] = value _index_shared_docs[ "get_indexer_non_unique" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array. """ @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if is_categorical(target): tgt_values = np.asarray(target) elif self.is_all_dates and target.is_all_dates: # GH 30399 tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ Guaranteed return of an indexer even when non-unique. This dispatches to get_indexer or get_indexer_non_unique as appropriate. Returns ------- numpy.ndarray List of indices. """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works if self.inferred_type == "date" and isinstance(other, ABCDatetimeIndex): return type(other)(self), other elif self.inferred_type == "boolean": if not is_object_dtype(self.dtype): return self.astype("object"), other.astype("object") return self, other def groupby(self, values) -> PrettyDict[Hashable, np.ndarray]: """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples if isinstance(values, ABCMultiIndex): values = values.values values = ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in result.items()} return PrettyDict(result) def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from pandas.core.indexes.multi import MultiIndex new_values = super()._map_values(mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get("name"): names = [attributes.get("name")] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes["copy"] = False if not new_values.size: # empty attributes["dtype"] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See Also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], codes=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _get_string_slice(self, key: str_t, use_lhs: bool = True, use_rhs: bool = True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, default None kind : str, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples -------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index, then try to cast to an int if equivalent. """ if not self.is_floating(): return com.cast_scalar_indexer(key) return key def _validate_indexer(self, form: str_t, key, kind: str_t): """ If we are positional indexer, validate that we have appropriate typed bounds must be an integer. """ assert kind in ["getitem", "iloc"] if key is None: pass elif is_integer(key): pass else: self._invalid_indexer(form, key) def _maybe_cast_slice_bound(self, label, side: str_t, kind): """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} or None Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ["loc", "getitem", None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): self._invalid_indexer("slice", label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer("slice", label) return label def _searchsorted_monotonic(self, label, side="left"): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted( label, side="right" if side == "left" else "left" ) return len(self) - pos raise ValueError("index must be monotonic increasing or decreasing") def get_slice_bound(self, label, side: str_t, kind) -> int: """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} or None Returns ------- int Index of label. """ assert kind in ["loc", "getitem", None] if side not in ("left", "right"): raise ValueError( "Invalid value for side kwarg, must be either " f"'left' or 'right': {side}" ) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self.get_loc(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view("u1")) else: slc = lib.maybe_indices_to_slice(slc.astype("i8"), len(self)) if isinstance(slc, np.ndarray): raise KeyError( f"Cannot get {side} slice bound for non-unique " f"label: {repr(original_label)}" ) if isinstance(slc, slice): if side == "left": return slc.start else: return slc.stop else: if side == "right": return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, defaults None If None, defaults to 1. kind : {'loc', 'getitem'} or None Returns ------- start, end : int See Also -------- Index.get_loc : Get location for a single label. Notes ----- This method only works if the index is monotonic or unique. Examples -------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) """ inc = step is None or step >= 0 if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start # GH 16785: If start and end happen to be date strings with UTC offsets # attempt to parse and check that the offsets are the same if isinstance(start, (str, datetime)) and isinstance(end, (str, datetime)): try: ts_start = Timestamp(start) ts_end = Timestamp(end) except (ValueError, TypeError): pass else: if not tz_compare(ts_start.tzinfo, ts_end.tzinfo): raise ValueError("Both dates must have the same UTC offset") start_slice = None if start is not None: start_slice = self.get_slice_bound(start, "left", kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, "right", kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted. Parameters ---------- loc : int or list of int Location of item(-s) which will be deleted. Use a list of locations to delete more than one value at the same time. Returns ------- Index New Index with passed location(-s) deleted. See Also -------- numpy.delete : Delete any rows and column from NumPy array (ndarray). Examples -------- >>> idx = pd.Index(['a', 'b', 'c']) >>> idx.delete(1) Index(['a', 'c'], dtype='object') >>> idx = pd.Index(['a', 'b', 'c']) >>> idx.delete([0, 2]) Index(['b'], dtype='object') """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc: int, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values. Parameters ---------- loc : int item : object Returns ------- new_index : Index """ _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors: str_t = "raise"): """ Make new Index with passed list of labels deleted. Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If not all of the labels are found in the selected axis """ arr_dtype = "object" if self.dtype == "object" else None labels = com.index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != "ignore": raise KeyError(f"{labels[mask]} not found in axis") indexer = indexer[~mask] return self.delete(indexer) # -------------------------------------------------------------------- # Generated Arithmetic, Comparison, and Unary Methods @classmethod def _add_comparison_methods(cls): """ Add in comparison methods. """ cls.__eq__ = _make_comparison_op(operator.eq, cls) cls.__ne__ = _make_comparison_op(operator.ne, cls) cls.__lt__ = _make_comparison_op(operator.lt, cls) cls.__gt__ = _make_comparison_op(operator.gt, cls) cls.__le__ = _make_comparison_op(operator.le, cls) cls.__ge__ = _make_comparison_op(operator.ge, cls) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ Add in the numeric add/sub methods to disable. """ cls.__add__ = make_invalid_op("__add__") cls.__radd__ = make_invalid_op("__radd__") cls.__iadd__ = make_invalid_op("__iadd__") cls.__sub__ = make_invalid_op("__sub__") cls.__rsub__ = make_invalid_op("__rsub__") cls.__isub__ = make_invalid_op("__isub__") @classmethod def _add_numeric_methods_disabled(cls): """ Add in numeric methods to disable other than add/sub. """ cls.__pow__ = make_invalid_op("__pow__") cls.__rpow__ = make_invalid_op("__rpow__") cls.__mul__ = make_invalid_op("__mul__") cls.__rmul__ = make_invalid_op("__rmul__") cls.__floordiv__ = make_invalid_op("__floordiv__") cls.__rfloordiv__ = make_invalid_op("__rfloordiv__") cls.__truediv__ = make_invalid_op("__truediv__") cls.__rtruediv__ = make_invalid_op("__rtruediv__") cls.__mod__ = make_invalid_op("__mod__") cls.__divmod__ = make_invalid_op("__divmod__") cls.__neg__ = make_invalid_op("__neg__") cls.__pos__ = make_invalid_op("__pos__") cls.__abs__ = make_invalid_op("__abs__") cls.__inv__ = make_invalid_op("__inv__") @classmethod def _add_numeric_methods_binary(cls): """ Add in numeric methods. """ cls.__add__ = _make_arithmetic_op(operator.add, cls) cls.__radd__ = _make_arithmetic_op(ops.radd, cls) cls.__sub__ = _make_arithmetic_op(operator.sub, cls) cls.__rsub__ = _make_arithmetic_op(ops.rsub, cls) cls.__rpow__ = _make_arithmetic_op(ops.rpow, cls) cls.__pow__ = _make_arithmetic_op(operator.pow, cls) cls.__truediv__ = _make_arithmetic_op(operator.truediv, cls) cls.__rtruediv__ = _make_arithmetic_op(ops.rtruediv, cls) # TODO: rmod? rdivmod? cls.__mod__ = _make_arithmetic_op(operator.mod, cls) cls.__floordiv__ = _make_arithmetic_op(operator.floordiv, cls) cls.__rfloordiv__ = _make_arithmetic_op(ops.rfloordiv, cls) cls.__divmod__ = _make_arithmetic_op(divmod, cls) cls.__mul__ = _make_arithmetic_op(operator.mul, cls) cls.__rmul__ = _make_arithmetic_op(ops.rmul, cls) @classmethod def _add_numeric_methods_unary(cls): """ Add in numeric unary methods. """ def _make_evaluate_unary(op, opstr): def _evaluate_numeric_unary(self): attrs = self._get_attributes_dict() return Index(op(self.values), **attrs) _evaluate_numeric_unary.__name__ = opstr return _evaluate_numeric_unary cls.__neg__ = _make_evaluate_unary(operator.neg, "__neg__") cls.__pos__ = _make_evaluate_unary(operator.pos, "__pos__") cls.__abs__ = _make_evaluate_unary(np.abs, "__abs__") cls.__inv__ = _make_evaluate_unary(lambda x: -x, "__inv__") @classmethod def _add_numeric_methods(cls): cls._add_numeric_methods_unary() cls._add_numeric_methods_binary() @classmethod def _add_logical_methods(cls): """ Add in logical methods. """ _doc = """ %(desc)s Parameters ---------- *args These parameters will be passed to numpy.%(outname)s. **kwargs These parameters will be passed to numpy.%(outname)s. Returns ------- %(outname)s : bool or array_like (if axis is specified) A single element array_like may be converted to bool.""" _index_shared_docs["index_all"] = dedent( """ See Also -------- Index.any : Return whether any element in an Index is True. Series.any : Return whether any element in a Series is True. Series.all : Return whether all elements in a Series are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- **all** True, because nonzero integers are considered True. >>> pd.Index([1, 2, 3]).all() True False, because ``0`` is considered False. >>> pd.Index([0, 1, 2]).all() False **any** True, because ``1`` is considered True. >>> pd.Index([0, 0, 1]).any() True False, because ``0`` is considered False. >>> pd.Index([0, 0, 0]).any() False """ ) _index_shared_docs["index_any"] = dedent( """ See Also -------- Index.all : Return whether all elements are True. Series.all : Return whether all elements are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- >>> index = pd.Index([0, 1, 2]) >>> index.any() True >>> index = pd.Index([0, 0, 0]) >>> index.any() False """ ) def _make_logical_function(name, desc, f): @Substitution(outname=name, desc=desc) @Appender(_index_shared_docs["index_" + name]) @Appender(_doc) def logical_func(self, *args, **kwargs): result = f(self.values) if ( isinstance(result, (np.ndarray, ABCSeries, Index)) and result.ndim == 0 ): # return NumPy type return result.dtype.type(result.item()) else: # pragma: no cover return result logical_func.__name__ = name return logical_func cls.all = _make_logical_function( "all", "Return whether all elements are True.", np.all ) cls.any = _make_logical_function( "any", "Return whether any element is True.", np.any ) @classmethod def _add_logical_methods_disabled(cls): """ Add in logical methods to disable. """ cls.all = make_invalid_op("all") cls.any = make_invalid_op("any") @property def shape(self): """ Return a tuple of the shape of the underlying data. """ # not using "(len(self), )" to return "correct" shape if the values # consists of a >1 D array (see GH-27775) # overridden in MultiIndex.shape to avoid materializing the values return self._values.shape Index._add_numeric_methods_disabled() Index._add_logical_methods() Index._add_comparison_methods() def ensure_index_from_sequences(sequences, names=None): """ Construct an index from sequences of data. A single sequence returns an Index. Many sequences returns a MultiIndex. Parameters ---------- sequences : sequence of sequences names : sequence of str Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index_from_sequences([[1, 2, 3]], names=['name']) Int64Index([1, 2, 3], dtype='int64', name='name') >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']], names=['L1', 'L2']) MultiIndex([('a', 'a'), ('a', 'b')], names=['L1', 'L2']) See Also -------- ensure_index """ from pandas.core.indexes.multi import MultiIndex if len(sequences) == 1: if names is not None: names = names[0] return Index(sequences[0], name=names) else: return MultiIndex.from_arrays(sequences, names=names) def ensure_index(index_like, copy=False): """ Ensure that we have an index from some index-like object. Parameters ---------- index : sequence An Index or other sequence copy : bool Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index(['a', 'b']) Index(['a', 'b'], dtype='object') >>> ensure_index([('a', 'a'), ('b', 'c')]) Index([('a', 'a'), ('b', 'c')], dtype='object') >>> ensure_index([['a', 'a'], ['b', 'c']]) MultiIndex([('a', 'b'), ('a', 'c')], dtype='object') ) See Also -------- ensure_index_from_sequences """ if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, "name"): return Index(index_like, name=index_like.name, copy=copy) if is_iterator(index_like): index_like = list(index_like) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from pandas.core.indexes.multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like) def _ensure_has_len(seq): """ If seq is an iterator, put its values into a list. """ try: len(seq) except TypeError: return list(seq) else: return seq def _trim_front(strings): """ Trims zeros and decimal points. """ trimmed = strings while len(strings) > 0 and all(x[0] == " " for x in trimmed): trimmed = [x[1:] for x in trimmed] return trimmed def _validate_join_method(method): if method not in ["left", "right", "inner", "outer"]: raise ValueError(f"do not recognize join method {method}") def default_index(n): from pandas.core.indexes.range import RangeIndex return RangeIndex(0, n, name=None) def maybe_extract_name(name, obj, cls) -> Optional[Hashable]: """ If no name is passed, then extract it from data, validating hashability. """ if name is None and isinstance(obj, (Index, ABCSeries)): # Note we don't just check for "name" attribute since that would # pick up e.g. dtype.name name = obj.name # GH#29069 if not is_hashable(name): raise TypeError(f"{cls.__name__}.name must be a hashable type") return name def _maybe_cast_with_dtype(data: np.ndarray, dtype: np.dtype, copy: bool) -> np.ndarray: """ If a dtype is passed, cast to the closest matching dtype that is supported by Index. Parameters ---------- data : np.ndarray dtype : np.dtype copy : bool Returns ------- np.ndarray """ # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "integer": data = maybe_cast_to_integer_array(data, dtype, copy=copy) elif inferred in ["floating", "mixed-integer-float"]: if isna(data).any(): raise ValueError("cannot convert float NaN to integer") if inferred == "mixed-integer-float": data = maybe_cast_to_integer_array(data, dtype) # If we are actually all equal to integers, # then coerce to integer. try: data = _try_convert_to_int_array(data, copy, dtype) except ValueError: data = np.array(data, dtype=np.float64, copy=copy) elif inferred == "string": pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "string": pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) return data def _maybe_cast_data_without_dtype(subarr): """ If we have an arraylike input but no passed dtype, try to infer a supported dtype. Parameters ---------- subarr : np.ndarray, Index, or Series Returns ------- converted : np.ndarray or ExtensionArray dtype : np.dtype or ExtensionDtype """ # Runtime import needed bc IntervalArray imports Index from pandas.core.arrays import ( IntervalArray, PeriodArray, DatetimeArray, TimedeltaArray, ) inferred = lib.infer_dtype(subarr, skipna=False) if inferred == "integer": try: data = _try_convert_to_int_array(subarr, False, None) return data, data.dtype except ValueError: pass return subarr, object elif inferred in ["floating", "mixed-integer-float", "integer-na"]: # TODO: Returns IntegerArray for integer-na case in the future return subarr, np.float64 elif inferred == "interval": try: data = IntervalArray._from_sequence(subarr, copy=False) return data, data.dtype except ValueError: # GH27172: mixed closed Intervals --> object dtype pass elif inferred == "boolean": # don't support boolean explicitly ATM pass elif inferred != "string": if inferred.startswith("datetime"): try: data = DatetimeArray._from_sequence(subarr, copy=False) return data, data.dtype except (ValueError, OutOfBoundsDatetime): # GH 27011 # If we have mixed timezones, just send it # down the base constructor pass elif inferred.startswith("timedelta"): data = TimedeltaArray._from_sequence(subarr, copy=False) return data, data.dtype elif inferred == "period": try: data = PeriodArray._from_sequence(subarr) return data, data.dtype except IncompatibleFrequency: pass return subarr, subarr.dtype def _try_convert_to_int_array( data: np.ndarray, copy: bool, dtype: np.dtype ) -> np.ndarray: """ Attempt to convert an array of data into an integer array. Parameters ---------- data : The data to convert. copy : bool Whether to copy the data or not. dtype : np.dtype Returns ------- int_array : data converted to either an ndarray[int64] or ndarray[uint64] Raises ------ ValueError if the conversion was not successful. """ if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desired try: res = data.astype("i8", copy=False) if (res == data).all(): return res # TODO: might still need to copy except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype("u8", copy=False) if (res == data).all(): return res # TODO: might still need to copy except (OverflowError, TypeError, ValueError): pass raise ValueError def _maybe_asobject(dtype, klass, data, copy: bool, name: Label, **kwargs): """ If an object dtype was specified, create the non-object Index and then convert it to object. Parameters ---------- dtype : np.dtype, ExtensionDtype, str klass : Index subclass data : list-like copy : bool name : hashable **kwargs Returns ------- Index Notes ----- We assume that calling .astype(object) on this klass will make a copy. """ # GH#23524 passing `dtype=object` to DatetimeIndex is invalid, # will raise in the where `data` is already tz-aware. So # we leave it out of this step and cast to object-dtype after # the DatetimeIndex construction. if is_dtype_equal(_o_dtype, dtype): # Note we can pass copy=False because the .astype below # will always make a copy index = klass(data, copy=False, name=name, **kwargs) return index.astype(object) return klass(data, dtype=dtype, copy=copy, name=name, **kwargs)
BugsInPy/BugsInPy/temp/projects/pandas/bug-53-fixed/pandas/pandas/core/indexes/base.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-53-buggy/pandas/pandas/core/indexes/base.py
pandas-bug-58
import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import coerce_indexer_dtype, maybe_infer_to_datetimelike from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.arrays.base import ( ExtensionArray, _extension_array_shared_docs, try_cast_to_ea, ) from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. .. versionadded:: 0.21.0 Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. .. versionadded:: 0.21.0 Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: if len(values) == 0: sanitize_dtype = "object" else: sanitize_dtype = None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) except ValueError: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = _recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _ndarray_values(self) -> np.ndarray: return self.codes @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = _recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = _recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) codes = np.asarray(codes) # #21767 if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = _recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = _recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. .. versionadded:: 0.21.0. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories add_categories remove_categories remove_unused_categories set_categories Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories add_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories reorder_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories reorder_categories add_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") # compat with pre 0.21.0 CategoricalDtype change if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self): """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @Substitution(klass="Categorical") @Appender(_shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def put(self, *args, **kwargs): """ Replace specific elements in the Categorical with given values. """ raise NotImplementedError(("'put' is not yet implemented for Categorical")) def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes.copy() def argsort(self, ascending=True, kind="quicksort", *args, **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. *args, **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, *args, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2.0, 2.0, NaN, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values() [2.0, 2.0, 5.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5.0, 2.0, 2.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2.0, 2.0, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5.0, 2.0, 2.0] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: values = self.to_dense().reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, ABCSeries): if not value[~value.isin(self.categories)].isna().all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (3, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = ( f"'fill_value' ('{fill_value}') is not in this " "Categorical's categories." ) raise TypeError(msg) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = _recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list('baabc')) [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list('baabc'), categories=list('abc')) [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical(list('baabc'), ... categories=list('abc'), ... ordered=True) [b, a, c] Categories (3, object): [a < b < c] See Also -------- unique CategoricalIndex.unique Series.unique """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = _recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 3, 2, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if to_replace in cat.categories: if isna(value): cat.remove_categories(to_replace, inplace=True) else: categories = cat.categories.tolist() index = categories.index(to_replace) if value in cat.categories: value_index = categories.index(value) cat._codes[cat._codes == index] = value_index cat.remove_categories(to_replace, inplace=True) else: categories[index] = value cat.rename_categories(categories, inplace=True) if not inplace: return cat # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s.cat.categories >>> s.cat.categories = list('abc') >>> s.cat.rename_categories(list('cab')) >>> s.cat.reorder_categories(list('cab')) >>> s.cat.add_categories(['d','e']) >>> s.cat.remove_categories(['d']) >>> s.cat.remove_unused_categories() >>> s.cat.set_categories(list('abcde')) >>> s.cat.as_ordered() >>> s.cat.as_unordered() """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, "_ndarray_values", values) categories = getattr(categories, "_ndarray_values", categories) elif is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = try_cast_to_ea(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def _recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables))) import operator from shutil import get_terminal_size from typing import Dict, Hashable, List, Type, Union, cast from warnings import warn import numpy as np from pandas._config import get_option from pandas._libs import algos as libalgos, hashtable as htable from pandas._typing import ArrayLike, Dtype, Ordered, Scalar from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg, ) from pandas.util._validators import validate_bool_kwarg, validate_fillna_kwargs from pandas.core.dtypes.cast import coerce_indexer_dtype, maybe_infer_to_datetimelike from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_platform_int, is_categorical_dtype, is_datetime64_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_integer_dtype, is_iterator, is_list_like, is_object_dtype, is_scalar, is_sequence, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.generic import ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna from pandas.core import ops from pandas.core.accessor import PandasDelegate, delegate_names import pandas.core.algorithms as algorithms from pandas.core.algorithms import _get_data_algo, factorize, take, take_1d, unique1d from pandas.core.arrays.base import ( ExtensionArray, _extension_array_shared_docs, try_cast_to_ea, ) from pandas.core.base import NoNewAttributesMixin, PandasObject, _shared_docs import pandas.core.common as com from pandas.core.construction import array, extract_array, sanitize_array from pandas.core.indexers import check_array_indexer, deprecate_ndim_indexing from pandas.core.missing import interpolate_2d from pandas.core.ops.common import unpack_zerodim_and_defer from pandas.core.sorting import nargsort from pandas.io.formats import console def _cat_compare_op(op): opname = f"__{op.__name__}__" @unpack_zerodim_and_defer(opname) def func(self, other): if is_list_like(other) and len(other) != len(self): # TODO: Could this fail if the categories are listlike objects? raise ValueError("Lengths must match.") if not self.ordered: if opname in ["__lt__", "__gt__", "__le__", "__ge__"]: raise TypeError( "Unordered Categoricals can only compare equality or not" ) if isinstance(other, Categorical): # Two Categoricals can only be be compared if the categories are # the same (maybe up to ordering, depending on ordered) msg = "Categoricals can only be compared if 'categories' are the same." if len(self.categories) != len(other.categories): raise TypeError(msg + " Categories are different lengths") elif self.ordered and not (self.categories == other.categories).all(): raise TypeError(msg) elif not set(self.categories) == set(other.categories): raise TypeError(msg) if not (self.ordered == other.ordered): raise TypeError( "Categoricals can only be compared if 'ordered' is the same" ) if not self.ordered and not self.categories.equals(other.categories): # both unordered and different order other_codes = _get_codes_for_values(other, self.categories) else: other_codes = other._codes f = getattr(self._codes, opname) ret = f(other_codes) mask = (self._codes == -1) | (other_codes == -1) if mask.any(): # In other series, the leads to False, so do that here too ret[mask] = False return ret if is_scalar(other): if other in self.categories: i = self.categories.get_loc(other) ret = getattr(self._codes, opname)(i) if opname not in {"__eq__", "__ge__", "__gt__"}: # check for NaN needed if we are not equal or larger mask = self._codes == -1 ret[mask] = False return ret else: if opname == "__eq__": return np.zeros(len(self), dtype=bool) elif opname == "__ne__": return np.ones(len(self), dtype=bool) else: raise TypeError( f"Cannot compare a Categorical for op {opname} with a " "scalar, which is not a category." ) else: # allow categorical vs object dtype array comparisons for equality # these are only positional comparisons if opname in ["__eq__", "__ne__"]: return getattr(np.array(self), opname)(np.array(other)) raise TypeError( f"Cannot compare a Categorical for op {opname} with " f"type {type(other)}.\nIf you want to compare values, " "use 'np.asarray(cat) <op> other'." ) func.__name__ = opname return func def contains(cat, key, container): """ Helper for membership check for ``key`` in ``cat``. This is a helper method for :method:`__contains__` and :class:`CategoricalIndex.__contains__`. Returns True if ``key`` is in ``cat.categories`` and the location of ``key`` in ``categories`` is in ``container``. Parameters ---------- cat : :class:`Categorical`or :class:`categoricalIndex` key : a hashable object The key to check membership for. container : Container (e.g. list-like or mapping) The container to check for membership in. Returns ------- is_in : bool True if ``key`` is in ``self.categories`` and location of ``key`` in ``categories`` is in ``container``, else False. Notes ----- This method does not check for NaN values. Do that separately before calling this method. """ hash(key) # get location of key in categories. # If a KeyError, the key isn't in categories, so logically # can't be in container either. try: loc = cat.categories.get_loc(key) except (KeyError, TypeError): return False # loc is the location of key in categories, but also the *value* # for key in container. So, `key` may be in categories, # but still not in `container`. Example ('b' in categories, # but not in values): # 'b' in Categorical(['a'], categories=['a', 'b']) # False if is_scalar(loc): return loc in container else: # if categories is an IntervalIndex, loc is an array. return any(loc_ in container for loc_ in loc) _codes_doc = """ The category codes of this categorical. Level codes are an array if integer which are the positions of the real values in the categories array. There is not setter, use the other categorical methods and the normal item setter to change values in the categorical. """ class Categorical(ExtensionArray, PandasObject): """ Represent a categorical variable in classic R / S-plus fashion. `Categoricals` can only take on only a limited, and usually fixed, number of possible values (`categories`). In contrast to statistical categorical variables, a `Categorical` might have an order, but numerical operations (additions, divisions, ...) are not possible. All values of the `Categorical` are either in `categories` or `np.nan`. Assigning values outside of `categories` will raise a `ValueError`. Order is defined by the order of the `categories`, not lexical order of the values. Parameters ---------- values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of `values` (sorted, if possible, otherwise in the order in which they appear). ordered : bool, default False Whether or not this categorical is treated as a ordered categorical. If True, the resulting categorical will be ordered. An ordered categorical respects, when sorted, the order of its `categories` attribute (which in turn is the `categories` argument, if provided). dtype : CategoricalDtype An instance of ``CategoricalDtype`` to use for this categorical. .. versionadded:: 0.21.0 Attributes ---------- categories : Index The categories of this categorical codes : ndarray The codes (integer positions, which point to the categories) of this categorical, read only. ordered : bool Whether or not this Categorical is ordered. dtype : CategoricalDtype The instance of ``CategoricalDtype`` storing the ``categories`` and ``ordered``. .. versionadded:: 0.21.0 Methods ------- from_codes __array__ Raises ------ ValueError If the categories do not validate. TypeError If an explicit ``ordered=True`` is given but no `categories` and the `values` are not sortable. See Also -------- CategoricalDtype : Type for categorical data. CategoricalIndex : An Index with an underlying ``Categorical``. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html>`_ for more. Examples -------- >>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3] >>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c] Ordered `Categoricals` can be sorted according to the custom order of the categories and can have a min and max value. >>> c = pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c' """ # For comparisons, so that numpy uses our implementation if the compare # ops, which raise __array_priority__ = 1000 _dtype = CategoricalDtype(ordered=False) # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = PandasObject._deprecations | frozenset(["tolist"]) _typ = "categorical" def __init__( self, values, categories=None, ordered=None, dtype=None, fastpath=False ): dtype = CategoricalDtype._from_values_or_dtype( values, categories, ordered, dtype ) # At this point, dtype is always a CategoricalDtype, but # we may have dtype.categories be None, and we need to # infer categories in a factorization step further below if fastpath: self._codes = coerce_indexer_dtype(values, dtype.categories) self._dtype = self._dtype.update_dtype(dtype) return # null_mask indicates missing values we want to exclude from inference. # This means: only missing values in list-likes (not arrays/ndframes). null_mask = np.array(False) # sanitize input if is_categorical_dtype(values): if dtype.categories is None: dtype = CategoricalDtype(values.categories, dtype.ordered) elif not isinstance(values, (ABCIndexClass, ABCSeries)): # sanitize_array coerces np.nan to a string under certain versions # of numpy values = maybe_infer_to_datetimelike(values, convert_dates=True) if not isinstance(values, np.ndarray): values = _convert_to_list_like(values) # By convention, empty lists result in object dtype: if len(values) == 0: sanitize_dtype = "object" else: sanitize_dtype = None null_mask = isna(values) if null_mask.any(): values = [values[idx] for idx in np.where(~null_mask)[0]] values = sanitize_array(values, None, dtype=sanitize_dtype) if dtype.categories is None: try: codes, categories = factorize(values, sort=True) except TypeError: codes, categories = factorize(values, sort=False) if dtype.ordered: # raise, as we don't have a sortable data structure and so # the user should give us one by specifying categories raise TypeError( "'values' is not ordered, please " "explicitly specify the categories order " "by passing in a categories argument." ) except ValueError: # FIXME raise NotImplementedError( "> 1 ndim Categorical are not supported at this time" ) # we're inferring from values dtype = CategoricalDtype(categories, dtype.ordered) elif is_categorical_dtype(values): old_codes = ( values._values.codes if isinstance(values, ABCSeries) else values.codes ) codes = _recode_for_categories( old_codes, values.dtype.categories, dtype.categories ) else: codes = _get_codes_for_values(values, dtype.categories) if null_mask.any(): # Reinsert -1 placeholders for previously removed missing values full_codes = -np.ones(null_mask.shape, dtype=codes.dtype) full_codes[~null_mask] = codes codes = full_codes self._dtype = self._dtype.update_dtype(dtype) self._codes = coerce_indexer_dtype(codes, dtype.categories) @property def categories(self): """ The categories of this categorical. Setting assigns new values to each category (effectively a rename of each individual category). The assigned value has to be a list-like object. All items must be unique and the number of items in the new categories must be the same as the number of items in the old categories. Assigning to `categories` is a inplace operation! Raises ------ ValueError If the new categories do not validate as categories or if the number of new categories is unequal the number of old categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories set_categories """ return self.dtype.categories @categories.setter def categories(self, categories): new_dtype = CategoricalDtype(categories, ordered=self.ordered) if self.dtype.categories is not None and len(self.dtype.categories) != len( new_dtype.categories ): raise ValueError( "new categories need to have the same number of " "items as the old categories!" ) self._dtype = new_dtype @property def ordered(self) -> Ordered: """ Whether the categories have an ordered relationship. """ return self.dtype.ordered @property def dtype(self) -> CategoricalDtype: """ The :class:`~pandas.api.types.CategoricalDtype` for this instance. """ return self._dtype @property def _ndarray_values(self) -> np.ndarray: return self.codes @property def _constructor(self) -> Type["Categorical"]: return Categorical @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): return Categorical(scalars, dtype=dtype) def _formatter(self, boxed=False): # Defer to CategoricalFormatter's formatter. return None def copy(self) -> "Categorical": """ Copy constructor. """ return self._constructor( values=self._codes.copy(), dtype=self.dtype, fastpath=True ) def astype(self, dtype: Dtype, copy: bool = True) -> ArrayLike: """ Coerce this type to another dtype Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and dtype is categorical, the original object is returned. """ if is_categorical_dtype(dtype): dtype = cast(Union[str, CategoricalDtype], dtype) # GH 10696/18593 dtype = self.dtype.update_dtype(dtype) self = self.copy() if copy else self if dtype == self.dtype: return self return self._set_dtype(dtype) if is_extension_array_dtype(dtype): return array(self, dtype=dtype, copy=copy) # type: ignore # GH 28770 if is_integer_dtype(dtype) and self.isna().any(): raise ValueError("Cannot convert float NaN to integer") return np.array(self, dtype=dtype, copy=copy) @cache_readonly def size(self) -> int: """ Return the len of myself. """ return self._codes.size @cache_readonly def itemsize(self) -> int: """ return the size of a single category """ return self.categories.itemsize def tolist(self) -> List[Scalar]: """ Return a list of the values. These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period) """ return list(self) to_list = tolist @classmethod def _from_inferred_categories( cls, inferred_categories, inferred_codes, dtype, true_values=None ): """ Construct a Categorical from inferred values. For inferred categories (`dtype` is None) the categories are sorted. For explicit `dtype`, the `inferred_categories` are cast to the appropriate type. Parameters ---------- inferred_categories : Index inferred_codes : Index dtype : CategoricalDtype or 'category' true_values : list, optional If none are provided, the default ones are "True", "TRUE", and "true." Returns ------- Categorical """ from pandas import Index, to_numeric, to_datetime, to_timedelta cats = Index(inferred_categories) known_categories = ( isinstance(dtype, CategoricalDtype) and dtype.categories is not None ) if known_categories: # Convert to a specialized type with `dtype` if specified. if dtype.categories.is_numeric(): cats = to_numeric(inferred_categories, errors="coerce") elif is_datetime64_dtype(dtype.categories): cats = to_datetime(inferred_categories, errors="coerce") elif is_timedelta64_dtype(dtype.categories): cats = to_timedelta(inferred_categories, errors="coerce") elif dtype.categories.is_boolean(): if true_values is None: true_values = ["True", "TRUE", "true"] cats = cats.isin(true_values) if known_categories: # Recode from observation order to dtype.categories order. categories = dtype.categories codes = _recode_for_categories(inferred_codes, cats, categories) elif not cats.is_monotonic_increasing: # Sort categories and recode for unknown categories. unsorted = cats.copy() categories = cats.sort_values() codes = _recode_for_categories(inferred_codes, unsorted, categories) dtype = CategoricalDtype(categories, ordered=False) else: dtype = CategoricalDtype(cats, ordered=False) codes = inferred_codes return cls(codes, dtype=dtype, fastpath=True) @classmethod def from_codes(cls, codes, categories=None, ordered=None, dtype=None): """ Make a Categorical type from codes and categories or dtype. This constructor is useful if you already have codes and categories/dtype and so do not need the (computation intensive) factorization step, which is usually done on the constructor. If your data does not follow this convention, please use the normal constructor. Parameters ---------- codes : array-like of int An integer array, where each integer points to a category in categories or dtype.categories, or else is -1 for NaN. categories : index-like, optional The categories for the categorical. Items need to be unique. If the categories are not given here, then they must be provided in `dtype`. ordered : bool, optional Whether or not this categorical is treated as an ordered categorical. If not given here or in `dtype`, the resulting categorical will be unordered. dtype : CategoricalDtype or "category", optional If :class:`CategoricalDtype`, cannot be used together with `categories` or `ordered`. .. versionadded:: 0.24.0 When `dtype` is provided, neither `categories` nor `ordered` should be provided. Returns ------- Categorical Examples -------- >>> dtype = pd.CategoricalDtype(['a', 'b'], ordered=True) >>> pd.Categorical.from_codes(codes=[0, 1, 0, 1], dtype=dtype) [a, b, a, b] Categories (2, object): [a < b] """ dtype = CategoricalDtype._from_values_or_dtype( categories=categories, ordered=ordered, dtype=dtype ) if dtype.categories is None: msg = ( "The categories must be provided in 'categories' or " "'dtype'. Both were None." ) raise ValueError(msg) if is_extension_array_dtype(codes) and is_integer_dtype(codes): # Avoid the implicit conversion of Int to object if isna(codes).any(): raise ValueError("codes cannot contain NA values") codes = codes.to_numpy(dtype=np.int64) else: codes = np.asarray(codes) if len(codes) and not is_integer_dtype(codes): raise ValueError("codes need to be array-like integers") if len(codes) and (codes.max() >= len(dtype.categories) or codes.min() < -1): raise ValueError("codes need to be between -1 and len(categories)-1") return cls(codes, dtype=dtype, fastpath=True) def _get_codes(self): """ Get the codes. Returns ------- codes : integer array view A non writable view of the `codes` array. """ v = self._codes.view() v.flags.writeable = False return v def _set_codes(self, codes): """ Not settable by the user directly """ raise ValueError("cannot set Categorical codes directly") codes = property(fget=_get_codes, fset=_set_codes, doc=_codes_doc) def _set_categories(self, categories, fastpath=False): """ Sets new categories inplace Parameters ---------- fastpath : bool, default False Don't perform validation of the categories for uniqueness or nulls Examples -------- >>> c = pd.Categorical(['a', 'b']) >>> c [a, b] Categories (2, object): [a, b] >>> c._set_categories(pd.Index(['a', 'c'])) >>> c [a, c] Categories (2, object): [a, c] """ if fastpath: new_dtype = CategoricalDtype._from_fastpath(categories, self.ordered) else: new_dtype = CategoricalDtype(categories, ordered=self.ordered) if ( not fastpath and self.dtype.categories is not None and len(new_dtype.categories) != len(self.dtype.categories) ): raise ValueError( "new categories need to have the same number of " "items than the old categories!" ) self._dtype = new_dtype def _set_dtype(self, dtype: CategoricalDtype) -> "Categorical": """ Internal method for directly updating the CategoricalDtype Parameters ---------- dtype : CategoricalDtype Notes ----- We don't do any validation here. It's assumed that the dtype is a (valid) instance of `CategoricalDtype`. """ codes = _recode_for_categories(self.codes, self.categories, dtype.categories) return type(self)(codes, dtype=dtype, fastpath=True) def set_ordered(self, value, inplace=False): """ Set the ordered attribute to the boolean value. Parameters ---------- value : bool Set whether this categorical is ordered (True) or not (False). inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to the value. """ inplace = validate_bool_kwarg(inplace, "inplace") new_dtype = CategoricalDtype(self.categories, ordered=value) cat = self if inplace else self.copy() cat._dtype = new_dtype if not inplace: return cat def as_ordered(self, inplace=False): """ Set the Categorical to be ordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to True. Returns ------- Categorical Ordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(True, inplace=inplace) def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical Unordered Categorical. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace) def set_categories(self, new_categories, ordered=None, rename=False, inplace=False): """ Set the categories to the specified new_categories. `new_categories` can include new categories (which will result in unused categories) or remove old categories (which results in values set to NaN). If `rename==True`, the categories will simple be renamed (less or more items than in old categories will result in values set to NaN or in unused categories respectively). This method can be used to perform more than one action of adding, removing, and reordering simultaneously and is therefore faster than performing the individual steps via the more specialised methods. On the other hand this methods does not do checks (e.g., whether the old categories are included in the new categories on a reorder), which can result in surprising changes, for example when using special string dtypes, which does not considers a S1 string equal to a single char python string. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, default False Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. rename : bool, default False Whether or not the new_categories should be considered as a rename of the old categories or as reordered categories. inplace : bool, default False Whether or not to reorder the categories in-place or return a copy of this categorical with reordered categories. Returns ------- Categorical with reordered categories or None if inplace. Raises ------ ValueError If new_categories does not validate as categories See Also -------- rename_categories reorder_categories add_categories remove_categories remove_unused_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if ordered is None: ordered = self.dtype.ordered new_dtype = CategoricalDtype(new_categories, ordered=ordered) cat = self if inplace else self.copy() if rename: if cat.dtype.categories is not None and len(new_dtype.categories) < len( cat.dtype.categories ): # remove all _codes which are larger and set to -1/NaN cat._codes[cat._codes >= len(new_dtype.categories)] = -1 else: codes = _recode_for_categories( cat.codes, cat.categories, new_dtype.categories ) cat._codes = codes cat._dtype = new_dtype if not inplace: return cat def rename_categories(self, new_categories, inplace=False): """ Rename categories. Parameters ---------- new_categories : list-like, dict-like or callable New categories which will replace old categories. * list-like: all items must be unique and the number of items in the new categories must match the existing number of categories. * dict-like: specifies a mapping from old categories to new. Categories not contained in the mapping are passed through and extra categories in the mapping are ignored. .. versionadded:: 0.21.0. * callable : a callable that is called on all items in the old categories and whose return values comprise the new categories. .. versionadded:: 0.23.0. inplace : bool, default False Whether or not to rename the categories inplace or return a copy of this categorical with renamed categories. Returns ------- cat : Categorical or None With ``inplace=False``, the new categorical is returned. With ``inplace=True``, there is no return value. Raises ------ ValueError If new categories are list-like and do not have the same number of items than the current categories or do not validate as categories See Also -------- reorder_categories add_categories remove_categories remove_unused_categories set_categories Examples -------- >>> c = pd.Categorical(['a', 'a', 'b']) >>> c.rename_categories([0, 1]) [0, 0, 1] Categories (2, int64): [0, 1] For dict-like ``new_categories``, extra keys are ignored and categories not in the dictionary are passed through >>> c.rename_categories({'a': 'A', 'c': 'C'}) [A, A, b] Categories (2, object): [A, b] You may also provide a callable to create the new categories >>> c.rename_categories(lambda x: x.upper()) [A, A, B] Categories (2, object): [A, B] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if is_dict_like(new_categories): cat.categories = [new_categories.get(item, item) for item in cat.categories] elif callable(new_categories): cat.categories = [new_categories(item) for item in cat.categories] else: cat.categories = new_categories if not inplace: return cat def reorder_categories(self, new_categories, ordered=None, inplace=False): """ Reorder categories as specified in new_categories. `new_categories` need to include all old categories and no new category items. Parameters ---------- new_categories : Index-like The categories in new order. ordered : bool, optional Whether or not the categorical is treated as a ordered categorical. If not given, do not change the ordered information. inplace : bool, default False Whether or not to reorder the categories inplace or return a copy of this categorical with reordered categories. Returns ------- cat : Categorical with reordered categories or None if inplace. Raises ------ ValueError If the new categories do not contain all old category items or any new ones See Also -------- rename_categories add_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if set(self.dtype.categories) != set(new_categories): raise ValueError( "items in new_categories are not the same as in old categories" ) return self.set_categories(new_categories, ordered=ordered, inplace=inplace) def add_categories(self, new_categories, inplace=False): """ Add new categories. `new_categories` will be included at the last/highest place in the categories and will be unused directly after this call. Parameters ---------- new_categories : category or list-like of category The new categories to be included. inplace : bool, default False Whether or not to add the categories inplace or return a copy of this categorical with added categories. Returns ------- cat : Categorical with new categories added or None if inplace. Raises ------ ValueError If the new categories include old categories or do not validate as categories See Also -------- rename_categories reorder_categories remove_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(new_categories): new_categories = [new_categories] already_included = set(new_categories) & set(self.dtype.categories) if len(already_included) != 0: raise ValueError( f"new categories must not include old categories: {already_included}" ) new_categories = list(self.dtype.categories) + list(new_categories) new_dtype = CategoricalDtype(new_categories, self.ordered) cat = self if inplace else self.copy() cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(cat._codes, new_dtype.categories) if not inplace: return cat def remove_categories(self, removals, inplace=False): """ Remove the specified categories. `removals` must be included in the old categories. Values which were in the removed categories will be set to NaN Parameters ---------- removals : category or list of categories The categories which should be removed. inplace : bool, default False Whether or not to remove the categories inplace or return a copy of this categorical with removed categories. Returns ------- cat : Categorical with removed categories or None if inplace. Raises ------ ValueError If the removals are not contained in the categories See Also -------- rename_categories reorder_categories add_categories remove_unused_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") if not is_list_like(removals): removals = [removals] removal_set = set(removals) not_included = removal_set - set(self.dtype.categories) new_categories = [c for c in self.dtype.categories if c not in removal_set] # GH 10156 if any(isna(removals)): not_included = {x for x in not_included if notna(x)} new_categories = [x for x in new_categories if notna(x)] if len(not_included) != 0: raise ValueError(f"removals must all be in old categories: {not_included}") return self.set_categories( new_categories, ordered=self.ordered, rename=False, inplace=inplace ) def remove_unused_categories(self, inplace=False): """ Remove categories which are not used. Parameters ---------- inplace : bool, default False Whether or not to drop unused categories inplace or return a copy of this categorical with unused categories dropped. Returns ------- cat : Categorical with unused categories dropped or None if inplace. See Also -------- rename_categories reorder_categories add_categories remove_categories set_categories """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() idx, inv = np.unique(cat._codes, return_inverse=True) if idx.size != 0 and idx[0] == -1: # na sentinel idx, inv = idx[1:], inv - 1 new_categories = cat.dtype.categories.take(idx) new_dtype = CategoricalDtype._from_fastpath( new_categories, ordered=self.ordered ) cat._dtype = new_dtype cat._codes = coerce_indexer_dtype(inv, new_dtype.categories) if not inplace: return cat def map(self, mapper): """ Map categories using input correspondence (dict, Series, or function). Maps the categories to new categories. If the mapping correspondence is one-to-one the result is a :class:`~pandas.Categorical` which has the same order property as the original, otherwise a :class:`~pandas.Index` is returned. NaN values are unaffected. If a `dict` or :class:`~pandas.Series` is used any unmapped category is mapped to `NaN`. Note that if this happens an :class:`~pandas.Index` will be returned. Parameters ---------- mapper : function, dict, or Series Mapping correspondence. Returns ------- pandas.Categorical or pandas.Index Mapped categorical. See Also -------- CategoricalIndex.map : Apply a mapping correspondence on a :class:`~pandas.CategoricalIndex`. Index.map : Apply a mapping correspondence on an :class:`~pandas.Index`. Series.map : Apply a mapping correspondence on a :class:`~pandas.Series`. Series.apply : Apply more complex functions on a :class:`~pandas.Series`. Examples -------- >>> cat = pd.Categorical(['a', 'b', 'c']) >>> cat [a, b, c] Categories (3, object): [a, b, c] >>> cat.map(lambda x: x.upper()) [A, B, C] Categories (3, object): [A, B, C] >>> cat.map({'a': 'first', 'b': 'second', 'c': 'third'}) [first, second, third] Categories (3, object): [first, second, third] If the mapping is one-to-one the ordering of the categories is preserved: >>> cat = pd.Categorical(['a', 'b', 'c'], ordered=True) >>> cat [a, b, c] Categories (3, object): [a < b < c] >>> cat.map({'a': 3, 'b': 2, 'c': 1}) [3, 2, 1] Categories (3, int64): [3 < 2 < 1] If the mapping is not one-to-one an :class:`~pandas.Index` is returned: >>> cat.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object') If a `dict` is used, all unmapped categories are mapped to `NaN` and the result is an :class:`~pandas.Index`: >>> cat.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object') """ new_categories = self.categories.map(mapper) try: return self.from_codes( self._codes.copy(), categories=new_categories, ordered=self.ordered ) except ValueError: # NA values are represented in self._codes with -1 # np.take causes NA values to take final element in new_categories if np.any(self._codes == -1): new_categories = new_categories.insert(len(new_categories), np.nan) return np.take(new_categories, self._codes) __eq__ = _cat_compare_op(operator.eq) __ne__ = _cat_compare_op(operator.ne) __lt__ = _cat_compare_op(operator.lt) __gt__ = _cat_compare_op(operator.gt) __le__ = _cat_compare_op(operator.le) __ge__ = _cat_compare_op(operator.ge) # for Series/ndarray like compat @property def shape(self): """ Shape of the Categorical. For internal compatibility with numpy arrays. Returns ------- shape : tuple """ return tuple([len(self._codes)]) def shift(self, periods, fill_value=None): """ Shift Categorical by desired number of periods. Parameters ---------- periods : int Number of periods to move, can be positive or negative fill_value : object, optional The scalar value to use for newly introduced missing values. .. versionadded:: 0.24.0 Returns ------- shifted : Categorical """ # since categoricals always have ndim == 1, an axis parameter # doesn't make any sense here. codes = self.codes if codes.ndim > 1: raise NotImplementedError("Categorical with ndim > 1.") if np.prod(codes.shape) and (periods != 0): codes = np.roll(codes, ensure_platform_int(periods), axis=0) if isna(fill_value): fill_value = -1 elif fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: raise ValueError( f"'fill_value={fill_value}' is not present " "in this Categorical's categories" ) if periods > 0: codes[:periods] = fill_value else: codes[periods:] = fill_value return self.from_codes(codes, dtype=self.dtype) def __array__(self, dtype=None) -> np.ndarray: """ The numpy array interface. Returns ------- numpy.array A numpy array of either the specified dtype or, if dtype==None (default), the same dtype as categorical.categories.dtype. """ ret = take_1d(self.categories.values, self._codes) if dtype and not is_dtype_equal(dtype, self.categories.dtype): return np.asarray(ret, dtype) if is_extension_array_dtype(ret): # When we're a Categorical[ExtensionArray], like Interval, # we need to ensure __array__ get's all the way to an # ndarray. ret = np.asarray(ret) return ret def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # for all other cases, raise for now (similarly as what happens in # Series.__array_prepare__) raise TypeError( f"Object with dtype {self.dtype} cannot perform " f"the numpy op {ufunc.__name__}" ) def __setstate__(self, state): """Necessary for making this object picklable""" if not isinstance(state, dict): raise Exception("invalid pickle state") # compat with pre 0.21.0 CategoricalDtype change if "_dtype" not in state: state["_dtype"] = CategoricalDtype(state["_categories"], state["_ordered"]) for k, v in state.items(): setattr(self, k, v) @property def T(self): """ Return transposed numpy array. """ return self @property def nbytes(self): return self._codes.nbytes + self.dtype.categories.values.nbytes def memory_usage(self, deep=False): """ Memory usage of my values Parameters ---------- deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- bytes used Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ return self._codes.nbytes + self.dtype.categories.memory_usage(deep=deep) @Substitution(klass="Categorical") @Appender(_shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): # searchsorted is very performance sensitive. By converting codes # to same dtype as self.codes, we get much faster performance. if is_scalar(value): codes = self.categories.get_loc(value) codes = self.codes.dtype.type(codes) else: locs = [self.categories.get_loc(x) for x in value] codes = np.array(locs, dtype=self.codes.dtype) return self.codes.searchsorted(codes, side=side, sorter=sorter) def isna(self): """ Detect missing values Missing values (-1 in .codes) are detected. Returns ------- a boolean array of whether my values are null See Also -------- isna : Top-level isna. isnull : Alias of isna. Categorical.notna : Boolean inverse of Categorical.isna. """ ret = self._codes == -1 return ret isnull = isna def notna(self): """ Inverse of isna Both missing values (-1 in .codes) and NA as a category are detected as null. Returns ------- a boolean array of whether my values are not null See Also -------- notna : Top-level notna. notnull : Alias of notna. Categorical.isna : Boolean inverse of Categorical.notna. """ return ~self.isna() notnull = notna def put(self, *args, **kwargs): """ Replace specific elements in the Categorical with given values. """ raise NotImplementedError(("'put' is not yet implemented for Categorical")) def dropna(self): """ Return the Categorical without null values. Missing values (-1 in .codes) are detected. Returns ------- valid : Categorical """ result = self[self.notna()] return result def value_counts(self, dropna=True): """ Return a Series containing counts of each category. Every category will have an entry, even those with a count of 0. Parameters ---------- dropna : bool, default True Don't include counts of NaN. Returns ------- counts : Series See Also -------- Series.value_counts """ from pandas import Series, CategoricalIndex code, cat = self._codes, self.categories ncat, mask = len(cat), 0 <= code ix, clean = np.arange(ncat), mask.all() if dropna or clean: obs = code if clean else code[mask] count = np.bincount(obs, minlength=ncat or 0) else: count = np.bincount(np.where(mask, code, ncat)) ix = np.append(ix, -1) ix = self._constructor(ix, dtype=self.dtype, fastpath=True) return Series(count, index=CategoricalIndex(ix), dtype="int64") def _internal_get_values(self): """ Return the values. For internal compatibility with pandas formatting. Returns ------- np.ndarray or Index A numpy array of the same dtype as categorical.categories.dtype or Index if datetime / periods. """ # if we are a datetime and period index, return Index to keep metadata if needs_i8_conversion(self.categories): return self.categories.take(self._codes, fill_value=np.nan) elif is_integer_dtype(self.categories) and -1 in self._codes: return self.categories.astype("object").take(self._codes, fill_value=np.nan) return np.array(self) def check_for_ordered(self, op): """ assert that we are ordered """ if not self.ordered: raise TypeError( f"Categorical is not ordered for operation {op}\n" "you can use .as_ordered() to change the " "Categorical to an ordered one\n" ) def _values_for_argsort(self): return self._codes.copy() def argsort(self, ascending=True, kind="quicksort", *args, **kwargs): """ Return the indices that would sort the Categorical. .. versionchanged:: 0.25.0 Changed to sort missing values at the end. Parameters ---------- ascending : bool, default True Whether the indices should result in an ascending or descending sort. kind : {'quicksort', 'mergesort', 'heapsort'}, optional Sorting algorithm. *args, **kwargs: passed through to :func:`numpy.argsort`. Returns ------- numpy.array See Also -------- numpy.ndarray.argsort Notes ----- While an ordering is applied to the category values, arg-sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Examples -------- >>> pd.Categorical(['b', 'b', 'a', 'c']).argsort() array([2, 0, 1, 3]) >>> cat = pd.Categorical(['b', 'b', 'a', 'c'], ... categories=['c', 'b', 'a'], ... ordered=True) >>> cat.argsort() array([3, 0, 1, 2]) Missing values are placed at the end >>> cat = pd.Categorical([2, None, 1]) >>> cat.argsort() array([2, 0, 1]) """ return super().argsort(ascending=ascending, kind=kind, *args, **kwargs) def sort_values(self, inplace=False, ascending=True, na_position="last"): """ Sort the Categorical by category value returning a new Categorical by default. While an ordering is applied to the category values, sorting in this context refers more to organizing and grouping together based on matching category values. Thus, this function can be called on an unordered Categorical instance unlike the functions 'Categorical.min' and 'Categorical.max'. Parameters ---------- inplace : bool, default False Do operation in place. ascending : bool, default True Order ascending. Passing False orders descending. The ordering parameter provides the method by which the category values are organized. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Returns ------- Categorical or None See Also -------- Categorical.sort Series.sort_values Examples -------- >>> c = pd.Categorical([1, 2, 2, 1, 5]) >>> c [1, 2, 2, 1, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values() [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> c.sort_values(ascending=False) [5, 2, 2, 1, 1] Categories (3, int64): [1, 2, 5] Inplace sorting can be done as well: >>> c.sort_values(inplace=True) >>> c [1, 1, 2, 2, 5] Categories (3, int64): [1, 2, 5] >>> >>> c = pd.Categorical([1, 2, 2, 1, 5]) 'sort_values' behaviour with NaNs. Note that 'na_position' is independent of the 'ascending' parameter: >>> c = pd.Categorical([np.nan, 2, 2, np.nan, 5]) >>> c [NaN, 2.0, 2.0, NaN, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values() [2.0, 2.0, 5.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False) [5.0, 2.0, 2.0, NaN, NaN] Categories (2, int64): [2, 5] >>> c.sort_values(na_position='first') [NaN, NaN, 2.0, 2.0, 5.0] Categories (2, int64): [2, 5] >>> c.sort_values(ascending=False, na_position='first') [NaN, NaN, 5.0, 2.0, 2.0] Categories (2, int64): [2, 5] """ inplace = validate_bool_kwarg(inplace, "inplace") if na_position not in ["last", "first"]: raise ValueError(f"invalid na_position: {repr(na_position)}") sorted_idx = nargsort(self, ascending=ascending, na_position=na_position) if inplace: self._codes = self._codes[sorted_idx] else: return self._constructor( values=self._codes[sorted_idx], dtype=self.dtype, fastpath=True ) def _values_for_rank(self): """ For correctly ranking ordered categorical data. See GH#15420 Ordered categorical data should be ranked on the basis of codes with -1 translated to NaN. Returns ------- numpy.array """ from pandas import Series if self.ordered: values = self.codes mask = values == -1 if mask.any(): values = values.astype("float64") values[mask] = np.nan elif self.categories.is_numeric(): values = np.array(self) else: # reorder the categories (so rank can use the float codes) # instead of passing an object array to rank values = np.array( self.rename_categories(Series(self.categories).rank().values) ) return values def view(self, dtype=None): if dtype is not None: raise NotImplementedError(dtype) return self._constructor(values=self._codes, dtype=self.dtype, fastpath=True) def to_dense(self): """ Return my 'dense' representation For internal compatibility with numpy arrays. Returns ------- dense : array """ return np.asarray(self) def fillna(self, value=None, method=None, limit=None): """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series If a scalar value is passed it is used to fill all missing values. Alternatively, a Series or dict can be used to fill in different values for each index. The value should not be a list. The value(s) passed should either be in the categories or should be NaN. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use NEXT valid observation to fill gap limit : int, default None (Not implemented yet for Categorical!) If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Returns ------- filled : Categorical with NA/NaN filled """ value, method = validate_fillna_kwargs( value, method, validate_scalar_dict_value=False ) if value is None: value = np.nan if limit is not None: raise NotImplementedError( "specifying a limit for fillna has not been implemented yet" ) codes = self._codes # pad / bfill if method is not None: values = self.to_dense().reshape(-1, len(self)) values = interpolate_2d(values, method, 0, None, value).astype( self.categories.dtype )[0] codes = _get_codes_for_values(values, self.categories) else: # If value is a dict or a Series (a dict value has already # been converted to a Series) if isinstance(value, ABCSeries): if not value[~value.isin(self.categories)].isna().all(): raise ValueError("fill value must be in categories") values_codes = _get_codes_for_values(value, self.categories) indexer = np.where(codes == -1) codes[indexer] = values_codes[indexer] # If value is not a dict or Series it should be a scalar elif is_hashable(value): if not isna(value) and value not in self.categories: raise ValueError("fill value must be in categories") mask = codes == -1 if mask.any(): codes = codes.copy() if isna(value): codes[mask] = -1 else: codes[mask] = self.categories.get_loc(value) else: raise TypeError( f"'value' parameter must be a scalar, dict " f"or Series, but you passed a {type(value).__name__}" ) return self._constructor(codes, dtype=self.dtype, fastpath=True) def take(self, indexer, allow_fill: bool = False, fill_value=None): """ Take elements from the Categorical. Parameters ---------- indexer : sequence of int The indices in `self` to take. The meaning of negative values in `indexer` depends on the value of `allow_fill`. allow_fill : bool, default False How to handle negative values in `indexer`. * False: negative values in `indices` indicate positional indices from the right. This is similar to :func:`numpy.take`. * True: negative values in `indices` indicate missing values (the default). These values are set to `fill_value`. Any other other negative values raise a ``ValueError``. .. versionchanged:: 1.0.0 Default value changed from ``True`` to ``False``. fill_value : object The value to use for `indices` that are missing (-1), when ``allow_fill=True``. This should be the category, i.e. a value in ``self.categories``, not a code. Returns ------- Categorical This Categorical will have the same categories and ordered as `self`. See Also -------- Series.take : Similar method for Series. numpy.ndarray.take : Similar method for NumPy arrays. Examples -------- >>> cat = pd.Categorical(['a', 'a', 'b']) >>> cat [a, a, b] Categories (2, object): [a, b] Specify ``allow_fill==False`` to have negative indices mean indexing from the right. >>> cat.take([0, -1, -2], allow_fill=False) [a, b, a] Categories (2, object): [a, b] With ``allow_fill=True``, indices equal to ``-1`` mean "missing" values that should be filled with the `fill_value`, which is ``np.nan`` by default. >>> cat.take([0, -1, -1], allow_fill=True) [a, NaN, NaN] Categories (2, object): [a, b] The fill value can be specified. >>> cat.take([0, -1, -1], allow_fill=True, fill_value='a') [a, a, a] Categories (3, object): [a, b] Specifying a fill value that's not in ``self.categories`` will raise a ``TypeError``. """ indexer = np.asarray(indexer, dtype=np.intp) dtype = self.dtype if isna(fill_value): fill_value = -1 elif allow_fill: # convert user-provided `fill_value` to codes if fill_value in self.categories: fill_value = self.categories.get_loc(fill_value) else: msg = ( f"'fill_value' ('{fill_value}') is not in this " "Categorical's categories." ) raise TypeError(msg) codes = take(self._codes, indexer, allow_fill=allow_fill, fill_value=fill_value) result = type(self).from_codes(codes, dtype=dtype) return result def take_nd(self, indexer, allow_fill: bool = False, fill_value=None): # GH#27745 deprecate alias that other EAs dont have warn( "Categorical.take_nd is deprecated, use Categorical.take instead", FutureWarning, stacklevel=2, ) return self.take(indexer, allow_fill=allow_fill, fill_value=fill_value) def __len__(self) -> int: """ The length of this Categorical. """ return len(self._codes) def __iter__(self): """ Returns an Iterator over the values of this Categorical. """ return iter(self._internal_get_values().tolist()) def __contains__(self, key) -> bool: """ Returns True if `key` is in this Categorical. """ # if key is a NaN, check if any NaN is in self. if is_scalar(key) and isna(key): return self.isna().any() return contains(self, key, container=self._codes) def _tidy_repr(self, max_vals=10, footer=True) -> str: """ a short repr displaying only max_vals and an optional (but default footer) """ num = max_vals // 2 head = self[:num]._get_repr(length=False, footer=False) tail = self[-(max_vals - num) :]._get_repr(length=False, footer=False) result = f"{head[:-1]}, ..., {tail[1:]}" if footer: result = f"{result}\n{self._repr_footer()}" return str(result) def _repr_categories(self): """ return the base repr for the categories """ max_categories = ( 10 if get_option("display.max_categories") == 0 else get_option("display.max_categories") ) from pandas.io.formats import format as fmt if len(self.categories) > max_categories: num = max_categories // 2 head = fmt.format_array(self.categories[:num], None) tail = fmt.format_array(self.categories[-num:], None) category_strs = head + ["..."] + tail else: category_strs = fmt.format_array(self.categories, None) # Strip all leading spaces, which format_array adds for columns... category_strs = [x.strip() for x in category_strs] return category_strs def _repr_categories_info(self) -> str: """ Returns a string representation of the footer. """ category_strs = self._repr_categories() dtype = str(self.categories.dtype) levheader = f"Categories ({len(self.categories)}, {dtype}): " width, height = get_terminal_size() max_width = get_option("display.width") or width if console.in_ipython_frontend(): # 0 = no breaks max_width = 0 levstring = "" start = True cur_col_len = len(levheader) # header sep_len, sep = (3, " < ") if self.ordered else (2, ", ") linesep = sep.rstrip() + "\n" # remove whitespace for val in category_strs: if max_width != 0 and cur_col_len + sep_len + len(val) > max_width: levstring += linesep + (" " * (len(levheader) + 1)) cur_col_len = len(levheader) + 1 # header + a whitespace elif not start: levstring += sep cur_col_len += len(val) levstring += val start = False # replace to simple save space by return levheader + "[" + levstring.replace(" < ... < ", " ... ") + "]" def _repr_footer(self) -> str: info = self._repr_categories_info() return f"Length: {len(self)}\n{info}" def _get_repr(self, length=True, na_rep="NaN", footer=True) -> str: from pandas.io.formats import format as fmt formatter = fmt.CategoricalFormatter( self, length=length, na_rep=na_rep, footer=footer ) result = formatter.to_string() return str(result) def __repr__(self) -> str: """ String representation. """ _maxlen = 10 if len(self._codes) > _maxlen: result = self._tidy_repr(_maxlen) elif len(self._codes) > 0: result = self._get_repr(length=len(self) > _maxlen) else: msg = self._get_repr(length=False, footer=True).replace("\n", ", ") result = f"[], {msg}" return result def _maybe_coerce_indexer(self, indexer): """ return an indexer coerced to the codes dtype """ if isinstance(indexer, np.ndarray) and indexer.dtype.kind == "i": indexer = indexer.astype(self._codes.dtype) return indexer def __getitem__(self, key): """ Return an item. """ if isinstance(key, (int, np.integer)): i = self._codes[key] if i == -1: return np.nan else: return self.categories[i] key = check_array_indexer(self, key) result = self._codes[key] if result.ndim > 1: deprecate_ndim_indexing(result) return result return self._constructor(result, dtype=self.dtype, fastpath=True) def __setitem__(self, key, value): """ Item assignment. Raises ------ ValueError If (one or more) Value is not in categories or if a assigned `Categorical` does not have the same categories """ value = extract_array(value, extract_numpy=True) # require identical categories set if isinstance(value, Categorical): if not is_dtype_equal(self, value): raise ValueError( "Cannot set a Categorical with another, " "without identical categories" ) if not self.categories.equals(value.categories): new_codes = _recode_for_categories( value.codes, value.categories, self.categories ) value = Categorical.from_codes(new_codes, dtype=self.dtype) rvalue = value if is_list_like(value) else [value] from pandas import Index to_add = Index(rvalue).difference(self.categories) # no assignments of values not in categories, but it's always ok to set # something to np.nan if len(to_add) and not isna(to_add).all(): raise ValueError( "Cannot setitem on a Categorical with a new " "category, set the categories first" ) # set by position if isinstance(key, (int, np.integer)): pass # tuple of indexers (dataframe) elif isinstance(key, tuple): # only allow 1 dimensional slicing, but can # in a 2-d case be passd (slice(None),....) if len(key) == 2: if not com.is_null_slice(key[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") key = key[1] elif len(key) == 1: key = key[0] else: raise AssertionError("invalid slicing for a 1-ndim categorical") # slicing in Series or Categorical elif isinstance(key, slice): pass # else: array of True/False in Series or Categorical lindexer = self.categories.get_indexer(rvalue) lindexer = self._maybe_coerce_indexer(lindexer) key = check_array_indexer(self, key) self._codes[key] = lindexer def _reverse_indexer(self) -> Dict[Hashable, np.ndarray]: """ Compute the inverse of a categorical, returning a dict of categories -> indexers. *This is an internal function* Returns ------- dict of categories -> indexers Examples -------- >>> c = pd.Categorical(list('aabca')) >>> c [a, a, b, c, a] Categories (3, object): [a, b, c] >>> c.categories Index(['a', 'b', 'c'], dtype='object') >>> c.codes array([0, 0, 1, 2, 0], dtype=int8) >>> c._reverse_indexer() {'a': array([0, 1, 4]), 'b': array([2]), 'c': array([3])} """ categories = self.categories r, counts = libalgos.groupsort_indexer( self.codes.astype("int64"), categories.size ) counts = counts.cumsum() _result = (r[start:end] for start, end in zip(counts, counts[1:])) result = dict(zip(categories, _result)) return result # reduction ops # def _reduce(self, name, axis=0, **kwargs): func = getattr(self, name, None) if func is None: raise TypeError(f"Categorical cannot perform the operation {name}") return func(**kwargs) @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def min(self, skipna=True): """ The minimum value of the object. Only ordered `Categoricals` have a minimum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- min : the minimum of this `Categorical` """ self.check_for_ordered("min") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].min() else: return np.nan else: pointer = self._codes.min() return self.categories[pointer] @deprecate_kwarg(old_arg_name="numeric_only", new_arg_name="skipna") def max(self, skipna=True): """ The maximum value of the object. Only ordered `Categoricals` have a maximum! .. versionchanged:: 1.0.0 Returns an NA value on empty arrays Raises ------ TypeError If the `Categorical` is not `ordered`. Returns ------- max : the maximum of this `Categorical` """ self.check_for_ordered("max") if not len(self._codes): return self.dtype.na_value good = self._codes != -1 if not good.all(): if skipna: pointer = self._codes[good].max() else: return np.nan else: pointer = self._codes.max() return self.categories[pointer] def mode(self, dropna=True): """ Returns the mode(s) of the Categorical. Always returns `Categorical` even if only one value. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- modes : `Categorical` (sorted) """ codes = self._codes if dropna: good = self._codes != -1 codes = self._codes[good] codes = sorted(htable.mode_int64(ensure_int64(codes), dropna)) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) def unique(self): """ Return the ``Categorical`` which ``categories`` and ``codes`` are unique. Unused categories are NOT returned. - unordered category: values and categories are sorted by appearance order. - ordered category: values are sorted by appearance order, categories keeps existing order. Returns ------- unique values : ``Categorical`` Examples -------- An unordered Categorical will return categories in the order of appearance. >>> pd.Categorical(list('baabc')) [b, a, c] Categories (3, object): [b, a, c] >>> pd.Categorical(list('baabc'), categories=list('abc')) [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Categorical(list('baabc'), ... categories=list('abc'), ... ordered=True) [b, a, c] Categories (3, object): [a < b < c] See Also -------- unique CategoricalIndex.unique Series.unique """ # unlike np.unique, unique1d does not sort unique_codes = unique1d(self.codes) cat = self.copy() # keep nan in codes cat._codes = unique_codes # exclude nan from indexer for categories take_codes = unique_codes[unique_codes != -1] if self.ordered: take_codes = np.sort(take_codes) return cat.set_categories(cat.categories.take(take_codes)) def _values_for_factorize(self): codes = self.codes.astype("int64") return codes, -1 @classmethod def _from_factorized(cls, uniques, original): return original._constructor( original.categories.take(uniques), dtype=original.dtype ) def equals(self, other): """ Returns True if categorical arrays are equal. Parameters ---------- other : `Categorical` Returns ------- bool """ if self.is_dtype_equal(other): if self.categories.equals(other.categories): # fastpath to avoid re-coding other_codes = other._codes else: other_codes = _recode_for_categories( other.codes, other.categories, self.categories ) return np.array_equal(self._codes, other_codes) return False def is_dtype_equal(self, other): """ Returns True if categoricals are the same dtype same categories, and same ordered Parameters ---------- other : Categorical Returns ------- bool """ try: return hash(self.dtype) == hash(other.dtype) except (AttributeError, TypeError): return False def describe(self): """ Describes this Categorical Returns ------- description: `DataFrame` A dataframe with frequency and counts by category. """ counts = self.value_counts(dropna=False) freqs = counts / float(counts.sum()) from pandas.core.reshape.concat import concat result = concat([counts, freqs], axis=1) result.columns = ["counts", "freqs"] result.index.name = "categories" return result @Substitution(klass="Categorical") @Appender(_extension_array_shared_docs["repeat"]) def repeat(self, repeats, axis=None): nv.validate_repeat(tuple(), dict(axis=axis)) codes = self._codes.repeat(repeats) return self._constructor(values=codes, dtype=self.dtype, fastpath=True) # Implement the ExtensionArray interface @property def _can_hold_na(self): return True @classmethod def _concat_same_type(self, to_concat): from pandas.core.dtypes.concat import concat_categorical return concat_categorical(to_concat) def isin(self, values): """ Check whether `values` are contained in Categorical. Return a boolean NumPy Array showing whether each element in the Categorical matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- isin : numpy.ndarray (bool dtype) Raises ------ TypeError * If `values` is not a set or list-like See Also -------- pandas.Series.isin : Equivalent method on Series. Examples -------- >>> s = pd.Categorical(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo']) >>> s.isin(['cow', 'lama']) array([ True, True, True, False, True, False]) Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) array([ True, False, True, False, True, False]) """ if not is_list_like(values): values_type = type(values).__name__ raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{values_type}]" ) values = sanitize_array(values, None, None) null_mask = np.asarray(isna(values)) code_values = self.categories.get_indexer(values) code_values = code_values[null_mask | (code_values >= 0)] return algorithms.isin(self.codes, code_values) def replace(self, to_replace, value, inplace: bool = False): """ Replaces all instances of one value with another Parameters ---------- to_replace: object The value to be replaced value: object The value to replace it with inplace: bool Whether the operation is done in-place Returns ------- None if inplace is True, otherwise the new Categorical after replacement Examples -------- >>> s = pd.Categorical([1, 2, 1, 3]) >>> s.replace(1, 3) [3, 3, 2, 3] Categories (2, int64): [2, 3] """ inplace = validate_bool_kwarg(inplace, "inplace") cat = self if inplace else self.copy() if to_replace in cat.categories: if isna(value): cat.remove_categories(to_replace, inplace=True) else: categories = cat.categories.tolist() index = categories.index(to_replace) if value in cat.categories: value_index = categories.index(value) cat._codes[cat._codes == index] = value_index cat.remove_categories(to_replace, inplace=True) else: categories[index] = value cat.rename_categories(categories, inplace=True) if not inplace: return cat # The Series.cat accessor @delegate_names( delegate=Categorical, accessors=["categories", "ordered"], typ="property" ) @delegate_names( delegate=Categorical, accessors=[ "rename_categories", "reorder_categories", "add_categories", "remove_categories", "remove_unused_categories", "set_categories", "as_ordered", "as_unordered", ], typ="method", ) class CategoricalAccessor(PandasDelegate, PandasObject, NoNewAttributesMixin): """ Accessor object for categorical properties of the Series values. Be aware that assigning to `categories` is a inplace operation, while all methods return new categorical data per default (but can be called with `inplace=True`). Parameters ---------- data : Series or CategoricalIndex Examples -------- >>> s.cat.categories >>> s.cat.categories = list('abc') >>> s.cat.rename_categories(list('cab')) >>> s.cat.reorder_categories(list('cab')) >>> s.cat.add_categories(['d','e']) >>> s.cat.remove_categories(['d']) >>> s.cat.remove_unused_categories() >>> s.cat.set_categories(list('abcde')) >>> s.cat.as_ordered() >>> s.cat.as_unordered() """ def __init__(self, data): self._validate(data) self._parent = data.values self._index = data.index self._name = data.name self._freeze() @staticmethod def _validate(data): if not is_categorical_dtype(data.dtype): raise AttributeError("Can only use .cat accessor with a 'category' dtype") def _delegate_property_get(self, name): return getattr(self._parent, name) def _delegate_property_set(self, name, new_values): return setattr(self._parent, name, new_values) @property def codes(self): """ Return Series of codes as well as the index. """ from pandas import Series return Series(self._parent.codes, index=self._index) def _delegate_method(self, name, *args, **kwargs): from pandas import Series method = getattr(self._parent, name) res = method(*args, **kwargs) if res is not None: return Series(res, index=self._index, name=self._name) # utility routines def _get_codes_for_values(values, categories): """ utility routine to turn values into codes given the specified categories """ dtype_equal = is_dtype_equal(values.dtype, categories.dtype) if dtype_equal: # To prevent erroneous dtype coercion in _get_data_algo, retrieve # the underlying numpy array. gh-22702 values = getattr(values, "_ndarray_values", values) categories = getattr(categories, "_ndarray_values", categories) elif is_extension_array_dtype(categories.dtype) and is_object_dtype(values): # Support inferring the correct extension dtype from an array of # scalar objects. e.g. # Categorical(array[Period, Period], categories=PeriodIndex(...)) cls = categories.dtype.construct_array_type() values = try_cast_to_ea(cls, values) if not isinstance(values, cls): # exception raised in _from_sequence values = ensure_object(values) categories = ensure_object(categories) else: values = ensure_object(values) categories = ensure_object(categories) hash_klass, vals = _get_data_algo(values) _, cats = _get_data_algo(categories) t = hash_klass(len(cats)) t.map_locations(cats) return coerce_indexer_dtype(t.lookup(vals), cats) def _recode_for_categories(codes: np.ndarray, old_categories, new_categories): """ Convert a set of codes for to a new set of categories Parameters ---------- codes : np.ndarray old_categories, new_categories : Index Returns ------- new_codes : np.ndarray[np.int64] Examples -------- >>> old_cat = pd.Index(['b', 'a', 'c']) >>> new_cat = pd.Index(['a', 'b']) >>> codes = np.array([0, 1, 1, 2]) >>> _recode_for_categories(codes, old_cat, new_cat) array([ 1, 0, 0, -1]) """ if len(old_categories) == 0: # All null anyway, so just retain the nulls return codes.copy() elif new_categories.equals(old_categories): # Same categories, so no need to actually recode return codes.copy() indexer = coerce_indexer_dtype( new_categories.get_indexer(old_categories), new_categories ) new_codes = take_1d(indexer, codes.copy(), fill_value=-1) return new_codes def _convert_to_list_like(list_like): if hasattr(list_like, "dtype"): return list_like if isinstance(list_like, list): return list_like if is_sequence(list_like) or isinstance(list_like, tuple) or is_iterator(list_like): return list(list_like) elif is_scalar(list_like): return [list_like] else: # TODO: is this reached? return [list_like] def factorize_from_iterable(values): """ Factorize an input `values` into `categories` and `codes`. Preserves categorical dtype in `categories`. *This is an internal function* Parameters ---------- values : list-like Returns ------- codes : ndarray categories : Index If `values` has a categorical dtype, then `categories` is a CategoricalIndex keeping the categories and order of `values`. """ if not is_list_like(values): raise TypeError("Input must be list-like") if is_categorical_dtype(values): values = extract_array(values) # The Categorical we want to build has the same categories # as values but its codes are by def [0, ..., len(n_categories) - 1] cat_codes = np.arange(len(values.categories), dtype=values.codes.dtype) categories = Categorical.from_codes(cat_codes, dtype=values.dtype) codes = values.codes else: # The value of ordered is irrelevant since we don't use cat as such, # but only the resulting categories, the order of which is independent # from ordered. Set ordered to False as default. See GH #15457 cat = Categorical(values, ordered=False) categories = cat.categories codes = cat.codes return codes, categories def factorize_from_iterables(iterables): """ A higher-level wrapper over `factorize_from_iterable`. *This is an internal function* Parameters ---------- iterables : list-like of list-likes Returns ------- codes_list : list of ndarrays categories_list : list of Indexes Notes ----- See `factorize_from_iterable` for more info. """ if len(iterables) == 0: # For consistency, it should return a list of 2 lists. return [[], []] return map(list, zip(*(factorize_from_iterable(it) for it in iterables)))
BugsInPy/BugsInPy/temp/projects/pandas/bug-58-fixed/pandas/pandas/core/arrays/categorical.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-58-buggy/pandas/pandas/core/arrays/categorical.py
pandas-bug-96
from datetime import date, datetime, timedelta import functools import operator from typing import Any, Optional import warnings from dateutil.easter import easter import numpy as np from pandas._libs.tslibs import ( NaT, OutOfBoundsDatetime, Period, Timedelta, Timestamp, ccalendar, conversion, delta_to_nanoseconds, frequencies as libfrequencies, normalize_date, offsets as liboffsets, timezones, ) from pandas._libs.tslibs.offsets import ( ApplyTypeError, BaseOffset, _get_calendar, _is_normalized, _to_dt64, apply_index_wraps, as_datetime, roll_yearday, shift_month, ) from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes.inference import is_list_like __all__ = [ "Day", "BusinessDay", "BDay", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "MonthBegin", "BMonthBegin", "MonthEnd", "BMonthEnd", "SemiMonthEnd", "SemiMonthBegin", "BusinessHour", "CustomBusinessHour", "YearBegin", "BYearBegin", "YearEnd", "BYearEnd", "QuarterBegin", "BQuarterBegin", "QuarterEnd", "BQuarterEnd", "LastWeekOfMonth", "FY5253Quarter", "FY5253", "Week", "WeekOfMonth", "Easter", "Hour", "Minute", "Second", "Milli", "Micro", "Nano", "DateOffset", ] # convert to/from datetime/timestamp to allow invalid Timestamp ranges to # pass thru def as_timestamp(obj): if isinstance(obj, Timestamp): return obj try: return Timestamp(obj) except (OutOfBoundsDatetime): pass return obj def apply_wraps(func): @functools.wraps(func) def wrapper(self, other): if other is NaT: return NaT elif isinstance(other, (timedelta, Tick, DateOffset)): # timedelta path return func(self, other) elif isinstance(other, (np.datetime64, datetime, date)): other = as_timestamp(other) tz = getattr(other, "tzinfo", None) nano = getattr(other, "nanosecond", 0) try: if self._adjust_dst and isinstance(other, Timestamp): other = other.tz_localize(None) result = func(self, other) if self._adjust_dst: result = conversion.localize_pydatetime(result, tz) result = Timestamp(result) if self.normalize: result = result.normalize() # nanosecond may be deleted depending on offset process if not self.normalize and nano != 0: if not isinstance(self, Nano) and result.nanosecond != nano: if result.tz is not None: # convert to UTC value = conversion.tz_convert_single( result.value, timezones.UTC, result.tz ) else: value = result.value result = Timestamp(value + nano) if tz is not None and result.tzinfo is None: result = conversion.localize_pydatetime(result, tz) except OutOfBoundsDatetime: result = func(self, as_datetime(other)) if self.normalize: # normalize_date returns normal datetime result = normalize_date(result) if tz is not None and result.tzinfo is None: result = conversion.localize_pydatetime(result, tz) result = Timestamp(result) return result return wrapper # --------------------------------------------------------------------- # DateOffset class DateOffset(BaseOffset): """ Standard kind of date increment used for a date range. Works exactly like relativedelta in terms of the keyword args you pass in, use of the keyword n is discouraged-- you would be better off specifying n in the keywords you use, but regardless it is there for you. n is needed for DateOffset subclasses. DateOffset work as follows. Each offset specify a set of dates that conform to the DateOffset. For example, Bday defines this set to be the set of dates that are weekdays (M-F). To test if a date is in the set of a DateOffset dateOffset we can use the is_on_offset method: dateOffset.is_on_offset(date). If a date is not on a valid date, the rollback and rollforward methods can be used to roll the date to the nearest valid date before/after the date. DateOffsets can be created to move dates forward a given number of valid dates. For example, Bday(2) can be added to a date to move it two business days forward. If the date does not start on a valid date, first it is moved to a valid date. Thus pseudo code is: def __add__(date): date = rollback(date) # does nothing if date is valid return date + <n number of periods> When a date offset is created for a negative number of periods, the date is first rolled forward. The pseudo code is: def __add__(date): date = rollforward(date) # does nothing is date is valid return date + <n number of periods> Zero presents a problem. Should it roll forward or back? We arbitrarily have it rollforward: date + BDay(0) == BDay.rollforward(date) Since 0 is a bit weird, we suggest avoiding its use. Parameters ---------- n : int, default 1 The number of time periods the offset represents. normalize : bool, default False Whether to round the result of a DateOffset addition down to the previous midnight. **kwds Temporal parameter that add to or replace the offset value. Parameters that **add** to the offset (like Timedelta): - years - months - weeks - days - hours - minutes - seconds - microseconds - nanoseconds Parameters that **replace** the offset value: - year - month - day - weekday - hour - minute - second - microsecond - nanosecond. See Also -------- dateutil.relativedelta.relativedelta : The relativedelta type is designed to be applied to an existing datetime an can replace specific components of that datetime, or represents an interval of time. Examples -------- >>> from pandas.tseries.offsets import DateOffset >>> ts = pd.Timestamp('2017-01-01 09:10:11') >>> ts + DateOffset(months=3) Timestamp('2017-04-01 09:10:11') >>> ts = pd.Timestamp('2017-01-01 09:10:11') >>> ts + DateOffset(months=2) Timestamp('2017-03-01 09:10:11') """ _params = cache_readonly(BaseOffset._params.fget) _use_relativedelta = False _adjust_dst = False _attributes = frozenset(["n", "normalize"] + list(liboffsets.relativedelta_kwds)) _deprecations = frozenset(["isAnchored", "onOffset"]) # default for prior pickles normalize = False def __init__(self, n=1, normalize=False, **kwds): BaseOffset.__init__(self, n, normalize) off, use_rd = liboffsets._determine_offset(kwds) object.__setattr__(self, "_offset", off) object.__setattr__(self, "_use_relativedelta", use_rd) for key in kwds: val = kwds[key] object.__setattr__(self, key, val) @apply_wraps def apply(self, other): if self._use_relativedelta: other = as_datetime(other) if len(self.kwds) > 0: tzinfo = getattr(other, "tzinfo", None) if tzinfo is not None and self._use_relativedelta: # perform calculation in UTC other = other.replace(tzinfo=None) if self.n > 0: for i in range(self.n): other = other + self._offset else: for i in range(-self.n): other = other - self._offset if tzinfo is not None and self._use_relativedelta: # bring tz back from UTC calculation other = conversion.localize_pydatetime(other, tzinfo) return as_timestamp(other) else: return other + timedelta(self.n) @apply_index_wraps def apply_index(self, i): """ Vectorized apply of DateOffset to DatetimeIndex, raises NotImplentedError for offsets without a vectorized implementation. Parameters ---------- i : DatetimeIndex Returns ------- y : DatetimeIndex """ if type(self) is not DateOffset: raise NotImplementedError( f"DateOffset subclass {type(self).__name__} " "does not have a vectorized implementation" ) kwds = self.kwds relativedelta_fast = { "years", "months", "weeks", "days", "hours", "minutes", "seconds", "microseconds", } # relativedelta/_offset path only valid for base DateOffset if self._use_relativedelta and set(kwds).issubset(relativedelta_fast): months = (kwds.get("years", 0) * 12 + kwds.get("months", 0)) * self.n if months: shifted = liboffsets.shift_months(i.asi8, months) i = type(i)(shifted, dtype=i.dtype) weeks = (kwds.get("weeks", 0)) * self.n if weeks: # integer addition on PeriodIndex is deprecated, # so we directly use _time_shift instead asper = i.to_period("W") if not isinstance(asper._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray asper = asper._data shifted = asper._time_shift(weeks) i = shifted.to_timestamp() + i.to_perioddelta("W") timedelta_kwds = { k: v for k, v in kwds.items() if k in ["days", "hours", "minutes", "seconds", "microseconds"] } if timedelta_kwds: delta = Timedelta(**timedelta_kwds) i = i + (self.n * delta) return i elif not self._use_relativedelta and hasattr(self, "_offset"): # timedelta return i + (self._offset * self.n) else: # relativedelta with other keywords kwd = set(kwds) - relativedelta_fast raise NotImplementedError( "DateOffset with relativedelta " f"keyword(s) {kwd} not able to be " "applied vectorized" ) def is_anchored(self): # TODO: Does this make sense for the general case? It would help # if there were a canonical docstring for what is_anchored means. return self.n == 1 def onOffset(self, dt): warnings.warn( "onOffset is a deprecated, use is_on_offset instead", FutureWarning, stacklevel=2, ) return self.is_on_offset(dt) def isAnchored(self): warnings.warn( "isAnchored is a deprecated, use is_anchored instead", FutureWarning, stacklevel=2, ) return self.is_anchored() # TODO: Combine this with BusinessMixin version by defining a whitelisted # set of attributes on each object rather than the existing behavior of # iterating over internal ``__dict__`` def _repr_attrs(self): exclude = {"n", "inc", "normalize"} attrs = [] for attr in sorted(self.__dict__): if attr.startswith("_") or attr == "kwds": continue elif attr not in exclude: value = getattr(self, attr) attrs.append(f"{attr}={value}") out = "" if attrs: out += ": " + ", ".join(attrs) return out @property def name(self): return self.rule_code def rollback(self, dt): """ Roll provided date backward to next offset only if not on offset. Returns ------- TimeStamp Rolled timestamp if not on offset, otherwise unchanged timestamp. """ dt = as_timestamp(dt) if not self.is_on_offset(dt): dt = dt - type(self)(1, normalize=self.normalize, **self.kwds) return dt def rollforward(self, dt): """ Roll provided date forward to next offset only if not on offset. Returns ------- TimeStamp Rolled timestamp if not on offset, otherwise unchanged timestamp. """ dt = as_timestamp(dt) if not self.is_on_offset(dt): dt = dt + type(self)(1, normalize=self.normalize, **self.kwds) return dt def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False # XXX, see #1395 if type(self) == DateOffset or isinstance(self, Tick): return True # Default (slow) method for determining if some date is a member of the # date range generated by this offset. Subclasses may have this # re-implemented in a nicer way. a = dt b = (dt + self) - self return a == b # way to get around weirdness with rule_code @property def _prefix(self): raise NotImplementedError("Prefix not defined") @property def rule_code(self): return self._prefix @cache_readonly def freqstr(self): try: code = self.rule_code except NotImplementedError: return repr(self) if self.n != 1: fstr = f"{self.n}{code}" else: fstr = code try: if self._offset: fstr += self._offset_str() except AttributeError: # TODO: standardize `_offset` vs `offset` naming convention pass return fstr def _offset_str(self): return "" @property def nanos(self): raise ValueError(f"{self} is a non-fixed frequency") class SingleConstructorOffset(DateOffset): @classmethod def _from_name(cls, suffix=None): # default _from_name calls cls with no args if suffix: raise ValueError(f"Bad freq suffix {suffix}") return cls() class _CustomMixin: """ Mixin for classes that define and validate calendar, holidays, and weekdays attributes. """ def __init__(self, weekmask, holidays, calendar): calendar, holidays = _get_calendar( weekmask=weekmask, holidays=holidays, calendar=calendar ) # Custom offset instances are identified by the # following two attributes. See DateOffset._params() # holidays, weekmask object.__setattr__(self, "weekmask", weekmask) object.__setattr__(self, "holidays", holidays) object.__setattr__(self, "calendar", calendar) class BusinessMixin: """ Mixin to business types to provide related functions. """ @property def offset(self): """ Alias for self._offset. """ # Alias for backward compat return self._offset def _repr_attrs(self): if self.offset: attrs = [f"offset={repr(self.offset)}"] else: attrs = None out = "" if attrs: out += ": " + ", ".join(attrs) return out class BusinessDay(BusinessMixin, SingleConstructorOffset): """ DateOffset subclass representing possibly n business days. """ _prefix = "B" _adjust_dst = True _attributes = frozenset(["n", "normalize", "offset"]) def __init__(self, n=1, normalize=False, offset=timedelta(0)): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "_offset", offset) def _offset_str(self): def get_str(td): off_str = "" if td.days > 0: off_str += str(td.days) + "D" if td.seconds > 0: s = td.seconds hrs = int(s / 3600) if hrs != 0: off_str += str(hrs) + "H" s -= hrs * 3600 mts = int(s / 60) if mts != 0: off_str += str(mts) + "Min" s -= mts * 60 if s != 0: off_str += str(s) + "s" if td.microseconds > 0: off_str += str(td.microseconds) + "us" return off_str if isinstance(self.offset, timedelta): zero = timedelta(0, 0, 0) if self.offset >= zero: off_str = "+" + get_str(self.offset) else: off_str = "-" + get_str(-self.offset) return off_str else: return "+" + repr(self.offset) @apply_wraps def apply(self, other): if isinstance(other, datetime): n = self.n wday = other.weekday() # avoid slowness below by operating on weeks first weeks = n // 5 if n <= 0 and wday > 4: # roll forward n += 1 n -= 5 * weeks # n is always >= 0 at this point if n == 0 and wday > 4: # roll back days = 4 - wday elif wday > 4: # roll forward days = (7 - wday) + (n - 1) elif wday + n <= 4: # shift by n days without leaving the current week days = n else: # shift by n days plus 2 to get past the weekend days = n + 2 result = other + timedelta(days=7 * weeks + days) if self.offset: result = result + self.offset return result elif isinstance(other, (timedelta, Tick)): return BDay(self.n, offset=self.offset + other, normalize=self.normalize) else: raise ApplyTypeError( "Only know how to combine business day with datetime or timedelta." ) @apply_index_wraps def apply_index(self, i): time = i.to_perioddelta("D") # to_period rolls forward to next BDay; track and # reduce n where it does when rolling forward asper = i.to_period("B") if not isinstance(asper._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray asper = asper._data if self.n > 0: shifted = (i.to_perioddelta("B") - time).asi8 != 0 # Integer-array addition is deprecated, so we use # _time_shift directly roll = np.where(shifted, self.n - 1, self.n) shifted = asper._addsub_int_array(roll, operator.add) else: # Integer addition is deprecated, so we use _time_shift directly roll = self.n shifted = asper._time_shift(roll) result = shifted.to_timestamp() + time return result def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.weekday() < 5 class BusinessHourMixin(BusinessMixin): def __init__(self, start="09:00", end="17:00", offset=timedelta(0)): # must be validated here to equality check if not is_list_like(start): start = [start] if not len(start): raise ValueError("Must include at least 1 start time") if not is_list_like(end): end = [end] if not len(end): raise ValueError("Must include at least 1 end time") start = np.array([liboffsets._validate_business_time(x) for x in start]) end = np.array([liboffsets._validate_business_time(x) for x in end]) # Validation of input if len(start) != len(end): raise ValueError("number of starting time and ending time must be the same") num_openings = len(start) # sort starting and ending time by starting time index = np.argsort(start) # convert to tuple so that start and end are hashable start = tuple(start[index]) end = tuple(end[index]) total_secs = 0 for i in range(num_openings): total_secs += self._get_business_hours_by_sec(start[i], end[i]) total_secs += self._get_business_hours_by_sec( end[i], start[(i + 1) % num_openings] ) if total_secs != 24 * 60 * 60: raise ValueError( "invalid starting and ending time(s): " "opening hours should not touch or overlap with " "one another" ) object.__setattr__(self, "start", start) object.__setattr__(self, "end", end) object.__setattr__(self, "_offset", offset) @cache_readonly def next_bday(self): """ Used for moving to next business day. """ if self.n >= 0: nb_offset = 1 else: nb_offset = -1 if self._prefix.startswith("C"): # CustomBusinessHour return CustomBusinessDay( n=nb_offset, weekmask=self.weekmask, holidays=self.holidays, calendar=self.calendar, ) else: return BusinessDay(n=nb_offset) def _next_opening_time(self, other, sign=1): """ If self.n and sign have the same sign, return the earliest opening time later than or equal to current time. Otherwise the latest opening time earlier than or equal to current time. Opening time always locates on BusinessDay. However, closing time may not if business hour extends over midnight. Parameters ---------- other : datetime Current time. sign : int, default 1. Either 1 or -1. Going forward in time if it has the same sign as self.n. Going backward in time otherwise. Returns ------- result : datetime Next opening time. """ earliest_start = self.start[0] latest_start = self.start[-1] if not self.next_bday.is_on_offset(other): # today is not business day other = other + sign * self.next_bday if self.n * sign >= 0: hour, minute = earliest_start.hour, earliest_start.minute else: hour, minute = latest_start.hour, latest_start.minute else: if self.n * sign >= 0: if latest_start < other.time(): # current time is after latest starting time in today other = other + sign * self.next_bday hour, minute = earliest_start.hour, earliest_start.minute else: # find earliest starting time no earlier than current time for st in self.start: if other.time() <= st: hour, minute = st.hour, st.minute break else: if other.time() < earliest_start: # current time is before earliest starting time in today other = other + sign * self.next_bday hour, minute = latest_start.hour, latest_start.minute else: # find latest starting time no later than current time for st in reversed(self.start): if other.time() >= st: hour, minute = st.hour, st.minute break return datetime(other.year, other.month, other.day, hour, minute) def _prev_opening_time(self, other): """ If n is positive, return the latest opening time earlier than or equal to current time. Otherwise the earliest opening time later than or equal to current time. Parameters ---------- other : datetime Current time. Returns ------- result : datetime Previous opening time. """ return self._next_opening_time(other, sign=-1) def _get_business_hours_by_sec(self, start, end): """ Return business hours in a day by seconds. """ # create dummy datetime to calculate businesshours in a day dtstart = datetime(2014, 4, 1, start.hour, start.minute) day = 1 if start < end else 2 until = datetime(2014, 4, day, end.hour, end.minute) return int((until - dtstart).total_seconds()) @apply_wraps def rollback(self, dt): """ Roll provided date backward to next offset only if not on offset. """ if not self.is_on_offset(dt): if self.n >= 0: dt = self._prev_opening_time(dt) else: dt = self._next_opening_time(dt) return self._get_closing_time(dt) return dt @apply_wraps def rollforward(self, dt): """ Roll provided date forward to next offset only if not on offset. """ if not self.is_on_offset(dt): if self.n >= 0: return self._next_opening_time(dt) else: return self._prev_opening_time(dt) return dt def _get_closing_time(self, dt): """ Get the closing time of a business hour interval by its opening time. Parameters ---------- dt : datetime Opening time of a business hour interval. Returns ------- result : datetime Corresponding closing time. """ for i, st in enumerate(self.start): if st.hour == dt.hour and st.minute == dt.minute: return dt + timedelta( seconds=self._get_business_hours_by_sec(st, self.end[i]) ) assert False @apply_wraps def apply(self, other): if isinstance(other, datetime): # used for detecting edge condition nanosecond = getattr(other, "nanosecond", 0) # reset timezone and nanosecond # other may be a Timestamp, thus not use replace other = datetime( other.year, other.month, other.day, other.hour, other.minute, other.second, other.microsecond, ) n = self.n # adjust other to reduce number of cases to handle if n >= 0: if other.time() in self.end or not self._is_on_offset(other): other = self._next_opening_time(other) else: if other.time() in self.start: # adjustment to move to previous business day other = other - timedelta(seconds=1) if not self._is_on_offset(other): other = self._next_opening_time(other) other = self._get_closing_time(other) # get total business hours by sec in one business day businesshours = sum( self._get_business_hours_by_sec(st, en) for st, en in zip(self.start, self.end) ) bd, r = divmod(abs(n * 60), businesshours // 60) if n < 0: bd, r = -bd, -r # adjust by business days first if bd != 0: skip_bd = BusinessDay(n=bd) # midnight business hour may not on BusinessDay if not self.next_bday.is_on_offset(other): prev_open = self._prev_opening_time(other) remain = other - prev_open other = prev_open + skip_bd + remain else: other = other + skip_bd # remaining business hours to adjust bhour_remain = timedelta(minutes=r) if n >= 0: while bhour_remain != timedelta(0): # business hour left in this business time interval bhour = ( self._get_closing_time(self._prev_opening_time(other)) - other ) if bhour_remain < bhour: # finish adjusting if possible other += bhour_remain bhour_remain = timedelta(0) else: # go to next business time interval bhour_remain -= bhour other = self._next_opening_time(other + bhour) else: while bhour_remain != timedelta(0): # business hour left in this business time interval bhour = self._next_opening_time(other) - other if ( bhour_remain > bhour or bhour_remain == bhour and nanosecond != 0 ): # finish adjusting if possible other += bhour_remain bhour_remain = timedelta(0) else: # go to next business time interval bhour_remain -= bhour other = self._get_closing_time( self._next_opening_time( other + bhour - timedelta(seconds=1) ) ) return other else: raise ApplyTypeError("Only know how to combine business hour with datetime") def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False if dt.tzinfo is not None: dt = datetime( dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond ) # Valid BH can be on the different BusinessDay during midnight # Distinguish by the time spent from previous opening time return self._is_on_offset(dt) def _is_on_offset(self, dt): """ Slight speedups using calculated values. """ # if self.normalize and not _is_normalized(dt): # return False # Valid BH can be on the different BusinessDay during midnight # Distinguish by the time spent from previous opening time if self.n >= 0: op = self._prev_opening_time(dt) else: op = self._next_opening_time(dt) span = (dt - op).total_seconds() businesshours = 0 for i, st in enumerate(self.start): if op.hour == st.hour and op.minute == st.minute: businesshours = self._get_business_hours_by_sec(st, self.end[i]) if span <= businesshours: return True else: return False def _repr_attrs(self): out = super()._repr_attrs() hours = ",".join( f'{st.strftime("%H:%M")}-{en.strftime("%H:%M")}' for st, en in zip(self.start, self.end) ) attrs = [f"{self._prefix}={hours}"] out += ": " + ", ".join(attrs) return out class BusinessHour(BusinessHourMixin, SingleConstructorOffset): """ DateOffset subclass representing possibly n business hours. """ _prefix = "BH" _anchor = 0 _attributes = frozenset(["n", "normalize", "start", "end", "offset"]) def __init__( self, n=1, normalize=False, start="09:00", end="17:00", offset=timedelta(0) ): BaseOffset.__init__(self, n, normalize) super().__init__(start=start, end=end, offset=offset) class CustomBusinessDay(_CustomMixin, BusinessDay): """ DateOffset subclass representing possibly n custom business days, excluding holidays. Parameters ---------- n : int, default 1 normalize : bool, default False Normalize start/end dates to midnight before generating date range. weekmask : str, Default 'Mon Tue Wed Thu Fri' Weekmask of valid business days, passed to ``numpy.busdaycalendar``. holidays : list List/array of dates to exclude from the set of valid business days, passed to ``numpy.busdaycalendar``. calendar : pd.HolidayCalendar or np.busdaycalendar offset : timedelta, default timedelta(0) """ _prefix = "C" _attributes = frozenset( ["n", "normalize", "weekmask", "holidays", "calendar", "offset"] ) def __init__( self, n=1, normalize=False, weekmask="Mon Tue Wed Thu Fri", holidays=None, calendar=None, offset=timedelta(0), ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "_offset", offset) _CustomMixin.__init__(self, weekmask, holidays, calendar) @apply_wraps def apply(self, other): if self.n <= 0: roll = "forward" else: roll = "backward" if isinstance(other, datetime): date_in = other np_dt = np.datetime64(date_in.date()) np_incr_dt = np.busday_offset( np_dt, self.n, roll=roll, busdaycal=self.calendar ) dt_date = np_incr_dt.astype(datetime) result = datetime.combine(dt_date, date_in.time()) if self.offset: result = result + self.offset return result elif isinstance(other, (timedelta, Tick)): return BDay(self.n, offset=self.offset + other, normalize=self.normalize) else: raise ApplyTypeError( "Only know how to combine trading day with " "datetime, datetime64 or timedelta." ) def apply_index(self, i): raise NotImplementedError def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False day64 = _to_dt64(dt, "datetime64[D]") return np.is_busday(day64, busdaycal=self.calendar) class CustomBusinessHour(_CustomMixin, BusinessHourMixin, SingleConstructorOffset): """ DateOffset subclass representing possibly n custom business days. """ _prefix = "CBH" _anchor = 0 _attributes = frozenset( ["n", "normalize", "weekmask", "holidays", "calendar", "start", "end", "offset"] ) def __init__( self, n=1, normalize=False, weekmask="Mon Tue Wed Thu Fri", holidays=None, calendar=None, start="09:00", end="17:00", offset=timedelta(0), ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "_offset", offset) _CustomMixin.__init__(self, weekmask, holidays, calendar) BusinessHourMixin.__init__(self, start=start, end=end, offset=offset) # --------------------------------------------------------------------- # Month-Based Offset Classes class MonthOffset(SingleConstructorOffset): _adjust_dst = True _attributes = frozenset(["n", "normalize"]) __init__ = BaseOffset.__init__ @property def name(self): if self.is_anchored: return self.rule_code else: month = ccalendar.MONTH_ALIASES[self.n] return f"{self.code_rule}-{month}" def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.day == self._get_offset_day(dt) @apply_wraps def apply(self, other): compare_day = self._get_offset_day(other) n = liboffsets.roll_convention(other.day, self.n, compare_day) return shift_month(other, n, self._day_opt) @apply_index_wraps def apply_index(self, i): shifted = liboffsets.shift_months(i.asi8, self.n, self._day_opt) # TODO: going through __new__ raises on call to _validate_frequency; # are we passing incorrect freq? return type(i)._simple_new(shifted, freq=i.freq, dtype=i.dtype) class MonthEnd(MonthOffset): """ DateOffset of one month end. """ _prefix = "M" _day_opt = "end" class MonthBegin(MonthOffset): """ DateOffset of one month at beginning. """ _prefix = "MS" _day_opt = "start" class BusinessMonthEnd(MonthOffset): """ DateOffset increments between business EOM dates. """ _prefix = "BM" _day_opt = "business_end" class BusinessMonthBegin(MonthOffset): """ DateOffset of one business month at beginning. """ _prefix = "BMS" _day_opt = "business_start" class _CustomBusinessMonth(_CustomMixin, BusinessMixin, MonthOffset): """ DateOffset subclass representing custom business month(s). Increments between %(bound)s of month dates. Parameters ---------- n : int, default 1 The number of months represented. normalize : bool, default False Normalize start/end dates to midnight before generating date range. weekmask : str, Default 'Mon Tue Wed Thu Fri' Weekmask of valid business days, passed to ``numpy.busdaycalendar``. holidays : list List/array of dates to exclude from the set of valid business days, passed to ``numpy.busdaycalendar``. calendar : pd.HolidayCalendar or np.busdaycalendar Calendar to integrate. offset : timedelta, default timedelta(0) Time offset to apply. """ _attributes = frozenset( ["n", "normalize", "weekmask", "holidays", "calendar", "offset"] ) is_on_offset = DateOffset.is_on_offset # override MonthOffset method apply_index = DateOffset.apply_index # override MonthOffset method def __init__( self, n=1, normalize=False, weekmask="Mon Tue Wed Thu Fri", holidays=None, calendar=None, offset=timedelta(0), ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "_offset", offset) _CustomMixin.__init__(self, weekmask, holidays, calendar) @cache_readonly def cbday_roll(self): """ Define default roll function to be called in apply method. """ cbday = CustomBusinessDay(n=self.n, normalize=False, **self.kwds) if self._prefix.endswith("S"): # MonthBegin roll_func = cbday.rollforward else: # MonthEnd roll_func = cbday.rollback return roll_func @cache_readonly def m_offset(self): if self._prefix.endswith("S"): # MonthBegin moff = MonthBegin(n=1, normalize=False) else: # MonthEnd moff = MonthEnd(n=1, normalize=False) return moff @cache_readonly def month_roll(self): """ Define default roll function to be called in apply method. """ if self._prefix.endswith("S"): # MonthBegin roll_func = self.m_offset.rollback else: # MonthEnd roll_func = self.m_offset.rollforward return roll_func @apply_wraps def apply(self, other): # First move to month offset cur_month_offset_date = self.month_roll(other) # Find this custom month offset compare_date = self.cbday_roll(cur_month_offset_date) n = liboffsets.roll_convention(other.day, self.n, compare_date.day) new = cur_month_offset_date + n * self.m_offset result = self.cbday_roll(new) return result @Substitution(bound="end") @Appender(_CustomBusinessMonth.__doc__) class CustomBusinessMonthEnd(_CustomBusinessMonth): _prefix = "CBM" @Substitution(bound="beginning") @Appender(_CustomBusinessMonth.__doc__) class CustomBusinessMonthBegin(_CustomBusinessMonth): _prefix = "CBMS" # --------------------------------------------------------------------- # Semi-Month Based Offset Classes class SemiMonthOffset(DateOffset): _adjust_dst = True _default_day_of_month = 15 _min_day_of_month = 2 _attributes = frozenset(["n", "normalize", "day_of_month"]) def __init__(self, n=1, normalize=False, day_of_month=None): BaseOffset.__init__(self, n, normalize) if day_of_month is None: object.__setattr__(self, "day_of_month", self._default_day_of_month) else: object.__setattr__(self, "day_of_month", int(day_of_month)) if not self._min_day_of_month <= self.day_of_month <= 27: raise ValueError( "day_of_month must be " f"{self._min_day_of_month}<=day_of_month<=27, " f"got {self.day_of_month}" ) @classmethod def _from_name(cls, suffix=None): return cls(day_of_month=suffix) @property def rule_code(self): suffix = f"-{self.day_of_month}" return self._prefix + suffix @apply_wraps def apply(self, other): # shift `other` to self.day_of_month, incrementing `n` if necessary n = liboffsets.roll_convention(other.day, self.n, self.day_of_month) days_in_month = ccalendar.get_days_in_month(other.year, other.month) # For SemiMonthBegin on other.day == 1 and # SemiMonthEnd on other.day == days_in_month, # shifting `other` to `self.day_of_month` _always_ requires # incrementing/decrementing `n`, regardless of whether it is # initially positive. if type(self) is SemiMonthBegin and (self.n <= 0 and other.day == 1): n -= 1 elif type(self) is SemiMonthEnd and (self.n > 0 and other.day == days_in_month): n += 1 return self._apply(n, other) def _apply(self, n, other): """ Handle specific apply logic for child classes. """ raise AbstractMethodError(self) @apply_index_wraps def apply_index(self, i): # determine how many days away from the 1st of the month we are dti = i days_from_start = i.to_perioddelta("M").asi8 delta = Timedelta(days=self.day_of_month - 1).value # get boolean array for each element before the day_of_month before_day_of_month = days_from_start < delta # get boolean array for each element after the day_of_month after_day_of_month = days_from_start > delta # determine the correct n for each date in i roll = self._get_roll(i, before_day_of_month, after_day_of_month) # isolate the time since it will be striped away one the next line time = i.to_perioddelta("D") # apply the correct number of months # integer-array addition on PeriodIndex is deprecated, # so we use _addsub_int_array directly asper = i.to_period("M") if not isinstance(asper._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray asper = asper._data shifted = asper._addsub_int_array(roll // 2, operator.add) i = type(dti)(shifted.to_timestamp()) # apply the correct day i = self._apply_index_days(i, roll) return i + time def _get_roll(self, i, before_day_of_month, after_day_of_month): """ Return an array with the correct n for each date in i. The roll array is based on the fact that i gets rolled back to the first day of the month. """ raise AbstractMethodError(self) def _apply_index_days(self, i, roll): """ Apply the correct day for each date in i. """ raise AbstractMethodError(self) class SemiMonthEnd(SemiMonthOffset): """ Two DateOffset's per month repeating on the last day of the month and day_of_month. Parameters ---------- n : int normalize : bool, default False day_of_month : int, {1, 3,...,27}, default 15 """ _prefix = "SM" _min_day_of_month = 1 def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False days_in_month = ccalendar.get_days_in_month(dt.year, dt.month) return dt.day in (self.day_of_month, days_in_month) def _apply(self, n, other): months = n // 2 day = 31 if n % 2 else self.day_of_month return shift_month(other, months, day) def _get_roll(self, i, before_day_of_month, after_day_of_month): n = self.n is_month_end = i.is_month_end if n > 0: roll_end = np.where(is_month_end, 1, 0) roll_before = np.where(before_day_of_month, n, n + 1) roll = roll_end + roll_before elif n == 0: roll_after = np.where(after_day_of_month, 2, 0) roll_before = np.where(~after_day_of_month, 1, 0) roll = roll_before + roll_after else: roll = np.where(after_day_of_month, n + 2, n + 1) return roll def _apply_index_days(self, i, roll): """ Add days portion of offset to DatetimeIndex i. Parameters ---------- i : DatetimeIndex roll : ndarray[int64_t] Returns ------- result : DatetimeIndex """ nanos = (roll % 2) * Timedelta(days=self.day_of_month).value i += nanos.astype("timedelta64[ns]") return i + Timedelta(days=-1) class SemiMonthBegin(SemiMonthOffset): """ Two DateOffset's per month repeating on the first day of the month and day_of_month. Parameters ---------- n : int normalize : bool, default False day_of_month : int, {2, 3,...,27}, default 15 """ _prefix = "SMS" def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.day in (1, self.day_of_month) def _apply(self, n, other): months = n // 2 + n % 2 day = 1 if n % 2 else self.day_of_month return shift_month(other, months, day) def _get_roll(self, i, before_day_of_month, after_day_of_month): n = self.n is_month_start = i.is_month_start if n > 0: roll = np.where(before_day_of_month, n, n + 1) elif n == 0: roll_start = np.where(is_month_start, 0, 1) roll_after = np.where(after_day_of_month, 1, 0) roll = roll_start + roll_after else: roll_after = np.where(after_day_of_month, n + 2, n + 1) roll_start = np.where(is_month_start, -1, 0) roll = roll_after + roll_start return roll def _apply_index_days(self, i, roll): """ Add days portion of offset to DatetimeIndex i. Parameters ---------- i : DatetimeIndex roll : ndarray[int64_t] Returns ------- result : DatetimeIndex """ nanos = (roll % 2) * Timedelta(days=self.day_of_month - 1).value return i + nanos.astype("timedelta64[ns]") # --------------------------------------------------------------------- # Week-Based Offset Classes class Week(DateOffset): """ Weekly offset. Parameters ---------- weekday : int, default None Always generate specific day of week. 0 for Monday. """ _adjust_dst = True _inc = timedelta(weeks=1) _prefix = "W" _attributes = frozenset(["n", "normalize", "weekday"]) def __init__(self, n=1, normalize=False, weekday=None): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "weekday", weekday) if self.weekday is not None: if self.weekday < 0 or self.weekday > 6: raise ValueError(f"Day must be 0<=day<=6, got {self.weekday}") def is_anchored(self): return self.n == 1 and self.weekday is not None @apply_wraps def apply(self, other): if self.weekday is None: return other + self.n * self._inc if not isinstance(other, datetime): raise TypeError( f"Cannot add {type(other).__name__} to {type(self).__name__}" ) k = self.n otherDay = other.weekday() if otherDay != self.weekday: other = other + timedelta((self.weekday - otherDay) % 7) if k > 0: k -= 1 return other + timedelta(weeks=k) @apply_index_wraps def apply_index(self, i): if self.weekday is None: # integer addition on PeriodIndex is deprecated, # so we use _time_shift directly asper = i.to_period("W") if not isinstance(asper._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray asper = asper._data shifted = asper._time_shift(self.n) return shifted.to_timestamp() + i.to_perioddelta("W") else: return self._end_apply_index(i) def _end_apply_index(self, dtindex): """ Add self to the given DatetimeIndex, specialized for case where self.weekday is non-null. Parameters ---------- dtindex : DatetimeIndex Returns ------- result : DatetimeIndex """ off = dtindex.to_perioddelta("D") base, mult = libfrequencies.get_freq_code(self.freqstr) base_period = dtindex.to_period(base) if not isinstance(base_period._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray base_period = base_period._data if self.n > 0: # when adding, dates on end roll to next normed = dtindex - off + Timedelta(1, "D") - Timedelta(1, "ns") roll = np.where( base_period.to_timestamp(how="end") == normed, self.n, self.n - 1 ) # integer-array addition on PeriodIndex is deprecated, # so we use _addsub_int_array directly shifted = base_period._addsub_int_array(roll, operator.add) base = shifted.to_timestamp(how="end") else: # integer addition on PeriodIndex is deprecated, # so we use _time_shift directly roll = self.n base = base_period._time_shift(roll).to_timestamp(how="end") return base + off + Timedelta(1, "ns") - Timedelta(1, "D") def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False elif self.weekday is None: return True return dt.weekday() == self.weekday @property def rule_code(self): suffix = "" if self.weekday is not None: weekday = ccalendar.int_to_weekday[self.weekday] suffix = f"-{weekday}" return self._prefix + suffix @classmethod def _from_name(cls, suffix=None): if not suffix: weekday = None else: weekday = ccalendar.weekday_to_int[suffix] return cls(weekday=weekday) class _WeekOfMonthMixin: """ Mixin for methods common to WeekOfMonth and LastWeekOfMonth. """ @apply_wraps def apply(self, other): compare_day = self._get_offset_day(other) months = self.n if months > 0 and compare_day > other.day: months -= 1 elif months <= 0 and compare_day < other.day: months += 1 shifted = shift_month(other, months, "start") to_day = self._get_offset_day(shifted) return liboffsets.shift_day(shifted, to_day - shifted.day) def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.day == self._get_offset_day(dt) class WeekOfMonth(_WeekOfMonthMixin, DateOffset): """ Describes monthly dates like "the Tuesday of the 2nd week of each month". Parameters ---------- n : int week : int {0, 1, 2, 3, ...}, default 0 A specific integer for the week of the month. e.g. 0 is 1st week of month, 1 is the 2nd week, etc. weekday : int {0, 1, ..., 6}, default 0 A specific integer for the day of the week. - 0 is Monday - 1 is Tuesday - 2 is Wednesday - 3 is Thursday - 4 is Friday - 5 is Saturday - 6 is Sunday. """ _prefix = "WOM" _adjust_dst = True _attributes = frozenset(["n", "normalize", "week", "weekday"]) def __init__(self, n=1, normalize=False, week=0, weekday=0): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "weekday", weekday) object.__setattr__(self, "week", week) if self.weekday < 0 or self.weekday > 6: raise ValueError(f"Day must be 0<=day<=6, got {self.weekday}") if self.week < 0 or self.week > 3: raise ValueError(f"Week must be 0<=week<=3, got {self.week}") def _get_offset_day(self, other): """ Find the day in the same month as other that has the same weekday as self.weekday and is the self.week'th such day in the month. Parameters ---------- other : datetime Returns ------- day : int """ mstart = datetime(other.year, other.month, 1) wday = mstart.weekday() shift_days = (self.weekday - wday) % 7 return 1 + shift_days + self.week * 7 @property def rule_code(self): weekday = ccalendar.int_to_weekday.get(self.weekday, "") return f"{self._prefix}-{self.week + 1}{weekday}" @classmethod def _from_name(cls, suffix=None): if not suffix: raise ValueError(f"Prefix {repr(cls._prefix)} requires a suffix.") # TODO: handle n here... # only one digit weeks (1 --> week 0, 2 --> week 1, etc.) week = int(suffix[0]) - 1 weekday = ccalendar.weekday_to_int[suffix[1:]] return cls(week=week, weekday=weekday) class LastWeekOfMonth(_WeekOfMonthMixin, DateOffset): """ Describes monthly dates in last week of month like "the last Tuesday of each month". Parameters ---------- n : int, default 1 weekday : int {0, 1, ..., 6}, default 0 A specific integer for the day of the week. - 0 is Monday - 1 is Tuesday - 2 is Wednesday - 3 is Thursday - 4 is Friday - 5 is Saturday - 6 is Sunday. """ _prefix = "LWOM" _adjust_dst = True _attributes = frozenset(["n", "normalize", "weekday"]) def __init__(self, n=1, normalize=False, weekday=0): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "weekday", weekday) if self.n == 0: raise ValueError("N cannot be 0") if self.weekday < 0 or self.weekday > 6: raise ValueError(f"Day must be 0<=day<=6, got {self.weekday}") def _get_offset_day(self, other): """ Find the day in the same month as other that has the same weekday as self.weekday and is the last such day in the month. Parameters ---------- other: datetime Returns ------- day: int """ dim = ccalendar.get_days_in_month(other.year, other.month) mend = datetime(other.year, other.month, dim) wday = mend.weekday() shift_days = (wday - self.weekday) % 7 return dim - shift_days @property def rule_code(self): weekday = ccalendar.int_to_weekday.get(self.weekday, "") return f"{self._prefix}-{weekday}" @classmethod def _from_name(cls, suffix=None): if not suffix: raise ValueError(f"Prefix {repr(cls._prefix)} requires a suffix.") # TODO: handle n here... weekday = ccalendar.weekday_to_int[suffix] return cls(weekday=weekday) # --------------------------------------------------------------------- # Quarter-Based Offset Classes class QuarterOffset(DateOffset): """ Quarter representation - doesn't call super. """ _default_startingMonth: Optional[int] = None _from_name_startingMonth: Optional[int] = None _adjust_dst = True _attributes = frozenset(["n", "normalize", "startingMonth"]) # TODO: Consider combining QuarterOffset and YearOffset __init__ at some # point. Also apply_index, is_on_offset, rule_code if # startingMonth vs month attr names are resolved def __init__(self, n=1, normalize=False, startingMonth=None): BaseOffset.__init__(self, n, normalize) if startingMonth is None: startingMonth = self._default_startingMonth object.__setattr__(self, "startingMonth", startingMonth) def is_anchored(self): return self.n == 1 and self.startingMonth is not None @classmethod def _from_name(cls, suffix=None): kwargs = {} if suffix: kwargs["startingMonth"] = ccalendar.MONTH_TO_CAL_NUM[suffix] else: if cls._from_name_startingMonth is not None: kwargs["startingMonth"] = cls._from_name_startingMonth return cls(**kwargs) @property def rule_code(self): month = ccalendar.MONTH_ALIASES[self.startingMonth] return f"{self._prefix}-{month}" @apply_wraps def apply(self, other): # months_since: find the calendar quarter containing other.month, # e.g. if other.month == 8, the calendar quarter is [Jul, Aug, Sep]. # Then find the month in that quarter containing an is_on_offset date for # self. `months_since` is the number of months to shift other.month # to get to this on-offset month. months_since = other.month % 3 - self.startingMonth % 3 qtrs = liboffsets.roll_qtrday( other, self.n, self.startingMonth, day_opt=self._day_opt, modby=3 ) months = qtrs * 3 - months_since return shift_month(other, months, self._day_opt) def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False mod_month = (dt.month - self.startingMonth) % 3 return mod_month == 0 and dt.day == self._get_offset_day(dt) @apply_index_wraps def apply_index(self, dtindex): shifted = liboffsets.shift_quarters( dtindex.asi8, self.n, self.startingMonth, self._day_opt ) # TODO: going through __new__ raises on call to _validate_frequency; # are we passing incorrect freq? return type(dtindex)._simple_new( shifted, freq=dtindex.freq, dtype=dtindex.dtype ) class BQuarterEnd(QuarterOffset): """ DateOffset increments between business Quarter dates. startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, ... startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, ... startingMonth = 3 corresponds to dates like 3/30/2007, 6/29/2007, ... """ _outputName = "BusinessQuarterEnd" _default_startingMonth = 3 _from_name_startingMonth = 12 _prefix = "BQ" _day_opt = "business_end" # TODO: This is basically the same as BQuarterEnd class BQuarterBegin(QuarterOffset): _outputName = "BusinessQuarterBegin" # I suspect this is wrong for *all* of them. _default_startingMonth = 3 _from_name_startingMonth = 1 _prefix = "BQS" _day_opt = "business_start" class QuarterEnd(QuarterOffset): """ DateOffset increments between business Quarter dates. startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, ... startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, ... startingMonth = 3 corresponds to dates like 3/31/2007, 6/30/2007, ... """ _outputName = "QuarterEnd" _default_startingMonth = 3 _prefix = "Q" _day_opt = "end" class QuarterBegin(QuarterOffset): _outputName = "QuarterBegin" _default_startingMonth = 3 _from_name_startingMonth = 1 _prefix = "QS" _day_opt = "start" # --------------------------------------------------------------------- # Year-Based Offset Classes class YearOffset(DateOffset): """ DateOffset that just needs a month. """ _adjust_dst = True _attributes = frozenset(["n", "normalize", "month"]) def _get_offset_day(self, other): # override BaseOffset method to use self.month instead of other.month # TODO: there may be a more performant way to do this return liboffsets.get_day_of_month( other.replace(month=self.month), self._day_opt ) @apply_wraps def apply(self, other): years = roll_yearday(other, self.n, self.month, self._day_opt) months = years * 12 + (self.month - other.month) return shift_month(other, months, self._day_opt) @apply_index_wraps def apply_index(self, dtindex): shifted = liboffsets.shift_quarters( dtindex.asi8, self.n, self.month, self._day_opt, modby=12 ) # TODO: going through __new__ raises on call to _validate_frequency; # are we passing incorrect freq? return type(dtindex)._simple_new( shifted, freq=dtindex.freq, dtype=dtindex.dtype ) def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.month == self.month and dt.day == self._get_offset_day(dt) def __init__(self, n=1, normalize=False, month=None): BaseOffset.__init__(self, n, normalize) month = month if month is not None else self._default_month object.__setattr__(self, "month", month) if self.month < 1 or self.month > 12: raise ValueError("Month must go from 1 to 12") @classmethod def _from_name(cls, suffix=None): kwargs = {} if suffix: kwargs["month"] = ccalendar.MONTH_TO_CAL_NUM[suffix] return cls(**kwargs) @property def rule_code(self): month = ccalendar.MONTH_ALIASES[self.month] return f"{self._prefix}-{month}" class BYearEnd(YearOffset): """ DateOffset increments between business EOM dates. """ _outputName = "BusinessYearEnd" _default_month = 12 _prefix = "BA" _day_opt = "business_end" class BYearBegin(YearOffset): """ DateOffset increments between business year begin dates. """ _outputName = "BusinessYearBegin" _default_month = 1 _prefix = "BAS" _day_opt = "business_start" class YearEnd(YearOffset): """ DateOffset increments between calendar year ends. """ _default_month = 12 _prefix = "A" _day_opt = "end" class YearBegin(YearOffset): """ DateOffset increments between calendar year begin dates. """ _default_month = 1 _prefix = "AS" _day_opt = "start" # --------------------------------------------------------------------- # Special Offset Classes class FY5253(DateOffset): """ Describes 52-53 week fiscal year. This is also known as a 4-4-5 calendar. It is used by companies that desire that their fiscal year always end on the same day of the week. It is a method of managing accounting periods. It is a common calendar structure for some industries, such as retail, manufacturing and parking industry. For more information see: http://en.wikipedia.org/wiki/4-4-5_calendar The year may either: - end on the last X day of the Y month. - end on the last X day closest to the last day of the Y month. X is a specific day of the week. Y is a certain month of the year Parameters ---------- n : int weekday : int {0, 1, ..., 6}, default 0 A specific integer for the day of the week. - 0 is Monday - 1 is Tuesday - 2 is Wednesday - 3 is Thursday - 4 is Friday - 5 is Saturday - 6 is Sunday. startingMonth : int {1, 2, ... 12}, default 1 The month in which the fiscal year ends. variation : str, default "nearest" Method of employing 4-4-5 calendar. There are two options: - "nearest" means year end is **weekday** closest to last day of month in year. - "last" means year end is final **weekday** of the final month in fiscal year. """ _prefix = "RE" _adjust_dst = True _attributes = frozenset(["weekday", "startingMonth", "variation"]) def __init__( self, n=1, normalize=False, weekday=0, startingMonth=1, variation="nearest" ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "startingMonth", startingMonth) object.__setattr__(self, "weekday", weekday) object.__setattr__(self, "variation", variation) if self.n == 0: raise ValueError("N cannot be 0") if self.variation not in ["nearest", "last"]: raise ValueError(f"{self.variation} is not a valid variation") def is_anchored(self): return ( self.n == 1 and self.startingMonth is not None and self.weekday is not None ) def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False dt = datetime(dt.year, dt.month, dt.day) year_end = self.get_year_end(dt) if self.variation == "nearest": # We have to check the year end of "this" cal year AND the previous return year_end == dt or self.get_year_end(shift_month(dt, -1, None)) == dt else: return year_end == dt @apply_wraps def apply(self, other): norm = Timestamp(other).normalize() n = self.n prev_year = self.get_year_end(datetime(other.year - 1, self.startingMonth, 1)) cur_year = self.get_year_end(datetime(other.year, self.startingMonth, 1)) next_year = self.get_year_end(datetime(other.year + 1, self.startingMonth, 1)) prev_year = conversion.localize_pydatetime(prev_year, other.tzinfo) cur_year = conversion.localize_pydatetime(cur_year, other.tzinfo) next_year = conversion.localize_pydatetime(next_year, other.tzinfo) # Note: next_year.year == other.year + 1, so we will always # have other < next_year if norm == prev_year: n -= 1 elif norm == cur_year: pass elif n > 0: if norm < prev_year: n -= 2 elif prev_year < norm < cur_year: n -= 1 elif cur_year < norm < next_year: pass else: if cur_year < norm < next_year: n += 1 elif prev_year < norm < cur_year: pass elif ( norm.year == prev_year.year and norm < prev_year and prev_year - norm <= timedelta(6) ): # GH#14774, error when next_year.year == cur_year.year # e.g. prev_year == datetime(2004, 1, 3), # other == datetime(2004, 1, 1) n -= 1 else: assert False shifted = datetime(other.year + n, self.startingMonth, 1) result = self.get_year_end(shifted) result = datetime( result.year, result.month, result.day, other.hour, other.minute, other.second, other.microsecond, ) return result def get_year_end(self, dt): assert dt.tzinfo is None dim = ccalendar.get_days_in_month(dt.year, self.startingMonth) target_date = datetime(dt.year, self.startingMonth, dim) wkday_diff = self.weekday - target_date.weekday() if wkday_diff == 0: # year_end is the same for "last" and "nearest" cases return target_date if self.variation == "last": days_forward = (wkday_diff % 7) - 7 # days_forward is always negative, so we always end up # in the same year as dt return target_date + timedelta(days=days_forward) else: # variation == "nearest": days_forward = wkday_diff % 7 if days_forward <= 3: # The upcoming self.weekday is closer than the previous one return target_date + timedelta(days_forward) else: # The previous self.weekday is closer than the upcoming one return target_date + timedelta(days_forward - 7) @property def rule_code(self): prefix = self._prefix suffix = self.get_rule_code_suffix() return f"{prefix}-{suffix}" def _get_suffix_prefix(self): if self.variation == "nearest": return "N" else: return "L" def get_rule_code_suffix(self): prefix = self._get_suffix_prefix() month = ccalendar.MONTH_ALIASES[self.startingMonth] weekday = ccalendar.int_to_weekday[self.weekday] return f"{prefix}-{month}-{weekday}" @classmethod def _parse_suffix(cls, varion_code, startingMonth_code, weekday_code): if varion_code == "N": variation = "nearest" elif varion_code == "L": variation = "last" else: raise ValueError(f"Unable to parse varion_code: {varion_code}") startingMonth = ccalendar.MONTH_TO_CAL_NUM[startingMonth_code] weekday = ccalendar.weekday_to_int[weekday_code] return { "weekday": weekday, "startingMonth": startingMonth, "variation": variation, } @classmethod def _from_name(cls, *args): return cls(**cls._parse_suffix(*args)) class FY5253Quarter(DateOffset): """ DateOffset increments between business quarter dates for 52-53 week fiscal year (also known as a 4-4-5 calendar). It is used by companies that desire that their fiscal year always end on the same day of the week. It is a method of managing accounting periods. It is a common calendar structure for some industries, such as retail, manufacturing and parking industry. For more information see: http://en.wikipedia.org/wiki/4-4-5_calendar The year may either: - end on the last X day of the Y month. - end on the last X day closest to the last day of the Y month. X is a specific day of the week. Y is a certain month of the year startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, ... startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, ... startingMonth = 3 corresponds to dates like 3/30/2007, 6/29/2007, ... Parameters ---------- n : int weekday : int {0, 1, ..., 6}, default 0 A specific integer for the day of the week. - 0 is Monday - 1 is Tuesday - 2 is Wednesday - 3 is Thursday - 4 is Friday - 5 is Saturday - 6 is Sunday. startingMonth : int {1, 2, ..., 12}, default 1 The month in which fiscal years end. qtr_with_extra_week : int {1, 2, 3, 4}, default 1 The quarter number that has the leap or 14 week when needed. variation : str, default "nearest" Method of employing 4-4-5 calendar. There are two options: - "nearest" means year end is **weekday** closest to last day of month in year. - "last" means year end is final **weekday** of the final month in fiscal year. """ _prefix = "REQ" _adjust_dst = True _attributes = frozenset( ["weekday", "startingMonth", "qtr_with_extra_week", "variation"] ) def __init__( self, n=1, normalize=False, weekday=0, startingMonth=1, qtr_with_extra_week=1, variation="nearest", ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "startingMonth", startingMonth) object.__setattr__(self, "weekday", weekday) object.__setattr__(self, "qtr_with_extra_week", qtr_with_extra_week) object.__setattr__(self, "variation", variation) if self.n == 0: raise ValueError("N cannot be 0") @cache_readonly def _offset(self): return FY5253( startingMonth=self.startingMonth, weekday=self.weekday, variation=self.variation, ) def is_anchored(self): return self.n == 1 and self._offset.is_anchored() def _rollback_to_year(self, other): """ Roll `other` back to the most recent date that was on a fiscal year end. Return the date of that year-end, the number of full quarters elapsed between that year-end and other, and the remaining Timedelta since the most recent quarter-end. Parameters ---------- other : datetime or Timestamp Returns ------- tuple of prev_year_end : Timestamp giving most recent fiscal year end num_qtrs : int tdelta : Timedelta """ num_qtrs = 0 norm = Timestamp(other).tz_localize(None) start = self._offset.rollback(norm) # Note: start <= norm and self._offset.is_on_offset(start) if start < norm: # roll adjustment qtr_lens = self.get_weeks(norm) # check thet qtr_lens is consistent with self._offset addition end = liboffsets.shift_day(start, days=7 * sum(qtr_lens)) assert self._offset.is_on_offset(end), (start, end, qtr_lens) tdelta = norm - start for qlen in qtr_lens: if qlen * 7 <= tdelta.days: num_qtrs += 1 tdelta -= Timedelta(days=qlen * 7) else: break else: tdelta = Timedelta(0) # Note: we always have tdelta.value >= 0 return start, num_qtrs, tdelta @apply_wraps def apply(self, other): # Note: self.n == 0 is not allowed. n = self.n prev_year_end, num_qtrs, tdelta = self._rollback_to_year(other) res = prev_year_end n += num_qtrs if self.n <= 0 and tdelta.value > 0: n += 1 # Possible speedup by handling years first. years = n // 4 if years: res += self._offset * years n -= years * 4 # Add an extra day to make *sure* we are getting the quarter lengths # for the upcoming year, not the previous year qtr_lens = self.get_weeks(res + Timedelta(days=1)) # Note: we always have 0 <= n < 4 weeks = sum(qtr_lens[:n]) if weeks: res = liboffsets.shift_day(res, days=weeks * 7) return res def get_weeks(self, dt): ret = [13] * 4 year_has_extra_week = self.year_has_extra_week(dt) if year_has_extra_week: ret[self.qtr_with_extra_week - 1] = 14 return ret def year_has_extra_week(self, dt): # Avoid round-down errors --> normalize to get # e.g. '370D' instead of '360D23H' norm = Timestamp(dt).normalize().tz_localize(None) next_year_end = self._offset.rollforward(norm) prev_year_end = norm - self._offset weeks_in_year = (next_year_end - prev_year_end).days / 7 assert weeks_in_year in [52, 53], weeks_in_year return weeks_in_year == 53 def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False if self._offset.is_on_offset(dt): return True next_year_end = dt - self._offset qtr_lens = self.get_weeks(dt) current = next_year_end for qtr_len in qtr_lens: current = liboffsets.shift_day(current, days=qtr_len * 7) if dt == current: return True return False @property def rule_code(self): suffix = self._offset.get_rule_code_suffix() qtr = self.qtr_with_extra_week return f"{self._prefix}-{suffix}-{qtr}" @classmethod def _from_name(cls, *args): return cls( **dict(FY5253._parse_suffix(*args[:-1]), qtr_with_extra_week=int(args[-1])) ) class Easter(DateOffset): """ DateOffset for the Easter holiday using logic defined in dateutil. Right now uses the revised method which is valid in years 1583-4099. """ _adjust_dst = True _attributes = frozenset(["n", "normalize"]) __init__ = BaseOffset.__init__ @apply_wraps def apply(self, other): current_easter = easter(other.year) current_easter = datetime( current_easter.year, current_easter.month, current_easter.day ) current_easter = conversion.localize_pydatetime(current_easter, other.tzinfo) n = self.n if n >= 0 and other < current_easter: n -= 1 elif n < 0 and other > current_easter: n += 1 # TODO: Why does this handle the 0 case the opposite of others? # NOTE: easter returns a datetime.date so we have to convert to type of # other new = easter(other.year + n) new = datetime( new.year, new.month, new.day, other.hour, other.minute, other.second, other.microsecond, ) return new def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return date(dt.year, dt.month, dt.day) == easter(dt.year) # --------------------------------------------------------------------- # Ticks def _tick_comp(op): assert op not in [operator.eq, operator.ne] def f(self, other): try: return op(self.delta, other.delta) except AttributeError: # comparing with a non-Tick object raise TypeError( f"Invalid comparison between {type(self).__name__} " f"and {type(other).__name__}" ) f.__name__ = f"__{op.__name__}__" return f class Tick(liboffsets._Tick, SingleConstructorOffset): _inc = Timedelta(microseconds=1000) _prefix = "undefined" _attributes = frozenset(["n", "normalize"]) def __init__(self, n=1, normalize=False): BaseOffset.__init__(self, n, normalize) if normalize: raise ValueError( "Tick offset with `normalize=True` are not allowed." ) # GH#21427 __gt__ = _tick_comp(operator.gt) __ge__ = _tick_comp(operator.ge) __lt__ = _tick_comp(operator.lt) __le__ = _tick_comp(operator.le) def __add__(self, other): if isinstance(other, Tick): if type(self) == type(other): return type(self)(self.n + other.n) else: return _delta_to_tick(self.delta + other.delta) elif isinstance(other, Period): return other + self try: return self.apply(other) except ApplyTypeError: return NotImplemented except OverflowError: raise OverflowError( f"the add operation between {self} and {other} will overflow" ) def __eq__(self, other: Any) -> bool: if isinstance(other, str): from pandas.tseries.frequencies import to_offset try: # GH#23524 if to_offset fails, we are dealing with an # incomparable type so == is False and != is True other = to_offset(other) except ValueError: # e.g. "infer" return False if isinstance(other, Tick): return self.delta == other.delta else: return False # This is identical to DateOffset.__hash__, but has to be redefined here # for Python 3, because we've redefined __eq__. def __hash__(self): return hash(self._params) def __ne__(self, other): if isinstance(other, str): from pandas.tseries.frequencies import to_offset try: # GH#23524 if to_offset fails, we are dealing with an # incomparable type so == is False and != is True other = to_offset(other) except ValueError: # e.g. "infer" return True if isinstance(other, Tick): return self.delta != other.delta else: return True @property def delta(self): return self.n * self._inc @property def nanos(self): return delta_to_nanoseconds(self.delta) # TODO: Should Tick have its own apply_index? def apply(self, other): # Timestamp can handle tz and nano sec, thus no need to use apply_wraps if isinstance(other, Timestamp): # GH 15126 # in order to avoid a recursive # call of __add__ and __radd__ if there is # an exception, when we call using the + operator, # we directly call the known method result = other.__add__(self) if result is NotImplemented: raise OverflowError return result elif isinstance(other, (datetime, np.datetime64, date)): return as_timestamp(other) + self if isinstance(other, timedelta): return other + self.delta elif isinstance(other, type(self)): return type(self)(self.n + other.n) raise ApplyTypeError(f"Unhandled type: {type(other).__name__}") def is_anchored(self): return False def _delta_to_tick(delta): if delta.microseconds == 0 and getattr(delta, "nanoseconds", 0) == 0: # nanoseconds only for pd.Timedelta if delta.seconds == 0: return Day(delta.days) else: seconds = delta.days * 86400 + delta.seconds if seconds % 3600 == 0: return Hour(seconds / 3600) elif seconds % 60 == 0: return Minute(seconds / 60) else: return Second(seconds) else: nanos = delta_to_nanoseconds(delta) if nanos % 1000000 == 0: return Milli(nanos // 1000000) elif nanos % 1000 == 0: return Micro(nanos // 1000) else: # pragma: no cover return Nano(nanos) class Day(Tick): _inc = Timedelta(days=1) _prefix = "D" class Hour(Tick): _inc = Timedelta(hours=1) _prefix = "H" class Minute(Tick): _inc = Timedelta(minutes=1) _prefix = "T" class Second(Tick): _inc = Timedelta(seconds=1) _prefix = "S" class Milli(Tick): _inc = Timedelta(milliseconds=1) _prefix = "L" class Micro(Tick): _inc = Timedelta(microseconds=1) _prefix = "U" class Nano(Tick): _inc = Timedelta(nanoseconds=1) _prefix = "N" BDay = BusinessDay BMonthEnd = BusinessMonthEnd BMonthBegin = BusinessMonthBegin CBMonthEnd = CustomBusinessMonthEnd CBMonthBegin = CustomBusinessMonthBegin CDay = CustomBusinessDay # --------------------------------------------------------------------- def generate_range(start=None, end=None, periods=None, offset=BDay()): """ Generates a sequence of dates corresponding to the specified time offset. Similar to dateutil.rrule except uses pandas DateOffset objects to represent time increments. Parameters ---------- start : datetime, (default None) end : datetime, (default None) periods : int, (default None) offset : DateOffset, (default BDay()) Notes ----- * This method is faster for generating weekdays than dateutil.rrule * At least two of (start, end, periods) must be specified. * If both start and end are specified, the returned dates will satisfy start <= date <= end. Returns ------- dates : generator object """ from pandas.tseries.frequencies import to_offset offset = to_offset(offset) start = Timestamp(start) start = start if start is not NaT else None end = Timestamp(end) end = end if end is not NaT else None if start and not offset.is_on_offset(start): start = offset.rollforward(start) elif end and not offset.is_on_offset(end): end = offset.rollback(end) if periods is None and end < start and offset.n >= 0: end = None periods = 0 if end is None: end = start + (periods - 1) * offset if start is None: start = end - (periods - 1) * offset cur = start if offset.n >= 0: while cur <= end: yield cur if cur == end: # GH#24252 avoid overflows by not performing the addition # in offset.apply unless we have to break # faster than cur + offset next_date = offset.apply(cur) if next_date <= cur: raise ValueError(f"Offset {offset} did not increment date") cur = next_date else: while cur >= end: yield cur if cur == end: # GH#24252 avoid overflows by not performing the addition # in offset.apply unless we have to break # faster than cur + offset next_date = offset.apply(cur) if next_date >= cur: raise ValueError(f"Offset {offset} did not decrement date") cur = next_date prefix_mapping = { offset._prefix: offset for offset in [ YearBegin, # 'AS' YearEnd, # 'A' BYearBegin, # 'BAS' BYearEnd, # 'BA' BusinessDay, # 'B' BusinessMonthBegin, # 'BMS' BusinessMonthEnd, # 'BM' BQuarterEnd, # 'BQ' BQuarterBegin, # 'BQS' BusinessHour, # 'BH' CustomBusinessDay, # 'C' CustomBusinessMonthEnd, # 'CBM' CustomBusinessMonthBegin, # 'CBMS' CustomBusinessHour, # 'CBH' MonthEnd, # 'M' MonthBegin, # 'MS' Nano, # 'N' SemiMonthEnd, # 'SM' SemiMonthBegin, # 'SMS' Week, # 'W' Second, # 'S' Minute, # 'T' Micro, # 'U' QuarterEnd, # 'Q' QuarterBegin, # 'QS' Milli, # 'L' Hour, # 'H' Day, # 'D' WeekOfMonth, # 'WOM' FY5253, FY5253Quarter, ] } from datetime import date, datetime, timedelta import functools import operator from typing import Any, Optional import warnings from dateutil.easter import easter import numpy as np from pandas._libs.tslibs import ( NaT, OutOfBoundsDatetime, Period, Timedelta, Timestamp, ccalendar, conversion, delta_to_nanoseconds, frequencies as libfrequencies, normalize_date, offsets as liboffsets, timezones, ) from pandas._libs.tslibs.offsets import ( ApplyTypeError, BaseOffset, _get_calendar, _is_normalized, _to_dt64, apply_index_wraps, as_datetime, roll_yearday, shift_month, ) from pandas.errors import AbstractMethodError from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes.inference import is_list_like __all__ = [ "Day", "BusinessDay", "BDay", "CustomBusinessDay", "CDay", "CBMonthEnd", "CBMonthBegin", "MonthBegin", "BMonthBegin", "MonthEnd", "BMonthEnd", "SemiMonthEnd", "SemiMonthBegin", "BusinessHour", "CustomBusinessHour", "YearBegin", "BYearBegin", "YearEnd", "BYearEnd", "QuarterBegin", "BQuarterBegin", "QuarterEnd", "BQuarterEnd", "LastWeekOfMonth", "FY5253Quarter", "FY5253", "Week", "WeekOfMonth", "Easter", "Hour", "Minute", "Second", "Milli", "Micro", "Nano", "DateOffset", ] # convert to/from datetime/timestamp to allow invalid Timestamp ranges to # pass thru def as_timestamp(obj): if isinstance(obj, Timestamp): return obj try: return Timestamp(obj) except (OutOfBoundsDatetime): pass return obj def apply_wraps(func): @functools.wraps(func) def wrapper(self, other): if other is NaT: return NaT elif isinstance(other, (timedelta, Tick, DateOffset)): # timedelta path return func(self, other) elif isinstance(other, (np.datetime64, datetime, date)): other = as_timestamp(other) tz = getattr(other, "tzinfo", None) nano = getattr(other, "nanosecond", 0) try: if self._adjust_dst and isinstance(other, Timestamp): other = other.tz_localize(None) result = func(self, other) if self._adjust_dst: result = conversion.localize_pydatetime(result, tz) result = Timestamp(result) if self.normalize: result = result.normalize() # nanosecond may be deleted depending on offset process if not self.normalize and nano != 0: if not isinstance(self, Nano) and result.nanosecond != nano: if result.tz is not None: # convert to UTC value = conversion.tz_convert_single( result.value, timezones.UTC, result.tz ) else: value = result.value result = Timestamp(value + nano) if tz is not None and result.tzinfo is None: result = conversion.localize_pydatetime(result, tz) except OutOfBoundsDatetime: result = func(self, as_datetime(other)) if self.normalize: # normalize_date returns normal datetime result = normalize_date(result) if tz is not None and result.tzinfo is None: result = conversion.localize_pydatetime(result, tz) result = Timestamp(result) return result return wrapper # --------------------------------------------------------------------- # DateOffset class DateOffset(BaseOffset): """ Standard kind of date increment used for a date range. Works exactly like relativedelta in terms of the keyword args you pass in, use of the keyword n is discouraged-- you would be better off specifying n in the keywords you use, but regardless it is there for you. n is needed for DateOffset subclasses. DateOffset work as follows. Each offset specify a set of dates that conform to the DateOffset. For example, Bday defines this set to be the set of dates that are weekdays (M-F). To test if a date is in the set of a DateOffset dateOffset we can use the is_on_offset method: dateOffset.is_on_offset(date). If a date is not on a valid date, the rollback and rollforward methods can be used to roll the date to the nearest valid date before/after the date. DateOffsets can be created to move dates forward a given number of valid dates. For example, Bday(2) can be added to a date to move it two business days forward. If the date does not start on a valid date, first it is moved to a valid date. Thus pseudo code is: def __add__(date): date = rollback(date) # does nothing if date is valid return date + <n number of periods> When a date offset is created for a negative number of periods, the date is first rolled forward. The pseudo code is: def __add__(date): date = rollforward(date) # does nothing is date is valid return date + <n number of periods> Zero presents a problem. Should it roll forward or back? We arbitrarily have it rollforward: date + BDay(0) == BDay.rollforward(date) Since 0 is a bit weird, we suggest avoiding its use. Parameters ---------- n : int, default 1 The number of time periods the offset represents. normalize : bool, default False Whether to round the result of a DateOffset addition down to the previous midnight. **kwds Temporal parameter that add to or replace the offset value. Parameters that **add** to the offset (like Timedelta): - years - months - weeks - days - hours - minutes - seconds - microseconds - nanoseconds Parameters that **replace** the offset value: - year - month - day - weekday - hour - minute - second - microsecond - nanosecond. See Also -------- dateutil.relativedelta.relativedelta : The relativedelta type is designed to be applied to an existing datetime an can replace specific components of that datetime, or represents an interval of time. Examples -------- >>> from pandas.tseries.offsets import DateOffset >>> ts = pd.Timestamp('2017-01-01 09:10:11') >>> ts + DateOffset(months=3) Timestamp('2017-04-01 09:10:11') >>> ts = pd.Timestamp('2017-01-01 09:10:11') >>> ts + DateOffset(months=2) Timestamp('2017-03-01 09:10:11') """ _params = cache_readonly(BaseOffset._params.fget) _use_relativedelta = False _adjust_dst = False _attributes = frozenset(["n", "normalize"] + list(liboffsets.relativedelta_kwds)) _deprecations = frozenset(["isAnchored", "onOffset"]) # default for prior pickles normalize = False def __init__(self, n=1, normalize=False, **kwds): BaseOffset.__init__(self, n, normalize) off, use_rd = liboffsets._determine_offset(kwds) object.__setattr__(self, "_offset", off) object.__setattr__(self, "_use_relativedelta", use_rd) for key in kwds: val = kwds[key] object.__setattr__(self, key, val) @apply_wraps def apply(self, other): if self._use_relativedelta: other = as_datetime(other) if len(self.kwds) > 0: tzinfo = getattr(other, "tzinfo", None) if tzinfo is not None and self._use_relativedelta: # perform calculation in UTC other = other.replace(tzinfo=None) if self.n > 0: for i in range(self.n): other = other + self._offset else: for i in range(-self.n): other = other - self._offset if tzinfo is not None and self._use_relativedelta: # bring tz back from UTC calculation other = conversion.localize_pydatetime(other, tzinfo) return as_timestamp(other) else: return other + timedelta(self.n) @apply_index_wraps def apply_index(self, i): """ Vectorized apply of DateOffset to DatetimeIndex, raises NotImplentedError for offsets without a vectorized implementation. Parameters ---------- i : DatetimeIndex Returns ------- y : DatetimeIndex """ if type(self) is not DateOffset: raise NotImplementedError( f"DateOffset subclass {type(self).__name__} " "does not have a vectorized implementation" ) kwds = self.kwds relativedelta_fast = { "years", "months", "weeks", "days", "hours", "minutes", "seconds", "microseconds", } # relativedelta/_offset path only valid for base DateOffset if self._use_relativedelta and set(kwds).issubset(relativedelta_fast): months = (kwds.get("years", 0) * 12 + kwds.get("months", 0)) * self.n if months: shifted = liboffsets.shift_months(i.asi8, months) i = type(i)(shifted, dtype=i.dtype) weeks = (kwds.get("weeks", 0)) * self.n if weeks: # integer addition on PeriodIndex is deprecated, # so we directly use _time_shift instead asper = i.to_period("W") if not isinstance(asper._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray asper = asper._data shifted = asper._time_shift(weeks) i = shifted.to_timestamp() + i.to_perioddelta("W") timedelta_kwds = { k: v for k, v in kwds.items() if k in ["days", "hours", "minutes", "seconds", "microseconds"] } if timedelta_kwds: delta = Timedelta(**timedelta_kwds) i = i + (self.n * delta) return i elif not self._use_relativedelta and hasattr(self, "_offset"): # timedelta return i + (self._offset * self.n) else: # relativedelta with other keywords kwd = set(kwds) - relativedelta_fast raise NotImplementedError( "DateOffset with relativedelta " f"keyword(s) {kwd} not able to be " "applied vectorized" ) def is_anchored(self): # TODO: Does this make sense for the general case? It would help # if there were a canonical docstring for what is_anchored means. return self.n == 1 def onOffset(self, dt): warnings.warn( "onOffset is a deprecated, use is_on_offset instead", FutureWarning, stacklevel=2, ) return self.is_on_offset(dt) def isAnchored(self): warnings.warn( "isAnchored is a deprecated, use is_anchored instead", FutureWarning, stacklevel=2, ) return self.is_anchored() # TODO: Combine this with BusinessMixin version by defining a whitelisted # set of attributes on each object rather than the existing behavior of # iterating over internal ``__dict__`` def _repr_attrs(self): exclude = {"n", "inc", "normalize"} attrs = [] for attr in sorted(self.__dict__): if attr.startswith("_") or attr == "kwds": continue elif attr not in exclude: value = getattr(self, attr) attrs.append(f"{attr}={value}") out = "" if attrs: out += ": " + ", ".join(attrs) return out @property def name(self): return self.rule_code def rollback(self, dt): """ Roll provided date backward to next offset only if not on offset. Returns ------- TimeStamp Rolled timestamp if not on offset, otherwise unchanged timestamp. """ dt = as_timestamp(dt) if not self.is_on_offset(dt): dt = dt - type(self)(1, normalize=self.normalize, **self.kwds) return dt def rollforward(self, dt): """ Roll provided date forward to next offset only if not on offset. Returns ------- TimeStamp Rolled timestamp if not on offset, otherwise unchanged timestamp. """ dt = as_timestamp(dt) if not self.is_on_offset(dt): dt = dt + type(self)(1, normalize=self.normalize, **self.kwds) return dt def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False # XXX, see #1395 if type(self) == DateOffset or isinstance(self, Tick): return True # Default (slow) method for determining if some date is a member of the # date range generated by this offset. Subclasses may have this # re-implemented in a nicer way. a = dt b = (dt + self) - self return a == b # way to get around weirdness with rule_code @property def _prefix(self): raise NotImplementedError("Prefix not defined") @property def rule_code(self): return self._prefix @cache_readonly def freqstr(self): try: code = self.rule_code except NotImplementedError: return repr(self) if self.n != 1: fstr = f"{self.n}{code}" else: fstr = code try: if self._offset: fstr += self._offset_str() except AttributeError: # TODO: standardize `_offset` vs `offset` naming convention pass return fstr def _offset_str(self): return "" @property def nanos(self): raise ValueError(f"{self} is a non-fixed frequency") class SingleConstructorOffset(DateOffset): @classmethod def _from_name(cls, suffix=None): # default _from_name calls cls with no args if suffix: raise ValueError(f"Bad freq suffix {suffix}") return cls() class _CustomMixin: """ Mixin for classes that define and validate calendar, holidays, and weekdays attributes. """ def __init__(self, weekmask, holidays, calendar): calendar, holidays = _get_calendar( weekmask=weekmask, holidays=holidays, calendar=calendar ) # Custom offset instances are identified by the # following two attributes. See DateOffset._params() # holidays, weekmask object.__setattr__(self, "weekmask", weekmask) object.__setattr__(self, "holidays", holidays) object.__setattr__(self, "calendar", calendar) class BusinessMixin: """ Mixin to business types to provide related functions. """ @property def offset(self): """ Alias for self._offset. """ # Alias for backward compat return self._offset def _repr_attrs(self): if self.offset: attrs = [f"offset={repr(self.offset)}"] else: attrs = None out = "" if attrs: out += ": " + ", ".join(attrs) return out class BusinessDay(BusinessMixin, SingleConstructorOffset): """ DateOffset subclass representing possibly n business days. """ _prefix = "B" _adjust_dst = True _attributes = frozenset(["n", "normalize", "offset"]) def __init__(self, n=1, normalize=False, offset=timedelta(0)): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "_offset", offset) def _offset_str(self): def get_str(td): off_str = "" if td.days > 0: off_str += str(td.days) + "D" if td.seconds > 0: s = td.seconds hrs = int(s / 3600) if hrs != 0: off_str += str(hrs) + "H" s -= hrs * 3600 mts = int(s / 60) if mts != 0: off_str += str(mts) + "Min" s -= mts * 60 if s != 0: off_str += str(s) + "s" if td.microseconds > 0: off_str += str(td.microseconds) + "us" return off_str if isinstance(self.offset, timedelta): zero = timedelta(0, 0, 0) if self.offset >= zero: off_str = "+" + get_str(self.offset) else: off_str = "-" + get_str(-self.offset) return off_str else: return "+" + repr(self.offset) @apply_wraps def apply(self, other): if isinstance(other, datetime): n = self.n wday = other.weekday() # avoid slowness below by operating on weeks first weeks = n // 5 if n <= 0 and wday > 4: # roll forward n += 1 n -= 5 * weeks # n is always >= 0 at this point if n == 0 and wday > 4: # roll back days = 4 - wday elif wday > 4: # roll forward days = (7 - wday) + (n - 1) elif wday + n <= 4: # shift by n days without leaving the current week days = n else: # shift by n days plus 2 to get past the weekend days = n + 2 result = other + timedelta(days=7 * weeks + days) if self.offset: result = result + self.offset return result elif isinstance(other, (timedelta, Tick)): return BDay(self.n, offset=self.offset + other, normalize=self.normalize) else: raise ApplyTypeError( "Only know how to combine business day with datetime or timedelta." ) @apply_index_wraps def apply_index(self, i): time = i.to_perioddelta("D") # to_period rolls forward to next BDay; track and # reduce n where it does when rolling forward asper = i.to_period("B") if not isinstance(asper._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray asper = asper._data if self.n > 0: shifted = (i.to_perioddelta("B") - time).asi8 != 0 # Integer-array addition is deprecated, so we use # _time_shift directly roll = np.where(shifted, self.n - 1, self.n) shifted = asper._addsub_int_array(roll, operator.add) else: # Integer addition is deprecated, so we use _time_shift directly roll = self.n shifted = asper._time_shift(roll) result = shifted.to_timestamp() + time return result def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.weekday() < 5 class BusinessHourMixin(BusinessMixin): def __init__(self, start="09:00", end="17:00", offset=timedelta(0)): # must be validated here to equality check if not is_list_like(start): start = [start] if not len(start): raise ValueError("Must include at least 1 start time") if not is_list_like(end): end = [end] if not len(end): raise ValueError("Must include at least 1 end time") start = np.array([liboffsets._validate_business_time(x) for x in start]) end = np.array([liboffsets._validate_business_time(x) for x in end]) # Validation of input if len(start) != len(end): raise ValueError("number of starting time and ending time must be the same") num_openings = len(start) # sort starting and ending time by starting time index = np.argsort(start) # convert to tuple so that start and end are hashable start = tuple(start[index]) end = tuple(end[index]) total_secs = 0 for i in range(num_openings): total_secs += self._get_business_hours_by_sec(start[i], end[i]) total_secs += self._get_business_hours_by_sec( end[i], start[(i + 1) % num_openings] ) if total_secs != 24 * 60 * 60: raise ValueError( "invalid starting and ending time(s): " "opening hours should not touch or overlap with " "one another" ) object.__setattr__(self, "start", start) object.__setattr__(self, "end", end) object.__setattr__(self, "_offset", offset) @cache_readonly def next_bday(self): """ Used for moving to next business day. """ if self.n >= 0: nb_offset = 1 else: nb_offset = -1 if self._prefix.startswith("C"): # CustomBusinessHour return CustomBusinessDay( n=nb_offset, weekmask=self.weekmask, holidays=self.holidays, calendar=self.calendar, ) else: return BusinessDay(n=nb_offset) def _next_opening_time(self, other, sign=1): """ If self.n and sign have the same sign, return the earliest opening time later than or equal to current time. Otherwise the latest opening time earlier than or equal to current time. Opening time always locates on BusinessDay. However, closing time may not if business hour extends over midnight. Parameters ---------- other : datetime Current time. sign : int, default 1. Either 1 or -1. Going forward in time if it has the same sign as self.n. Going backward in time otherwise. Returns ------- result : datetime Next opening time. """ earliest_start = self.start[0] latest_start = self.start[-1] if not self.next_bday.is_on_offset(other): # today is not business day other = other + sign * self.next_bday if self.n * sign >= 0: hour, minute = earliest_start.hour, earliest_start.minute else: hour, minute = latest_start.hour, latest_start.minute else: if self.n * sign >= 0: if latest_start < other.time(): # current time is after latest starting time in today other = other + sign * self.next_bday hour, minute = earliest_start.hour, earliest_start.minute else: # find earliest starting time no earlier than current time for st in self.start: if other.time() <= st: hour, minute = st.hour, st.minute break else: if other.time() < earliest_start: # current time is before earliest starting time in today other = other + sign * self.next_bday hour, minute = latest_start.hour, latest_start.minute else: # find latest starting time no later than current time for st in reversed(self.start): if other.time() >= st: hour, minute = st.hour, st.minute break return datetime(other.year, other.month, other.day, hour, minute) def _prev_opening_time(self, other): """ If n is positive, return the latest opening time earlier than or equal to current time. Otherwise the earliest opening time later than or equal to current time. Parameters ---------- other : datetime Current time. Returns ------- result : datetime Previous opening time. """ return self._next_opening_time(other, sign=-1) def _get_business_hours_by_sec(self, start, end): """ Return business hours in a day by seconds. """ # create dummy datetime to calculate businesshours in a day dtstart = datetime(2014, 4, 1, start.hour, start.minute) day = 1 if start < end else 2 until = datetime(2014, 4, day, end.hour, end.minute) return int((until - dtstart).total_seconds()) @apply_wraps def rollback(self, dt): """ Roll provided date backward to next offset only if not on offset. """ if not self.is_on_offset(dt): if self.n >= 0: dt = self._prev_opening_time(dt) else: dt = self._next_opening_time(dt) return self._get_closing_time(dt) return dt @apply_wraps def rollforward(self, dt): """ Roll provided date forward to next offset only if not on offset. """ if not self.is_on_offset(dt): if self.n >= 0: return self._next_opening_time(dt) else: return self._prev_opening_time(dt) return dt def _get_closing_time(self, dt): """ Get the closing time of a business hour interval by its opening time. Parameters ---------- dt : datetime Opening time of a business hour interval. Returns ------- result : datetime Corresponding closing time. """ for i, st in enumerate(self.start): if st.hour == dt.hour and st.minute == dt.minute: return dt + timedelta( seconds=self._get_business_hours_by_sec(st, self.end[i]) ) assert False @apply_wraps def apply(self, other): if isinstance(other, datetime): # used for detecting edge condition nanosecond = getattr(other, "nanosecond", 0) # reset timezone and nanosecond # other may be a Timestamp, thus not use replace other = datetime( other.year, other.month, other.day, other.hour, other.minute, other.second, other.microsecond, ) n = self.n # adjust other to reduce number of cases to handle if n >= 0: if other.time() in self.end or not self._is_on_offset(other): other = self._next_opening_time(other) else: if other.time() in self.start: # adjustment to move to previous business day other = other - timedelta(seconds=1) if not self._is_on_offset(other): other = self._next_opening_time(other) other = self._get_closing_time(other) # get total business hours by sec in one business day businesshours = sum( self._get_business_hours_by_sec(st, en) for st, en in zip(self.start, self.end) ) bd, r = divmod(abs(n * 60), businesshours // 60) if n < 0: bd, r = -bd, -r # adjust by business days first if bd != 0: if isinstance(self, _CustomMixin): # GH 30593 skip_bd = CustomBusinessDay( n=bd, weekmask=self.weekmask, holidays=self.holidays, calendar=self.calendar, ) else: skip_bd = BusinessDay(n=bd) # midnight business hour may not on BusinessDay if not self.next_bday.is_on_offset(other): prev_open = self._prev_opening_time(other) remain = other - prev_open other = prev_open + skip_bd + remain else: other = other + skip_bd # remaining business hours to adjust bhour_remain = timedelta(minutes=r) if n >= 0: while bhour_remain != timedelta(0): # business hour left in this business time interval bhour = ( self._get_closing_time(self._prev_opening_time(other)) - other ) if bhour_remain < bhour: # finish adjusting if possible other += bhour_remain bhour_remain = timedelta(0) else: # go to next business time interval bhour_remain -= bhour other = self._next_opening_time(other + bhour) else: while bhour_remain != timedelta(0): # business hour left in this business time interval bhour = self._next_opening_time(other) - other if ( bhour_remain > bhour or bhour_remain == bhour and nanosecond != 0 ): # finish adjusting if possible other += bhour_remain bhour_remain = timedelta(0) else: # go to next business time interval bhour_remain -= bhour other = self._get_closing_time( self._next_opening_time( other + bhour - timedelta(seconds=1) ) ) return other else: raise ApplyTypeError("Only know how to combine business hour with datetime") def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False if dt.tzinfo is not None: dt = datetime( dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond ) # Valid BH can be on the different BusinessDay during midnight # Distinguish by the time spent from previous opening time return self._is_on_offset(dt) def _is_on_offset(self, dt): """ Slight speedups using calculated values. """ # if self.normalize and not _is_normalized(dt): # return False # Valid BH can be on the different BusinessDay during midnight # Distinguish by the time spent from previous opening time if self.n >= 0: op = self._prev_opening_time(dt) else: op = self._next_opening_time(dt) span = (dt - op).total_seconds() businesshours = 0 for i, st in enumerate(self.start): if op.hour == st.hour and op.minute == st.minute: businesshours = self._get_business_hours_by_sec(st, self.end[i]) if span <= businesshours: return True else: return False def _repr_attrs(self): out = super()._repr_attrs() hours = ",".join( f'{st.strftime("%H:%M")}-{en.strftime("%H:%M")}' for st, en in zip(self.start, self.end) ) attrs = [f"{self._prefix}={hours}"] out += ": " + ", ".join(attrs) return out class BusinessHour(BusinessHourMixin, SingleConstructorOffset): """ DateOffset subclass representing possibly n business hours. """ _prefix = "BH" _anchor = 0 _attributes = frozenset(["n", "normalize", "start", "end", "offset"]) def __init__( self, n=1, normalize=False, start="09:00", end="17:00", offset=timedelta(0) ): BaseOffset.__init__(self, n, normalize) super().__init__(start=start, end=end, offset=offset) class CustomBusinessDay(_CustomMixin, BusinessDay): """ DateOffset subclass representing possibly n custom business days, excluding holidays. Parameters ---------- n : int, default 1 normalize : bool, default False Normalize start/end dates to midnight before generating date range. weekmask : str, Default 'Mon Tue Wed Thu Fri' Weekmask of valid business days, passed to ``numpy.busdaycalendar``. holidays : list List/array of dates to exclude from the set of valid business days, passed to ``numpy.busdaycalendar``. calendar : pd.HolidayCalendar or np.busdaycalendar offset : timedelta, default timedelta(0) """ _prefix = "C" _attributes = frozenset( ["n", "normalize", "weekmask", "holidays", "calendar", "offset"] ) def __init__( self, n=1, normalize=False, weekmask="Mon Tue Wed Thu Fri", holidays=None, calendar=None, offset=timedelta(0), ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "_offset", offset) _CustomMixin.__init__(self, weekmask, holidays, calendar) @apply_wraps def apply(self, other): if self.n <= 0: roll = "forward" else: roll = "backward" if isinstance(other, datetime): date_in = other np_dt = np.datetime64(date_in.date()) np_incr_dt = np.busday_offset( np_dt, self.n, roll=roll, busdaycal=self.calendar ) dt_date = np_incr_dt.astype(datetime) result = datetime.combine(dt_date, date_in.time()) if self.offset: result = result + self.offset return result elif isinstance(other, (timedelta, Tick)): return BDay(self.n, offset=self.offset + other, normalize=self.normalize) else: raise ApplyTypeError( "Only know how to combine trading day with " "datetime, datetime64 or timedelta." ) def apply_index(self, i): raise NotImplementedError def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False day64 = _to_dt64(dt, "datetime64[D]") return np.is_busday(day64, busdaycal=self.calendar) class CustomBusinessHour(_CustomMixin, BusinessHourMixin, SingleConstructorOffset): """ DateOffset subclass representing possibly n custom business days. """ _prefix = "CBH" _anchor = 0 _attributes = frozenset( ["n", "normalize", "weekmask", "holidays", "calendar", "start", "end", "offset"] ) def __init__( self, n=1, normalize=False, weekmask="Mon Tue Wed Thu Fri", holidays=None, calendar=None, start="09:00", end="17:00", offset=timedelta(0), ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "_offset", offset) _CustomMixin.__init__(self, weekmask, holidays, calendar) BusinessHourMixin.__init__(self, start=start, end=end, offset=offset) # --------------------------------------------------------------------- # Month-Based Offset Classes class MonthOffset(SingleConstructorOffset): _adjust_dst = True _attributes = frozenset(["n", "normalize"]) __init__ = BaseOffset.__init__ @property def name(self): if self.is_anchored: return self.rule_code else: month = ccalendar.MONTH_ALIASES[self.n] return f"{self.code_rule}-{month}" def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.day == self._get_offset_day(dt) @apply_wraps def apply(self, other): compare_day = self._get_offset_day(other) n = liboffsets.roll_convention(other.day, self.n, compare_day) return shift_month(other, n, self._day_opt) @apply_index_wraps def apply_index(self, i): shifted = liboffsets.shift_months(i.asi8, self.n, self._day_opt) # TODO: going through __new__ raises on call to _validate_frequency; # are we passing incorrect freq? return type(i)._simple_new(shifted, freq=i.freq, dtype=i.dtype) class MonthEnd(MonthOffset): """ DateOffset of one month end. """ _prefix = "M" _day_opt = "end" class MonthBegin(MonthOffset): """ DateOffset of one month at beginning. """ _prefix = "MS" _day_opt = "start" class BusinessMonthEnd(MonthOffset): """ DateOffset increments between business EOM dates. """ _prefix = "BM" _day_opt = "business_end" class BusinessMonthBegin(MonthOffset): """ DateOffset of one business month at beginning. """ _prefix = "BMS" _day_opt = "business_start" class _CustomBusinessMonth(_CustomMixin, BusinessMixin, MonthOffset): """ DateOffset subclass representing custom business month(s). Increments between %(bound)s of month dates. Parameters ---------- n : int, default 1 The number of months represented. normalize : bool, default False Normalize start/end dates to midnight before generating date range. weekmask : str, Default 'Mon Tue Wed Thu Fri' Weekmask of valid business days, passed to ``numpy.busdaycalendar``. holidays : list List/array of dates to exclude from the set of valid business days, passed to ``numpy.busdaycalendar``. calendar : pd.HolidayCalendar or np.busdaycalendar Calendar to integrate. offset : timedelta, default timedelta(0) Time offset to apply. """ _attributes = frozenset( ["n", "normalize", "weekmask", "holidays", "calendar", "offset"] ) is_on_offset = DateOffset.is_on_offset # override MonthOffset method apply_index = DateOffset.apply_index # override MonthOffset method def __init__( self, n=1, normalize=False, weekmask="Mon Tue Wed Thu Fri", holidays=None, calendar=None, offset=timedelta(0), ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "_offset", offset) _CustomMixin.__init__(self, weekmask, holidays, calendar) @cache_readonly def cbday_roll(self): """ Define default roll function to be called in apply method. """ cbday = CustomBusinessDay(n=self.n, normalize=False, **self.kwds) if self._prefix.endswith("S"): # MonthBegin roll_func = cbday.rollforward else: # MonthEnd roll_func = cbday.rollback return roll_func @cache_readonly def m_offset(self): if self._prefix.endswith("S"): # MonthBegin moff = MonthBegin(n=1, normalize=False) else: # MonthEnd moff = MonthEnd(n=1, normalize=False) return moff @cache_readonly def month_roll(self): """ Define default roll function to be called in apply method. """ if self._prefix.endswith("S"): # MonthBegin roll_func = self.m_offset.rollback else: # MonthEnd roll_func = self.m_offset.rollforward return roll_func @apply_wraps def apply(self, other): # First move to month offset cur_month_offset_date = self.month_roll(other) # Find this custom month offset compare_date = self.cbday_roll(cur_month_offset_date) n = liboffsets.roll_convention(other.day, self.n, compare_date.day) new = cur_month_offset_date + n * self.m_offset result = self.cbday_roll(new) return result @Substitution(bound="end") @Appender(_CustomBusinessMonth.__doc__) class CustomBusinessMonthEnd(_CustomBusinessMonth): _prefix = "CBM" @Substitution(bound="beginning") @Appender(_CustomBusinessMonth.__doc__) class CustomBusinessMonthBegin(_CustomBusinessMonth): _prefix = "CBMS" # --------------------------------------------------------------------- # Semi-Month Based Offset Classes class SemiMonthOffset(DateOffset): _adjust_dst = True _default_day_of_month = 15 _min_day_of_month = 2 _attributes = frozenset(["n", "normalize", "day_of_month"]) def __init__(self, n=1, normalize=False, day_of_month=None): BaseOffset.__init__(self, n, normalize) if day_of_month is None: object.__setattr__(self, "day_of_month", self._default_day_of_month) else: object.__setattr__(self, "day_of_month", int(day_of_month)) if not self._min_day_of_month <= self.day_of_month <= 27: raise ValueError( "day_of_month must be " f"{self._min_day_of_month}<=day_of_month<=27, " f"got {self.day_of_month}" ) @classmethod def _from_name(cls, suffix=None): return cls(day_of_month=suffix) @property def rule_code(self): suffix = f"-{self.day_of_month}" return self._prefix + suffix @apply_wraps def apply(self, other): # shift `other` to self.day_of_month, incrementing `n` if necessary n = liboffsets.roll_convention(other.day, self.n, self.day_of_month) days_in_month = ccalendar.get_days_in_month(other.year, other.month) # For SemiMonthBegin on other.day == 1 and # SemiMonthEnd on other.day == days_in_month, # shifting `other` to `self.day_of_month` _always_ requires # incrementing/decrementing `n`, regardless of whether it is # initially positive. if type(self) is SemiMonthBegin and (self.n <= 0 and other.day == 1): n -= 1 elif type(self) is SemiMonthEnd and (self.n > 0 and other.day == days_in_month): n += 1 return self._apply(n, other) def _apply(self, n, other): """ Handle specific apply logic for child classes. """ raise AbstractMethodError(self) @apply_index_wraps def apply_index(self, i): # determine how many days away from the 1st of the month we are dti = i days_from_start = i.to_perioddelta("M").asi8 delta = Timedelta(days=self.day_of_month - 1).value # get boolean array for each element before the day_of_month before_day_of_month = days_from_start < delta # get boolean array for each element after the day_of_month after_day_of_month = days_from_start > delta # determine the correct n for each date in i roll = self._get_roll(i, before_day_of_month, after_day_of_month) # isolate the time since it will be striped away one the next line time = i.to_perioddelta("D") # apply the correct number of months # integer-array addition on PeriodIndex is deprecated, # so we use _addsub_int_array directly asper = i.to_period("M") if not isinstance(asper._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray asper = asper._data shifted = asper._addsub_int_array(roll // 2, operator.add) i = type(dti)(shifted.to_timestamp()) # apply the correct day i = self._apply_index_days(i, roll) return i + time def _get_roll(self, i, before_day_of_month, after_day_of_month): """ Return an array with the correct n for each date in i. The roll array is based on the fact that i gets rolled back to the first day of the month. """ raise AbstractMethodError(self) def _apply_index_days(self, i, roll): """ Apply the correct day for each date in i. """ raise AbstractMethodError(self) class SemiMonthEnd(SemiMonthOffset): """ Two DateOffset's per month repeating on the last day of the month and day_of_month. Parameters ---------- n : int normalize : bool, default False day_of_month : int, {1, 3,...,27}, default 15 """ _prefix = "SM" _min_day_of_month = 1 def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False days_in_month = ccalendar.get_days_in_month(dt.year, dt.month) return dt.day in (self.day_of_month, days_in_month) def _apply(self, n, other): months = n // 2 day = 31 if n % 2 else self.day_of_month return shift_month(other, months, day) def _get_roll(self, i, before_day_of_month, after_day_of_month): n = self.n is_month_end = i.is_month_end if n > 0: roll_end = np.where(is_month_end, 1, 0) roll_before = np.where(before_day_of_month, n, n + 1) roll = roll_end + roll_before elif n == 0: roll_after = np.where(after_day_of_month, 2, 0) roll_before = np.where(~after_day_of_month, 1, 0) roll = roll_before + roll_after else: roll = np.where(after_day_of_month, n + 2, n + 1) return roll def _apply_index_days(self, i, roll): """ Add days portion of offset to DatetimeIndex i. Parameters ---------- i : DatetimeIndex roll : ndarray[int64_t] Returns ------- result : DatetimeIndex """ nanos = (roll % 2) * Timedelta(days=self.day_of_month).value i += nanos.astype("timedelta64[ns]") return i + Timedelta(days=-1) class SemiMonthBegin(SemiMonthOffset): """ Two DateOffset's per month repeating on the first day of the month and day_of_month. Parameters ---------- n : int normalize : bool, default False day_of_month : int, {2, 3,...,27}, default 15 """ _prefix = "SMS" def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.day in (1, self.day_of_month) def _apply(self, n, other): months = n // 2 + n % 2 day = 1 if n % 2 else self.day_of_month return shift_month(other, months, day) def _get_roll(self, i, before_day_of_month, after_day_of_month): n = self.n is_month_start = i.is_month_start if n > 0: roll = np.where(before_day_of_month, n, n + 1) elif n == 0: roll_start = np.where(is_month_start, 0, 1) roll_after = np.where(after_day_of_month, 1, 0) roll = roll_start + roll_after else: roll_after = np.where(after_day_of_month, n + 2, n + 1) roll_start = np.where(is_month_start, -1, 0) roll = roll_after + roll_start return roll def _apply_index_days(self, i, roll): """ Add days portion of offset to DatetimeIndex i. Parameters ---------- i : DatetimeIndex roll : ndarray[int64_t] Returns ------- result : DatetimeIndex """ nanos = (roll % 2) * Timedelta(days=self.day_of_month - 1).value return i + nanos.astype("timedelta64[ns]") # --------------------------------------------------------------------- # Week-Based Offset Classes class Week(DateOffset): """ Weekly offset. Parameters ---------- weekday : int, default None Always generate specific day of week. 0 for Monday. """ _adjust_dst = True _inc = timedelta(weeks=1) _prefix = "W" _attributes = frozenset(["n", "normalize", "weekday"]) def __init__(self, n=1, normalize=False, weekday=None): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "weekday", weekday) if self.weekday is not None: if self.weekday < 0 or self.weekday > 6: raise ValueError(f"Day must be 0<=day<=6, got {self.weekday}") def is_anchored(self): return self.n == 1 and self.weekday is not None @apply_wraps def apply(self, other): if self.weekday is None: return other + self.n * self._inc if not isinstance(other, datetime): raise TypeError( f"Cannot add {type(other).__name__} to {type(self).__name__}" ) k = self.n otherDay = other.weekday() if otherDay != self.weekday: other = other + timedelta((self.weekday - otherDay) % 7) if k > 0: k -= 1 return other + timedelta(weeks=k) @apply_index_wraps def apply_index(self, i): if self.weekday is None: # integer addition on PeriodIndex is deprecated, # so we use _time_shift directly asper = i.to_period("W") if not isinstance(asper._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray asper = asper._data shifted = asper._time_shift(self.n) return shifted.to_timestamp() + i.to_perioddelta("W") else: return self._end_apply_index(i) def _end_apply_index(self, dtindex): """ Add self to the given DatetimeIndex, specialized for case where self.weekday is non-null. Parameters ---------- dtindex : DatetimeIndex Returns ------- result : DatetimeIndex """ off = dtindex.to_perioddelta("D") base, mult = libfrequencies.get_freq_code(self.freqstr) base_period = dtindex.to_period(base) if not isinstance(base_period._data, np.ndarray): # unwrap PeriodIndex --> PeriodArray base_period = base_period._data if self.n > 0: # when adding, dates on end roll to next normed = dtindex - off + Timedelta(1, "D") - Timedelta(1, "ns") roll = np.where( base_period.to_timestamp(how="end") == normed, self.n, self.n - 1 ) # integer-array addition on PeriodIndex is deprecated, # so we use _addsub_int_array directly shifted = base_period._addsub_int_array(roll, operator.add) base = shifted.to_timestamp(how="end") else: # integer addition on PeriodIndex is deprecated, # so we use _time_shift directly roll = self.n base = base_period._time_shift(roll).to_timestamp(how="end") return base + off + Timedelta(1, "ns") - Timedelta(1, "D") def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False elif self.weekday is None: return True return dt.weekday() == self.weekday @property def rule_code(self): suffix = "" if self.weekday is not None: weekday = ccalendar.int_to_weekday[self.weekday] suffix = f"-{weekday}" return self._prefix + suffix @classmethod def _from_name(cls, suffix=None): if not suffix: weekday = None else: weekday = ccalendar.weekday_to_int[suffix] return cls(weekday=weekday) class _WeekOfMonthMixin: """ Mixin for methods common to WeekOfMonth and LastWeekOfMonth. """ @apply_wraps def apply(self, other): compare_day = self._get_offset_day(other) months = self.n if months > 0 and compare_day > other.day: months -= 1 elif months <= 0 and compare_day < other.day: months += 1 shifted = shift_month(other, months, "start") to_day = self._get_offset_day(shifted) return liboffsets.shift_day(shifted, to_day - shifted.day) def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.day == self._get_offset_day(dt) class WeekOfMonth(_WeekOfMonthMixin, DateOffset): """ Describes monthly dates like "the Tuesday of the 2nd week of each month". Parameters ---------- n : int week : int {0, 1, 2, 3, ...}, default 0 A specific integer for the week of the month. e.g. 0 is 1st week of month, 1 is the 2nd week, etc. weekday : int {0, 1, ..., 6}, default 0 A specific integer for the day of the week. - 0 is Monday - 1 is Tuesday - 2 is Wednesday - 3 is Thursday - 4 is Friday - 5 is Saturday - 6 is Sunday. """ _prefix = "WOM" _adjust_dst = True _attributes = frozenset(["n", "normalize", "week", "weekday"]) def __init__(self, n=1, normalize=False, week=0, weekday=0): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "weekday", weekday) object.__setattr__(self, "week", week) if self.weekday < 0 or self.weekday > 6: raise ValueError(f"Day must be 0<=day<=6, got {self.weekday}") if self.week < 0 or self.week > 3: raise ValueError(f"Week must be 0<=week<=3, got {self.week}") def _get_offset_day(self, other): """ Find the day in the same month as other that has the same weekday as self.weekday and is the self.week'th such day in the month. Parameters ---------- other : datetime Returns ------- day : int """ mstart = datetime(other.year, other.month, 1) wday = mstart.weekday() shift_days = (self.weekday - wday) % 7 return 1 + shift_days + self.week * 7 @property def rule_code(self): weekday = ccalendar.int_to_weekday.get(self.weekday, "") return f"{self._prefix}-{self.week + 1}{weekday}" @classmethod def _from_name(cls, suffix=None): if not suffix: raise ValueError(f"Prefix {repr(cls._prefix)} requires a suffix.") # TODO: handle n here... # only one digit weeks (1 --> week 0, 2 --> week 1, etc.) week = int(suffix[0]) - 1 weekday = ccalendar.weekday_to_int[suffix[1:]] return cls(week=week, weekday=weekday) class LastWeekOfMonth(_WeekOfMonthMixin, DateOffset): """ Describes monthly dates in last week of month like "the last Tuesday of each month". Parameters ---------- n : int, default 1 weekday : int {0, 1, ..., 6}, default 0 A specific integer for the day of the week. - 0 is Monday - 1 is Tuesday - 2 is Wednesday - 3 is Thursday - 4 is Friday - 5 is Saturday - 6 is Sunday. """ _prefix = "LWOM" _adjust_dst = True _attributes = frozenset(["n", "normalize", "weekday"]) def __init__(self, n=1, normalize=False, weekday=0): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "weekday", weekday) if self.n == 0: raise ValueError("N cannot be 0") if self.weekday < 0 or self.weekday > 6: raise ValueError(f"Day must be 0<=day<=6, got {self.weekday}") def _get_offset_day(self, other): """ Find the day in the same month as other that has the same weekday as self.weekday and is the last such day in the month. Parameters ---------- other: datetime Returns ------- day: int """ dim = ccalendar.get_days_in_month(other.year, other.month) mend = datetime(other.year, other.month, dim) wday = mend.weekday() shift_days = (wday - self.weekday) % 7 return dim - shift_days @property def rule_code(self): weekday = ccalendar.int_to_weekday.get(self.weekday, "") return f"{self._prefix}-{weekday}" @classmethod def _from_name(cls, suffix=None): if not suffix: raise ValueError(f"Prefix {repr(cls._prefix)} requires a suffix.") # TODO: handle n here... weekday = ccalendar.weekday_to_int[suffix] return cls(weekday=weekday) # --------------------------------------------------------------------- # Quarter-Based Offset Classes class QuarterOffset(DateOffset): """ Quarter representation - doesn't call super. """ _default_startingMonth: Optional[int] = None _from_name_startingMonth: Optional[int] = None _adjust_dst = True _attributes = frozenset(["n", "normalize", "startingMonth"]) # TODO: Consider combining QuarterOffset and YearOffset __init__ at some # point. Also apply_index, is_on_offset, rule_code if # startingMonth vs month attr names are resolved def __init__(self, n=1, normalize=False, startingMonth=None): BaseOffset.__init__(self, n, normalize) if startingMonth is None: startingMonth = self._default_startingMonth object.__setattr__(self, "startingMonth", startingMonth) def is_anchored(self): return self.n == 1 and self.startingMonth is not None @classmethod def _from_name(cls, suffix=None): kwargs = {} if suffix: kwargs["startingMonth"] = ccalendar.MONTH_TO_CAL_NUM[suffix] else: if cls._from_name_startingMonth is not None: kwargs["startingMonth"] = cls._from_name_startingMonth return cls(**kwargs) @property def rule_code(self): month = ccalendar.MONTH_ALIASES[self.startingMonth] return f"{self._prefix}-{month}" @apply_wraps def apply(self, other): # months_since: find the calendar quarter containing other.month, # e.g. if other.month == 8, the calendar quarter is [Jul, Aug, Sep]. # Then find the month in that quarter containing an is_on_offset date for # self. `months_since` is the number of months to shift other.month # to get to this on-offset month. months_since = other.month % 3 - self.startingMonth % 3 qtrs = liboffsets.roll_qtrday( other, self.n, self.startingMonth, day_opt=self._day_opt, modby=3 ) months = qtrs * 3 - months_since return shift_month(other, months, self._day_opt) def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False mod_month = (dt.month - self.startingMonth) % 3 return mod_month == 0 and dt.day == self._get_offset_day(dt) @apply_index_wraps def apply_index(self, dtindex): shifted = liboffsets.shift_quarters( dtindex.asi8, self.n, self.startingMonth, self._day_opt ) # TODO: going through __new__ raises on call to _validate_frequency; # are we passing incorrect freq? return type(dtindex)._simple_new( shifted, freq=dtindex.freq, dtype=dtindex.dtype ) class BQuarterEnd(QuarterOffset): """ DateOffset increments between business Quarter dates. startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, ... startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, ... startingMonth = 3 corresponds to dates like 3/30/2007, 6/29/2007, ... """ _outputName = "BusinessQuarterEnd" _default_startingMonth = 3 _from_name_startingMonth = 12 _prefix = "BQ" _day_opt = "business_end" # TODO: This is basically the same as BQuarterEnd class BQuarterBegin(QuarterOffset): _outputName = "BusinessQuarterBegin" # I suspect this is wrong for *all* of them. _default_startingMonth = 3 _from_name_startingMonth = 1 _prefix = "BQS" _day_opt = "business_start" class QuarterEnd(QuarterOffset): """ DateOffset increments between business Quarter dates. startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, ... startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, ... startingMonth = 3 corresponds to dates like 3/31/2007, 6/30/2007, ... """ _outputName = "QuarterEnd" _default_startingMonth = 3 _prefix = "Q" _day_opt = "end" class QuarterBegin(QuarterOffset): _outputName = "QuarterBegin" _default_startingMonth = 3 _from_name_startingMonth = 1 _prefix = "QS" _day_opt = "start" # --------------------------------------------------------------------- # Year-Based Offset Classes class YearOffset(DateOffset): """ DateOffset that just needs a month. """ _adjust_dst = True _attributes = frozenset(["n", "normalize", "month"]) def _get_offset_day(self, other): # override BaseOffset method to use self.month instead of other.month # TODO: there may be a more performant way to do this return liboffsets.get_day_of_month( other.replace(month=self.month), self._day_opt ) @apply_wraps def apply(self, other): years = roll_yearday(other, self.n, self.month, self._day_opt) months = years * 12 + (self.month - other.month) return shift_month(other, months, self._day_opt) @apply_index_wraps def apply_index(self, dtindex): shifted = liboffsets.shift_quarters( dtindex.asi8, self.n, self.month, self._day_opt, modby=12 ) # TODO: going through __new__ raises on call to _validate_frequency; # are we passing incorrect freq? return type(dtindex)._simple_new( shifted, freq=dtindex.freq, dtype=dtindex.dtype ) def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return dt.month == self.month and dt.day == self._get_offset_day(dt) def __init__(self, n=1, normalize=False, month=None): BaseOffset.__init__(self, n, normalize) month = month if month is not None else self._default_month object.__setattr__(self, "month", month) if self.month < 1 or self.month > 12: raise ValueError("Month must go from 1 to 12") @classmethod def _from_name(cls, suffix=None): kwargs = {} if suffix: kwargs["month"] = ccalendar.MONTH_TO_CAL_NUM[suffix] return cls(**kwargs) @property def rule_code(self): month = ccalendar.MONTH_ALIASES[self.month] return f"{self._prefix}-{month}" class BYearEnd(YearOffset): """ DateOffset increments between business EOM dates. """ _outputName = "BusinessYearEnd" _default_month = 12 _prefix = "BA" _day_opt = "business_end" class BYearBegin(YearOffset): """ DateOffset increments between business year begin dates. """ _outputName = "BusinessYearBegin" _default_month = 1 _prefix = "BAS" _day_opt = "business_start" class YearEnd(YearOffset): """ DateOffset increments between calendar year ends. """ _default_month = 12 _prefix = "A" _day_opt = "end" class YearBegin(YearOffset): """ DateOffset increments between calendar year begin dates. """ _default_month = 1 _prefix = "AS" _day_opt = "start" # --------------------------------------------------------------------- # Special Offset Classes class FY5253(DateOffset): """ Describes 52-53 week fiscal year. This is also known as a 4-4-5 calendar. It is used by companies that desire that their fiscal year always end on the same day of the week. It is a method of managing accounting periods. It is a common calendar structure for some industries, such as retail, manufacturing and parking industry. For more information see: http://en.wikipedia.org/wiki/4-4-5_calendar The year may either: - end on the last X day of the Y month. - end on the last X day closest to the last day of the Y month. X is a specific day of the week. Y is a certain month of the year Parameters ---------- n : int weekday : int {0, 1, ..., 6}, default 0 A specific integer for the day of the week. - 0 is Monday - 1 is Tuesday - 2 is Wednesday - 3 is Thursday - 4 is Friday - 5 is Saturday - 6 is Sunday. startingMonth : int {1, 2, ... 12}, default 1 The month in which the fiscal year ends. variation : str, default "nearest" Method of employing 4-4-5 calendar. There are two options: - "nearest" means year end is **weekday** closest to last day of month in year. - "last" means year end is final **weekday** of the final month in fiscal year. """ _prefix = "RE" _adjust_dst = True _attributes = frozenset(["weekday", "startingMonth", "variation"]) def __init__( self, n=1, normalize=False, weekday=0, startingMonth=1, variation="nearest" ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "startingMonth", startingMonth) object.__setattr__(self, "weekday", weekday) object.__setattr__(self, "variation", variation) if self.n == 0: raise ValueError("N cannot be 0") if self.variation not in ["nearest", "last"]: raise ValueError(f"{self.variation} is not a valid variation") def is_anchored(self): return ( self.n == 1 and self.startingMonth is not None and self.weekday is not None ) def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False dt = datetime(dt.year, dt.month, dt.day) year_end = self.get_year_end(dt) if self.variation == "nearest": # We have to check the year end of "this" cal year AND the previous return year_end == dt or self.get_year_end(shift_month(dt, -1, None)) == dt else: return year_end == dt @apply_wraps def apply(self, other): norm = Timestamp(other).normalize() n = self.n prev_year = self.get_year_end(datetime(other.year - 1, self.startingMonth, 1)) cur_year = self.get_year_end(datetime(other.year, self.startingMonth, 1)) next_year = self.get_year_end(datetime(other.year + 1, self.startingMonth, 1)) prev_year = conversion.localize_pydatetime(prev_year, other.tzinfo) cur_year = conversion.localize_pydatetime(cur_year, other.tzinfo) next_year = conversion.localize_pydatetime(next_year, other.tzinfo) # Note: next_year.year == other.year + 1, so we will always # have other < next_year if norm == prev_year: n -= 1 elif norm == cur_year: pass elif n > 0: if norm < prev_year: n -= 2 elif prev_year < norm < cur_year: n -= 1 elif cur_year < norm < next_year: pass else: if cur_year < norm < next_year: n += 1 elif prev_year < norm < cur_year: pass elif ( norm.year == prev_year.year and norm < prev_year and prev_year - norm <= timedelta(6) ): # GH#14774, error when next_year.year == cur_year.year # e.g. prev_year == datetime(2004, 1, 3), # other == datetime(2004, 1, 1) n -= 1 else: assert False shifted = datetime(other.year + n, self.startingMonth, 1) result = self.get_year_end(shifted) result = datetime( result.year, result.month, result.day, other.hour, other.minute, other.second, other.microsecond, ) return result def get_year_end(self, dt): assert dt.tzinfo is None dim = ccalendar.get_days_in_month(dt.year, self.startingMonth) target_date = datetime(dt.year, self.startingMonth, dim) wkday_diff = self.weekday - target_date.weekday() if wkday_diff == 0: # year_end is the same for "last" and "nearest" cases return target_date if self.variation == "last": days_forward = (wkday_diff % 7) - 7 # days_forward is always negative, so we always end up # in the same year as dt return target_date + timedelta(days=days_forward) else: # variation == "nearest": days_forward = wkday_diff % 7 if days_forward <= 3: # The upcoming self.weekday is closer than the previous one return target_date + timedelta(days_forward) else: # The previous self.weekday is closer than the upcoming one return target_date + timedelta(days_forward - 7) @property def rule_code(self): prefix = self._prefix suffix = self.get_rule_code_suffix() return f"{prefix}-{suffix}" def _get_suffix_prefix(self): if self.variation == "nearest": return "N" else: return "L" def get_rule_code_suffix(self): prefix = self._get_suffix_prefix() month = ccalendar.MONTH_ALIASES[self.startingMonth] weekday = ccalendar.int_to_weekday[self.weekday] return f"{prefix}-{month}-{weekday}" @classmethod def _parse_suffix(cls, varion_code, startingMonth_code, weekday_code): if varion_code == "N": variation = "nearest" elif varion_code == "L": variation = "last" else: raise ValueError(f"Unable to parse varion_code: {varion_code}") startingMonth = ccalendar.MONTH_TO_CAL_NUM[startingMonth_code] weekday = ccalendar.weekday_to_int[weekday_code] return { "weekday": weekday, "startingMonth": startingMonth, "variation": variation, } @classmethod def _from_name(cls, *args): return cls(**cls._parse_suffix(*args)) class FY5253Quarter(DateOffset): """ DateOffset increments between business quarter dates for 52-53 week fiscal year (also known as a 4-4-5 calendar). It is used by companies that desire that their fiscal year always end on the same day of the week. It is a method of managing accounting periods. It is a common calendar structure for some industries, such as retail, manufacturing and parking industry. For more information see: http://en.wikipedia.org/wiki/4-4-5_calendar The year may either: - end on the last X day of the Y month. - end on the last X day closest to the last day of the Y month. X is a specific day of the week. Y is a certain month of the year startingMonth = 1 corresponds to dates like 1/31/2007, 4/30/2007, ... startingMonth = 2 corresponds to dates like 2/28/2007, 5/31/2007, ... startingMonth = 3 corresponds to dates like 3/30/2007, 6/29/2007, ... Parameters ---------- n : int weekday : int {0, 1, ..., 6}, default 0 A specific integer for the day of the week. - 0 is Monday - 1 is Tuesday - 2 is Wednesday - 3 is Thursday - 4 is Friday - 5 is Saturday - 6 is Sunday. startingMonth : int {1, 2, ..., 12}, default 1 The month in which fiscal years end. qtr_with_extra_week : int {1, 2, 3, 4}, default 1 The quarter number that has the leap or 14 week when needed. variation : str, default "nearest" Method of employing 4-4-5 calendar. There are two options: - "nearest" means year end is **weekday** closest to last day of month in year. - "last" means year end is final **weekday** of the final month in fiscal year. """ _prefix = "REQ" _adjust_dst = True _attributes = frozenset( ["weekday", "startingMonth", "qtr_with_extra_week", "variation"] ) def __init__( self, n=1, normalize=False, weekday=0, startingMonth=1, qtr_with_extra_week=1, variation="nearest", ): BaseOffset.__init__(self, n, normalize) object.__setattr__(self, "startingMonth", startingMonth) object.__setattr__(self, "weekday", weekday) object.__setattr__(self, "qtr_with_extra_week", qtr_with_extra_week) object.__setattr__(self, "variation", variation) if self.n == 0: raise ValueError("N cannot be 0") @cache_readonly def _offset(self): return FY5253( startingMonth=self.startingMonth, weekday=self.weekday, variation=self.variation, ) def is_anchored(self): return self.n == 1 and self._offset.is_anchored() def _rollback_to_year(self, other): """ Roll `other` back to the most recent date that was on a fiscal year end. Return the date of that year-end, the number of full quarters elapsed between that year-end and other, and the remaining Timedelta since the most recent quarter-end. Parameters ---------- other : datetime or Timestamp Returns ------- tuple of prev_year_end : Timestamp giving most recent fiscal year end num_qtrs : int tdelta : Timedelta """ num_qtrs = 0 norm = Timestamp(other).tz_localize(None) start = self._offset.rollback(norm) # Note: start <= norm and self._offset.is_on_offset(start) if start < norm: # roll adjustment qtr_lens = self.get_weeks(norm) # check thet qtr_lens is consistent with self._offset addition end = liboffsets.shift_day(start, days=7 * sum(qtr_lens)) assert self._offset.is_on_offset(end), (start, end, qtr_lens) tdelta = norm - start for qlen in qtr_lens: if qlen * 7 <= tdelta.days: num_qtrs += 1 tdelta -= Timedelta(days=qlen * 7) else: break else: tdelta = Timedelta(0) # Note: we always have tdelta.value >= 0 return start, num_qtrs, tdelta @apply_wraps def apply(self, other): # Note: self.n == 0 is not allowed. n = self.n prev_year_end, num_qtrs, tdelta = self._rollback_to_year(other) res = prev_year_end n += num_qtrs if self.n <= 0 and tdelta.value > 0: n += 1 # Possible speedup by handling years first. years = n // 4 if years: res += self._offset * years n -= years * 4 # Add an extra day to make *sure* we are getting the quarter lengths # for the upcoming year, not the previous year qtr_lens = self.get_weeks(res + Timedelta(days=1)) # Note: we always have 0 <= n < 4 weeks = sum(qtr_lens[:n]) if weeks: res = liboffsets.shift_day(res, days=weeks * 7) return res def get_weeks(self, dt): ret = [13] * 4 year_has_extra_week = self.year_has_extra_week(dt) if year_has_extra_week: ret[self.qtr_with_extra_week - 1] = 14 return ret def year_has_extra_week(self, dt): # Avoid round-down errors --> normalize to get # e.g. '370D' instead of '360D23H' norm = Timestamp(dt).normalize().tz_localize(None) next_year_end = self._offset.rollforward(norm) prev_year_end = norm - self._offset weeks_in_year = (next_year_end - prev_year_end).days / 7 assert weeks_in_year in [52, 53], weeks_in_year return weeks_in_year == 53 def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False if self._offset.is_on_offset(dt): return True next_year_end = dt - self._offset qtr_lens = self.get_weeks(dt) current = next_year_end for qtr_len in qtr_lens: current = liboffsets.shift_day(current, days=qtr_len * 7) if dt == current: return True return False @property def rule_code(self): suffix = self._offset.get_rule_code_suffix() qtr = self.qtr_with_extra_week return f"{self._prefix}-{suffix}-{qtr}" @classmethod def _from_name(cls, *args): return cls( **dict(FY5253._parse_suffix(*args[:-1]), qtr_with_extra_week=int(args[-1])) ) class Easter(DateOffset): """ DateOffset for the Easter holiday using logic defined in dateutil. Right now uses the revised method which is valid in years 1583-4099. """ _adjust_dst = True _attributes = frozenset(["n", "normalize"]) __init__ = BaseOffset.__init__ @apply_wraps def apply(self, other): current_easter = easter(other.year) current_easter = datetime( current_easter.year, current_easter.month, current_easter.day ) current_easter = conversion.localize_pydatetime(current_easter, other.tzinfo) n = self.n if n >= 0 and other < current_easter: n -= 1 elif n < 0 and other > current_easter: n += 1 # TODO: Why does this handle the 0 case the opposite of others? # NOTE: easter returns a datetime.date so we have to convert to type of # other new = easter(other.year + n) new = datetime( new.year, new.month, new.day, other.hour, other.minute, other.second, other.microsecond, ) return new def is_on_offset(self, dt): if self.normalize and not _is_normalized(dt): return False return date(dt.year, dt.month, dt.day) == easter(dt.year) # --------------------------------------------------------------------- # Ticks def _tick_comp(op): assert op not in [operator.eq, operator.ne] def f(self, other): try: return op(self.delta, other.delta) except AttributeError: # comparing with a non-Tick object raise TypeError( f"Invalid comparison between {type(self).__name__} " f"and {type(other).__name__}" ) f.__name__ = f"__{op.__name__}__" return f class Tick(liboffsets._Tick, SingleConstructorOffset): _inc = Timedelta(microseconds=1000) _prefix = "undefined" _attributes = frozenset(["n", "normalize"]) def __init__(self, n=1, normalize=False): BaseOffset.__init__(self, n, normalize) if normalize: raise ValueError( "Tick offset with `normalize=True` are not allowed." ) # GH#21427 __gt__ = _tick_comp(operator.gt) __ge__ = _tick_comp(operator.ge) __lt__ = _tick_comp(operator.lt) __le__ = _tick_comp(operator.le) def __add__(self, other): if isinstance(other, Tick): if type(self) == type(other): return type(self)(self.n + other.n) else: return _delta_to_tick(self.delta + other.delta) elif isinstance(other, Period): return other + self try: return self.apply(other) except ApplyTypeError: return NotImplemented except OverflowError: raise OverflowError( f"the add operation between {self} and {other} will overflow" ) def __eq__(self, other: Any) -> bool: if isinstance(other, str): from pandas.tseries.frequencies import to_offset try: # GH#23524 if to_offset fails, we are dealing with an # incomparable type so == is False and != is True other = to_offset(other) except ValueError: # e.g. "infer" return False if isinstance(other, Tick): return self.delta == other.delta else: return False # This is identical to DateOffset.__hash__, but has to be redefined here # for Python 3, because we've redefined __eq__. def __hash__(self): return hash(self._params) def __ne__(self, other): if isinstance(other, str): from pandas.tseries.frequencies import to_offset try: # GH#23524 if to_offset fails, we are dealing with an # incomparable type so == is False and != is True other = to_offset(other) except ValueError: # e.g. "infer" return True if isinstance(other, Tick): return self.delta != other.delta else: return True @property def delta(self): return self.n * self._inc @property def nanos(self): return delta_to_nanoseconds(self.delta) # TODO: Should Tick have its own apply_index? def apply(self, other): # Timestamp can handle tz and nano sec, thus no need to use apply_wraps if isinstance(other, Timestamp): # GH 15126 # in order to avoid a recursive # call of __add__ and __radd__ if there is # an exception, when we call using the + operator, # we directly call the known method result = other.__add__(self) if result is NotImplemented: raise OverflowError return result elif isinstance(other, (datetime, np.datetime64, date)): return as_timestamp(other) + self if isinstance(other, timedelta): return other + self.delta elif isinstance(other, type(self)): return type(self)(self.n + other.n) raise ApplyTypeError(f"Unhandled type: {type(other).__name__}") def is_anchored(self): return False def _delta_to_tick(delta): if delta.microseconds == 0 and getattr(delta, "nanoseconds", 0) == 0: # nanoseconds only for pd.Timedelta if delta.seconds == 0: return Day(delta.days) else: seconds = delta.days * 86400 + delta.seconds if seconds % 3600 == 0: return Hour(seconds / 3600) elif seconds % 60 == 0: return Minute(seconds / 60) else: return Second(seconds) else: nanos = delta_to_nanoseconds(delta) if nanos % 1000000 == 0: return Milli(nanos // 1000000) elif nanos % 1000 == 0: return Micro(nanos // 1000) else: # pragma: no cover return Nano(nanos) class Day(Tick): _inc = Timedelta(days=1) _prefix = "D" class Hour(Tick): _inc = Timedelta(hours=1) _prefix = "H" class Minute(Tick): _inc = Timedelta(minutes=1) _prefix = "T" class Second(Tick): _inc = Timedelta(seconds=1) _prefix = "S" class Milli(Tick): _inc = Timedelta(milliseconds=1) _prefix = "L" class Micro(Tick): _inc = Timedelta(microseconds=1) _prefix = "U" class Nano(Tick): _inc = Timedelta(nanoseconds=1) _prefix = "N" BDay = BusinessDay BMonthEnd = BusinessMonthEnd BMonthBegin = BusinessMonthBegin CBMonthEnd = CustomBusinessMonthEnd CBMonthBegin = CustomBusinessMonthBegin CDay = CustomBusinessDay # --------------------------------------------------------------------- def generate_range(start=None, end=None, periods=None, offset=BDay()): """ Generates a sequence of dates corresponding to the specified time offset. Similar to dateutil.rrule except uses pandas DateOffset objects to represent time increments. Parameters ---------- start : datetime, (default None) end : datetime, (default None) periods : int, (default None) offset : DateOffset, (default BDay()) Notes ----- * This method is faster for generating weekdays than dateutil.rrule * At least two of (start, end, periods) must be specified. * If both start and end are specified, the returned dates will satisfy start <= date <= end. Returns ------- dates : generator object """ from pandas.tseries.frequencies import to_offset offset = to_offset(offset) start = Timestamp(start) start = start if start is not NaT else None end = Timestamp(end) end = end if end is not NaT else None if start and not offset.is_on_offset(start): start = offset.rollforward(start) elif end and not offset.is_on_offset(end): end = offset.rollback(end) if periods is None and end < start and offset.n >= 0: end = None periods = 0 if end is None: end = start + (periods - 1) * offset if start is None: start = end - (periods - 1) * offset cur = start if offset.n >= 0: while cur <= end: yield cur if cur == end: # GH#24252 avoid overflows by not performing the addition # in offset.apply unless we have to break # faster than cur + offset next_date = offset.apply(cur) if next_date <= cur: raise ValueError(f"Offset {offset} did not increment date") cur = next_date else: while cur >= end: yield cur if cur == end: # GH#24252 avoid overflows by not performing the addition # in offset.apply unless we have to break # faster than cur + offset next_date = offset.apply(cur) if next_date >= cur: raise ValueError(f"Offset {offset} did not decrement date") cur = next_date prefix_mapping = { offset._prefix: offset for offset in [ YearBegin, # 'AS' YearEnd, # 'A' BYearBegin, # 'BAS' BYearEnd, # 'BA' BusinessDay, # 'B' BusinessMonthBegin, # 'BMS' BusinessMonthEnd, # 'BM' BQuarterEnd, # 'BQ' BQuarterBegin, # 'BQS' BusinessHour, # 'BH' CustomBusinessDay, # 'C' CustomBusinessMonthEnd, # 'CBM' CustomBusinessMonthBegin, # 'CBMS' CustomBusinessHour, # 'CBH' MonthEnd, # 'M' MonthBegin, # 'MS' Nano, # 'N' SemiMonthEnd, # 'SM' SemiMonthBegin, # 'SMS' Week, # 'W' Second, # 'S' Minute, # 'T' Micro, # 'U' QuarterEnd, # 'Q' QuarterBegin, # 'QS' Milli, # 'L' Hour, # 'H' Day, # 'D' WeekOfMonth, # 'WOM' FY5253, FY5253Quarter, ] }
BugsInPy/BugsInPy/temp/projects/pandas/bug-96-fixed/pandas/pandas/tseries/offsets.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-96-buggy/pandas/pandas/tseries/offsets.py
pandas-bug-75
from datetime import datetime, timedelta from typing import Any import weakref import numpy as np from pandas._libs import index as libindex from pandas._libs.tslibs import NaT, frequencies as libfrequencies, resolution from pandas._libs.tslibs.parsing import parse_time_string from pandas._libs.tslibs.period import Period from pandas.util._decorators import Appender, cache_readonly from pandas.core.dtypes.common import ( ensure_platform_int, is_bool_dtype, is_datetime64_any_dtype, is_dtype_equal, is_float, is_integer, is_integer_dtype, is_list_like, is_object_dtype, pandas_dtype, ) from pandas.core.accessor import delegate_names from pandas.core.arrays.period import ( PeriodArray, period_array, raise_on_incompatible, validate_dtype_freq, ) import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( _index_shared_docs, ensure_index, maybe_extract_name, ) from pandas.core.indexes.datetimelike import ( DatetimeIndexOpsMixin, DatetimelikeDelegateMixin, ) from pandas.core.indexes.datetimes import DatetimeIndex, Index from pandas.core.indexes.numeric import Int64Index from pandas.core.ops import get_op_result_name from pandas.core.tools.datetimes import DateParseError from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update(dict(target_klass="PeriodIndex or list of Periods")) # --- Period index sketch def _new_PeriodIndex(cls, **d): # GH13277 for unpickling values = d.pop("data") if values.dtype == "int64": freq = d.pop("freq", None) values = PeriodArray(values, freq=freq) return cls._simple_new(values, **d) else: return cls(values, **d) class PeriodDelegateMixin(DatetimelikeDelegateMixin): """ Delegate from PeriodIndex to PeriodArray. """ _raw_methods = {"_format_native_types"} _raw_properties = {"is_leap_year", "freq"} _delegated_properties = PeriodArray._datetimelike_ops + list(_raw_properties) _delegated_methods = set(PeriodArray._datetimelike_methods) | _raw_methods @delegate_names(PeriodArray, PeriodDelegateMixin._delegated_properties, typ="property") @delegate_names( PeriodArray, PeriodDelegateMixin._delegated_methods, typ="method", overwrite=True ) class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin): """ Immutable ndarray holding ordinal values indicating regular periods in time. Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1d int np.ndarray or PeriodArray), optional Optional period-like data to construct index with. copy : bool Make a copy of input ndarray. freq : str or period object, optional One of pandas period strings or corresponding objects year : int, array, or Series, default None month : int, array, or Series, default None quarter : int, array, or Series, default None day : int, array, or Series, default None hour : int, array, or Series, default None minute : int, array, or Series, default None second : int, array, or Series, default None tz : object, default None Timezone for converting datetime64 data to Periods. dtype : str or PeriodDtype, default None Attributes ---------- day dayofweek dayofyear days_in_month daysinmonth end_time freq freqstr hour is_leap_year minute month quarter qyear second start_time week weekday weekofyear year Methods ------- asfreq strftime to_timestamp See Also -------- Index : The base pandas Index type. Period : Represents a period of time. DatetimeIndex : Index with datetime64 data. TimedeltaIndex : Index of timedelta64 data. period_range : Create a fixed-frequency PeriodIndex. Examples -------- >>> idx = pd.PeriodIndex(year=year_arr, quarter=q_arr) """ _typ = "periodindex" _attributes = ["name", "freq"] # define my properties & methods for delegation _is_numeric_dtype = False _infer_as_myclass = True _data: PeriodArray _engine_type = libindex.PeriodEngine _supports_partial_string_indexing = True # ------------------------------------------------------------------------ # Index Constructors def __new__( cls, data=None, ordinal=None, freq=None, tz=None, dtype=None, copy=False, name=None, **fields, ): valid_field_set = { "year", "month", "day", "quarter", "hour", "minute", "second", } if not set(fields).issubset(valid_field_set): argument = list(set(fields) - valid_field_set)[0] raise TypeError(f"__new__() got an unexpected keyword argument {argument}") name = maybe_extract_name(name, data, cls) if data is None and ordinal is None: # range-based. data, freq2 = PeriodArray._generate_range(None, None, None, freq, fields) # PeriodArray._generate range does validation that fields is # empty when really using the range-based constructor. freq = freq2 data = PeriodArray(data, freq=freq) else: freq = validate_dtype_freq(dtype, freq) # PeriodIndex allow PeriodIndex(period_index, freq=different) # Let's not encourage that kind of behavior in PeriodArray. if freq and isinstance(data, cls) and data.freq != freq: # TODO: We can do some of these with no-copy / coercion? # e.g. D -> 2D seems to be OK data = data.asfreq(freq) if data is None and ordinal is not None: # we strangely ignore `ordinal` if data is passed. ordinal = np.asarray(ordinal, dtype=np.int64) data = PeriodArray(ordinal, freq) else: # don't pass copy here, since we copy later. data = period_array(data=data, freq=freq) if copy: data = data.copy() return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values, name=None, freq=None, **kwargs): """ Create a new PeriodIndex. Parameters ---------- values : PeriodArray Values that can be converted to a PeriodArray without inference or coercion. """ assert isinstance(values, PeriodArray), type(values) assert freq is None or freq == values.freq, (freq, values.freq) result = object.__new__(cls) result._data = values # For groupby perf. See note in indexes/base about _index_data result._index_data = values._data result.name = name result._reset_identity() return result # ------------------------------------------------------------------------ # Data @property def values(self): return np.asarray(self) def _shallow_copy(self, values=None, **kwargs): # TODO: simplify, figure out type of values if values is None: values = self._data if isinstance(values, type(self)): values = values._data if not isinstance(values, PeriodArray): if isinstance(values, np.ndarray) and values.dtype == "i8": values = PeriodArray(values, freq=self.freq) else: # GH#30713 this should never be reached raise TypeError(type(values), getattr(values, "dtype", None)) # We don't allow changing `freq` in _shallow_copy. validate_dtype_freq(self.dtype, kwargs.get("freq")) attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ we always want to return a PeriodIndex """ return self._shallow_copy(values=values, **kwargs) @property def _box_func(self): """Maybe box an ordinal or Period""" # TODO(DatetimeArray): Avoid double-boxing # PeriodArray takes care of boxing already, so we need to check # whether we're given an ordinal or a Period. It seems like some # places outside of indexes/period.py are calling this _box_func, # but passing data that's already boxed. def func(x): if isinstance(x, Period) or x is NaT: return x else: return Period._from_ordinal(ordinal=x, freq=self.freq) return func def _maybe_convert_timedelta(self, other): """ Convert timedelta-like input to an integer multiple of self.freq Parameters ---------- other : timedelta, np.timedelta64, DateOffset, int, np.ndarray Returns ------- converted : int, np.ndarray[int64] Raises ------ IncompatibleFrequency : if the input cannot be written as a multiple of self.freq. Note IncompatibleFrequency subclasses ValueError. """ if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)): offset = frequencies.to_offset(self.freq.rule_code) if isinstance(offset, Tick): # _check_timedeltalike_freq_compat will raise if incompatible delta = self._data._check_timedeltalike_freq_compat(other) return delta elif isinstance(other, DateOffset): freqstr = other.rule_code base = libfrequencies.get_base_alias(freqstr) if base == self.freq.rule_code: return other.n raise raise_on_incompatible(self, other) elif is_integer(other): # integer is passed to .shift via # _add_datetimelike_methods basically # but ufunc may pass integer to _add_delta return other # raise when input doesn't have freq raise raise_on_incompatible(self, None) # ------------------------------------------------------------------------ # Rendering Methods def _mpl_repr(self): # how to represent ourselves to matplotlib return self.astype(object).values @property def _formatter_func(self): return self.array._formatter(boxed=False) # ------------------------------------------------------------------------ # Indexing @cache_readonly def _engine(self): # To avoid a reference cycle, pass a weakref of self to _engine_type. period = weakref.ref(self) return self._engine_type(period, len(self)) @Appender(_index_shared_docs["contains"]) def __contains__(self, key: Any) -> bool: if isinstance(key, Period): if key.freq != self.freq: return False else: return key.ordinal in self._engine else: hash(key) try: self.get_loc(key) return True except KeyError: return False @cache_readonly def _int64index(self): return Int64Index._simple_new(self.asi8, name=self.name) # ------------------------------------------------------------------------ # Index Methods def __array__(self, dtype=None) -> np.ndarray: if is_integer_dtype(dtype): return self.asi8 else: return self.astype(object).values def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. Needs additional handling as PeriodIndex stores internal data as int dtype Replace this to __numpy_ufunc__ in future version """ if isinstance(context, tuple) and len(context) > 0: func = context[0] if func is np.add: pass elif func is np.subtract: name = self.name left = context[1][0] right = context[1][1] if isinstance(left, PeriodIndex) and isinstance(right, PeriodIndex): name = left.name if left.name == right.name else None return Index(result, name=name) elif isinstance(left, Period) or isinstance(right, Period): return Index(result, name=name) elif isinstance(func, np.ufunc): if "M->M" not in func.types: msg = f"ufunc '{func.__name__}' not supported for the PeriodIndex" # This should be TypeError, but TypeError cannot be raised # from here because numpy catches. raise ValueError(msg) if is_bool_dtype(result): return result # the result is object dtype array of Period # cannot pass _simple_new as it is return type(self)(result, freq=self.freq, name=self.name) def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ where_idx = where if isinstance(where_idx, DatetimeIndex): where_idx = PeriodIndex(where_idx.values, freq=self.freq) locs = self._ndarray_values[mask].searchsorted( where_idx._ndarray_values, side="right" ) locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[ (locs == 0) & (where_idx._ndarray_values < self._ndarray_values[first]) ] = -1 return result @Appender(_index_shared_docs["astype"]) def astype(self, dtype, copy=True, how="start"): dtype = pandas_dtype(dtype) if is_datetime64_any_dtype(dtype): # 'how' is index-specific, isn't part of the EA interface. tz = getattr(dtype, "tz", None) return self.to_timestamp(how=how).tz_localize(tz) # TODO: should probably raise on `how` here, so we don't ignore it. return super().astype(dtype, copy=copy) @property def is_full(self) -> bool: """ Returns True if this PeriodIndex is range-like in that all Periods between start and end are present, in order. """ if len(self) == 0: return True if not self.is_monotonic: raise ValueError("Index is not monotonic") values = self.asi8 return ((values[1:] - values[:-1]) < 2).all() @property def inferred_type(self) -> str: # b/c data is represented as ints make sure we can't have ambiguous # indexing return "period" def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ if is_integer(key): return series.iat[key] if isinstance(key, str): try: loc = self._get_string_slice(key) return series[loc] except (TypeError, ValueError): pass asdt, reso = parse_time_string(key, self.freq) grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) # _get_string_slice will handle cases where grp < freqn assert grp >= freqn if grp == freqn: key = Period(asdt, freq=self.freq) loc = self.get_loc(key) return series.iloc[loc] else: raise KeyError(key) elif isinstance(key, Period) or key is NaT: ordinal = key.ordinal if key is not NaT else NaT.value loc = self._engine.get_loc(ordinal) return series[loc] # slice, PeriodIndex, np.ndarray, List[Period] value = Index.get_value(self, series, key) return com.maybe_box(self, value, series, key) @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): target = ensure_index(target) if isinstance(target, PeriodIndex): if target.freq != self.freq: # No matches no_matches = -1 * np.ones(self.shape, dtype=np.intp) return no_matches target = target.asi8 self_index = self._int64index else: self_index = self if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) return Index.get_indexer(self_index, target, method, limit, tolerance) @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) if isinstance(target, PeriodIndex): if target.freq != self.freq: no_matches = -1 * np.ones(self.shape, dtype=np.intp) return no_matches, no_matches target = target.asi8 indexer, missing = self._int64index.get_indexer_non_unique(target) return ensure_platform_int(indexer), missing def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label. Parameters ---------- key : Period, NaT, str, or datetime String or datetime key must be parseable as Period. Returns ------- loc : int or ndarray[int64] Raises ------ KeyError Key is not present in the index. TypeError If key is listlike or otherwise not hashable. """ if isinstance(key, str): try: return self._get_string_slice(key) except (TypeError, KeyError, ValueError, OverflowError): pass try: asdt, reso = parse_time_string(key, self.freq) key = asdt except DateParseError: # A string with invalid format raise KeyError(f"Cannot interpret '{key}' as period") elif is_integer(key): # Period constructor will cast to string, which we dont want raise KeyError(key) try: key = Period(key, freq=self.freq) except ValueError: # we cannot construct the Period # as we have an invalid type if is_list_like(key): raise TypeError(f"'{key}' is an invalid key") raise KeyError(key) ordinal = key.ordinal if key is not NaT else key.value try: return self._engine.get_loc(ordinal) except KeyError: try: if tolerance is not None: tolerance = self._convert_tolerance(tolerance, np.asarray(key)) return self._int64index.get_loc(ordinal, method, tolerance) except KeyError: raise KeyError(key) def _maybe_cast_slice_bound(self, label, side, kind): """ If label is a string or a datetime, cast it to Period.ordinal according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} Returns ------- bound : Period or object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ["loc", "getitem"] if isinstance(label, datetime): return Period(label, freq=self.freq) elif isinstance(label, str): try: parsed, reso = parse_time_string(label, self.freq) bounds = self._parsed_string_to_bounds(reso, parsed) return bounds[0 if side == "left" else 1] except ValueError: # string cannot be parsed as datetime-like # TODO: we need tests for this case raise KeyError(label) elif is_integer(label) or is_float(label): self._invalid_indexer("slice", label) return label def _parsed_string_to_bounds(self, reso: str, parsed: datetime): if reso not in ["year", "month", "quarter", "day", "hour", "minute", "second"]: raise KeyError(reso) grp = resolution.Resolution.get_freq_group(reso) iv = Period(parsed, freq=(grp, 1)) return (iv.asfreq(self.freq, how="start"), iv.asfreq(self.freq, how="end")) def _get_string_slice(self, key: str, use_lhs: bool = True, use_rhs: bool = True): # TODO: Check for non-True use_lhs/use_rhs parsed, reso = parse_time_string(key, self.freq) grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) if not grp < freqn: # TODO: we used to also check for # reso in ["day", "hour", "minute", "second"] # why is that check not needed? raise ValueError(key) t1, t2 = self._parsed_string_to_bounds(reso, parsed) i8vals = self.asi8 if self.is_monotonic: # we are out of range if len(self) and ( (use_lhs and t1 < self[0] and t2 < self[0]) or ((use_rhs and t1 > self[-1] and t2 > self[-1])) ): raise KeyError(key) # TODO: does this depend on being monotonic _increasing_? # If so, DTI will also be affected. # a monotonic (sorted) series can be sliced # Use asi8.searchsorted to avoid re-validating Periods left = i8vals.searchsorted(t1.ordinal, side="left") if use_lhs else None right = i8vals.searchsorted(t2.ordinal, side="right") if use_rhs else None return slice(left, right) else: lhs_mask = (i8vals >= t1.ordinal) if use_lhs else True rhs_mask = (i8vals <= t2.ordinal) if use_rhs else True # try to find a the dates return (lhs_mask & rhs_mask).nonzero()[0] def _convert_tolerance(self, tolerance, target): tolerance = DatetimeIndexOpsMixin._convert_tolerance(self, tolerance, target) if target.size != tolerance.size and tolerance.size > 1: raise ValueError("list-like tolerance size must match target index size") return self._maybe_convert_timedelta(tolerance) def insert(self, loc, item): if not isinstance(item, Period) or self.freq != item.freq: return self.astype(object).insert(loc, item) idx = np.concatenate( (self[:loc].asi8, np.array([item.ordinal]), self[loc:].asi8) ) return self._shallow_copy(idx) def join(self, other, how="left", level=None, return_indexers=False, sort=False): """ See Index.join """ self._assert_can_do_setop(other) if not isinstance(other, PeriodIndex): return self.astype(object).join( other, how=how, level=level, return_indexers=return_indexers, sort=sort ) result = Int64Index.join( self, other, how=how, level=level, return_indexers=return_indexers, sort=sort, ) if return_indexers: result, lidx, ridx = result return self._apply_meta(result), lidx, ridx return self._apply_meta(result) # ------------------------------------------------------------------------ # Set Operation Methods def _assert_can_do_setop(self, other): super()._assert_can_do_setop(other) # *Can't* use PeriodIndexes of different freqs # *Can* use PeriodIndex/DatetimeIndex if isinstance(other, PeriodIndex) and self.freq != other.freq: raise raise_on_incompatible(self, other) def intersection(self, other, sort=False): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) res_name = get_op_result_name(self, other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): # TODO: fastpath for if we have a different PeriodDtype this = self.astype("O") other = other.astype("O") return this.intersection(other, sort=sort) i8self = Int64Index._simple_new(self.asi8) i8other = Int64Index._simple_new(other.asi8) i8result = i8self.intersection(i8other, sort=sort) result = self._shallow_copy(np.asarray(i8result, dtype=np.int64), name=res_name) return result def difference(self, other, sort=None): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) res_name = get_op_result_name(self, other) other = ensure_index(other) if self.equals(other): # pass an empty PeriodArray with the appropriate dtype return self._shallow_copy(self._data[:0]) if is_object_dtype(other): return self.astype(object).difference(other).astype(self.dtype) elif not is_dtype_equal(self.dtype, other.dtype): return self i8self = Int64Index._simple_new(self.asi8) i8other = Int64Index._simple_new(other.asi8) i8result = i8self.difference(i8other, sort=sort) result = self._shallow_copy(np.asarray(i8result, dtype=np.int64), name=res_name) return result def _union(self, other, sort): if not len(other) or self.equals(other) or not len(self): return super()._union(other, sort=sort) # We are called by `union`, which is responsible for this validation assert isinstance(other, type(self)) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this._union(other, sort=sort) i8self = Int64Index._simple_new(self.asi8) i8other = Int64Index._simple_new(other.asi8) i8result = i8self._union(i8other, sort=sort) res_name = get_op_result_name(self, other) result = self._shallow_copy(np.asarray(i8result, dtype=np.int64), name=res_name) return result # ------------------------------------------------------------------------ def _apply_meta(self, rawarr): if not isinstance(rawarr, PeriodIndex): if not isinstance(rawarr, PeriodArray): rawarr = PeriodArray(rawarr, freq=self.freq) rawarr = PeriodIndex._simple_new(rawarr, name=self.name) return rawarr def memory_usage(self, deep=False): result = super().memory_usage(deep=deep) if hasattr(self, "_cache") and "_int64index" in self._cache: result += self._int64index.memory_usage(deep=deep) return result PeriodIndex._add_numeric_methods_disabled() PeriodIndex._add_logical_methods_disabled() def period_range( start=None, end=None, periods=None, freq=None, name=None ) -> PeriodIndex: """ Return a fixed frequency PeriodIndex. The day (calendar) is the default frequency. Parameters ---------- start : str or period-like, default None Left bound for generating periods. end : str or period-like, default None Right bound for generating periods. periods : int, default None Number of periods to generate. freq : str or DateOffset, optional Frequency alias. By default the freq is taken from `start` or `end` if those are Period objects. Otherwise, the default is ``"D"`` for daily frequency. name : str, default None Name of the resulting PeriodIndex. Returns ------- PeriodIndex Notes ----- Of the three parameters: ``start``, ``end``, and ``periods``, exactly two must be specified. To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- >>> pd.period_range(start='2017-01-01', end='2018-01-01', freq='M') PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05', '2017-06', '2017-06', '2017-07', '2017-08', '2017-09', '2017-10', '2017-11', '2017-12', '2018-01'], dtype='period[M]', freq='M') If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor endpoints for a ``PeriodIndex`` with frequency matching that of the ``period_range`` constructor. >>> pd.period_range(start=pd.Period('2017Q1', freq='Q'), ... end=pd.Period('2017Q2', freq='Q'), freq='M') PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'], dtype='period[M]', freq='M') """ if com.count_not_none(start, end, periods) != 2: raise ValueError( "Of the three parameters: start, end, and periods, " "exactly two must be specified" ) if freq is None and (not isinstance(start, Period) and not isinstance(end, Period)): freq = "D" data, freq = PeriodArray._generate_range(start, end, periods, freq, fields={}) data = PeriodArray(data, freq=freq) return PeriodIndex(data, name=name) from datetime import datetime, timedelta from typing import Any import weakref import numpy as np from pandas._libs import index as libindex from pandas._libs.tslibs import NaT, frequencies as libfrequencies, resolution from pandas._libs.tslibs.parsing import parse_time_string from pandas._libs.tslibs.period import Period from pandas.util._decorators import Appender, cache_readonly from pandas.core.dtypes.common import ( ensure_platform_int, is_bool_dtype, is_datetime64_any_dtype, is_dtype_equal, is_float, is_integer, is_integer_dtype, is_list_like, is_object_dtype, pandas_dtype, ) from pandas.core.accessor import delegate_names from pandas.core.arrays.period import ( PeriodArray, period_array, raise_on_incompatible, validate_dtype_freq, ) import pandas.core.common as com import pandas.core.indexes.base as ibase from pandas.core.indexes.base import ( _index_shared_docs, ensure_index, maybe_extract_name, ) from pandas.core.indexes.datetimelike import ( DatetimeIndexOpsMixin, DatetimelikeDelegateMixin, ) from pandas.core.indexes.datetimes import DatetimeIndex, Index from pandas.core.indexes.numeric import Int64Index from pandas.core.ops import get_op_result_name from pandas.core.tools.datetimes import DateParseError from pandas.tseries import frequencies from pandas.tseries.offsets import DateOffset, Tick _index_doc_kwargs = dict(ibase._index_doc_kwargs) _index_doc_kwargs.update(dict(target_klass="PeriodIndex or list of Periods")) # --- Period index sketch def _new_PeriodIndex(cls, **d): # GH13277 for unpickling values = d.pop("data") if values.dtype == "int64": freq = d.pop("freq", None) values = PeriodArray(values, freq=freq) return cls._simple_new(values, **d) else: return cls(values, **d) class PeriodDelegateMixin(DatetimelikeDelegateMixin): """ Delegate from PeriodIndex to PeriodArray. """ _raw_methods = {"_format_native_types"} _raw_properties = {"is_leap_year", "freq"} _delegated_properties = PeriodArray._datetimelike_ops + list(_raw_properties) _delegated_methods = set(PeriodArray._datetimelike_methods) | _raw_methods @delegate_names(PeriodArray, PeriodDelegateMixin._delegated_properties, typ="property") @delegate_names( PeriodArray, PeriodDelegateMixin._delegated_methods, typ="method", overwrite=True ) class PeriodIndex(DatetimeIndexOpsMixin, Int64Index, PeriodDelegateMixin): """ Immutable ndarray holding ordinal values indicating regular periods in time. Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1d int np.ndarray or PeriodArray), optional Optional period-like data to construct index with. copy : bool Make a copy of input ndarray. freq : str or period object, optional One of pandas period strings or corresponding objects year : int, array, or Series, default None month : int, array, or Series, default None quarter : int, array, or Series, default None day : int, array, or Series, default None hour : int, array, or Series, default None minute : int, array, or Series, default None second : int, array, or Series, default None tz : object, default None Timezone for converting datetime64 data to Periods. dtype : str or PeriodDtype, default None Attributes ---------- day dayofweek dayofyear days_in_month daysinmonth end_time freq freqstr hour is_leap_year minute month quarter qyear second start_time week weekday weekofyear year Methods ------- asfreq strftime to_timestamp See Also -------- Index : The base pandas Index type. Period : Represents a period of time. DatetimeIndex : Index with datetime64 data. TimedeltaIndex : Index of timedelta64 data. period_range : Create a fixed-frequency PeriodIndex. Examples -------- >>> idx = pd.PeriodIndex(year=year_arr, quarter=q_arr) """ _typ = "periodindex" _attributes = ["name", "freq"] # define my properties & methods for delegation _is_numeric_dtype = False _infer_as_myclass = True _data: PeriodArray _engine_type = libindex.PeriodEngine _supports_partial_string_indexing = True # ------------------------------------------------------------------------ # Index Constructors def __new__( cls, data=None, ordinal=None, freq=None, tz=None, dtype=None, copy=False, name=None, **fields, ): valid_field_set = { "year", "month", "day", "quarter", "hour", "minute", "second", } if not set(fields).issubset(valid_field_set): argument = list(set(fields) - valid_field_set)[0] raise TypeError(f"__new__() got an unexpected keyword argument {argument}") name = maybe_extract_name(name, data, cls) if data is None and ordinal is None: # range-based. data, freq2 = PeriodArray._generate_range(None, None, None, freq, fields) # PeriodArray._generate range does validation that fields is # empty when really using the range-based constructor. freq = freq2 data = PeriodArray(data, freq=freq) else: freq = validate_dtype_freq(dtype, freq) # PeriodIndex allow PeriodIndex(period_index, freq=different) # Let's not encourage that kind of behavior in PeriodArray. if freq and isinstance(data, cls) and data.freq != freq: # TODO: We can do some of these with no-copy / coercion? # e.g. D -> 2D seems to be OK data = data.asfreq(freq) if data is None and ordinal is not None: # we strangely ignore `ordinal` if data is passed. ordinal = np.asarray(ordinal, dtype=np.int64) data = PeriodArray(ordinal, freq) else: # don't pass copy here, since we copy later. data = period_array(data=data, freq=freq) if copy: data = data.copy() return cls._simple_new(data, name=name) @classmethod def _simple_new(cls, values, name=None, freq=None, **kwargs): """ Create a new PeriodIndex. Parameters ---------- values : PeriodArray Values that can be converted to a PeriodArray without inference or coercion. """ assert isinstance(values, PeriodArray), type(values) assert freq is None or freq == values.freq, (freq, values.freq) result = object.__new__(cls) result._data = values # For groupby perf. See note in indexes/base about _index_data result._index_data = values._data result.name = name result._reset_identity() return result # ------------------------------------------------------------------------ # Data @property def values(self): return np.asarray(self) def _shallow_copy(self, values=None, **kwargs): # TODO: simplify, figure out type of values if values is None: values = self._data if isinstance(values, type(self)): values = values._data if not isinstance(values, PeriodArray): if isinstance(values, np.ndarray) and values.dtype == "i8": values = PeriodArray(values, freq=self.freq) else: # GH#30713 this should never be reached raise TypeError(type(values), getattr(values, "dtype", None)) # We don't allow changing `freq` in _shallow_copy. validate_dtype_freq(self.dtype, kwargs.get("freq")) attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ we always want to return a PeriodIndex """ return self._shallow_copy(values=values, **kwargs) @property def _box_func(self): """Maybe box an ordinal or Period""" # TODO(DatetimeArray): Avoid double-boxing # PeriodArray takes care of boxing already, so we need to check # whether we're given an ordinal or a Period. It seems like some # places outside of indexes/period.py are calling this _box_func, # but passing data that's already boxed. def func(x): if isinstance(x, Period) or x is NaT: return x else: return Period._from_ordinal(ordinal=x, freq=self.freq) return func def _maybe_convert_timedelta(self, other): """ Convert timedelta-like input to an integer multiple of self.freq Parameters ---------- other : timedelta, np.timedelta64, DateOffset, int, np.ndarray Returns ------- converted : int, np.ndarray[int64] Raises ------ IncompatibleFrequency : if the input cannot be written as a multiple of self.freq. Note IncompatibleFrequency subclasses ValueError. """ if isinstance(other, (timedelta, np.timedelta64, Tick, np.ndarray)): offset = frequencies.to_offset(self.freq.rule_code) if isinstance(offset, Tick): # _check_timedeltalike_freq_compat will raise if incompatible delta = self._data._check_timedeltalike_freq_compat(other) return delta elif isinstance(other, DateOffset): freqstr = other.rule_code base = libfrequencies.get_base_alias(freqstr) if base == self.freq.rule_code: return other.n raise raise_on_incompatible(self, other) elif is_integer(other): # integer is passed to .shift via # _add_datetimelike_methods basically # but ufunc may pass integer to _add_delta return other # raise when input doesn't have freq raise raise_on_incompatible(self, None) # ------------------------------------------------------------------------ # Rendering Methods def _mpl_repr(self): # how to represent ourselves to matplotlib return self.astype(object).values @property def _formatter_func(self): return self.array._formatter(boxed=False) # ------------------------------------------------------------------------ # Indexing @cache_readonly def _engine(self): # To avoid a reference cycle, pass a weakref of self to _engine_type. period = weakref.ref(self) return self._engine_type(period, len(self)) @Appender(_index_shared_docs["contains"]) def __contains__(self, key: Any) -> bool: if isinstance(key, Period): if key.freq != self.freq: return False else: return key.ordinal in self._engine else: hash(key) try: self.get_loc(key) return True except KeyError: return False @cache_readonly def _int64index(self): return Int64Index._simple_new(self.asi8, name=self.name) # ------------------------------------------------------------------------ # Index Methods def __array__(self, dtype=None) -> np.ndarray: if is_integer_dtype(dtype): return self.asi8 else: return self.astype(object).values def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. Needs additional handling as PeriodIndex stores internal data as int dtype Replace this to __numpy_ufunc__ in future version """ if isinstance(context, tuple) and len(context) > 0: func = context[0] if func is np.add: pass elif func is np.subtract: name = self.name left = context[1][0] right = context[1][1] if isinstance(left, PeriodIndex) and isinstance(right, PeriodIndex): name = left.name if left.name == right.name else None return Index(result, name=name) elif isinstance(left, Period) or isinstance(right, Period): return Index(result, name=name) elif isinstance(func, np.ufunc): if "M->M" not in func.types: msg = f"ufunc '{func.__name__}' not supported for the PeriodIndex" # This should be TypeError, but TypeError cannot be raised # from here because numpy catches. raise ValueError(msg) if is_bool_dtype(result): return result # the result is object dtype array of Period # cannot pass _simple_new as it is return type(self)(result, freq=self.freq, name=self.name) def asof_locs(self, where, mask): """ where : array of timestamps mask : array of booleans where data is not NA """ where_idx = where if isinstance(where_idx, DatetimeIndex): where_idx = PeriodIndex(where_idx.values, freq=self.freq) locs = self._ndarray_values[mask].searchsorted( where_idx._ndarray_values, side="right" ) locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[ (locs == 0) & (where_idx._ndarray_values < self._ndarray_values[first]) ] = -1 return result @Appender(_index_shared_docs["astype"]) def astype(self, dtype, copy=True, how="start"): dtype = pandas_dtype(dtype) if is_datetime64_any_dtype(dtype): # 'how' is index-specific, isn't part of the EA interface. tz = getattr(dtype, "tz", None) return self.to_timestamp(how=how).tz_localize(tz) # TODO: should probably raise on `how` here, so we don't ignore it. return super().astype(dtype, copy=copy) @property def is_full(self) -> bool: """ Returns True if this PeriodIndex is range-like in that all Periods between start and end are present, in order. """ if len(self) == 0: return True if not self.is_monotonic: raise ValueError("Index is not monotonic") values = self.asi8 return ((values[1:] - values[:-1]) < 2).all() @property def inferred_type(self) -> str: # b/c data is represented as ints make sure we can't have ambiguous # indexing return "period" def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ if is_integer(key): return series.iat[key] if isinstance(key, str): try: loc = self._get_string_slice(key) return series[loc] except (TypeError, ValueError, OverflowError): pass asdt, reso = parse_time_string(key, self.freq) grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) # _get_string_slice will handle cases where grp < freqn assert grp >= freqn if grp == freqn: key = Period(asdt, freq=self.freq) loc = self.get_loc(key) return series.iloc[loc] else: raise KeyError(key) elif isinstance(key, Period) or key is NaT: ordinal = key.ordinal if key is not NaT else NaT.value loc = self._engine.get_loc(ordinal) return series[loc] # slice, PeriodIndex, np.ndarray, List[Period] value = Index.get_value(self, series, key) return com.maybe_box(self, value, series, key) @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): target = ensure_index(target) if isinstance(target, PeriodIndex): if target.freq != self.freq: # No matches no_matches = -1 * np.ones(self.shape, dtype=np.intp) return no_matches target = target.asi8 self_index = self._int64index else: self_index = self if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) return Index.get_indexer(self_index, target, method, limit, tolerance) @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) if isinstance(target, PeriodIndex): if target.freq != self.freq: no_matches = -1 * np.ones(self.shape, dtype=np.intp) return no_matches, no_matches target = target.asi8 indexer, missing = self._int64index.get_indexer_non_unique(target) return ensure_platform_int(indexer), missing def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label. Parameters ---------- key : Period, NaT, str, or datetime String or datetime key must be parseable as Period. Returns ------- loc : int or ndarray[int64] Raises ------ KeyError Key is not present in the index. TypeError If key is listlike or otherwise not hashable. """ if isinstance(key, str): try: loc = self._get_string_slice(key) return loc except (TypeError, ValueError): pass try: asdt, reso = parse_time_string(key, self.freq) except DateParseError: # A string with invalid format raise KeyError(f"Cannot interpret '{key}' as period") grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) # _get_string_slice will handle cases where grp < freqn assert grp >= freqn if grp == freqn: key = Period(asdt, freq=self.freq) loc = self.get_loc(key, method=method, tolerance=tolerance) return loc elif method is None: raise KeyError(key) else: key = asdt elif is_integer(key): # Period constructor will cast to string, which we dont want raise KeyError(key) try: key = Period(key, freq=self.freq) except ValueError: # we cannot construct the Period # as we have an invalid type if is_list_like(key): raise TypeError(f"'{key}' is an invalid key") raise KeyError(key) ordinal = key.ordinal if key is not NaT else key.value try: return self._engine.get_loc(ordinal) except KeyError: try: if tolerance is not None: tolerance = self._convert_tolerance(tolerance, np.asarray(key)) return self._int64index.get_loc(ordinal, method, tolerance) except KeyError: raise KeyError(key) def _maybe_cast_slice_bound(self, label, side, kind): """ If label is a string or a datetime, cast it to Period.ordinal according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'loc', 'getitem'} Returns ------- bound : Period or object Notes ----- Value of `side` parameter should be validated in caller. """ assert kind in ["loc", "getitem"] if isinstance(label, datetime): return Period(label, freq=self.freq) elif isinstance(label, str): try: parsed, reso = parse_time_string(label, self.freq) bounds = self._parsed_string_to_bounds(reso, parsed) return bounds[0 if side == "left" else 1] except ValueError: # string cannot be parsed as datetime-like # TODO: we need tests for this case raise KeyError(label) elif is_integer(label) or is_float(label): self._invalid_indexer("slice", label) return label def _parsed_string_to_bounds(self, reso: str, parsed: datetime): if reso not in ["year", "month", "quarter", "day", "hour", "minute", "second"]: raise KeyError(reso) grp = resolution.Resolution.get_freq_group(reso) iv = Period(parsed, freq=(grp, 1)) return (iv.asfreq(self.freq, how="start"), iv.asfreq(self.freq, how="end")) def _get_string_slice(self, key: str, use_lhs: bool = True, use_rhs: bool = True): # TODO: Check for non-True use_lhs/use_rhs parsed, reso = parse_time_string(key, self.freq) grp = resolution.Resolution.get_freq_group(reso) freqn = resolution.get_freq_group(self.freq) if not grp < freqn: # TODO: we used to also check for # reso in ["day", "hour", "minute", "second"] # why is that check not needed? raise ValueError(key) t1, t2 = self._parsed_string_to_bounds(reso, parsed) i8vals = self.asi8 if self.is_monotonic: # we are out of range if len(self) and ( (use_lhs and t1 < self[0] and t2 < self[0]) or ((use_rhs and t1 > self[-1] and t2 > self[-1])) ): raise KeyError(key) # TODO: does this depend on being monotonic _increasing_? # If so, DTI will also be affected. # a monotonic (sorted) series can be sliced # Use asi8.searchsorted to avoid re-validating Periods left = i8vals.searchsorted(t1.ordinal, side="left") if use_lhs else None right = i8vals.searchsorted(t2.ordinal, side="right") if use_rhs else None return slice(left, right) else: lhs_mask = (i8vals >= t1.ordinal) if use_lhs else True rhs_mask = (i8vals <= t2.ordinal) if use_rhs else True # try to find a the dates return (lhs_mask & rhs_mask).nonzero()[0] def _convert_tolerance(self, tolerance, target): tolerance = DatetimeIndexOpsMixin._convert_tolerance(self, tolerance, target) if target.size != tolerance.size and tolerance.size > 1: raise ValueError("list-like tolerance size must match target index size") return self._maybe_convert_timedelta(tolerance) def insert(self, loc, item): if not isinstance(item, Period) or self.freq != item.freq: return self.astype(object).insert(loc, item) idx = np.concatenate( (self[:loc].asi8, np.array([item.ordinal]), self[loc:].asi8) ) return self._shallow_copy(idx) def join(self, other, how="left", level=None, return_indexers=False, sort=False): """ See Index.join """ self._assert_can_do_setop(other) if not isinstance(other, PeriodIndex): return self.astype(object).join( other, how=how, level=level, return_indexers=return_indexers, sort=sort ) result = Int64Index.join( self, other, how=how, level=level, return_indexers=return_indexers, sort=sort, ) if return_indexers: result, lidx, ridx = result return self._apply_meta(result), lidx, ridx return self._apply_meta(result) # ------------------------------------------------------------------------ # Set Operation Methods def _assert_can_do_setop(self, other): super()._assert_can_do_setop(other) # *Can't* use PeriodIndexes of different freqs # *Can* use PeriodIndex/DatetimeIndex if isinstance(other, PeriodIndex) and self.freq != other.freq: raise raise_on_incompatible(self, other) def intersection(self, other, sort=False): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) res_name = get_op_result_name(self, other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): # TODO: fastpath for if we have a different PeriodDtype this = self.astype("O") other = other.astype("O") return this.intersection(other, sort=sort) i8self = Int64Index._simple_new(self.asi8) i8other = Int64Index._simple_new(other.asi8) i8result = i8self.intersection(i8other, sort=sort) result = self._shallow_copy(np.asarray(i8result, dtype=np.int64), name=res_name) return result def difference(self, other, sort=None): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) res_name = get_op_result_name(self, other) other = ensure_index(other) if self.equals(other): # pass an empty PeriodArray with the appropriate dtype return self._shallow_copy(self._data[:0]) if is_object_dtype(other): return self.astype(object).difference(other).astype(self.dtype) elif not is_dtype_equal(self.dtype, other.dtype): return self i8self = Int64Index._simple_new(self.asi8) i8other = Int64Index._simple_new(other.asi8) i8result = i8self.difference(i8other, sort=sort) result = self._shallow_copy(np.asarray(i8result, dtype=np.int64), name=res_name) return result def _union(self, other, sort): if not len(other) or self.equals(other) or not len(self): return super()._union(other, sort=sort) # We are called by `union`, which is responsible for this validation assert isinstance(other, type(self)) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this._union(other, sort=sort) i8self = Int64Index._simple_new(self.asi8) i8other = Int64Index._simple_new(other.asi8) i8result = i8self._union(i8other, sort=sort) res_name = get_op_result_name(self, other) result = self._shallow_copy(np.asarray(i8result, dtype=np.int64), name=res_name) return result # ------------------------------------------------------------------------ def _apply_meta(self, rawarr): if not isinstance(rawarr, PeriodIndex): if not isinstance(rawarr, PeriodArray): rawarr = PeriodArray(rawarr, freq=self.freq) rawarr = PeriodIndex._simple_new(rawarr, name=self.name) return rawarr def memory_usage(self, deep=False): result = super().memory_usage(deep=deep) if hasattr(self, "_cache") and "_int64index" in self._cache: result += self._int64index.memory_usage(deep=deep) return result PeriodIndex._add_numeric_methods_disabled() PeriodIndex._add_logical_methods_disabled() def period_range( start=None, end=None, periods=None, freq=None, name=None ) -> PeriodIndex: """ Return a fixed frequency PeriodIndex. The day (calendar) is the default frequency. Parameters ---------- start : str or period-like, default None Left bound for generating periods. end : str or period-like, default None Right bound for generating periods. periods : int, default None Number of periods to generate. freq : str or DateOffset, optional Frequency alias. By default the freq is taken from `start` or `end` if those are Period objects. Otherwise, the default is ``"D"`` for daily frequency. name : str, default None Name of the resulting PeriodIndex. Returns ------- PeriodIndex Notes ----- Of the three parameters: ``start``, ``end``, and ``periods``, exactly two must be specified. To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- >>> pd.period_range(start='2017-01-01', end='2018-01-01', freq='M') PeriodIndex(['2017-01', '2017-02', '2017-03', '2017-04', '2017-05', '2017-06', '2017-06', '2017-07', '2017-08', '2017-09', '2017-10', '2017-11', '2017-12', '2018-01'], dtype='period[M]', freq='M') If ``start`` or ``end`` are ``Period`` objects, they will be used as anchor endpoints for a ``PeriodIndex`` with frequency matching that of the ``period_range`` constructor. >>> pd.period_range(start=pd.Period('2017Q1', freq='Q'), ... end=pd.Period('2017Q2', freq='Q'), freq='M') PeriodIndex(['2017-03', '2017-04', '2017-05', '2017-06'], dtype='period[M]', freq='M') """ if com.count_not_none(start, end, periods) != 2: raise ValueError( "Of the three parameters: start, end, and periods, " "exactly two must be specified" ) if freq is None and (not isinstance(start, Period) and not isinstance(end, Period)): freq = "D" data, freq = PeriodArray._generate_range(start, end, periods, freq, fields={}) data = PeriodArray(data, freq=freq) return PeriodIndex(data, name=name)
BugsInPy/BugsInPy/temp/projects/pandas/bug-75-fixed/pandas/pandas/core/indexes/period.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-75-buggy/pandas/pandas/core/indexes/period.py
pandas-bug-67
from datetime import datetime, timedelta import functools import inspect import re from typing import Any, List import warnings import numpy as np from pandas._libs import NaT, algos as libalgos, lib, tslib, writers from pandas._libs.index import convert_scalar import pandas._libs.internals as libinternals from pandas._libs.tslibs import Timedelta, conversion from pandas._libs.tslibs.timezones import tz_compare from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( astype_nansafe, find_common_type, infer_dtype_from, infer_dtype_from_scalar, maybe_downcast_numeric, maybe_downcast_to_dtype, maybe_infer_dtype_type, maybe_promote, maybe_upcast, soft_convert_objects, ) from pandas.core.dtypes.common import ( _NS_DTYPE, _TD_DTYPE, ensure_platform_int, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_interval_dtype, is_list_like, is_object_dtype, is_period_dtype, is_re, is_re_compilable, is_sparse, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.concat import concat_categorical, concat_datetime from pandas.core.dtypes.dtypes import CategoricalDtype, ExtensionDtype from pandas.core.dtypes.generic import ( ABCDataFrame, ABCExtensionArray, ABCPandasArray, ABCSeries, ) from pandas.core.dtypes.missing import ( _isna_compat, array_equivalent, is_valid_nat_for_dtype, isna, ) import pandas.core.algorithms as algos from pandas.core.arrays import ( Categorical, DatetimeArray, ExtensionArray, PandasArray, PandasDtype, TimedeltaArray, ) from pandas.core.base import PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import ( check_setitem_lengths, is_empty_indexer, is_scalar_indexer, ) import pandas.core.missing as missing from pandas.core.nanops import nanpercentile from pandas.io.formats.printing import pprint_thing class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ["_mgr_locs", "values", "ndim"] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_datetimetz = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_extension = False _can_hold_na = False _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = "dense" _concatenator = staticmethod(np.concatenate) def __init__(self, values, placement, ndim=None): self.ndim = self._check_ndim(values, ndim) self.mgr_locs = placement self.values = values if self._validate_ndim and self.ndim and len(self.mgr_locs) != len(self.values): raise ValueError( f"Wrong number of items passed {len(self.values)}, " f"placement implies {len(self.mgr_locs)}" ) def _check_ndim(self, values, ndim): """ ndim inference and validation. Infers ndim from 'values' if not provided to __init__. Validates that values.ndim and ndim are consistent if and only if the class variable '_validate_ndim' is True. Parameters ---------- values : array-like ndim : int or None Returns ------- ndim : int Raises ------ ValueError : the number of dimensions do not match """ if ndim is None: ndim = values.ndim if self._validate_ndim and values.ndim != ndim: raise ValueError( "Wrong number of dimensions. " f"values.ndim != ndim [{values.ndim} != {ndim}]" ) return ndim @property def _holder(self): """The array-like that can hold the underlying values. None for 'Block', overridden by subclasses that don't use an ndarray. """ return None @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if dtype is Categorical or dtype is CategoricalDtype: # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError(f"invalid type {dtype} for astype") elif is_categorical_dtype(dtype): return True return False def external_values(self): """ The array that Series.values returns (public attribute). This has some historical constraints, and is overridden in block subclasses to return the correct array (e.g. period returns object ndarray and datetimetz a datetime64[ns] ndarray instead of proper extension array). """ return self.values def internal_values(self): """ The array that Series._values returns (internal values). """ return self.values def array_values(self) -> ExtensionArray: """ The array that Series.array returns. Always an ExtensionArray. """ return PandasArray(self.values) def get_values(self, dtype=None): """ return an internal format, currently just the ndarray this is often overridden to handle to_dense like operations """ if is_object_dtype(dtype): return self.values.astype(object) return self.values def get_block_values(self, dtype=None): """ This is used in the JSON C code """ return self.get_values(dtype=dtype) def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, libinternals.BlockPlacement): new_mgr_locs = libinternals.BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block(self, values, placement=None) -> "Block": """ Create a new block, with type inference propagate any values that are not specified """ if placement is None: placement = self.mgr_locs return make_block(values, placement=placement, ndim=self.ndim) def make_block_same_class(self, values, placement=None, ndim=None): """ Wrap given values in a block of same type as self. """ if placement is None: placement = self.mgr_locs if ndim is None: ndim = self.ndim return make_block(values, placement=placement, ndim=ndim, klass=type(self)) def __repr__(self) -> str: # don't want to print out all of the items here name = type(self).__name__ if self._is_single_block: result = f"{name}: {len(self)} dtype: {self.dtype}" else: shape = " x ".join(pprint_thing(s) for s in self.shape) result = ( f"{name}: {pprint_thing(self.mgr_locs.indexer)}, " f"{shape}, dtype: {self.dtype}" ) return result def __len__(self) -> int: return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = libinternals.BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def dtype(self): return self.values.dtype @property def ftype(self): if getattr(self.values, "_pandas_ftype", False): dtype = self.dtype.subtype else: dtype = self.dtype return f"{dtype}:{self._ftype}" def merge(self, other): return _merge_blocks([self, other]) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) return self.make_block_same_class( values, placement=placement or slice(0, len(values), 1) ) def iget(self, i): return self.values[i] def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs) -> List["Block"]: """ apply the function to my values; return a block if we are not one """ with np.errstate(all="ignore"): result = func(self.values, **kwargs) return self._split_op_result(result) def _split_op_result(self, result) -> List["Block"]: # See also: split_and_operate if is_extension_array_dtype(result) and result.ndim > 1: # if we get a 2D ExtensionArray, we need to split it into 1D pieces nbs = [] for i, loc in enumerate(self.mgr_locs): vals = result[i] nv = _block_shape(vals, ndim=self.ndim) block = self.make_block(values=nv, placement=[loc]) nbs.append(block) return nbs if not isinstance(result, Block): result = self.make_block(values=_block_shape(result, ndim=self.ndim)) return [result] def fillna(self, value, limit=None, inplace=False, downcast=None): """ fillna on the block with the value. If we fail, then convert to ObjectBlock and try again """ inplace = validate_bool_kwarg(inplace, "inplace") mask = isna(self.values) if limit is not None: limit = libalgos._validate_limit(None, limit=limit) mask[mask.cumsum(self.ndim - 1) > limit] = False if not self._can_hold_na: if inplace: return self else: return self.copy() if self._can_hold_element(value): # equivalent: _try_coerce_args(value) would not raise blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) # we can't process the value, but nothing to do if not mask.any(): return self if inplace else self.copy() # operate column-by-column def f(mask, val, idx): block = self.coerce_to_target_dtype(value) # slice out our block if idx is not None: # i.e. self.ndim == 2 block = block.getitem_block(slice(idx, idx + 1)) return block.fillna(value, limit=limit, inplace=inplace, downcast=None) return self.split_and_operate(None, f, inplace) def split_and_operate(self, mask, f, inplace: bool): """ split the block per-column, and apply the callable f per-column, return a new block for each. Handle masking which will not change a block unless needed. Parameters ---------- mask : 2-d boolean mask f : callable accepting (1d-mask, 1d values, indexer) inplace : boolean Returns ------- list of blocks """ if mask is None: mask = np.broadcast_to(True, shape=self.shape) new_values = self.values def make_a_block(nv, ref_loc): if isinstance(nv, list): assert len(nv) == 1, nv assert isinstance(nv[0], Block) block = nv[0] else: # Put back the dimension that was taken from it and make # a block out of the result. nv = _block_shape(nv, ndim=self.ndim) block = self.make_block(values=nv, placement=ref_loc) return block # ndim == 1 if self.ndim == 1: if mask.any(): nv = f(mask, new_values, None) else: nv = new_values if inplace else new_values.copy() block = make_a_block(nv, self.mgr_locs) return [block] # ndim > 1 new_blocks = [] for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): nv = f(m, v, i) else: nv = v if inplace else v.copy() block = make_a_block(nv, [ref_loc]) new_blocks.append(block) return new_blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: # no need to downcast our float # unless indicated if downcast is None and ( self.is_float or self.is_timedelta or self.is_datetime ): return blocks return _extend_blocks([b.downcast(downcast) for b in blocks]) def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return self values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = "infer" nv = maybe_downcast_to_dtype(values, dtypes) return self.make_block(nv) # ndim > 1 if dtypes is None: return self if not (dtypes == "infer" or isinstance(dtypes, dict)): raise ValueError( "downcast must have a dictionary or 'infer' as its argument" ) elif dtypes != "infer": raise AssertionError("dtypes as dict is not supported yet") # operate column-by-column # this is expensive as it splits the blocks items-by-item def f(mask, val, idx): val = maybe_downcast_to_dtype(val, dtype="infer") return val return self.split_and_operate(None, f, False) def astype(self, dtype, copy: bool = False, errors: str = "raise"): """ Coerce to the new dtype. Parameters ---------- dtype : str, dtype convertible copy : bool, default False copy if indicated errors : str, {'raise', 'ignore'}, default 'ignore' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object Returns ------- Block """ errors_legal_values = ("raise", "ignore") if errors not in errors_legal_values: invalid_arg = ( "Expected value of kwarg 'errors' to be one of " f"{list(errors_legal_values)}. Supplied value is '{errors}'" ) raise ValueError(invalid_arg) if inspect.isclass(dtype) and issubclass(dtype, ExtensionDtype): msg = ( f"Expected an instance of {dtype.__name__}, " "but got the class instead. Try instantiating 'dtype'." ) raise TypeError(msg) # may need to convert to categorical if self.is_categorical_astype(dtype): if is_categorical_dtype(self.values): # GH 10696/18593: update an existing categorical efficiently return self.make_block(self.values.astype(dtype, copy=copy)) return self.make_block(Categorical(self.values, dtype=dtype)) dtype = pandas_dtype(dtype) # astype processing if is_dtype_equal(self.dtype, dtype): if copy: return self.copy() return self # force the copy here if self.is_extension: # TODO: Should we try/except this astype? values = self.values.astype(dtype) else: if issubclass(dtype.type, str): # use native type formatting for datetime/tz/timedelta if self.is_datelike: values = self.to_native_types() # astype formatting else: values = self.get_values() else: values = self.get_values(dtype=dtype) # _astype_nansafe works fine with 1-d only vals1d = values.ravel() try: values = astype_nansafe(vals1d, dtype, copy=True) except (ValueError, TypeError): # e.g. astype_nansafe can fail on object-dtype of strings # trying to convert to float if errors == "raise": raise newb = self.copy() if copy else self return newb # TODO(extension) # should we make this attribute? if isinstance(values, np.ndarray): values = values.reshape(self.shape) newb = make_block(values, placement=self.mgr_locs, ndim=self.ndim) if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError( f"cannot set astype for copy = [{copy}] for dtype " f"({self.dtype.name} [{self.shape}]) to different shape " f"({newb.dtype.name} [{newb.shape}])" ) return newb def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return self.copy() if copy else self def _can_hold_element(self, element: Any) -> bool: """ require the same dtype as ourselves """ dtype = self.values.dtype.type tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, dtype) return isinstance(element, dtype) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.get_values() if slicer is not None: values = values[:, slicer] mask = isna(values) itemsize = writers.word_len(na_rep) if not self.is_object and not quoting and itemsize: values = values.astype(str) if values.dtype.itemsize / np.dtype("U1").itemsize < itemsize: # enlarge for the na_rep values = values.astype(f"<U{itemsize}") else: values = np.array(values, dtype="object") values[mask] = na_rep return values # block actions # def copy(self, deep=True): """ copy constructor """ values = self.values if deep: values = values.copy() return self.make_block_same_class(values, ndim=self.ndim) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): """replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility. """ inplace = validate_bool_kwarg(inplace, "inplace") original_to_replace = to_replace # If we cannot replace with own dtype, convert to ObjectBlock and # retry if not self._can_hold_element(to_replace): if not isinstance(to_replace, list): if inplace: return [self] return [self.copy()] to_replace = [x for x in to_replace if self._can_hold_element(x)] if not len(to_replace): # GH#28084 avoid costly checks since we can infer # that there is nothing to replace in this block if inplace: return [self] return [self.copy()] if len(to_replace) == 1: # _can_hold_element checks have reduced this back to the # scalar case and we can avoid a costly object cast return self.replace( to_replace[0], value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise AssertionError # try again with a compatible block block = self.astype(object) return block.replace( to_replace=to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) values = self.values if lib.is_scalar(to_replace) and isinstance(values, np.ndarray): # The only non-DatetimeLike class that also has a non-trivial # try_coerce_args is ObjectBlock, but that overrides replace, # so does not get here. to_replace = convert_scalar(values, to_replace) mask = missing.mask_missing(values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] try: blocks = self.putmask(mask, value, inplace=inplace) # Note: it is _not_ the case that self._can_hold_element(value) # is always true at this point. In particular, that can fail # for: # "2u" with bool-dtype, float-dtype # 0.5 with int64-dtype # np.nan with int64-dtype except (TypeError, ValueError): # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise assert not self._can_hold_element(value), value # try again with a compatible block block = self.astype(object) return block.replace( to_replace=original_to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) if convert: blocks = [b.convert(numeric=False, copy=not inplace) for b in blocks] return blocks def _replace_single(self, *args, **kwargs): """ no-op on a non-ObjectBlock """ return self if kwargs["inplace"] else self.copy() def setitem(self, indexer, value): """ Set the value inplace, returning a a maybe different typed block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ transpose = self.ndim == 2 # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce if block dtype can store value values = self.values if self._can_hold_element(value): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(value): value = convert_scalar(values, value) else: # current dtype cannot store value, coerce to common dtype find_dtype = False if hasattr(value, "dtype"): dtype = value.dtype find_dtype = True elif lib.is_scalar(value) and not isna(value): dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) find_dtype = True if find_dtype: dtype = find_common_type([values.dtype, dtype]) if not is_dtype_equal(self.dtype, dtype): b = self.astype(dtype) return b.setitem(indexer, value) # value must be storeable at this moment if is_extension_array_dtype(getattr(value, "dtype", None)): # We need to be careful not to allow through strings that # can be parsed to EADtypes arr_value = value else: arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = maybe_promote(arr_value.dtype) values = values.astype(dtype) if transpose: values = values.T # length checking check_setitem_lengths(indexer, value, values) exact_match = ( len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and arr_value.size == values.size ) if is_empty_indexer(indexer, arr_value): # GH#8669 empty indexers pass elif is_scalar_indexer(indexer, arr_value): # setting a single element for each dim and with a rhs that could # be e.g. a list; see GH#6043 values[indexer] = value elif ( exact_match and is_categorical_dtype(arr_value.dtype) and not is_categorical_dtype(values) ): # GH25495 - If the current dtype is not categorical, # we need to create a new categorical block values[indexer] = value return self.make_block(Categorical(self.values, dtype=arr_value.dtype)) # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif exact_match: values[indexer] = value try: values = values.astype(arr_value.dtype) except ValueError: pass # set else: values[indexer] = value if transpose: values = values.T block = self.make_block(values) return block def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False axis : int transpose : boolean Set to True if self is stored with axes reversed Returns ------- a list of new blocks, the result of the putmask """ new_values = self.values if inplace else self.values.copy() new = getattr(new, "values", new) mask = getattr(mask, "values", mask) # if we are passed a scalar None, convert it here if not is_list_like(new) and isna(new) and not self.is_object: # FIXME: make sure we have compatible NA new = self.fill_value if self._can_hold_element(new): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(new): new = convert_scalar(new_values, new) if transpose: new_values = new_values.T # If the default repeat behavior in np.putmask would go in the # wrong direction, then explicitly repeat and reshape new instead if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim and axis == 1: new = np.repeat(new, new_values.shape[-1]).reshape(self.shape) new = new.astype(new_values.dtype) # we require exact matches between the len of the # values we are setting (or is compat). np.putmask # doesn't check this and will simply truncate / pad # the output, but we want sane error messages # # TODO: this prob needs some better checking # for 2D cases if ( is_list_like(new) and np.any(mask[mask]) and getattr(new, "ndim", 1) == 1 ): if mask[mask].shape[-1] == len(new): # GH 30567 # If length of ``new`` is less than the length of ``new_values``, # `np.putmask` would first repeat the ``new`` array and then # assign the masked values hence produces incorrect result. # `np.place` on the other hand uses the ``new`` values at it is # to place in the masked locations of ``new_values`` np.place(new_values, mask, new) elif mask.shape[-1] == len(new) or len(new) == 1: np.putmask(new_values, mask, new) else: raise ValueError("cannot assign mismatch length to masked array") else: np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): if transpose: mask = mask.T if isinstance(new, np.ndarray): new = new.T axis = new_values.ndim - axis - 1 # Pseudo-broadcast if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim: new_shape = list(new.shape) new_shape.insert(axis, 1) new = new.reshape(tuple(new_shape)) # operate column-by-column def f(mask, val, idx): if idx is None: # ndim==1 case. n = new else: if isinstance(new, np.ndarray): n = np.squeeze(new[idx % new.shape[0]]) else: n = np.array(new) # type of the new block dtype, _ = maybe_promote(n.dtype) # we need to explicitly astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(val, mask, n) return nv new_blocks = self.split_and_operate(mask, f, inplace) return new_blocks if inplace: return [self] if transpose: new_values = new_values.T return [self.make_block(new_values)] def coerce_to_target_dtype(self, other): """ coerce the current block to a dtype compat for other we will return a block, possibly object, and not raise we can also safely try to coerce to the same dtype and will receive the same block """ # if we cannot then coerce to object dtype, _ = infer_dtype_from(other, pandas_dtype=True) if is_dtype_equal(self.dtype, dtype): return self if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype): # we don't upcast to bool return self.astype(object) elif (self.is_float or self.is_complex) and ( is_integer_dtype(dtype) or is_float_dtype(dtype) ): # don't coerce float/complex to int return self elif ( self.is_datetime or is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) ): # not a datetime if not ( (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype)) and self.is_datetime ): return self.astype(object) # don't upcast timezone with different timezone or no timezone mytz = getattr(self.dtype, "tz", None) othertz = getattr(dtype, "tz", None) if not tz_compare(mytz, othertz): return self.astype(object) raise AssertionError( f"possible recursion in coerce_to_target_dtype: {self} {other}" ) elif self.is_timedelta or is_timedelta64_dtype(dtype): # not a timedelta if not (is_timedelta64_dtype(dtype) and self.is_timedelta): return self.astype(object) raise AssertionError( f"possible recursion in coerce_to_target_dtype: {self} {other}" ) try: return self.astype(dtype) except (ValueError, TypeError, OverflowError): return self.astype(object) def interpolate( self, method="pad", axis=0, index=None, values=None, inplace=False, limit=None, limit_direction="forward", limit_area=None, fill_value=None, coerce=False, downcast=None, **kwargs, ): inplace = validate_bool_kwarg(inplace, "inplace") def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = missing.clean_fill_method(method) except ValueError: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill( method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast, ) # validate the interp method m = missing.clean_interp_method(method, **kwargs) r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate( method=m, index=index, values=values, axis=axis, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs, ) def _interpolate_with_fill( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, ): """ fillna but using the interpolate machinery """ inplace = validate_bool_kwarg(inplace, "inplace") # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] values = self.values if inplace else self.values.copy() # We only get here for non-ExtensionBlock fill_value = convert_scalar(self.values, fill_value) values = missing.interpolate_2d( values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype, ) blocks = [self.make_block_same_class(values, ndim=self.ndim)] return self._maybe_downcast(blocks, downcast) def _interpolate( self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, limit_direction="forward", limit_area=None, inplace=False, downcast=None, **kwargs, ): """ interpolate using scipy wrappers """ inplace = validate_bool_kwarg(inplace, "inplace") data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ("krogh", "piecewise_polynomial", "pchip"): if not index.is_monotonic: raise ValueError( f"{method} interpolation requires that the index be monotonic." ) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to missing.interpolate_1d return missing.interpolate_1d( index, x, method=method, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, bounds_error=False, **kwargs, ) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [self.make_block_same_class(interp_values)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ # algos.take_nd dispatches for DatetimeTZBlock, CategoricalBlock # so need to preserve types # sparse is treated like an ndarray, but needs .get_values() shaping values = self.values if fill_tuple is None: fill_value = self.fill_value allow_fill = False else: fill_value = fill_tuple[0] allow_fill = True new_values = algos.take_nd( values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value ) # Called from three places in managers, all of which satisfy # this assertion assert not (axis == 0 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs if not is_dtype_equal(new_values.dtype, self.dtype): return self.make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def diff(self, n: int, axis: int = 1) -> List["Block"]: """ return block for the diff of the values """ new_values = algos.diff(self.values, n, axis=axis, stacklevel=7) # We use block_shape for ExtensionBlock subclasses, which may call here # via a super. new_values = _block_shape(new_values, ndim=self.ndim) return [self.make_block(values=new_values)] def shift(self, periods, axis=0, fill_value=None): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = maybe_upcast(self.values, fill_value) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, ensure_platform_int(periods), axis=axis) axis_indexer = [slice(None)] * self.ndim if periods > 0: axis_indexer[axis] = slice(None, periods) else: axis_indexer[axis] = slice(periods, None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [self.make_block(new_values)] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond errors : str, {'raise', 'ignore'}, default 'raise' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object axis : int Returns ------- a new block(s), the result of the func """ import pandas.core.computation.expressions as expressions assert errors in ["raise", "ignore"] transpose = self.ndim == 2 values = self.values orig_other = other if transpose: values = values.T other = getattr(other, "_values", getattr(other, "values", other)) cond = getattr(cond, "values", cond) # If the default broadcasting would go in the wrong direction, then # explicitly reshape other instead if getattr(other, "ndim", 0) >= 1: if values.ndim - 1 == other.ndim and axis == 1: other = other.reshape(tuple(other.shape + (1,))) elif transpose and values.ndim == self.ndim - 1: cond = cond.T if not hasattr(cond, "shape"): raise ValueError("where must have a condition that is ndarray like") def where_func(cond, values, other): if not ( (self.is_integer or self.is_bool) and lib.is_float(other) and np.isnan(other) ): # np.where will cast integer array to floats in this case if not self._can_hold_element(other): raise TypeError if lib.is_scalar(other) and isinstance(values, np.ndarray): # convert datetime to datetime64, timedelta to timedelta64 other = convert_scalar(values, other) # By the time we get here, we should have all Series/Index # args extracted to ndarray fastres = expressions.where(cond, values, other) return fastres if cond.ravel().all(): result = values else: # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) try: result = where_func(cond, values, other) except TypeError: # we cannot coerce, return a compat dtype # we are explicitly ignoring errors block = self.coerce_to_target_dtype(other) blocks = block.where( orig_other, cond, align=align, errors=errors, try_cast=try_cast, axis=axis, ) return self._maybe_downcast(blocks, "infer") if self._can_hold_na or self.ndim == 1: if transpose: result = result.T return [self.make_block(result)] # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): taken = result.take(m.nonzero()[0], axis=axis) r = maybe_downcast_numeric(taken, self.dtype) nb = self.make_block(r.T, placement=self.mgr_locs[m]) result_blocks.append(nb) return result_blocks def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): """Return a list of unstacked blocks of self Parameters ---------- unstacker_func : callable Partially applied unstacker. new_columns : Index All columns of the unstacked BlockManager. n_rows : int Only used in ExtensionBlock._unstack fill_value : int Only used in ExtensionBlock._unstack Returns ------- blocks : list of Block New blocks of unstacked values. mask : array_like of bool The mask of columns of `blocks` we should keep. """ unstacker = unstacker_func(self.values.T) new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) new_values = new_values.T[mask] new_placement = new_placement[mask] blocks = [make_block(new_values, placement=new_placement)] return blocks, mask def quantile(self, qs, interpolation="linear", axis=0): """ compute the quantiles of the Parameters ---------- qs: a scalar or list of the quantiles to be computed interpolation: type of interpolation, default 'linear' axis: axis to compute, default 0 Returns ------- Block """ # We should always have ndim == 2 because Series dispatches to DataFrame assert self.ndim == 2 values = self.get_values() is_empty = values.shape[axis] == 0 orig_scalar = not is_list_like(qs) if orig_scalar: # make list-like, unpack later qs = [qs] if is_empty: # create the array of na_values # 2d len(values) * len(qs) result = np.repeat( np.array([self.fill_value] * len(qs)), len(values) ).reshape(len(values), len(qs)) else: # asarray needed for Sparse, see GH#24600 mask = np.asarray(isna(values)) result = nanpercentile( values, np.array(qs) * 100, axis=axis, na_value=self.fill_value, mask=mask, ndim=values.ndim, interpolation=interpolation, ) result = np.array(result, copy=False) result = result.T if orig_scalar and not lib.is_scalar(result): # result could be scalar in case with is_empty and self.ndim == 1 assert result.shape[-1] == 1, result.shape result = result[..., 0] result = lib.item_from_zerodim(result) ndim = np.ndim(result) return make_block(result, placement=np.arange(len(result)), ndim=ndim) def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): if not regex: self = self.coerce_to_target_dtype(value) return self.putmask(mask, value, inplace=inplace) else: return self._replace_single( to_replace, value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) return self class NonConsolidatableMixIn: """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False def __init__(self, values, placement, ndim=None): """Initialize a non-consolidatable block. 'ndim' may be inferred from 'placement'. This will call continue to call __init__ for the other base classes mixed in with this Mixin. """ # Placement must be converted to BlockPlacement so that we can check # its length if not isinstance(placement, libinternals.BlockPlacement): placement = libinternals.BlockPlacement(placement) # Maybe infer ndim from placement if ndim is None: if len(placement) != 1: ndim = 1 else: ndim = 2 super().__init__(values, placement, ndim=ndim) @property def shape(self): if self.ndim == 1: return ((len(self.values)),) return (len(self.mgr_locs), len(self.values)) def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if not com.is_null_slice(col) and col != 0: raise IndexError(f"{self} only contains one item") elif isinstance(col, slice): if col != slice(None): raise NotImplementedError(col) return self.values[[loc]] return self.values[loc] else: if col != 0: raise IndexError(f"{self} only contains one item") return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False): """ putmask the data to the block; we must be a single block and not generate other blocks return the resulting block Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block, the result of the putmask """ inplace = validate_bool_kwarg(inplace, "inplace") # use block's copy logic. # .values may be an Index which does shallow copy by default new_values = self.values if inplace else self.copy().values if isinstance(new, np.ndarray) and len(new) == len(mask): new = new[mask] mask = _safe_reshape(mask, new_values.shape) new_values[mask] = new return [self.make_block(values=new_values)] def _get_unstack_items(self, unstacker, new_columns): """ Get the placement, values, and mask for a Block unstack. This is shared between ObjectBlock and ExtensionBlock. They differ in that ObjectBlock passes the values, while ExtensionBlock passes the dummy ndarray of positions to be used by a take later. Parameters ---------- unstacker : pandas.core.reshape.reshape._Unstacker new_columns : Index All columns of the unstacked BlockManager. Returns ------- new_placement : ndarray[int] The placement of the new columns in `new_columns`. new_values : Union[ndarray, ExtensionArray] The first return value from _Unstacker.get_new_values. mask : ndarray[bool] The second return value from _Unstacker.get_new_values. """ # shared with ExtensionBlock new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) return new_placement, new_values, mask class ExtensionBlock(NonConsolidatableMixIn, Block): """Block for holding extension types. Notes ----- This holds all 3rd-party extension array types. It's also the immediate parent class for our internal extension types' blocks, CategoricalBlock. ExtensionArrays are limited to 1-D. """ is_extension = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement, ndim) def _maybe_coerce_values(self, values): """ Unbox to an extension array. This will unbox an ExtensionArray stored in an Index or Series. ExtensionArrays pass through. No dtype coercion is done. Parameters ---------- values : Index, Series, ExtensionArray Returns ------- ExtensionArray """ return extract_array(values) @property def _holder(self): # For extension blocks, the holder is values-dependent. return type(self.values) @property def fill_value(self): # Used in reindex_indexer return self.values.dtype.na_value @property def _can_hold_na(self): # The default ExtensionArray._can_hold_na is True return self._holder._can_hold_na @property def is_view(self): """Extension arrays are never treated as views.""" return False @property def is_numeric(self): return self.values.dtype._is_numeric def setitem(self, indexer, value): """Set the value inplace, returning a same-typed block. This differs from Block.setitem by not allowing setitem to change the dtype of the Block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ if isinstance(indexer, tuple): # we are always 1-D indexer = indexer[0] check_setitem_lengths(indexer, value, self.values) self.values[indexer] = value return self def get_values(self, dtype=None): # ExtensionArrays must be iterable, so this works. values = np.asarray(self.values) if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def array_values(self) -> ExtensionArray: return self.values def to_dense(self): return np.asarray(self.values) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """override to use ExtensionArray astype for the conversion""" values = self.values if slicer is not None: values = values[slicer] mask = isna(values) values = np.asarray(values.astype(object)) values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block. """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take(indexer, fill_value=fill_value, allow_fill=True) # Called from three places in managers, all of which satisfy # this assertion assert not (self.ndim == 1 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def _can_hold_element(self, element: Any) -> bool: # XXX: We may need to think about pushing this onto the array. # We're doing the same as CategoricalBlock here. return True def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have if isinstance(slicer, tuple) and len(slicer) == 2: if not com.is_null_slice(slicer[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") slicer = slicer[1] return self.values[slicer] def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._holder._concat_same_type([blk.values for blk in to_concat]) placement = placement or slice(0, len(values), 1) return self.make_block_same_class(values, ndim=self.ndim, placement=placement) def fillna(self, value, limit=None, inplace=False, downcast=None): values = self.values if inplace else self.values.copy() values = values.fillna(value=value, limit=limit) return [ self.make_block_same_class( values=values, placement=self.mgr_locs, ndim=self.ndim ) ] def interpolate( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, **kwargs ): values = self.values if inplace else self.values.copy() return self.make_block_same_class( values=values.fillna(value=fill_value, method=method, limit=limit), placement=self.mgr_locs, ) def diff(self, n: int, axis: int = 1) -> List["Block"]: if axis == 1: # we are by definition 1D. axis = 0 return super().diff(n, axis) def shift( self, periods: int, axis: libinternals.BlockPlacement = 0, fill_value: Any = None, ) -> List["ExtensionBlock"]: """ Shift the block by `periods`. Dispatches to underlying ExtensionArray and re-boxes in an ExtensionBlock. """ return [ self.make_block_same_class( self.values.shift(periods=periods, fill_value=fill_value), placement=self.mgr_locs, ndim=self.ndim, ) ] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: if isinstance(other, ABCDataFrame): # ExtensionArrays are 1-D, so if we get here then # `other` should be a DataFrame with a single column. assert other.shape[1] == 1 other = other.iloc[:, 0] other = extract_array(other, extract_numpy=True) if isinstance(cond, ABCDataFrame): assert cond.shape[1] == 1 cond = cond.iloc[:, 0] cond = extract_array(cond, extract_numpy=True) if lib.is_scalar(other) and isna(other): # The default `other` for Series / Frame is np.nan # we want to replace that with the correct NA value # for the type other = self.dtype.na_value if is_sparse(self.values): # TODO(SparseArray.__setitem__): remove this if condition # We need to re-infer the type of the data after doing the # where, for cases where the subtypes don't match dtype = None else: dtype = self.dtype result = self.values.copy() icond = ~cond if lib.is_scalar(other): set_other = other else: set_other = other[icond] try: result[icond] = set_other except (NotImplementedError, TypeError): # NotImplementedError for class not implementing `__setitem__` # TypeError for SparseArray, which implements just to raise # a TypeError result = self._holder._from_sequence( np.where(cond, self.values, other), dtype=dtype ) return [self.make_block_same_class(result, placement=self.mgr_locs)] @property def _ftype(self): return getattr(self.values, "_pandas_ftype", Block._ftype) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): # ExtensionArray-safe unstack. # We override ObjectBlock._unstack, which unstacks directly on the # values of the array. For EA-backed blocks, this would require # converting to a 2-D ndarray of objects. # Instead, we unstack an ndarray of integer positions, followed by # a `take` on the actual values. dummy_arr = np.arange(n_rows) dummy_unstacker = functools.partial(unstacker_func, fill_value=-1) unstacker = dummy_unstacker(dummy_arr) new_placement, new_values, mask = self._get_unstack_items( unstacker, new_columns ) blocks = [ self.make_block_same_class( self.values.take(indices, allow_fill=True, fill_value=fill_value), [place], ) for indices, place in zip(new_values.T, new_placement) ] return blocks, mask class ObjectValuesExtensionBlock(ExtensionBlock): """ Block providing backwards-compatibility for `.values`. Used by PeriodArray and IntervalArray to ensure that Series[T].values is an ndarray of objects. """ def external_values(self): return self.values.astype(object) class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer)) and not issubclass( tipo.type, (np.datetime64, np.timedelta64) ) return isinstance( element, (float, int, np.floating, np.int_) ) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64), ) def to_native_types( self, slicer=None, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs, ): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] # see gh-13418: no special formatting is desired at the # output (important for appropriate 'quoting' behaviour), # so do not pass it through the FloatArrayFormatter if float_format is None and decimal == ".": mask = isna(values) if not quoting: values = values.astype(str) else: values = np.array(values, dtype="object") values[mask] = na_rep return values from pandas.io.formats.format import FloatArrayFormatter formatter = FloatArrayFormatter( values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False, ) return formatter.get_result_as_array() def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer, np.complexfloating)) return isinstance( element, (float, int, complex, np.float_, np.int_) ) and not isinstance(element, (bool, np.bool_)) def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return ( issubclass(tipo.type, np.integer) and not issubclass(tipo.type, (np.datetime64, np.timedelta64)) and self.dtype.itemsize >= tipo.itemsize ) return is_integer(element) def should_store(self, value): return is_integer_dtype(value) and value.dtype == self.dtype class DatetimeLikeBlockMixin: """Mixin class for DatetimeBlock, DatetimeTZBlock, and TimedeltaBlock.""" @property def _holder(self): return DatetimeArray @property def fill_value(self): return np.datetime64("NaT", "ns") def get_values(self, dtype=None): """ return object dtype as boxed values, such as Timestamps/Timedelta """ if is_object_dtype(dtype): values = self.values.ravel() result = self._holder(values).astype(object) return result.reshape(self.values.shape) return self.values def internal_values(self): # Override to return DatetimeArray and TimedeltaArray return self.array_values() class DatetimeBlock(DatetimeLikeBlockMixin, Block): __slots__ = () is_datetime = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement=placement, ndim=ndim) @property def _can_hold_na(self): return True def _maybe_coerce_values(self, values): """ Input validation for values passed to __init__. Ensure that we have datetime64ns, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : ndarray[datetime64ns] Overridden by DatetimeTZBlock. """ if values.dtype != _NS_DTYPE: values = conversion.ensure_datetime64ns(values) if isinstance(values, DatetimeArray): values = values._data assert isinstance(values, np.ndarray), type(values) return values def astype(self, dtype, copy: bool = False, errors: str = "raise"): """ these automatically copy, so copy=True has no effect raise on an except if raise == True """ dtype = pandas_dtype(dtype) # if we are passed a datetime64[ns, tz] if is_datetime64tz_dtype(dtype): values = self.values if getattr(values, "tz", None) is None: values = DatetimeArray(values).tz_localize("UTC") values = values.tz_convert(dtype.tz) return self.make_block(values) # delegate return super().astype(dtype=dtype, copy=copy, errors=errors) def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: if self.is_datetimetz: # require exact match, since non-nano does not exist return is_dtype_equal(tipo, self.dtype) or is_valid_nat_for_dtype( element, self.dtype ) # GH#27419 if we get a non-nano datetime64 object return is_datetime64_dtype(tipo) elif element is NaT: return True elif isinstance(element, datetime): if self.is_datetimetz: return tz_compare(element.tzinfo, self.dtype.tz) return element.tzinfo is None return is_valid_nat_for_dtype(element, self.dtype) def to_native_types( self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs ): """ convert to our native types format, slicing if desired """ values = self.values i8values = self.values.view("i8") if slicer is not None: values = values[..., slicer] i8values = i8values[..., slicer] from pandas.io.formats.format import _get_format_datetime64_from_values fmt = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime( i8values.ravel(), tz=getattr(self.values, "tz", None), format=fmt, na_rep=na_rep, ).reshape(i8values.shape) return np.atleast_2d(result) def should_store(self, value): return ( issubclass(value.dtype.type, np.datetime64) and not is_datetime64tz_dtype(value) and not is_extension_array_dtype(value) ) def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ values = conversion.ensure_datetime64ns(values, copy=False) self.values[locs] = values def external_values(self): return np.asarray(self.values.astype("datetime64[ns]", copy=False)) def array_values(self) -> ExtensionArray: return DatetimeArray._simple_new(self.values) class DatetimeTZBlock(ExtensionBlock, DatetimeBlock): """ implement a datetime64 block with a tz attribute """ __slots__ = () is_datetimetz = True is_extension = True internal_values = Block.internal_values _can_hold_element = DatetimeBlock._can_hold_element to_native_types = DatetimeBlock.to_native_types fill_value = np.datetime64("NaT", "ns") @property def _holder(self): return DatetimeArray def _maybe_coerce_values(self, values): """Input validation for values passed to __init__. Ensure that we have datetime64TZ, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : DatetimeArray """ if not isinstance(values, self._holder): values = self._holder(values) if values.tz is None: raise ValueError("cannot create a DatetimeTZBlock without a tz") return values @property def is_view(self): """ return a boolean if I am possibly a view """ # check the ndarray values of the DatetimeIndex values return self.values._data.base is not None def get_values(self, dtype=None): """ Returns an ndarray of values. Parameters ---------- dtype : np.dtype Only `object`-like dtypes are respected here (not sure why). Returns ------- values : ndarray When ``dtype=object``, then and object-dtype ndarray of boxed values is returned. Otherwise, an M8[ns] ndarray is returned. DatetimeArray is always 1-d. ``get_values`` will reshape the return value to be the same dimensionality as the block. """ values = self.values if is_object_dtype(dtype): values = values.astype(object) values = np.asarray(values) if self.ndim == 2: # Ensure that our shape is correct for DataFrame. # ExtensionArrays are always 1-D, even in a DataFrame when # the analogous NumPy-backed column would be a 2-D ndarray. values = values.reshape(1, -1) return values def to_dense(self): # we request M8[ns] dtype here, even though it discards tzinfo, # as lots of code (e.g. anything using values_from_object) # expects that behavior. return np.asarray(self.values, dtype=_NS_DTYPE) def _slice(self, slicer): """ return a slice of my values """ if isinstance(slicer, tuple): col, loc = slicer if not com.is_null_slice(col) and col != 0: raise IndexError(f"{self} only contains one item") return self.values[loc] return self.values[slicer] def diff(self, n: int, axis: int = 0) -> List["Block"]: """ 1st discrete difference. Parameters ---------- n : int Number of periods to diff. axis : int, default 0 Axis to diff upon. Returns ------- A list with a new TimeDeltaBlock. Notes ----- The arguments here are mimicking shift so they are called correctly by apply. """ if axis == 0: # Cannot currently calculate diff across multiple blocks since this # function is invoked via apply raise NotImplementedError new_values = (self.values - self.shift(n, axis=axis)[0].values).asi8 # Reshape the new_values like how algos.diff does for timedelta data new_values = new_values.reshape(1, len(new_values)) new_values = new_values.astype("timedelta64[ns]") return [TimeDeltaBlock(new_values, placement=self.mgr_locs.indexer)] def concat_same_type(self, to_concat, placement=None): # need to handle concat([tz1, tz2]) here, since DatetimeArray # only handles cases where all the tzs are the same. # Instead of placing the condition here, it could also go into the # is_uniform_join_units check, but I'm not sure what is better. if len({x.dtype for x in to_concat}) > 1: values = concat_datetime([x.values for x in to_concat]) placement = placement or slice(0, len(values), 1) if self.ndim > 1: values = np.atleast_2d(values) return ObjectBlock(values, ndim=self.ndim, placement=placement) return super().concat_same_type(to_concat, placement) def fillna(self, value, limit=None, inplace=False, downcast=None): # We support filling a DatetimeTZ with a `value` whose timezone # is different by coercing to object. if self._can_hold_element(value): return super().fillna(value, limit, inplace, downcast) # different timezones, or a non-tz return self.astype(object).fillna( value, limit=limit, inplace=inplace, downcast=downcast ) def setitem(self, indexer, value): # https://github.com/pandas-dev/pandas/issues/24020 # Need a dedicated setitem until #24020 (type promotion in setitem # for extension arrays) is designed and implemented. if self._can_hold_element(value) or ( isinstance(indexer, np.ndarray) and indexer.size == 0 ): return super().setitem(indexer, value) obj_vals = self.values.astype(object) newb = make_block( obj_vals, placement=self.mgr_locs, klass=ObjectBlock, ndim=self.ndim ) return newb.setitem(indexer, value) def equals(self, other) -> bool: # override for significant performance improvement if self.dtype != other.dtype or self.shape != other.shape: return False return (self.values.view("i8") == other.values.view("i8")).all() def quantile(self, qs, interpolation="linear", axis=0): naive = self.values.view("M8[ns]") # kludge for 2D block with 1D values naive = naive.reshape(self.shape) blk = self.make_block(naive) res_blk = blk.quantile(qs, interpolation=interpolation, axis=axis) # ravel is kludge for 2D block with 1D values, assumes column-like aware = self._holder(res_blk.values.ravel(), dtype=self.dtype) return self.make_block_same_class(aware, ndim=res_blk.ndim) class TimeDeltaBlock(DatetimeLikeBlockMixin, IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False fill_value = np.timedelta64("NaT", "ns") def __init__(self, values, placement, ndim=None): if values.dtype != _TD_DTYPE: values = conversion.ensure_timedelta64ns(values) if isinstance(values, TimedeltaArray): values = values._data assert isinstance(values, np.ndarray), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return TimedeltaArray def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.timedelta64) elif element is NaT: return True elif isinstance(element, (timedelta, np.timedelta64)): return True return is_valid_nat_for_dtype(element, self.dtype) def fillna(self, value, **kwargs): # allow filling with integers to be # interpreted as nanoseconds if is_integer(value): # Deprecation GH#24694, GH#19233 raise TypeError( "Passing integers to fillna for timedelta64[ns] dtype is no " "longer supported. To obtain the old behavior, pass " "`pd.Timedelta(seconds=n)` instead." ) return super().fillna(value, **kwargs) def should_store(self, value): return issubclass( value.dtype.type, np.timedelta64 ) and not is_extension_array_dtype(value) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = "NaT" rvalues[mask] = na_rep imask = (~mask).ravel() # FIXME: # should use the formats.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array( [Timedelta(val)._repr_base(format="all") for val in values.ravel()[imask]], dtype=object, ) return rvalues def external_values(self): return np.asarray(self.values.astype("timedelta64[ns]", copy=False)) def array_values(self) -> ExtensionArray: return TimedeltaArray._simple_new(self.values) class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.bool_) return isinstance(element, (bool, np.bool_)) def should_store(self, value): return issubclass(value.dtype.type, np.bool_) and not is_extension_array_dtype( value ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): inplace = validate_bool_kwarg(inplace, "inplace") to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, placement=None, ndim=2): if issubclass(values.dtype.type, str): values = np.array(values, dtype=object) super().__init__(values, ndim=ndim, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # operate column-by-column def f(mask, val, idx): shape = val.shape values = soft_convert_objects( val.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy, ) if isinstance(values, np.ndarray): # TODO: allow EA once reshape is supported values = values.reshape(shape) values = _block_shape(values, ndim=self.ndim) return values if self.ndim == 2: blocks = self.split_and_operate(None, f, False) else: values = f(None, self.values.ravel(), None) blocks = [make_block(values, ndim=self.ndim, placement=self.mgr_locs)] return blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: if downcast is not None: return blocks # split and convert the blocks return _extend_blocks([b.convert(datetime=True, numeric=False) for b in blocks]) def _can_hold_element(self, element: Any) -> bool: return True def should_store(self, value): return not ( issubclass( value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_), ) or is_extension_array_dtype(value) ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): to_rep_is_list = is_list_like(to_replace) value_is_list = is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list result_blocks = [] blocks = [self] if not either_list and is_re(to_replace): return self._replace_single( to_replace, value, inplace=inplace, filter=filter, regex=True, convert=convert, ) elif not (either_list or regex): return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) elif both_lists: for to_rep, v in zip(to_replace, value): result_blocks = [] for b in blocks: result = b._replace_single( to_rep, v, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks elif to_rep_is_list and regex: for to_rep in to_replace: result_blocks = [] for b in blocks: result = b._replace_single( to_rep, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks return self._replace_single( to_replace, value, inplace=inplace, filter=filter, convert=convert, regex=regex, ) def _replace_single( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mask=None, ): """ Replace elements by the given value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. filter : list, optional regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- a new block, the result after replacing """ inplace = validate_bool_kwarg(inplace, "inplace") # to_replace is regex compilable to_rep_re = regex and is_re_compilable(to_replace) # regex is regex compilable regex_re = is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError( "only one of to_replace and regex can be regex compilable" ) # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string if is_re(to_replace): pattern = to_replace.pattern else: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex ) new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isna(value) or not isinstance(value, str): def re_replacer(s): if is_re(rx) and isinstance(s, str): return value if rx.search(s) is not None else s else: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): if is_re(rx) and isinstance(s, str): return rx.sub(value, s) else: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] if mask is None: new_values[filt] = f(new_values[filt]) else: new_values[filt][mask] = f(new_values[filt][mask]) # convert block = self.make_block(new_values) if convert: block = block.convert(numeric=False) return block def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): block = super()._replace_coerce( to_replace=to_replace, value=value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) if convert: block = [b.convert(numeric=False, copy=True) for b in block] return block if convert: return [self.convert(numeric=False, copy=True)] return self class CategoricalBlock(ExtensionBlock): __slots__ = () is_categorical = True _verify_integrity = True _can_hold_na = True _concatenator = staticmethod(concat_categorical) def __init__(self, values, placement, ndim=None): # coerce to categorical if we can values = extract_array(values) assert isinstance(values, Categorical), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return Categorical @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def to_dense(self): # Categorical.get_values returns a DatetimeIndex for datetime # categories, so we can't simply use `np.asarray(self.values)` like # other types. return self.values._internal_get_values() def to_native_types(self, slicer=None, na_rep="", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isna(values) values = np.array(values, dtype="object") values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. Note that this CategoricalBlock._concat_same_type *may* not return a CategoricalBlock. When the categories in `to_concat` differ, this will return an object ndarray. If / when we decide we don't like that behavior: 1. Change Categorical._concat_same_type to use union_categoricals 2. Delete this method. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) # not using self.make_block_same_class as values can be object dtype return make_block( values, placement=placement or slice(0, len(values), 1), ndim=self.ndim ) def replace( self, to_replace, value, inplace: bool = False, filter=None, regex: bool = False, convert: bool = True, ): inplace = validate_bool_kwarg(inplace, "inplace") result = self if inplace else self.copy() if filter is None: # replace was called on a series result.values.replace(to_replace, value, inplace=True) if convert: return result.convert(numeric=False, copy=not inplace) else: return result else: # replace was called on a DataFrame if not isna(value): result.values.add_categories(value, inplace=True) return super(CategoricalBlock, result).replace( to_replace, value, inplace, filter, regex, convert ) # ----------------------------------------------------------------- # Constructor Helpers def get_block_type(values, dtype=None): """ Find the appropriate Block subclass to use for the given values and dtype. Parameters ---------- values : ndarray-like dtype : numpy or pandas dtype Returns ------- cls : class, subclass of Block """ dtype = dtype or values.dtype vtype = dtype.type if is_sparse(dtype): # Need this first(ish) so that Sparse[datetime] is sparse cls = ExtensionBlock elif is_categorical(values): cls = CategoricalBlock elif issubclass(vtype, np.datetime64): assert not is_datetime64tz_dtype(values) cls = DatetimeBlock elif is_datetime64tz_dtype(values): cls = DatetimeTZBlock elif is_interval_dtype(dtype) or is_period_dtype(dtype): cls = ObjectValuesExtensionBlock elif is_extension_array_dtype(values): cls = ExtensionBlock elif issubclass(vtype, np.floating): cls = FloatBlock elif issubclass(vtype, np.timedelta64): assert issubclass(vtype, np.integer) cls = TimeDeltaBlock elif issubclass(vtype, np.complexfloating): cls = ComplexBlock elif issubclass(vtype, np.integer): cls = IntBlock elif dtype == np.bool_: cls = BoolBlock else: cls = ObjectBlock return cls def make_block(values, placement, klass=None, ndim=None, dtype=None): # Ensure that we don't allow PandasArray / PandasDtype in internals. # For now, blocks should be backed by ndarrays when possible. if isinstance(values, ABCPandasArray): values = values.to_numpy() if ndim and ndim > 1: values = np.atleast_2d(values) if isinstance(dtype, PandasDtype): dtype = dtype.numpy_dtype if klass is None: dtype = dtype or values.dtype klass = get_block_type(values, dtype) elif klass is DatetimeTZBlock and not is_datetime64tz_dtype(values): # TODO: This is no longer hit internally; does it need to be retained # for e.g. pyarrow? values = DatetimeArray._simple_new(values, dtype=dtype) return klass(values, ndim=ndim, placement=placement) # ----------------------------------------------------------------- def _extend_blocks(result, blocks=None): """ return a new extended blocks, given the result """ if blocks is None: blocks = [] if isinstance(result, list): for r in result: if isinstance(r, list): blocks.extend(r) else: blocks.append(r) else: assert isinstance(result, Block), type(result) blocks.append(result) return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim < ndim: if shape is None: shape = values.shape if not is_extension_array_dtype(values): # TODO: https://github.com/pandas-dev/pandas/issues/23023 # block.shape is incorrect for "2D" ExtensionArrays # We can't, and don't need to, reshape. values = values.reshape(tuple((1,) + shape)) return values def _merge_blocks(blocks, dtype=None, _can_consolidate=True): if len(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if len({b.dtype for b in blocks}) != 1: raise AssertionError("_merge_blocks are invalid!") # FIXME: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) new_values = np.vstack([b.values for b in blocks]) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, placement=new_mgr_locs) # no merge return blocks def _safe_reshape(arr, new_shape): """ If possible, reshape `arr` to have shape `new_shape`, with a couple of exceptions (see gh-13012): 1) If `arr` is a ExtensionArray or Index, `arr` will be returned as is. 2) If `arr` is a Series, the `_values` attribute will be reshaped and returned. Parameters ---------- arr : array-like, object to be reshaped new_shape : int or tuple of ints, the new shape """ if isinstance(arr, ABCSeries): arr = arr._values if not isinstance(arr, ABCExtensionArray): arr = arr.reshape(new_shape) return arr def _putmask_smart(v, mask, n): """ Return a new ndarray, try to preserve dtype if possible. Parameters ---------- v : `values`, updated in-place (array like) mask : np.ndarray Applies to both sides (array like). n : `new values` either scalar or an array like aligned with `values` Returns ------- values : ndarray with updated values this *may* be a copy of the original See Also -------- ndarray.putmask """ # we cannot use np.asarray() here as we cannot have conversions # that numpy does when numeric are mixed with strings # n should be the length of the mask or a scalar here if not is_list_like(n): n = np.repeat(n, len(mask)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[mask] except TypeError: # TypeError: only integer scalar arrays can be converted to a scalar index pass else: # make sure that we have a nullable type # if we have nulls if not _isna_compat(v, nn[0]): pass elif not (is_float_dtype(nn.dtype) or is_integer_dtype(nn.dtype)): # only compare integers/floats pass elif not (is_float_dtype(v.dtype) or is_integer_dtype(v.dtype)): # only compare integers/floats pass else: # we ignore ComplexWarning here with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", np.ComplexWarning) nn_at = nn.astype(v.dtype) comp = nn == nn_at if is_list_like(comp) and comp.all(): nv = v.copy() nv[mask] = nn_at return nv n = np.asarray(n) def _putmask_preserve(nv, n): try: nv[mask] = n[mask] except (IndexError, ValueError): nv[mask] = n return nv # preserves dtype if possible if v.dtype.kind == n.dtype.kind: return _putmask_preserve(v, n) # change the dtype if needed dtype, _ = maybe_promote(n.dtype) if is_extension_array_dtype(v.dtype) and is_object_dtype(dtype): v = v._internal_get_values(dtype) else: v = v.astype(dtype) return _putmask_preserve(v, n) from datetime import datetime, timedelta import functools import inspect import re from typing import Any, List import warnings import numpy as np from pandas._libs import NaT, Timestamp, algos as libalgos, lib, tslib, writers from pandas._libs.index import convert_scalar import pandas._libs.internals as libinternals from pandas._libs.tslibs import Timedelta, conversion from pandas._libs.tslibs.timezones import tz_compare from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.cast import ( astype_nansafe, find_common_type, infer_dtype_from, infer_dtype_from_scalar, maybe_downcast_numeric, maybe_downcast_to_dtype, maybe_infer_dtype_type, maybe_promote, maybe_upcast, soft_convert_objects, ) from pandas.core.dtypes.common import ( _NS_DTYPE, _TD_DTYPE, ensure_platform_int, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_interval_dtype, is_list_like, is_object_dtype, is_period_dtype, is_re, is_re_compilable, is_sparse, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.concat import concat_categorical, concat_datetime from pandas.core.dtypes.dtypes import CategoricalDtype, ExtensionDtype from pandas.core.dtypes.generic import ( ABCDataFrame, ABCExtensionArray, ABCPandasArray, ABCSeries, ) from pandas.core.dtypes.missing import ( _isna_compat, array_equivalent, is_valid_nat_for_dtype, isna, ) import pandas.core.algorithms as algos from pandas.core.arrays import ( Categorical, DatetimeArray, ExtensionArray, PandasArray, PandasDtype, TimedeltaArray, ) from pandas.core.base import PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import ( check_setitem_lengths, is_empty_indexer, is_scalar_indexer, ) import pandas.core.missing as missing from pandas.core.nanops import nanpercentile from pandas.io.formats.printing import pprint_thing class Block(PandasObject): """ Canonical n-dimensional unit of homogeneous dtype contained in a pandas data structure Index-ignorant; let the container take care of that """ __slots__ = ["_mgr_locs", "values", "ndim"] is_numeric = False is_float = False is_integer = False is_complex = False is_datetime = False is_datetimetz = False is_timedelta = False is_bool = False is_object = False is_categorical = False is_extension = False _can_hold_na = False _can_consolidate = True _verify_integrity = True _validate_ndim = True _ftype = "dense" _concatenator = staticmethod(np.concatenate) def __init__(self, values, placement, ndim=None): self.ndim = self._check_ndim(values, ndim) self.mgr_locs = placement self.values = values if self._validate_ndim and self.ndim and len(self.mgr_locs) != len(self.values): raise ValueError( f"Wrong number of items passed {len(self.values)}, " f"placement implies {len(self.mgr_locs)}" ) def _check_ndim(self, values, ndim): """ ndim inference and validation. Infers ndim from 'values' if not provided to __init__. Validates that values.ndim and ndim are consistent if and only if the class variable '_validate_ndim' is True. Parameters ---------- values : array-like ndim : int or None Returns ------- ndim : int Raises ------ ValueError : the number of dimensions do not match """ if ndim is None: ndim = values.ndim if self._validate_ndim and values.ndim != ndim: raise ValueError( "Wrong number of dimensions. " f"values.ndim != ndim [{values.ndim} != {ndim}]" ) return ndim @property def _holder(self): """The array-like that can hold the underlying values. None for 'Block', overridden by subclasses that don't use an ndarray. """ return None @property def _consolidate_key(self): return (self._can_consolidate, self.dtype.name) @property def _is_single_block(self): return self.ndim == 1 @property def is_view(self): """ return a boolean if I am possibly a view """ return self.values.base is not None @property def is_datelike(self): """ return True if I am a non-datelike """ return self.is_datetime or self.is_timedelta def is_categorical_astype(self, dtype): """ validate that we have a astypeable to categorical, returns a boolean if we are a categorical """ if dtype is Categorical or dtype is CategoricalDtype: # this is a pd.Categorical, but is not # a valid type for astypeing raise TypeError(f"invalid type {dtype} for astype") elif is_categorical_dtype(dtype): return True return False def external_values(self): """ The array that Series.values returns (public attribute). This has some historical constraints, and is overridden in block subclasses to return the correct array (e.g. period returns object ndarray and datetimetz a datetime64[ns] ndarray instead of proper extension array). """ return self.values def internal_values(self): """ The array that Series._values returns (internal values). """ return self.values def array_values(self) -> ExtensionArray: """ The array that Series.array returns. Always an ExtensionArray. """ return PandasArray(self.values) def get_values(self, dtype=None): """ return an internal format, currently just the ndarray this is often overridden to handle to_dense like operations """ if is_object_dtype(dtype): return self.values.astype(object) return self.values def get_block_values(self, dtype=None): """ This is used in the JSON C code """ return self.get_values(dtype=dtype) def to_dense(self): return self.values.view() @property def fill_value(self): return np.nan @property def mgr_locs(self): return self._mgr_locs @mgr_locs.setter def mgr_locs(self, new_mgr_locs): if not isinstance(new_mgr_locs, libinternals.BlockPlacement): new_mgr_locs = libinternals.BlockPlacement(new_mgr_locs) self._mgr_locs = new_mgr_locs @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return self.dtype def make_block(self, values, placement=None) -> "Block": """ Create a new block, with type inference propagate any values that are not specified """ if placement is None: placement = self.mgr_locs return make_block(values, placement=placement, ndim=self.ndim) def make_block_same_class(self, values, placement=None, ndim=None): """ Wrap given values in a block of same type as self. """ if placement is None: placement = self.mgr_locs if ndim is None: ndim = self.ndim return make_block(values, placement=placement, ndim=ndim, klass=type(self)) def __repr__(self) -> str: # don't want to print out all of the items here name = type(self).__name__ if self._is_single_block: result = f"{name}: {len(self)} dtype: {self.dtype}" else: shape = " x ".join(pprint_thing(s) for s in self.shape) result = ( f"{name}: {pprint_thing(self.mgr_locs.indexer)}, " f"{shape}, dtype: {self.dtype}" ) return result def __len__(self) -> int: return len(self.values) def __getstate__(self): return self.mgr_locs.indexer, self.values def __setstate__(self, state): self.mgr_locs = libinternals.BlockPlacement(state[0]) self.values = state[1] self.ndim = self.values.ndim def _slice(self, slicer): """ return a slice of my values """ return self.values[slicer] def getitem_block(self, slicer, new_mgr_locs=None): """ Perform __getitem__-like, return result as block. As of now, only supports slices that preserve dimensionality. """ if new_mgr_locs is None: if isinstance(slicer, tuple): axis0_slicer = slicer[0] else: axis0_slicer = slicer new_mgr_locs = self.mgr_locs[axis0_slicer] new_values = self._slice(slicer) if self._validate_ndim and new_values.ndim != self.ndim: raise ValueError("Only same dim slicing is allowed") return self.make_block_same_class(new_values, new_mgr_locs) @property def shape(self): return self.values.shape @property def dtype(self): return self.values.dtype @property def ftype(self): if getattr(self.values, "_pandas_ftype", False): dtype = self.dtype.subtype else: dtype = self.dtype return f"{dtype}:{self._ftype}" def merge(self, other): return _merge_blocks([self, other]) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) return self.make_block_same_class( values, placement=placement or slice(0, len(values), 1) ) def iget(self, i): return self.values[i] def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ self.values[locs] = values def delete(self, loc): """ Delete given loc(-s) from block in-place. """ self.values = np.delete(self.values, loc, 0) self.mgr_locs = self.mgr_locs.delete(loc) def apply(self, func, **kwargs) -> List["Block"]: """ apply the function to my values; return a block if we are not one """ with np.errstate(all="ignore"): result = func(self.values, **kwargs) return self._split_op_result(result) def _split_op_result(self, result) -> List["Block"]: # See also: split_and_operate if is_extension_array_dtype(result) and result.ndim > 1: # if we get a 2D ExtensionArray, we need to split it into 1D pieces nbs = [] for i, loc in enumerate(self.mgr_locs): vals = result[i] nv = _block_shape(vals, ndim=self.ndim) block = self.make_block(values=nv, placement=[loc]) nbs.append(block) return nbs if not isinstance(result, Block): result = self.make_block(values=_block_shape(result, ndim=self.ndim)) return [result] def fillna(self, value, limit=None, inplace=False, downcast=None): """ fillna on the block with the value. If we fail, then convert to ObjectBlock and try again """ inplace = validate_bool_kwarg(inplace, "inplace") mask = isna(self.values) if limit is not None: limit = libalgos._validate_limit(None, limit=limit) mask[mask.cumsum(self.ndim - 1) > limit] = False if not self._can_hold_na: if inplace: return self else: return self.copy() if self._can_hold_element(value): # equivalent: _try_coerce_args(value) would not raise blocks = self.putmask(mask, value, inplace=inplace) return self._maybe_downcast(blocks, downcast) # we can't process the value, but nothing to do if not mask.any(): return self if inplace else self.copy() # operate column-by-column def f(mask, val, idx): block = self.coerce_to_target_dtype(value) # slice out our block if idx is not None: # i.e. self.ndim == 2 block = block.getitem_block(slice(idx, idx + 1)) return block.fillna(value, limit=limit, inplace=inplace, downcast=None) return self.split_and_operate(None, f, inplace) def split_and_operate(self, mask, f, inplace: bool): """ split the block per-column, and apply the callable f per-column, return a new block for each. Handle masking which will not change a block unless needed. Parameters ---------- mask : 2-d boolean mask f : callable accepting (1d-mask, 1d values, indexer) inplace : boolean Returns ------- list of blocks """ if mask is None: mask = np.broadcast_to(True, shape=self.shape) new_values = self.values def make_a_block(nv, ref_loc): if isinstance(nv, list): assert len(nv) == 1, nv assert isinstance(nv[0], Block) block = nv[0] else: # Put back the dimension that was taken from it and make # a block out of the result. nv = _block_shape(nv, ndim=self.ndim) block = self.make_block(values=nv, placement=ref_loc) return block # ndim == 1 if self.ndim == 1: if mask.any(): nv = f(mask, new_values, None) else: nv = new_values if inplace else new_values.copy() block = make_a_block(nv, self.mgr_locs) return [block] # ndim > 1 new_blocks = [] for i, ref_loc in enumerate(self.mgr_locs): m = mask[i] v = new_values[i] # need a new block if m.any(): nv = f(m, v, i) else: nv = v if inplace else v.copy() block = make_a_block(nv, [ref_loc]) new_blocks.append(block) return new_blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: # no need to downcast our float # unless indicated if downcast is None and ( self.is_float or self.is_timedelta or self.is_datetime ): return blocks return _extend_blocks([b.downcast(downcast) for b in blocks]) def downcast(self, dtypes=None): """ try to downcast each item to the dict of dtypes if present """ # turn it off completely if dtypes is False: return self values = self.values # single block handling if self._is_single_block: # try to cast all non-floats here if dtypes is None: dtypes = "infer" nv = maybe_downcast_to_dtype(values, dtypes) return self.make_block(nv) # ndim > 1 if dtypes is None: return self if not (dtypes == "infer" or isinstance(dtypes, dict)): raise ValueError( "downcast must have a dictionary or 'infer' as its argument" ) elif dtypes != "infer": raise AssertionError("dtypes as dict is not supported yet") # operate column-by-column # this is expensive as it splits the blocks items-by-item def f(mask, val, idx): val = maybe_downcast_to_dtype(val, dtype="infer") return val return self.split_and_operate(None, f, False) def astype(self, dtype, copy: bool = False, errors: str = "raise"): """ Coerce to the new dtype. Parameters ---------- dtype : str, dtype convertible copy : bool, default False copy if indicated errors : str, {'raise', 'ignore'}, default 'ignore' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object Returns ------- Block """ errors_legal_values = ("raise", "ignore") if errors not in errors_legal_values: invalid_arg = ( "Expected value of kwarg 'errors' to be one of " f"{list(errors_legal_values)}. Supplied value is '{errors}'" ) raise ValueError(invalid_arg) if inspect.isclass(dtype) and issubclass(dtype, ExtensionDtype): msg = ( f"Expected an instance of {dtype.__name__}, " "but got the class instead. Try instantiating 'dtype'." ) raise TypeError(msg) # may need to convert to categorical if self.is_categorical_astype(dtype): if is_categorical_dtype(self.values): # GH 10696/18593: update an existing categorical efficiently return self.make_block(self.values.astype(dtype, copy=copy)) return self.make_block(Categorical(self.values, dtype=dtype)) dtype = pandas_dtype(dtype) # astype processing if is_dtype_equal(self.dtype, dtype): if copy: return self.copy() return self # force the copy here if self.is_extension: # TODO: Should we try/except this astype? values = self.values.astype(dtype) else: if issubclass(dtype.type, str): # use native type formatting for datetime/tz/timedelta if self.is_datelike: values = self.to_native_types() # astype formatting else: values = self.get_values() else: values = self.get_values(dtype=dtype) # _astype_nansafe works fine with 1-d only vals1d = values.ravel() try: values = astype_nansafe(vals1d, dtype, copy=True) except (ValueError, TypeError): # e.g. astype_nansafe can fail on object-dtype of strings # trying to convert to float if errors == "raise": raise newb = self.copy() if copy else self return newb # TODO(extension) # should we make this attribute? if isinstance(values, np.ndarray): values = values.reshape(self.shape) newb = make_block(values, placement=self.mgr_locs, ndim=self.ndim) if newb.is_numeric and self.is_numeric: if newb.shape != self.shape: raise TypeError( f"cannot set astype for copy = [{copy}] for dtype " f"({self.dtype.name} [{self.shape}]) to different shape " f"({newb.dtype.name} [{newb.shape}])" ) return newb def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we are not an ObjectBlock here! """ return self.copy() if copy else self def _can_hold_element(self, element: Any) -> bool: """ require the same dtype as ourselves """ dtype = self.values.dtype.type tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, dtype) return isinstance(element, dtype) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.get_values() if slicer is not None: values = values[:, slicer] mask = isna(values) itemsize = writers.word_len(na_rep) if not self.is_object and not quoting and itemsize: values = values.astype(str) if values.dtype.itemsize / np.dtype("U1").itemsize < itemsize: # enlarge for the na_rep values = values.astype(f"<U{itemsize}") else: values = np.array(values, dtype="object") values[mask] = na_rep return values # block actions # def copy(self, deep=True): """ copy constructor """ values = self.values if deep: values = values.copy() return self.make_block_same_class(values, ndim=self.ndim) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): """replace the to_replace value with value, possible to create new blocks here this is just a call to putmask. regex is not used here. It is used in ObjectBlocks. It is here for API compatibility. """ inplace = validate_bool_kwarg(inplace, "inplace") original_to_replace = to_replace # If we cannot replace with own dtype, convert to ObjectBlock and # retry if not self._can_hold_element(to_replace): if not isinstance(to_replace, list): if inplace: return [self] return [self.copy()] to_replace = [x for x in to_replace if self._can_hold_element(x)] if not len(to_replace): # GH#28084 avoid costly checks since we can infer # that there is nothing to replace in this block if inplace: return [self] return [self.copy()] if len(to_replace) == 1: # _can_hold_element checks have reduced this back to the # scalar case and we can avoid a costly object cast return self.replace( to_replace[0], value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise AssertionError # try again with a compatible block block = self.astype(object) return block.replace( to_replace=to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) values = self.values if lib.is_scalar(to_replace) and isinstance(values, np.ndarray): # The only non-DatetimeLike class that also has a non-trivial # try_coerce_args is ObjectBlock, but that overrides replace, # so does not get here. to_replace = convert_scalar(values, to_replace) mask = missing.mask_missing(values, to_replace) if filter is not None: filtered_out = ~self.mgr_locs.isin(filter) mask[filtered_out.nonzero()[0]] = False if not mask.any(): if inplace: return [self] return [self.copy()] try: blocks = self.putmask(mask, value, inplace=inplace) # Note: it is _not_ the case that self._can_hold_element(value) # is always true at this point. In particular, that can fail # for: # "2u" with bool-dtype, float-dtype # 0.5 with int64-dtype # np.nan with int64-dtype except (TypeError, ValueError): # GH 22083, TypeError or ValueError occurred within error handling # causes infinite loop. Cast and retry only if not objectblock. if is_object_dtype(self): raise assert not self._can_hold_element(value), value # try again with a compatible block block = self.astype(object) return block.replace( to_replace=original_to_replace, value=value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) if convert: blocks = [b.convert(numeric=False, copy=not inplace) for b in blocks] return blocks def _replace_single(self, *args, **kwargs): """ no-op on a non-ObjectBlock """ return self if kwargs["inplace"] else self.copy() def setitem(self, indexer, value): """ Set the value inplace, returning a a maybe different typed block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ transpose = self.ndim == 2 # coerce None values, if appropriate if value is None: if self.is_numeric: value = np.nan # coerce if block dtype can store value values = self.values if self._can_hold_element(value): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(value): value = convert_scalar(values, value) else: # current dtype cannot store value, coerce to common dtype find_dtype = False if hasattr(value, "dtype"): dtype = value.dtype find_dtype = True elif lib.is_scalar(value) and not isna(value): dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) find_dtype = True if find_dtype: dtype = find_common_type([values.dtype, dtype]) if not is_dtype_equal(self.dtype, dtype): b = self.astype(dtype) return b.setitem(indexer, value) # value must be storeable at this moment if is_extension_array_dtype(getattr(value, "dtype", None)): # We need to be careful not to allow through strings that # can be parsed to EADtypes arr_value = value else: arr_value = np.array(value) # cast the values to a type that can hold nan (if necessary) if not self._can_hold_element(value): dtype, _ = maybe_promote(arr_value.dtype) values = values.astype(dtype) if transpose: values = values.T # length checking check_setitem_lengths(indexer, value, values) exact_match = ( len(arr_value.shape) and arr_value.shape[0] == values.shape[0] and arr_value.size == values.size ) if is_empty_indexer(indexer, arr_value): # GH#8669 empty indexers pass elif is_scalar_indexer(indexer, arr_value): # setting a single element for each dim and with a rhs that could # be e.g. a list; see GH#6043 values[indexer] = value elif ( exact_match and is_categorical_dtype(arr_value.dtype) and not is_categorical_dtype(values) ): # GH25495 - If the current dtype is not categorical, # we need to create a new categorical block values[indexer] = value return self.make_block(Categorical(self.values, dtype=arr_value.dtype)) # if we are an exact match (ex-broadcasting), # then use the resultant dtype elif exact_match: values[indexer] = value try: values = values.astype(arr_value.dtype) except ValueError: pass # set else: values[indexer] = value if transpose: values = values.T block = self.make_block(values) return block def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False): """ putmask the data to the block; it is possible that we may create a new dtype of block return the resulting block(s) Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False axis : int transpose : boolean Set to True if self is stored with axes reversed Returns ------- a list of new blocks, the result of the putmask """ new_values = self.values if inplace else self.values.copy() new = getattr(new, "values", new) mask = getattr(mask, "values", mask) # if we are passed a scalar None, convert it here if not is_list_like(new) and isna(new) and not self.is_object: # FIXME: make sure we have compatible NA new = self.fill_value if self._can_hold_element(new): # We only get here for non-Extension Blocks, so _try_coerce_args # is only relevant for DatetimeBlock and TimedeltaBlock if lib.is_scalar(new): new = convert_scalar(new_values, new) if transpose: new_values = new_values.T # If the default repeat behavior in np.putmask would go in the # wrong direction, then explicitly repeat and reshape new instead if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim and axis == 1: new = np.repeat(new, new_values.shape[-1]).reshape(self.shape) new = new.astype(new_values.dtype) # we require exact matches between the len of the # values we are setting (or is compat). np.putmask # doesn't check this and will simply truncate / pad # the output, but we want sane error messages # # TODO: this prob needs some better checking # for 2D cases if ( is_list_like(new) and np.any(mask[mask]) and getattr(new, "ndim", 1) == 1 ): if mask[mask].shape[-1] == len(new): # GH 30567 # If length of ``new`` is less than the length of ``new_values``, # `np.putmask` would first repeat the ``new`` array and then # assign the masked values hence produces incorrect result. # `np.place` on the other hand uses the ``new`` values at it is # to place in the masked locations of ``new_values`` np.place(new_values, mask, new) elif mask.shape[-1] == len(new) or len(new) == 1: np.putmask(new_values, mask, new) else: raise ValueError("cannot assign mismatch length to masked array") else: np.putmask(new_values, mask, new) # maybe upcast me elif mask.any(): if transpose: mask = mask.T if isinstance(new, np.ndarray): new = new.T axis = new_values.ndim - axis - 1 # Pseudo-broadcast if getattr(new, "ndim", 0) >= 1: if self.ndim - 1 == new.ndim: new_shape = list(new.shape) new_shape.insert(axis, 1) new = new.reshape(tuple(new_shape)) # operate column-by-column def f(mask, val, idx): if idx is None: # ndim==1 case. n = new else: if isinstance(new, np.ndarray): n = np.squeeze(new[idx % new.shape[0]]) else: n = np.array(new) # type of the new block dtype, _ = maybe_promote(n.dtype) # we need to explicitly astype here to make a copy n = n.astype(dtype) nv = _putmask_smart(val, mask, n) return nv new_blocks = self.split_and_operate(mask, f, inplace) return new_blocks if inplace: return [self] if transpose: new_values = new_values.T return [self.make_block(new_values)] def coerce_to_target_dtype(self, other): """ coerce the current block to a dtype compat for other we will return a block, possibly object, and not raise we can also safely try to coerce to the same dtype and will receive the same block """ # if we cannot then coerce to object dtype, _ = infer_dtype_from(other, pandas_dtype=True) if is_dtype_equal(self.dtype, dtype): return self if self.is_bool or is_object_dtype(dtype) or is_bool_dtype(dtype): # we don't upcast to bool return self.astype(object) elif (self.is_float or self.is_complex) and ( is_integer_dtype(dtype) or is_float_dtype(dtype) ): # don't coerce float/complex to int return self elif ( self.is_datetime or is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype) ): # not a datetime if not ( (is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype)) and self.is_datetime ): return self.astype(object) # don't upcast timezone with different timezone or no timezone mytz = getattr(self.dtype, "tz", None) othertz = getattr(dtype, "tz", None) if not tz_compare(mytz, othertz): return self.astype(object) raise AssertionError( f"possible recursion in coerce_to_target_dtype: {self} {other}" ) elif self.is_timedelta or is_timedelta64_dtype(dtype): # not a timedelta if not (is_timedelta64_dtype(dtype) and self.is_timedelta): return self.astype(object) raise AssertionError( f"possible recursion in coerce_to_target_dtype: {self} {other}" ) try: return self.astype(dtype) except (ValueError, TypeError, OverflowError): return self.astype(object) def interpolate( self, method="pad", axis=0, index=None, values=None, inplace=False, limit=None, limit_direction="forward", limit_area=None, fill_value=None, coerce=False, downcast=None, **kwargs, ): inplace = validate_bool_kwarg(inplace, "inplace") def check_int_bool(self, inplace): # Only FloatBlocks will contain NaNs. # timedelta subclasses IntBlock if (self.is_bool or self.is_integer) and not self.is_timedelta: if inplace: return self else: return self.copy() # a fill na type method try: m = missing.clean_fill_method(method) except ValueError: m = None if m is not None: r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate_with_fill( method=m, axis=axis, inplace=inplace, limit=limit, fill_value=fill_value, coerce=coerce, downcast=downcast, ) # validate the interp method m = missing.clean_interp_method(method, **kwargs) r = check_int_bool(self, inplace) if r is not None: return r return self._interpolate( method=m, index=index, values=values, axis=axis, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, inplace=inplace, downcast=downcast, **kwargs, ) def _interpolate_with_fill( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, coerce=False, downcast=None, ): """ fillna but using the interpolate machinery """ inplace = validate_bool_kwarg(inplace, "inplace") # if we are coercing, then don't force the conversion # if the block can't hold the type if coerce: if not self._can_hold_na: if inplace: return [self] else: return [self.copy()] values = self.values if inplace else self.values.copy() # We only get here for non-ExtensionBlock fill_value = convert_scalar(self.values, fill_value) values = missing.interpolate_2d( values, method=method, axis=axis, limit=limit, fill_value=fill_value, dtype=self.dtype, ) blocks = [self.make_block_same_class(values, ndim=self.ndim)] return self._maybe_downcast(blocks, downcast) def _interpolate( self, method=None, index=None, values=None, fill_value=None, axis=0, limit=None, limit_direction="forward", limit_area=None, inplace=False, downcast=None, **kwargs, ): """ interpolate using scipy wrappers """ inplace = validate_bool_kwarg(inplace, "inplace") data = self.values if inplace else self.values.copy() # only deal with floats if not self.is_float: if not self.is_integer: return self data = data.astype(np.float64) if fill_value is None: fill_value = self.fill_value if method in ("krogh", "piecewise_polynomial", "pchip"): if not index.is_monotonic: raise ValueError( f"{method} interpolation requires that the index be monotonic." ) # process 1-d slices in the axis direction def func(x): # process a 1-d slice, returning it # should the axis argument be handled below in apply_along_axis? # i.e. not an arg to missing.interpolate_1d return missing.interpolate_1d( index, x, method=method, limit=limit, limit_direction=limit_direction, limit_area=limit_area, fill_value=fill_value, bounds_error=False, **kwargs, ) # interp each column independently interp_values = np.apply_along_axis(func, axis, data) blocks = [self.make_block_same_class(interp_values)] return self._maybe_downcast(blocks, downcast) def take_nd(self, indexer, axis, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block.bb """ # algos.take_nd dispatches for DatetimeTZBlock, CategoricalBlock # so need to preserve types # sparse is treated like an ndarray, but needs .get_values() shaping values = self.values if fill_tuple is None: fill_value = self.fill_value allow_fill = False else: fill_value = fill_tuple[0] allow_fill = True new_values = algos.take_nd( values, indexer, axis=axis, allow_fill=allow_fill, fill_value=fill_value ) # Called from three places in managers, all of which satisfy # this assertion assert not (axis == 0 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs if not is_dtype_equal(new_values.dtype, self.dtype): return self.make_block(new_values, new_mgr_locs) else: return self.make_block_same_class(new_values, new_mgr_locs) def diff(self, n: int, axis: int = 1) -> List["Block"]: """ return block for the diff of the values """ new_values = algos.diff(self.values, n, axis=axis, stacklevel=7) # We use block_shape for ExtensionBlock subclasses, which may call here # via a super. new_values = _block_shape(new_values, ndim=self.ndim) return [self.make_block(values=new_values)] def shift(self, periods, axis=0, fill_value=None): """ shift the block by periods, possibly upcast """ # convert integer to float if necessary. need to do a lot more than # that, handle boolean etc also new_values, fill_value = maybe_upcast(self.values, fill_value) # make sure array sent to np.roll is c_contiguous f_ordered = new_values.flags.f_contiguous if f_ordered: new_values = new_values.T axis = new_values.ndim - axis - 1 if np.prod(new_values.shape): new_values = np.roll(new_values, ensure_platform_int(periods), axis=axis) axis_indexer = [slice(None)] * self.ndim if periods > 0: axis_indexer[axis] = slice(None, periods) else: axis_indexer[axis] = slice(periods, None) new_values[tuple(axis_indexer)] = fill_value # restore original order if f_ordered: new_values = new_values.T return [self.make_block(new_values)] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: """ evaluate the block; return result block(s) from the result Parameters ---------- other : a ndarray/object cond : the condition to respect align : boolean, perform alignment on other/cond errors : str, {'raise', 'ignore'}, default 'raise' - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object axis : int Returns ------- a new block(s), the result of the func """ import pandas.core.computation.expressions as expressions assert errors in ["raise", "ignore"] transpose = self.ndim == 2 values = self.values orig_other = other if transpose: values = values.T other = getattr(other, "_values", getattr(other, "values", other)) cond = getattr(cond, "values", cond) # If the default broadcasting would go in the wrong direction, then # explicitly reshape other instead if getattr(other, "ndim", 0) >= 1: if values.ndim - 1 == other.ndim and axis == 1: other = other.reshape(tuple(other.shape + (1,))) elif transpose and values.ndim == self.ndim - 1: cond = cond.T if not hasattr(cond, "shape"): raise ValueError("where must have a condition that is ndarray like") def where_func(cond, values, other): if not ( (self.is_integer or self.is_bool) and lib.is_float(other) and np.isnan(other) ): # np.where will cast integer array to floats in this case if not self._can_hold_element(other): raise TypeError if lib.is_scalar(other) and isinstance(values, np.ndarray): # convert datetime to datetime64, timedelta to timedelta64 other = convert_scalar(values, other) # By the time we get here, we should have all Series/Index # args extracted to ndarray fastres = expressions.where(cond, values, other) return fastres if cond.ravel().all(): result = values else: # see if we can operate on the entire block, or need item-by-item # or if we are a single block (ndim == 1) try: result = where_func(cond, values, other) except TypeError: # we cannot coerce, return a compat dtype # we are explicitly ignoring errors block = self.coerce_to_target_dtype(other) blocks = block.where( orig_other, cond, align=align, errors=errors, try_cast=try_cast, axis=axis, ) return self._maybe_downcast(blocks, "infer") if self._can_hold_na or self.ndim == 1: if transpose: result = result.T return [self.make_block(result)] # might need to separate out blocks axis = cond.ndim - 1 cond = cond.swapaxes(axis, 0) mask = np.array([cond[i].all() for i in range(cond.shape[0])], dtype=bool) result_blocks = [] for m in [mask, ~mask]: if m.any(): taken = result.take(m.nonzero()[0], axis=axis) r = maybe_downcast_numeric(taken, self.dtype) nb = self.make_block(r.T, placement=self.mgr_locs[m]) result_blocks.append(nb) return result_blocks def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False return array_equivalent(self.values, other.values) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): """Return a list of unstacked blocks of self Parameters ---------- unstacker_func : callable Partially applied unstacker. new_columns : Index All columns of the unstacked BlockManager. n_rows : int Only used in ExtensionBlock._unstack fill_value : int Only used in ExtensionBlock._unstack Returns ------- blocks : list of Block New blocks of unstacked values. mask : array_like of bool The mask of columns of `blocks` we should keep. """ unstacker = unstacker_func(self.values.T) new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) new_values = new_values.T[mask] new_placement = new_placement[mask] blocks = [make_block(new_values, placement=new_placement)] return blocks, mask def quantile(self, qs, interpolation="linear", axis=0): """ compute the quantiles of the Parameters ---------- qs: a scalar or list of the quantiles to be computed interpolation: type of interpolation, default 'linear' axis: axis to compute, default 0 Returns ------- Block """ # We should always have ndim == 2 because Series dispatches to DataFrame assert self.ndim == 2 values = self.get_values() is_empty = values.shape[axis] == 0 orig_scalar = not is_list_like(qs) if orig_scalar: # make list-like, unpack later qs = [qs] if is_empty: # create the array of na_values # 2d len(values) * len(qs) result = np.repeat( np.array([self.fill_value] * len(qs)), len(values) ).reshape(len(values), len(qs)) else: # asarray needed for Sparse, see GH#24600 mask = np.asarray(isna(values)) result = nanpercentile( values, np.array(qs) * 100, axis=axis, na_value=self.fill_value, mask=mask, ndim=values.ndim, interpolation=interpolation, ) result = np.array(result, copy=False) result = result.T if orig_scalar and not lib.is_scalar(result): # result could be scalar in case with is_empty and self.ndim == 1 assert result.shape[-1] == 1, result.shape result = result[..., 0] result = lib.item_from_zerodim(result) ndim = np.ndim(result) return make_block(result, placement=np.arange(len(result)), ndim=ndim) def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): if not regex: self = self.coerce_to_target_dtype(value) return self.putmask(mask, value, inplace=inplace) else: return self._replace_single( to_replace, value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) return self class NonConsolidatableMixIn: """ hold methods for the nonconsolidatable blocks """ _can_consolidate = False _verify_integrity = False _validate_ndim = False def __init__(self, values, placement, ndim=None): """Initialize a non-consolidatable block. 'ndim' may be inferred from 'placement'. This will call continue to call __init__ for the other base classes mixed in with this Mixin. """ # Placement must be converted to BlockPlacement so that we can check # its length if not isinstance(placement, libinternals.BlockPlacement): placement = libinternals.BlockPlacement(placement) # Maybe infer ndim from placement if ndim is None: if len(placement) != 1: ndim = 1 else: ndim = 2 super().__init__(values, placement, ndim=ndim) @property def shape(self): if self.ndim == 1: return ((len(self.values)),) return (len(self.mgr_locs), len(self.values)) def iget(self, col): if self.ndim == 2 and isinstance(col, tuple): col, loc = col if not com.is_null_slice(col) and col != 0: raise IndexError(f"{self} only contains one item") elif isinstance(col, slice): if col != slice(None): raise NotImplementedError(col) return self.values[[loc]] return self.values[loc] else: if col != 0: raise IndexError(f"{self} only contains one item") return self.values def should_store(self, value): return isinstance(value, self._holder) def set(self, locs, values, check=False): assert locs.tolist() == [0] self.values = values def putmask(self, mask, new, align=True, inplace=False, axis=0, transpose=False): """ putmask the data to the block; we must be a single block and not generate other blocks return the resulting block Parameters ---------- mask : the condition to respect new : a ndarray/object align : boolean, perform alignment on other/cond, default is True inplace : perform inplace modification, default is False Returns ------- a new block, the result of the putmask """ inplace = validate_bool_kwarg(inplace, "inplace") # use block's copy logic. # .values may be an Index which does shallow copy by default new_values = self.values if inplace else self.copy().values if isinstance(new, np.ndarray) and len(new) == len(mask): new = new[mask] mask = _safe_reshape(mask, new_values.shape) new_values[mask] = new return [self.make_block(values=new_values)] def _get_unstack_items(self, unstacker, new_columns): """ Get the placement, values, and mask for a Block unstack. This is shared between ObjectBlock and ExtensionBlock. They differ in that ObjectBlock passes the values, while ExtensionBlock passes the dummy ndarray of positions to be used by a take later. Parameters ---------- unstacker : pandas.core.reshape.reshape._Unstacker new_columns : Index All columns of the unstacked BlockManager. Returns ------- new_placement : ndarray[int] The placement of the new columns in `new_columns`. new_values : Union[ndarray, ExtensionArray] The first return value from _Unstacker.get_new_values. mask : ndarray[bool] The second return value from _Unstacker.get_new_values. """ # shared with ExtensionBlock new_items = unstacker.get_new_columns() new_placement = new_columns.get_indexer(new_items) new_values, mask = unstacker.get_new_values() mask = mask.any(0) return new_placement, new_values, mask class ExtensionBlock(NonConsolidatableMixIn, Block): """Block for holding extension types. Notes ----- This holds all 3rd-party extension array types. It's also the immediate parent class for our internal extension types' blocks, CategoricalBlock. ExtensionArrays are limited to 1-D. """ is_extension = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement, ndim) def _maybe_coerce_values(self, values): """ Unbox to an extension array. This will unbox an ExtensionArray stored in an Index or Series. ExtensionArrays pass through. No dtype coercion is done. Parameters ---------- values : Index, Series, ExtensionArray Returns ------- ExtensionArray """ return extract_array(values) @property def _holder(self): # For extension blocks, the holder is values-dependent. return type(self.values) @property def fill_value(self): # Used in reindex_indexer return self.values.dtype.na_value @property def _can_hold_na(self): # The default ExtensionArray._can_hold_na is True return self._holder._can_hold_na @property def is_view(self): """Extension arrays are never treated as views.""" return False @property def is_numeric(self): return self.values.dtype._is_numeric def setitem(self, indexer, value): """Set the value inplace, returning a same-typed block. This differs from Block.setitem by not allowing setitem to change the dtype of the Block. Parameters ---------- indexer : tuple, list-like, array-like, slice The subset of self.values to set value : object The value being set Returns ------- Block Notes ----- `indexer` is a direct slice/positional indexer. `value` must be a compatible shape. """ if isinstance(indexer, tuple): # we are always 1-D indexer = indexer[0] check_setitem_lengths(indexer, value, self.values) self.values[indexer] = value return self def get_values(self, dtype=None): # ExtensionArrays must be iterable, so this works. values = np.asarray(self.values) if values.ndim == self.ndim - 1: values = values.reshape((1,) + values.shape) return values def array_values(self) -> ExtensionArray: return self.values def to_dense(self): return np.asarray(self.values) def to_native_types(self, slicer=None, na_rep="nan", quoting=None, **kwargs): """override to use ExtensionArray astype for the conversion""" values = self.values if slicer is not None: values = values[slicer] mask = isna(values) values = np.asarray(values.astype(object)) values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def take_nd(self, indexer, axis=0, new_mgr_locs=None, fill_tuple=None): """ Take values according to indexer and return them as a block. """ if fill_tuple is None: fill_value = None else: fill_value = fill_tuple[0] # axis doesn't matter; we are really a single-dim object # but are passed the axis depending on the calling routing # if its REALLY axis 0, then this will be a reindex and not a take new_values = self.values.take(indexer, fill_value=fill_value, allow_fill=True) # Called from three places in managers, all of which satisfy # this assertion assert not (self.ndim == 1 and new_mgr_locs is None) if new_mgr_locs is None: new_mgr_locs = self.mgr_locs return self.make_block_same_class(new_values, new_mgr_locs) def _can_hold_element(self, element: Any) -> bool: # XXX: We may need to think about pushing this onto the array. # We're doing the same as CategoricalBlock here. return True def _slice(self, slicer): """ return a slice of my values """ # slice the category # return same dims as we currently have if isinstance(slicer, tuple) and len(slicer) == 2: if not com.is_null_slice(slicer[0]): raise AssertionError("invalid slicing for a 1-ndim categorical") slicer = slicer[1] return self.values[slicer] def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. """ values = self._holder._concat_same_type([blk.values for blk in to_concat]) placement = placement or slice(0, len(values), 1) return self.make_block_same_class(values, ndim=self.ndim, placement=placement) def fillna(self, value, limit=None, inplace=False, downcast=None): values = self.values if inplace else self.values.copy() values = values.fillna(value=value, limit=limit) return [ self.make_block_same_class( values=values, placement=self.mgr_locs, ndim=self.ndim ) ] def interpolate( self, method="pad", axis=0, inplace=False, limit=None, fill_value=None, **kwargs ): values = self.values if inplace else self.values.copy() return self.make_block_same_class( values=values.fillna(value=fill_value, method=method, limit=limit), placement=self.mgr_locs, ) def diff(self, n: int, axis: int = 1) -> List["Block"]: if axis == 1: # we are by definition 1D. axis = 0 return super().diff(n, axis) def shift( self, periods: int, axis: libinternals.BlockPlacement = 0, fill_value: Any = None, ) -> List["ExtensionBlock"]: """ Shift the block by `periods`. Dispatches to underlying ExtensionArray and re-boxes in an ExtensionBlock. """ return [ self.make_block_same_class( self.values.shift(periods=periods, fill_value=fill_value), placement=self.mgr_locs, ndim=self.ndim, ) ] def where( self, other, cond, align=True, errors="raise", try_cast: bool = False, axis: int = 0, ) -> List["Block"]: if isinstance(other, ABCDataFrame): # ExtensionArrays are 1-D, so if we get here then # `other` should be a DataFrame with a single column. assert other.shape[1] == 1 other = other.iloc[:, 0] other = extract_array(other, extract_numpy=True) if isinstance(cond, ABCDataFrame): assert cond.shape[1] == 1 cond = cond.iloc[:, 0] cond = extract_array(cond, extract_numpy=True) if lib.is_scalar(other) and isna(other): # The default `other` for Series / Frame is np.nan # we want to replace that with the correct NA value # for the type other = self.dtype.na_value if is_sparse(self.values): # TODO(SparseArray.__setitem__): remove this if condition # We need to re-infer the type of the data after doing the # where, for cases where the subtypes don't match dtype = None else: dtype = self.dtype result = self.values.copy() icond = ~cond if lib.is_scalar(other): set_other = other else: set_other = other[icond] try: result[icond] = set_other except (NotImplementedError, TypeError): # NotImplementedError for class not implementing `__setitem__` # TypeError for SparseArray, which implements just to raise # a TypeError result = self._holder._from_sequence( np.where(cond, self.values, other), dtype=dtype ) return [self.make_block_same_class(result, placement=self.mgr_locs)] @property def _ftype(self): return getattr(self.values, "_pandas_ftype", Block._ftype) def _unstack(self, unstacker_func, new_columns, n_rows, fill_value): # ExtensionArray-safe unstack. # We override ObjectBlock._unstack, which unstacks directly on the # values of the array. For EA-backed blocks, this would require # converting to a 2-D ndarray of objects. # Instead, we unstack an ndarray of integer positions, followed by # a `take` on the actual values. dummy_arr = np.arange(n_rows) dummy_unstacker = functools.partial(unstacker_func, fill_value=-1) unstacker = dummy_unstacker(dummy_arr) new_placement, new_values, mask = self._get_unstack_items( unstacker, new_columns ) blocks = [ self.make_block_same_class( self.values.take(indices, allow_fill=True, fill_value=fill_value), [place], ) for indices, place in zip(new_values.T, new_placement) ] return blocks, mask class ObjectValuesExtensionBlock(ExtensionBlock): """ Block providing backwards-compatibility for `.values`. Used by PeriodArray and IntervalArray to ensure that Series[T].values is an ndarray of objects. """ def external_values(self): return self.values.astype(object) class NumericBlock(Block): __slots__ = () is_numeric = True _can_hold_na = True class FloatOrComplexBlock(NumericBlock): __slots__ = () def equals(self, other) -> bool: if self.dtype != other.dtype or self.shape != other.shape: return False left, right = self.values, other.values return ((left == right) | (np.isnan(left) & np.isnan(right))).all() class FloatBlock(FloatOrComplexBlock): __slots__ = () is_float = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer)) and not issubclass( tipo.type, (np.datetime64, np.timedelta64) ) return isinstance( element, (float, int, np.floating, np.int_) ) and not isinstance( element, (bool, np.bool_, datetime, timedelta, np.datetime64, np.timedelta64), ) def to_native_types( self, slicer=None, na_rep="", float_format=None, decimal=".", quoting=None, **kwargs, ): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] # see gh-13418: no special formatting is desired at the # output (important for appropriate 'quoting' behaviour), # so do not pass it through the FloatArrayFormatter if float_format is None and decimal == ".": mask = isna(values) if not quoting: values = values.astype(str) else: values = np.array(values, dtype="object") values[mask] = na_rep return values from pandas.io.formats.format import FloatArrayFormatter formatter = FloatArrayFormatter( values, na_rep=na_rep, float_format=float_format, decimal=decimal, quoting=quoting, fixed_width=False, ) return formatter.get_result_as_array() def should_store(self, value): # when inserting a column should not coerce integers to floats # unnecessarily return issubclass(value.dtype.type, np.floating) and value.dtype == self.dtype class ComplexBlock(FloatOrComplexBlock): __slots__ = () is_complex = True def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, (np.floating, np.integer, np.complexfloating)) return isinstance( element, (float, int, complex, np.float_, np.int_) ) and not isinstance(element, (bool, np.bool_)) def should_store(self, value): return issubclass(value.dtype.type, np.complexfloating) class IntBlock(NumericBlock): __slots__ = () is_integer = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return ( issubclass(tipo.type, np.integer) and not issubclass(tipo.type, (np.datetime64, np.timedelta64)) and self.dtype.itemsize >= tipo.itemsize ) return is_integer(element) def should_store(self, value): return is_integer_dtype(value) and value.dtype == self.dtype class DatetimeLikeBlockMixin: """Mixin class for DatetimeBlock, DatetimeTZBlock, and TimedeltaBlock.""" @property def _holder(self): return DatetimeArray @property def fill_value(self): return np.datetime64("NaT", "ns") def get_values(self, dtype=None): """ return object dtype as boxed values, such as Timestamps/Timedelta """ if is_object_dtype(dtype): values = self.values.ravel() result = self._holder(values).astype(object) return result.reshape(self.values.shape) return self.values def internal_values(self): # Override to return DatetimeArray and TimedeltaArray return self.array_values() def iget(self, key): # GH#31649 we need to wrap scalars in Timestamp/Timedelta # TODO: this can be removed if we ever have 2D EA result = super().iget(key) if isinstance(result, np.datetime64): result = Timestamp(result) elif isinstance(result, np.timedelta64): result = Timedelta(result) return result class DatetimeBlock(DatetimeLikeBlockMixin, Block): __slots__ = () is_datetime = True def __init__(self, values, placement, ndim=None): values = self._maybe_coerce_values(values) super().__init__(values, placement=placement, ndim=ndim) @property def _can_hold_na(self): return True def _maybe_coerce_values(self, values): """ Input validation for values passed to __init__. Ensure that we have datetime64ns, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : ndarray[datetime64ns] Overridden by DatetimeTZBlock. """ if values.dtype != _NS_DTYPE: values = conversion.ensure_datetime64ns(values) if isinstance(values, DatetimeArray): values = values._data assert isinstance(values, np.ndarray), type(values) return values def astype(self, dtype, copy: bool = False, errors: str = "raise"): """ these automatically copy, so copy=True has no effect raise on an except if raise == True """ dtype = pandas_dtype(dtype) # if we are passed a datetime64[ns, tz] if is_datetime64tz_dtype(dtype): values = self.values if getattr(values, "tz", None) is None: values = DatetimeArray(values).tz_localize("UTC") values = values.tz_convert(dtype.tz) return self.make_block(values) # delegate return super().astype(dtype=dtype, copy=copy, errors=errors) def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: if self.is_datetimetz: # require exact match, since non-nano does not exist return is_dtype_equal(tipo, self.dtype) or is_valid_nat_for_dtype( element, self.dtype ) # GH#27419 if we get a non-nano datetime64 object return is_datetime64_dtype(tipo) elif element is NaT: return True elif isinstance(element, datetime): if self.is_datetimetz: return tz_compare(element.tzinfo, self.dtype.tz) return element.tzinfo is None return is_valid_nat_for_dtype(element, self.dtype) def to_native_types( self, slicer=None, na_rep=None, date_format=None, quoting=None, **kwargs ): """ convert to our native types format, slicing if desired """ values = self.values i8values = self.values.view("i8") if slicer is not None: values = values[..., slicer] i8values = i8values[..., slicer] from pandas.io.formats.format import _get_format_datetime64_from_values fmt = _get_format_datetime64_from_values(values, date_format) result = tslib.format_array_from_datetime( i8values.ravel(), tz=getattr(self.values, "tz", None), format=fmt, na_rep=na_rep, ).reshape(i8values.shape) return np.atleast_2d(result) def should_store(self, value): return ( issubclass(value.dtype.type, np.datetime64) and not is_datetime64tz_dtype(value) and not is_extension_array_dtype(value) ) def set(self, locs, values): """ Modify Block in-place with new item value Returns ------- None """ values = conversion.ensure_datetime64ns(values, copy=False) self.values[locs] = values def external_values(self): return np.asarray(self.values.astype("datetime64[ns]", copy=False)) def array_values(self) -> ExtensionArray: return DatetimeArray._simple_new(self.values) class DatetimeTZBlock(ExtensionBlock, DatetimeBlock): """ implement a datetime64 block with a tz attribute """ __slots__ = () is_datetimetz = True is_extension = True internal_values = Block.internal_values _can_hold_element = DatetimeBlock._can_hold_element to_native_types = DatetimeBlock.to_native_types fill_value = np.datetime64("NaT", "ns") @property def _holder(self): return DatetimeArray def _maybe_coerce_values(self, values): """Input validation for values passed to __init__. Ensure that we have datetime64TZ, coercing if necessary. Parameters ---------- values : array-like Must be convertible to datetime64 Returns ------- values : DatetimeArray """ if not isinstance(values, self._holder): values = self._holder(values) if values.tz is None: raise ValueError("cannot create a DatetimeTZBlock without a tz") return values @property def is_view(self): """ return a boolean if I am possibly a view """ # check the ndarray values of the DatetimeIndex values return self.values._data.base is not None def get_values(self, dtype=None): """ Returns an ndarray of values. Parameters ---------- dtype : np.dtype Only `object`-like dtypes are respected here (not sure why). Returns ------- values : ndarray When ``dtype=object``, then and object-dtype ndarray of boxed values is returned. Otherwise, an M8[ns] ndarray is returned. DatetimeArray is always 1-d. ``get_values`` will reshape the return value to be the same dimensionality as the block. """ values = self.values if is_object_dtype(dtype): values = values.astype(object) values = np.asarray(values) if self.ndim == 2: # Ensure that our shape is correct for DataFrame. # ExtensionArrays are always 1-D, even in a DataFrame when # the analogous NumPy-backed column would be a 2-D ndarray. values = values.reshape(1, -1) return values def to_dense(self): # we request M8[ns] dtype here, even though it discards tzinfo, # as lots of code (e.g. anything using values_from_object) # expects that behavior. return np.asarray(self.values, dtype=_NS_DTYPE) def _slice(self, slicer): """ return a slice of my values """ if isinstance(slicer, tuple): col, loc = slicer if not com.is_null_slice(col) and col != 0: raise IndexError(f"{self} only contains one item") return self.values[loc] return self.values[slicer] def diff(self, n: int, axis: int = 0) -> List["Block"]: """ 1st discrete difference. Parameters ---------- n : int Number of periods to diff. axis : int, default 0 Axis to diff upon. Returns ------- A list with a new TimeDeltaBlock. Notes ----- The arguments here are mimicking shift so they are called correctly by apply. """ if axis == 0: # Cannot currently calculate diff across multiple blocks since this # function is invoked via apply raise NotImplementedError new_values = (self.values - self.shift(n, axis=axis)[0].values).asi8 # Reshape the new_values like how algos.diff does for timedelta data new_values = new_values.reshape(1, len(new_values)) new_values = new_values.astype("timedelta64[ns]") return [TimeDeltaBlock(new_values, placement=self.mgr_locs.indexer)] def concat_same_type(self, to_concat, placement=None): # need to handle concat([tz1, tz2]) here, since DatetimeArray # only handles cases where all the tzs are the same. # Instead of placing the condition here, it could also go into the # is_uniform_join_units check, but I'm not sure what is better. if len({x.dtype for x in to_concat}) > 1: values = concat_datetime([x.values for x in to_concat]) placement = placement or slice(0, len(values), 1) if self.ndim > 1: values = np.atleast_2d(values) return ObjectBlock(values, ndim=self.ndim, placement=placement) return super().concat_same_type(to_concat, placement) def fillna(self, value, limit=None, inplace=False, downcast=None): # We support filling a DatetimeTZ with a `value` whose timezone # is different by coercing to object. if self._can_hold_element(value): return super().fillna(value, limit, inplace, downcast) # different timezones, or a non-tz return self.astype(object).fillna( value, limit=limit, inplace=inplace, downcast=downcast ) def setitem(self, indexer, value): # https://github.com/pandas-dev/pandas/issues/24020 # Need a dedicated setitem until #24020 (type promotion in setitem # for extension arrays) is designed and implemented. if self._can_hold_element(value) or ( isinstance(indexer, np.ndarray) and indexer.size == 0 ): return super().setitem(indexer, value) obj_vals = self.values.astype(object) newb = make_block( obj_vals, placement=self.mgr_locs, klass=ObjectBlock, ndim=self.ndim ) return newb.setitem(indexer, value) def equals(self, other) -> bool: # override for significant performance improvement if self.dtype != other.dtype or self.shape != other.shape: return False return (self.values.view("i8") == other.values.view("i8")).all() def quantile(self, qs, interpolation="linear", axis=0): naive = self.values.view("M8[ns]") # kludge for 2D block with 1D values naive = naive.reshape(self.shape) blk = self.make_block(naive) res_blk = blk.quantile(qs, interpolation=interpolation, axis=axis) # ravel is kludge for 2D block with 1D values, assumes column-like aware = self._holder(res_blk.values.ravel(), dtype=self.dtype) return self.make_block_same_class(aware, ndim=res_blk.ndim) class TimeDeltaBlock(DatetimeLikeBlockMixin, IntBlock): __slots__ = () is_timedelta = True _can_hold_na = True is_numeric = False fill_value = np.timedelta64("NaT", "ns") def __init__(self, values, placement, ndim=None): if values.dtype != _TD_DTYPE: values = conversion.ensure_timedelta64ns(values) if isinstance(values, TimedeltaArray): values = values._data assert isinstance(values, np.ndarray), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return TimedeltaArray def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.timedelta64) elif element is NaT: return True elif isinstance(element, (timedelta, np.timedelta64)): return True return is_valid_nat_for_dtype(element, self.dtype) def fillna(self, value, **kwargs): # allow filling with integers to be # interpreted as nanoseconds if is_integer(value): # Deprecation GH#24694, GH#19233 raise TypeError( "Passing integers to fillna for timedelta64[ns] dtype is no " "longer supported. To obtain the old behavior, pass " "`pd.Timedelta(seconds=n)` instead." ) return super().fillna(value, **kwargs) def should_store(self, value): return issubclass( value.dtype.type, np.timedelta64 ) and not is_extension_array_dtype(value) def to_native_types(self, slicer=None, na_rep=None, quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: values = values[:, slicer] mask = isna(values) rvalues = np.empty(values.shape, dtype=object) if na_rep is None: na_rep = "NaT" rvalues[mask] = na_rep imask = (~mask).ravel() # FIXME: # should use the formats.format.Timedelta64Formatter here # to figure what format to pass to the Timedelta # e.g. to not show the decimals say rvalues.flat[imask] = np.array( [Timedelta(val)._repr_base(format="all") for val in values.ravel()[imask]], dtype=object, ) return rvalues def external_values(self): return np.asarray(self.values.astype("timedelta64[ns]", copy=False)) def array_values(self) -> ExtensionArray: return TimedeltaArray._simple_new(self.values) class BoolBlock(NumericBlock): __slots__ = () is_bool = True _can_hold_na = False def _can_hold_element(self, element: Any) -> bool: tipo = maybe_infer_dtype_type(element) if tipo is not None: return issubclass(tipo.type, np.bool_) return isinstance(element, (bool, np.bool_)) def should_store(self, value): return issubclass(value.dtype.type, np.bool_) and not is_extension_array_dtype( value ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): inplace = validate_bool_kwarg(inplace, "inplace") to_replace_values = np.atleast_1d(to_replace) if not np.can_cast(to_replace_values, bool): return self return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) class ObjectBlock(Block): __slots__ = () is_object = True _can_hold_na = True def __init__(self, values, placement=None, ndim=2): if issubclass(values.dtype.type, str): values = np.array(values, dtype=object) super().__init__(values, ndim=ndim, placement=placement) @property def is_bool(self): """ we can be a bool if we have only bool values but are of type object """ return lib.is_bool_array(self.values.ravel()) def convert( self, copy: bool = True, datetime: bool = True, numeric: bool = True, timedelta: bool = True, coerce: bool = False, ): """ attempt to coerce any object types to better types return a copy of the block (if copy = True) by definition we ARE an ObjectBlock!!!!! can return multiple blocks! """ # operate column-by-column def f(mask, val, idx): shape = val.shape values = soft_convert_objects( val.ravel(), datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy, ) if isinstance(values, np.ndarray): # TODO: allow EA once reshape is supported values = values.reshape(shape) values = _block_shape(values, ndim=self.ndim) return values if self.ndim == 2: blocks = self.split_and_operate(None, f, False) else: values = f(None, self.values.ravel(), None) blocks = [make_block(values, ndim=self.ndim, placement=self.mgr_locs)] return blocks def _maybe_downcast(self, blocks: List["Block"], downcast=None) -> List["Block"]: if downcast is not None: return blocks # split and convert the blocks return _extend_blocks([b.convert(datetime=True, numeric=False) for b in blocks]) def _can_hold_element(self, element: Any) -> bool: return True def should_store(self, value): return not ( issubclass( value.dtype.type, (np.integer, np.floating, np.complexfloating, np.datetime64, np.bool_), ) or is_extension_array_dtype(value) ) def replace( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True ): to_rep_is_list = is_list_like(to_replace) value_is_list = is_list_like(value) both_lists = to_rep_is_list and value_is_list either_list = to_rep_is_list or value_is_list result_blocks = [] blocks = [self] if not either_list and is_re(to_replace): return self._replace_single( to_replace, value, inplace=inplace, filter=filter, regex=True, convert=convert, ) elif not (either_list or regex): return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) elif both_lists: for to_rep, v in zip(to_replace, value): result_blocks = [] for b in blocks: result = b._replace_single( to_rep, v, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks elif to_rep_is_list and regex: for to_rep in to_replace: result_blocks = [] for b in blocks: result = b._replace_single( to_rep, value, inplace=inplace, filter=filter, regex=regex, convert=convert, ) result_blocks = _extend_blocks(result, result_blocks) blocks = result_blocks return result_blocks return self._replace_single( to_replace, value, inplace=inplace, filter=filter, convert=convert, regex=regex, ) def _replace_single( self, to_replace, value, inplace=False, filter=None, regex=False, convert=True, mask=None, ): """ Replace elements by the given value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. filter : list, optional regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- a new block, the result after replacing """ inplace = validate_bool_kwarg(inplace, "inplace") # to_replace is regex compilable to_rep_re = regex and is_re_compilable(to_replace) # regex is regex compilable regex_re = is_re_compilable(regex) # only one will survive if to_rep_re and regex_re: raise AssertionError( "only one of to_replace and regex can be regex compilable" ) # if regex was passed as something that can be a regex (rather than a # boolean) if regex_re: to_replace = regex regex = regex_re or to_rep_re # try to get the pattern attribute (compiled re) or it's a string if is_re(to_replace): pattern = to_replace.pattern else: pattern = to_replace # if the pattern is not empty and to_replace is either a string or a # regex if regex and pattern: rx = re.compile(to_replace) else: # if the thing to replace is not a string or compiled regex call # the superclass method -> to_replace is some kind of object return super().replace( to_replace, value, inplace=inplace, filter=filter, regex=regex ) new_values = self.values if inplace else self.values.copy() # deal with replacing values with objects (strings) that match but # whose replacement is not a string (numeric, nan, object) if isna(value) or not isinstance(value, str): def re_replacer(s): if is_re(rx) and isinstance(s, str): return value if rx.search(s) is not None else s else: return s else: # value is guaranteed to be a string here, s can be either a string # or null if it's null it gets returned def re_replacer(s): if is_re(rx) and isinstance(s, str): return rx.sub(value, s) else: return s f = np.vectorize(re_replacer, otypes=[self.dtype]) if filter is None: filt = slice(None) else: filt = self.mgr_locs.isin(filter).nonzero()[0] if mask is None: new_values[filt] = f(new_values[filt]) else: new_values[filt][mask] = f(new_values[filt][mask]) # convert block = self.make_block(new_values) if convert: block = block.convert(numeric=False) return block def _replace_coerce( self, to_replace, value, inplace=True, regex=False, convert=False, mask=None ): """ Replace value corresponding to the given boolean array with another value. Parameters ---------- to_replace : object or pattern Scalar to replace or regular expression to match. value : object Replacement object. inplace : bool, default False Perform inplace modification. regex : bool, default False If true, perform regular expression substitution. convert : bool, default True If true, try to coerce any object types to better types. mask : array-like of bool, optional True indicate corresponding element is ignored. Returns ------- A new block if there is anything to replace or the original block. """ if mask.any(): block = super()._replace_coerce( to_replace=to_replace, value=value, inplace=inplace, regex=regex, convert=convert, mask=mask, ) if convert: block = [b.convert(numeric=False, copy=True) for b in block] return block if convert: return [self.convert(numeric=False, copy=True)] return self class CategoricalBlock(ExtensionBlock): __slots__ = () is_categorical = True _verify_integrity = True _can_hold_na = True _concatenator = staticmethod(concat_categorical) def __init__(self, values, placement, ndim=None): # coerce to categorical if we can values = extract_array(values) assert isinstance(values, Categorical), type(values) super().__init__(values, placement=placement, ndim=ndim) @property def _holder(self): return Categorical @property def array_dtype(self): """ the dtype to return if I want to construct this block as an array """ return np.object_ def to_dense(self): # Categorical.get_values returns a DatetimeIndex for datetime # categories, so we can't simply use `np.asarray(self.values)` like # other types. return self.values._internal_get_values() def to_native_types(self, slicer=None, na_rep="", quoting=None, **kwargs): """ convert to our native types format, slicing if desired """ values = self.values if slicer is not None: # Categorical is always one dimension values = values[slicer] mask = isna(values) values = np.array(values, dtype="object") values[mask] = na_rep # we are expected to return a 2-d ndarray return values.reshape(1, len(values)) def concat_same_type(self, to_concat, placement=None): """ Concatenate list of single blocks of the same type. Note that this CategoricalBlock._concat_same_type *may* not return a CategoricalBlock. When the categories in `to_concat` differ, this will return an object ndarray. If / when we decide we don't like that behavior: 1. Change Categorical._concat_same_type to use union_categoricals 2. Delete this method. """ values = self._concatenator( [blk.values for blk in to_concat], axis=self.ndim - 1 ) # not using self.make_block_same_class as values can be object dtype return make_block( values, placement=placement or slice(0, len(values), 1), ndim=self.ndim ) def replace( self, to_replace, value, inplace: bool = False, filter=None, regex: bool = False, convert: bool = True, ): inplace = validate_bool_kwarg(inplace, "inplace") result = self if inplace else self.copy() if filter is None: # replace was called on a series result.values.replace(to_replace, value, inplace=True) if convert: return result.convert(numeric=False, copy=not inplace) else: return result else: # replace was called on a DataFrame if not isna(value): result.values.add_categories(value, inplace=True) return super(CategoricalBlock, result).replace( to_replace, value, inplace, filter, regex, convert ) # ----------------------------------------------------------------- # Constructor Helpers def get_block_type(values, dtype=None): """ Find the appropriate Block subclass to use for the given values and dtype. Parameters ---------- values : ndarray-like dtype : numpy or pandas dtype Returns ------- cls : class, subclass of Block """ dtype = dtype or values.dtype vtype = dtype.type if is_sparse(dtype): # Need this first(ish) so that Sparse[datetime] is sparse cls = ExtensionBlock elif is_categorical(values): cls = CategoricalBlock elif issubclass(vtype, np.datetime64): assert not is_datetime64tz_dtype(values) cls = DatetimeBlock elif is_datetime64tz_dtype(values): cls = DatetimeTZBlock elif is_interval_dtype(dtype) or is_period_dtype(dtype): cls = ObjectValuesExtensionBlock elif is_extension_array_dtype(values): cls = ExtensionBlock elif issubclass(vtype, np.floating): cls = FloatBlock elif issubclass(vtype, np.timedelta64): assert issubclass(vtype, np.integer) cls = TimeDeltaBlock elif issubclass(vtype, np.complexfloating): cls = ComplexBlock elif issubclass(vtype, np.integer): cls = IntBlock elif dtype == np.bool_: cls = BoolBlock else: cls = ObjectBlock return cls def make_block(values, placement, klass=None, ndim=None, dtype=None): # Ensure that we don't allow PandasArray / PandasDtype in internals. # For now, blocks should be backed by ndarrays when possible. if isinstance(values, ABCPandasArray): values = values.to_numpy() if ndim and ndim > 1: values = np.atleast_2d(values) if isinstance(dtype, PandasDtype): dtype = dtype.numpy_dtype if klass is None: dtype = dtype or values.dtype klass = get_block_type(values, dtype) elif klass is DatetimeTZBlock and not is_datetime64tz_dtype(values): # TODO: This is no longer hit internally; does it need to be retained # for e.g. pyarrow? values = DatetimeArray._simple_new(values, dtype=dtype) return klass(values, ndim=ndim, placement=placement) # ----------------------------------------------------------------- def _extend_blocks(result, blocks=None): """ return a new extended blocks, given the result """ if blocks is None: blocks = [] if isinstance(result, list): for r in result: if isinstance(r, list): blocks.extend(r) else: blocks.append(r) else: assert isinstance(result, Block), type(result) blocks.append(result) return blocks def _block_shape(values, ndim=1, shape=None): """ guarantee the shape of the values to be at least 1 d """ if values.ndim < ndim: if shape is None: shape = values.shape if not is_extension_array_dtype(values): # TODO: https://github.com/pandas-dev/pandas/issues/23023 # block.shape is incorrect for "2D" ExtensionArrays # We can't, and don't need to, reshape. values = values.reshape(tuple((1,) + shape)) return values def _merge_blocks(blocks, dtype=None, _can_consolidate=True): if len(blocks) == 1: return blocks[0] if _can_consolidate: if dtype is None: if len({b.dtype for b in blocks}) != 1: raise AssertionError("_merge_blocks are invalid!") # FIXME: optimization potential in case all mgrs contain slices and # combination of those slices is a slice, too. new_mgr_locs = np.concatenate([b.mgr_locs.as_array for b in blocks]) new_values = np.vstack([b.values for b in blocks]) argsort = np.argsort(new_mgr_locs) new_values = new_values[argsort] new_mgr_locs = new_mgr_locs[argsort] return make_block(new_values, placement=new_mgr_locs) # no merge return blocks def _safe_reshape(arr, new_shape): """ If possible, reshape `arr` to have shape `new_shape`, with a couple of exceptions (see gh-13012): 1) If `arr` is a ExtensionArray or Index, `arr` will be returned as is. 2) If `arr` is a Series, the `_values` attribute will be reshaped and returned. Parameters ---------- arr : array-like, object to be reshaped new_shape : int or tuple of ints, the new shape """ if isinstance(arr, ABCSeries): arr = arr._values if not isinstance(arr, ABCExtensionArray): arr = arr.reshape(new_shape) return arr def _putmask_smart(v, mask, n): """ Return a new ndarray, try to preserve dtype if possible. Parameters ---------- v : `values`, updated in-place (array like) mask : np.ndarray Applies to both sides (array like). n : `new values` either scalar or an array like aligned with `values` Returns ------- values : ndarray with updated values this *may* be a copy of the original See Also -------- ndarray.putmask """ # we cannot use np.asarray() here as we cannot have conversions # that numpy does when numeric are mixed with strings # n should be the length of the mask or a scalar here if not is_list_like(n): n = np.repeat(n, len(mask)) # see if we are only masking values that if putted # will work in the current dtype try: nn = n[mask] except TypeError: # TypeError: only integer scalar arrays can be converted to a scalar index pass else: # make sure that we have a nullable type # if we have nulls if not _isna_compat(v, nn[0]): pass elif not (is_float_dtype(nn.dtype) or is_integer_dtype(nn.dtype)): # only compare integers/floats pass elif not (is_float_dtype(v.dtype) or is_integer_dtype(v.dtype)): # only compare integers/floats pass else: # we ignore ComplexWarning here with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", np.ComplexWarning) nn_at = nn.astype(v.dtype) comp = nn == nn_at if is_list_like(comp) and comp.all(): nv = v.copy() nv[mask] = nn_at return nv n = np.asarray(n) def _putmask_preserve(nv, n): try: nv[mask] = n[mask] except (IndexError, ValueError): nv[mask] = n return nv # preserves dtype if possible if v.dtype.kind == n.dtype.kind: return _putmask_preserve(v, n) # change the dtype if needed dtype, _ = maybe_promote(n.dtype) if is_extension_array_dtype(v.dtype) and is_object_dtype(dtype): v = v._internal_get_values(dtype) else: v = v.astype(dtype) return _putmask_preserve(v, n)
BugsInPy/BugsInPy/temp/projects/pandas/bug-67-fixed/pandas/pandas/core/internals/blocks.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-67-buggy/pandas/pandas/core/internals/blocks.py
pandas-bug-110
from datetime import datetime import operator from textwrap import dedent from typing import FrozenSet, Union import warnings import numpy as np from pandas._libs import algos as libalgos, index as libindex, lib import pandas._libs.join as libjoin from pandas._libs.lib import is_datetime_array from pandas._libs.tslibs import OutOfBoundsDatetime, Timestamp from pandas._libs.tslibs.period import IncompatibleFrequency from pandas._libs.tslibs.timezones import tz_compare from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes import concat as _concat from pandas.core.dtypes.cast import maybe_cast_to_integer_array from pandas.core.dtypes.common import ( ensure_categorical, ensure_int64, ensure_object, ensure_platform_int, is_bool, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_interval_dtype, is_iterator, is_list_like, is_object_dtype, is_period_dtype, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ( ABCCategorical, ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCIndexClass, ABCIntervalIndex, ABCMultiIndex, ABCPandasArray, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas.core.dtypes.missing import array_equivalent, isna from pandas.core import ops from pandas.core.accessor import CachedAccessor import pandas.core.algorithms as algos from pandas.core.arrays import ExtensionArray from pandas.core.base import IndexOpsMixin, PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import maybe_convert_indices from pandas.core.indexes.frozen import FrozenList import pandas.core.missing as missing from pandas.core.ops import get_op_result_name from pandas.core.ops.invalid import make_invalid_op from pandas.core.strings import StringMethods from pandas.io.formats.printing import ( default_pprint, format_object_attrs, format_object_summary, pprint_thing, ) __all__ = ["Index"] _unsortable_types = frozenset(("mixed", "mixed-integer")) _index_doc_kwargs = dict( klass="Index", inplace="", target_klass="Index", raises_section="", unique="Index", duplicated="np.ndarray", ) _index_shared_docs = dict() def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries, ExtensionArray)): if other.ndim > 0 and len(self) != len(other): raise ValueError("Lengths must match to compare") if is_object_dtype(self) and isinstance(other, ABCCategorical): left = type(other)(self._values, dtype=other.dtype) return op(left, other) elif is_object_dtype(self) and not isinstance(self, ABCMultiIndex): # don't pass MultiIndex with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY(op, self.values, other) else: with np.errstate(all="ignore"): result = op(self.values, np.asarray(other)) if is_bool_dtype(result): return result return ops.invalid_comparison(self, other, op) name = f"__{op.__name__}__" return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame, ABCTimedeltaIndex)): return NotImplemented from pandas import Series result = op(Series(self), other) if isinstance(result, tuple): return (Index(result[0]), Index(result[1])) return Index(result) name = f"__{op.__name__}__" # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__. """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) if issubclass(cls, ABCMultiIndex): if "labels" in d and "codes" not in d: # GH#23752 "labels" kwarg has been replaced with "codes" d["codes"] = d.pop("labels") return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects. Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible. See Also -------- RangeIndex : Index implementing a monotonic integer range. CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index. IntervalIndex : An Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') """ # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations: FrozenSet[str] = ( PandasObject._deprecations | IndexOpsMixin._deprecations | frozenset(["contains", "set_value"]) ) # To hand over control to subclasses _join_precedence = 1 # Cython methods; see github.com/cython/cython/issues/2647 # for why we need to wrap these instead of making them class attributes # Moreover, cython will choose the appropriate-dtyped sub-function # given the dtypes of the passed arguments def _left_indexer_unique(self, left, right): return libjoin.left_join_indexer_unique(left, right) def _left_indexer(self, left, right): return libjoin.left_join_indexer(left, right) def _inner_indexer(self, left, right): return libjoin.inner_join_indexer(left, right) def _outer_indexer(self, left, right): return libjoin.outer_join_indexer(left, right) _typ = "index" _data: Union[ExtensionArray, np.ndarray] _id = None name = None _comparables = ["name"] _attributes = ["name"] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine # whether we support partial string indexing. Overridden # in DatetimeIndex and PeriodIndex _supports_partial_string_indexing = False _accessors = {"str"} str = CachedAccessor("str", StringMethods) # -------------------------------------------------------------------- # Constructors def __new__( cls, data=None, dtype=None, copy=False, name=None, tupleize_cols=True, **kwargs, ) -> "Index": from .range import RangeIndex from pandas import PeriodIndex, DatetimeIndex, TimedeltaIndex from .numeric import Float64Index, Int64Index, UInt64Index from .interval import IntervalIndex from .category import CategoricalIndex if name is None and hasattr(data, "name"): name = data.name if isinstance(data, ABCPandasArray): # ensure users don't accidentally put a PandasArray in an index. data = data.to_numpy() # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, dtype=dtype, name=name) # categorical elif is_categorical_dtype(data) or is_categorical_dtype(dtype): return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval elif ( is_interval_dtype(data) or is_interval_dtype(dtype) ) and not is_object_dtype(dtype): closed = kwargs.get("closed", None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) elif ( is_datetime64_any_dtype(data) or is_datetime64_any_dtype(dtype) or "tz" in kwargs ): if is_dtype_equal(_o_dtype, dtype): # GH#23524 passing `dtype=object` to DatetimeIndex is invalid, # will raise in the where `data` is already tz-aware. So # we leave it out of this step and cast to object-dtype after # the DatetimeIndex construction. # Note we can pass copy=False because the .astype below # will always make a copy return DatetimeIndex(data, copy=False, name=name, **kwargs).astype( object ) else: return DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) elif is_timedelta64_dtype(data) or is_timedelta64_dtype(dtype): if is_dtype_equal(_o_dtype, dtype): # Note we can pass copy=False because the .astype below # will always make a copy return TimedeltaIndex(data, copy=False, name=name, **kwargs).astype( object ) else: return TimedeltaIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) elif is_period_dtype(data) and not is_object_dtype(dtype): return PeriodIndex(data, copy=copy, name=name, **kwargs) # extension dtype elif is_extension_array_dtype(data) or is_extension_array_dtype(dtype): data = np.asarray(data) if not (dtype is None or is_object_dtype(dtype)): # coerce to the provided dtype ea_cls = dtype.construct_array_type() data = ea_cls._from_sequence(data, dtype=dtype, copy=False) # coerce to the object dtype data = data.astype(object) return Index(data, dtype=object, copy=copy, name=name, **kwargs) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if dtype is not None: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "integer": data = maybe_cast_to_integer_array(data, dtype, copy=copy) elif inferred in ["floating", "mixed-integer-float"]: if isna(data).any(): raise ValueError("cannot convert float NaN to integer") if inferred == "mixed-integer-float": data = maybe_cast_to_integer_array(data, dtype) # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype ) except ValueError: pass # Return an actual float index. return Float64Index(data, copy=copy, name=name) elif inferred == "string": pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "string": pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) # maybe coerce to a sub-class if is_signed_integer_dtype(data.dtype): return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype("object") else: subarr = com.asarray_tuplesafe(data, dtype=object) # asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr, skipna=False) if inferred == "integer": try: return cls._try_convert_to_int_index(subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ["floating", "mixed-integer-float", "integer-na"]: # TODO: Returns IntegerArray for integer-na case in the future return Float64Index(subarr, copy=copy, name=name) elif inferred == "interval": try: return IntervalIndex(subarr, name=name, copy=copy) except ValueError: # GH27172: mixed closed Intervals --> object dtype pass elif inferred == "boolean": # don't support boolean explicitly ATM pass elif inferred != "string": if inferred.startswith("datetime"): try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except (ValueError, OutOfBoundsDatetime): # GH 27011 # If we have mixed timezones, just send it # down the base constructor pass elif inferred.startswith("timedelta"): return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == "period": try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass if kwargs: raise TypeError(f"Unexpected keyword arguments {repr(set(kwargs))}") return cls._simple_new(subarr, name, **kwargs) elif hasattr(data, "__array__"): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): raise cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data): # GH21470: convert iterable to list before determining if empty if is_iterator(data): data = list(data) if data and all(isinstance(e, tuple) for e in data): # we must be all tuples, otherwise don't construct # 10697 from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get("names") ) # other iterable of some kind subarr = com.asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @property def asi8(self): """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ return None @classmethod def _simple_new(cls, values, name=None, dtype=None): """ We require that we have a dtype compat for the values. If we are passed a non-dtype compat, then coerce using the constructor. Must be careful not to recurse. """ if isinstance(values, (ABCSeries, ABCIndexClass)): # Index._data must always be an ndarray. # This is no-copy for when _values is an ndarray, # which should be always at this point. values = np.asarray(values._values) result = object.__new__(cls) result._data = values # _index_data is a (temporary?) fix to ensure that the direct data # manipulation we do in `_libs/reduction.pyx` continues to work. # We need access to the actual ndarray, since we're messing with # data buffers and strides. We don't re-use `_ndarray_values`, since # we actually set this value too. result._index_data = values result.name = name return result._reset_identity() @cache_readonly def _constructor(self): return type(self) # -------------------------------------------------------------------- # Index Internals Methods def _get_attributes_dict(self): """ Return an attributes dict for my class. """ return {k: getattr(self, k, None) for k in self._attributes} _index_shared_docs[ "_shallow_copy" ] = """ Create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs["_shallow_copy"]) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype # _simple_new expects an the type of self._data values = getattr(values, "_values", values) if isinstance(values, ABCDatetimeArray): # `self.values` returns `self` for tz-aware, so we need to unwrap # more specifically values = values.asi8 return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values, **kwargs): """ Create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ attributes = self._get_attributes_dict() attributes.update(kwargs) attributes["copy"] = False if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def is_(self, other) -> bool: """ More flexible, faster check like ``is`` but that works through views. Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr(other, "_id", Ellipsis) and self._id is not None def _reset_identity(self): """ Initializes or resets ``_id`` attribute with new object. """ self._id = _Identity() return self def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _engine(self): # property, for now, slow to look up # to avoid a reference cycle, bind `_ndarray_values` to a local variable, so # `self` is not passed into the lambda. _ndarray_values = self._ndarray_values return self._engine_type(lambda: _ndarray_values, len(self)) # -------------------------------------------------------------------- # Array-Like Methods # ndarray compat def __len__(self) -> int: """ Return the length of the Index. """ return len(self._data) def __array__(self, dtype=None): """ The array interface, return my values. """ return np.asarray(self._data, dtype=dtype) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. """ result = lib.item_from_zerodim(result) if is_bool_dtype(result) or lib.is_scalar(result): return result attrs = self._get_attributes_dict() return Index(result, **attrs) @cache_readonly def dtype(self): """ Return the dtype object of the underlying data. """ return self._data.dtype def ravel(self, order="C"): """ Return an ndarray of the flattened values of the underlying data. Returns ------- numpy.ndarray Flattened array. See Also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, "_typ"): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result _index_shared_docs[ "astype" ] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type Note that any signed integer `dtype` is treated as ``'int64'``, and any unsigned integer `dtype` is treated as ``'uint64'``, regardless of the size. copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. Returns ------- Index Index with values cast to specified dtype. """ @Appender(_index_shared_docs["astype"]) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) elif is_extension_array_dtype(dtype): return Index(np.asarray(self), dtype=dtype, copy=copy) try: return Index( self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype ) except (TypeError, ValueError): raise TypeError(f"Cannot cast {type(self).__name__} to dtype {dtype}") _index_shared_docs[ "take" ] = """ Return a new %(klass)s of the values selected by the indices. For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken. axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError. Returns ------- numpy.ndarray Elements of given indices. See Also -------- numpy.ndarray.take """ @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable( self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value, ) else: if allow_fill and fill_value is not None: cls_name = type(self).__name__ raise ValueError( f"Unable to fill values because {cls_name} cannot contain NA" ) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable( self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan ): """ Internal method to handle NA filling of take. """ indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) raise ValueError(msg) taken = algos.take( values, indices, allow_fill=allow_fill, fill_value=na_value ) else: taken = values.take(indices) return taken _index_shared_docs[ "repeat" ] = """ Repeat elements of a %(klass)s. Returns a new %(klass)s where each element of the current %(klass)s is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty %(klass)s. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- repeated_index : %(klass)s Newly created %(klass)s with repeated elements. See Also -------- Series.repeat : Equivalent function for Series. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> idx = pd.Index(['a', 'b', 'c']) >>> idx Index(['a', 'b', 'c'], dtype='object') >>> idx.repeat(2) Index(['a', 'a', 'b', 'b', 'c', 'c'], dtype='object') >>> idx.repeat([1, 2, 3]) Index(['a', 'b', 'b', 'c', 'c', 'c'], dtype='object') """ @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats, axis=None): repeats = ensure_platform_int(repeats) nv.validate_repeat(tuple(), dict(axis=axis)) return self._shallow_copy(self._values.repeat(repeats)) # -------------------------------------------------------------------- # Copying Methods _index_shared_docs[ "copy" ] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : str, optional deep : bool, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs["copy"]) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get("names") names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): """ Parameters ---------- memo, default None Standard signature. Unused """ if memo is None: memo = {} return self.copy(deep=True) # -------------------------------------------------------------------- # Rendering Methods def __repr__(self): """ Return a string representation for this object. """ klass_name = type(self).__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() attrs_str = [f"{k}={v}" for k, v in attrs] prepr = f",{space}".join(attrs_str) # no data provided, just attributes if data is None: data = "" res = f"{klass_name}({data}{prepr})" return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function. """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string. """ # do we want to justify (only do so for non-objects) is_justify = not ( self.inferred_type in ("string", "unicode") or ( self.inferred_type == "categorical" and is_object_dtype(self.categories) ) ) return format_object_summary( self, self._formatter_func, is_justify=is_justify, name=name ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index. """ header = [] if name: header.append( pprint_thing(self.name, escape_chars=("\t", "\r", "\n")) if self.name is not None else "" ) if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep="NaN", **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=("\t", "\r", "\n")) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify="left")) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values. Returns ------- numpy.ndarray Formatted values. """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep="", quoting=None, **kwargs): """ Actually format specific types of the index. """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def _summary(self, name=None): """ Return a summarized representation. Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if hasattr(head, "format") and not isinstance(head, str): head = head.format() tail = self[-1] if hasattr(tail, "format") and not isinstance(tail, str): tail = tail.format() index_summary = f", {head} to {tail}" else: index_summary = "" if name is None: name = type(self).__name__ return f"{name}: {len(self)} entries{index_summary}" # -------------------------------------------------------------------- # Conversion Methods def to_flat_index(self): """ Identity method. .. versionadded:: 0.24.0 This is implemented for compatibility with subclass implementations when chaining. Returns ------- pd.Index Caller. See Also -------- MultiIndex.to_flat_index : Subclass implementation. """ return self def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index. Parameters ---------- index : Index, optional Index of resulting Series. If None, defaults to original index. name : str, optional Dame of resulting Series. If None, defaults to name of original index. Returns ------- Series The dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self.values.copy(), index=index, name=name) def to_frame(self, index=True, name=None): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original Index. name : object, default None The passed name should substitute for the index name (if it has one). Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow To override the name of the resulting column, specify `name`: >>> idx.to_frame(index=False, name='zoo') zoo 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame if name is None: name = self.name or 0 result = DataFrame({name: self._values.copy()}) if index: result.index = self return result # -------------------------------------------------------------------- # Name-Centric Methods def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def _get_names(self): return FrozenList((self.name,)) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError("Names must be a list-like") if len(values) != 1: raise ValueError(f"Length of new names must be 1, got {len(values)}") # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError(f"{type(self).__name__}.name must be a hashable type") self.name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set Index or MultiIndex name. Able to set new names partially and by level. Parameters ---------- names : label or list of label Name(s) to set. level : int, label or list of int or label, optional If the index is a MultiIndex, level(s) to set (None for all levels). Otherwise level must be None. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.rename : Able to set new names without level. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> idx.set_names('quarter') Int64Index([1, 2, 3, 4], dtype='int64', name='quarter') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]]) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], ) >>> idx.set_names(['kind', 'year'], inplace=True) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.set_names('species', level=0) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) """ if level is not None and not isinstance(self, ABCMultiIndex): raise ValueError("Level must be None for non-MultiIndex") if level is not None and not is_list_like(level) and is_list_like(names): msg = "Names must be a string when a single level is provided." raise TypeError(msg) if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Alter Index or MultiIndex name. Able to set new names without level. Defaults to returning new index. Length of names must match number of levels in MultiIndex. Parameters ---------- name : label or list of labels Name(s) to set. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.set_names : Able to set new names partially and by level. Examples -------- >>> idx = pd.Index(['A', 'C', 'A', 'B'], name='score') >>> idx.rename('grade') Index(['A', 'C', 'A', 'B'], dtype='object', name='grade') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]], ... names=['kind', 'year']) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.rename(['species', 'year']) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) >>> idx.rename('species') Traceback (most recent call last): TypeError: Must pass list-like as `names`. """ return self.set_names([name], inplace=inplace) # -------------------------------------------------------------------- # Level-Centric Methods @property def nlevels(self) -> int: """ Number of levels. """ return 1 def _sort_levels_monotonic(self): """ Compat with MultiIndex. """ return self def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError( f"Too many levels: Index has only 1 level," f" {level} is not a valid level number" ) elif level > 0: raise IndexError( f"Too many levels: Index has only 1 level, not {level + 1}" ) elif level != self.name: raise KeyError( f"Requested level ({level}) does not match index name ({self.name})" ) def _get_level_number(self, level): self._validate_index_level(level) return 0 def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API. Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : bool, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- Index """ return self.sort_values(return_indexer=True, ascending=ascending) def _get_level_values(self, level): """ Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters ---------- level : int or str It is either the integer position or the name of the level. Returns ------- Index Calling object, as there is only one level in the Index. See Also -------- MultiIndex.get_level_values : Get values for a level of a MultiIndex. Notes ----- For Index, level should be 0, since there are no multiple levels. Examples -------- >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying `level` as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object') """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError( f"Cannot remove {len(level)} levels from an index with {self.nlevels} " "levels: at least one level must be left." ) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_codes.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_codes[0] == -1 result = new_levels[0].take(new_codes[0]) if mask.any(): result = result.putmask(mask, np.nan) result.name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False, ) _index_shared_docs[ "_get_grouper_for_level" ] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on. labels : ndarray of int or None Array of locations in level_index. uniques : Index or None Index of unique values for level. """ @Appender(_index_shared_docs["_get_grouper_for_level"]) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None # -------------------------------------------------------------------- # Introspection Methods @property def is_monotonic(self) -> bool: """ Alias for is_monotonic_increasing. """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ Return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self) -> bool: """ Return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self) -> bool: """ Return if the index is strictly monotonic increasing (only increasing) values. Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self) -> bool: """ Return if the index is strictly monotonic decreasing (only decreasing) values. Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing @cache_readonly def is_unique(self) -> bool: """ Return if the index has unique values. """ return self._engine.is_unique @property def has_duplicates(self) -> bool: return not self.is_unique def is_boolean(self) -> bool: return self.inferred_type in ["boolean"] def is_integer(self) -> bool: return self.inferred_type in ["integer"] def is_floating(self) -> bool: return self.inferred_type in ["floating", "mixed-integer-float", "integer-na"] def is_numeric(self) -> bool: return self.inferred_type in ["integer", "floating"] def is_object(self) -> bool: return is_object_dtype(self.dtype) def is_categorical(self) -> bool: """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ["categorical"] def is_interval(self) -> bool: return self.inferred_type in ["interval"] def is_mixed(self) -> bool: return self.inferred_type in ["mixed"] def holds_integer(self): """ Whether the type is an integer type. """ return self.inferred_type in ["integer", "mixed-integer"] @cache_readonly def inferred_type(self): """ Return a string of the type inferred from the values. """ return lib.infer_dtype(self, skipna=False) @cache_readonly def is_all_dates(self) -> bool: return is_datetime_array(ensure_object(self.values)) # -------------------------------------------------------------------- # Pickle Methods def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (type(self), d), None def __setstate__(self, state): """ Necessary for making this object picklable. """ if isinstance(state, dict): self._data = state.pop("data") for k, v in state.items(): setattr(self, k, v) elif isinstance(state, tuple): if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self.name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ # -------------------------------------------------------------------- # Null Handling Methods _na_value = np.nan """The expected NA value to use with this index.""" @cache_readonly def _isnan(self): """ Return if each value is NaN. """ if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: return self._isnan.nonzero()[0] else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ Return if I have any nans; enables various perf speedups. """ if self._can_hold_na: return bool(self._isnan.any()) else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- numpy.ndarray A boolean array of whether my values are NA. See Also -------- Index.notna : Boolean inverse of isna. Index.dropna : Omit entries with missing values. isna : Top-level isna. Series.isna : Detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See Also -------- Index.notnull : Alias of notna. Index.isna: Inverse of notna. notna : Top-level notna. Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna _index_shared_docs[ "fillna" ] = """ Fill NA/NaN values with the specified value. Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns ------- filled : Index """ @Appender(_index_shared_docs["fillna"]) def fillna(self, value=None, downcast=None): self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() _index_shared_docs[ "dropna" ] = """ Return Index without NA/NaN values. Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ @Appender(_index_shared_docs["dropna"]) def dropna(self, how="any"): if how not in ("any", "all"): raise ValueError(f"invalid how option: {how}") if self.hasnans: return self._shallow_copy(self.values[~self._isnan]) return self._shallow_copy() # -------------------------------------------------------------------- # Uniqueness Methods _index_shared_docs[ "index_unique" ] = """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex). .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """ @Appender(_index_shared_docs["index_unique"] % _index_doc_kwargs) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = super().unique() return self._shallow_copy(result) def drop_duplicates(self, keep="first"): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : Equivalent method on Series. DataFrame.drop_duplicates : Equivalent method on DataFrame. Index.duplicated : Related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super().drop_duplicates(keep=keep) def duplicated(self, keep="first"): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- numpy.ndarray See Also -------- Series.duplicated : Equivalent method on pandas.Series. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Index.drop_duplicates : Remove duplicate values from Index. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) """ return super().duplicated(keep=keep) def _get_unique_index(self, dropna=False): """ Returns an index containing unique values. Parameters ---------- dropna : bool If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) # -------------------------------------------------------------------- # Arithmetic & Logical Methods def __add__(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented from pandas import Series return Index(Series(self) + other) def __radd__(self, other): from pandas import Series return Index(other + Series(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): return Index(np.array(self) - other) def __rsub__(self, other): # wrap Series to ensure we pin name correctly from pandas import Series return Index(other - Series(self)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def __nonzero__(self): raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." ) __bool__ = __nonzero__ # -------------------------------------------------------------------- # Set Operation Methods def _get_reconciled_name_object(self, other): """ If the result of a set operation will be self, return self, unless the name changes, in which case make a shallow copy of self. """ name = get_op_result_name(self, other) if self.name != name: return self._shallow_copy(name=name) return self def _union_incompatible_dtypes(self, other, sort): """ Casts this and other index to object dtype to allow the formation of a union between incompatible types. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ this = self.astype(object, copy=False) # cast to Index for when `other` is list-like other = Index(other).astype(object, copy=False) return Index.union(this, other, sort=sort).astype(object, copy=False) def _is_compatible_with_other(self, other): """ Check whether this and the other dtype are compatible with each other. Meaning a union can be formed between them without needing to be cast to dtype object. Parameters ---------- other : Index or array-like Returns ------- bool """ return type(self) is type(other) and is_dtype_equal(self.dtype, other.dtype) def _validate_sort_keyword(self, sort): if sort not in [None, False]: raise ValueError( "The 'sort' keyword only takes the values of " f"None or False; {sort} was passed." ) def union(self, other, sort=None): """ Form the union of two Index objects. If the Index objects are incompatible, both Index objects will be cast to dtype('object') first. .. versionchanged:: 0.25.0 Parameters ---------- other : Index or array-like sort : bool or None, default None Whether to sort the resulting Index. * None : Sort the result, except when 1. `self` and `other` are equal. 2. `self` or `other` has length 0. 3. Some values in `self` or `other` cannot be compared. A RuntimeWarning is issued in this case. * False : do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- union : Index Examples -------- Union matching dtypes >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') Union mismatched dtypes >>> idx1 = pd.Index(['a', 'b', 'c', 'd']) >>> idx2 = pd.Index([1, 2, 3, 4]) >>> idx1.union(idx2) Index(['a', 'b', 'c', 'd', 1, 2, 3, 4], dtype='object') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if not self._is_compatible_with_other(other): return self._union_incompatible_dtypes(other, sort=sort) return self._union(other, sort=sort) def _union(self, other, sort): """ Specific union logic should go here. In subclasses, union behavior should be overwritten here rather than in `self.union`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ if not len(other) or self.equals(other): return self._get_reconciled_name_object(other) if not len(self): return other._get_reconciled_name_object(self) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if sort is None and self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: # find indexes of things in "other" that are not in "self" if self.is_unique: indexer = self.get_indexer(other) indexer = (indexer == -1).nonzero()[0] else: indexer = algos.unique1d(self.get_indexer_non_unique(other)[1]) if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = concat_compat((lvals, other_diff)) else: result = lvals if sort is None: try: result = algos.safe_sort(result) except TypeError as err: warnings.warn( f"{err}, sort order is undefined for incomparable objects", RuntimeWarning, stacklevel=3, ) # for subclasses return self._wrap_setop_result(other, result) def _wrap_setop_result(self, other, result): return self._constructor(result, name=get_op_result_name(self, other)) _index_shared_docs[ "intersection" ] = """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default from ``True`` to ``False``, to match the behaviour of 0.23.4 and earlier. Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ # TODO: standardize return type of non-union setops type(self vs other) @Appender(_index_shared_docs["intersection"]) def intersection(self, other, sort=False): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.intersection(other, sort=sort) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_setop_result(other, result) except TypeError: pass try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except (InvalidIndexError, IncompatibleFrequency): # InvalidIndexError raised by get_indexer if non-unique # IncompatibleFrequency raised by PeriodIndex.get_indexer indexer = algos.unique1d(Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if sort is None: taken = algos.safe_sort(taken.values) if self.name != other.name: name = None else: name = self.name return self._shallow_copy(taken, name=name) if self.name != other.name: taken.name = None return taken def difference(self, other, sort=None): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([2, 1, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') >>> idx1.difference(idx2, sort=False) Int64Index([2, 1], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if self.equals(other): # pass an empty np.ndarray with the appropriate dtype return self._shallow_copy(self._data[:0]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name) def symmetric_difference(self, other, result_name=None, sort=None): """ Compute the symmetric difference of two Index objects. Parameters ---------- other : Index or array-like result_name : str sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d( np.arange(this.size), common_indexer, assume_unique=True ) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = concat_compat([left_diff, right_diff]) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs["name"] = result_name if "freq" in attribs: attribs["freq"] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError("Input must be Index or array-like") return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = get_op_result_name(self, other) return other, result_name # -------------------------------------------------------------------- # Indexing Methods _index_shared_docs[ "get_loc" ] = """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : int or float, optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples -------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ @Appender(_index_shared_docs["get_loc"]) def get_loc(self, key, method=None, tolerance=None): if method is None: if tolerance is not None: raise ValueError( "tolerance argument only valid if using pad, " "backfill or nearest lookups" ) try: return self._engine.get_loc(key) except KeyError: return self._engine.get_loc(self._maybe_cast_indexer(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError("get_loc requires scalar valued input") loc = indexer.item() if loc == -1: raise KeyError(key) return loc _index_shared_docs[ "get_indexer" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. %(raises_section)s Examples -------- >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in ``index`` and ``x`` is marked by -1, as it is not in ``index``. """ @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer( ptarget, method=method, limit=limit, tolerance=tolerance ) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) if not self.is_unique: raise InvalidIndexError( "Reindexing only valid with uniquely valued Index objects" ) if method == "pad" or method == "backfill": indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == "nearest": indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError( "tolerance argument only valid if doing pad, " "backfill or nearest reindexing" ) if limit is not None: raise ValueError( "limit argument only valid if doing pad, " "backfill or nearest reindexing" ) indexer = self._engine.get_indexer(target._ndarray_values) return ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError("list-like tolerance size must match target index size") return tolerance def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = ( self._engine.get_pad_indexer if method == "pad" else self._engine.get_backfill_indexer ) indexer = method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance( target._ndarray_values, indexer, tolerance ) return indexer def _get_fill_indexer_searchsorted(self, target, method, limit=None): """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets. """ if limit is not None: raise ValueError( f"limit argument for {repr(method)} method only well-defined " "if index and target are monotonic" ) side = "left" if method == "pad" else "right" # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = indexer == -1 indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == "left": # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, "pad", limit=limit) right_indexer = self.get_indexer(target, "backfill", limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where( op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer, ) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, target, indexer, tolerance): distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer # -------------------------------------------------------------------- # Indexer Conversion Methods _index_shared_docs[ "_convert_scalar_indexer" ] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs["_convert_scalar_indexer"]) def _convert_scalar_indexer(self, key, kind=None): assert kind in ["ix", "loc", "getitem", "iloc", None] if kind == "iloc": return self._validate_indexer("positional", key, kind) if len(self) and not isinstance(self, ABCMultiIndex): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ["getitem", "ix"] and is_float(key): if not self.is_floating(): return self._invalid_indexer("label", key) elif kind in ["loc"] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in [ "floating", "mixed-integer-float", "integer-na", "string", "unicode", "mixed", ]: self._invalid_indexer("label", key) elif kind in ["loc"] and is_integer(key): if not self.holds_integer(): self._invalid_indexer("label", key) return key _index_shared_docs[ "_convert_slice_indexer" ] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs["_convert_slice_indexer"]) def _convert_slice_indexer(self, key: slice, kind=None): assert kind in ["ix", "loc", "getitem", "iloc", None] # validate iloc if kind == "iloc": return slice( self._validate_indexer("slice", key.start, kind), self._validate_indexer("slice", key.stop, kind), self._validate_indexer("slice", key.step, kind), ) # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not self.is_integer() if kind == "getitem": """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice( self._validate_indexer("slice", key.start, kind), self._validate_indexer("slice", key.stop, kind), self._validate_indexer("slice", key.step, kind), ) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # Validate start & stop if start is not None: self.get_loc(start) if stop is not None: self.get_loc(stop) is_positional = False except KeyError: if self.inferred_type in ["mixed-integer-float", "integer-na"]: raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: indexer = self.slice_indexer(start, stop, step, kind=kind) return indexer def _convert_listlike_indexer(self, keyarr, kind=None): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- indexer : numpy.ndarray or None Return an ndarray or None if cannot convert. keyarr : numpy.ndarray Return tuple-safe keys. """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr _index_shared_docs[ "_convert_arr_indexer" ] = """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ @Appender(_index_shared_docs["_convert_arr_indexer"]) def _convert_arr_indexer(self, keyarr): keyarr = com.asarray_tuplesafe(keyarr) return keyarr _index_shared_docs[ "_convert_index_indexer" ] = """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ @Appender(_index_shared_docs["_convert_index_indexer"]) def _convert_index_indexer(self, keyarr): return keyarr _index_shared_docs[ "_convert_list_indexer" ] = """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, ix, loc, optional Returns ------- positional indexer or None """ @Appender(_index_shared_docs["_convert_list_indexer"]) def _convert_list_indexer(self, keyarr, kind=None): if ( kind in [None, "iloc", "ix"] and is_integer_dtype(keyarr) and not self.is_floating() and not isinstance(keyarr, ABCPeriodIndex) ): if self.inferred_type == "mixed-integer": indexer = self.get_indexer(keyarr) if (indexer >= 0).all(): return indexer # missing values are flagged as -1 by get_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = len(self) return maybe_convert_indices(indexer, len(self)) elif not self.inferred_type == "integer": keyarr = np.where(keyarr < 0, len(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ Consistent invalid indexer message. """ raise TypeError( f"cannot do {form} indexing on {type(self)} with these " f"indexers [{key}] of {type(key)}" ) # -------------------------------------------------------------------- # Reindex Methods def _can_reindex(self, indexer): """ Check if we are allowing reindexing with this particular indexer. Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary). Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "name") # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq values = self._data[:0] # appropriately-dtyped empty array target = self._simple_new(values, dtype=self.dtype, **attrs) else: target = ensure_index(target) if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") _, indexer, _ = self._join_level( target, level, how="right", return_indexers=True ) else: if self.equals(target): indexer = None else: # check is_overlapping for IntervalIndex compat if self.is_unique and not getattr(self, "is_overlapping", False): indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: if method is not None or limit is not None: raise ValueError( "cannot reindex a non-unique index " "with a method or limit" ) indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target. Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ target = ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = -1 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels) return new_index, indexer, new_indexer # -------------------------------------------------------------------- # Join Methods _index_shared_docs[ "join" ] = """ Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : bool, default False sort : bool, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword). Returns ------- join_index, (left_indexer, right_indexer) """ @Appender(_index_shared_docs["join"]) def join(self, other, how="left", level=None, return_indexers=False, sort=False): self_is_mi = isinstance(self, ABCMultiIndex) other_is_mi = isinstance(other, ABCMultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level( other, level, how=how, return_indexers=return_indexers ) other = ensure_index(other) if len(other) == 0 and how in ("left", "outer"): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ("right", "outer"): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {"right": "left", "left": "right"}.get(how, how) result = other.join( self, how=how, level=level, return_indexers=return_indexers ) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) else: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) except TypeError: pass if how == "left": join_index = self elif how == "right": join_index = other elif how == "inner": # TODO: sort=False here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.intersection(other, sort=False) elif how == "outer": # TODO: sort=True here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from .multi import MultiIndex from pandas.core.reshape.merge import _restore_dropped_levels_multijoin # figure out join names self_names = set(com.not_none(*self.names)) other_names = set(com.not_none(*other.names)) overlap = self_names & other_names # need at least 1 in common if not overlap: raise ValueError("cannot join with no overlapping index names") self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) if self_is_mi and other_is_mi: # Drop the non-matching levels from left and right respectively ldrop_names = list(self_names - overlap) rdrop_names = list(other_names - overlap) self_jnlevels = self.droplevel(ldrop_names) other_jnlevels = other.droplevel(rdrop_names) # Join left and right # Join on same leveled multi-index frames is supported join_idx, lidx, ridx = self_jnlevels.join( other_jnlevels, how, return_indexers=True ) # Restore the dropped levels # Returned index level order is # common levels, ldrop_names, rdrop_names dropped_names = ldrop_names + rdrop_names levels, codes, names = _restore_dropped_levels_multijoin( self, other, dropped_names, join_idx, lidx, ridx ) # Re-create the multi-index multi_join_idx = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) multi_join_idx = multi_join_idx.remove_unused_levels() return multi_join_idx, lidx, ridx jl = list(overlap)[0] # Case where only one index is multi # make the indices into mi's that match flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {"right": "left", "left": "right"}.get(how, how) level = other.names.index(jl) result = self._join_level( other, level, how=how, return_indexers=return_indexers ) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result def _join_non_unique(self, other, how="left", return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers( [self._ndarray_values], [other._ndarray_values], how=how, sort=True ) left_idx = ensure_platform_int(left_idx) right_idx = ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level( self, other, level, how="left", return_indexers=False, keep_order=True ): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If ```keep_order == True```, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from .multi import MultiIndex def _get_leaf_sorter(labels): """ Returns sorter for the inner most level while preserving the order of higher levels. """ if labels[0].size == 0: return np.empty(0, dtype="int64") if len(labels) == 1: lab = ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = ensure_int64(labels[-1]) return lib.get_level_sorter(lab, ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError("Join on level between two MultiIndex objects is ambiguous") left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {"right": "left", "left": "right"}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError( "Index._join_level on non-unique index is not implemented" ) new_level, left_lev_indexer, right_lev_indexer = old_level.join( right, how=how, return_indexers=True ) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.codes[: level + 1]) join_index = left[left_indexer] else: left_lev_indexer = ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_codes = algos.take_nd( rev_indexer, left.codes[level], allow_fill=False ) new_codes = list(left.codes) new_codes[level] = new_lev_codes new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_codes != -1 if not mask.all(): new_codes = [lab[mask] for lab in new_codes] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_codes.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_codes, ngroups ) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0] :] new_codes = [lab[left_indexer] for lab in new_codes] else: # sort the leaves mask = new_lev_codes != -1 mask_all = mask.all() if not mask_all: new_codes = [lab[mask] for lab in new_codes] left_indexer = _get_leaf_sorter(new_codes[: level + 1]) new_codes = [lab[left_indexer] for lab in new_codes] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex( levels=new_levels, codes=new_codes, names=left.names, verify_integrity=False, ) if right_lev_indexer is not None: right_indexer = algos.take_nd( right_lev_indexer, join_index.codes[level], allow_fill=False ) else: right_indexer = join_index.codes[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = ( None if left_indexer is None else ensure_platform_int(left_indexer) ) right_indexer = ( None if right_indexer is None else ensure_platform_int(right_indexer) ) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how="left", return_indexers=False): if self.equals(other): ret_index = other if how == "right" else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == "left": join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == "right": join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == "left": join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == "right": join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else ensure_platform_int(lidx) ridx = None if ridx is None else ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = get_op_result_name(self, other) return Index(joined, name=name) # -------------------------------------------------------------------- # Uncategorized Methods @property def values(self): """ Return an array representing the data in the Index. .. warning:: We recommend using :attr:`Index.array` or :meth:`Index.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- array: numpy.ndarray or ExtensionArray See Also -------- Index.array : Reference to the underlying data. Index.to_numpy : A NumPy array representing the underlying data. """ return self._data.view(np.ndarray) @property def _values(self) -> Union[ExtensionArray, ABCIndexClass, np.ndarray]: # TODO(EA): remove index types as they become extension arrays """ The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | --------------- | ------------- | --------------- | Index | ndarray | ndarray | ndarray | CategoricalIndex | Categorical | Categorical | ndarray[int] | DatetimeIndex | ndarray[M8ns] | ndarray[M8ns] | ndarray[M8ns] | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | PeriodIndex | ndarray[object] | PeriodArray | ndarray[int] | IntervalIndex | IntervalArray | IntervalArray | ndarray[object] | See Also -------- values _ndarray_values """ return self._data def _internal_get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that _internal_get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index._internal_get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx._internal_get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx._internal_get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx._internal_get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super().memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result _index_shared_docs[ "where" ] = """ Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : bool array-like with the same length as self other : scalar, or array-like Returns ------- Index """ @Appender(_index_shared_docs["where"]) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desired try: res = data.astype("i8", copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype("u8", copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): # We return the TypeError so that we can raise it from the constructor # in order to keep mypy happy return TypeError( f"{cls.__name__}(...) must be called with a collection of some " f"kind, {repr(data)} was passed" ) @classmethod def _string_data_error(cls, data): raise TypeError( "String dtype not supported, you may need " "to explicitly cast to a numeric type" ) def _coerce_scalar_to_index(self, item): """ We need to coerce a scalar to a compat for our index type. Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) def _to_safe_for_reshape(self): """ Convert to object if we are a categorical. """ return self def _convert_for_op(self, value): """ Convert value to be insertable to ndarray. """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op. """ if not is_scalar(value): raise TypeError(f"'value' must be a scalar, passed: {type(value).__name__}") def _is_memory_usage_qualified(self) -> bool: """ Return a boolean if we need a qualified .info display. """ return self.is_object() def is_type_compatible(self, kind) -> bool: """ Whether the index type is compatible with the provided type. """ return kind == self.inferred_type _index_shared_docs[ "contains" ] = """ Return a boolean indicating whether the provided key is in the index. Parameters ---------- key : label The key to check if it is present in the index. Returns ------- bool Whether the key search is in the index. See Also -------- Index.isin : Returns an ndarray of boolean dtype indicating whether the list-like key is in the index. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> 2 in idx True >>> 6 in idx False """ @Appender(_index_shared_docs["contains"] % _index_doc_kwargs) def __contains__(self, key) -> bool: hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False def __hash__(self): raise TypeError(f"unhashable type: {repr(type(self).__name__)}") def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): key = com.cast_scalar_indexer(key) return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) key = com.values_from_object(key) result = getitem(key) if not is_scalar(result): return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name) -> bool: """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together. Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError("all inputs must be Index") names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return Index._concat_same_dtype(self, to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class. """ # must be overridden in specific classes klasses = ( ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, ExtensionArray, ABCIntervalIndex, ) to_concat = [ x.astype(object) if isinstance(x, klasses) else x for x in to_concat ] self = to_concat[0] attribs = self._get_attributes_dict() attribs["name"] = name to_concat = [x._values if isinstance(x, Index) else x for x in to_concat] return self._shallow_copy_with_infer(np.concatenate(to_concat), **attribs) def putmask(self, mask, value): """ Return a new Index of the values set with the mask. Returns ------- Index See Also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def equals(self, other) -> bool: """ Determine if two Index objects contain the same elements. Returns ------- bool True if "other" is an Index and it has the same elements as calling index; False otherwise. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) if isinstance(other, ABCMultiIndex): # d-level MultiIndex can equal d-tuple Index if not is_object_dtype(self.dtype): if self.nlevels != other.nlevels: return False return array_equivalent( com.values_from_object(self), com.values_from_object(other) ) def identical(self, other) -> bool: """ Similar to equals, but check that other comparable attributes are also equal. Returns ------- bool If two Index objects have equal elements and same type True, otherwise False. """ return ( self.equals(other) and all( ( getattr(self, c, None) == getattr(other, c, None) for c in self._comparables ) ) and type(self) == type(other) ) def asof(self, label): """ Return the label from the index, or, if not present, the previous one. Assuming that the index is sorted, return the passed index label if it is in the index, or return the previous index label if the passed one is not in the index. Parameters ---------- label : object The label up to which the method returns the latest index label. Returns ------- object The passed label if it is in the index. The previous label if the passed label is not in the sorted index or `NaN` if there is no such label. See Also -------- Series.asof : Return the latest value in a Series up to the passed index. merge_asof : Perform an asof merge (similar to left join but it matches on nearest key rather than equal key). Index.get_loc : An `asof` is a thin wrapper around `get_loc` with method='pad'. Examples -------- `Index.asof` returns the latest index label up to the passed label. >>> idx = pd.Index(['2013-12-31', '2014-01-02', '2014-01-03']) >>> idx.asof('2014-01-01') '2013-12-31' If the label is in the index, the method returns the passed label. >>> idx.asof('2014-01-02') '2014-01-02' If all of the labels in the index are later than the passed label, NaN is returned. >>> idx.asof('1999-01-02') nan If the index is not sorted, an error is raised. >>> idx_not_sorted = pd.Index(['2013-12-31', '2015-01-02', ... '2014-01-03']) >>> idx_not_sorted.asof('2013-12-31') Traceback (most recent call last): ValueError: index must be monotonic increasing or decreasing """ try: loc = self.get_loc(label, method="pad") except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ Find the locations (indices) of the labels from the index for every entry in the `where` argument. As in the `asof` function, if the label (a particular entry in `where`) is not in the index, the latest index label up to the passed label is chosen and its index returned. If all of the labels in the index are later than a label in `where`, -1 is returned. `mask` is used to ignore NA values in the index during calculation. Parameters ---------- where : Index An Index consisting of an array of timestamps. mask : array-like Array of booleans denoting where values in the original data are not NA. Returns ------- numpy.ndarray An array of locations (indices) of the labels from the Index which correspond to the return values of the `asof` function for every element in `where`. """ locs = self.values[mask].searchsorted(where.values, side="right") locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where.values < self.values[first])] = -1 return result def sort_values(self, return_indexer=False, ascending=True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- Series.sort_values : Sort values of a Series. DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): """ Use sort_values instead. """ raise TypeError("cannot sort an Index object in-place, use sort_values instead") def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or str, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index Shifted index. See Also -------- Series.shift : Shift values of Series. Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') """ raise NotImplementedError(f"Not supported for type {type(self).__name__}") def argsort(self, *args, **kwargs): """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See Also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) _index_shared_docs[ "get_value" ] = """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing. Returns ------- scalar A value in the Series with the index of the key value in self. """ @Appender(_index_shared_docs["get_value"] % _index_doc_kwargs) def get_value(self, series, key): # if we have something that is Index-like, then # use this, e.g. DatetimeIndex # Things like `Series._get_value` (via .at) pass the EA directly here. s = extract_array(series, extract_numpy=True) if isinstance(s, ExtensionArray): if is_scalar(key): # GH 20882, 21257 # First try to convert the key to a location # If that fails, raise a KeyError if an integer # index, otherwise, see if key is an integer, and # try that try: iloc = self.get_loc(key) return s[iloc] except KeyError: if len(self) > 0 and (self.holds_integer() or self.is_boolean()): raise elif is_integer(key): return s[key] else: # if key is not a scalar, directly raise an error (the code below # would convert to numpy arrays and raise later any way) - GH29926 raise InvalidIndexError(key) s = com.values_from_object(series) k = com.values_from_object(key) k = self._convert_scalar_indexer(k, kind="getitem") try: return self._engine.get_value(s, k, tz=getattr(series.dtype, "tz", None)) except KeyError as e1: if len(self) > 0 and (self.holds_integer() or self.is_boolean()): raise try: return libindex.get_value_at(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: raise e1 except TypeError: # e.g. "[False] is an invalid key" if is_scalar(key): raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. .. deprecated:: 1.0 Notes ----- Only use this if you know what you're doing. """ warnings.warn( ( "The 'set_value' method is deprecated, and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) self._engine.set_value( com.values_from_object(arr), com.values_from_object(key), value ) _index_shared_docs[ "get_indexer_non_unique" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array. """ @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if is_categorical(target): tgt_values = np.asarray(target) elif self.is_all_dates: tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ Guaranteed return of an indexer even when non-unique. This dispatches to get_indexer or get_indexer_non_unique as appropriate. Returns ------- numpy.ndarray List of indices. """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works if self.inferred_type == "date" and isinstance(other, ABCDatetimeIndex): return type(other)(self), other elif self.inferred_type == "boolean": if not is_object_dtype(self.dtype): return self.astype("object"), other.astype("object") return self, other def groupby(self, values): """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- groups : dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples if isinstance(values, ABCMultiIndex): values = values.values values = ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in result.items()} return result def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex new_values = super()._map_values(mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get("name"): names = [attributes.get("name")] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes["copy"] = False if not new_values.size: # empty attributes["dtype"] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See Also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], codes=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, default None kind : str, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples -------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index, then try to cast to an int if equivalent. """ if is_float(key) and not self.is_floating(): try: ckey = int(key) if ckey == key: key = ckey except (OverflowError, ValueError, TypeError): pass return key def _validate_indexer(self, form, key, kind): """ If we are positional indexer, validate that we have appropriate typed bounds must be an integer. """ assert kind in ["ix", "loc", "getitem", "iloc"] if key is None: pass elif is_integer(key): pass elif kind in ["iloc", "getitem"]: self._invalid_indexer(form, key) return key _index_shared_docs[ "_maybe_cast_slice_bound" ] = """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ @Appender(_index_shared_docs["_maybe_cast_slice_bound"]) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ["ix", "loc", "getitem", None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): if not (kind in ["ix"] and (self.holds_integer() or self.is_floating())): self._invalid_indexer("slice", label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer("slice", label) return label def _searchsorted_monotonic(self, label, side="left"): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted( label, side="right" if side == "left" else "left" ) return len(self) - pos raise ValueError("index must be monotonic increasing or decreasing") def get_slice_bound(self, label, side, kind): """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- int Index of label. """ assert kind in ["ix", "loc", "getitem", None] if side not in ("left", "right"): raise ValueError( f"Invalid value for side kwarg, must be either" f" 'left' or 'right': {side}" ) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self.get_loc(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view("u1")) else: slc = lib.maybe_indices_to_slice(slc.astype("i8"), len(self)) if isinstance(slc, np.ndarray): raise KeyError( f"Cannot get {side} slice bound for non-unique " f"label: {repr(original_label)}" ) if isinstance(slc, slice): if side == "left": return slc.start else: return slc.stop else: if side == "right": return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, defaults None If None, defaults to 1. kind : {'ix', 'loc', 'getitem'} or None Returns ------- start, end : int See Also -------- Index.get_loc : Get location for a single label. Notes ----- This method only works if the index is monotonic or unique. Examples -------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) """ inc = step is None or step >= 0 if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start # GH 16785: If start and end happen to be date strings with UTC offsets # attempt to parse and check that the offsets are the same if isinstance(start, (str, datetime)) and isinstance(end, (str, datetime)): try: ts_start = Timestamp(start) ts_end = Timestamp(end) except (ValueError, TypeError): pass else: if not tz_compare(ts_start.tzinfo, ts_end.tzinfo): raise ValueError("Both dates must have the same UTC offset") start_slice = None if start is not None: start_slice = self.get_slice_bound(start, "left", kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, "right", kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted. Returns ------- new_index : Index """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values. Parameters ---------- loc : int item : object Returns ------- new_index : Index """ _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors="raise"): """ Make new Index with passed list of labels deleted. Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If not all of the labels are found in the selected axis """ arr_dtype = "object" if self.dtype == "object" else None labels = com.index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != "ignore": raise KeyError(f"{labels[mask]} not found in axis") indexer = indexer[~mask] return self.delete(indexer) # -------------------------------------------------------------------- # Generated Arithmetic, Comparison, and Unary Methods @classmethod def _add_comparison_methods(cls): """ Add in comparison methods. """ cls.__eq__ = _make_comparison_op(operator.eq, cls) cls.__ne__ = _make_comparison_op(operator.ne, cls) cls.__lt__ = _make_comparison_op(operator.lt, cls) cls.__gt__ = _make_comparison_op(operator.gt, cls) cls.__le__ = _make_comparison_op(operator.le, cls) cls.__ge__ = _make_comparison_op(operator.ge, cls) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ Add in the numeric add/sub methods to disable. """ cls.__add__ = make_invalid_op("__add__") cls.__radd__ = make_invalid_op("__radd__") cls.__iadd__ = make_invalid_op("__iadd__") cls.__sub__ = make_invalid_op("__sub__") cls.__rsub__ = make_invalid_op("__rsub__") cls.__isub__ = make_invalid_op("__isub__") @classmethod def _add_numeric_methods_disabled(cls): """ Add in numeric methods to disable other than add/sub. """ cls.__pow__ = make_invalid_op("__pow__") cls.__rpow__ = make_invalid_op("__rpow__") cls.__mul__ = make_invalid_op("__mul__") cls.__rmul__ = make_invalid_op("__rmul__") cls.__floordiv__ = make_invalid_op("__floordiv__") cls.__rfloordiv__ = make_invalid_op("__rfloordiv__") cls.__truediv__ = make_invalid_op("__truediv__") cls.__rtruediv__ = make_invalid_op("__rtruediv__") cls.__mod__ = make_invalid_op("__mod__") cls.__divmod__ = make_invalid_op("__divmod__") cls.__neg__ = make_invalid_op("__neg__") cls.__pos__ = make_invalid_op("__pos__") cls.__abs__ = make_invalid_op("__abs__") cls.__inv__ = make_invalid_op("__inv__") @classmethod def _add_numeric_methods_binary(cls): """ Add in numeric methods. """ cls.__add__ = _make_arithmetic_op(operator.add, cls) cls.__radd__ = _make_arithmetic_op(ops.radd, cls) cls.__sub__ = _make_arithmetic_op(operator.sub, cls) cls.__rsub__ = _make_arithmetic_op(ops.rsub, cls) cls.__rpow__ = _make_arithmetic_op(ops.rpow, cls) cls.__pow__ = _make_arithmetic_op(operator.pow, cls) cls.__truediv__ = _make_arithmetic_op(operator.truediv, cls) cls.__rtruediv__ = _make_arithmetic_op(ops.rtruediv, cls) # TODO: rmod? rdivmod? cls.__mod__ = _make_arithmetic_op(operator.mod, cls) cls.__floordiv__ = _make_arithmetic_op(operator.floordiv, cls) cls.__rfloordiv__ = _make_arithmetic_op(ops.rfloordiv, cls) cls.__divmod__ = _make_arithmetic_op(divmod, cls) cls.__mul__ = _make_arithmetic_op(operator.mul, cls) cls.__rmul__ = _make_arithmetic_op(ops.rmul, cls) @classmethod def _add_numeric_methods_unary(cls): """ Add in numeric unary methods. """ def _make_evaluate_unary(op, opstr): def _evaluate_numeric_unary(self): attrs = self._get_attributes_dict() return Index(op(self.values), **attrs) _evaluate_numeric_unary.__name__ = opstr return _evaluate_numeric_unary cls.__neg__ = _make_evaluate_unary(operator.neg, "__neg__") cls.__pos__ = _make_evaluate_unary(operator.pos, "__pos__") cls.__abs__ = _make_evaluate_unary(np.abs, "__abs__") cls.__inv__ = _make_evaluate_unary(lambda x: -x, "__inv__") @classmethod def _add_numeric_methods(cls): cls._add_numeric_methods_unary() cls._add_numeric_methods_binary() @classmethod def _add_logical_methods(cls): """ Add in logical methods. """ _doc = """ %(desc)s Parameters ---------- *args These parameters will be passed to numpy.%(outname)s. **kwargs These parameters will be passed to numpy.%(outname)s. Returns ------- %(outname)s : bool or array_like (if axis is specified) A single element array_like may be converted to bool.""" _index_shared_docs["index_all"] = dedent( """ See Also -------- Index.any : Return whether any element in an Index is True. Series.any : Return whether any element in a Series is True. Series.all : Return whether all elements in a Series are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- **all** True, because nonzero integers are considered True. >>> pd.Index([1, 2, 3]).all() True False, because ``0`` is considered False. >>> pd.Index([0, 1, 2]).all() False **any** True, because ``1`` is considered True. >>> pd.Index([0, 0, 1]).any() True False, because ``0`` is considered False. >>> pd.Index([0, 0, 0]).any() False """ ) _index_shared_docs["index_any"] = dedent( """ See Also -------- Index.all : Return whether all elements are True. Series.all : Return whether all elements are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- >>> index = pd.Index([0, 1, 2]) >>> index.any() True >>> index = pd.Index([0, 0, 0]) >>> index.any() False """ ) def _make_logical_function(name, desc, f): @Substitution(outname=name, desc=desc) @Appender(_index_shared_docs["index_" + name]) @Appender(_doc) def logical_func(self, *args, **kwargs): result = f(self.values) if ( isinstance(result, (np.ndarray, ABCSeries, Index)) and result.ndim == 0 ): # return NumPy type return result.dtype.type(result.item()) else: # pragma: no cover return result logical_func.__name__ = name return logical_func cls.all = _make_logical_function( "all", "Return whether all elements are True.", np.all ) cls.any = _make_logical_function( "any", "Return whether any element is True.", np.any ) @classmethod def _add_logical_methods_disabled(cls): """ Add in logical methods to disable. """ cls.all = make_invalid_op("all") cls.any = make_invalid_op("any") @property def shape(self): """ Return a tuple of the shape of the underlying data. """ # not using "(len(self), )" to return "correct" shape if the values # consists of a >1 D array (see GH-27775) # overridden in MultiIndex.shape to avoid materializing the values return self._values.shape Index._add_numeric_methods_disabled() Index._add_logical_methods() Index._add_comparison_methods() def ensure_index_from_sequences(sequences, names=None): """ Construct an index from sequences of data. A single sequence returns an Index. Many sequences returns a MultiIndex. Parameters ---------- sequences : sequence of sequences names : sequence of str Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index_from_sequences([[1, 2, 3]], names=['name']) Int64Index([1, 2, 3], dtype='int64', name='name') >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']], names=['L1', 'L2']) MultiIndex([('a', 'a'), ('a', 'b')], names=['L1', 'L2']) See Also -------- ensure_index """ from .multi import MultiIndex if len(sequences) == 1: if names is not None: names = names[0] return Index(sequences[0], name=names) else: return MultiIndex.from_arrays(sequences, names=names) def ensure_index(index_like, copy=False): """ Ensure that we have an index from some index-like object. Parameters ---------- index : sequence An Index or other sequence copy : bool Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index(['a', 'b']) Index(['a', 'b'], dtype='object') >>> ensure_index([('a', 'a'), ('b', 'c')]) Index([('a', 'a'), ('b', 'c')], dtype='object') >>> ensure_index([['a', 'a'], ['b', 'c']]) MultiIndex([('a', 'b'), ('a', 'c')], dtype='object') ) See Also -------- ensure_index_from_sequences """ if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, "name"): return Index(index_like, name=index_like.name, copy=copy) if is_iterator(index_like): index_like = list(index_like) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from .multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like) def _ensure_has_len(seq): """ If seq is an iterator, put its values into a list. """ try: len(seq) except TypeError: return list(seq) else: return seq def _trim_front(strings): """ Trims zeros and decimal points. """ trimmed = strings while len(strings) > 0 and all(x[0] == " " for x in trimmed): trimmed = [x[1:] for x in trimmed] return trimmed def _validate_join_method(method): if method not in ["left", "right", "inner", "outer"]: raise ValueError(f"do not recognize join method {method}") def default_index(n): from pandas.core.index import RangeIndex return RangeIndex(0, n, name=None) from datetime import datetime import operator from textwrap import dedent from typing import FrozenSet, Union import warnings import numpy as np from pandas._libs import algos as libalgos, index as libindex, lib import pandas._libs.join as libjoin from pandas._libs.lib import is_datetime_array from pandas._libs.tslibs import OutOfBoundsDatetime, Timestamp from pandas._libs.tslibs.period import IncompatibleFrequency from pandas._libs.tslibs.timezones import tz_compare from pandas.compat import set_function_name from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, cache_readonly from pandas.core.dtypes import concat as _concat from pandas.core.dtypes.cast import maybe_cast_to_integer_array from pandas.core.dtypes.common import ( ensure_categorical, ensure_int64, ensure_object, ensure_platform_int, is_bool, is_bool_dtype, is_categorical, is_categorical_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dtype_equal, is_extension_array_dtype, is_float, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_interval_dtype, is_iterator, is_list_like, is_object_dtype, is_period_dtype, is_scalar, is_signed_integer_dtype, is_timedelta64_dtype, is_unsigned_integer_dtype, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ( ABCCategorical, ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCIndexClass, ABCIntervalIndex, ABCMultiIndex, ABCPandasArray, ABCPeriodIndex, ABCSeries, ABCTimedeltaIndex, ) from pandas.core.dtypes.missing import array_equivalent, isna from pandas.core import ops from pandas.core.accessor import CachedAccessor import pandas.core.algorithms as algos from pandas.core.arrays import ExtensionArray from pandas.core.base import IndexOpsMixin, PandasObject import pandas.core.common as com from pandas.core.construction import extract_array from pandas.core.indexers import maybe_convert_indices from pandas.core.indexes.frozen import FrozenList import pandas.core.missing as missing from pandas.core.ops import get_op_result_name from pandas.core.ops.invalid import make_invalid_op from pandas.core.strings import StringMethods from pandas.io.formats.printing import ( default_pprint, format_object_attrs, format_object_summary, pprint_thing, ) __all__ = ["Index"] _unsortable_types = frozenset(("mixed", "mixed-integer")) _index_doc_kwargs = dict( klass="Index", inplace="", target_klass="Index", raises_section="", unique="Index", duplicated="np.ndarray", ) _index_shared_docs = dict() def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries, ExtensionArray)): if other.ndim > 0 and len(self) != len(other): raise ValueError("Lengths must match to compare") if is_object_dtype(self) and isinstance(other, ABCCategorical): left = type(other)(self._values, dtype=other.dtype) return op(left, other) elif is_object_dtype(self) and not isinstance(self, ABCMultiIndex): # don't pass MultiIndex with np.errstate(all="ignore"): result = ops.comp_method_OBJECT_ARRAY(op, self.values, other) else: with np.errstate(all="ignore"): result = op(self.values, np.asarray(other)) if is_bool_dtype(result): return result return ops.invalid_comparison(self, other, op) name = f"__{op.__name__}__" return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame, ABCTimedeltaIndex)): return NotImplemented from pandas import Series result = op(Series(self), other) if isinstance(result, tuple): return (Index(result[0]), Index(result[1])) return Index(result) name = f"__{op.__name__}__" # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__. """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) if issubclass(cls, ABCMultiIndex): if "labels" in d and "codes" not in d: # GH#23752 "labels" kwarg has been replaced with "codes" d["codes"] = d.pop("labels") return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects. Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible. See Also -------- RangeIndex : Index implementing a monotonic integer range. CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index. IntervalIndex : An Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') """ # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations: FrozenSet[str] = ( PandasObject._deprecations | IndexOpsMixin._deprecations | frozenset(["contains", "set_value"]) ) # To hand over control to subclasses _join_precedence = 1 # Cython methods; see github.com/cython/cython/issues/2647 # for why we need to wrap these instead of making them class attributes # Moreover, cython will choose the appropriate-dtyped sub-function # given the dtypes of the passed arguments def _left_indexer_unique(self, left, right): return libjoin.left_join_indexer_unique(left, right) def _left_indexer(self, left, right): return libjoin.left_join_indexer(left, right) def _inner_indexer(self, left, right): return libjoin.inner_join_indexer(left, right) def _outer_indexer(self, left, right): return libjoin.outer_join_indexer(left, right) _typ = "index" _data: Union[ExtensionArray, np.ndarray] _id = None name = None _comparables = ["name"] _attributes = ["name"] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine # whether we support partial string indexing. Overridden # in DatetimeIndex and PeriodIndex _supports_partial_string_indexing = False _accessors = {"str"} str = CachedAccessor("str", StringMethods) # -------------------------------------------------------------------- # Constructors def __new__( cls, data=None, dtype=None, copy=False, name=None, tupleize_cols=True, **kwargs, ) -> "Index": from .range import RangeIndex from pandas import PeriodIndex, DatetimeIndex, TimedeltaIndex from .numeric import Float64Index, Int64Index, UInt64Index from .interval import IntervalIndex from .category import CategoricalIndex if name is None and hasattr(data, "name"): name = data.name if isinstance(data, ABCPandasArray): # ensure users don't accidentally put a PandasArray in an index. data = data.to_numpy() # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, dtype=dtype, name=name) # categorical elif is_categorical_dtype(data) or is_categorical_dtype(dtype): return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval elif ( is_interval_dtype(data) or is_interval_dtype(dtype) ) and not is_object_dtype(dtype): closed = kwargs.get("closed", None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) elif ( is_datetime64_any_dtype(data) or is_datetime64_any_dtype(dtype) or "tz" in kwargs ): if is_dtype_equal(_o_dtype, dtype): # GH#23524 passing `dtype=object` to DatetimeIndex is invalid, # will raise in the where `data` is already tz-aware. So # we leave it out of this step and cast to object-dtype after # the DatetimeIndex construction. # Note we can pass copy=False because the .astype below # will always make a copy return DatetimeIndex(data, copy=False, name=name, **kwargs).astype( object ) else: return DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) elif is_timedelta64_dtype(data) or is_timedelta64_dtype(dtype): if is_dtype_equal(_o_dtype, dtype): # Note we can pass copy=False because the .astype below # will always make a copy return TimedeltaIndex(data, copy=False, name=name, **kwargs).astype( object ) else: return TimedeltaIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) elif is_period_dtype(data) and not is_object_dtype(dtype): return PeriodIndex(data, copy=copy, name=name, **kwargs) # extension dtype elif is_extension_array_dtype(data) or is_extension_array_dtype(dtype): data = np.asarray(data) if not (dtype is None or is_object_dtype(dtype)): # coerce to the provided dtype ea_cls = dtype.construct_array_type() data = ea_cls._from_sequence(data, dtype=dtype, copy=False) # coerce to the object dtype data = data.astype(object) return Index(data, dtype=object, copy=copy, name=name, **kwargs) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if dtype is not None: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "integer": data = maybe_cast_to_integer_array(data, dtype, copy=copy) elif inferred in ["floating", "mixed-integer-float"]: if isna(data).any(): raise ValueError("cannot convert float NaN to integer") if inferred == "mixed-integer-float": data = maybe_cast_to_integer_array(data, dtype) # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype ) except ValueError: pass # Return an actual float index. return Float64Index(data, copy=copy, name=name) elif inferred == "string": pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data, skipna=False) if inferred == "string": pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) # maybe coerce to a sub-class if is_signed_integer_dtype(data.dtype): return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype("object") else: subarr = com.asarray_tuplesafe(data, dtype=object) # asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr, skipna=False) if inferred == "integer": try: return cls._try_convert_to_int_index(subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ["floating", "mixed-integer-float", "integer-na"]: # TODO: Returns IntegerArray for integer-na case in the future return Float64Index(subarr, copy=copy, name=name) elif inferred == "interval": try: return IntervalIndex(subarr, name=name, copy=copy) except ValueError: # GH27172: mixed closed Intervals --> object dtype pass elif inferred == "boolean": # don't support boolean explicitly ATM pass elif inferred != "string": if inferred.startswith("datetime"): try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except (ValueError, OutOfBoundsDatetime): # GH 27011 # If we have mixed timezones, just send it # down the base constructor pass elif inferred.startswith("timedelta"): return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == "period": try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass if kwargs: raise TypeError(f"Unexpected keyword arguments {repr(set(kwargs))}") return cls._simple_new(subarr, name, **kwargs) elif hasattr(data, "__array__"): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): raise cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data): # GH21470: convert iterable to list before determining if empty if is_iterator(data): data = list(data) if data and all(isinstance(e, tuple) for e in data): # we must be all tuples, otherwise don't construct # 10697 from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get("names") ) # other iterable of some kind subarr = com.asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @property def asi8(self): """ Integer representation of the values. Returns ------- ndarray An ndarray with int64 dtype. """ return None @classmethod def _simple_new(cls, values, name=None, dtype=None): """ We require that we have a dtype compat for the values. If we are passed a non-dtype compat, then coerce using the constructor. Must be careful not to recurse. """ if isinstance(values, (ABCSeries, ABCIndexClass)): # Index._data must always be an ndarray. # This is no-copy for when _values is an ndarray, # which should be always at this point. values = np.asarray(values._values) result = object.__new__(cls) result._data = values # _index_data is a (temporary?) fix to ensure that the direct data # manipulation we do in `_libs/reduction.pyx` continues to work. # We need access to the actual ndarray, since we're messing with # data buffers and strides. We don't re-use `_ndarray_values`, since # we actually set this value too. result._index_data = values result.name = name return result._reset_identity() @cache_readonly def _constructor(self): return type(self) # -------------------------------------------------------------------- # Index Internals Methods def _get_attributes_dict(self): """ Return an attributes dict for my class. """ return {k: getattr(self, k, None) for k in self._attributes} _index_shared_docs[ "_shallow_copy" ] = """ Create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs["_shallow_copy"]) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype # _simple_new expects an the type of self._data values = getattr(values, "_values", values) if isinstance(values, ABCDatetimeArray): # `self.values` returns `self` for tz-aware, so we need to unwrap # more specifically values = values.asi8 return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values, **kwargs): """ Create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence. *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ attributes = self._get_attributes_dict() attributes.update(kwargs) attributes["copy"] = False if not len(values) and "dtype" not in kwargs: attributes["dtype"] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def is_(self, other) -> bool: """ More flexible, faster check like ``is`` but that works through views. Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr(other, "_id", Ellipsis) and self._id is not None def _reset_identity(self): """ Initializes or resets ``_id`` attribute with new object. """ self._id = _Identity() return self def _cleanup(self): self._engine.clear_mapping() @cache_readonly def _engine(self): # property, for now, slow to look up # to avoid a reference cycle, bind `_ndarray_values` to a local variable, so # `self` is not passed into the lambda. _ndarray_values = self._ndarray_values return self._engine_type(lambda: _ndarray_values, len(self)) # -------------------------------------------------------------------- # Array-Like Methods # ndarray compat def __len__(self) -> int: """ Return the length of the Index. """ return len(self._data) def __array__(self, dtype=None): """ The array interface, return my values. """ return np.asarray(self._data, dtype=dtype) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc. """ result = lib.item_from_zerodim(result) if is_bool_dtype(result) or lib.is_scalar(result): return result attrs = self._get_attributes_dict() return Index(result, **attrs) @cache_readonly def dtype(self): """ Return the dtype object of the underlying data. """ return self._data.dtype def ravel(self, order="C"): """ Return an ndarray of the flattened values of the underlying data. Returns ------- numpy.ndarray Flattened array. See Also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, "_typ"): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result _index_shared_docs[ "astype" ] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type Note that any signed integer `dtype` is treated as ``'int64'``, and any unsigned integer `dtype` is treated as ``'uint64'``, regardless of the size. copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. Returns ------- Index Index with values cast to specified dtype. """ @Appender(_index_shared_docs["astype"]) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) elif is_extension_array_dtype(dtype): return Index(np.asarray(self), dtype=dtype, copy=copy) try: return Index( self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype ) except (TypeError, ValueError): raise TypeError(f"Cannot cast {type(self).__name__} to dtype {dtype}") _index_shared_docs[ "take" ] = """ Return a new %(klass)s of the values selected by the indices. For internal compatibility with numpy arrays. Parameters ---------- indices : list Indices to be taken. axis : int, optional The axis over which to select values, always 0. allow_fill : bool, default True fill_value : bool, default None If allow_fill=True and fill_value is not None, indices specified by -1 is regarded as NA. If Index doesn't hold NA, raise ValueError. Returns ------- numpy.ndarray Elements of given indices. See Also -------- numpy.ndarray.take """ @Appender(_index_shared_docs["take"] % _index_doc_kwargs) def take(self, indices, axis=0, allow_fill=True, fill_value=None, **kwargs): if kwargs: nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) if self._can_hold_na: taken = self._assert_take_fillable( self.values, indices, allow_fill=allow_fill, fill_value=fill_value, na_value=self._na_value, ) else: if allow_fill and fill_value is not None: cls_name = type(self).__name__ raise ValueError( f"Unable to fill values because {cls_name} cannot contain NA" ) taken = self.values.take(indices) return self._shallow_copy(taken) def _assert_take_fillable( self, values, indices, allow_fill=True, fill_value=None, na_value=np.nan ): """ Internal method to handle NA filling of take. """ indices = ensure_platform_int(indices) # only fill if we are passing a non-None fill_value if allow_fill and fill_value is not None: if (indices < -1).any(): msg = ( "When allow_fill=True and fill_value is not None, " "all indices must be >= -1" ) raise ValueError(msg) taken = algos.take( values, indices, allow_fill=allow_fill, fill_value=na_value ) else: taken = values.take(indices) return taken _index_shared_docs[ "repeat" ] = """ Repeat elements of a %(klass)s. Returns a new %(klass)s where each element of the current %(klass)s is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty %(klass)s. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- repeated_index : %(klass)s Newly created %(klass)s with repeated elements. See Also -------- Series.repeat : Equivalent function for Series. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> idx = pd.Index(['a', 'b', 'c']) >>> idx Index(['a', 'b', 'c'], dtype='object') >>> idx.repeat(2) Index(['a', 'a', 'b', 'b', 'c', 'c'], dtype='object') >>> idx.repeat([1, 2, 3]) Index(['a', 'b', 'b', 'c', 'c', 'c'], dtype='object') """ @Appender(_index_shared_docs["repeat"] % _index_doc_kwargs) def repeat(self, repeats, axis=None): repeats = ensure_platform_int(repeats) nv.validate_repeat(tuple(), dict(axis=axis)) return self._shallow_copy(self._values.repeat(repeats)) # -------------------------------------------------------------------- # Copying Methods _index_shared_docs[ "copy" ] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : str, optional deep : bool, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs["copy"]) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get("names") names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): """ Parameters ---------- memo, default None Standard signature. Unused """ if memo is None: memo = {} return self.copy(deep=True) # -------------------------------------------------------------------- # Rendering Methods def __repr__(self): """ Return a string representation for this object. """ klass_name = type(self).__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() attrs_str = [f"{k}={v}" for k, v in attrs] prepr = f",{space}".join(attrs_str) # no data provided, just attributes if data is None: data = "" res = f"{klass_name}({data}{prepr})" return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function. """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string. """ # do we want to justify (only do so for non-objects) is_justify = not ( self.inferred_type in ("string", "unicode") or ( self.inferred_type == "categorical" and is_object_dtype(self.categories) ) ) return format_object_summary( self, self._formatter_func, is_justify=is_justify, name=name ) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value). """ return format_object_attrs(self) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values def format(self, name=False, formatter=None, **kwargs): """ Render a string representation of the Index. """ header = [] if name: header.append( pprint_thing(self.name, escape_chars=("\t", "\r", "\n")) if self.name is not None else "" ) if formatter is not None: return header + list(self.map(formatter)) return self._format_with_header(header, **kwargs) def _format_with_header(self, header, na_rep="NaN", **kwargs): values = self.values from pandas.io.formats.format import format_array if is_categorical_dtype(values.dtype): values = np.array(values) elif is_object_dtype(values.dtype): values = lib.maybe_convert_objects(values, safe=1) if is_object_dtype(values.dtype): result = [pprint_thing(x, escape_chars=("\t", "\r", "\n")) for x in values] # could have nans mask = isna(values) if mask.any(): result = np.array(result) result[mask] = na_rep result = result.tolist() else: result = _trim_front(format_array(values, None, justify="left")) return header + result def to_native_types(self, slicer=None, **kwargs): """ Format specified values of `self` and return them. Parameters ---------- slicer : int, array-like An indexer into `self` that specifies which values are used in the formatting process. kwargs : dict Options for specifying how the values should be formatted. These options include the following: 1) na_rep : str The value that serves as a placeholder for NULL values 2) quoting : bool or None Whether or not there are quoted values in `self` 3) date_format : str The format used to represent date-like values. Returns ------- numpy.ndarray Formatted values. """ values = self if slicer is not None: values = values[slicer] return values._format_native_types(**kwargs) def _format_native_types(self, na_rep="", quoting=None, **kwargs): """ Actually format specific types of the index. """ mask = isna(self) if not self.is_object() and not quoting: values = np.asarray(self).astype(str) else: values = np.array(self, dtype=object, copy=True) values[mask] = na_rep return values def _summary(self, name=None): """ Return a summarized representation. Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if hasattr(head, "format") and not isinstance(head, str): head = head.format() tail = self[-1] if hasattr(tail, "format") and not isinstance(tail, str): tail = tail.format() index_summary = f", {head} to {tail}" else: index_summary = "" if name is None: name = type(self).__name__ return f"{name}: {len(self)} entries{index_summary}" # -------------------------------------------------------------------- # Conversion Methods def to_flat_index(self): """ Identity method. .. versionadded:: 0.24.0 This is implemented for compatibility with subclass implementations when chaining. Returns ------- pd.Index Caller. See Also -------- MultiIndex.to_flat_index : Subclass implementation. """ return self def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index. Parameters ---------- index : Index, optional Index of resulting Series. If None, defaults to original index. name : str, optional Dame of resulting Series. If None, defaults to name of original index. Returns ------- Series The dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self.values.copy(), index=index, name=name) def to_frame(self, index=True, name=None): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.24.0 Parameters ---------- index : bool, default True Set the index of the returned DataFrame as the original Index. name : object, default None The passed name should substitute for the index name (if it has one). Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow To override the name of the resulting column, specify `name`: >>> idx.to_frame(index=False, name='zoo') zoo 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame if name is None: name = self.name or 0 result = DataFrame({name: self._values.copy()}) if index: result.index = self return result # -------------------------------------------------------------------- # Name-Centric Methods def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def _get_names(self): return FrozenList((self.name,)) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError("Names must be a list-like") if len(values) != 1: raise ValueError(f"Length of new names must be 1, got {len(values)}") # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError(f"{type(self).__name__}.name must be a hashable type") self.name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set Index or MultiIndex name. Able to set new names partially and by level. Parameters ---------- names : label or list of label Name(s) to set. level : int, label or list of int or label, optional If the index is a MultiIndex, level(s) to set (None for all levels). Otherwise level must be None. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.rename : Able to set new names without level. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> idx.set_names('quarter') Int64Index([1, 2, 3, 4], dtype='int64', name='quarter') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]]) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], ) >>> idx.set_names(['kind', 'year'], inplace=True) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.set_names('species', level=0) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) """ if level is not None and not isinstance(self, ABCMultiIndex): raise ValueError("Level must be None for non-MultiIndex") if level is not None and not is_list_like(level) and is_list_like(names): msg = "Names must be a string when a single level is provided." raise TypeError(msg) if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Alter Index or MultiIndex name. Able to set new names without level. Defaults to returning new index. Length of names must match number of levels in MultiIndex. Parameters ---------- name : label or list of labels Name(s) to set. inplace : bool, default False Modifies the object directly, instead of creating a new Index or MultiIndex. Returns ------- Index The same type as the caller or None if inplace is True. See Also -------- Index.set_names : Able to set new names partially and by level. Examples -------- >>> idx = pd.Index(['A', 'C', 'A', 'B'], name='score') >>> idx.rename('grade') Index(['A', 'C', 'A', 'B'], dtype='object', name='grade') >>> idx = pd.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]], ... names=['kind', 'year']) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['kind', 'year']) >>> idx.rename(['species', 'year']) MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], names=['species', 'year']) >>> idx.rename('species') Traceback (most recent call last): TypeError: Must pass list-like as `names`. """ return self.set_names([name], inplace=inplace) # -------------------------------------------------------------------- # Level-Centric Methods @property def nlevels(self) -> int: """ Number of levels. """ return 1 def _sort_levels_monotonic(self): """ Compat with MultiIndex. """ return self def _validate_index_level(self, level): """ Validate index level. For single-level Index getting level number is a no-op, but some verification must be done like in MultiIndex. """ if isinstance(level, int): if level < 0 and level != -1: raise IndexError( f"Too many levels: Index has only 1 level," f" {level} is not a valid level number" ) elif level > 0: raise IndexError( f"Too many levels: Index has only 1 level, not {level + 1}" ) elif level != self.name: raise KeyError( f"Requested level ({level}) does not match index name ({self.name})" ) def _get_level_number(self, level): self._validate_index_level(level) return 0 def sortlevel(self, level=None, ascending=True, sort_remaining=None): """ For internal compatibility with with the Index API. Sort the Index. This is for compat with MultiIndex Parameters ---------- ascending : bool, default True False to sort in descending order level, sort_remaining are compat parameters Returns ------- Index """ return self.sort_values(return_indexer=True, ascending=ascending) def _get_level_values(self, level): """ Return an Index of values for requested level. This is primarily useful to get an individual level of values from a MultiIndex, but is provided on Index as well for compatibility. Parameters ---------- level : int or str It is either the integer position or the name of the level. Returns ------- Index Calling object, as there is only one level in the Index. See Also -------- MultiIndex.get_level_values : Get values for a level of a MultiIndex. Notes ----- For Index, level should be 0, since there are no multiple levels. Examples -------- >>> idx = pd.Index(list('abc')) >>> idx Index(['a', 'b', 'c'], dtype='object') Get level values by supplying `level` as integer: >>> idx.get_level_values(0) Index(['a', 'b', 'c'], dtype='object') """ self._validate_index_level(level) return self get_level_values = _get_level_values def droplevel(self, level=0): """ Return index with requested level(s) removed. If resulting index has only 1 level left, the result will be of Index type, not MultiIndex. .. versionadded:: 0.23.1 (support for non-MultiIndex) Parameters ---------- level : int, str, or list-like, default 0 If a string is given, must be the name of a level If list-like, elements must be names or indexes of levels. Returns ------- Index or MultiIndex """ if not isinstance(level, (tuple, list)): level = [level] levnums = sorted(self._get_level_number(lev) for lev in level)[::-1] if len(level) == 0: return self if len(level) >= self.nlevels: raise ValueError( f"Cannot remove {len(level)} levels from an index with {self.nlevels} " "levels: at least one level must be left." ) # The two checks above guarantee that here self is a MultiIndex new_levels = list(self.levels) new_codes = list(self.codes) new_names = list(self.names) for i in levnums: new_levels.pop(i) new_codes.pop(i) new_names.pop(i) if len(new_levels) == 1: # set nan if needed mask = new_codes[0] == -1 result = new_levels[0].take(new_codes[0]) if mask.any(): result = result.putmask(mask, np.nan) result.name = new_names[0] return result else: from .multi import MultiIndex return MultiIndex( levels=new_levels, codes=new_codes, names=new_names, verify_integrity=False, ) _index_shared_docs[ "_get_grouper_for_level" ] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on. labels : ndarray of int or None Array of locations in level_index. uniques : Index or None Index of unique values for level. """ @Appender(_index_shared_docs["_get_grouper_for_level"]) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None # -------------------------------------------------------------------- # Introspection Methods @property def is_monotonic(self) -> bool: """ Alias for is_monotonic_increasing. """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ Return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self) -> bool: """ Return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self) -> bool: """ Return if the index is strictly monotonic increasing (only increasing) values. Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self) -> bool: """ Return if the index is strictly monotonic decreasing (only decreasing) values. Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing @cache_readonly def is_unique(self) -> bool: """ Return if the index has unique values. """ return self._engine.is_unique @property def has_duplicates(self) -> bool: return not self.is_unique def is_boolean(self) -> bool: return self.inferred_type in ["boolean"] def is_integer(self) -> bool: return self.inferred_type in ["integer"] def is_floating(self) -> bool: return self.inferred_type in ["floating", "mixed-integer-float", "integer-na"] def is_numeric(self) -> bool: return self.inferred_type in ["integer", "floating"] def is_object(self) -> bool: return is_object_dtype(self.dtype) def is_categorical(self) -> bool: """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ["categorical"] def is_interval(self) -> bool: return self.inferred_type in ["interval"] def is_mixed(self) -> bool: return self.inferred_type in ["mixed"] def holds_integer(self): """ Whether the type is an integer type. """ return self.inferred_type in ["integer", "mixed-integer"] @cache_readonly def inferred_type(self): """ Return a string of the type inferred from the values. """ return lib.infer_dtype(self, skipna=False) @cache_readonly def is_all_dates(self) -> bool: return is_datetime_array(ensure_object(self.values)) # -------------------------------------------------------------------- # Pickle Methods def __reduce__(self): d = dict(data=self._data) d.update(self._get_attributes_dict()) return _new_Index, (type(self), d), None def __setstate__(self, state): """ Necessary for making this object picklable. """ if isinstance(state, dict): self._data = state.pop("data") for k, v in state.items(): setattr(self, k, v) elif isinstance(state, tuple): if len(state) == 2: nd_state, own_state = state data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) self.name = own_state[0] else: # pragma: no cover data = np.empty(state) np.ndarray.__setstate__(data, state) self._data = data self._reset_identity() else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ # -------------------------------------------------------------------- # Null Handling Methods _na_value = np.nan """The expected NA value to use with this index.""" @cache_readonly def _isnan(self): """ Return if each value is NaN. """ if self._can_hold_na: return isna(self) else: # shouldn't reach to this condition by checking hasnans beforehand values = np.empty(len(self), dtype=np.bool_) values.fill(False) return values @cache_readonly def _nan_idxs(self): if self._can_hold_na: return self._isnan.nonzero()[0] else: return np.array([], dtype=np.int64) @cache_readonly def hasnans(self): """ Return if I have any nans; enables various perf speedups. """ if self._can_hold_na: return bool(self._isnan.any()) else: return False def isna(self): """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as ``None``, :attr:`numpy.NaN` or :attr:`pd.NaT`, get mapped to ``True`` values. Everything else get mapped to ``False`` values. Characters such as empty strings `''` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- numpy.ndarray A boolean array of whether my values are NA. See Also -------- Index.notna : Boolean inverse of isna. Index.dropna : Omit entries with missing values. isna : Top-level isna. Series.isna : Detect missing values in Series object. Examples -------- Show which entries in a pandas.Index are NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.isna() array([False, False, True], dtype=bool) Empty strings are not considered NA values. None is considered an NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.isna() array([False, False, False, True], dtype=bool) For datetimes, `NaT` (Not a Time) is considered as an NA value. >>> idx = pd.DatetimeIndex([pd.Timestamp('1940-04-25'), ... pd.Timestamp(''), None, pd.NaT]) >>> idx DatetimeIndex(['1940-04-25', 'NaT', 'NaT', 'NaT'], dtype='datetime64[ns]', freq=None) >>> idx.isna() array([False, True, True, True], dtype=bool) """ return self._isnan isnull = isna def notna(self): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to ``True``. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to ``False`` values. Returns ------- numpy.ndarray Boolean array to indicate which entries are not NA. See Also -------- Index.notnull : Alias of notna. Index.isna: Inverse of notna. notna : Top-level notna. Examples -------- Show which entries in an Index are not NA. The result is an array. >>> idx = pd.Index([5.2, 6.0, np.NaN]) >>> idx Float64Index([5.2, 6.0, nan], dtype='float64') >>> idx.notna() array([ True, True, False]) Empty strings are not considered NA values. None is considered a NA value. >>> idx = pd.Index(['black', '', 'red', None]) >>> idx Index(['black', '', 'red', None], dtype='object') >>> idx.notna() array([ True, True, True, False]) """ return ~self.isna() notnull = notna _index_shared_docs[ "fillna" ] = """ Fill NA/NaN values with the specified value. Parameters ---------- value : scalar Scalar value to use to fill holes (e.g. 0). This value cannot be a list-likes. downcast : dict, default is None a dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns ------- filled : Index """ @Appender(_index_shared_docs["fillna"]) def fillna(self, value=None, downcast=None): self._assert_can_do_op(value) if self.hasnans: result = self.putmask(self._isnan, value) if downcast is None: # no need to care metadata other than name # because it can't have freq if return Index(result, name=self.name) return self._shallow_copy() _index_shared_docs[ "dropna" ] = """ Return Index without NA/NaN values. Parameters ---------- how : {'any', 'all'}, default 'any' If the Index is a MultiIndex, drop the value when any or all levels are NaN. Returns ------- valid : Index """ @Appender(_index_shared_docs["dropna"]) def dropna(self, how="any"): if how not in ("any", "all"): raise ValueError(f"invalid how option: {how}") if self.hasnans: return self._shallow_copy(self.values[~self._isnan]) return self._shallow_copy() # -------------------------------------------------------------------- # Uniqueness Methods _index_shared_docs[ "index_unique" ] = """ Return unique values in the index. Uniques are returned in order of appearance, this does NOT sort. Parameters ---------- level : int or str, optional, default None Only return values from specified level (for MultiIndex). .. versionadded:: 0.23.0 Returns ------- Index without duplicates See Also -------- unique Series.unique """ @Appender(_index_shared_docs["index_unique"] % _index_doc_kwargs) def unique(self, level=None): if level is not None: self._validate_index_level(level) result = super().unique() return self._shallow_copy(result) def drop_duplicates(self, keep="first"): """ Return Index with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. Returns ------- deduplicated : Index See Also -------- Series.drop_duplicates : Equivalent method on Series. DataFrame.drop_duplicates : Equivalent method on DataFrame. Index.duplicated : Related method on Index, indicating duplicate Index values. Examples -------- Generate an pandas.Index with duplicate values. >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo']) The `keep` parameter controls which duplicate values are removed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> idx.drop_duplicates(keep='first') Index(['lama', 'cow', 'beetle', 'hippo'], dtype='object') The value 'last' keeps the last occurrence for each set of duplicated entries. >>> idx.drop_duplicates(keep='last') Index(['cow', 'beetle', 'lama', 'hippo'], dtype='object') The value ``False`` discards all sets of duplicated entries. >>> idx.drop_duplicates(keep=False) Index(['cow', 'beetle', 'hippo'], dtype='object') """ return super().drop_duplicates(keep=keep) def duplicated(self, keep="first"): """ Indicate duplicate index values. Duplicated values are indicated as ``True`` values in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' The value or values in a set of duplicates to mark as missing. - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- numpy.ndarray See Also -------- Series.duplicated : Equivalent method on pandas.Series. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Index.drop_duplicates : Remove duplicate values from Index. Examples -------- By default, for each set of duplicated values, the first occurrence is set to False and all others to True: >>> idx = pd.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True]) which is equivalent to >>> idx.duplicated(keep='first') array([False, False, True, False, True]) By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> idx.duplicated(keep='last') array([ True, False, True, False, False]) By setting keep on ``False``, all duplicates are True: >>> idx.duplicated(keep=False) array([ True, False, True, False, True]) """ return super().duplicated(keep=keep) def _get_unique_index(self, dropna=False): """ Returns an index containing unique values. Parameters ---------- dropna : bool If True, NaN values are dropped. Returns ------- uniques : index """ if self.is_unique and not dropna: return self values = self.values if not self.is_unique: values = self.unique() if dropna: try: if self.hasnans: values = values[~isna(values)] except NotImplementedError: pass return self._shallow_copy(values) # -------------------------------------------------------------------- # Arithmetic & Logical Methods def __add__(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented from pandas import Series return Index(Series(self) + other) def __radd__(self, other): from pandas import Series return Index(other + Series(self)) def __iadd__(self, other): # alias for __add__ return self + other def __sub__(self, other): return Index(np.array(self) - other) def __rsub__(self, other): # wrap Series to ensure we pin name correctly from pandas import Series return Index(other - Series(self)) def __and__(self, other): return self.intersection(other) def __or__(self, other): return self.union(other) def __xor__(self, other): return self.symmetric_difference(other) def __nonzero__(self): raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." ) __bool__ = __nonzero__ # -------------------------------------------------------------------- # Set Operation Methods def _get_reconciled_name_object(self, other): """ If the result of a set operation will be self, return self, unless the name changes, in which case make a shallow copy of self. """ name = get_op_result_name(self, other) if self.name != name: return self._shallow_copy(name=name) return self def _union_incompatible_dtypes(self, other, sort): """ Casts this and other index to object dtype to allow the formation of a union between incompatible types. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ this = self.astype(object, copy=False) # cast to Index for when `other` is list-like other = Index(other).astype(object, copy=False) return Index.union(this, other, sort=sort).astype(object, copy=False) def _is_compatible_with_other(self, other): """ Check whether this and the other dtype are compatible with each other. Meaning a union can be formed between them without needing to be cast to dtype object. Parameters ---------- other : Index or array-like Returns ------- bool """ return type(self) is type(other) and is_dtype_equal(self.dtype, other.dtype) def _validate_sort_keyword(self, sort): if sort not in [None, False]: raise ValueError( "The 'sort' keyword only takes the values of " f"None or False; {sort} was passed." ) def union(self, other, sort=None): """ Form the union of two Index objects. If the Index objects are incompatible, both Index objects will be cast to dtype('object') first. .. versionchanged:: 0.25.0 Parameters ---------- other : Index or array-like sort : bool or None, default None Whether to sort the resulting Index. * None : Sort the result, except when 1. `self` and `other` are equal. 2. `self` or `other` has length 0. 3. Some values in `self` or `other` cannot be compared. A RuntimeWarning is issued in this case. * False : do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- union : Index Examples -------- Union matching dtypes >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Int64Index([1, 2, 3, 4, 5, 6], dtype='int64') Union mismatched dtypes >>> idx1 = pd.Index(['a', 'b', 'c', 'd']) >>> idx2 = pd.Index([1, 2, 3, 4]) >>> idx1.union(idx2) Index(['a', 'b', 'c', 'd', 1, 2, 3, 4], dtype='object') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if not self._is_compatible_with_other(other): return self._union_incompatible_dtypes(other, sort=sort) return self._union(other, sort=sort) def _union(self, other, sort): """ Specific union logic should go here. In subclasses, union behavior should be overwritten here rather than in `self.union`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. Returns ------- Index """ if not len(other) or self.equals(other): return self._get_reconciled_name_object(other) if not len(self): return other._get_reconciled_name_object(self) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self) or is_datetime64tz_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other) or is_datetime64tz_dtype(other): rvals = other._ndarray_values else: rvals = other._values if sort is None and self.is_monotonic and other.is_monotonic: try: result = self._outer_indexer(lvals, rvals)[0] except TypeError: # incomparable objects result = list(lvals) # worth making this faster? a very unusual case value_set = set(lvals) result.extend([x for x in rvals if x not in value_set]) else: # find indexes of things in "other" that are not in "self" if self.is_unique: indexer = self.get_indexer(other) indexer = (indexer == -1).nonzero()[0] else: indexer = algos.unique1d(self.get_indexer_non_unique(other)[1]) if len(indexer) > 0: other_diff = algos.take_nd(rvals, indexer, allow_fill=False) result = concat_compat((lvals, other_diff)) else: result = lvals if sort is None: try: result = algos.safe_sort(result) except TypeError as err: warnings.warn( f"{err}, sort order is undefined for incomparable objects", RuntimeWarning, stacklevel=3, ) # for subclasses return self._wrap_setop_result(other, result) def _wrap_setop_result(self, other, result): return self._constructor(result, name=get_op_result_name(self, other)) _index_shared_docs[ "intersection" ] = """ Form the intersection of two Index objects. This returns a new Index with elements common to the index and `other`. Parameters ---------- other : Index or array-like sort : False or None, default False Whether to sort the resulting index. * False : do not sort the result. * None : sort the result, except when `self` and `other` are equal or when the values cannot be compared. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default from ``True`` to ``False``, to match the behaviour of 0.23.4 and earlier. Returns ------- intersection : Index Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Int64Index([3, 4], dtype='int64') """ # TODO: standardize return type of non-union setops type(self vs other) @Appender(_index_shared_docs["intersection"]) def intersection(self, other, sort=False): self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other = ensure_index(other) if self.equals(other): return self._get_reconciled_name_object(other) if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.intersection(other, sort=sort) # TODO(EA): setops-refactor, clean all this up if is_period_dtype(self): lvals = self._ndarray_values else: lvals = self._values if is_period_dtype(other): rvals = other._ndarray_values else: rvals = other._values if self.is_monotonic and other.is_monotonic: try: result = self._inner_indexer(lvals, rvals)[0] return self._wrap_setop_result(other, result) except TypeError: pass try: indexer = Index(rvals).get_indexer(lvals) indexer = indexer.take((indexer != -1).nonzero()[0]) except (InvalidIndexError, IncompatibleFrequency): # InvalidIndexError raised by get_indexer if non-unique # IncompatibleFrequency raised by PeriodIndex.get_indexer indexer = algos.unique1d(Index(rvals).get_indexer_non_unique(lvals)[0]) indexer = indexer[indexer != -1] taken = other.take(indexer) if sort is None: taken = algos.safe_sort(taken.values) if self.name != other.name: name = None else: name = self.name return self._shallow_copy(taken, name=name) if self.name != other.name: taken.name = None return taken def difference(self, other, sort=None): """ Return a new Index with elements from the index that are not in `other`. This is the set difference of two Index objects. Parameters ---------- other : Index or array-like sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- difference : Index Examples -------- >>> idx1 = pd.Index([2, 1, 3, 4]) >>> idx2 = pd.Index([3, 4, 5, 6]) >>> idx1.difference(idx2) Int64Index([1, 2], dtype='int64') >>> idx1.difference(idx2, sort=False) Int64Index([2, 1], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) if self.equals(other): # pass an empty np.ndarray with the appropriate dtype return self._shallow_copy(self._data[:0]) other, result_name = self._convert_can_do_setop(other) this = self._get_unique_index() indexer = this.get_indexer(other) indexer = indexer.take((indexer != -1).nonzero()[0]) label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass return this._shallow_copy(the_diff, name=result_name) def symmetric_difference(self, other, result_name=None, sort=None): """ Compute the symmetric difference of two Index objects. Parameters ---------- other : Index or array-like result_name : str sort : False or None, default None Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by pandas. * None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements. * False : Do not sort the result. .. versionadded:: 0.24.0 .. versionchanged:: 0.24.1 Changed the default value from ``True`` to ``None`` (without change in behaviour). Returns ------- symmetric_difference : Index Notes ----- ``symmetric_difference`` contains elements that appear in either ``idx1`` or ``idx2`` but not both. Equivalent to the Index created by ``idx1.difference(idx2) | idx2.difference(idx1)`` with duplicates dropped. Examples -------- >>> idx1 = pd.Index([1, 2, 3, 4]) >>> idx2 = pd.Index([2, 3, 4, 5]) >>> idx1.symmetric_difference(idx2) Int64Index([1, 5], dtype='int64') You can also use the ``^`` operator: >>> idx1 ^ idx2 Int64Index([1, 5], dtype='int64') """ self._validate_sort_keyword(sort) self._assert_can_do_setop(other) other, result_name_update = self._convert_can_do_setop(other) if result_name is None: result_name = result_name_update this = self._get_unique_index() other = other._get_unique_index() indexer = this.get_indexer(other) # {this} minus {other} common_indexer = indexer.take((indexer != -1).nonzero()[0]) left_indexer = np.setdiff1d( np.arange(this.size), common_indexer, assume_unique=True ) left_diff = this.values.take(left_indexer) # {other} minus {this} right_indexer = (indexer == -1).nonzero()[0] right_diff = other.values.take(right_indexer) the_diff = concat_compat([left_diff, right_diff]) if sort is None: try: the_diff = algos.safe_sort(the_diff) except TypeError: pass attribs = self._get_attributes_dict() attribs["name"] = result_name if "freq" in attribs: attribs["freq"] = None return self._shallow_copy_with_infer(the_diff, **attribs) def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError("Input must be Index or array-like") return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = get_op_result_name(self, other) return other, result_name # -------------------------------------------------------------------- # Indexing Methods _index_shared_docs[ "get_loc" ] = """ Get integer location, slice or boolean mask for requested label. Parameters ---------- key : label method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. tolerance : int or float, optional Maximum distance from index value for inexact matches. The value of the index at the matching location most satisfy the equation ``abs(index[loc] - key) <= tolerance``. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- loc : int if unique index, slice if monotonic index, else mask Examples -------- >>> unique_index = pd.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = pd.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = pd.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True], dtype=bool) """ @Appender(_index_shared_docs["get_loc"]) def get_loc(self, key, method=None, tolerance=None): if method is None: if tolerance is not None: raise ValueError( "tolerance argument only valid if using pad, " "backfill or nearest lookups" ) try: return self._engine.get_loc(key) except KeyError: return self._engine.get_loc(self._maybe_cast_indexer(key)) indexer = self.get_indexer([key], method=method, tolerance=tolerance) if indexer.ndim > 1 or indexer.size > 1: raise TypeError("get_loc requires scalar valued input") loc = indexer.item() if loc == -1: raise KeyError(key) return loc _index_shared_docs[ "get_indexer" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s method : {None, 'pad'/'ffill', 'backfill'/'bfill', 'nearest'}, optional * default: exact matches only. * pad / ffill: find the PREVIOUS index value if no exact match. * backfill / bfill: use NEXT index value if no exact match * nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value. limit : int, optional Maximum number of consecutive labels in ``target`` to match for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. %(raises_section)s Examples -------- >>> index = pd.Index(['c', 'a', 'b']) >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1]) Notice that the return value is an array of locations in ``index`` and ``x`` is marked by -1, as it is not in ``index``. """ @Appender(_index_shared_docs["get_indexer"] % _index_doc_kwargs) def get_indexer(self, target, method=None, limit=None, tolerance=None): method = missing.clean_reindex_fill_method(method) target = ensure_index(target) if tolerance is not None: tolerance = self._convert_tolerance(tolerance, target) # Treat boolean labels passed to a numeric index as not found. Without # this fix False and True would be treated as 0 and 1 respectively. # (GH #16877) if target.is_boolean() and self.is_numeric(): return ensure_platform_int(np.repeat(-1, target.size)) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer( ptarget, method=method, limit=limit, tolerance=tolerance ) if not is_dtype_equal(self.dtype, target.dtype): this = self.astype(object) target = target.astype(object) return this.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) if not self.is_unique: raise InvalidIndexError( "Reindexing only valid with uniquely valued Index objects" ) if method == "pad" or method == "backfill": indexer = self._get_fill_indexer(target, method, limit, tolerance) elif method == "nearest": indexer = self._get_nearest_indexer(target, limit, tolerance) else: if tolerance is not None: raise ValueError( "tolerance argument only valid if doing pad, " "backfill or nearest reindexing" ) if limit is not None: raise ValueError( "limit argument only valid if doing pad, " "backfill or nearest reindexing" ) indexer = self._engine.get_indexer(target._ndarray_values) return ensure_platform_int(indexer) def _convert_tolerance(self, tolerance, target): # override this method on subclasses tolerance = np.asarray(tolerance) if target.size != tolerance.size and tolerance.size > 1: raise ValueError("list-like tolerance size must match target index size") return tolerance def _get_fill_indexer(self, target, method, limit=None, tolerance=None): if self.is_monotonic_increasing and target.is_monotonic_increasing: method = ( self._engine.get_pad_indexer if method == "pad" else self._engine.get_backfill_indexer ) indexer = method(target._ndarray_values, limit) else: indexer = self._get_fill_indexer_searchsorted(target, method, limit) if tolerance is not None: indexer = self._filter_indexer_tolerance( target._ndarray_values, indexer, tolerance ) return indexer def _get_fill_indexer_searchsorted(self, target, method, limit=None): """ Fallback pad/backfill get_indexer that works for monotonic decreasing indexes and non-monotonic targets. """ if limit is not None: raise ValueError( f"limit argument for {repr(method)} method only well-defined " "if index and target are monotonic" ) side = "left" if method == "pad" else "right" # find exact matches first (this simplifies the algorithm) indexer = self.get_indexer(target) nonexact = indexer == -1 indexer[nonexact] = self._searchsorted_monotonic(target[nonexact], side) if side == "left": # searchsorted returns "indices into a sorted array such that, # if the corresponding elements in v were inserted before the # indices, the order of a would be preserved". # Thus, we need to subtract 1 to find values to the left. indexer[nonexact] -= 1 # This also mapped not found values (values of 0 from # np.searchsorted) to -1, which conveniently is also our # sentinel for missing values else: # Mark indices to the right of the largest value as not found indexer[indexer == len(self)] = -1 return indexer def _get_nearest_indexer(self, target, limit, tolerance): """ Get the indexer for the nearest index labels; requires an index with values that can be subtracted from each other (e.g., not strings or tuples). """ left_indexer = self.get_indexer(target, "pad", limit=limit) right_indexer = self.get_indexer(target, "backfill", limit=limit) target = np.asarray(target) left_distances = abs(self.values[left_indexer] - target) right_distances = abs(self.values[right_indexer] - target) op = operator.lt if self.is_monotonic_increasing else operator.le indexer = np.where( op(left_distances, right_distances) | (right_indexer == -1), left_indexer, right_indexer, ) if tolerance is not None: indexer = self._filter_indexer_tolerance(target, indexer, tolerance) return indexer def _filter_indexer_tolerance(self, target, indexer, tolerance): distance = abs(self.values[indexer] - target) indexer = np.where(distance <= tolerance, indexer, -1) return indexer # -------------------------------------------------------------------- # Indexer Conversion Methods _index_shared_docs[ "_convert_scalar_indexer" ] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs["_convert_scalar_indexer"]) def _convert_scalar_indexer(self, key, kind=None): assert kind in ["ix", "loc", "getitem", "iloc", None] if kind == "iloc": return self._validate_indexer("positional", key, kind) if len(self) and not isinstance(self, ABCMultiIndex): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ["getitem", "ix"] and is_float(key): if not self.is_floating(): return self._invalid_indexer("label", key) elif kind in ["loc"] and is_float(key): # we want to raise KeyError on string/mixed here # technically we *could* raise a TypeError # on anything but mixed though if self.inferred_type not in [ "floating", "mixed-integer-float", "integer-na", "string", "unicode", "mixed", ]: self._invalid_indexer("label", key) elif kind in ["loc"] and is_integer(key): if not self.holds_integer(): self._invalid_indexer("label", key) return key _index_shared_docs[ "_convert_slice_indexer" ] = """ Convert a slice indexer. By definition, these are labels unless 'iloc' is passed in. Floats are not allowed as the start, step, or stop of the slice. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs["_convert_slice_indexer"]) def _convert_slice_indexer(self, key: slice, kind=None): assert kind in ["ix", "loc", "getitem", "iloc", None] # validate iloc if kind == "iloc": return slice( self._validate_indexer("slice", key.start, kind), self._validate_indexer("slice", key.stop, kind), self._validate_indexer("slice", key.step, kind), ) # potentially cast the bounds to integers start, stop, step = key.start, key.stop, key.step # figure out if this is a positional indexer def is_int(v): return v is None or is_integer(v) is_null_slicer = start is None and stop is None is_index_slice = is_int(start) and is_int(stop) is_positional = is_index_slice and not ( self.is_integer() or self.is_categorical() ) if kind == "getitem": """ called from the getitem slicers, validate that we are in fact integers """ if self.is_integer() or is_index_slice: return slice( self._validate_indexer("slice", key.start, kind), self._validate_indexer("slice", key.stop, kind), self._validate_indexer("slice", key.step, kind), ) # convert the slice to an indexer here # if we are mixed and have integers try: if is_positional and self.is_mixed(): # Validate start & stop if start is not None: self.get_loc(start) if stop is not None: self.get_loc(stop) is_positional = False except KeyError: if self.inferred_type in ["mixed-integer-float", "integer-na"]: raise if is_null_slicer: indexer = key elif is_positional: indexer = key else: indexer = self.slice_indexer(start, stop, step, kind=kind) return indexer def _convert_listlike_indexer(self, keyarr, kind=None): """ Parameters ---------- keyarr : list-like Indexer to convert. Returns ------- indexer : numpy.ndarray or None Return an ndarray or None if cannot convert. keyarr : numpy.ndarray Return tuple-safe keys. """ if isinstance(keyarr, Index): keyarr = self._convert_index_indexer(keyarr) else: keyarr = self._convert_arr_indexer(keyarr) indexer = self._convert_list_indexer(keyarr, kind=kind) return indexer, keyarr _index_shared_docs[ "_convert_arr_indexer" ] = """ Convert an array-like indexer to the appropriate dtype. Parameters ---------- keyarr : array-like Indexer to convert. Returns ------- converted_keyarr : array-like """ @Appender(_index_shared_docs["_convert_arr_indexer"]) def _convert_arr_indexer(self, keyarr): keyarr = com.asarray_tuplesafe(keyarr) return keyarr _index_shared_docs[ "_convert_index_indexer" ] = """ Convert an Index indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. Returns ------- converted_keyarr : Index (or sub-class) """ @Appender(_index_shared_docs["_convert_index_indexer"]) def _convert_index_indexer(self, keyarr): return keyarr _index_shared_docs[ "_convert_list_indexer" ] = """ Convert a list-like indexer to the appropriate dtype. Parameters ---------- keyarr : Index (or sub-class) Indexer to convert. kind : iloc, ix, loc, optional Returns ------- positional indexer or None """ @Appender(_index_shared_docs["_convert_list_indexer"]) def _convert_list_indexer(self, keyarr, kind=None): if ( kind in [None, "iloc", "ix"] and is_integer_dtype(keyarr) and not self.is_floating() and not isinstance(keyarr, ABCPeriodIndex) ): if self.inferred_type == "mixed-integer": indexer = self.get_indexer(keyarr) if (indexer >= 0).all(): return indexer # missing values are flagged as -1 by get_indexer and negative # indices are already converted to positive indices in the # above if-statement, so the negative flags are changed to # values outside the range of indices so as to trigger an # IndexError in maybe_convert_indices indexer[indexer < 0] = len(self) return maybe_convert_indices(indexer, len(self)) elif not self.inferred_type == "integer": keyarr = np.where(keyarr < 0, len(self) + keyarr, keyarr) return keyarr return None def _invalid_indexer(self, form, key): """ Consistent invalid indexer message. """ raise TypeError( f"cannot do {form} indexing on {type(self)} with these " f"indexers [{key}] of {type(key)}" ) # -------------------------------------------------------------------- # Reindex Methods def _can_reindex(self, indexer): """ Check if we are allowing reindexing with this particular indexer. Parameters ---------- indexer : an integer indexer Raises ------ ValueError if its a duplicate axis """ # trying to reindex on an axis with duplicates if not self.is_unique and len(indexer): raise ValueError("cannot reindex from a duplicate axis") def reindex(self, target, method=None, level=None, limit=None, tolerance=None): """ Create index with target's values (move/add/delete values as necessary). Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ # GH6552: preserve names when reindexing to non-named target # (i.e. neither Index nor Series). preserve_names = not hasattr(target, "name") # GH7774: preserve dtype/tz if target is empty and not an Index. target = _ensure_has_len(target) # target may be an iterator if not isinstance(target, Index) and len(target) == 0: attrs = self._get_attributes_dict() attrs.pop("freq", None) # don't preserve freq values = self._data[:0] # appropriately-dtyped empty array target = self._simple_new(values, dtype=self.dtype, **attrs) else: target = ensure_index(target) if level is not None: if method is not None: raise TypeError("Fill method not supported if level passed") _, indexer, _ = self._join_level( target, level, how="right", return_indexers=True ) else: if self.equals(target): indexer = None else: # check is_overlapping for IntervalIndex compat if self.is_unique and not getattr(self, "is_overlapping", False): indexer = self.get_indexer( target, method=method, limit=limit, tolerance=tolerance ) else: if method is not None or limit is not None: raise ValueError( "cannot reindex a non-unique index " "with a method or limit" ) indexer, missing = self.get_indexer_non_unique(target) if preserve_names and target.nlevels == 1 and target.name != self.name: target = target.copy() target.name = self.name return target, indexer def _reindex_non_unique(self, target): """ Create a new index with target's values (move/add/delete values as necessary) use with non-unique Index and a possibly non-unique target. Parameters ---------- target : an iterable Returns ------- new_index : pd.Index Resulting index. indexer : np.ndarray or None Indices of output values in original index. """ target = ensure_index(target) indexer, missing = self.get_indexer_non_unique(target) check = indexer != -1 new_labels = self.take(indexer[check]) new_indexer = None if len(missing): length = np.arange(len(indexer)) missing = ensure_platform_int(missing) missing_labels = target.take(missing) missing_indexer = ensure_int64(length[~check]) cur_labels = self.take(indexer[check]).values cur_indexer = ensure_int64(length[check]) new_labels = np.empty(tuple([len(indexer)]), dtype=object) new_labels[cur_indexer] = cur_labels new_labels[missing_indexer] = missing_labels # a unique indexer if target.is_unique: # see GH5553, make sure we use the right indexer new_indexer = np.arange(len(indexer)) new_indexer[cur_indexer] = np.arange(len(cur_labels)) new_indexer[missing_indexer] = -1 # we have a non_unique selector, need to use the original # indexer here else: # need to retake to have the same size as the indexer indexer[~check] = -1 # reset the new indexer to account for the new size new_indexer = np.arange(len(self.take(indexer))) new_indexer[~check] = -1 new_index = self._shallow_copy_with_infer(new_labels) return new_index, indexer, new_indexer # -------------------------------------------------------------------- # Join Methods _index_shared_docs[ "join" ] = """ Compute join_index and indexers to conform data structures to the new index. Parameters ---------- other : Index how : {'left', 'right', 'inner', 'outer'} level : int or level name, default None return_indexers : bool, default False sort : bool, default False Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword). Returns ------- join_index, (left_indexer, right_indexer) """ @Appender(_index_shared_docs["join"]) def join(self, other, how="left", level=None, return_indexers=False, sort=False): self_is_mi = isinstance(self, ABCMultiIndex) other_is_mi = isinstance(other, ABCMultiIndex) # try to figure out the join level # GH3662 if level is None and (self_is_mi or other_is_mi): # have the same levels/names so a simple join if self.names == other.names: pass else: return self._join_multi(other, how=how, return_indexers=return_indexers) # join on the level if level is not None and (self_is_mi or other_is_mi): return self._join_level( other, level, how=how, return_indexers=return_indexers ) other = ensure_index(other) if len(other) == 0 and how in ("left", "outer"): join_index = self._shallow_copy() if return_indexers: rindexer = np.repeat(-1, len(join_index)) return join_index, None, rindexer else: return join_index if len(self) == 0 and how in ("right", "outer"): join_index = other._shallow_copy() if return_indexers: lindexer = np.repeat(-1, len(join_index)) return join_index, lindexer, None else: return join_index if self._join_precedence < other._join_precedence: how = {"right": "left", "left": "right"}.get(how, how) result = other.join( self, how=how, level=level, return_indexers=return_indexers ) if return_indexers: x, y, z = result result = x, z, y return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype("O") other = other.astype("O") return this.join(other, how=how, return_indexers=return_indexers) _validate_join_method(how) if not self.is_unique and not other.is_unique: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif not self.is_unique or not other.is_unique: if self.is_monotonic and other.is_monotonic: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) else: return self._join_non_unique( other, how=how, return_indexers=return_indexers ) elif self.is_monotonic and other.is_monotonic: try: return self._join_monotonic( other, how=how, return_indexers=return_indexers ) except TypeError: pass if how == "left": join_index = self elif how == "right": join_index = other elif how == "inner": # TODO: sort=False here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.intersection(other, sort=False) elif how == "outer": # TODO: sort=True here for backwards compat. It may # be better to use the sort parameter passed into join join_index = self.union(other) if sort: join_index = join_index.sort_values() if return_indexers: if join_index is self: lindexer = None else: lindexer = self.get_indexer(join_index) if join_index is other: rindexer = None else: rindexer = other.get_indexer(join_index) return join_index, lindexer, rindexer else: return join_index def _join_multi(self, other, how, return_indexers=True): from .multi import MultiIndex from pandas.core.reshape.merge import _restore_dropped_levels_multijoin # figure out join names self_names = set(com.not_none(*self.names)) other_names = set(com.not_none(*other.names)) overlap = self_names & other_names # need at least 1 in common if not overlap: raise ValueError("cannot join with no overlapping index names") self_is_mi = isinstance(self, MultiIndex) other_is_mi = isinstance(other, MultiIndex) if self_is_mi and other_is_mi: # Drop the non-matching levels from left and right respectively ldrop_names = list(self_names - overlap) rdrop_names = list(other_names - overlap) self_jnlevels = self.droplevel(ldrop_names) other_jnlevels = other.droplevel(rdrop_names) # Join left and right # Join on same leveled multi-index frames is supported join_idx, lidx, ridx = self_jnlevels.join( other_jnlevels, how, return_indexers=True ) # Restore the dropped levels # Returned index level order is # common levels, ldrop_names, rdrop_names dropped_names = ldrop_names + rdrop_names levels, codes, names = _restore_dropped_levels_multijoin( self, other, dropped_names, join_idx, lidx, ridx ) # Re-create the multi-index multi_join_idx = MultiIndex( levels=levels, codes=codes, names=names, verify_integrity=False ) multi_join_idx = multi_join_idx.remove_unused_levels() return multi_join_idx, lidx, ridx jl = list(overlap)[0] # Case where only one index is multi # make the indices into mi's that match flip_order = False if self_is_mi: self, other = other, self flip_order = True # flip if join method is right or left how = {"right": "left", "left": "right"}.get(how, how) level = other.names.index(jl) result = self._join_level( other, level, how=how, return_indexers=return_indexers ) if flip_order: if isinstance(result, tuple): return result[0], result[2], result[1] return result def _join_non_unique(self, other, how="left", return_indexers=False): from pandas.core.reshape.merge import _get_join_indexers left_idx, right_idx = _get_join_indexers( [self._ndarray_values], [other._ndarray_values], how=how, sort=True ) left_idx = ensure_platform_int(left_idx) right_idx = ensure_platform_int(right_idx) join_index = np.asarray(self._ndarray_values.take(left_idx)) mask = left_idx == -1 np.putmask(join_index, mask, other._ndarray_values.take(right_idx)) join_index = self._wrap_joined_index(join_index, other) if return_indexers: return join_index, left_idx, right_idx else: return join_index def _join_level( self, other, level, how="left", return_indexers=False, keep_order=True ): """ The join method *only* affects the level of the resulting MultiIndex. Otherwise it just exactly aligns the Index data to the labels of the level in the MultiIndex. If ```keep_order == True```, the order of the data indexed by the MultiIndex will not be changed; otherwise, it will tie out with `other`. """ from .multi import MultiIndex def _get_leaf_sorter(labels): """ Returns sorter for the inner most level while preserving the order of higher levels. """ if labels[0].size == 0: return np.empty(0, dtype="int64") if len(labels) == 1: lab = ensure_int64(labels[0]) sorter, _ = libalgos.groupsort_indexer(lab, 1 + lab.max()) return sorter # find indexers of beginning of each set of # same-key labels w.r.t all but last level tic = labels[0][:-1] != labels[0][1:] for lab in labels[1:-1]: tic |= lab[:-1] != lab[1:] starts = np.hstack(([True], tic, [True])).nonzero()[0] lab = ensure_int64(labels[-1]) return lib.get_level_sorter(lab, ensure_int64(starts)) if isinstance(self, MultiIndex) and isinstance(other, MultiIndex): raise TypeError("Join on level between two MultiIndex objects is ambiguous") left, right = self, other flip_order = not isinstance(self, MultiIndex) if flip_order: left, right = right, left how = {"right": "left", "left": "right"}.get(how, how) level = left._get_level_number(level) old_level = left.levels[level] if not right.is_unique: raise NotImplementedError( "Index._join_level on non-unique index is not implemented" ) new_level, left_lev_indexer, right_lev_indexer = old_level.join( right, how=how, return_indexers=True ) if left_lev_indexer is None: if keep_order or len(left) == 0: left_indexer = None join_index = left else: # sort the leaves left_indexer = _get_leaf_sorter(left.codes[: level + 1]) join_index = left[left_indexer] else: left_lev_indexer = ensure_int64(left_lev_indexer) rev_indexer = lib.get_reverse_indexer(left_lev_indexer, len(old_level)) new_lev_codes = algos.take_nd( rev_indexer, left.codes[level], allow_fill=False ) new_codes = list(left.codes) new_codes[level] = new_lev_codes new_levels = list(left.levels) new_levels[level] = new_level if keep_order: # just drop missing values. o.w. keep order left_indexer = np.arange(len(left), dtype=np.intp) mask = new_lev_codes != -1 if not mask.all(): new_codes = [lab[mask] for lab in new_codes] left_indexer = left_indexer[mask] else: # tie out the order with other if level == 0: # outer most level, take the fast route ngroups = 1 + new_lev_codes.max() left_indexer, counts = libalgos.groupsort_indexer( new_lev_codes, ngroups ) # missing values are placed first; drop them! left_indexer = left_indexer[counts[0] :] new_codes = [lab[left_indexer] for lab in new_codes] else: # sort the leaves mask = new_lev_codes != -1 mask_all = mask.all() if not mask_all: new_codes = [lab[mask] for lab in new_codes] left_indexer = _get_leaf_sorter(new_codes[: level + 1]) new_codes = [lab[left_indexer] for lab in new_codes] # left_indexers are w.r.t masked frame. # reverse to original frame! if not mask_all: left_indexer = mask.nonzero()[0][left_indexer] join_index = MultiIndex( levels=new_levels, codes=new_codes, names=left.names, verify_integrity=False, ) if right_lev_indexer is not None: right_indexer = algos.take_nd( right_lev_indexer, join_index.codes[level], allow_fill=False ) else: right_indexer = join_index.codes[level] if flip_order: left_indexer, right_indexer = right_indexer, left_indexer if return_indexers: left_indexer = ( None if left_indexer is None else ensure_platform_int(left_indexer) ) right_indexer = ( None if right_indexer is None else ensure_platform_int(right_indexer) ) return join_index, left_indexer, right_indexer else: return join_index def _join_monotonic(self, other, how="left", return_indexers=False): if self.equals(other): ret_index = other if how == "right" else self if return_indexers: return ret_index, None, None else: return ret_index sv = self._ndarray_values ov = other._ndarray_values if self.is_unique and other.is_unique: # We can perform much better than the general case if how == "left": join_index = self lidx = None ridx = self._left_indexer_unique(sv, ov) elif how == "right": join_index = other lidx = self._left_indexer_unique(ov, sv) ridx = None elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) else: if how == "left": join_index, lidx, ridx = self._left_indexer(sv, ov) elif how == "right": join_index, ridx, lidx = self._left_indexer(ov, sv) elif how == "inner": join_index, lidx, ridx = self._inner_indexer(sv, ov) elif how == "outer": join_index, lidx, ridx = self._outer_indexer(sv, ov) join_index = self._wrap_joined_index(join_index, other) if return_indexers: lidx = None if lidx is None else ensure_platform_int(lidx) ridx = None if ridx is None else ensure_platform_int(ridx) return join_index, lidx, ridx else: return join_index def _wrap_joined_index(self, joined, other): name = get_op_result_name(self, other) return Index(joined, name=name) # -------------------------------------------------------------------- # Uncategorized Methods @property def values(self): """ Return an array representing the data in the Index. .. warning:: We recommend using :attr:`Index.array` or :meth:`Index.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- array: numpy.ndarray or ExtensionArray See Also -------- Index.array : Reference to the underlying data. Index.to_numpy : A NumPy array representing the underlying data. """ return self._data.view(np.ndarray) @property def _values(self) -> Union[ExtensionArray, ABCIndexClass, np.ndarray]: # TODO(EA): remove index types as they become extension arrays """ The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | --------------- | ------------- | --------------- | Index | ndarray | ndarray | ndarray | CategoricalIndex | Categorical | Categorical | ndarray[int] | DatetimeIndex | ndarray[M8ns] | ndarray[M8ns] | ndarray[M8ns] | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | PeriodIndex | ndarray[object] | PeriodArray | ndarray[int] | IntervalIndex | IntervalArray | IntervalArray | ndarray[object] | See Also -------- values _ndarray_values """ return self._data def _internal_get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that _internal_get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index._internal_get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx._internal_get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx._internal_get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx._internal_get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super().memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result _index_shared_docs[ "where" ] = """ Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : bool array-like with the same length as self other : scalar, or array-like Returns ------- Index """ @Appender(_index_shared_docs["where"]) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desired try: res = data.astype("i8", copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype("u8", copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): # We return the TypeError so that we can raise it from the constructor # in order to keep mypy happy return TypeError( f"{cls.__name__}(...) must be called with a collection of some " f"kind, {repr(data)} was passed" ) @classmethod def _string_data_error(cls, data): raise TypeError( "String dtype not supported, you may need " "to explicitly cast to a numeric type" ) def _coerce_scalar_to_index(self, item): """ We need to coerce a scalar to a compat for our index type. Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) def _to_safe_for_reshape(self): """ Convert to object if we are a categorical. """ return self def _convert_for_op(self, value): """ Convert value to be insertable to ndarray. """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op. """ if not is_scalar(value): raise TypeError(f"'value' must be a scalar, passed: {type(value).__name__}") def _is_memory_usage_qualified(self) -> bool: """ Return a boolean if we need a qualified .info display. """ return self.is_object() def is_type_compatible(self, kind) -> bool: """ Whether the index type is compatible with the provided type. """ return kind == self.inferred_type _index_shared_docs[ "contains" ] = """ Return a boolean indicating whether the provided key is in the index. Parameters ---------- key : label The key to check if it is present in the index. Returns ------- bool Whether the key search is in the index. See Also -------- Index.isin : Returns an ndarray of boolean dtype indicating whether the list-like key is in the index. Examples -------- >>> idx = pd.Index([1, 2, 3, 4]) >>> idx Int64Index([1, 2, 3, 4], dtype='int64') >>> 2 in idx True >>> 6 in idx False """ @Appender(_index_shared_docs["contains"] % _index_doc_kwargs) def __contains__(self, key) -> bool: hash(key) try: return key in self._engine except (OverflowError, TypeError, ValueError): return False def __hash__(self): raise TypeError(f"unhashable type: {repr(type(self).__name__)}") def __setitem__(self, key, value): raise TypeError("Index does not support mutable operations") def __getitem__(self, key): """ Override numpy.ndarray's __getitem__ method to work as desired. This function adds lists and Series as valid boolean indexers (ndarrays only supports ndarray with dtype=bool). If resulting ndim != 1, plain ndarray is returned instead of corresponding `Index` subclass. """ # There's no custom logic to be implemented in __getslice__, so it's # not overloaded intentionally. getitem = self._data.__getitem__ promote = self._shallow_copy if is_scalar(key): key = com.cast_scalar_indexer(key) return getitem(key) if isinstance(key, slice): # This case is separated from the conditional above to avoid # pessimization of basic indexing. return promote(getitem(key)) if com.is_bool_indexer(key): key = np.asarray(key, dtype=bool) key = com.values_from_object(key) result = getitem(key) if not is_scalar(result): return promote(result) else: return result def _can_hold_identifiers_and_holds_name(self, name) -> bool: """ Faster check for ``name in self`` when we know `name` is a Python identifier (e.g. in NDFrame.__getattr__, which hits this to support . key lookup). For indexes that can't hold identifiers (everything but object & categorical) we just return False. https://github.com/pandas-dev/pandas/issues/19764 """ if self.is_object() or self.is_categorical(): return name in self return False def append(self, other): """ Append a collection of Index options together. Parameters ---------- other : Index or list/tuple of indices Returns ------- appended : Index """ to_concat = [self] if isinstance(other, (list, tuple)): to_concat = to_concat + list(other) else: to_concat.append(other) for obj in to_concat: if not isinstance(obj, Index): raise TypeError("all inputs must be Index") names = {obj.name for obj in to_concat} name = None if len(names) > 1 else self.name return self._concat(to_concat, name) def _concat(self, to_concat, name): typs = _concat.get_dtype_kinds(to_concat) if len(typs) == 1: return self._concat_same_dtype(to_concat, name=name) return Index._concat_same_dtype(self, to_concat, name=name) def _concat_same_dtype(self, to_concat, name): """ Concatenate to_concat which has the same class. """ # must be overridden in specific classes klasses = ( ABCDatetimeIndex, ABCTimedeltaIndex, ABCPeriodIndex, ExtensionArray, ABCIntervalIndex, ) to_concat = [ x.astype(object) if isinstance(x, klasses) else x for x in to_concat ] self = to_concat[0] attribs = self._get_attributes_dict() attribs["name"] = name to_concat = [x._values if isinstance(x, Index) else x for x in to_concat] return self._shallow_copy_with_infer(np.concatenate(to_concat), **attribs) def putmask(self, mask, value): """ Return a new Index of the values set with the mask. Returns ------- Index See Also -------- numpy.ndarray.putmask """ values = self.values.copy() try: np.putmask(values, mask, self._convert_for_op(value)) return self._shallow_copy(values) except (ValueError, TypeError) as err: if is_object_dtype(self): raise err # coerces to object return self.astype(object).putmask(mask, value) def equals(self, other) -> bool: """ Determine if two Index objects contain the same elements. Returns ------- bool True if "other" is an Index and it has the same elements as calling index; False otherwise. """ if self.is_(other): return True if not isinstance(other, Index): return False if is_object_dtype(self) and not is_object_dtype(other): # if other is not object, use other's logic for coercion return other.equals(self) if isinstance(other, ABCMultiIndex): # d-level MultiIndex can equal d-tuple Index if not is_object_dtype(self.dtype): if self.nlevels != other.nlevels: return False return array_equivalent( com.values_from_object(self), com.values_from_object(other) ) def identical(self, other) -> bool: """ Similar to equals, but check that other comparable attributes are also equal. Returns ------- bool If two Index objects have equal elements and same type True, otherwise False. """ return ( self.equals(other) and all( ( getattr(self, c, None) == getattr(other, c, None) for c in self._comparables ) ) and type(self) == type(other) ) def asof(self, label): """ Return the label from the index, or, if not present, the previous one. Assuming that the index is sorted, return the passed index label if it is in the index, or return the previous index label if the passed one is not in the index. Parameters ---------- label : object The label up to which the method returns the latest index label. Returns ------- object The passed label if it is in the index. The previous label if the passed label is not in the sorted index or `NaN` if there is no such label. See Also -------- Series.asof : Return the latest value in a Series up to the passed index. merge_asof : Perform an asof merge (similar to left join but it matches on nearest key rather than equal key). Index.get_loc : An `asof` is a thin wrapper around `get_loc` with method='pad'. Examples -------- `Index.asof` returns the latest index label up to the passed label. >>> idx = pd.Index(['2013-12-31', '2014-01-02', '2014-01-03']) >>> idx.asof('2014-01-01') '2013-12-31' If the label is in the index, the method returns the passed label. >>> idx.asof('2014-01-02') '2014-01-02' If all of the labels in the index are later than the passed label, NaN is returned. >>> idx.asof('1999-01-02') nan If the index is not sorted, an error is raised. >>> idx_not_sorted = pd.Index(['2013-12-31', '2015-01-02', ... '2014-01-03']) >>> idx_not_sorted.asof('2013-12-31') Traceback (most recent call last): ValueError: index must be monotonic increasing or decreasing """ try: loc = self.get_loc(label, method="pad") except KeyError: return self._na_value else: if isinstance(loc, slice): loc = loc.indices(len(self))[-1] return self[loc] def asof_locs(self, where, mask): """ Find the locations (indices) of the labels from the index for every entry in the `where` argument. As in the `asof` function, if the label (a particular entry in `where`) is not in the index, the latest index label up to the passed label is chosen and its index returned. If all of the labels in the index are later than a label in `where`, -1 is returned. `mask` is used to ignore NA values in the index during calculation. Parameters ---------- where : Index An Index consisting of an array of timestamps. mask : array-like Array of booleans denoting where values in the original data are not NA. Returns ------- numpy.ndarray An array of locations (indices) of the labels from the Index which correspond to the return values of the `asof` function for every element in `where`. """ locs = self.values[mask].searchsorted(where.values, side="right") locs = np.where(locs > 0, locs - 1, 0) result = np.arange(len(self))[mask].take(locs) first = mask.argmax() result[(locs == 0) & (where.values < self.values[first])] = -1 return result def sort_values(self, return_indexer=False, ascending=True): """ Return a sorted copy of the index. Return a sorted copy of the index, and optionally return the indices that sorted the index itself. Parameters ---------- return_indexer : bool, default False Should the indices that would sort the index be returned. ascending : bool, default True Should the index values be sorted in an ascending order. Returns ------- sorted_index : pandas.Index Sorted copy of the index. indexer : numpy.ndarray, optional The indices that the index itself was sorted by. See Also -------- Series.sort_values : Sort values of a Series. DataFrame.sort_values : Sort values in a DataFrame. Examples -------- >>> idx = pd.Index([10, 100, 1, 1000]) >>> idx Int64Index([10, 100, 1, 1000], dtype='int64') Sort values in ascending order (default behavior). >>> idx.sort_values() Int64Index([1, 10, 100, 1000], dtype='int64') Sort values in descending order, and also get the indices `idx` was sorted by. >>> idx.sort_values(ascending=False, return_indexer=True) (Int64Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2])) """ _as = self.argsort() if not ascending: _as = _as[::-1] sorted_index = self.take(_as) if return_indexer: return sorted_index, _as else: return sorted_index def sort(self, *args, **kwargs): """ Use sort_values instead. """ raise TypeError("cannot sort an Index object in-place, use sort_values instead") def shift(self, periods=1, freq=None): """ Shift index by desired number of time frequency increments. This method is for shifting the values of datetime-like indexes by a specified time increment a given number of times. Parameters ---------- periods : int, default 1 Number of periods (or increments) to shift by, can be positive or negative. freq : pandas.DateOffset, pandas.Timedelta or str, optional Frequency increment to shift by. If None, the index is shifted by its own `freq` attribute. Offset aliases are valid strings, e.g., 'D', 'W', 'M' etc. Returns ------- pandas.Index Shifted index. See Also -------- Series.shift : Shift values of Series. Notes ----- This method is only implemented for datetime-like index classes, i.e., DatetimeIndex, PeriodIndex and TimedeltaIndex. Examples -------- Put the first 5 month starts of 2011 into an index. >>> month_starts = pd.date_range('1/1/2011', periods=5, freq='MS') >>> month_starts DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01', '2011-04-01', '2011-05-01'], dtype='datetime64[ns]', freq='MS') Shift the index by 10 days. >>> month_starts.shift(10, freq='D') DatetimeIndex(['2011-01-11', '2011-02-11', '2011-03-11', '2011-04-11', '2011-05-11'], dtype='datetime64[ns]', freq=None) The default value of `freq` is the `freq` attribute of the index, which is 'MS' (month start) in this example. >>> month_starts.shift(10) DatetimeIndex(['2011-11-01', '2011-12-01', '2012-01-01', '2012-02-01', '2012-03-01'], dtype='datetime64[ns]', freq='MS') """ raise NotImplementedError(f"Not supported for type {type(self).__name__}") def argsort(self, *args, **kwargs): """ Return the integer indices that would sort the index. Parameters ---------- *args Passed to `numpy.ndarray.argsort`. **kwargs Passed to `numpy.ndarray.argsort`. Returns ------- numpy.ndarray Integer indices that would sort the index if used as an indexer. See Also -------- numpy.argsort : Similar method for NumPy arrays. Index.sort_values : Return sorted copy of Index. Examples -------- >>> idx = pd.Index(['b', 'a', 'd', 'c']) >>> idx Index(['b', 'a', 'd', 'c'], dtype='object') >>> order = idx.argsort() >>> order array([1, 0, 3, 2]) >>> idx[order] Index(['a', 'b', 'c', 'd'], dtype='object') """ result = self.asi8 if result is None: result = np.array(self) return result.argsort(*args, **kwargs) _index_shared_docs[ "get_value" ] = """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing. Returns ------- scalar A value in the Series with the index of the key value in self. """ @Appender(_index_shared_docs["get_value"] % _index_doc_kwargs) def get_value(self, series, key): # if we have something that is Index-like, then # use this, e.g. DatetimeIndex # Things like `Series._get_value` (via .at) pass the EA directly here. s = extract_array(series, extract_numpy=True) if isinstance(s, ExtensionArray): if is_scalar(key): # GH 20882, 21257 # First try to convert the key to a location # If that fails, raise a KeyError if an integer # index, otherwise, see if key is an integer, and # try that try: iloc = self.get_loc(key) return s[iloc] except KeyError: if len(self) > 0 and (self.holds_integer() or self.is_boolean()): raise elif is_integer(key): return s[key] else: # if key is not a scalar, directly raise an error (the code below # would convert to numpy arrays and raise later any way) - GH29926 raise InvalidIndexError(key) s = com.values_from_object(series) k = com.values_from_object(key) k = self._convert_scalar_indexer(k, kind="getitem") try: return self._engine.get_value(s, k, tz=getattr(series.dtype, "tz", None)) except KeyError as e1: if len(self) > 0 and (self.holds_integer() or self.is_boolean()): raise try: return libindex.get_value_at(s, key) except IndexError: raise except TypeError: # generator/iterator-like if is_iterator(key): raise InvalidIndexError(key) else: raise e1 except Exception: raise e1 except TypeError: # e.g. "[False] is an invalid key" if is_scalar(key): raise IndexError(key) raise InvalidIndexError(key) def set_value(self, arr, key, value): """ Fast lookup of value from 1-dimensional ndarray. .. deprecated:: 1.0 Notes ----- Only use this if you know what you're doing. """ warnings.warn( ( "The 'set_value' method is deprecated, and " "will be removed in a future version." ), FutureWarning, stacklevel=2, ) self._engine.set_value( com.values_from_object(arr), com.values_from_object(key), value ) _index_shared_docs[ "get_indexer_non_unique" ] = """ Compute indexer and mask for new index given the current index. The indexer should be then used as an input to ndarray.take to align the current data to the new index. Parameters ---------- target : %(target_klass)s Returns ------- indexer : ndarray of int Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1. missing : ndarray of int An indexer into the target of the values not found. These correspond to the -1 in the indexer array. """ @Appender(_index_shared_docs["get_indexer_non_unique"] % _index_doc_kwargs) def get_indexer_non_unique(self, target): target = ensure_index(target) pself, ptarget = self._maybe_promote(target) if pself is not self or ptarget is not target: return pself.get_indexer_non_unique(ptarget) if is_categorical(target): tgt_values = np.asarray(target) elif self.is_all_dates: tgt_values = target.asi8 else: tgt_values = target._ndarray_values indexer, missing = self._engine.get_indexer_non_unique(tgt_values) return ensure_platform_int(indexer), missing def get_indexer_for(self, target, **kwargs): """ Guaranteed return of an indexer even when non-unique. This dispatches to get_indexer or get_indexer_non_unique as appropriate. Returns ------- numpy.ndarray List of indices. """ if self.is_unique: return self.get_indexer(target, **kwargs) indexer, _ = self.get_indexer_non_unique(target, **kwargs) return indexer def _maybe_promote(self, other): # A hack, but it works if self.inferred_type == "date" and isinstance(other, ABCDatetimeIndex): return type(other)(self), other elif self.inferred_type == "boolean": if not is_object_dtype(self.dtype): return self.astype("object"), other.astype("object") return self, other def groupby(self, values): """ Group the index labels by a given array of values. Parameters ---------- values : array Values used to determine the groups. Returns ------- groups : dict {group name -> group labels} """ # TODO: if we are a MultiIndex, we can do better # that converting to tuples if isinstance(values, ABCMultiIndex): values = values.values values = ensure_categorical(values) result = values._reverse_indexer() # map to the label result = {k: self.take(v) for k, v in result.items()} return result def map(self, mapper, na_action=None): """ Map values using input correspondence (a dict, Series, or function). Parameters ---------- mapper : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'} If 'ignore', propagate NA values, without passing them to the mapping correspondence. Returns ------- applied : Union[Index, MultiIndex], inferred The output of the mapping function applied to the index. If the function returns a tuple with more than one element a MultiIndex will be returned. """ from .multi import MultiIndex new_values = super()._map_values(mapper, na_action=na_action) attributes = self._get_attributes_dict() # we can return a MultiIndex if new_values.size and isinstance(new_values[0], tuple): if isinstance(self, MultiIndex): names = self.names elif attributes.get("name"): names = [attributes.get("name")] * len(new_values[0]) else: names = None return MultiIndex.from_tuples(new_values, names=names) attributes["copy"] = False if not new_values.size: # empty attributes["dtype"] = self.dtype return Index(new_values, **attributes) def isin(self, values, level=None): """ Return a boolean array where the index values are in `values`. Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index. Parameters ---------- values : set or list-like Sought values. level : str or int, optional Name or position of the index level to use (if the index is a `MultiIndex`). Returns ------- is_contained : ndarray NumPy array of boolean values. See Also -------- Series.isin : Same for Series. DataFrame.isin : Same method for DataFrames. Notes ----- In the case of `MultiIndex` you must either specify `values` as a list-like object containing tuples that are the same length as the number of levels, or specify `level`. Otherwise it will raise a ``ValueError``. If `level` is specified: - if it is the name of one *and only one* index level, use that level; - otherwise it should be a number indicating level position. Examples -------- >>> idx = pd.Index([1,2,3]) >>> idx Int64Index([1, 2, 3], dtype='int64') Check whether each index value in a list of values. >>> idx.isin([1, 4]) array([ True, False, False]) >>> midx = pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color')) >>> midx MultiIndex(levels=[[1, 2, 3], ['blue', 'green', 'red']], codes=[[0, 1, 2], [2, 0, 1]], names=['number', 'color']) Check whether the strings in the 'color' level of the MultiIndex are in a list of colors. >>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False]) To check across the levels of a MultiIndex, pass a list of tuples: >>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False]) For a DatetimeIndex, string values in `values` are converted to Timestamps. >>> dates = ['2000-03-11', '2000-03-12', '2000-03-13'] >>> dti = pd.to_datetime(dates) >>> dti DatetimeIndex(['2000-03-11', '2000-03-12', '2000-03-13'], dtype='datetime64[ns]', freq=None) >>> dti.isin(['2000-03-11']) array([ True, False, False]) """ if level is not None: self._validate_index_level(level) return algos.isin(self, values) def _get_string_slice(self, key, use_lhs=True, use_rhs=True): # this is for partial string indexing, # overridden in DatetimeIndex, TimedeltaIndex and PeriodIndex raise NotImplementedError def slice_indexer(self, start=None, end=None, step=None, kind=None): """ For an ordered or unique index, compute the slice indexer for input labels and step. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, default None kind : str, default None Returns ------- indexer : slice Raises ------ KeyError : If key does not exist, or key is not unique and index is not ordered. Notes ----- This function assumes that the data is sorted, so use at your own peril Examples -------- This is a method on all index types. For example you can do: >>> idx = pd.Index(list('abcd')) >>> idx.slice_indexer(start='b', end='c') slice(1, 3) >>> idx = pd.MultiIndex.from_arrays([list('abcd'), list('efgh')]) >>> idx.slice_indexer(start='b', end=('c', 'g')) slice(1, 3) """ start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind) # return a slice if not is_scalar(start_slice): raise AssertionError("Start slice bound is non-scalar") if not is_scalar(end_slice): raise AssertionError("End slice bound is non-scalar") return slice(start_slice, end_slice, step) def _maybe_cast_indexer(self, key): """ If we have a float key and are not a floating index, then try to cast to an int if equivalent. """ if is_float(key) and not self.is_floating(): try: ckey = int(key) if ckey == key: key = ckey except (OverflowError, ValueError, TypeError): pass return key def _validate_indexer(self, form, key, kind): """ If we are positional indexer, validate that we have appropriate typed bounds must be an integer. """ assert kind in ["ix", "loc", "getitem", "iloc"] if key is None: pass elif is_integer(key): pass elif kind in ["iloc", "getitem"]: self._invalid_indexer(form, key) return key _index_shared_docs[ "_maybe_cast_slice_bound" ] = """ This function should be overloaded in subclasses that allow non-trivial casting on label-slice bounds, e.g. datetime-like indices allowing strings containing formatted datetimes. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object Notes ----- Value of `side` parameter should be validated in caller. """ @Appender(_index_shared_docs["_maybe_cast_slice_bound"]) def _maybe_cast_slice_bound(self, label, side, kind): assert kind in ["ix", "loc", "getitem", None] # We are a plain index here (sub-class override this method if they # wish to have special treatment for floats/ints, e.g. Float64Index and # datetimelike Indexes # reject them if is_float(label): if not (kind in ["ix"] and (self.holds_integer() or self.is_floating())): self._invalid_indexer("slice", label) # we are trying to find integer bounds on a non-integer based index # this is rejected (generally .loc gets you here) elif is_integer(label): self._invalid_indexer("slice", label) return label def _searchsorted_monotonic(self, label, side="left"): if self.is_monotonic_increasing: return self.searchsorted(label, side=side) elif self.is_monotonic_decreasing: # np.searchsorted expects ascending sort order, have to reverse # everything for it to work (element ordering, search side and # resulting value). pos = self[::-1].searchsorted( label, side="right" if side == "left" else "left" ) return len(self) - pos raise ValueError("index must be monotonic increasing or decreasing") def get_slice_bound(self, label, side, kind): """ Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if ``side=='right'``) position of given label. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- int Index of label. """ assert kind in ["ix", "loc", "getitem", None] if side not in ("left", "right"): raise ValueError( f"Invalid value for side kwarg, must be either" f" 'left' or 'right': {side}" ) original_label = label # For datetime indices label may be a string that has to be converted # to datetime boundary according to its resolution. label = self._maybe_cast_slice_bound(label, side, kind) # we need to look up the label try: slc = self.get_loc(label) except KeyError as err: try: return self._searchsorted_monotonic(label, side) except ValueError: # raise the original KeyError raise err if isinstance(slc, np.ndarray): # get_loc may return a boolean array or an array of indices, which # is OK as long as they are representable by a slice. if is_bool_dtype(slc): slc = lib.maybe_booleans_to_slice(slc.view("u1")) else: slc = lib.maybe_indices_to_slice(slc.astype("i8"), len(self)) if isinstance(slc, np.ndarray): raise KeyError( f"Cannot get {side} slice bound for non-unique " f"label: {repr(original_label)}" ) if isinstance(slc, slice): if side == "left": return slc.start else: return slc.stop else: if side == "right": return slc + 1 else: return slc def slice_locs(self, start=None, end=None, step=None, kind=None): """ Compute slice locations for input labels. Parameters ---------- start : label, default None If None, defaults to the beginning. end : label, default None If None, defaults to the end. step : int, defaults None If None, defaults to 1. kind : {'ix', 'loc', 'getitem'} or None Returns ------- start, end : int See Also -------- Index.get_loc : Get location for a single label. Notes ----- This method only works if the index is monotonic or unique. Examples -------- >>> idx = pd.Index(list('abcd')) >>> idx.slice_locs(start='b', end='c') (1, 3) """ inc = step is None or step >= 0 if not inc: # If it's a reverse slice, temporarily swap bounds. start, end = end, start # GH 16785: If start and end happen to be date strings with UTC offsets # attempt to parse and check that the offsets are the same if isinstance(start, (str, datetime)) and isinstance(end, (str, datetime)): try: ts_start = Timestamp(start) ts_end = Timestamp(end) except (ValueError, TypeError): pass else: if not tz_compare(ts_start.tzinfo, ts_end.tzinfo): raise ValueError("Both dates must have the same UTC offset") start_slice = None if start is not None: start_slice = self.get_slice_bound(start, "left", kind) if start_slice is None: start_slice = 0 end_slice = None if end is not None: end_slice = self.get_slice_bound(end, "right", kind) if end_slice is None: end_slice = len(self) if not inc: # Bounds at this moment are swapped, swap them back and shift by 1. # # slice_locs('B', 'A', step=-1): s='B', e='A' # # s='A' e='B' # AFTER SWAP: | | # v ------------------> V # ----------------------------------- # | | |A|A|A|A| | | | | |B|B| | | | | # ----------------------------------- # ^ <------------------ ^ # SHOULD BE: | | # end=s-1 start=e-1 # end_slice, start_slice = start_slice - 1, end_slice - 1 # i == -1 triggers ``len(self) + i`` selection that points to the # last element, not before-the-first one, subtracting len(self) # compensates that. if end_slice == -1: end_slice -= len(self) if start_slice == -1: start_slice -= len(self) return start_slice, end_slice def delete(self, loc): """ Make new Index with passed location(-s) deleted. Returns ------- new_index : Index """ return self._shallow_copy(np.delete(self._data, loc)) def insert(self, loc, item): """ Make new Index inserting new item at location. Follows Python list.append semantics for negative values. Parameters ---------- loc : int item : object Returns ------- new_index : Index """ _self = np.asarray(self) item = self._coerce_scalar_to_index(item)._ndarray_values idx = np.concatenate((_self[:loc], item, _self[loc:])) return self._shallow_copy_with_infer(idx) def drop(self, labels, errors="raise"): """ Make new Index with passed list of labels deleted. Parameters ---------- labels : array-like errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. Returns ------- dropped : Index Raises ------ KeyError If not all of the labels are found in the selected axis """ arr_dtype = "object" if self.dtype == "object" else None labels = com.index_labels_to_array(labels, dtype=arr_dtype) indexer = self.get_indexer(labels) mask = indexer == -1 if mask.any(): if errors != "ignore": raise KeyError(f"{labels[mask]} not found in axis") indexer = indexer[~mask] return self.delete(indexer) # -------------------------------------------------------------------- # Generated Arithmetic, Comparison, and Unary Methods @classmethod def _add_comparison_methods(cls): """ Add in comparison methods. """ cls.__eq__ = _make_comparison_op(operator.eq, cls) cls.__ne__ = _make_comparison_op(operator.ne, cls) cls.__lt__ = _make_comparison_op(operator.lt, cls) cls.__gt__ = _make_comparison_op(operator.gt, cls) cls.__le__ = _make_comparison_op(operator.le, cls) cls.__ge__ = _make_comparison_op(operator.ge, cls) @classmethod def _add_numeric_methods_add_sub_disabled(cls): """ Add in the numeric add/sub methods to disable. """ cls.__add__ = make_invalid_op("__add__") cls.__radd__ = make_invalid_op("__radd__") cls.__iadd__ = make_invalid_op("__iadd__") cls.__sub__ = make_invalid_op("__sub__") cls.__rsub__ = make_invalid_op("__rsub__") cls.__isub__ = make_invalid_op("__isub__") @classmethod def _add_numeric_methods_disabled(cls): """ Add in numeric methods to disable other than add/sub. """ cls.__pow__ = make_invalid_op("__pow__") cls.__rpow__ = make_invalid_op("__rpow__") cls.__mul__ = make_invalid_op("__mul__") cls.__rmul__ = make_invalid_op("__rmul__") cls.__floordiv__ = make_invalid_op("__floordiv__") cls.__rfloordiv__ = make_invalid_op("__rfloordiv__") cls.__truediv__ = make_invalid_op("__truediv__") cls.__rtruediv__ = make_invalid_op("__rtruediv__") cls.__mod__ = make_invalid_op("__mod__") cls.__divmod__ = make_invalid_op("__divmod__") cls.__neg__ = make_invalid_op("__neg__") cls.__pos__ = make_invalid_op("__pos__") cls.__abs__ = make_invalid_op("__abs__") cls.__inv__ = make_invalid_op("__inv__") @classmethod def _add_numeric_methods_binary(cls): """ Add in numeric methods. """ cls.__add__ = _make_arithmetic_op(operator.add, cls) cls.__radd__ = _make_arithmetic_op(ops.radd, cls) cls.__sub__ = _make_arithmetic_op(operator.sub, cls) cls.__rsub__ = _make_arithmetic_op(ops.rsub, cls) cls.__rpow__ = _make_arithmetic_op(ops.rpow, cls) cls.__pow__ = _make_arithmetic_op(operator.pow, cls) cls.__truediv__ = _make_arithmetic_op(operator.truediv, cls) cls.__rtruediv__ = _make_arithmetic_op(ops.rtruediv, cls) # TODO: rmod? rdivmod? cls.__mod__ = _make_arithmetic_op(operator.mod, cls) cls.__floordiv__ = _make_arithmetic_op(operator.floordiv, cls) cls.__rfloordiv__ = _make_arithmetic_op(ops.rfloordiv, cls) cls.__divmod__ = _make_arithmetic_op(divmod, cls) cls.__mul__ = _make_arithmetic_op(operator.mul, cls) cls.__rmul__ = _make_arithmetic_op(ops.rmul, cls) @classmethod def _add_numeric_methods_unary(cls): """ Add in numeric unary methods. """ def _make_evaluate_unary(op, opstr): def _evaluate_numeric_unary(self): attrs = self._get_attributes_dict() return Index(op(self.values), **attrs) _evaluate_numeric_unary.__name__ = opstr return _evaluate_numeric_unary cls.__neg__ = _make_evaluate_unary(operator.neg, "__neg__") cls.__pos__ = _make_evaluate_unary(operator.pos, "__pos__") cls.__abs__ = _make_evaluate_unary(np.abs, "__abs__") cls.__inv__ = _make_evaluate_unary(lambda x: -x, "__inv__") @classmethod def _add_numeric_methods(cls): cls._add_numeric_methods_unary() cls._add_numeric_methods_binary() @classmethod def _add_logical_methods(cls): """ Add in logical methods. """ _doc = """ %(desc)s Parameters ---------- *args These parameters will be passed to numpy.%(outname)s. **kwargs These parameters will be passed to numpy.%(outname)s. Returns ------- %(outname)s : bool or array_like (if axis is specified) A single element array_like may be converted to bool.""" _index_shared_docs["index_all"] = dedent( """ See Also -------- Index.any : Return whether any element in an Index is True. Series.any : Return whether any element in a Series is True. Series.all : Return whether all elements in a Series are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- **all** True, because nonzero integers are considered True. >>> pd.Index([1, 2, 3]).all() True False, because ``0`` is considered False. >>> pd.Index([0, 1, 2]).all() False **any** True, because ``1`` is considered True. >>> pd.Index([0, 0, 1]).any() True False, because ``0`` is considered False. >>> pd.Index([0, 0, 0]).any() False """ ) _index_shared_docs["index_any"] = dedent( """ See Also -------- Index.all : Return whether all elements are True. Series.all : Return whether all elements are True. Notes ----- Not a Number (NaN), positive infinity and negative infinity evaluate to True because these are not equal to zero. Examples -------- >>> index = pd.Index([0, 1, 2]) >>> index.any() True >>> index = pd.Index([0, 0, 0]) >>> index.any() False """ ) def _make_logical_function(name, desc, f): @Substitution(outname=name, desc=desc) @Appender(_index_shared_docs["index_" + name]) @Appender(_doc) def logical_func(self, *args, **kwargs): result = f(self.values) if ( isinstance(result, (np.ndarray, ABCSeries, Index)) and result.ndim == 0 ): # return NumPy type return result.dtype.type(result.item()) else: # pragma: no cover return result logical_func.__name__ = name return logical_func cls.all = _make_logical_function( "all", "Return whether all elements are True.", np.all ) cls.any = _make_logical_function( "any", "Return whether any element is True.", np.any ) @classmethod def _add_logical_methods_disabled(cls): """ Add in logical methods to disable. """ cls.all = make_invalid_op("all") cls.any = make_invalid_op("any") @property def shape(self): """ Return a tuple of the shape of the underlying data. """ # not using "(len(self), )" to return "correct" shape if the values # consists of a >1 D array (see GH-27775) # overridden in MultiIndex.shape to avoid materializing the values return self._values.shape Index._add_numeric_methods_disabled() Index._add_logical_methods() Index._add_comparison_methods() def ensure_index_from_sequences(sequences, names=None): """ Construct an index from sequences of data. A single sequence returns an Index. Many sequences returns a MultiIndex. Parameters ---------- sequences : sequence of sequences names : sequence of str Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index_from_sequences([[1, 2, 3]], names=['name']) Int64Index([1, 2, 3], dtype='int64', name='name') >>> ensure_index_from_sequences([['a', 'a'], ['a', 'b']], names=['L1', 'L2']) MultiIndex([('a', 'a'), ('a', 'b')], names=['L1', 'L2']) See Also -------- ensure_index """ from .multi import MultiIndex if len(sequences) == 1: if names is not None: names = names[0] return Index(sequences[0], name=names) else: return MultiIndex.from_arrays(sequences, names=names) def ensure_index(index_like, copy=False): """ Ensure that we have an index from some index-like object. Parameters ---------- index : sequence An Index or other sequence copy : bool Returns ------- index : Index or MultiIndex Examples -------- >>> ensure_index(['a', 'b']) Index(['a', 'b'], dtype='object') >>> ensure_index([('a', 'a'), ('b', 'c')]) Index([('a', 'a'), ('b', 'c')], dtype='object') >>> ensure_index([['a', 'a'], ['b', 'c']]) MultiIndex([('a', 'b'), ('a', 'c')], dtype='object') ) See Also -------- ensure_index_from_sequences """ if isinstance(index_like, Index): if copy: index_like = index_like.copy() return index_like if hasattr(index_like, "name"): return Index(index_like, name=index_like.name, copy=copy) if is_iterator(index_like): index_like = list(index_like) # must check for exactly list here because of strict type # check in clean_index_list if isinstance(index_like, list): if type(index_like) != list: index_like = list(index_like) converted, all_arrays = lib.clean_index_list(index_like) if len(converted) > 0 and all_arrays: from .multi import MultiIndex return MultiIndex.from_arrays(converted) else: index_like = converted else: # clean_index_list does the equivalent of copying # so only need to do this if not list instance if copy: from copy import copy index_like = copy(index_like) return Index(index_like) def _ensure_has_len(seq): """ If seq is an iterator, put its values into a list. """ try: len(seq) except TypeError: return list(seq) else: return seq def _trim_front(strings): """ Trims zeros and decimal points. """ trimmed = strings while len(strings) > 0 and all(x[0] == " " for x in trimmed): trimmed = [x[1:] for x in trimmed] return trimmed def _validate_join_method(method): if method not in ["left", "right", "inner", "outer"]: raise ValueError(f"do not recognize join method {method}") def default_index(n): from pandas.core.index import RangeIndex return RangeIndex(0, n, name=None)
BugsInPy/BugsInPy/temp/projects/pandas/bug-110-fixed/pandas/pandas/core/indexes/base.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-110-buggy/pandas/pandas/core/indexes/base.py
pandas-bug-71
""" Quantilization functions and related stuff """ import numpy as np from pandas._libs import Timedelta, Timestamp from pandas._libs.lib import infer_dtype from pandas.core.dtypes.common import ( _NS_DTYPE, ensure_int64, is_bool_dtype, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_integer, is_list_like, is_scalar, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.dtypes.missing import isna from pandas import Categorical, Index, IntervalIndex, to_datetime, to_timedelta import pandas.core.algorithms as algos import pandas.core.nanops as nanops def cut( x, bins, right: bool = True, labels=None, retbins: bool = False, precision: int = 3, include_lowest: bool = False, duplicates: str = "raise", ): """ Bin values into discrete intervals. Use `cut` when you need to segment and sort data values into bins. This function is also useful for going from a continuous variable to a categorical variable. For example, `cut` could convert ages to groups of age ranges. Supports binning into an equal number of bins, or a pre-specified array of bins. Parameters ---------- x : array-like The input array to be binned. Must be 1-dimensional. bins : int, sequence of scalars, or IntervalIndex The criteria to bin by. * int : Defines the number of equal-width bins in the range of `x`. The range of `x` is extended by .1% on each side to include the minimum and maximum values of `x`. * sequence of scalars : Defines the bin edges allowing for non-uniform width. No extension of the range of `x` is done. * IntervalIndex : Defines the exact bins to be used. Note that IntervalIndex for `bins` must be non-overlapping. right : bool, default True Indicates whether `bins` includes the rightmost edge or not. If ``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]`` indicate (1,2], (2,3], (3,4]. This argument is ignored when `bins` is an IntervalIndex. labels : array or False, default None Specifies the labels for the returned bins. Must be the same length as the resulting bins. If False, returns only integer indicators of the bins. This affects the type of the output container (see below). This argument is ignored when `bins` is an IntervalIndex. If True, raises an error. retbins : bool, default False Whether to return the bins or not. Useful when bins is provided as a scalar. precision : int, default 3 The precision at which to store and display the bins labels. include_lowest : bool, default False Whether the first interval should be left-inclusive or not. duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. .. versionadded:: 0.23.0 Returns ------- out : Categorical, Series, or ndarray An array-like object representing the respective bin for each value of `x`. The type depends on the value of `labels`. * True (default) : returns a Series for Series `x` or a Categorical for all other inputs. The values stored within are Interval dtype. * sequence of scalars : returns a Series for Series `x` or a Categorical for all other inputs. The values stored within are whatever the type in the sequence is. * False : returns an ndarray of integers. bins : numpy.ndarray or IntervalIndex. The computed or specified bins. Only returned when `retbins=True`. For scalar or sequence `bins`, this is an ndarray with the computed bins. If set `duplicates=drop`, `bins` will drop non-unique bin. For an IntervalIndex `bins`, this is equal to `bins`. See Also -------- qcut : Discretize variable into equal-sized buckets based on rank or based on sample quantiles. Categorical : Array type for storing data that come from a fixed set of values. Series : One-dimensional array with axis labels (including time series). IntervalIndex : Immutable Index implementing an ordered, sliceable set. Notes ----- Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Series or Categorical object. Examples -------- Discretize into three equal-sized bins. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3) ... # doctest: +ELLIPSIS [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True) ... # doctest: +ELLIPSIS ([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... array([0.994, 3. , 5. , 7. ])) Discovers the same bins, but assign them specific labels. Notice that the returned Categorical's categories are `labels` and is ordered. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), ... 3, labels=["bad", "medium", "good"]) [bad, good, medium, medium, good, bad] Categories (3, object): [bad < medium < good] ``labels=False`` implies you just want the bins back. >>> pd.cut([0, 1, 1, 2], bins=4, labels=False) array([0, 1, 1, 3]) Passing a Series as an input returns a Series with categorical dtype: >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, 3) ... # doctest: +ELLIPSIS a (1.992, 4.667] b (1.992, 4.667] c (4.667, 7.333] d (7.333, 10.0] e (7.333, 10.0] dtype: category Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ... Passing a Series as an input returns a Series with mapping value. It is used to map numerically to intervals based on bins. >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False) ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 4.0 dtype: float64, array([0, 2, 4, 6, 8])) Use `drop` optional when bins is not unique >>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True, ... right=False, duplicates='drop') ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 3.0 dtype: float64, array([0, 2, 4, 6, 8])) Passing an IntervalIndex for `bins` results in those categories exactly. Notice that values not covered by the IntervalIndex are set to NaN. 0 is to the left of the first bin (which is closed on the right), and 1.5 falls between two bins. >>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)]) >>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins) [NaN, (0, 1], NaN, (2, 3], (4, 5]] Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]] """ # NOTE: this binning code is changed a bit from histogram for var(x) == 0 # for handling the cut for datetime and timedelta objects original = x x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if not np.iterable(bins): if is_scalar(bins) and bins < 1: raise ValueError("`bins` should be a positive integer.") try: # for array-like sz = x.size except AttributeError: x = np.asarray(x) sz = x.size if sz == 0: raise ValueError("Cannot cut empty array") rng = (nanops.nanmin(x), nanops.nanmax(x)) mn, mx = [mi + 0.0 for mi in rng] if np.isinf(mn) or np.isinf(mx): # GH 24314 raise ValueError( "cannot specify integer `bins` when input data contains infinity" ) elif mn == mx: # adjust end points before binning mn -= 0.001 * abs(mn) if mn != 0 else 0.001 mx += 0.001 * abs(mx) if mx != 0 else 0.001 bins = np.linspace(mn, mx, bins + 1, endpoint=True) else: # adjust end points after binning bins = np.linspace(mn, mx, bins + 1, endpoint=True) adj = (mx - mn) * 0.001 # 0.1% of the range if right: bins[0] -= adj else: bins[-1] += adj elif isinstance(bins, IntervalIndex): if bins.is_overlapping: raise ValueError("Overlapping IntervalIndex is not accepted.") else: if is_datetime64tz_dtype(bins): bins = np.asarray(bins, dtype=_NS_DTYPE) else: bins = np.asarray(bins) bins = _convert_bin_to_numeric_type(bins, dtype) # GH 26045: cast to float64 to avoid an overflow if (np.diff(bins.astype("float64")) < 0).any(): raise ValueError("bins must increase monotonically.") fac, bins = _bins_to_cuts( x, bins, right=right, labels=labels, precision=precision, include_lowest=include_lowest, dtype=dtype, duplicates=duplicates, ) return _postprocess_for_cut(fac, bins, retbins, dtype, original) def qcut( x, q, labels=None, retbins: bool = False, precision: int = 3, duplicates: str = "raise", ): """ Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point. Parameters ---------- x : 1d ndarray or Series q : int or list-like of int Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles. labels : array or False, default None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins. If True, raises an error. retbins : bool, optional Whether to return the (bins, labels) or not. Can be useful if bins is given as a scalar. precision : int, optional The precision at which to store and display the bins labels. duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. Returns ------- out : Categorical or Series or array of integers if labels is False The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned. bins : ndarray of floats Returned only if `retbins` is True. Notes ----- Out of bounds values will be NA in the resulting Categorical object Examples -------- >>> pd.qcut(range(5), 4) ... # doctest: +ELLIPSIS [(-0.001, 1.0], (-0.001, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]] Categories (4, interval[float64]): [(-0.001, 1.0] < (1.0, 2.0] ... >>> pd.qcut(range(5), 3, labels=["good", "medium", "bad"]) ... # doctest: +SKIP [good, good, medium, bad, bad] Categories (3, object): [good < medium < bad] >>> pd.qcut(range(5), 4, labels=False) array([0, 0, 1, 2, 3]) """ original = x x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if is_integer(q): quantiles = np.linspace(0, 1, q + 1) else: quantiles = q bins = algos.quantile(x, quantiles) fac, bins = _bins_to_cuts( x, bins, labels=labels, precision=precision, include_lowest=True, dtype=dtype, duplicates=duplicates, ) return _postprocess_for_cut(fac, bins, retbins, dtype, original) def _bins_to_cuts( x, bins, right: bool = True, labels=None, precision: int = 3, include_lowest: bool = False, dtype=None, duplicates: str = "raise", ): if duplicates not in ["raise", "drop"]: raise ValueError( "invalid value for 'duplicates' parameter, valid options are: raise, drop" ) if isinstance(bins, IntervalIndex): # we have a fast-path here ids = bins.get_indexer(x) result = Categorical.from_codes(ids, categories=bins, ordered=True) return result, bins unique_bins = algos.unique(bins) if len(unique_bins) < len(bins) and len(bins) != 2: if duplicates == "raise": raise ValueError( f"Bin edges must be unique: {repr(bins)}.\n" f"You can drop duplicate edges by setting the 'duplicates' kwarg" ) else: bins = unique_bins side = "left" if right else "right" ids = ensure_int64(bins.searchsorted(x, side=side)) if include_lowest: ids[x == bins[0]] = 1 na_mask = isna(x) | (ids == len(bins)) | (ids == 0) has_nas = na_mask.any() if labels is not False: if not (labels is None or is_list_like(labels)): raise ValueError( "Bin labels must either be False, None or passed in as a " "list-like argument" ) elif labels is None: labels = _format_labels( bins, precision, right=right, include_lowest=include_lowest, dtype=dtype ) else: if len(labels) != len(bins) - 1: raise ValueError( "Bin labels must be one fewer than the number of bin edges" ) if not is_categorical_dtype(labels): labels = Categorical(labels, categories=labels, ordered=True) np.putmask(ids, na_mask, 0) result = algos.take_nd(labels, ids - 1) else: result = ids - 1 if has_nas: result = result.astype(np.float64) np.putmask(result, na_mask, np.nan) return result, bins def _coerce_to_type(x): """ if the passed data is of datetime/timedelta or bool type, this method converts it to numeric so that cut or qcut method can handle it """ dtype = None if is_datetime64tz_dtype(x): dtype = x.dtype elif is_datetime64_dtype(x): x = to_datetime(x) dtype = np.dtype("datetime64[ns]") elif is_timedelta64_dtype(x): x = to_timedelta(x) dtype = np.dtype("timedelta64[ns]") elif is_bool_dtype(x): # GH 20303 x = x.astype(np.int64) if dtype is not None: # GH 19768: force NaT to NaN during integer conversion x = np.where(x.notna(), x.view(np.int64), np.nan) return x, dtype def _convert_bin_to_numeric_type(bins, dtype): """ if the passed bin is of datetime/timedelta type, this method converts it to integer Parameters ---------- bins : list-like of bins dtype : dtype of data Raises ------ ValueError if bins are not of a compat dtype to dtype """ bins_dtype = infer_dtype(bins, skipna=False) if is_timedelta64_dtype(dtype): if bins_dtype in ["timedelta", "timedelta64"]: bins = to_timedelta(bins).view(np.int64) else: raise ValueError("bins must be of timedelta64 dtype") elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): if bins_dtype in ["datetime", "datetime64"]: bins = to_datetime(bins).view(np.int64) else: raise ValueError("bins must be of datetime64 dtype") return bins def _convert_bin_to_datelike_type(bins, dtype): """ Convert bins to a DatetimeIndex or TimedeltaIndex if the original dtype is datelike Parameters ---------- bins : list-like of bins dtype : dtype of data Returns ------- bins : Array-like of bins, DatetimeIndex or TimedeltaIndex if dtype is datelike """ if is_datetime64tz_dtype(dtype): bins = to_datetime(bins.astype(np.int64), utc=True).tz_convert(dtype.tz) elif is_datetime_or_timedelta_dtype(dtype): bins = Index(bins.astype(np.int64), dtype=dtype) return bins def _format_labels( bins, precision: int, right: bool = True, include_lowest: bool = False, dtype=None ): """ based on the dtype, return our labels """ closed = "right" if right else "left" if is_datetime64tz_dtype(dtype): formatter = lambda x: Timestamp(x, tz=dtype.tz) adjust = lambda x: x - Timedelta("1ns") elif is_datetime64_dtype(dtype): formatter = Timestamp adjust = lambda x: x - Timedelta("1ns") elif is_timedelta64_dtype(dtype): formatter = Timedelta adjust = lambda x: x - Timedelta("1ns") else: precision = _infer_precision(precision, bins) formatter = lambda x: _round_frac(x, precision) adjust = lambda x: x - 10 ** (-precision) breaks = [formatter(b) for b in bins] if right and include_lowest: # adjust lhs of first interval by precision to account for being right closed breaks[0] = adjust(breaks[0]) return IntervalIndex.from_breaks(breaks, closed=closed) def _preprocess_for_cut(x): """ handles preprocessing for cut where we convert passed input to array, strip the index information and store it separately """ # Check that the passed array is a Pandas or Numpy object # We don't want to strip away a Pandas data-type here (e.g. datetimetz) ndim = getattr(x, "ndim", None) if ndim is None: x = np.asarray(x) if x.ndim != 1: raise ValueError("Input array must be 1 dimensional") return x def _postprocess_for_cut(fac, bins, retbins: bool, dtype, original): """ handles post processing for the cut method where we combine the index information if the originally passed datatype was a series """ if isinstance(original, ABCSeries): fac = original._constructor(fac, index=original.index, name=original.name) if not retbins: return fac bins = _convert_bin_to_datelike_type(bins, dtype) return fac, bins def _round_frac(x, precision: int): """ Round the fractional part of the given number """ if not np.isfinite(x) or x == 0: return x else: frac, whole = np.modf(x) if whole == 0: digits = -int(np.floor(np.log10(abs(frac)))) - 1 + precision else: digits = precision return np.around(x, digits) def _infer_precision(base_precision: int, bins) -> int: """Infer an appropriate precision for _round_frac """ for precision in range(base_precision, 20): levels = [_round_frac(b, precision) for b in bins] if algos.unique(levels).size == bins.size: return precision return base_precision # default """ Quantilization functions and related stuff """ import numpy as np from pandas._libs import Timedelta, Timestamp from pandas._libs.lib import infer_dtype from pandas.core.dtypes.common import ( _NS_DTYPE, ensure_int64, is_bool_dtype, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_extension_array_dtype, is_integer, is_integer_dtype, is_list_like, is_scalar, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ABCSeries from pandas.core.dtypes.missing import isna from pandas import Categorical, Index, IntervalIndex, to_datetime, to_timedelta import pandas.core.algorithms as algos import pandas.core.nanops as nanops def cut( x, bins, right: bool = True, labels=None, retbins: bool = False, precision: int = 3, include_lowest: bool = False, duplicates: str = "raise", ): """ Bin values into discrete intervals. Use `cut` when you need to segment and sort data values into bins. This function is also useful for going from a continuous variable to a categorical variable. For example, `cut` could convert ages to groups of age ranges. Supports binning into an equal number of bins, or a pre-specified array of bins. Parameters ---------- x : array-like The input array to be binned. Must be 1-dimensional. bins : int, sequence of scalars, or IntervalIndex The criteria to bin by. * int : Defines the number of equal-width bins in the range of `x`. The range of `x` is extended by .1% on each side to include the minimum and maximum values of `x`. * sequence of scalars : Defines the bin edges allowing for non-uniform width. No extension of the range of `x` is done. * IntervalIndex : Defines the exact bins to be used. Note that IntervalIndex for `bins` must be non-overlapping. right : bool, default True Indicates whether `bins` includes the rightmost edge or not. If ``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]`` indicate (1,2], (2,3], (3,4]. This argument is ignored when `bins` is an IntervalIndex. labels : array or False, default None Specifies the labels for the returned bins. Must be the same length as the resulting bins. If False, returns only integer indicators of the bins. This affects the type of the output container (see below). This argument is ignored when `bins` is an IntervalIndex. If True, raises an error. retbins : bool, default False Whether to return the bins or not. Useful when bins is provided as a scalar. precision : int, default 3 The precision at which to store and display the bins labels. include_lowest : bool, default False Whether the first interval should be left-inclusive or not. duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. .. versionadded:: 0.23.0 Returns ------- out : Categorical, Series, or ndarray An array-like object representing the respective bin for each value of `x`. The type depends on the value of `labels`. * True (default) : returns a Series for Series `x` or a Categorical for all other inputs. The values stored within are Interval dtype. * sequence of scalars : returns a Series for Series `x` or a Categorical for all other inputs. The values stored within are whatever the type in the sequence is. * False : returns an ndarray of integers. bins : numpy.ndarray or IntervalIndex. The computed or specified bins. Only returned when `retbins=True`. For scalar or sequence `bins`, this is an ndarray with the computed bins. If set `duplicates=drop`, `bins` will drop non-unique bin. For an IntervalIndex `bins`, this is equal to `bins`. See Also -------- qcut : Discretize variable into equal-sized buckets based on rank or based on sample quantiles. Categorical : Array type for storing data that come from a fixed set of values. Series : One-dimensional array with axis labels (including time series). IntervalIndex : Immutable Index implementing an ordered, sliceable set. Notes ----- Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Series or Categorical object. Examples -------- Discretize into three equal-sized bins. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3) ... # doctest: +ELLIPSIS [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True) ... # doctest: +ELLIPSIS ([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... array([0.994, 3. , 5. , 7. ])) Discovers the same bins, but assign them specific labels. Notice that the returned Categorical's categories are `labels` and is ordered. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), ... 3, labels=["bad", "medium", "good"]) [bad, good, medium, medium, good, bad] Categories (3, object): [bad < medium < good] ``labels=False`` implies you just want the bins back. >>> pd.cut([0, 1, 1, 2], bins=4, labels=False) array([0, 1, 1, 3]) Passing a Series as an input returns a Series with categorical dtype: >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, 3) ... # doctest: +ELLIPSIS a (1.992, 4.667] b (1.992, 4.667] c (4.667, 7.333] d (7.333, 10.0] e (7.333, 10.0] dtype: category Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ... Passing a Series as an input returns a Series with mapping value. It is used to map numerically to intervals based on bins. >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False) ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 4.0 dtype: float64, array([0, 2, 4, 6, 8])) Use `drop` optional when bins is not unique >>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True, ... right=False, duplicates='drop') ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 3.0 dtype: float64, array([0, 2, 4, 6, 8])) Passing an IntervalIndex for `bins` results in those categories exactly. Notice that values not covered by the IntervalIndex are set to NaN. 0 is to the left of the first bin (which is closed on the right), and 1.5 falls between two bins. >>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)]) >>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins) [NaN, (0, 1], NaN, (2, 3], (4, 5]] Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]] """ # NOTE: this binning code is changed a bit from histogram for var(x) == 0 # for handling the cut for datetime and timedelta objects original = x x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) # To support cut(IntegerArray), we convert to object dtype with NaN # Will properly support in the future. # https://github.com/pandas-dev/pandas/pull/31290 if is_extension_array_dtype(x.dtype) and is_integer_dtype(x.dtype): x = x.to_numpy(dtype=object, na_value=np.nan) if not np.iterable(bins): if is_scalar(bins) and bins < 1: raise ValueError("`bins` should be a positive integer.") try: # for array-like sz = x.size except AttributeError: x = np.asarray(x) sz = x.size if sz == 0: raise ValueError("Cannot cut empty array") rng = (nanops.nanmin(x), nanops.nanmax(x)) mn, mx = [mi + 0.0 for mi in rng] if np.isinf(mn) or np.isinf(mx): # GH 24314 raise ValueError( "cannot specify integer `bins` when input data contains infinity" ) elif mn == mx: # adjust end points before binning mn -= 0.001 * abs(mn) if mn != 0 else 0.001 mx += 0.001 * abs(mx) if mx != 0 else 0.001 bins = np.linspace(mn, mx, bins + 1, endpoint=True) else: # adjust end points after binning bins = np.linspace(mn, mx, bins + 1, endpoint=True) adj = (mx - mn) * 0.001 # 0.1% of the range if right: bins[0] -= adj else: bins[-1] += adj elif isinstance(bins, IntervalIndex): if bins.is_overlapping: raise ValueError("Overlapping IntervalIndex is not accepted.") else: if is_datetime64tz_dtype(bins): bins = np.asarray(bins, dtype=_NS_DTYPE) else: bins = np.asarray(bins) bins = _convert_bin_to_numeric_type(bins, dtype) # GH 26045: cast to float64 to avoid an overflow if (np.diff(bins.astype("float64")) < 0).any(): raise ValueError("bins must increase monotonically.") fac, bins = _bins_to_cuts( x, bins, right=right, labels=labels, precision=precision, include_lowest=include_lowest, dtype=dtype, duplicates=duplicates, ) return _postprocess_for_cut(fac, bins, retbins, dtype, original) def qcut( x, q, labels=None, retbins: bool = False, precision: int = 3, duplicates: str = "raise", ): """ Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point. Parameters ---------- x : 1d ndarray or Series q : int or list-like of int Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles. labels : array or False, default None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins. If True, raises an error. retbins : bool, optional Whether to return the (bins, labels) or not. Can be useful if bins is given as a scalar. precision : int, optional The precision at which to store and display the bins labels. duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. Returns ------- out : Categorical or Series or array of integers if labels is False The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned. bins : ndarray of floats Returned only if `retbins` is True. Notes ----- Out of bounds values will be NA in the resulting Categorical object Examples -------- >>> pd.qcut(range(5), 4) ... # doctest: +ELLIPSIS [(-0.001, 1.0], (-0.001, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]] Categories (4, interval[float64]): [(-0.001, 1.0] < (1.0, 2.0] ... >>> pd.qcut(range(5), 3, labels=["good", "medium", "bad"]) ... # doctest: +SKIP [good, good, medium, bad, bad] Categories (3, object): [good < medium < bad] >>> pd.qcut(range(5), 4, labels=False) array([0, 0, 1, 2, 3]) """ original = x x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if is_integer(q): quantiles = np.linspace(0, 1, q + 1) else: quantiles = q bins = algos.quantile(x, quantiles) fac, bins = _bins_to_cuts( x, bins, labels=labels, precision=precision, include_lowest=True, dtype=dtype, duplicates=duplicates, ) return _postprocess_for_cut(fac, bins, retbins, dtype, original) def _bins_to_cuts( x, bins, right: bool = True, labels=None, precision: int = 3, include_lowest: bool = False, dtype=None, duplicates: str = "raise", ): if duplicates not in ["raise", "drop"]: raise ValueError( "invalid value for 'duplicates' parameter, valid options are: raise, drop" ) if isinstance(bins, IntervalIndex): # we have a fast-path here ids = bins.get_indexer(x) result = Categorical.from_codes(ids, categories=bins, ordered=True) return result, bins unique_bins = algos.unique(bins) if len(unique_bins) < len(bins) and len(bins) != 2: if duplicates == "raise": raise ValueError( f"Bin edges must be unique: {repr(bins)}.\n" f"You can drop duplicate edges by setting the 'duplicates' kwarg" ) else: bins = unique_bins side = "left" if right else "right" ids = ensure_int64(bins.searchsorted(x, side=side)) if include_lowest: ids[x == bins[0]] = 1 na_mask = isna(x) | (ids == len(bins)) | (ids == 0) has_nas = na_mask.any() if labels is not False: if not (labels is None or is_list_like(labels)): raise ValueError( "Bin labels must either be False, None or passed in as a " "list-like argument" ) elif labels is None: labels = _format_labels( bins, precision, right=right, include_lowest=include_lowest, dtype=dtype ) else: if len(labels) != len(bins) - 1: raise ValueError( "Bin labels must be one fewer than the number of bin edges" ) if not is_categorical_dtype(labels): labels = Categorical(labels, categories=labels, ordered=True) np.putmask(ids, na_mask, 0) result = algos.take_nd(labels, ids - 1) else: result = ids - 1 if has_nas: result = result.astype(np.float64) np.putmask(result, na_mask, np.nan) return result, bins def _coerce_to_type(x): """ if the passed data is of datetime/timedelta or bool type, this method converts it to numeric so that cut or qcut method can handle it """ dtype = None if is_datetime64tz_dtype(x): dtype = x.dtype elif is_datetime64_dtype(x): x = to_datetime(x) dtype = np.dtype("datetime64[ns]") elif is_timedelta64_dtype(x): x = to_timedelta(x) dtype = np.dtype("timedelta64[ns]") elif is_bool_dtype(x): # GH 20303 x = x.astype(np.int64) if dtype is not None: # GH 19768: force NaT to NaN during integer conversion x = np.where(x.notna(), x.view(np.int64), np.nan) return x, dtype def _convert_bin_to_numeric_type(bins, dtype): """ if the passed bin is of datetime/timedelta type, this method converts it to integer Parameters ---------- bins : list-like of bins dtype : dtype of data Raises ------ ValueError if bins are not of a compat dtype to dtype """ bins_dtype = infer_dtype(bins, skipna=False) if is_timedelta64_dtype(dtype): if bins_dtype in ["timedelta", "timedelta64"]: bins = to_timedelta(bins).view(np.int64) else: raise ValueError("bins must be of timedelta64 dtype") elif is_datetime64_dtype(dtype) or is_datetime64tz_dtype(dtype): if bins_dtype in ["datetime", "datetime64"]: bins = to_datetime(bins).view(np.int64) else: raise ValueError("bins must be of datetime64 dtype") return bins def _convert_bin_to_datelike_type(bins, dtype): """ Convert bins to a DatetimeIndex or TimedeltaIndex if the original dtype is datelike Parameters ---------- bins : list-like of bins dtype : dtype of data Returns ------- bins : Array-like of bins, DatetimeIndex or TimedeltaIndex if dtype is datelike """ if is_datetime64tz_dtype(dtype): bins = to_datetime(bins.astype(np.int64), utc=True).tz_convert(dtype.tz) elif is_datetime_or_timedelta_dtype(dtype): bins = Index(bins.astype(np.int64), dtype=dtype) return bins def _format_labels( bins, precision: int, right: bool = True, include_lowest: bool = False, dtype=None ): """ based on the dtype, return our labels """ closed = "right" if right else "left" if is_datetime64tz_dtype(dtype): formatter = lambda x: Timestamp(x, tz=dtype.tz) adjust = lambda x: x - Timedelta("1ns") elif is_datetime64_dtype(dtype): formatter = Timestamp adjust = lambda x: x - Timedelta("1ns") elif is_timedelta64_dtype(dtype): formatter = Timedelta adjust = lambda x: x - Timedelta("1ns") else: precision = _infer_precision(precision, bins) formatter = lambda x: _round_frac(x, precision) adjust = lambda x: x - 10 ** (-precision) breaks = [formatter(b) for b in bins] if right and include_lowest: # adjust lhs of first interval by precision to account for being right closed breaks[0] = adjust(breaks[0]) return IntervalIndex.from_breaks(breaks, closed=closed) def _preprocess_for_cut(x): """ handles preprocessing for cut where we convert passed input to array, strip the index information and store it separately """ # Check that the passed array is a Pandas or Numpy object # We don't want to strip away a Pandas data-type here (e.g. datetimetz) ndim = getattr(x, "ndim", None) if ndim is None: x = np.asarray(x) if x.ndim != 1: raise ValueError("Input array must be 1 dimensional") return x def _postprocess_for_cut(fac, bins, retbins: bool, dtype, original): """ handles post processing for the cut method where we combine the index information if the originally passed datatype was a series """ if isinstance(original, ABCSeries): fac = original._constructor(fac, index=original.index, name=original.name) if not retbins: return fac bins = _convert_bin_to_datelike_type(bins, dtype) return fac, bins def _round_frac(x, precision: int): """ Round the fractional part of the given number """ if not np.isfinite(x) or x == 0: return x else: frac, whole = np.modf(x) if whole == 0: digits = -int(np.floor(np.log10(abs(frac)))) - 1 + precision else: digits = precision return np.around(x, digits) def _infer_precision(base_precision: int, bins) -> int: """Infer an appropriate precision for _round_frac """ for precision in range(base_precision, 20): levels = [_round_frac(b, precision) for b in bins] if algos.unique(levels).size == bins.size: return precision return base_precision # default
BugsInPy/BugsInPy/temp/projects/pandas/bug-71-fixed/pandas/pandas/core/reshape/tile.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-71-buggy/pandas/pandas/core/reshape/tile.py
pandas-bug-55
import collections from datetime import timedelta import functools import gc import json import operator import pickle import re from textwrap import dedent from typing import ( TYPE_CHECKING, Any, Callable, Dict, FrozenSet, Hashable, List, Mapping, Optional, Sequence, Set, Tuple, Type, Union, ) import warnings import weakref import numpy as np from pandas._config import config from pandas._libs import Timestamp, iNaT, lib from pandas._typing import ( Axis, Dtype, FilePathOrBuffer, FrameOrSeries, JSONSerializable, Label, Level, Renamer, ) from pandas.compat import set_function_name from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError from pandas.util._decorators import ( Appender, Substitution, doc, rewrite_axis_style_signature, ) from pandas.util._validators import ( validate_bool_kwarg, validate_fillna_kwargs, validate_percentile, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_str, is_bool, is_bool_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dict_like, is_extension_array_dtype, is_float, is_integer, is_list_like, is_number, is_numeric_dtype, is_object_dtype, is_period_arraylike, is_re_compilable, is_scalar, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna import pandas as pd from pandas.core import missing, nanops import pandas.core.algorithms as algos from pandas.core.base import PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.construction import create_series_with_explicit_dtype from pandas.core.indexes.api import ( Index, InvalidIndexError, MultiIndex, RangeIndex, ensure_index, ) from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import Period, PeriodIndex import pandas.core.indexing as indexing from pandas.core.internals import BlockManager from pandas.core.missing import find_valid_index from pandas.core.ops import _align_method_FRAME from pandas.io.formats import format as fmt from pandas.io.formats.format import DataFrameFormatter, format_percentiles from pandas.io.formats.printing import pprint_thing from pandas.tseries.frequencies import to_offset if TYPE_CHECKING: from pandas.core.resample import Resampler # goal is to be able to define the docs close to function, while still being # able to share _shared_docs: Dict[str, str] = dict() _shared_doc_kwargs = dict( axes="keywords for axes", klass="Series/DataFrame", axes_single_arg="int or labels for object", args_transpose="axes to permute (int or label for object)", optional_by=""" by : str or list of str Name or list of names to sort by""", ) def _single_replace(self, to_replace, method, inplace, limit): """ Replaces values in a Series using the fill method specified when no replacement value is given in the replace method """ if self.ndim != 1: raise TypeError( f"cannot replace {to_replace} with method {method} on a " f"{type(self).__name__}" ) orig_dtype = self.dtype result = self if inplace else self.copy() fill_f = missing.get_fill_func(method) mask = missing.mask_missing(result.values, to_replace) values = fill_f(result.values, limit=limit, mask=mask) if values.dtype == orig_dtype and inplace: return result = pd.Series(values, index=self.index, dtype=self.dtype).__finalize__(self) if inplace: self._update_inplace(result._data) return return result bool_t = bool # Need alias because NDFrame has def bool: class NDFrame(PandasObject, SelectionMixin, indexing.IndexingMixin): """ N-dimensional analogue of DataFrame. Store multi-dimensional in a size-mutable, labeled data structure Parameters ---------- data : BlockManager axes : list copy : bool, default False """ _internal_names: List[str] = [ "_data", "_cacher", "_item_cache", "_cache", "_is_copy", "_subtyp", "_name", "_index", "_default_kind", "_default_fill_value", "_metadata", "__array_struct__", "__array_interface__", ] _internal_names_set: Set[str] = set(_internal_names) _accessors: Set[str] = set() _deprecations: FrozenSet[str] = frozenset(["get_values"]) _metadata: List[str] = [] _is_copy = None _data: BlockManager _attrs: Dict[Optional[Hashable], Any] _typ: str # ---------------------------------------------------------------------- # Constructors def __init__( self, data: BlockManager, axes: Optional[List[Index]] = None, copy: bool = False, dtype: Optional[Dtype] = None, attrs: Optional[Mapping[Optional[Hashable], Any]] = None, fastpath: bool = False, ): if not fastpath: if dtype is not None: data = data.astype(dtype) elif copy: data = data.copy() if axes is not None: for i, ax in enumerate(axes): data = data.reindex_axis(ax, axis=i) object.__setattr__(self, "_is_copy", None) object.__setattr__(self, "_data", data) object.__setattr__(self, "_item_cache", {}) if attrs is None: attrs = {} else: attrs = dict(attrs) object.__setattr__(self, "_attrs", attrs) def _init_mgr(self, mgr, axes=None, dtype=None, copy=False): """ passed a manager and a axes dict """ for a, axe in axes.items(): if axe is not None: mgr = mgr.reindex_axis( axe, axis=self._get_block_manager_axis(a), copy=False ) # make a copy if explicitly requested if copy: mgr = mgr.copy() if dtype is not None: # avoid further copies if we can if len(mgr.blocks) > 1 or mgr.blocks[0].values.dtype != dtype: mgr = mgr.astype(dtype=dtype) return mgr # ---------------------------------------------------------------------- @property def attrs(self) -> Dict[Optional[Hashable], Any]: """ Dictionary of global attributes on this object. .. warning:: attrs is experimental and may change without warning. """ if self._attrs is None: self._attrs = {} return self._attrs @attrs.setter def attrs(self, value: Mapping[Optional[Hashable], Any]) -> None: self._attrs = dict(value) def _validate_dtype(self, dtype): """ validate the passed dtype """ if dtype is not None: dtype = pandas_dtype(dtype) # a compound dtype if dtype.kind == "V": raise NotImplementedError( "compound dtypes are not implemented " f"in the {type(self).__name__} constructor" ) return dtype # ---------------------------------------------------------------------- # Construction @property def _constructor(self: FrameOrSeries) -> Type[FrameOrSeries]: """ Used when a manipulation result has the same dimensions as the original. """ raise AbstractMethodError(self) @property def _constructor_sliced(self): """ Used when a manipulation result has one lower dimension(s) as the original, such as DataFrame single columns slicing. """ raise AbstractMethodError(self) @property def _constructor_expanddim(self): """ Used when a manipulation result has one higher dimension as the original, such as Series.to_frame() """ raise NotImplementedError # ---------------------------------------------------------------------- # Axis _AXIS_ALIASES = {"rows": 0} _AXIS_IALIASES = {0: "rows"} _stat_axis_number = 0 _stat_axis_name = "index" _ix = None _AXIS_ORDERS: List[str] _AXIS_NUMBERS: Dict[str, int] _AXIS_NAMES: Dict[int, str] _AXIS_REVERSED: bool _info_axis_number: int _info_axis_name: str _AXIS_LEN: int def _construct_axes_dict(self, axes=None, **kwargs): """Return an axes dictionary for myself.""" d = {a: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d def _construct_axes_from_arguments( self, args, kwargs, require_all: bool = False, sentinel=None ): """ Construct and returns axes if supplied in args/kwargs. If require_all, raise if all axis arguments are not supplied return a tuple of (axes, kwargs). sentinel specifies the default parameter when an axis is not supplied; useful to distinguish when a user explicitly passes None in scenarios where None has special meaning. """ # construct the args args = list(args) for a in self._AXIS_ORDERS: # look for a argument by position if a not in kwargs: try: kwargs[a] = args.pop(0) except IndexError: if require_all: raise TypeError("not enough/duplicate arguments specified!") axes = {a: kwargs.pop(a, sentinel) for a in self._AXIS_ORDERS} return axes, kwargs @classmethod def _get_axis_number(cls, axis): axis = cls._AXIS_ALIASES.get(axis, axis) if is_integer(axis): if axis in cls._AXIS_NAMES: return axis else: try: return cls._AXIS_NUMBERS[axis] except KeyError: pass raise ValueError(f"No axis named {axis} for object type {cls}") @classmethod def _get_axis_name(cls, axis): axis = cls._AXIS_ALIASES.get(axis, axis) if isinstance(axis, str): if axis in cls._AXIS_NUMBERS: return axis else: try: return cls._AXIS_NAMES[axis] except KeyError: pass raise ValueError(f"No axis named {axis} for object type {cls}") def _get_axis(self, axis): name = self._get_axis_name(axis) return getattr(self, name) @classmethod def _get_block_manager_axis(cls, axis): """Map the axis to the block_manager axis.""" axis = cls._get_axis_number(axis) if cls._AXIS_REVERSED: m = cls._AXIS_LEN - 1 return m - axis return axis def _get_axis_resolvers(self, axis: str) -> Dict[str, ABCSeries]: # index or columns axis_index = getattr(self, axis) d = dict() prefix = axis[0] for i, name in enumerate(axis_index.names): if name is not None: key = level = name else: # prefix with 'i' or 'c' depending on the input axis # e.g., you must do ilevel_0 for the 0th level of an unnamed # multiiindex key = f"{prefix}level_{i}" level = i level_values = axis_index.get_level_values(level) s = level_values.to_series() s.index = axis_index d[key] = s # put the index/columns itself in the dict if isinstance(axis_index, MultiIndex): dindex = axis_index else: dindex = axis_index.to_series() d[axis] = dindex return d def _get_index_resolvers(self) -> Dict[str, ABCSeries]: from pandas.core.computation.parsing import clean_column_name d: Dict[str, ABCSeries] = {} for axis_name in self._AXIS_ORDERS: d.update(self._get_axis_resolvers(axis_name)) return {clean_column_name(k): v for k, v in d.items() if not isinstance(k, int)} def _get_cleaned_column_resolvers(self) -> Dict[str, ABCSeries]: """ Return the special character free column resolvers of a dataframe. Column names with special characters are 'cleaned up' so that they can be referred to by backtick quoting. Used in :meth:`DataFrame.eval`. """ from pandas.core.computation.parsing import clean_column_name if isinstance(self, ABCSeries): return {clean_column_name(self.name): self} return { clean_column_name(k): v for k, v in self.items() if not isinstance(k, int) } @property def _info_axis(self): return getattr(self, self._info_axis_name) @property def _stat_axis(self): return getattr(self, self._stat_axis_name) @property def shape(self) -> Tuple[int, ...]: """ Return a tuple of axis dimensions """ return tuple(len(self._get_axis(a)) for a in self._AXIS_ORDERS) @property def axes(self) -> List[Index]: """ Return index label(s) of the internal NDFrame """ # we do it this way because if we have reversed axes, then # the block manager shows then reversed return [self._get_axis(a) for a in self._AXIS_ORDERS] @property def ndim(self) -> int: """ Return an int representing the number of axes / array dimensions. Return 1 if Series. Otherwise return 2 if DataFrame. See Also -------- ndarray.ndim : Number of array dimensions. Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.ndim 1 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.ndim 2 """ return self._data.ndim @property def size(self): """ Return an int representing the number of elements in this object. Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame. See Also -------- ndarray.size : Number of elements in the array. Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.size 3 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.size 4 """ return np.prod(self.shape) @property def _selected_obj(self: FrameOrSeries) -> FrameOrSeries: """ internal compat with SelectionMixin """ return self @property def _obj_with_exclusions(self: FrameOrSeries) -> FrameOrSeries: """ internal compat with SelectionMixin """ return self def set_axis(self, labels, axis=0, inplace=False): """ Assign desired index to given axis. Indexes for%(extended_summary_sub)s row labels can be changed by assigning a list-like or Index. .. versionchanged:: 0.21.0 The signature is now `labels` and `axis`, consistent with the rest of pandas API. Previously, the `axis` and `labels` arguments were respectively the first and second positional arguments. Parameters ---------- labels : list-like, Index The values for the new index. axis : %(axes_single_arg)s, default 0 The axis to update. The value 0 identifies the rows%(axis_description_sub)s. inplace : bool, default False Whether to return a new %(klass)s instance. Returns ------- renamed : %(klass)s or None An object of type %(klass)s if inplace=False, None otherwise. See Also -------- %(klass)s.rename_axis : Alter the name of the index%(see_also_sub)s. """ if inplace: setattr(self, self._get_axis_name(axis), labels) else: obj = self.copy() obj.set_axis(labels, axis=axis, inplace=True) return obj def _set_axis(self, axis, labels) -> None: self._data.set_axis(axis, labels) self._clear_item_cache() def swapaxes(self: FrameOrSeries, axis1, axis2, copy=True) -> FrameOrSeries: """ Interchange axes and swap values axes appropriately. Returns ------- y : same as input """ i = self._get_axis_number(axis1) j = self._get_axis_number(axis2) if i == j: if copy: return self.copy() return self mapping = {i: j, j: i} new_axes = (self._get_axis(mapping.get(k, k)) for k in range(self._AXIS_LEN)) new_values = self.values.swapaxes(i, j) if copy: new_values = new_values.copy() return self._constructor(new_values, *new_axes).__finalize__(self) def droplevel(self: FrameOrSeries, level, axis=0) -> FrameOrSeries: """ Return DataFrame with requested index / column level(s) removed. .. versionadded:: 0.24.0 Parameters ---------- level : int, str, or list-like If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels. axis : {0 or 'index', 1 or 'columns'}, default 0 Returns ------- DataFrame DataFrame with requested index / column level(s) removed. Examples -------- >>> df = pd.DataFrame([ ... [1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12] ... ]).set_index([0, 1]).rename_axis(['a', 'b']) >>> df.columns = pd.MultiIndex.from_tuples([ ... ('c', 'e'), ('d', 'f') ... ], names=['level_1', 'level_2']) >>> df level_1 c d level_2 e f a b 1 2 3 4 5 6 7 8 9 10 11 12 >>> df.droplevel('a') level_1 c d level_2 e f b 2 3 4 6 7 8 10 11 12 >>> df.droplevel('level2', axis=1) level_1 c d a b 1 2 3 4 5 6 7 8 9 10 11 12 """ labels = self._get_axis(axis) new_labels = labels.droplevel(level) result = self.set_axis(new_labels, axis=axis, inplace=False) return result def pop(self: FrameOrSeries, item) -> FrameOrSeries: """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Label of column to be popped. Returns ------- Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN """ result = self[item] del self[item] try: result._reset_cacher() except AttributeError: pass return result def squeeze(self, axis=None): """ Squeeze 1 dimensional axis objects into scalars. Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged. This method is most useful when you don't know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call `squeeze` to ensure you have a Series. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default None A specific axis to squeeze. By default, all length-1 axes are squeezed. Returns ------- DataFrame, Series, or scalar The projection after squeezing `axis` or all the axes. See Also -------- Series.iloc : Integer-location based indexing for selecting scalars. DataFrame.iloc : Integer-location based indexing for selecting Series. Series.to_frame : Inverse of DataFrame.squeeze for a single-column DataFrame. Examples -------- >>> primes = pd.Series([2, 3, 5, 7]) Slicing might produce a Series with a single value: >>> even_primes = primes[primes % 2 == 0] >>> even_primes 0 2 dtype: int64 >>> even_primes.squeeze() 2 Squeezing objects with more than one value in every axis does nothing: >>> odd_primes = primes[primes % 2 == 1] >>> odd_primes 1 3 2 5 3 7 dtype: int64 >>> odd_primes.squeeze() 1 3 2 5 3 7 dtype: int64 Squeezing is even more effective when used with DataFrames. >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) >>> df a b 0 1 2 1 3 4 Slicing a single column will produce a DataFrame with the columns having only one value: >>> df_a = df[['a']] >>> df_a a 0 1 1 3 So the columns can be squeezed down, resulting in a Series: >>> df_a.squeeze('columns') 0 1 1 3 Name: a, dtype: int64 Slicing a single row from a single column will produce a single scalar DataFrame: >>> df_0a = df.loc[df.index < 1, ['a']] >>> df_0a a 0 1 Squeezing the rows produces a single scalar Series: >>> df_0a.squeeze('rows') a 1 Name: 0, dtype: int64 Squeezing all axes will project directly into a scalar: >>> df_0a.squeeze() 1 """ axis = self._AXIS_NAMES if axis is None else (self._get_axis_number(axis),) return self.iloc[ tuple( 0 if i in axis and len(a) == 1 else slice(None) for i, a in enumerate(self.axes) ) ] # ---------------------------------------------------------------------- # Rename def rename( self: FrameOrSeries, mapper: Optional[Renamer] = None, *, index: Optional[Renamer] = None, columns: Optional[Renamer] = None, axis: Optional[Axis] = None, copy: bool = True, inplace: bool = False, level: Optional[Level] = None, errors: str = "ignore", ) -> Optional[FrameOrSeries]: """ Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value (Series only). Parameters ---------- %(axes)s : scalar, list-like, dict-like or function, optional Scalar or list-like will alter the ``Series.name`` attribute, and raise on DataFrame. dict-like or functions are transformations to apply to that axis' values copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new %(klass)s. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- renamed : %(klass)s (new object) Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- NDFrame.rename_axis Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 Since ``DataFrame`` doesn't have a ``.name`` attribute, only mapping-type arguments are allowed. >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(2) Traceback (most recent call last): ... TypeError: 'int' object is not callable ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 >>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6 Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 See the :ref:`user guide <basics.rename>` for more. """ if mapper is None and index is None and columns is None: raise TypeError("must pass an index to rename") if index is not None or columns is not None: if axis is not None: raise TypeError( "Cannot specify both 'axis' and any of 'index' or 'columns'" ) elif mapper is not None: raise TypeError( "Cannot specify both 'mapper' and any of 'index' or 'columns'" ) else: # use the mapper argument if axis and self._get_axis_number(axis) == 1: columns = mapper else: index = mapper result = self if inplace else self.copy(deep=copy) for axis_no, replacements in enumerate((index, columns)): if replacements is None: continue ax = self._get_axis(axis_no) baxis = self._get_block_manager_axis(axis_no) f = com.get_rename_function(replacements) if level is not None: level = ax._get_level_number(level) # GH 13473 if not callable(replacements): indexer = ax.get_indexer_for(replacements) if errors == "raise" and len(indexer[indexer == -1]): missing_labels = [ label for index, label in enumerate(replacements) if indexer[index] == -1 ] raise KeyError(f"{missing_labels} not found in axis") result._data = result._data.rename_axis( f, axis=baxis, copy=copy, level=level ) result._clear_item_cache() if inplace: self._update_inplace(result._data) return None else: return result.__finalize__(self) @rewrite_axis_style_signature("mapper", [("copy", True), ("inplace", False)]) def rename_axis(self, mapper=lib.no_default, **kwargs): """ Set the name of the axis for the index or columns. Parameters ---------- mapper : scalar, list-like, optional Value to set the axis name attribute. index, columns : scalar, list-like, dict-like or function, optional A scalar, list-like, dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and/or ``columns``. .. versionchanged:: 0.24.0 axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to rename. copy : bool, default True Also copy underlying data. inplace : bool, default False Modifies the object directly, instead of creating a new Series or DataFrame. Returns ------- Series, DataFrame, or None The same type as the caller or None if `inplace` is True. See Also -------- Series.rename : Alter Series index labels or name. DataFrame.rename : Alter DataFrame index labels or name. Index.rename : Set new names on index. Notes ----- ``DataFrame.rename_axis`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter ``copy`` is ignored. The second calling convention will modify the names of the the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis *labels*. We *highly* recommend using keyword arguments to clarify your intent. Examples -------- **Series** >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object **DataFrame** >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 **MultiIndex** >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 """ axes, kwargs = self._construct_axes_from_arguments( (), kwargs, sentinel=lib.no_default ) copy = kwargs.pop("copy", True) inplace = kwargs.pop("inplace", False) axis = kwargs.pop("axis", 0) if axis is not None: axis = self._get_axis_number(axis) if kwargs: raise TypeError( "rename_axis() got an unexpected keyword " f'argument "{list(kwargs.keys())[0]}"' ) inplace = validate_bool_kwarg(inplace, "inplace") if mapper is not lib.no_default: # Use v0.23 behavior if a scalar or list non_mapper = is_scalar(mapper) or ( is_list_like(mapper) and not is_dict_like(mapper) ) if non_mapper: return self._set_axis_name(mapper, axis=axis, inplace=inplace) else: raise ValueError("Use `.rename` to alter labels with a mapper.") else: # Use new behavior. Means that index and/or columns # is specified result = self if inplace else self.copy(deep=copy) for axis in range(self._AXIS_LEN): v = axes.get(self._AXIS_NAMES[axis]) if v is lib.no_default: continue non_mapper = is_scalar(v) or (is_list_like(v) and not is_dict_like(v)) if non_mapper: newnames = v else: f = com.get_rename_function(v) curnames = self._get_axis(axis).names newnames = [f(name) for name in curnames] result._set_axis_name(newnames, axis=axis, inplace=True) if not inplace: return result def _set_axis_name(self, name, axis=0, inplace=False): """ Set the name(s) of the axis. Parameters ---------- name : str or list of str Name(s) to set. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to set the label. The value 0 or 'index' specifies index, and the value 1 or 'columns' specifies columns. inplace : bool, default False If `True`, do operation inplace and return None. .. versionadded:: 0.21.0 Returns ------- Series, DataFrame, or None The same type as the caller or `None` if `inplace` is `True`. See Also -------- DataFrame.rename : Alter the axis labels of :class:`DataFrame`. Series.rename : Alter the index labels or set the index name of :class:`Series`. Index.rename : Set the name of :class:`Index` or :class:`MultiIndex`. Examples -------- >>> df = pd.DataFrame({"num_legs": [4, 4, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs dog 4 cat 4 monkey 2 >>> df._set_axis_name("animal") num_legs animal dog 4 cat 4 monkey 2 >>> df.index = pd.MultiIndex.from_product( ... [["mammal"], ['dog', 'cat', 'monkey']]) >>> df._set_axis_name(["type", "name"]) legs type name mammal dog 4 cat 4 monkey 2 """ axis = self._get_axis_number(axis) idx = self._get_axis(axis).set_names(name) inplace = validate_bool_kwarg(inplace, "inplace") renamed = self if inplace else self.copy() renamed.set_axis(idx, axis=axis, inplace=True) if not inplace: return renamed # ---------------------------------------------------------------------- # Comparison Methods def _indexed_same(self, other) -> bool: return all( self._get_axis(a).equals(other._get_axis(a)) for a in self._AXIS_ORDERS ) def equals(self, other): """ Test whether two objects contain the same elements. This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The column headers do not need to have the same type, but the elements within the columns must be the same dtype. Parameters ---------- other : Series or DataFrame The other Series or DataFrame to be compared with the first. Returns ------- bool True if all elements are the same in both objects, False otherwise. See Also -------- Series.eq : Compare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise. DataFrame.eq : Compare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise. testing.assert_series_equal : Raises an AssertionError if left and right are not equal. Provides an easy interface to ignore inequality in dtypes, indexes and precision among others. testing.assert_frame_equal : Like assert_series_equal, but targets DataFrames. numpy.array_equal : Return True if two arrays have the same shape and elements, False otherwise. Notes ----- This function requires that the elements have the same dtype as their respective elements in the other Series or DataFrame. However, the column labels do not need to have the same type, as long as they are still considered equal. Examples -------- >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True. >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True. >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types. >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) >>> different_data_type 1 2 0 10.0 20.0 >>> df.equals(different_data_type) False """ if not isinstance(other, self._constructor): return False return self._data.equals(other._data) # ------------------------------------------------------------------------- # Unary Methods def __neg__(self): values = com.values_from_object(self) if is_bool_dtype(values): arr = operator.inv(values) elif ( is_numeric_dtype(values) or is_timedelta64_dtype(values) or is_object_dtype(values) ): arr = operator.neg(values) else: raise TypeError(f"Unary negative expects numeric dtype, not {values.dtype}") return self.__array_wrap__(arr) def __pos__(self): values = com.values_from_object(self) if is_bool_dtype(values) or is_period_arraylike(values): arr = values elif ( is_numeric_dtype(values) or is_timedelta64_dtype(values) or is_object_dtype(values) ): arr = operator.pos(values) else: raise TypeError(f"Unary plus expects numeric dtype, not {values.dtype}") return self.__array_wrap__(arr) def __invert__(self): if not self.size: # inv fails with 0 len return self new_data = self._data.apply(operator.invert) result = self._constructor(new_data).__finalize__(self) return result def __nonzero__(self): raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." ) __bool__ = __nonzero__ def bool(self): """ Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean Returns ------- bool Same single boolean value converted to bool type. """ v = self.squeeze() if isinstance(v, (bool, np.bool_)): return bool(v) elif is_scalar(v): raise ValueError( "bool cannot act on a non-boolean single element " f"{type(self).__name__}" ) self.__nonzero__() def __abs__(self: FrameOrSeries) -> FrameOrSeries: return self.abs() def __round__(self: FrameOrSeries, decimals: int = 0) -> FrameOrSeries: return self.round(decimals) # ------------------------------------------------------------------------- # Label or Level Combination Helpers # # A collection of helper methods for DataFrame/Series operations that # accept a combination of column/index labels and levels. All such # operations should utilize/extend these methods when possible so that we # have consistent precedence and validation logic throughout the library. def _is_level_reference(self, key, axis=0): """ Test whether a key is a level reference for a given axis. To be considered a level reference, `key` must be a string that: - (axis=0): Matches the name of an index level and does NOT match a column label. - (axis=1): Matches the name of a column level and does NOT match an index label. Parameters ---------- key : str Potential level name for the given axis axis : int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_level : bool """ axis = self._get_axis_number(axis) return ( key is not None and is_hashable(key) and key in self.axes[axis].names and not self._is_label_reference(key, axis=axis) ) def _is_label_reference(self, key, axis=0) -> bool_t: """ Test whether a key is a label reference for a given axis. To be considered a label reference, `key` must be a string that: - (axis=0): Matches a column label - (axis=1): Matches an index label Parameters ---------- key: str Potential label name axis: int, default 0 Axis perpendicular to the axis that labels are associated with (0 means search for column labels, 1 means search for index labels) Returns ------- is_label: bool """ axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) return ( key is not None and is_hashable(key) and any(key in self.axes[ax] for ax in other_axes) ) def _is_label_or_level_reference(self, key: str, axis: int = 0) -> bool_t: """ Test whether a key is a label or level reference for a given axis. To be considered either a label or a level reference, `key` must be a string that: - (axis=0): Matches a column label or an index level - (axis=1): Matches an index label or a column level Parameters ---------- key: str Potential label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_label_or_level: bool """ return self._is_level_reference(key, axis=axis) or self._is_label_reference( key, axis=axis ) def _check_label_or_level_ambiguity(self, key, axis: int = 0) -> None: """ Check whether `key` is ambiguous. By ambiguous, we mean that it matches both a level of the input `axis` and a label of the other axis. Parameters ---------- key: str or object Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns). Raises ------ ValueError: `key` is ambiguous """ axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) if ( key is not None and is_hashable(key) and key in self.axes[axis].names and any(key in self.axes[ax] for ax in other_axes) ): # Build an informative and grammatical warning level_article, level_type = ( ("an", "index") if axis == 0 else ("a", "column") ) label_article, label_type = ( ("a", "column") if axis == 0 else ("an", "index") ) msg = ( f"'{key}' is both {level_article} {level_type} level and " f"{label_article} {label_type} label, which is ambiguous." ) raise ValueError(msg) def _get_label_or_level_values(self, key: str, axis: int = 0) -> np.ndarray: """ Return a 1-D array of values associated with `key`, a label or level from the given `axis`. Retrieval logic: - (axis=0): Return column values if `key` matches a column label. Otherwise return index level values if `key` matches an index level. - (axis=1): Return row values if `key` matches an index label. Otherwise return column level values if 'key' matches a column level Parameters ---------- key: str Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- values: np.ndarray Raises ------ KeyError if `key` matches neither a label nor a level ValueError if `key` matches multiple labels FutureWarning if `key` is ambiguous. This will become an ambiguity error in a future version """ axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if ax != axis] if self._is_label_reference(key, axis=axis): self._check_label_or_level_ambiguity(key, axis=axis) values = self.xs(key, axis=other_axes[0])._values elif self._is_level_reference(key, axis=axis): values = self.axes[axis].get_level_values(key)._values else: raise KeyError(key) # Check for duplicates if values.ndim > 1: if other_axes and isinstance(self._get_axis(other_axes[0]), MultiIndex): multi_message = ( "\n" "For a multi-index, the label must be a " "tuple with elements corresponding to each level." ) else: multi_message = "" label_axis_name = "column" if axis == 0 else "index" raise ValueError( ( f"The {label_axis_name} label '{key}' " f"is not unique.{multi_message}" ) ) return values def _drop_labels_or_levels(self, keys, axis: int = 0): """ Drop labels and/or levels for the given `axis`. For each key in `keys`: - (axis=0): If key matches a column label then drop the column. Otherwise if key matches an index level then drop the level. - (axis=1): If key matches an index label then drop the row. Otherwise if key matches a column level then drop the level. Parameters ---------- keys: str or list of str labels or levels to drop axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- dropped: DataFrame Raises ------ ValueError if any `keys` match neither a label nor a level """ axis = self._get_axis_number(axis) # Validate keys keys = com.maybe_make_list(keys) invalid_keys = [ k for k in keys if not self._is_label_or_level_reference(k, axis=axis) ] if invalid_keys: raise ValueError( ( "The following keys are not valid labels or " f"levels for axis {axis}: {invalid_keys}" ) ) # Compute levels and labels to drop levels_to_drop = [k for k in keys if self._is_level_reference(k, axis=axis)] labels_to_drop = [k for k in keys if not self._is_level_reference(k, axis=axis)] # Perform copy upfront and then use inplace operations below. # This ensures that we always perform exactly one copy. # ``copy`` and/or ``inplace`` options could be added in the future. dropped = self.copy() if axis == 0: # Handle dropping index levels if levels_to_drop: dropped.reset_index(levels_to_drop, drop=True, inplace=True) # Handle dropping columns labels if labels_to_drop: dropped.drop(labels_to_drop, axis=1, inplace=True) else: # Handle dropping column levels if levels_to_drop: if isinstance(dropped.columns, MultiIndex): # Drop the specified levels from the MultiIndex dropped.columns = dropped.columns.droplevel(levels_to_drop) else: # Drop the last level of Index by replacing with # a RangeIndex dropped.columns = RangeIndex(dropped.columns.size) # Handle dropping index labels if labels_to_drop: dropped.drop(labels_to_drop, axis=0, inplace=True) return dropped # ---------------------------------------------------------------------- # Iteration def __hash__(self): raise TypeError( f"{repr(type(self).__name__)} objects are mutable, " f"thus they cannot be hashed" ) def __iter__(self): """ Iterate over info axis. Returns ------- iterator Info axis as iterator. """ return iter(self._info_axis) # can we get a better explanation of this? def keys(self): """ Get the 'info axis' (see Indexing for more). This is index for Series, columns for DataFrame. Returns ------- Index Info axis. """ return self._info_axis def items(self): """ Iterate over (label, values) on info axis This is index for Series and columns for DataFrame. Returns ------- Generator """ for h in self._info_axis: yield h, self[h] @Appender(items.__doc__) def iteritems(self): return self.items() def __len__(self) -> int: """Returns length of info axis""" return len(self._info_axis) def __contains__(self, key) -> bool_t: """True if the key is in the info axis""" return key in self._info_axis @property def empty(self) -> bool_t: """ Indicator whether DataFrame is empty. True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns ------- bool If DataFrame is empty, return True, if not return False. See Also -------- Series.dropna DataFrame.dropna Notes ----- If DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples -------- An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True """ return any(len(self._get_axis(a)) == 0 for a in self._AXIS_ORDERS) # ---------------------------------------------------------------------- # Array Interface # This is also set in IndexOpsMixin # GH#23114 Ensure ndarray.__op__(DataFrame) returns NotImplemented __array_priority__ = 1000 def __array__(self, dtype=None) -> np.ndarray: return com.values_from_object(self) def __array_wrap__(self, result, context=None): result = lib.item_from_zerodim(result) if is_scalar(result): # e.g. we get here with np.ptp(series) # ptp also requires the item_from_zerodim return result d = self._construct_axes_dict(self._AXIS_ORDERS, copy=False) return self._constructor(result, **d).__finalize__(self) # ideally we would define this to avoid the getattr checks, but # is slower # @property # def __array_interface__(self): # """ provide numpy array interface method """ # values = self.values # return dict(typestr=values.dtype.str,shape=values.shape,data=values) # ---------------------------------------------------------------------- # Picklability def __getstate__(self) -> Dict[str, Any]: meta = {k: getattr(self, k, None) for k in self._metadata} return dict( _data=self._data, _typ=self._typ, _metadata=self._metadata, attrs=self.attrs, **meta, ) def __setstate__(self, state): if isinstance(state, BlockManager): self._data = state elif isinstance(state, dict): typ = state.get("_typ") if typ is not None: attrs = state.get("_attrs", {}) object.__setattr__(self, "_attrs", attrs) # set in the order of internal names # to avoid definitional recursion # e.g. say fill_value needing _data to be # defined meta = set(self._internal_names + self._metadata) for k in list(meta): if k in state: v = state[k] object.__setattr__(self, k, v) for k, v in state.items(): if k not in meta: object.__setattr__(self, k, v) else: raise NotImplementedError("Pre-0.12 pickles are no longer supported") elif len(state) == 2: raise NotImplementedError("Pre-0.12 pickles are no longer supported") self._item_cache = {} # ---------------------------------------------------------------------- # Rendering Methods def __repr__(self) -> str: # string representation based upon iterating over self # (since, by definition, `PandasContainers` are iterable) prepr = f"[{','.join(map(pprint_thing, self))}]" return f"{type(self).__name__}({prepr})" def _repr_latex_(self): """ Returns a LaTeX representation for a particular object. Mainly for use with nbconvert (jupyter notebook conversion to pdf). """ if config.get_option("display.latex.repr"): return self.to_latex() else: return None def _repr_data_resource_(self): """ Not a real Jupyter special repr method, but we use the same naming convention. """ if config.get_option("display.html.table_schema"): data = self.head(config.get_option("display.max_rows")) payload = json.loads( data.to_json(orient="table"), object_pairs_hook=collections.OrderedDict ) return payload # ---------------------------------------------------------------------- # I/O Methods _shared_docs[ "to_markdown" ] = """ Print %(klass)s in Markdown-friendly format. .. versionadded:: 1.0.0 Parameters ---------- buf : str, Path or StringIO-like, optional, default None Buffer to write to. If None, the output is returned as a string. mode : str, optional Mode in which file is opened. **kwargs These parameters will be passed to `tabulate`. Returns ------- str %(klass)s in Markdown-friendly format. """ _shared_docs[ "to_excel" ] = """ Write %(klass)s to an Excel sheet. To write a single %(klass)s to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an `ExcelWriter` object with a target file name, and specify a sheet in the file to write to. Multiple sheets may be written to by specifying unique `sheet_name`. With all data written to the file it is necessary to save the changes. Note that creating an `ExcelWriter` object with a file name that already exists will result in the contents of the existing file being erased. Parameters ---------- excel_writer : str or ExcelWriter object File path or existing ExcelWriter. sheet_name : str, default 'Sheet1' Name of sheet which will contain DataFrame. na_rep : str, default '' Missing data representation. float_format : str, optional Format string for floating point numbers. For example ``float_format="%%.2f"`` will format 0.1234 to 0.12. columns : sequence or list of str, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of string is given it is assumed to be aliases for the column names. index : bool, default True Write row names (index). index_label : str or sequence, optional Column label for index column(s) if desired. If not specified, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : int, default 0 Upper left cell row to dump data frame. startcol : int, default 0 Upper left cell column to dump data frame. engine : str, optional Write engine to use, 'openpyxl' or 'xlsxwriter'. You can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. merge_cells : bool, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding : str, optional Encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : str, default 'inf' Representation for infinity (there is no native representation for infinity in Excel). verbose : bool, default True Display more information in the error logs. freeze_panes : tuple of int (length 2), optional Specifies the one-based bottommost row and rightmost column that is to be frozen. See Also -------- to_csv : Write DataFrame to a comma-separated values (csv) file. ExcelWriter : Class for writing DataFrame objects into excel sheets. read_excel : Read an Excel file into a pandas DataFrame. read_csv : Read a comma-separated values (csv) file into DataFrame. Notes ----- For compatibility with :meth:`~DataFrame.to_csv`, to_excel serializes lists and dicts to strings before writing. Once a workbook has been saved it is not possible write further data without rewriting the whole workbook. Examples -------- Create, write to and save a workbook: >>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df1.to_excel("output.xlsx") # doctest: +SKIP To specify the sheet name: >>> df1.to_excel("output.xlsx", ... sheet_name='Sheet_name_1') # doctest: +SKIP If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object: >>> df2 = df1.copy() >>> with pd.ExcelWriter('output.xlsx') as writer: # doctest: +SKIP ... df1.to_excel(writer, sheet_name='Sheet_name_1') ... df2.to_excel(writer, sheet_name='Sheet_name_2') ExcelWriter can also be used to append to an existing Excel file: >>> with pd.ExcelWriter('output.xlsx', ... mode='a') as writer: # doctest: +SKIP ... df.to_excel(writer, sheet_name='Sheet_name_3') To set the library that is used to write the Excel file, you can pass the `engine` keyword (the default engine is automatically chosen depending on the file extension): >>> df1.to_excel('output1.xlsx', engine='xlsxwriter') # doctest: +SKIP """ @Appender(_shared_docs["to_excel"] % dict(klass="object")) def to_excel( self, excel_writer, sheet_name="Sheet1", na_rep="", float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep="inf", verbose=True, freeze_panes=None, ) -> None: df = self if isinstance(self, ABCDataFrame) else self.to_frame() from pandas.io.formats.excel import ExcelFormatter formatter = ExcelFormatter( df, na_rep=na_rep, cols=columns, header=header, float_format=float_format, index=index, index_label=index_label, merge_cells=merge_cells, inf_rep=inf_rep, ) formatter.write( excel_writer, sheet_name=sheet_name, startrow=startrow, startcol=startcol, freeze_panes=freeze_panes, engine=engine, ) def to_json( self, path_or_buf: Optional[FilePathOrBuffer] = None, orient: Optional[str] = None, date_format: Optional[str] = None, double_precision: int = 10, force_ascii: bool_t = True, date_unit: str = "ms", default_handler: Optional[Callable[[Any], JSONSerializable]] = None, lines: bool_t = False, compression: Optional[str] = "infer", index: bool_t = True, indent: Optional[int] = None, ) -> Optional[str]: """ Convert the object to a JSON string. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters ---------- path_or_buf : str or file handle, optional File path or object. If not specified, the result is returned as a string. orient : str Indication of expected JSON string format. * Series: - default is 'index' - allowed values are: {'split','records','index','table'}. * DataFrame: - default is 'columns' - allowed values are: {'split', 'records', 'index', 'columns', 'values', 'table'}. * The format of the JSON string: - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} - 'columns' : dict like {column -> {index -> value}} - 'values' : just the values array - 'table' : dict like {'schema': {schema}, 'data': {data}} Describing the data, where data component is like ``orient='records'``. .. versionchanged:: 0.20.0 date_format : {None, 'epoch', 'iso'} Type of date conversion. 'epoch' = epoch milliseconds, 'iso' = ISO8601. The default depends on the `orient`. For ``orient='table'``, the default is 'iso'. For all other orients, the default is 'epoch'. double_precision : int, default 10 The number of decimal places to use when encoding floating point values. force_ascii : bool, default True Force encoded string to be ASCII. date_unit : str, default 'ms' (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. lines : bool, default False If 'orient' is 'records' write out line delimited json format. Will throw ValueError if incorrect 'orient' since others are not list like. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename. .. versionadded:: 0.21.0 .. versionchanged:: 0.24.0 'infer' option added and set to default index : bool, default True Whether to include the index values in the JSON string. Not including the index (``index=False``) is only supported when orient is 'split' or 'table'. .. versionadded:: 0.23.0 indent : int, optional Length of whitespace used to indent each record. .. versionadded:: 1.0.0 Returns ------- None or str If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None. See Also -------- read_json Notes ----- The behavior of ``indent=0`` varies from the stdlib, which does not indent the output but does insert newlines. Currently, ``indent=0`` and the default ``indent=None`` are equivalent in pandas, though this may change in a future release. Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> df.to_json(orient='columns') '{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}' Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> df.to_json(orient='values') '[["a","b"],["c","d"]]' Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}' """ from pandas.io import json if date_format is None and orient == "table": date_format = "iso" elif date_format is None: date_format = "epoch" config.is_nonnegative_int(indent) indent = indent or 0 return json.to_json( path_or_buf=path_or_buf, obj=self, orient=orient, date_format=date_format, double_precision=double_precision, force_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler, lines=lines, compression=compression, index=index, indent=indent, ) def to_hdf( self, path_or_buf, key: str, mode: str = "a", complevel: Optional[int] = None, complib: Optional[str] = None, append: bool_t = False, format: Optional[str] = None, index: bool_t = True, min_itemsize: Optional[Union[int, Dict[str, int]]] = None, nan_rep=None, dropna: Optional[bool_t] = None, data_columns: Optional[List[str]] = None, errors: str = "strict", encoding: str = "UTF-8", ) -> None: """ Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key. For more information see the :ref:`user guide <io.hdf5>`. Parameters ---------- path_or_buf : str or pandas.HDFStore File path or HDFStore object. key : str Identifier for the group in the store. mode : {'a', 'w', 'r+'}, default 'a' Mode to open file: - 'w': write, a new file is created (an existing file with the same name would be deleted). - 'a': append, an existing file is opened for reading and writing, and if the file does not exist it is created. - 'r+': similar to 'a', but the file must already exist. complevel : {0-9}, optional Specifies a compression level for data. A value of 0 disables compression. complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib' Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: 'blosc:blosclz'): {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy', 'blosc:zlib', 'blosc:zstd'}. Specifying a compression library which is not available issues a ValueError. append : bool, default False For Table formats, append the input data to the existing. format : {'fixed', 'table', None}, default 'fixed' Possible values: - 'fixed': Fixed format. Fast writing/reading. Not-appendable, nor searchable. - 'table': Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. - If None, pd.get_option('io.hdf.default_format') is checked, followed by fallback to "fixed" errors : str, default 'strict' Specifies how encoding and decoding errors are to be handled. See the errors argument for :func:`open` for a full list of options. encoding : str, default "UTF-8" min_itemsize : dict or int, optional Map column names to minimum string sizes for columns. nan_rep : Any, optional How to represent null values as str. Not allowed with append=True. data_columns : list of columns or True, optional List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See :ref:`io.hdf5-query-data-columns`. Applicable only to format='table'. See Also -------- DataFrame.read_hdf : Read from HDF file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. DataFrame.to_sql : Write to a sql table. DataFrame.to_feather : Write out feather-format for DataFrames. DataFrame.to_csv : Write out to a csv file. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') We can add another object to the same file: >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_hdf('data.h5', key='s') Reading from HDF file: >>> pd.read_hdf('data.h5', 'df') A B a 1 4 b 2 5 c 3 6 >>> pd.read_hdf('data.h5', 's') 0 1 1 2 2 3 3 4 dtype: int64 Deleting file with data: >>> import os >>> os.remove('data.h5') """ from pandas.io import pytables pytables.to_hdf( path_or_buf, key, self, mode=mode, complevel=complevel, complib=complib, append=append, format=format, index=index, min_itemsize=min_itemsize, nan_rep=nan_rep, dropna=dropna, data_columns=data_columns, errors=errors, encoding=encoding, ) def to_sql( self, name: str, con, schema=None, if_exists: str = "fail", index: bool_t = True, index_label=None, chunksize=None, dtype=None, method=None, ) -> None: """ Write records stored in a DataFrame to a SQL database. Databases supported by SQLAlchemy [1]_ are supported. Tables can be newly created, appended to, or overwritten. Parameters ---------- name : str Name of SQL table. con : sqlalchemy.engine.Engine or sqlite3.Connection Using SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects. The user is responsible for engine disposal and connection closure for the SQLAlchemy connectable See `here \ <https://docs.sqlalchemy.org/en/13/core/connections.html>`_. schema : str, optional Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {'fail', 'replace', 'append'}, default 'fail' How to behave if the table already exists. * fail: Raise a ValueError. * replace: Drop the table before inserting new values. * append: Insert new values to the existing table. index : bool, default True Write DataFrame index as a column. Uses `index_label` as the column name in the table. index_label : str or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, optional Specify the number of rows in each batch to be written at a time. By default, all rows will be written at once. dtype : dict or scalar, optional Specifying the datatype for columns. If a dictionary is used, the keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. If a scalar is provided, it will be applied to all columns. method : {None, 'multi', callable}, optional Controls the SQL insertion clause used: * None : Uses standard SQL ``INSERT`` clause (one per row). * 'multi': Pass multiple values in a single ``INSERT`` clause. * callable with signature ``(pd_table, conn, keys, data_iter)``. Details and a sample callable implementation can be found in the section :ref:`insert method <io.sql.method>`. .. versionadded:: 0.24.0 Raises ------ ValueError When the table already exists and `if_exists` is 'fail' (the default). See Also -------- read_sql : Read a DataFrame from a table. Notes ----- Timezone aware datetime columns will be written as ``Timestamp with timezone`` type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone. .. versionadded:: 0.24.0 References ---------- .. [1] https://docs.sqlalchemy.org .. [2] https://www.python.org/dev/peps/pep-0249/ Examples -------- Create an in-memory SQLite database. >>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite://', echo=False) Create a table from scratch with 3 rows. >>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']}) >>> df name 0 User 1 1 User 2 2 User 3 >>> df.to_sql('users', con=engine) >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3')] >>> df1 = pd.DataFrame({'name' : ['User 4', 'User 5']}) >>> df1.to_sql('users', con=engine, if_exists='append') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3'), (0, 'User 4'), (1, 'User 5')] Overwrite the table with just ``df1``. >>> df1.to_sql('users', con=engine, if_exists='replace', ... index_label='id') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 4'), (1, 'User 5')] Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced to store the data as floating point, the database supports nullable integers. When fetching the data with Python, we get back integer scalars. >>> df = pd.DataFrame({"A": [1, None, 2]}) >>> df A 0 1.0 1 NaN 2 2.0 >>> from sqlalchemy.types import Integer >>> df.to_sql('integers', con=engine, index=False, ... dtype={"A": Integer()}) >>> engine.execute("SELECT * FROM integers").fetchall() [(1,), (None,), (2,)] """ from pandas.io import sql sql.to_sql( self, name, con, schema=schema, if_exists=if_exists, index=index, index_label=index_label, chunksize=chunksize, dtype=dtype, method=method, ) def to_pickle( self, path, compression: Optional[str] = "infer", protocol: int = pickle.HIGHEST_PROTOCOL, ) -> None: """ Pickle (serialize) object to file. Parameters ---------- path : str File path where the pickled object will be stored. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, \ default 'infer' A string representing the compression to use in the output file. By default, infers from the file extension in specified path. protocol : int Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1]_ paragraph 12.1.2). The possible values are 0, 1, 2, 3, 4. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL. .. [1] https://docs.python.org/3/library/pickle.html. .. versionadded:: 0.21.0. See Also -------- read_pickle : Load pickled pandas object (or any object) from file. DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_sql : Write DataFrame to a SQL database. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Examples -------- >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)}) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> original_df.to_pickle("./dummy.pkl") >>> unpickled_df = pd.read_pickle("./dummy.pkl") >>> unpickled_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> import os >>> os.remove("./dummy.pkl") """ from pandas.io.pickle import to_pickle to_pickle(self, path, compression=compression, protocol=protocol) def to_clipboard( self, excel: bool_t = True, sep: Optional[str] = None, **kwargs ) -> None: r""" Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. Parameters ---------- excel : bool, default True Produce output in a csv format for easy pasting into excel. - True, use the provided separator for csv pasting. - False, write a string representation of the object to the clipboard. sep : str, default ``'\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. See Also -------- DataFrame.to_csv : Write a DataFrame to a comma-separated values (csv) file. read_clipboard : Read text from clipboard and pass to read_table. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `PyQt4` modules) - Windows : none - OS X : none Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) >>> df.to_clipboard(sep=',') ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 """ from pandas.io import clipboards clipboards.to_clipboard(self, excel=excel, sep=sep, **kwargs) def to_xarray(self): """ Return an xarray object from the pandas object. Returns ------- xarray.DataArray or xarray.Dataset Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series. See Also -------- DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Notes ----- See the `xarray docs <https://xarray.pydata.org/en/stable/>`__ Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2), ... ('parrot', 'bird', 24.0, 2), ... ('lion', 'mammal', 80.5, 4), ... ('monkey', 'mammal', np.nan, 4)], ... columns=['name', 'class', 'max_speed', ... 'num_legs']) >>> df name class max_speed num_legs 0 falcon bird 389.0 2 1 parrot bird 24.0 2 2 lion mammal 80.5 4 3 monkey mammal NaN 4 >>> df.to_xarray() <xarray.Dataset> Dimensions: (index: 4) Coordinates: * index (index) int64 0 1 2 3 Data variables: name (index) object 'falcon' 'parrot' 'lion' 'monkey' class (index) object 'bird' 'bird' 'mammal' 'mammal' max_speed (index) float64 389.0 24.0 80.5 nan num_legs (index) int64 2 2 4 4 >>> df['max_speed'].to_xarray() <xarray.DataArray 'max_speed' (index: 4)> array([389. , 24. , 80.5, nan]) Coordinates: * index (index) int64 0 1 2 3 >>> dates = pd.to_datetime(['2018-01-01', '2018-01-01', ... '2018-01-02', '2018-01-02']) >>> df_multiindex = pd.DataFrame({'date': dates, ... 'animal': ['falcon', 'parrot', ... 'falcon', 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df_multiindex = df_multiindex.set_index(['date', 'animal']) >>> df_multiindex speed date animal 2018-01-01 falcon 350 parrot 18 2018-01-02 falcon 361 parrot 15 >>> df_multiindex.to_xarray() <xarray.Dataset> Dimensions: (animal: 2, date: 2) Coordinates: * date (date) datetime64[ns] 2018-01-01 2018-01-02 * animal (animal) object 'falcon' 'parrot' Data variables: speed (date, animal) int64 350 18 361 15 """ xarray = import_optional_dependency("xarray") if self.ndim == 1: return xarray.DataArray.from_series(self) else: return xarray.Dataset.from_dataframe(self) @Substitution(returns=fmt.return_docstring) def to_latex( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal=".", multicolumn=None, multicolumn_format=None, multirow=None, caption=None, label=None, ): r""" Render object to a LaTeX tabular, longtable, or nested table/tabular. Requires ``\usepackage{booktabs}``. The output can be copy/pasted into a main LaTeX document or read from an external file with ``\input{table.tex}``. .. versionchanged:: 0.20.2 Added to Series. .. versionchanged:: 1.0.0 Added caption and label arguments. Parameters ---------- buf : str, Path or StringIO-like, optional, default None Buffer to write to. If None, the output is returned as a string. columns : list of label, optional The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool or list of str, default True Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names. index : bool, default True Write row names (index). na_rep : str, default 'NaN' Missing data representation. formatters : list of functions or dict of {str: function}, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function or str, optional, default None Formatter for floating point numbers. For example ``float_format="%%.2f"`` and ``float_format="{:0.2f}".format`` will both result in 0.1234 being formatted as 0.12. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module. index_names : bool, default True Prints the names of the indexes. bold_rows : bool, default False Make the row labels bold in the output. column_format : str, optional The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g. 'rcl' for 3 columns. By default, 'l' will be used for all columns except columns of numbers, which default to 'r'. longtable : bool, optional By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a \usepackage{longtable} to your LaTeX preamble. escape : bool, optional By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'utf-8'. decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. multicolumn : bool, default True Use \multicolumn to enhance MultiIndex columns. The default will be read from the config module. multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` The default will be read from the config module. multirow : bool, default False Use \multirow to enhance MultiIndex rows. Requires adding a \usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. caption : str, optional The LaTeX caption to be placed inside ``\caption{}`` in the output. .. versionadded:: 1.0.0 label : str, optional The LaTeX label to be placed inside ``\label{}`` in the output. This is used with ``\ref{}`` in the main ``.tex`` file. .. versionadded:: 1.0.0 %(returns)s See Also -------- DataFrame.to_string : Render a DataFrame to a console-friendly tabular output. DataFrame.to_html : Render a DataFrame as an HTML table. Examples -------- >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> print(df.to_latex(index=False)) # doctest: +NORMALIZE_WHITESPACE \begin{tabular}{lll} \toprule name & mask & weapon \\ \midrule Raphael & red & sai \\ Donatello & purple & bo staff \\ \bottomrule \end{tabular} """ # Get defaults from the pandas config if self.ndim == 1: self = self.to_frame() if longtable is None: longtable = config.get_option("display.latex.longtable") if escape is None: escape = config.get_option("display.latex.escape") if multicolumn is None: multicolumn = config.get_option("display.latex.multicolumn") if multicolumn_format is None: multicolumn_format = config.get_option("display.latex.multicolumn_format") if multirow is None: multirow = config.get_option("display.latex.multirow") formatter = DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, index_names=index_names, escape=escape, decimal=decimal, ) return formatter.to_latex( buf=buf, column_format=column_format, longtable=longtable, encoding=encoding, multicolumn=multicolumn, multicolumn_format=multicolumn_format, multirow=multirow, caption=caption, label=label, ) def to_csv( self, path_or_buf: Optional[FilePathOrBuffer] = None, sep: str = ",", na_rep: str = "", float_format: Optional[str] = None, columns: Optional[Sequence[Label]] = None, header: Union[bool_t, List[str]] = True, index: bool_t = True, index_label: Optional[Union[bool_t, str, Sequence[Label]]] = None, mode: str = "w", encoding: Optional[str] = None, compression: Optional[Union[str, Mapping[str, str]]] = "infer", quoting: Optional[int] = None, quotechar: str = '"', line_terminator: Optional[str] = None, chunksize: Optional[int] = None, date_format: Optional[str] = None, doublequote: bool_t = True, escapechar: Optional[str] = None, decimal: Optional[str] = ".", ) -> Optional[str]: r""" Write object to a comma-separated values (csv) file. .. versionchanged:: 0.24.0 The order of arguments for Series was changed. Parameters ---------- path_or_buf : str or file handle, default None File path or object, if None is provided the result is returned as a string. If a file object is passed it should be opened with `newline=''`, disabling universal newlines. .. versionchanged:: 0.24.0 Was previously named "path" for Series. sep : str, default ',' String of length 1. Field delimiter for the output file. na_rep : str, default '' Missing data representation. float_format : str, default None Format string for floating point numbers. columns : sequence, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of strings is given it is assumed to be aliases for the column names. .. versionchanged:: 0.24.0 Previously defaulted to False for Series. index : bool, default True Write row names (index). index_label : str or sequence, or False, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R. mode : str Python write mode, default 'w'. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'utf-8'. compression : str or dict, default 'infer' If str, represents compression mode. If dict, value at 'method' is the compression mode. Compression mode may be any of the following possible values: {'infer', 'gzip', 'bz2', 'zip', 'xz', None}. If compression mode is 'infer' and `path_or_buf` is path-like, then detect compression mode from the following extensions: '.gz', '.bz2', '.zip' or '.xz'. (otherwise no compression). If dict given and mode is 'zip' or inferred as 'zip', other entries passed as additional compression options. .. versionchanged:: 1.0.0 May now be a dict with key 'method' as compression mode and other entries as additional compression options if compression mode is 'zip'. quoting : optional constant from csv module Defaults to csv.QUOTE_MINIMAL. If you have set a `float_format` then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric. quotechar : str, default '\"' String of length 1. Character used to quote fields. line_terminator : str, optional The newline character or character sequence to use in the output file. Defaults to `os.linesep`, which depends on the OS in which this method is called ('\n' for linux, '\r\n' for Windows, i.e.). .. versionchanged:: 0.24.0 chunksize : int or None Rows to write at a time. date_format : str, default None Format string for datetime objects. doublequote : bool, default True Control quoting of `quotechar` inside a field. escapechar : str, default None String of length 1. Character used to escape `sep` and `quotechar` when appropriate. decimal : str, default '.' Character recognized as decimal separator. E.g. use ',' for European data. Returns ------- None or str If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None. See Also -------- read_csv : Load a CSV file into a DataFrame. to_excel : Write DataFrame to an Excel file. Examples -------- >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_csv(index=False) 'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n' Create 'out.zip' containing 'out.csv' >>> compression_opts = dict(method='zip', ... archive_name='out.csv') # doctest: +SKIP >>> df.to_csv('out.zip', index=False, ... compression=compression_opts) # doctest: +SKIP """ df = self if isinstance(self, ABCDataFrame) else self.to_frame() from pandas.io.formats.csvs import CSVFormatter formatter = CSVFormatter( df, path_or_buf, line_terminator=line_terminator, sep=sep, encoding=encoding, compression=compression, quoting=quoting, na_rep=na_rep, float_format=float_format, cols=columns, header=header, index=index, index_label=index_label, mode=mode, chunksize=chunksize, quotechar=quotechar, date_format=date_format, doublequote=doublequote, escapechar=escapechar, decimal=decimal, ) formatter.save() if path_or_buf is None: return formatter.path_or_buf.getvalue() return None # ---------------------------------------------------------------------- # Lookup Caching def _set_as_cached(self, item, cacher) -> None: """ Set the _cacher attribute on the calling object with a weakref to cacher. """ self._cacher = (item, weakref.ref(cacher)) def _reset_cacher(self) -> None: """ Reset the cacher. """ if hasattr(self, "_cacher"): del self._cacher def _maybe_cache_changed(self, item, value) -> None: """ The object has called back to us saying maybe it has changed. """ self._data.set(item, value) @property def _is_cached(self) -> bool_t: """Return boolean indicating if self is cached or not.""" return getattr(self, "_cacher", None) is not None def _get_cacher(self): """return my cacher or None""" cacher = getattr(self, "_cacher", None) if cacher is not None: cacher = cacher[1]() return cacher def _maybe_update_cacher( self, clear: bool_t = False, verify_is_copy: bool_t = True ) -> None: """ See if we need to update our parent cacher if clear, then clear our cache. Parameters ---------- clear : bool, default False Clear the item cache. verify_is_copy : bool, default True Provide is_copy checks. """ cacher = getattr(self, "_cacher", None) if cacher is not None: ref = cacher[1]() # we are trying to reference a dead referant, hence # a copy if ref is None: del self._cacher else: # Note: we need to call ref._maybe_cache_changed even in the # case where it will raise. (Uh, not clear why) try: ref._maybe_cache_changed(cacher[0], self) except AssertionError: # ref._data.setitem can raise # AssertionError because of shape mismatch pass if verify_is_copy: self._check_setitem_copy(stacklevel=5, t="referant") if clear: self._clear_item_cache() def _clear_item_cache(self) -> None: self._item_cache.clear() # ---------------------------------------------------------------------- # Indexing Methods def take( self: FrameOrSeries, indices, axis=0, is_copy: Optional[bool_t] = None, **kwargs ) -> FrameOrSeries: """ Return the elements in the given *positional* indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. Parameters ---------- indices : array-like An array of ints indicating which positions to take. axis : {0 or 'index', 1 or 'columns', None}, default 0 The axis on which to select elements. ``0`` means that we are selecting rows, ``1`` means that we are selecting columns. is_copy : bool Before pandas 1.0, ``is_copy=False`` can be specified to ensure that the return value is an actual copy. Starting with pandas 1.0, ``take`` always returns a copy, and the keyword is therefore deprecated. .. deprecated:: 1.0.0 **kwargs For compatibility with :meth:`numpy.take`. Has no effect on the output. Returns ------- taken : same type as caller An array-like containing the elements taken from the object. See Also -------- DataFrame.loc : Select a subset of a DataFrame by labels. DataFrame.iloc : Select a subset of a DataFrame by positions. numpy.take : Take elements from an array along an axis. Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=['name', 'class', 'max_speed'], ... index=[0, 2, 3, 1]) >>> df name class max_speed 0 falcon bird 389.0 2 parrot bird 24.0 3 lion mammal 80.5 1 monkey mammal NaN Take elements at positions 0 and 3 along the axis 0 (default). Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That's because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3. >>> df.take([0, 3]) name class max_speed 0 falcon bird 389.0 1 monkey mammal NaN Take elements at indices 1 and 2 along the axis 1 (column selection). >>> df.take([1, 2], axis=1) class max_speed 0 bird 389.0 2 bird 24.0 3 mammal 80.5 1 mammal NaN We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists. >>> df.take([-1, -2]) name class max_speed 1 monkey mammal NaN 3 lion mammal 80.5 """ if is_copy is not None: warnings.warn( "is_copy is deprecated and will be removed in a future version. " "'take' always returns a copy, so there is no need to specify this.", FutureWarning, stacklevel=2, ) nv.validate_take(tuple(), kwargs) self._consolidate_inplace() new_data = self._data.take( indices, axis=self._get_block_manager_axis(axis), verify=True ) return self._constructor(new_data).__finalize__(self) def _take_with_is_copy( self: FrameOrSeries, indices, axis=0, **kwargs ) -> FrameOrSeries: """ Internal version of the `take` method that sets the `_is_copy` attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning). See the docstring of `take` for full explanation of the parameters. """ result = self.take(indices=indices, axis=axis, **kwargs) # Maybe set copy if we didn't actually change the index. if not result._get_axis(axis).equals(self._get_axis(axis)): result._set_is_copy(self) return result def xs(self, key, axis=0, level=None, drop_level: bool_t = True): """ Return cross-section from the Series/DataFrame. This method takes a `key` argument to select data at a particular level of a MultiIndex. Parameters ---------- key : label or tuple of label Label contained in the index, or partially in a MultiIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis to retrieve cross-section on. level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. drop_level : bool, default True If False, returns object with same levels as self. Returns ------- Series or DataFrame Cross-section from the original Series or DataFrame corresponding to the selected index levels. See Also -------- DataFrame.loc : Access a group of rows and columns by label(s) or a boolean array. DataFrame.iloc : Purely integer-location based indexing for selection by position. Notes ----- `xs` can not be used to set values. MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of `xs` functionality, see :ref:`MultiIndex Slicers <advanced.mi_slicers>`. Examples -------- >>> d = {'num_legs': [4, 4, 2, 2], ... 'num_wings': [0, 0, 2, 2], ... 'class': ['mammal', 'mammal', 'mammal', 'bird'], ... 'animal': ['cat', 'dog', 'bat', 'penguin'], ... 'locomotion': ['walks', 'walks', 'flies', 'walks']} >>> df = pd.DataFrame(data=d) >>> df = df.set_index(['class', 'animal', 'locomotion']) >>> df num_legs num_wings class animal locomotion mammal cat walks 4 0 dog walks 4 0 bat flies 2 2 bird penguin walks 2 2 Get values at specified index >>> df.xs('mammal') num_legs num_wings animal locomotion cat walks 4 0 dog walks 4 0 bat flies 2 2 Get values at several indexes >>> df.xs(('mammal', 'dog')) num_legs num_wings locomotion walks 4 0 Get values at specified index and level >>> df.xs('cat', level=1) num_legs num_wings class locomotion mammal walks 4 0 Get values at several indexes and levels >>> df.xs(('bird', 'walks'), ... level=[0, 'locomotion']) num_legs num_wings animal penguin 2 2 Get values at specified column and axis >>> df.xs('num_wings', axis=1) class animal locomotion mammal cat walks 0 dog walks 0 bat flies 2 bird penguin walks 2 Name: num_wings, dtype: int64 """ axis = self._get_axis_number(axis) labels = self._get_axis(axis) if level is not None: loc, new_ax = labels.get_loc_level(key, level=level, drop_level=drop_level) # create the tuple of the indexer _indexer = [slice(None)] * self.ndim _indexer[axis] = loc indexer = tuple(_indexer) result = self.iloc[indexer] setattr(result, result._get_axis_name(axis), new_ax) return result if axis == 1: return self[key] self._consolidate_inplace() index = self.index if isinstance(index, MultiIndex): loc, new_index = self.index.get_loc_level(key, drop_level=drop_level) else: loc = self.index.get_loc(key) if isinstance(loc, np.ndarray): if loc.dtype == np.bool_: (inds,) = loc.nonzero() return self._take_with_is_copy(inds, axis=axis) else: return self._take_with_is_copy(loc, axis=axis) if not is_scalar(loc): new_index = self.index[loc] if is_scalar(loc): # In this case loc should be an integer if self.ndim == 1: # if we encounter an array-like and we only have 1 dim # that means that their are list/ndarrays inside the Series! # so just return them (GH 6394) return self._values[loc] new_values = self._data.fast_xs(loc) result = self._constructor_sliced( new_values, index=self.columns, name=self.index[loc], dtype=new_values.dtype, ) else: result = self.iloc[loc] result.index = new_index # this could be a view # but only in a single-dtyped view sliceable case result._set_is_copy(self, copy=not result._is_view) return result _xs: Callable = xs def __getitem__(self, item): raise AbstractMethodError(self) def _get_item_cache(self, item): """Return the cached item, item represents a label indexer.""" cache = self._item_cache res = cache.get(item) if res is None: values = self._data.get(item) res = self._box_item_values(item, values) cache[item] = res res._set_as_cached(item, self) # for a chain res._is_copy = self._is_copy return res def _iget_item_cache(self, item): """Return the cached item, item represents a positional indexer.""" ax = self._info_axis if ax.is_unique: lower = self._get_item_cache(ax[item]) else: lower = self._take_with_is_copy(item, axis=self._info_axis_number) return lower def _box_item_values(self, key, values): raise AbstractMethodError(self) def _slice(self: FrameOrSeries, slobj: slice, axis=0) -> FrameOrSeries: """ Construct a slice of this container. Slicing with this method is *always* positional. """ assert isinstance(slobj, slice), type(slobj) axis = self._get_block_manager_axis(axis) result = self._constructor(self._data.get_slice(slobj, axis=axis)) result = result.__finalize__(self) # this could be a view # but only in a single-dtyped view sliceable case is_copy = axis != 0 or result._is_view result._set_is_copy(self, copy=is_copy) return result def _set_item(self, key, value) -> None: self._data.set(key, value) self._clear_item_cache() def _set_is_copy(self, ref, copy: bool_t = True) -> None: if not copy: self._is_copy = None else: assert ref is not None self._is_copy = weakref.ref(ref) def _check_is_chained_assignment_possible(self) -> bool_t: """ Check if we are a view, have a cacher, and are of mixed type. If so, then force a setitem_copy check. Should be called just near setting a value Will return a boolean if it we are a view and are cached, but a single-dtype meaning that the cacher should be updated following setting. """ if self._is_view and self._is_cached: ref = self._get_cacher() if ref is not None and ref._is_mixed_type: self._check_setitem_copy(stacklevel=4, t="referant", force=True) return True elif self._is_copy: self._check_setitem_copy(stacklevel=4, t="referant") return False def _check_setitem_copy(self, stacklevel=4, t="setting", force=False): """ Parameters ---------- stacklevel : int, default 4 the level to show of the stack when the error is output t : str, the type of setting error force : bool, default False If True, then force showing an error. validate if we are doing a setitem on a chained copy. If you call this function, be sure to set the stacklevel such that the user will see the error *at the level of setting* It is technically possible to figure out that we are setting on a copy even WITH a multi-dtyped pandas object. In other words, some blocks may be views while other are not. Currently _is_view will ALWAYS return False for multi-blocks to avoid having to handle this case. df = DataFrame(np.arange(0,9), columns=['count']) df['group'] = 'b' # This technically need not raise SettingWithCopy if both are view # (which is not # generally guaranteed but is usually True. However, # this is in general not a good practice and we recommend using .loc. df.iloc[0:5]['group'] = 'a' """ # return early if the check is not needed if not (force or self._is_copy): return value = config.get_option("mode.chained_assignment") if value is None: return # see if the copy is not actually referred; if so, then dissolve # the copy weakref if self._is_copy is not None and not isinstance(self._is_copy, str): r = self._is_copy() if not gc.get_referents(r) or r.shape == self.shape: self._is_copy = None return # a custom message if isinstance(self._is_copy, str): t = self._is_copy elif t == "referant": t = ( "\n" "A value is trying to be set on a copy of a slice from a " "DataFrame\n\n" "See the caveats in the documentation: " "https://pandas.pydata.org/pandas-docs/stable/user_guide/" "indexing.html#returning-a-view-versus-a-copy" ) else: t = ( "\n" "A value is trying to be set on a copy of a slice from a " "DataFrame.\n" "Try using .loc[row_indexer,col_indexer] = value " "instead\n\nSee the caveats in the documentation: " "https://pandas.pydata.org/pandas-docs/stable/user_guide/" "indexing.html#returning-a-view-versus-a-copy" ) if value == "raise": raise com.SettingWithCopyError(t) elif value == "warn": warnings.warn(t, com.SettingWithCopyWarning, stacklevel=stacklevel) def __delitem__(self, key) -> None: """ Delete item """ deleted = False maybe_shortcut = False if self.ndim == 2 and isinstance(self.columns, MultiIndex): try: maybe_shortcut = key not in self.columns._engine except TypeError: pass if maybe_shortcut: # Allow shorthand to delete all columns whose first len(key) # elements match key: if not isinstance(key, tuple): key = (key,) for col in self.columns: if isinstance(col, tuple) and col[: len(key)] == key: del self[col] deleted = True if not deleted: # If the above loop ran and didn't delete anything because # there was no match, this call should raise the appropriate # exception: self._data.delete(key) # delete from the caches try: del self._item_cache[key] except KeyError: pass # ---------------------------------------------------------------------- # Unsorted def get(self, key, default=None): """ Get item from object for given key (ex: DataFrame column). Returns default value if not found. Parameters ---------- key : object Returns ------- value : same type as items contained in object """ try: return self[key] except (KeyError, ValueError, IndexError): return default @property def _is_view(self): """Return boolean indicating if self is view of another array """ return self._data.is_view def reindex_like( self: FrameOrSeries, other, method: Optional[str] = None, copy: bool_t = True, limit=None, tolerance=None, ) -> FrameOrSeries: """ Return an object with matching indices as other object. Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters ---------- other : Object of the same data type Its row and column indices are used to define the new indices of this object. method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: propagate last valid observation forward to next valid * backfill / bfill: use next valid observation to fill gap * nearest: use nearest valid observations to fill gap. copy : bool, default True Return a new object, even if the passed indexes are the same. limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- Series or DataFrame Same type as caller, but with changed indices on each axis. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex : Change to new indices or expand indices. Notes ----- Same as calling ``.reindex(index=other.index, columns=other.columns,...)``. Examples -------- >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium """ d = other._construct_axes_dict( axes=self._AXIS_ORDERS, method=method, copy=copy, limit=limit, tolerance=tolerance, ) return self.reindex(**d) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace: bool_t = False, errors: str = "raise", ): inplace = validate_bool_kwarg(inplace, "inplace") if labels is not None: if index is not None or columns is not None: raise ValueError("Cannot specify both 'labels' and 'index'/'columns'") axis_name = self._get_axis_name(axis) axes = {axis_name: labels} elif index is not None or columns is not None: axes, _ = self._construct_axes_from_arguments((index, columns), {}) else: raise ValueError( "Need to specify at least one of 'labels', 'index' or 'columns'" ) obj = self for axis, labels in axes.items(): if labels is not None: obj = obj._drop_axis(labels, axis, level=level, errors=errors) if inplace: self._update_inplace(obj) else: return obj def _drop_axis( self: FrameOrSeries, labels, axis, level=None, errors: str = "raise" ) -> FrameOrSeries: """ Drop labels from specified axis. Used in the ``drop`` method internally. Parameters ---------- labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. """ axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) axis = self._get_axis(axis) if axis.is_unique: if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError("axis must be a MultiIndex") new_axis = axis.drop(labels, level=level, errors=errors) else: new_axis = axis.drop(labels, errors=errors) result = self.reindex(**{axis_name: new_axis}) # Case for non-unique axis else: labels = ensure_object(com.index_labels_to_array(labels)) if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError("axis must be a MultiIndex") indexer = ~axis.get_level_values(level).isin(labels) # GH 18561 MultiIndex.drop should raise if label is absent if errors == "raise" and indexer.all(): raise KeyError(f"{labels} not found in axis") else: indexer = ~axis.isin(labels) # Check if label doesn't exist along axis labels_missing = (axis.get_indexer_for(labels) == -1).any() if errors == "raise" and labels_missing: raise KeyError(f"{labels} not found in axis") slicer = [slice(None)] * self.ndim slicer[self._get_axis_number(axis_name)] = indexer result = self.loc[tuple(slicer)] return result def _update_inplace(self, result, verify_is_copy: bool_t = True) -> None: """ Replace self internals with result. Parameters ---------- verify_is_copy : bool, default True Provide is_copy checks. """ # NOTE: This does *not* call __finalize__ and that's an explicit # decision that we may revisit in the future. self._reset_cache() self._clear_item_cache() self._data = getattr(result, "_data", result) self._maybe_update_cacher(verify_is_copy=verify_is_copy) def add_prefix(self: FrameOrSeries, prefix: str) -> FrameOrSeries: """ Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial("{prefix}{}".format, prefix=prefix) mapper = {self._info_axis_name: f} return self.rename(**mapper) # type: ignore def add_suffix(self: FrameOrSeries, suffix: str) -> FrameOrSeries: """ Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add after each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial("{}{suffix}".format, suffix=suffix) mapper = {self._info_axis_name: f} return self.rename(**mapper) # type: ignore def sort_values( self, axis=0, ascending=True, inplace: bool_t = False, kind: str = "quicksort", na_position: str = "last", ignore_index: bool_t = False, ): """ Sort by the values along either axis. Parameters ----------%(optional_by)s axis : %(axes_single_arg)s, default 0 Axis to be sorted. ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- sorted_obj : DataFrame or None DataFrame with sorted values if inplace=False, None otherwise. Examples -------- >>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }) >>> df col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 3 NaN 8 4 4 D 7 2 5 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort by multiple columns >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 3 NaN 8 4 Putting NAs first >>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 3 NaN 8 4 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 """ raise AbstractMethodError(self) def reindex(self: FrameOrSeries, *args, **kwargs) -> FrameOrSeries: """ Conform %(klass)s to new index with optional filling logic. Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and ``copy=False``. Parameters ---------- %(optional_labels)s %(axes)s : array-like, optional New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data. %(optional_axis)s method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: Propagate last valid observation forward to next valid. * backfill / bfill: Use next valid observation to fill gap. * nearest: Use nearest valid observations to fill gap. copy : bool, default True Return a new object, even if the passed indexes are the same. level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value. limit : int, default None Maximum number of consecutive elements to forward or backward fill. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- %(klass)s with changed index. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- ``DataFrame.reindex`` supports two calling conventions * ``(index=index_labels, columns=column_labels, ...)`` * ``(labels, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Create a dataframe with some fictional data. >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = pd.DataFrame({'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned ``NaN``. >>> new_index = ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index) http_status response_time Safari 404.0 0.07 Iceweasel NaN NaN Comodo Dragon NaN NaN IE10 404.0 0.08 Chrome 200.0 0.02 We can fill in the missing values by passing a value to the keyword ``fill_value``. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword ``method`` to fill the ``NaN`` values. >>> df.reindex(new_index, fill_value=0) http_status response_time Safari 404 0.07 Iceweasel 0 0.00 Comodo Dragon 0 0.00 IE10 404 0.08 Chrome 200 0.02 >>> df.reindex(new_index, fill_value='missing') http_status response_time Safari 404 0.07 Iceweasel missing missing Comodo Dragon missing missing IE10 404 0.08 Chrome 200 0.02 We can also reindex the columns. >>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN Or we can use "axis-style" keyword arguments >>> df.reindex(['http_status', 'user_agent'], axis="columns") http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN To further illustrate the filling functionality in ``reindex``, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates). >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2 prices 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 Suppose we decide to expand the dataframe to cover a wider date range. >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2) prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN The index entries that did not have a value in the original data frame (for example, '2009-12-29') are by default filled with ``NaN``. If desired, we can fill in the missing values using one of several options. For example, to back-propagate the last valid value to fill the ``NaN`` values, pass ``bfill`` as an argument to the ``method`` keyword. >>> df2.reindex(date_index2, method='bfill') prices 2009-12-29 100.0 2009-12-30 100.0 2009-12-31 100.0 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN Please note that the ``NaN`` value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the ``NaN`` values present in the original dataframe, use the ``fillna()`` method. See the :ref:`user guide <basics.reindexing>` for more. """ # TODO: Decide if we care about having different examples for different # kinds # construct the args axes, kwargs = self._construct_axes_from_arguments(args, kwargs) method = missing.clean_reindex_fill_method(kwargs.pop("method", None)) level = kwargs.pop("level", None) copy = kwargs.pop("copy", True) limit = kwargs.pop("limit", None) tolerance = kwargs.pop("tolerance", None) fill_value = kwargs.pop("fill_value", None) # Series.reindex doesn't use / need the axis kwarg # We pop and ignore it here, to make writing Series/Frame generic code # easier kwargs.pop("axis", None) if kwargs: raise TypeError( "reindex() got an unexpected keyword " f'argument "{list(kwargs.keys())[0]}"' ) self._consolidate_inplace() # if all axes that are requested to reindex are equal, then only copy # if indicated must have index names equal here as well as values if all( self._get_axis(axis).identical(ax) for axis, ax in axes.items() if ax is not None ): if copy: return self.copy() return self # check if we are a multi reindex if self._needs_reindex_multi(axes, method, level): return self._reindex_multi(axes, copy, fill_value) # perform the reindex on the axes return self._reindex_axes( axes, level, limit, tolerance, method, fill_value, copy ).__finalize__(self) def _reindex_axes( self: FrameOrSeries, axes, level, limit, tolerance, method, fill_value, copy ) -> FrameOrSeries: """Perform the reindex for all the axes.""" obj = self for a in self._AXIS_ORDERS: labels = axes[a] if labels is None: continue ax = self._get_axis(a) new_index, indexer = ax.reindex( labels, level=level, limit=limit, tolerance=tolerance, method=method ) axis = self._get_axis_number(a) obj = obj._reindex_with_indexers( {axis: [new_index, indexer]}, fill_value=fill_value, copy=copy, allow_dups=False, ) return obj def _needs_reindex_multi(self, axes, method, level) -> bool_t: """Check if we do need a multi reindex.""" return ( (com.count_not_none(*axes.values()) == self._AXIS_LEN) and method is None and level is None and not self._is_mixed_type ) def _reindex_multi(self, axes, copy, fill_value): raise AbstractMethodError(self) def _reindex_with_indexers( self: FrameOrSeries, reindexers, fill_value=None, copy: bool_t = False, allow_dups: bool_t = False, ) -> FrameOrSeries: """allow_dups indicates an internal call here """ # reindex doing multiple operations on different axes if indicated new_data = self._data for axis in sorted(reindexers.keys()): index, indexer = reindexers[axis] baxis = self._get_block_manager_axis(axis) if index is None: continue index = ensure_index(index) if indexer is not None: indexer = ensure_int64(indexer) # TODO: speed up on homogeneous DataFrame objects new_data = new_data.reindex_indexer( index, indexer, axis=baxis, fill_value=fill_value, allow_dups=allow_dups, copy=copy, ) if copy and new_data is self._data: new_data = new_data.copy() return self._constructor(new_data).__finalize__(self) def filter( self: FrameOrSeries, items=None, like: Optional[str] = None, regex: Optional[str] = None, axis=None, ) -> FrameOrSeries: """ Subset the dataframe rows or columns according to the specified index labels. Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index. Parameters ---------- items : list-like Keep labels from axis which are in items. like : str Keep labels from axis for which "like in label == True". regex : str (regular expression) Keep labels from axis for which re.search(regex, label) == True. axis : {0 or ‘index’, 1 or ‘columns’, None}, default None The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, 'index' for Series, 'columns' for DataFrame. Returns ------- same type as input object See Also -------- DataFrame.loc Notes ----- The ``items``, ``like``, and ``regex`` parameters are enforced to be mutually exclusive. ``axis`` defaults to the info axis that is used when indexing with ``[]``. Examples -------- >>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6 """ nkw = com.count_not_none(items, like, regex) if nkw > 1: raise TypeError( "Keyword arguments `items`, `like`, or `regex` " "are mutually exclusive" ) if axis is None: axis = self._info_axis_name labels = self._get_axis(axis) if items is not None: name = self._get_axis_name(axis) return self.reindex(**{name: [r for r in items if r in labels]}) elif like: def f(x): return like in ensure_str(x) values = labels.map(f) return self.loc(axis=axis)[values] elif regex: def f(x): return matcher.search(ensure_str(x)) is not None matcher = re.compile(regex) values = labels.map(f) return self.loc(axis=axis)[values] else: raise TypeError("Must pass either `items`, `like`, or `regex`") def head(self: FrameOrSeries, n: int = 5) -> FrameOrSeries: """ Return the first `n` rows. This function returns the first `n` rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. For negative values of `n`, this function returns all rows except the last `n` rows, equivalent to ``df[:-n]``. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- same type as caller The first `n` rows of the caller object. See Also -------- DataFrame.tail: Returns the last `n` rows. Examples -------- >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first `n` lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon For negative values of `n` >>> df.head(-3) animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot """ return self.iloc[:n] def tail(self: FrameOrSeries, n: int = 5) -> FrameOrSeries: """ Return the last `n` rows. This function returns last `n` rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows. For negative values of `n`, this function returns all rows except the first `n` rows, equivalent to ``df[n:]``. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- type of caller The last `n` rows of the caller object. See Also -------- DataFrame.head : The first `n` rows of the caller object. Examples -------- >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last 5 lines >>> df.tail() animal 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last `n` lines (three in this case) >>> df.tail(3) animal 6 shark 7 whale 8 zebra For negative values of `n` >>> df.tail(-3) animal 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra """ if n == 0: return self.iloc[0:0] return self.iloc[-n:] def sample( self: FrameOrSeries, n=None, frac=None, replace=False, weights=None, random_state=None, axis=None, ) -> FrameOrSeries: """ Return a random sample of items from an axis of object. You can use `random_state` for reproducibility. Parameters ---------- n : int, optional Number of items from axis to return. Cannot be used with `frac`. Default = 1 if `frac` = None. frac : float, optional Fraction of axis items to return. Cannot be used with `n`. replace : bool, default False Allow or disallow sampling of the same row more than once. weights : str or ndarray-like, optional Default 'None' results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. Infinite values not allowed. random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : {0 or ‘index’, 1 or ‘columns’, None}, default None Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames). Returns ------- Series or DataFrame A new object of same type as caller containing `n` items randomly sampled from the caller object. See Also -------- numpy.random.choice: Generates a random sample from a given 1-D numpy array. Notes ----- If `frac` > 1, `replacement` should be set to `True`. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish']) >>> df num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8 Extract 3 random elements from the ``Series`` ``df['num_legs']``: Note that we use `random_state` to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 Name: num_legs, dtype: int64 A random 50% sample of the ``DataFrame`` with replacement: >>> df.sample(frac=0.5, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 An upsample sample of the ``DataFrame`` with replacement: Note that `replace` parameter has to be `True` for `frac` parameter > 1. >>> df.sample(frac=2, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 falcon 2 2 10 falcon 2 2 10 fish 0 0 8 dog 4 0 2 fish 0 0 8 dog 4 0 2 Using a DataFrame column as weights. Rows with larger value in the `num_specimen_seen` column are more likely to be sampled. >>> df.sample(n=2, weights='num_specimen_seen', random_state=1) num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) axis_length = self.shape[axis] # Process random_state argument rs = com.random_state(random_state) # Check weights for compliance if weights is not None: # If a series, align with frame if isinstance(weights, ABCSeries): weights = weights.reindex(self.axes[axis]) # Strings acceptable if a dataframe and axis = 0 if isinstance(weights, str): if isinstance(self, ABCDataFrame): if axis == 0: try: weights = self[weights] except KeyError: raise KeyError( "String passed to weights not a valid column" ) else: raise ValueError( "Strings can only be passed to " "weights when sampling from rows on " "a DataFrame" ) else: raise ValueError( "Strings cannot be passed as weights " "when sampling from a Series." ) weights = pd.Series(weights, dtype="float64") if len(weights) != axis_length: raise ValueError( "Weights and axis to be sampled must be of same length" ) if (weights == np.inf).any() or (weights == -np.inf).any(): raise ValueError("weight vector may not include `inf` values") if (weights < 0).any(): raise ValueError("weight vector many not include negative values") # If has nan, set to zero. weights = weights.fillna(0) # Renormalize if don't sum to 1 if weights.sum() != 1: if weights.sum() != 0: weights = weights / weights.sum() else: raise ValueError("Invalid weights: weights sum to zero") weights = weights.values # If no frac or n, default to n=1. if n is None and frac is None: n = 1 elif frac is not None and frac > 1 and not replace: raise ValueError( "Replace has to be set to `True` when " "upsampling the population `frac` > 1." ) elif n is not None and frac is None and n % 1 != 0: raise ValueError("Only integers accepted as `n` values") elif n is None and frac is not None: n = int(round(frac * axis_length)) elif n is not None and frac is not None: raise ValueError("Please enter a value for `frac` OR `n`, not both") # Check for negative sizes if n < 0: raise ValueError( "A negative number of rows requested. Please provide positive value." ) locs = rs.choice(axis_length, size=n, replace=replace, p=weights) return self.take(locs, axis=axis) _shared_docs[ "pipe" ] = r""" Apply func(self, \*args, \*\*kwargs). Parameters ---------- func : function Function to apply to the %(klass)s. ``args``, and ``kwargs`` are passed into ``func``. Alternatively a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of ``callable`` that expects the %(klass)s. args : iterable, optional Positional arguments passed into ``func``. kwargs : mapping, optional A dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. See Also -------- DataFrame.apply DataFrame.applymap Series.map Notes ----- Use ``.pipe`` when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing >>> f(g(h(df), arg1=a), arg2=b, arg3=c) You can write >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe(f, arg2=b, arg3=c) ... ) If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose ``f`` takes its data as ``arg2``: >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe((f, 'arg2'), arg1=a, arg3=c) ... ) """ @Appender(_shared_docs["pipe"] % _shared_doc_kwargs) def pipe(self, func, *args, **kwargs): return com.pipe(self, func, *args, **kwargs) _shared_docs["aggregate"] = dedent( """ Aggregate using one or more operations over the specified axis. %(versionadded)s Parameters ---------- func : function, str, list or dict Function to use for aggregating the data. If a function, must either work when passed a %(klass)s or when passed to %(klass)s.apply. Accepted combinations are: - function - string function name - list of functions and/or function names, e.g. ``[np.sum, 'mean']`` - dict of axis labels -> functions, function names or list of such. %(axis)s *args Positional arguments to pass to `func`. **kwargs Keyword arguments to pass to `func`. Returns ------- scalar, Series or DataFrame The return can be: * scalar : when Series.agg is called with single function * Series : when DataFrame.agg is called with a single function * DataFrame : when DataFrame.agg is called with several functions Return scalar, Series or DataFrame. %(see_also)s Notes ----- `agg` is an alias for `aggregate`. Use the alias. A passed user-defined-function will be passed a Series for evaluation. %(examples)s""" ) _shared_docs[ "transform" ] = """ Call ``func`` on self producing a %(klass)s with transformed values. Produced %(klass)s will have same axis length as self. Parameters ---------- func : function, str, list or dict Function to use for transforming the data. If a function, must either work when passed a %(klass)s or when passed to %(klass)s.apply. Accepted combinations are: - function - string function name - list of functions and/or function names, e.g. ``[np.exp. 'sqrt']`` - dict of axis labels -> functions, function names or list of such. %(axis)s *args Positional arguments to pass to `func`. **kwargs Keyword arguments to pass to `func`. Returns ------- %(klass)s A %(klass)s that must have the same length as self. Raises ------ ValueError : If the returned %(klass)s has a different length than self. See Also -------- %(klass)s.agg : Only perform aggregating type operations. %(klass)s.apply : Invoke function on a %(klass)s. Examples -------- >>> df = pd.DataFrame({'A': range(3), 'B': range(1, 4)}) >>> df A B 0 0 1 1 1 2 2 2 3 >>> df.transform(lambda x: x + 1) A B 0 1 2 1 2 3 2 3 4 Even though the resulting %(klass)s must have the same length as the input %(klass)s, it is possible to provide several input functions: >>> s = pd.Series(range(3)) >>> s 0 0 1 1 2 2 dtype: int64 >>> s.transform([np.sqrt, np.exp]) sqrt exp 0 0.000000 1.000000 1 1.000000 2.718282 2 1.414214 7.389056 """ # ---------------------------------------------------------------------- # Attribute access def __finalize__( self: FrameOrSeries, other, method=None, **kwargs ) -> FrameOrSeries: """ Propagate metadata from other to self. Parameters ---------- other : the object from which to get the attributes that we are going to propagate method : optional, a passed method name ; possibly to take different types of propagation actions based on this """ if isinstance(other, NDFrame): for name in other.attrs: self.attrs[name] = other.attrs[name] # For subclasses using _metadata. for name in self._metadata: assert isinstance(name, str) object.__setattr__(self, name, getattr(other, name, None)) return self def __getattr__(self, name: str): """ After regular attribute access, try looking up the name This allows simpler access to columns for interactive use. """ # Note: obj.x will always call obj.__getattribute__('x') prior to # calling obj.__getattr__('x'). if ( name in self._internal_names_set or name in self._metadata or name in self._accessors ): return object.__getattribute__(self, name) else: if self._info_axis._can_hold_identifiers_and_holds_name(name): return self[name] return object.__getattribute__(self, name) def __setattr__(self, name: str, value) -> None: """ After regular attribute access, try setting the name This allows simpler access to columns for interactive use. """ # first try regular attribute access via __getattribute__, so that # e.g. ``obj.x`` and ``obj.x = 4`` will always reference/modify # the same attribute. try: object.__getattribute__(self, name) return object.__setattr__(self, name, value) except AttributeError: pass # if this fails, go on to more involved attribute setting # (note that this matches __getattr__, above). if name in self._internal_names_set: object.__setattr__(self, name, value) elif name in self._metadata: object.__setattr__(self, name, value) else: try: existing = getattr(self, name) if isinstance(existing, Index): object.__setattr__(self, name, value) elif name in self._info_axis: self[name] = value else: object.__setattr__(self, name, value) except (AttributeError, TypeError): if isinstance(self, ABCDataFrame) and (is_list_like(value)): warnings.warn( "Pandas doesn't allow columns to be " "created via a new attribute name - see " "https://pandas.pydata.org/pandas-docs/" "stable/indexing.html#attribute-access", stacklevel=2, ) object.__setattr__(self, name, value) def _dir_additions(self): """ add the string-like attributes from the info_axis. If info_axis is a MultiIndex, it's first level values are used. """ additions = { c for c in self._info_axis.unique(level=0)[:100] if isinstance(c, str) and c.isidentifier() } return super()._dir_additions().union(additions) # ---------------------------------------------------------------------- # Consolidation of internals def _protect_consolidate(self, f): """ Consolidate _data -- if the blocks have changed, then clear the cache """ blocks_before = len(self._data.blocks) result = f() if len(self._data.blocks) != blocks_before: self._clear_item_cache() return result def _consolidate_inplace(self) -> None: """Consolidate data in place and return None""" def f(): self._data = self._data.consolidate() self._protect_consolidate(f) def _consolidate(self, inplace: bool_t = False): """ Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray). Parameters ---------- inplace : bool, default False If False return new object, otherwise modify existing object. Returns ------- consolidated : same type as caller """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: self._consolidate_inplace() else: f = lambda: self._data.consolidate() cons_data = self._protect_consolidate(f) return self._constructor(cons_data).__finalize__(self) @property def _is_mixed_type(self): f = lambda: self._data.is_mixed_type return self._protect_consolidate(f) @property def _is_numeric_mixed_type(self): f = lambda: self._data.is_numeric_mixed_type return self._protect_consolidate(f) def _check_inplace_setting(self, value) -> bool_t: """ check whether we allow in-place setting with this type of value """ if self._is_mixed_type: if not self._is_numeric_mixed_type: # allow an actual np.nan thru if is_float(value) and np.isnan(value): return True raise TypeError( "Cannot do inplace boolean setting on " "mixed-types with a non np.nan value" ) return True def _get_numeric_data(self): return self._constructor(self._data.get_numeric_data()).__finalize__(self) def _get_bool_data(self): return self._constructor(self._data.get_bool_data()).__finalize__(self) # ---------------------------------------------------------------------- # Internal Interface Methods @property def values(self) -> np.ndarray: """ Return a Numpy representation of the DataFrame. .. warning:: We recommend using :meth:`DataFrame.to_numpy` instead. Only the values in the DataFrame will be returned, the axes labels will be removed. Returns ------- numpy.ndarray The values of the DataFrame. See Also -------- DataFrame.to_numpy : Recommended alternative to this method. DataFrame.index : Retrieve the index labels. DataFrame.columns : Retrieving the column names. Notes ----- The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By :func:`numpy.find_common_type` convention, mixing int64 and uint64 will result in a float64 dtype. Examples -------- A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type. >>> df = pd.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]], dtype=int64) A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object). >>> df2 = pd.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 1), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 1], ['monkey', nan, None]], dtype=object) """ self._consolidate_inplace() return self._data.as_array(transpose=self._AXIS_REVERSED) @property def _values(self) -> np.ndarray: """internal implementation""" return self.values def _internal_get_values(self) -> np.ndarray: """ Return an ndarray after converting sparse values to dense. This is the same as ``.values`` for non-sparse data. For sparse data contained in a `SparseArray`, the data are first converted to a dense representation. Returns ------- numpy.ndarray Numpy representation of DataFrame. See Also -------- values : Numpy representation of DataFrame. SparseArray : Container for sparse data. """ return self.values @property def dtypes(self): """ Return the dtypes in the DataFrame. This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types are stored with the ``object`` dtype. See :ref:`the User Guide <basics.dtypes>` for more. Returns ------- pandas.Series The data type of each column. Examples -------- >>> df = pd.DataFrame({'float': [1.0], ... 'int': [1], ... 'datetime': [pd.Timestamp('20180310')], ... 'string': ['foo']}) >>> df.dtypes float float64 int int64 datetime datetime64[ns] string object dtype: object """ from pandas import Series return Series(self._data.get_dtypes(), index=self._info_axis, dtype=np.object_) def _to_dict_of_blocks(self, copy: bool_t = True): """ Return a dict of dtype -> Constructor Types that each is a homogeneous dtype. Internal ONLY """ return { k: self._constructor(v).__finalize__(self) for k, v, in self._data.to_dict(copy=copy).items() } def astype( self: FrameOrSeries, dtype, copy: bool_t = True, errors: str = "raise" ) -> FrameOrSeries: """ Cast a pandas object to a specified dtype ``dtype``. Parameters ---------- dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame's columns to column-specific types. copy : bool, default True Return a copy when ``copy=True`` (be very careful setting ``copy=False`` as changes to values then may propagate to other pandas objects). errors : {'raise', 'ignore'}, default 'raise' Control raising of exceptions on invalid data for provided dtype. - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object. Returns ------- casted : same type as caller See Also -------- to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to a numeric type. numpy.ndarray.astype : Cast a numpy array to a specified type. Examples -------- Create a DataFrame: >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df.dtypes col1 int64 col2 int64 dtype: object Cast all columns to int32: >>> df.astype('int32').dtypes col1 int32 col2 int32 dtype: object Cast col1 to int32 using a dictionary: >>> df.astype({'col1': 'int32'}).dtypes col1 int32 col2 int64 dtype: object Create a series: >>> ser = pd.Series([1, 2], dtype='int32') >>> ser 0 1 1 2 dtype: int32 >>> ser.astype('int64') 0 1 1 2 dtype: int64 Convert to categorical type: >>> ser.astype('category') 0 1 1 2 dtype: category Categories (2, int64): [1, 2] Convert to ordered categorical type with custom ordering: >>> cat_dtype = pd.api.types.CategoricalDtype( ... categories=[2, 1], ordered=True) >>> ser.astype(cat_dtype) 0 1 1 2 dtype: category Categories (2, int64): [2 < 1] Note that using ``copy=False`` and changing data on a new pandas object may propagate changes: >>> s1 = pd.Series([1, 2]) >>> s2 = s1.astype('int64', copy=False) >>> s2[0] = 10 >>> s1 # note that s1[0] has changed too 0 10 1 2 dtype: int64 """ if is_dict_like(dtype): if self.ndim == 1: # i.e. Series if len(dtype) > 1 or self.name not in dtype: raise KeyError( "Only the Series name can be used for " "the key in Series dtype mappings." ) new_type = dtype[self.name] return self.astype(new_type, copy, errors) for col_name in dtype.keys(): if col_name not in self: raise KeyError( "Only a column name can be used for the " "key in a dtype mappings argument." ) results = [] for col_name, col in self.items(): if col_name in dtype: results.append( col.astype(dtype=dtype[col_name], copy=copy, errors=errors) ) else: results.append(col.copy() if copy else col) elif is_extension_array_dtype(dtype) and self.ndim > 1: # GH 18099/22869: columnwise conversion to extension dtype # GH 24704: use iloc to handle duplicate column names results = [ self.iloc[:, i].astype(dtype, copy=copy) for i in range(len(self.columns)) ] else: # else, only a single dtype is given new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors) return self._constructor(new_data).__finalize__(self) # GH 19920: retain column metadata after concat result = pd.concat(results, axis=1, copy=False) result.columns = self.columns return result def copy(self: FrameOrSeries, deep: bool_t = True) -> FrameOrSeries: """ Make a copy of this object's indices and data. When ``deep=True`` (default), a new object will be created with a copy of the calling object's data and indices. Modifications to the data or indices of the copy will not be reflected in the original object (see notes below). When ``deep=False``, a new object will be created without copying the calling object's data or index (only references to the data and index are copied). Any changes to the data of the original will be reflected in the shallow copy (and vice versa). Parameters ---------- deep : bool, default True Make a deep copy, including a copy of the data and the indices. With ``deep=False`` neither the indices nor the data are copied. Returns ------- copy : Series or DataFrame Object type matches caller. Notes ----- When ``deep=True``, data is copied but actual Python objects will not be copied recursively, only the reference to the object. This is in contrast to `copy.deepcopy` in the Standard Library, which recursively copies object data (see examples below). While ``Index`` objects are copied when ``deep=True``, the underlying numpy array is not copied for performance reasons. Since ``Index`` is immutable, the underlying data can be safely shared and a copy is not needed. Examples -------- >>> s = pd.Series([1, 2], index=["a", "b"]) >>> s a 1 b 2 dtype: int64 >>> s_copy = s.copy() >>> s_copy a 1 b 2 dtype: int64 **Shallow copy versus default (deep) copy:** >>> s = pd.Series([1, 2], index=["a", "b"]) >>> deep = s.copy() >>> shallow = s.copy(deep=False) Shallow copy shares data and index with original. >>> s is shallow False >>> s.values is shallow.values and s.index is shallow.index True Deep copy has own copy of data and index. >>> s is deep False >>> s.values is deep.values or s.index is deep.index False Updates to the data shared by shallow copy and original is reflected in both; deep copy remains unchanged. >>> s[0] = 3 >>> shallow[1] = 4 >>> s a 3 b 4 dtype: int64 >>> shallow a 3 b 4 dtype: int64 >>> deep a 1 b 2 dtype: int64 Note that when copying an object containing Python objects, a deep copy will copy the data, but will not do so recursively. Updating a nested data object will be reflected in the deep copy. >>> s = pd.Series([[1, 2], [3, 4]]) >>> deep = s.copy() >>> s[0][0] = 10 >>> s 0 [10, 2] 1 [3, 4] dtype: object >>> deep 0 [10, 2] 1 [3, 4] dtype: object """ data = self._data.copy(deep=deep) return self._constructor(data).__finalize__(self) def __copy__(self: FrameOrSeries, deep: bool_t = True) -> FrameOrSeries: return self.copy(deep=deep) def __deepcopy__(self: FrameOrSeries, memo=None) -> FrameOrSeries: """ Parameters ---------- memo, default None Standard signature. Unused """ return self.copy(deep=True) def _convert( self: FrameOrSeries, datetime: bool_t = False, numeric: bool_t = False, timedelta: bool_t = False, coerce: bool_t = False, copy: bool_t = True, ) -> FrameOrSeries: """ Attempt to infer better dtype for object columns Parameters ---------- datetime : bool, default False If True, convert to date where possible. numeric : bool, default False If True, attempt to convert to numbers (including strings), with unconvertible values becoming NaN. timedelta : bool, default False If True, convert to timedelta where possible. coerce : bool, default False If True, force conversion with unconvertible values converted to nulls (NaN or NaT). copy : bool, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns ------- converted : same as input object """ validate_bool_kwarg(datetime, "datetime") validate_bool_kwarg(numeric, "numeric") validate_bool_kwarg(timedelta, "timedelta") validate_bool_kwarg(coerce, "coerce") validate_bool_kwarg(copy, "copy") return self._constructor( self._data.convert( datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy, ) ).__finalize__(self) def infer_objects(self: FrameOrSeries) -> FrameOrSeries: """ Attempt to infer better dtypes for object columns. Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns unchanged. The inference rules are the same as during normal Series/DataFrame construction. .. versionadded:: 0.21.0 Returns ------- converted : same type as input object See Also -------- to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to numeric type. convert_dtypes : Convert argument to best possible dtype. Examples -------- >>> df = pd.DataFrame({"A": ["a", 1, 2, 3]}) >>> df = df.iloc[1:] >>> df A 1 1 2 2 3 3 >>> df.dtypes A object dtype: object >>> df.infer_objects().dtypes A int64 dtype: object """ # numeric=False necessary to only soft convert; # python objects will still be converted to # native numpy numeric types return self._constructor( self._data.convert( datetime=True, numeric=False, timedelta=True, coerce=False, copy=True ) ).__finalize__(self) def convert_dtypes( self: FrameOrSeries, infer_objects: bool_t = True, convert_string: bool_t = True, convert_integer: bool_t = True, convert_boolean: bool_t = True, ) -> FrameOrSeries: """ Convert columns to best possible dtypes using dtypes supporting ``pd.NA``. .. versionadded:: 1.0.0 Parameters ---------- infer_objects : bool, default True Whether object dtypes should be converted to the best possible types. convert_string : bool, default True Whether object dtypes should be converted to ``StringDtype()``. convert_integer : bool, default True Whether, if possible, conversion can be done to integer extension types. convert_boolean : bool, defaults True Whether object dtypes should be converted to ``BooleanDtypes()``. Returns ------- Series or DataFrame Copy of input object with new dtype. See Also -------- infer_objects : Infer dtypes of objects. to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to a numeric type. Notes ----- By default, ``convert_dtypes`` will attempt to convert a Series (or each Series in a DataFrame) to dtypes that support ``pd.NA``. By using the options ``convert_string``, ``convert_integer``, and ``convert_boolean``, it is possible to turn off individual conversions to ``StringDtype``, the integer extension types or ``BooleanDtype``, respectively. For object-dtyped columns, if ``infer_objects`` is ``True``, use the inference rules as during normal Series/DataFrame construction. Then, if possible, convert to ``StringDtype``, ``BooleanDtype`` or an appropriate integer extension type, otherwise leave as ``object``. If the dtype is integer, convert to an appropriate integer extension type. If the dtype is numeric, and consists of all integers, convert to an appropriate integer extension type. In the future, as new dtypes are added that support ``pd.NA``, the results of this method will change to support those new dtypes. Examples -------- >>> df = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), ... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")), ... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")), ... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")), ... } ... ) Start with a DataFrame with default dtypes. >>> df a b c d e f 0 1 x True h 10.0 NaN 1 2 y False i NaN 100.5 2 3 z NaN NaN 20.0 200.0 >>> df.dtypes a int32 b object c object d object e float64 f float64 dtype: object Convert the DataFrame to use best possible dtypes. >>> dfn = df.convert_dtypes() >>> dfn a b c d e f 0 1 x True h 10 NaN 1 2 y False i <NA> 100.5 2 3 z <NA> <NA> 20 200.0 >>> dfn.dtypes a Int32 b string c boolean d string e Int64 f float64 dtype: object Start with a Series of strings and missing data represented by ``np.nan``. >>> s = pd.Series(["a", "b", np.nan]) >>> s 0 a 1 b 2 NaN dtype: object Obtain a Series with dtype ``StringDtype``. >>> s.convert_dtypes() 0 a 1 b 2 <NA> dtype: string """ if self.ndim == 1: return self._convert_dtypes( infer_objects, convert_string, convert_integer, convert_boolean ) else: results = [ col._convert_dtypes( infer_objects, convert_string, convert_integer, convert_boolean ) for col_name, col in self.items() ] result = pd.concat(results, axis=1, copy=False) return result # ---------------------------------------------------------------------- # Filling NA's @doc(**_shared_doc_kwargs) def fillna( self: FrameOrSeries, value=None, method=None, axis=None, inplace: bool_t = False, limit=None, downcast=None, ) -> Optional[FrameOrSeries]: """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list. method : {{'backfill', 'bfill', 'pad', 'ffill', None}}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap. axis : {axes_single_arg} Axis along which to fill missing values. inplace : bool, default False If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. downcast : dict, default is None A dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns ------- {klass} or None Object with missing values filled or None if ``inplace=True``. See Also -------- interpolate : Fill NaN values using interpolation. reindex : Conform object to new index. asfreq : Convert TimeSeries to specified frequency. Examples -------- >>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], ... [3, 4, np.nan, 1], ... [np.nan, np.nan, np.nan, 5], ... [np.nan, 3, np.nan, 4]], ... columns=list('ABCD')) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 NaN 4 Replace all NaN elements with 0s. >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 0.0 4 We can also propagate non-null values forward or backward. >>> df.fillna(method='ffill') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 NaN 4 Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively. >>> values = {{'A': 0, 'B': 1, 'C': 2, 'D': 3}} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 Only replace the first NaN element. >>> df.fillna(value=values, limit=1) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 """ inplace = validate_bool_kwarg(inplace, "inplace") value, method = validate_fillna_kwargs(value, method) self._consolidate_inplace() # set the default here, so functions examining the signaure # can detect if something was set (e.g. in groupby) (GH9221) if axis is None: axis = 0 axis = self._get_axis_number(axis) if value is None: if self._is_mixed_type and axis == 1: if inplace: raise NotImplementedError() result = self.T.fillna(method=method, limit=limit).T # need to downcast here because of all of the transposes result._data = result._data.downcast() return result new_data = self._data.interpolate( method=method, axis=axis, limit=limit, inplace=inplace, coerce=True, downcast=downcast, ) else: if len(self._get_axis(axis)) == 0: return self if self.ndim == 1: if isinstance(value, (dict, ABCSeries)): value = create_series_with_explicit_dtype( value, dtype_if_empty=object ) elif not is_list_like(value): pass else: raise TypeError( '"value" parameter must be a scalar, dict ' "or Series, but you passed a " f'"{type(value).__name__}"' ) new_data = self._data.fillna( value=value, limit=limit, inplace=inplace, downcast=downcast ) elif isinstance(value, (dict, ABCSeries)): if axis == 1: raise NotImplementedError( "Currently only can fill " "with dict/Series column " "by column" ) result = self if inplace else self.copy() for k, v in value.items(): if k not in result: continue obj = result[k] obj.fillna(v, limit=limit, inplace=True, downcast=downcast) return result if not inplace else None elif not is_list_like(value): new_data = self._data.fillna( value=value, limit=limit, inplace=inplace, downcast=downcast ) elif isinstance(value, ABCDataFrame) and self.ndim == 2: new_data = self.where(self.notna(), value) else: raise ValueError(f"invalid fill value with a {type(value)}") if inplace: self._update_inplace(new_data) return None else: return self._constructor(new_data).__finalize__(self) def ffill( self: FrameOrSeries, axis=None, inplace: bool_t = False, limit=None, downcast=None, ) -> Optional[FrameOrSeries]: """ Synonym for :meth:`DataFrame.fillna` with ``method='ffill'``. Returns ------- %(klass)s or None Object with missing values filled or None if ``inplace=True``. """ return self.fillna( method="ffill", axis=axis, inplace=inplace, limit=limit, downcast=downcast ) def bfill( self: FrameOrSeries, axis=None, inplace: bool_t = False, limit=None, downcast=None, ) -> Optional[FrameOrSeries]: """ Synonym for :meth:`DataFrame.fillna` with ``method='bfill'``. Returns ------- %(klass)s or None Object with missing values filled or None if ``inplace=True``. """ return self.fillna( method="bfill", axis=axis, inplace=inplace, limit=limit, downcast=downcast ) _shared_docs[ "replace" ] = """ Replace values given in `to_replace` with `value`. Values of the %(klass)s are replaced with other values dynamically. This differs from updating with ``.loc`` or ``.iloc``, which require you to specify a location to update with some value. Parameters ---------- to_replace : str, regex, list, dict, Series, int, float, or None How to find the values that will be replaced. * numeric, str or regex: - numeric: numeric values equal to `to_replace` will be replaced with `value` - str: string exactly matching `to_replace` will be replaced with `value` - regex: regexs matching `to_replace` will be replaced with `value` * list of str, regex, or numeric: - First, if `to_replace` and `value` are both lists, they **must** be the same length. - Second, if ``regex=True`` then all of the strings in **both** lists will be interpreted as regexs otherwise they will match directly. This doesn't matter much for `value` since there are only a few possible substitution regexes you can use. - str, regex and numeric rules apply as above. * dict: - Dicts can be used to specify different replacement values for different existing values. For example, ``{'a': 'b', 'y': 'z'}`` replaces the value 'a' with 'b' and 'y' with 'z'. To use a dict in this way the `value` parameter should be `None`. - For a DataFrame a dict can specify that different values should be replaced in different columns. For example, ``{'a': 1, 'b': 'z'}`` looks for the value 1 in column 'a' and the value 'z' in column 'b' and replaces these values with whatever is specified in `value`. The `value` parameter should not be ``None`` in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in. - For a DataFrame nested dictionaries, e.g., ``{'a': {'b': np.nan}}``, are read as follows: look in column 'a' for the value 'b' and replace it with NaN. The `value` parameter should be ``None`` to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) **cannot** be regular expressions. * None: - This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also ``None`` then this **must** be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to replace any values matching `to_replace` with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : bool, default False If True, in place. Note: this will modify any other views on this object (e.g. a column from a DataFrame). Returns the caller if this is True. limit : int, default None Maximum size gap to forward or backward fill. regex : bool or same types as `to_replace`, default False Whether to interpret `to_replace` and/or `value` as regular expressions. If this is ``True`` then `to_replace` *must* be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case `to_replace` must be ``None``. method : {'pad', 'ffill', 'bfill', `None`} The method to use when for replacement, when `to_replace` is a scalar, list or tuple and `value` is ``None``. .. versionchanged:: 0.23.0 Added to DataFrame. Returns ------- %(klass)s Object after replacement. Raises ------ AssertionError * If `regex` is not a ``bool`` and `to_replace` is not ``None``. TypeError * If `to_replace` is a ``dict`` and `value` is not a ``list``, ``dict``, ``ndarray``, or ``Series`` * If `to_replace` is ``None`` and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series. * When replacing multiple ``bool`` or ``datetime64`` objects and the arguments to `to_replace` does not match the type of the value being replaced ValueError * If a ``list`` or an ``ndarray`` is passed to `to_replace` and `value` but they are not the same length. See Also -------- %(klass)s.fillna : Fill NA values. %(klass)s.where : Replace values based on boolean condition. Series.str.replace : Simple string replacement. Notes ----- * Regex substitution is performed under the hood with ``re.sub``. The rules for substitution for ``re.sub`` are the same. * Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers *are* strings, then you can do this. * This method has *a lot* of options. You are encouraged to experiment and play with this method to gain intuition about how it works. * When dict is used as the `to_replace` value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter. Examples -------- **Scalar `to_replace` and `value`** >>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.replace(0, 5) 0 5 1 1 2 2 3 3 4 4 dtype: int64 >>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e **List-like `to_replace`** >>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e >>> s.replace([1, 2], method='bfill') 0 0 1 3 2 3 3 3 4 4 dtype: int64 **dict-like `to_replace`** >>> df.replace({0: 10, 1: 100}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': {0: 100, 4: 400}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e **Regular expression `to_replace`** >>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'], ... 'B': ['abc', 'bar', 'xyz']}) >>> df.replace(to_replace=r'^ba.$', value='new', regex=True) A B 0 new abc 1 foo new 2 bait xyz >>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) A B 0 new abc 1 foo bar 2 bait xyz >>> df.replace(regex=r'^ba.$', value='new') A B 0 new abc 1 foo new 2 bait xyz >>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'}) A B 0 new abc 1 xyz new 2 bait xyz >>> df.replace(regex=[r'^ba.$', 'foo'], value='new') A B 0 new abc 1 new new 2 bait xyz Note that when replacing multiple ``bool`` or ``datetime64`` objects, the data types in the `to_replace` parameter must match the data type of the value being replaced: >>> df = pd.DataFrame({'A': [True, False, True], ... 'B': [False, True, False]}) >>> df.replace({'a string': 'new value', True: False}) # raises Traceback (most recent call last): ... TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str' This raises a ``TypeError`` because one of the ``dict`` keys is not of the correct type for replacement. Compare the behavior of ``s.replace({'a': None})`` and ``s.replace('a', None)`` to understand the peculiarities of the `to_replace` parameter: >>> s = pd.Series([10, 'a', 'a', 'b', 'a']) When one uses a dict as the `to_replace` value, it is like the value(s) in the dict are equal to the `value` parameter. ``s.replace({'a': None})`` is equivalent to ``s.replace(to_replace={'a': None}, value=None, method=None)``: >>> s.replace({'a': None}) 0 10 1 None 2 None 3 b 4 None dtype: object When ``value=None`` and `to_replace` is a scalar, list or tuple, `replace` uses the method parameter (default 'pad') to do the replacement. So this is why the 'a' values are being replaced by 10 in rows 1 and 2 and 'b' in row 4 in this case. The command ``s.replace('a', None)`` is actually equivalent to ``s.replace(to_replace='a', value=None, method='pad')``: >>> s.replace('a', None) 0 10 1 10 2 10 3 b 4 b dtype: object """ @Appender(_shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): inplace = validate_bool_kwarg(inplace, "inplace") if not is_bool(regex) and to_replace is not None: raise AssertionError("'to_replace' must be 'None' if 'regex' is not a bool") self._consolidate_inplace() if value is None: # passing a single value that is scalar like # when value is None (GH5319), for compat if not is_dict_like(to_replace) and not is_dict_like(regex): to_replace = [to_replace] if isinstance(to_replace, (tuple, list)): if isinstance(self, ABCDataFrame): return self.apply( _single_replace, args=(to_replace, method, inplace, limit) ) return _single_replace(self, to_replace, method, inplace, limit) if not is_dict_like(to_replace): if not is_dict_like(regex): raise TypeError( 'If "to_replace" and "value" are both None ' 'and "to_replace" is not a list, then ' "regex must be a mapping" ) to_replace = regex regex = True items = list(to_replace.items()) keys, values = zip(*items) if items else ([], []) are_mappings = [is_dict_like(v) for v in values] if any(are_mappings): if not all(are_mappings): raise TypeError( "If a nested mapping is passed, all values " "of the top level mapping must be mappings" ) # passed a nested dict/Series to_rep_dict = {} value_dict = {} for k, v in items: keys, values = list(zip(*v.items())) or ([], []) to_rep_dict[k] = list(keys) value_dict[k] = list(values) to_replace, value = to_rep_dict, value_dict else: to_replace, value = keys, values return self.replace( to_replace, value, inplace=inplace, limit=limit, regex=regex ) else: # need a non-zero len on all axes if not self.size: return self new_data = self._data if is_dict_like(to_replace): if is_dict_like(value): # {'A' : NA} -> {'A' : 0} res = self if inplace else self.copy() for c, src in to_replace.items(): if c in value and c in self: # object conversion is handled in # series.replace which is called recursively res[c] = res[c].replace( to_replace=src, value=value[c], inplace=False, regex=regex, ) return None if inplace else res # {'A': NA} -> 0 elif not is_list_like(value): keys = [(k, src) for k, src in to_replace.items() if k in self] keys_len = len(keys) - 1 for i, (k, src) in enumerate(keys): convert = i == keys_len new_data = new_data.replace( to_replace=src, value=value, filter=[k], inplace=inplace, regex=regex, convert=convert, ) else: raise TypeError("value argument must be scalar, dict, or Series") elif is_list_like(to_replace): # [NA, ''] -> [0, 'missing'] if is_list_like(value): if len(to_replace) != len(value): raise ValueError( f"Replacement lists must match in length. " f"Expecting {len(to_replace)} got {len(value)} " ) new_data = self._data.replace_list( src_list=to_replace, dest_list=value, inplace=inplace, regex=regex, ) else: # [NA, ''] -> 0 new_data = self._data.replace( to_replace=to_replace, value=value, inplace=inplace, regex=regex ) elif to_replace is None: if not ( is_re_compilable(regex) or is_list_like(regex) or is_dict_like(regex) ): raise TypeError( f"'regex' must be a string or a compiled regular expression " f"or a list or dict of strings or regular expressions, " f"you passed a {repr(type(regex).__name__)}" ) return self.replace( regex, value, inplace=inplace, limit=limit, regex=True ) else: # dest iterable dict-like if is_dict_like(value): # NA -> {'A' : 0, 'B' : -1} new_data = self._data for k, v in value.items(): if k in self: new_data = new_data.replace( to_replace=to_replace, value=v, filter=[k], inplace=inplace, regex=regex, ) elif not is_list_like(value): # NA -> 0 new_data = self._data.replace( to_replace=to_replace, value=value, inplace=inplace, regex=regex ) else: raise TypeError( f'Invalid "to_replace" type: {repr(type(to_replace).__name__)}' ) if inplace: self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) _shared_docs[ "interpolate" ] = """ Please note that only ``method='linear'`` is supported for DataFrame/Series with a MultiIndex. Parameters ---------- method : str, default 'linear' Interpolation technique to use. One of: * 'linear': Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. * 'time': Works on daily and higher resolution data to interpolate given length of interval. * 'index', 'values': use the actual numerical values of the index. * 'pad': Fill in NaNs using existing values. * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'spline', 'barycentric', 'polynomial': Passed to `scipy.interpolate.interp1d`. These methods use the numerical values of the index. Both 'polynomial' and 'spline' require that you also specify an `order` (int), e.g. ``df.interpolate(method='polynomial', order=5)``. * 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima': Wrappers around the SciPy interpolation methods of similar names. See `Notes`. * 'from_derivatives': Refers to `scipy.interpolate.BPoly.from_derivatives` which replaces 'piecewise_polynomial' interpolation method in scipy 0.18. axis : {0 or 'index', 1 or 'columns', None}, default None Axis to interpolate along. limit : int, optional Maximum number of consecutive NaNs to fill. Must be greater than 0. inplace : bool, default False Update the data in place if possible. limit_direction : {'forward', 'backward', 'both'}, default 'forward' If limit is specified, consecutive NaNs will be filled in this direction. limit_area : {`None`, 'inside', 'outside'}, default None If limit is specified, consecutive NaNs will be filled with this restriction. * ``None``: No fill restriction. * 'inside': Only fill NaNs surrounded by valid values (interpolate). * 'outside': Only fill NaNs outside valid values (extrapolate). .. versionadded:: 0.23.0 downcast : optional, 'infer' or None, defaults to None Downcast dtypes if possible. **kwargs Keyword arguments to pass on to the interpolating function. Returns ------- Series or DataFrame Returns the same object type as the caller, interpolated at some or all ``NaN`` values. See Also -------- fillna : Fill missing values using different methods. scipy.interpolate.Akima1DInterpolator : Piecewise cubic polynomials (Akima interpolator). scipy.interpolate.BPoly.from_derivatives : Piecewise polynomial in the Bernstein basis. scipy.interpolate.interp1d : Interpolate a 1-D function. scipy.interpolate.KroghInterpolator : Interpolate polynomial (Krogh interpolator). scipy.interpolate.PchipInterpolator : PCHIP 1-d monotonic cubic interpolation. scipy.interpolate.CubicSpline : Cubic spline data interpolator. Notes ----- The 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' methods are wrappers around the respective SciPy implementations of similar names. These use the actual numerical values of the index. For more information on their behavior, see the `SciPy documentation <https://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation>`__ and `SciPy tutorial <https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html>`__. Examples -------- Filling in ``NaN`` in a :class:`~pandas.Series` via linear interpolation. >>> s = pd.Series([0, 1, np.nan, 3]) >>> s 0 0.0 1 1.0 2 NaN 3 3.0 dtype: float64 >>> s.interpolate() 0 0.0 1 1.0 2 2.0 3 3.0 dtype: float64 Filling in ``NaN`` in a Series by padding, but filling at most two consecutive ``NaN`` at a time. >>> s = pd.Series([np.nan, "single_one", np.nan, ... "fill_two_more", np.nan, np.nan, np.nan, ... 4.71, np.nan]) >>> s 0 NaN 1 single_one 2 NaN 3 fill_two_more 4 NaN 5 NaN 6 NaN 7 4.71 8 NaN dtype: object >>> s.interpolate(method='pad', limit=2) 0 NaN 1 single_one 2 single_one 3 fill_two_more 4 fill_two_more 5 fill_two_more 6 NaN 7 4.71 8 4.71 dtype: object Filling in ``NaN`` in a Series via polynomial interpolation or splines: Both 'polynomial' and 'spline' methods require that you also specify an ``order`` (int). >>> s = pd.Series([0, 2, np.nan, 8]) >>> s.interpolate(method='polynomial', order=2) 0 0.000000 1 2.000000 2 4.666667 3 8.000000 dtype: float64 Fill the DataFrame forward (that is, going down) along each column using linear interpolation. Note how the last entry in column 'a' is interpolated differently, because there is no entry after it to use for interpolation. Note how the first entry in column 'b' remains ``NaN``, because there is no entry before it to use for interpolation. >>> df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0), ... (np.nan, 2.0, np.nan, np.nan), ... (2.0, 3.0, np.nan, 9.0), ... (np.nan, 4.0, -4.0, 16.0)], ... columns=list('abcd')) >>> df a b c d 0 0.0 NaN -1.0 1.0 1 NaN 2.0 NaN NaN 2 2.0 3.0 NaN 9.0 3 NaN 4.0 -4.0 16.0 >>> df.interpolate(method='linear', limit_direction='forward', axis=0) a b c d 0 0.0 NaN -1.0 1.0 1 1.0 2.0 -2.0 5.0 2 2.0 3.0 -3.0 9.0 3 2.0 4.0 -4.0 16.0 Using polynomial interpolation. >>> df['d'].interpolate(method='polynomial', order=2) 0 1.0 1 4.0 2 9.0 3 16.0 Name: d, dtype: float64 """ @Appender(_shared_docs["interpolate"] % _shared_doc_kwargs) def interpolate( self, method="linear", axis=0, limit=None, inplace=False, limit_direction="forward", limit_area=None, downcast=None, **kwargs, ): """ Interpolate values according to different methods. """ inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if axis == 0: ax = self._info_axis_name _maybe_transposed_self = self elif axis == 1: _maybe_transposed_self = self.T ax = 1 ax = _maybe_transposed_self._get_axis_number(ax) if _maybe_transposed_self.ndim == 2: alt_ax = 1 - ax else: alt_ax = ax if isinstance(_maybe_transposed_self.index, MultiIndex) and method != "linear": raise ValueError( "Only `method=linear` interpolation is supported on MultiIndexes." ) if _maybe_transposed_self._data.get_dtype_counts().get("object") == len( _maybe_transposed_self.T ): raise TypeError( "Cannot interpolate with all object-dtype columns " "in the DataFrame. Try setting at least one " "column to a numeric dtype." ) # create/use the index if method == "linear": # prior default index = np.arange(len(_maybe_transposed_self._get_axis(alt_ax))) else: index = _maybe_transposed_self._get_axis(alt_ax) methods = {"index", "values", "nearest", "time"} is_numeric_or_datetime = ( is_numeric_dtype(index) or is_datetime64_any_dtype(index) or is_timedelta64_dtype(index) ) if method not in methods and not is_numeric_or_datetime: raise ValueError( "Index column must be numeric or datetime type when " f"using {method} method other than linear. " "Try setting a numeric or datetime index column before " "interpolating." ) if isna(index).any(): raise NotImplementedError( "Interpolation with NaNs in the index " "has not been implemented. Try filling " "those NaNs before interpolating." ) data = _maybe_transposed_self._data new_data = data.interpolate( method=method, axis=ax, index=index, values=_maybe_transposed_self, limit=limit, limit_direction=limit_direction, limit_area=limit_area, inplace=inplace, downcast=downcast, **kwargs, ) if inplace: if axis == 1: new_data = self._constructor(new_data).T._data self._update_inplace(new_data) else: res = self._constructor(new_data).__finalize__(self) if axis == 1: res = res.T return res # ---------------------------------------------------------------------- # Timeseries methods Methods def asof(self, where, subset=None): """ Return the last row(s) without any NaNs before `where`. The last row (for each element in `where`, if list) without any NaN is taken. In case of a :class:`~pandas.DataFrame`, the last row without NaN considering only the subset of columns (if not `None`) If there is no good value, NaN is returned for a Series or a Series of NaN values for a DataFrame Parameters ---------- where : date or array-like of dates Date(s) before which the last row(s) are returned. subset : str or array-like of str, default `None` For DataFrame, if not `None`, only use these columns to check for NaNs. Returns ------- scalar, Series, or DataFrame The return can be: * scalar : when `self` is a Series and `where` is a scalar * Series: when `self` is a Series and `where` is an array-like, or when `self` is a DataFrame and `where` is a scalar * DataFrame : when `self` is a DataFrame and `where` is an array-like Return scalar, Series, or DataFrame. See Also -------- merge_asof : Perform an asof merge. Similar to left join. Notes ----- Dates are assumed to be sorted. Raises if this is not the case. Examples -------- A Series and a scalar `where`. >>> s = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40]) >>> s 10 1.0 20 2.0 30 NaN 40 4.0 dtype: float64 >>> s.asof(20) 2.0 For a sequence `where`, a Series is returned. The first value is NaN, because the first element of `where` is before the first index value. >>> s.asof([5, 20]) 5 NaN 20 2.0 dtype: float64 Missing values are not considered. The following is ``2.0``, not NaN, even though NaN is at the index location for ``30``. >>> s.asof(30) 2.0 Take all columns into consideration >>> df = pd.DataFrame({'a': [10, 20, 30, 40, 50], ... 'b': [None, None, None, None, 500]}, ... index=pd.DatetimeIndex(['2018-02-27 09:01:00', ... '2018-02-27 09:02:00', ... '2018-02-27 09:03:00', ... '2018-02-27 09:04:00', ... '2018-02-27 09:05:00'])) >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30'])) a b 2018-02-27 09:03:30 NaN NaN 2018-02-27 09:04:30 NaN NaN Take a single column into consideration >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30']), ... subset=['a']) a b 2018-02-27 09:03:30 30.0 NaN 2018-02-27 09:04:30 40.0 NaN """ if isinstance(where, str): where = Timestamp(where) if not self.index.is_monotonic: raise ValueError("asof requires a sorted index") is_series = isinstance(self, ABCSeries) if is_series: if subset is not None: raise ValueError("subset is not valid for Series") else: if subset is None: subset = self.columns if not is_list_like(subset): subset = [subset] is_list = is_list_like(where) if not is_list: start = self.index[0] if isinstance(self.index, PeriodIndex): where = Period(where, freq=self.index.freq) if where < start: if not is_series: from pandas import Series return Series(index=self.columns, name=where, dtype=np.float64) return np.nan # It's always much faster to use a *while* loop here for # Series than pre-computing all the NAs. However a # *while* loop is extremely expensive for DataFrame # so we later pre-compute all the NAs and use the same # code path whether *where* is a scalar or list. # See PR: https://github.com/pandas-dev/pandas/pull/14476 if is_series: loc = self.index.searchsorted(where, side="right") if loc > 0: loc -= 1 values = self._values while loc > 0 and isna(values[loc]): loc -= 1 return values[loc] if not isinstance(where, Index): where = Index(where) if is_list else Index([where]) nulls = self.isna() if is_series else self[subset].isna().any(1) if nulls.all(): if is_series: return self._constructor(np.nan, index=where, name=self.name) elif is_list: from pandas import DataFrame return DataFrame(np.nan, index=where, columns=self.columns) else: from pandas import Series return Series(np.nan, index=self.columns, name=where[0]) locs = self.index.asof_locs(where, ~(nulls.values)) # mask the missing missing = locs == -1 data = self.take(locs) data.index = where data.loc[missing] = np.nan return data if is_list else data.iloc[-1] # ---------------------------------------------------------------------- # Action Methods _shared_docs[ "isna" ] = """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or :attr:`numpy.NaN`, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- %(klass)s Mask of bool values for each element in %(klass)s that indicates whether an element is not an NA value. See Also -------- %(klass)s.isnull : Alias of isna. %(klass)s.notna : Boolean inverse of isna. %(klass)s.dropna : Omit axes labels with missing values. isna : Top-level isna. Examples -------- Show which entries in a DataFrame are NA. >>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool """ @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isna(self: FrameOrSeries) -> FrameOrSeries: return isna(self).__finalize__(self) @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isnull(self: FrameOrSeries) -> FrameOrSeries: return isna(self).__finalize__(self) _shared_docs[ "notna" ] = """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to False values. Returns ------- %(klass)s Mask of bool values for each element in %(klass)s that indicates whether an element is not an NA value. See Also -------- %(klass)s.notnull : Alias of notna. %(klass)s.isna : Boolean inverse of notna. %(klass)s.dropna : Omit axes labels with missing values. notna : Top-level notna. Examples -------- Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool """ @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notna(self: FrameOrSeries) -> FrameOrSeries: return notna(self).__finalize__(self) @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notnull(self: FrameOrSeries) -> FrameOrSeries: return notna(self).__finalize__(self) def _clip_with_scalar(self, lower, upper, inplace: bool_t = False): if (lower is not None and np.any(isna(lower))) or ( upper is not None and np.any(isna(upper)) ): raise ValueError("Cannot use an NA value as a clip threshold") result = self mask = isna(self.values) with np.errstate(all="ignore"): if upper is not None: subset = self.to_numpy() <= upper result = result.where(subset, upper, axis=None, inplace=False) if lower is not None: subset = self.to_numpy() >= lower result = result.where(subset, lower, axis=None, inplace=False) if np.any(mask): result[mask] = np.nan if inplace: self._update_inplace(result) else: return result def _clip_with_one_bound(self, threshold, method, axis, inplace): if axis is not None: axis = self._get_axis_number(axis) # method is self.le for upper bound and self.ge for lower bound if is_scalar(threshold) and is_number(threshold): if method.__name__ == "le": return self._clip_with_scalar(None, threshold, inplace=inplace) return self._clip_with_scalar(threshold, None, inplace=inplace) subset = method(threshold, axis=axis) | isna(self) # GH #15390 # In order for where method to work, the threshold must # be transformed to NDFrame from other array like structure. if (not isinstance(threshold, ABCSeries)) and is_list_like(threshold): if isinstance(self, ABCSeries): threshold = self._constructor(threshold, index=self.index) else: threshold = _align_method_FRAME(self, threshold, axis, flex=None)[1] return self.where(subset, threshold, axis=axis, inplace=inplace) def clip( self: FrameOrSeries, lower=None, upper=None, axis=None, inplace: bool_t = False, *args, **kwargs, ) -> FrameOrSeries: """ Trim values at input threshold(s). Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis. Parameters ---------- lower : float or array_like, default None Minimum threshold value. All values below this threshold will be set to it. upper : float or array_like, default None Maximum threshold value. All values above this threshold will be set to it. axis : int or str axis name, optional Align object with lower and upper along the given axis. inplace : bool, default False Whether to perform the operation in place on the data. .. versionadded:: 0.21.0 *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- Series or DataFrame Same type as calling object with the values outside the clip boundaries replaced. Examples -------- >>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]} >>> df = pd.DataFrame(data) >>> df col_0 col_1 0 9 -2 1 -3 -7 2 0 6 3 -1 8 4 5 -5 Clips per column using lower and upper thresholds: >>> df.clip(-4, 6) col_0 col_1 0 6 -2 1 -3 -4 2 0 6 3 -1 6 4 5 -4 Clips using specific lower and upper thresholds per column element: >>> t = pd.Series([2, -4, -1, 6, 3]) >>> t 0 2 1 -4 2 -1 3 6 4 3 dtype: int64 >>> df.clip(t, t + 4, axis=0) col_0 col_1 0 6 2 1 -3 -4 2 0 3 3 6 8 4 5 3 """ inplace = validate_bool_kwarg(inplace, "inplace") axis = nv.validate_clip_with_axis(axis, args, kwargs) if axis is not None: axis = self._get_axis_number(axis) # GH 17276 # numpy doesn't like NaN as a clip value # so ignore # GH 19992 # numpy doesn't drop a list-like bound containing NaN if not is_list_like(lower) and np.any(isna(lower)): lower = None if not is_list_like(upper) and np.any(isna(upper)): upper = None # GH 2747 (arguments were reversed) if lower is not None and upper is not None: if is_scalar(lower) and is_scalar(upper): lower, upper = min(lower, upper), max(lower, upper) # fast-path for scalars if (lower is None or (is_scalar(lower) and is_number(lower))) and ( upper is None or (is_scalar(upper) and is_number(upper)) ): return self._clip_with_scalar(lower, upper, inplace=inplace) result = self if lower is not None: result = result._clip_with_one_bound( lower, method=self.ge, axis=axis, inplace=inplace ) if upper is not None: if inplace: result = self result = result._clip_with_one_bound( upper, method=self.le, axis=axis, inplace=inplace ) return result _shared_docs[ "groupby" ] = """ Group %(klass)s using a mapper or by a Series of columns. A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups. Parameters ---------- by : mapping, function, label, or list of labels Used to determine the groups for the groupby. If ``by`` is a function, it's called on each value of the object's index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series' values are first aligned; see ``.align()`` method). If an ndarray is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns in ``self``. Notice that a tuple is interpreted as a (single) key. axis : {0 or 'index', 1 or 'columns'}, default 0 Split along rows (0) or columns (1). level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels. as_index : bool, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output. sort : bool, default True Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group. group_keys : bool, default True When calling apply, add group keys to index to identify pieces. squeeze : bool, default False Reduce the dimensionality of the return type if possible, otherwise return a consistent type. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionadded:: 0.23.0 Returns ------- %(klass)sGroupBy Returns a groupby object that contains information about the groups. See Also -------- resample : Convenience method for frequency conversion and resampling of time series. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/groupby.html>`_ for more. """ def asfreq( self: FrameOrSeries, freq, method=None, how: Optional[str] = None, normalize: bool_t = False, fill_value=None, ) -> FrameOrSeries: """ Convert TimeSeries to specified frequency. Optionally provide filling method to pad/backfill missing values. Returns the original data conformed to a new index with the specified frequency. ``resample`` is more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency. Parameters ---------- freq : DateOffset or str method : {'backfill'/'bfill', 'pad'/'ffill'}, default None Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present): * 'pad' / 'ffill': propagate last valid observation forward to next valid * 'backfill' / 'bfill': use NEXT valid observation to fill. how : {'start', 'end'}, default end For PeriodIndex only (see PeriodIndex.asfreq). normalize : bool, default False Whether to reset output index to midnight. fill_value : scalar, optional Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present). Returns ------- converted : same type as caller See Also -------- reindex Notes ----- To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- Start by creating a series with 4 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=4, freq='T') >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index) >>> df = pd.DataFrame({'s':series}) >>> df s 2000-01-01 00:00:00 0.0 2000-01-01 00:01:00 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:03:00 3.0 Upsample the series into 30 second bins. >>> df.asfreq(freq='30S') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 NaN 2000-01-01 00:03:00 3.0 Upsample again, providing a ``fill value``. >>> df.asfreq(freq='30S', fill_value=9.0) s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 9.0 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 9.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 9.0 2000-01-01 00:03:00 3.0 Upsample again, providing a ``method``. >>> df.asfreq(freq='30S', method='bfill') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 2.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 3.0 2000-01-01 00:03:00 3.0 """ from pandas.core.resample import asfreq return asfreq( self, freq, method=method, how=how, normalize=normalize, fill_value=fill_value, ) def at_time( self: FrameOrSeries, time, asof: bool_t = False, axis=None ) -> FrameOrSeries: """ Select values at particular time of day (e.g., 9:30AM). Parameters ---------- time : datetime.time or str axis : {0 or 'index', 1 or 'columns'}, default 0 .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- between_time : Select values between particular times of the day. first : Select initial periods of time series based on a date offset. last : Select final periods of time series based on a date offset. DatetimeIndex.indexer_at_time : Get just the index locations for values at particular time of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='12H') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-09 12:00:00 2 2018-04-10 00:00:00 3 2018-04-10 12:00:00 4 >>> ts.at_time('12:00') A 2018-04-09 12:00:00 2 2018-04-10 12:00:00 4 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) index = self._get_axis(axis) try: indexer = index.indexer_at_time(time, asof=asof) except AttributeError: raise TypeError("Index must be DatetimeIndex") return self._take_with_is_copy(indexer, axis=axis) def between_time( self: FrameOrSeries, start_time, end_time, include_start: bool_t = True, include_end: bool_t = True, axis=None, ) -> FrameOrSeries: """ Select values between particular times of the day (e.g., 9:00-9:30 AM). By setting ``start_time`` to be later than ``end_time``, you can get the times that are *not* between the two times. Parameters ---------- start_time : datetime.time or str Initial time as a time filter limit. end_time : datetime.time or str End time as a time filter limit. include_start : bool, default True Whether the start time needs to be included in the result. include_end : bool, default True Whether the end time needs to be included in the result. axis : {0 or 'index', 1 or 'columns'}, default 0 Determine range time on index or columns value. .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Data from the original object filtered to the specified dates range. Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- at_time : Select values at a particular time of the day. first : Select initial periods of time series based on a date offset. last : Select final periods of time series based on a date offset. DatetimeIndex.indexer_between_time : Get just the index locations for values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 2018-04-12 01:00:00 4 >>> ts.between_time('0:15', '0:45') A 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 You get the times that are *not* between two times by setting ``start_time`` later than ``end_time``: >>> ts.between_time('0:45', '0:15') A 2018-04-09 00:00:00 1 2018-04-12 01:00:00 4 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) index = self._get_axis(axis) try: indexer = index.indexer_between_time( start_time, end_time, include_start=include_start, include_end=include_end, ) except AttributeError: raise TypeError("Index must be DatetimeIndex") return self._take_with_is_copy(indexer, axis=axis) def resample( self, rule, axis=0, closed: Optional[str] = None, label: Optional[str] = None, convention: str = "start", kind: Optional[str] = None, loffset=None, base: int = 0, on=None, level=None, ) -> "Resampler": """ Resample time-series data. Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (`DatetimeIndex`, `PeriodIndex`, or `TimedeltaIndex`), or pass datetime-like values to the `on` or `level` keyword. Parameters ---------- rule : DateOffset, Timedelta or str The offset string or object representing target conversion. axis : {0 or 'index', 1 or 'columns'}, default 0 Which axis to use for up- or down-sampling. For `Series` this will default to 0, i.e. along the rows. Must be `DatetimeIndex`, `TimedeltaIndex` or `PeriodIndex`. closed : {'right', 'left'}, default None Which side of bin interval is closed. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. label : {'right', 'left'}, default None Which bin edge label to label bucket with. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. convention : {'start', 'end', 's', 'e'}, default 'start' For `PeriodIndex` only, controls whether to use the start or end of `rule`. kind : {'timestamp', 'period'}, optional, default None Pass 'timestamp' to convert the resulting index to a `DateTimeIndex` or 'period' to convert it to a `PeriodIndex`. By default the input representation is retained. loffset : timedelta, default None Adjust the resampled time labels. base : int, default 0 For frequencies that evenly subdivide 1 day, the "origin" of the aggregated intervals. For example, for '5min' frequency, base could range from 0 through 4. Defaults to 0. on : str, optional For a DataFrame, column to use instead of index for resampling. Column must be datetime-like. level : str or int, optional For a MultiIndex, level (name or number) to use for resampling. `level` must be datetime-like. Returns ------- Resampler object See Also -------- groupby : Group by mapping, function, label, or list of labels. Series.resample : Resample a Series. DataFrame.resample: Resample a DataFrame. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling>`_ for more. To learn more about the offset strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects>`__. Examples -------- Start by creating a series with 9 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=9, freq='T') >>> series = pd.Series(range(9), index=index) >>> series 2000-01-01 00:00:00 0 2000-01-01 00:01:00 1 2000-01-01 00:02:00 2 2000-01-01 00:03:00 3 2000-01-01 00:04:00 4 2000-01-01 00:05:00 5 2000-01-01 00:06:00 6 2000-01-01 00:07:00 7 2000-01-01 00:08:00 8 Freq: T, dtype: int64 Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin. >>> series.resample('3T').sum() 2000-01-01 00:00:00 3 2000-01-01 00:03:00 12 2000-01-01 00:06:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed value in the resampled bucket with the label ``2000-01-01 00:03:00`` does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one. >>> series.resample('3T', label='right').sum() 2000-01-01 00:03:00 3 2000-01-01 00:06:00 12 2000-01-01 00:09:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but close the right side of the bin interval. >>> series.resample('3T', label='right', closed='right').sum() 2000-01-01 00:00:00 0 2000-01-01 00:03:00 6 2000-01-01 00:06:00 15 2000-01-01 00:09:00 15 Freq: 3T, dtype: int64 Upsample the series into 30 second bins. >>> series.resample('30S').asfreq()[0:5] # Select first 5 rows 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 1.0 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 Freq: 30S, dtype: float64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``pad`` method. >>> series.resample('30S').pad()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 0 2000-01-01 00:01:00 1 2000-01-01 00:01:30 1 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``bfill`` method. >>> series.resample('30S').bfill()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 1 2000-01-01 00:01:00 1 2000-01-01 00:01:30 2 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Pass a custom function via ``apply`` >>> def custom_resampler(array_like): ... return np.sum(array_like) + 5 ... >>> series.resample('3T').apply(custom_resampler) 2000-01-01 00:00:00 8 2000-01-01 00:03:00 17 2000-01-01 00:06:00 26 Freq: 3T, dtype: int64 For a Series with a PeriodIndex, the keyword `convention` can be used to control whether to use the start or end of `rule`. Resample a year by quarter using 'start' `convention`. Values are assigned to the first quarter of the period. >>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01', ... freq='A', ... periods=2)) >>> s 2012 1 2013 2 Freq: A-DEC, dtype: int64 >>> s.resample('Q', convention='start').asfreq() 2012Q1 1.0 2012Q2 NaN 2012Q3 NaN 2012Q4 NaN 2013Q1 2.0 2013Q2 NaN 2013Q3 NaN 2013Q4 NaN Freq: Q-DEC, dtype: float64 Resample quarters by month using 'end' `convention`. Values are assigned to the last month of the period. >>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01', ... freq='Q', ... periods=4)) >>> q 2018Q1 1 2018Q2 2 2018Q3 3 2018Q4 4 Freq: Q-DEC, dtype: int64 >>> q.resample('M', convention='end').asfreq() 2018-03 1.0 2018-04 NaN 2018-05 NaN 2018-06 2.0 2018-07 NaN 2018-08 NaN 2018-09 3.0 2018-10 NaN 2018-11 NaN 2018-12 4.0 Freq: M, dtype: float64 For DataFrame objects, the keyword `on` can be used to specify the column instead of the index for resampling. >>> d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df = pd.DataFrame(d) >>> df['week_starting'] = pd.date_range('01/01/2018', ... periods=8, ... freq='W') >>> df price volume week_starting 0 10 50 2018-01-07 1 11 60 2018-01-14 2 9 40 2018-01-21 3 13 100 2018-01-28 4 14 50 2018-02-04 5 18 100 2018-02-11 6 17 40 2018-02-18 7 19 50 2018-02-25 >>> df.resample('M', on='week_starting').mean() price volume week_starting 2018-01-31 10.75 62.5 2018-02-28 17.00 60.0 For a DataFrame with MultiIndex, the keyword `level` can be used to specify on which level the resampling needs to take place. >>> days = pd.date_range('1/1/2000', periods=4, freq='D') >>> d2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df2 = pd.DataFrame(d2, ... index=pd.MultiIndex.from_product([days, ... ['morning', ... 'afternoon']] ... )) >>> df2 price volume 2000-01-01 morning 10 50 afternoon 11 60 2000-01-02 morning 9 40 afternoon 13 100 2000-01-03 morning 14 50 afternoon 18 100 2000-01-04 morning 17 40 afternoon 19 50 >>> df2.resample('D', level=0).sum() price volume 2000-01-01 21 110 2000-01-02 22 140 2000-01-03 32 150 2000-01-04 36 90 """ from pandas.core.resample import get_resampler axis = self._get_axis_number(axis) return get_resampler( self, freq=rule, label=label, closed=closed, axis=axis, kind=kind, loffset=loffset, convention=convention, base=base, key=on, level=level, ) def first(self: FrameOrSeries, offset) -> FrameOrSeries: """ Method to subset initial periods of time series data based on a date offset. Parameters ---------- offset : str, DateOffset, dateutil.relativedelta Returns ------- subset : same type as caller Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- last : Select final periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 Get the rows for the first 3 days: >>> ts.first('3D') A 2018-04-09 1 2018-04-11 2 Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and therefore data for 2018-04-13 was not returned. """ if not isinstance(self.index, DatetimeIndex): raise TypeError("'first' only supports a DatetimeIndex index") if len(self.index) == 0: return self offset = to_offset(offset) end_date = end = self.index[0] + offset # Tick-like, e.g. 3 weeks if not offset.is_anchored() and hasattr(offset, "_inc"): if end_date in self.index: end = self.index.searchsorted(end_date, side="left") return self.iloc[:end] return self.loc[:end] def last(self: FrameOrSeries, offset) -> FrameOrSeries: """ Method to subset final periods of time series data based on a date offset. Parameters ---------- offset : str, DateOffset, dateutil.relativedelta Returns ------- subset : same type as caller Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- first : Select initial periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 Get the rows for the last 3 days: >>> ts.last('3D') A 2018-04-13 3 2018-04-15 4 Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and therefore data for 2018-04-11 was not returned. """ if not isinstance(self.index, DatetimeIndex): raise TypeError("'last' only supports a DatetimeIndex index") if len(self.index) == 0: return self offset = to_offset(offset) start_date = self.index[-1] - offset start = self.index.searchsorted(start_date, side="right") return self.iloc[start:] def rank( self: FrameOrSeries, axis=0, method: str = "average", numeric_only: Optional[bool_t] = None, na_option: str = "keep", ascending: bool_t = True, pct: bool_t = False, ) -> FrameOrSeries: """ Compute numerical data ranks (1 through n) along axis. By default, equal values are assigned a rank that is the average of the ranks of those values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Index to direct ranking. method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' How to rank the group of records that have the same value (i.e. ties): * average: average rank of the group * min: lowest rank in the group * max: highest rank in the group * first: ranks assigned in order they appear in the array * dense: like 'min', but rank always increases by 1 between groups. numeric_only : bool, optional For DataFrame objects, rank only numeric columns if set to True. na_option : {'keep', 'top', 'bottom'}, default 'keep' How to rank NaN values: * keep: assign NaN rank to NaN values * top: assign smallest rank to NaN values if ascending * bottom: assign highest rank to NaN values if ascending. ascending : bool, default True Whether or not the elements should be ranked in ascending order. pct : bool, default False Whether or not to display the returned rankings in percentile form. Returns ------- same type as caller Return a Series or DataFrame with data ranks as values. See Also -------- core.groupby.GroupBy.rank : Rank of values within each group. Examples -------- >>> df = pd.DataFrame(data={'Animal': ['cat', 'penguin', 'dog', ... 'spider', 'snake'], ... 'Number_legs': [4, 2, 4, 8, np.nan]}) >>> df Animal Number_legs 0 cat 4.0 1 penguin 2.0 2 dog 4.0 3 spider 8.0 4 snake NaN The following example shows how the method behaves with the above parameters: * default_rank: this is the default behaviour obtained without using any parameter. * max_rank: setting ``method = 'max'`` the records that have the same values are ranked using the highest rank (e.g.: since 'cat' and 'dog' are both in the 2nd and 3rd position, rank 3 is assigned.) * NA_bottom: choosing ``na_option = 'bottom'``, if there are records with NaN values they are placed at the bottom of the ranking. * pct_rank: when setting ``pct = True``, the ranking is expressed as percentile rank. >>> df['default_rank'] = df['Number_legs'].rank() >>> df['max_rank'] = df['Number_legs'].rank(method='max') >>> df['NA_bottom'] = df['Number_legs'].rank(na_option='bottom') >>> df['pct_rank'] = df['Number_legs'].rank(pct=True) >>> df Animal Number_legs default_rank max_rank NA_bottom pct_rank 0 cat 4.0 2.5 3.0 2.5 0.625 1 penguin 2.0 1.0 1.0 1.0 0.250 2 dog 4.0 2.5 3.0 2.5 0.625 3 spider 8.0 4.0 4.0 4.0 1.000 4 snake NaN NaN NaN 5.0 NaN """ axis = self._get_axis_number(axis) if na_option not in {"keep", "top", "bottom"}: msg = "na_option must be one of 'keep', 'top', or 'bottom'" raise ValueError(msg) def ranker(data): ranks = algos.rank( data.values, axis=axis, method=method, ascending=ascending, na_option=na_option, pct=pct, ) ranks = self._constructor(ranks, **data._construct_axes_dict()) return ranks.__finalize__(self) # if numeric_only is None, and we can't get anything, we try with # numeric_only=True if numeric_only is None: try: return ranker(self) except TypeError: numeric_only = True if numeric_only: data = self._get_numeric_data() else: data = self return ranker(data) _shared_docs[ "align" ] = """ Align two objects on their axes with the specified join method. Join method is specified for each axis Index. Parameters ---------- other : DataFrame or Series join : {'outer', 'inner', 'left', 'right'}, default 'outer' axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None). level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level. copy : bool, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series: - pad / ffill: propagate last valid observation forward to next valid. - backfill / bfill: use NEXT valid observation to fill gap. limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. fill_axis : %(axes_single_arg)s, default 0 Filling axis, method and limit. broadcast_axis : %(axes_single_arg)s, default None Broadcast values along this axis, if aligning two objects of different dimensions. Returns ------- (left, right) : (%(klass)s, type of other) Aligned objects. """ @Appender(_shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): method = missing.clean_fill_method(method) if broadcast_axis == 1 and self.ndim != other.ndim: if isinstance(self, ABCSeries): # this means other is a DataFrame, and we need to broadcast # self cons = self._constructor_expanddim df = cons( {c: self for c in other.columns}, **other._construct_axes_dict() ) return df._align_frame( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) elif isinstance(other, ABCSeries): # this means self is a DataFrame, and we need to broadcast # other cons = other._constructor_expanddim df = cons( {c: other for c in self.columns}, **self._construct_axes_dict() ) return self._align_frame( df, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) if axis is not None: axis = self._get_axis_number(axis) if isinstance(other, ABCDataFrame): return self._align_frame( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) elif isinstance(other, ABCSeries): return self._align_series( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def _align_frame( self, other, join="outer", axis=None, level=None, copy: bool_t = True, fill_value=None, method=None, limit=None, fill_axis=0, ): # defaults join_index, join_columns = None, None ilidx, iridx = None, None clidx, cridx = None, None is_series = isinstance(self, ABCSeries) if axis is None or axis == 0: if not self.index.equals(other.index): join_index, ilidx, iridx = self.index.join( other.index, how=join, level=level, return_indexers=True ) if axis is None or axis == 1: if not is_series and not self.columns.equals(other.columns): join_columns, clidx, cridx = self.columns.join( other.columns, how=join, level=level, return_indexers=True ) if is_series: reindexers = {0: [join_index, ilidx]} else: reindexers = {0: [join_index, ilidx], 1: [join_columns, clidx]} left = self._reindex_with_indexers( reindexers, copy=copy, fill_value=fill_value, allow_dups=True ) # other must be always DataFrame right = other._reindex_with_indexers( {0: [join_index, iridx], 1: [join_columns, cridx]}, copy=copy, fill_value=fill_value, allow_dups=True, ) if method is not None: left = self._ensure_type( left.fillna(method=method, axis=fill_axis, limit=limit) ) right = right.fillna(method=method, axis=fill_axis, limit=limit) # if DatetimeIndex have different tz, convert to UTC if is_datetime64tz_dtype(left.index): if left.index.tz != right.index.tz: if join_index is not None: left.index = join_index right.index = join_index return left.__finalize__(self), right.__finalize__(other) def _align_series( self, other, join="outer", axis=None, level=None, copy: bool_t = True, fill_value=None, method=None, limit=None, fill_axis=0, ): is_series = isinstance(self, ABCSeries) # series/series compat, other must always be a Series if is_series: if axis: raise ValueError("cannot align series to a series other than axis 0") # equal if self.index.equals(other.index): join_index, lidx, ridx = None, None, None else: join_index, lidx, ridx = self.index.join( other.index, how=join, level=level, return_indexers=True ) left = self._reindex_indexer(join_index, lidx, copy) right = other._reindex_indexer(join_index, ridx, copy) else: # one has > 1 ndim fdata = self._data if axis == 0: join_index = self.index lidx, ridx = None, None if not self.index.equals(other.index): join_index, lidx, ridx = self.index.join( other.index, how=join, level=level, return_indexers=True ) if lidx is not None: fdata = fdata.reindex_indexer(join_index, lidx, axis=1) elif axis == 1: join_index = self.columns lidx, ridx = None, None if not self.columns.equals(other.index): join_index, lidx, ridx = self.columns.join( other.index, how=join, level=level, return_indexers=True ) if lidx is not None: fdata = fdata.reindex_indexer(join_index, lidx, axis=0) else: raise ValueError("Must specify axis=0 or 1") if copy and fdata is self._data: fdata = fdata.copy() left = self._constructor(fdata) if ridx is None: right = other else: right = other.reindex(join_index, level=level) # fill fill_na = notna(fill_value) or (method is not None) if fill_na: left = left.fillna(fill_value, method=method, limit=limit, axis=fill_axis) right = right.fillna(fill_value, method=method, limit=limit) # if DatetimeIndex have different tz, convert to UTC if is_series or (not is_series and axis == 0): if is_datetime64tz_dtype(left.index): if left.index.tz != right.index.tz: if join_index is not None: left.index = join_index right.index = join_index return left.__finalize__(self), right.__finalize__(other) def _where( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): """ Equivalent to public method `where`, except that `other` is not applied as a function even if callable. Used in __setitem__. """ inplace = validate_bool_kwarg(inplace, "inplace") # align the cond to same shape as myself cond = com.apply_if_callable(cond, self) if isinstance(cond, NDFrame): cond, _ = cond.align(self, join="right", broadcast_axis=1) else: if not hasattr(cond, "shape"): cond = np.asanyarray(cond) if cond.shape != self.shape: raise ValueError("Array conditional must be same shape as self") cond = self._constructor(cond, **self._construct_axes_dict()) # make sure we are boolean fill_value = bool(inplace) cond = cond.fillna(fill_value) msg = "Boolean array expected for the condition, not {dtype}" if not isinstance(cond, ABCDataFrame): # This is a single-dimensional object. if not is_bool_dtype(cond): raise ValueError(msg.format(dtype=cond.dtype)) elif not cond.empty: for dt in cond.dtypes: if not is_bool_dtype(dt): raise ValueError(msg.format(dtype=dt)) cond = -cond if inplace else cond # try to align with other try_quick = True if hasattr(other, "align"): # align with me if other.ndim <= self.ndim: _, other = self.align( other, join="left", axis=axis, level=level, fill_value=np.nan ) # if we are NOT aligned, raise as we cannot where index if axis is None and not all( other._get_axis(i).equals(ax) for i, ax in enumerate(self.axes) ): raise InvalidIndexError # slice me out of the other else: raise NotImplementedError( "cannot align with a higher dimensional NDFrame" ) if isinstance(other, np.ndarray): if other.shape != self.shape: if self.ndim == 1: icond = cond.values # GH 2745 / GH 4192 # treat like a scalar if len(other) == 1: other = np.array(other[0]) # GH 3235 # match True cond to other elif len(cond[icond]) == len(other): # try to not change dtype at first (if try_quick) if try_quick: new_other = com.values_from_object(self) new_other = new_other.copy() new_other[icond] = other other = new_other else: raise ValueError( "Length of replacements must equal series length" ) else: raise ValueError( "other must be the same shape as self when an ndarray" ) # we are the same shape, so create an actual object for alignment else: other = self._constructor(other, **self._construct_axes_dict()) if axis is None: axis = 0 if self.ndim == getattr(other, "ndim", 0): align = True else: align = self._get_axis_number(axis) == 1 block_axis = self._get_block_manager_axis(axis) if inplace: # we may have different type blocks come out of putmask, so # reconstruct the block manager self._check_inplace_setting(other) new_data = self._data.putmask( mask=cond, new=other, align=align, inplace=True, axis=block_axis, transpose=self._AXIS_REVERSED, ) self._update_inplace(new_data) else: new_data = self._data.where( other=other, cond=cond, align=align, errors=errors, try_cast=try_cast, axis=block_axis, ) return self._constructor(new_data).__finalize__(self) _shared_docs[ "where" ] = """ Replace values where the condition is %(cond_rev)s. Parameters ---------- cond : bool %(klass)s, array-like, or callable Where `cond` is %(cond)s, keep the original value. Where %(cond_rev)s, replace with corresponding value from `other`. If `cond` is callable, it is computed on the %(klass)s and should return boolean %(klass)s or array. The callable must not change input %(klass)s (though pandas doesn't check it). other : scalar, %(klass)s, or callable Entries where `cond` is %(cond_rev)s are replaced with corresponding value from `other`. If other is callable, it is computed on the %(klass)s and should return scalar or %(klass)s. The callable must not change input %(klass)s (though pandas doesn't check it). inplace : bool, default False Whether to perform the operation in place on the data. axis : int, default None Alignment axis if needed. level : int, default None Alignment level if needed. errors : str, {'raise', 'ignore'}, default 'raise' Note that currently this parameter won't affect the results and will always coerce to a suitable dtype. - 'raise' : allow exceptions to be raised. - 'ignore' : suppress exceptions. On error return original object. try_cast : bool, default False Try to cast the result back to the input type (if possible). Returns ------- Same type as caller See Also -------- :func:`DataFrame.%(name_other)s` : Return an object of same shape as self. Notes ----- The %(name)s method is an application of the if-then idiom. For each element in the calling DataFrame, if ``cond`` is ``%(cond)s`` the element is used; otherwise the corresponding element from the DataFrame ``other`` is used. The signature for :func:`DataFrame.where` differs from :func:`numpy.where`. Roughly ``df1.where(m, df2)`` is equivalent to ``np.where(m, df1, df2)``. For further details and examples see the ``%(name)s`` documentation in :ref:`indexing <indexing.where_mask>`. Examples -------- >>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64 >>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 >>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64 >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 >>> m = df %% 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True """ @Appender( _shared_docs["where"] % dict( _shared_doc_kwargs, cond="True", cond_rev="False", name="where", name_other="mask", ) ) def where( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): other = com.apply_if_callable(other, self) return self._where( cond, other, inplace, axis, level, errors=errors, try_cast=try_cast ) @Appender( _shared_docs["where"] % dict( _shared_doc_kwargs, cond="False", cond_rev="True", name="mask", name_other="where", ) ) def mask( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): inplace = validate_bool_kwarg(inplace, "inplace") cond = com.apply_if_callable(cond, self) # see gh-21891 if not hasattr(cond, "__invert__"): cond = np.array(cond) return self.where( ~cond, other=other, inplace=inplace, axis=axis, level=level, try_cast=try_cast, errors=errors, ) _shared_docs[ "shift" ] = """ Shift index by desired number of periods with an optional time `freq`. When `freq` is not passed, shift the index without realigning the data. If `freq` is passed (in this case, the index must be date or datetime, or it will raise a `NotImplementedError`), the index will be increased using the periods and the `freq`. Parameters ---------- periods : int Number of periods to shift. Can be positive or negative. freq : DateOffset, tseries.offsets, timedelta, or str, optional Offset to use from the tseries module or time rule (e.g. 'EOM'). If `freq` is specified then the index values are shifted but the data is not realigned. That is, use `freq` if you would like to extend the index when shifting and preserve the original data. axis : {0 or 'index', 1 or 'columns', None}, default None Shift direction. fill_value : object, optional The scalar value to use for newly introduced missing values. the default depends on the dtype of `self`. For numeric data, ``np.nan`` is used. For datetime, timedelta, or period data, etc. :attr:`NaT` is used. For extension dtypes, ``self.dtype.na_value`` is used. .. versionchanged:: 0.24.0 Returns ------- %(klass)s Copy of input object, shifted. See Also -------- Index.shift : Shift values of Index. DatetimeIndex.shift : Shift values of DatetimeIndex. PeriodIndex.shift : Shift values of PeriodIndex. tshift : Shift the time index, using the index's frequency if available. Examples -------- >>> df = pd.DataFrame({'Col1': [10, 20, 15, 30, 45], ... 'Col2': [13, 23, 18, 33, 48], ... 'Col3': [17, 27, 22, 37, 52]}) >>> df.shift(periods=3) Col1 Col2 Col3 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 10.0 13.0 17.0 4 20.0 23.0 27.0 >>> df.shift(periods=1, axis='columns') Col1 Col2 Col3 0 NaN 10.0 13.0 1 NaN 20.0 23.0 2 NaN 15.0 18.0 3 NaN 30.0 33.0 4 NaN 45.0 48.0 >>> df.shift(periods=3, fill_value=0) Col1 Col2 Col3 0 0 0 0 1 0 0 0 2 0 0 0 3 10 13 17 4 20 23 27 """ @Appender(_shared_docs["shift"] % _shared_doc_kwargs) def shift( self: FrameOrSeries, periods=1, freq=None, axis=0, fill_value=None ) -> FrameOrSeries: if periods == 0: return self.copy() block_axis = self._get_block_manager_axis(axis) if freq is None: new_data = self._data.shift( periods=periods, axis=block_axis, fill_value=fill_value ) else: return self.tshift(periods, freq) return self._constructor(new_data).__finalize__(self) def slice_shift(self: FrameOrSeries, periods: int = 1, axis=0) -> FrameOrSeries: """ Equivalent to `shift` without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters ---------- periods : int Number of periods to move, can be positive or negative. Returns ------- shifted : same type as caller Notes ----- While the `slice_shift` is faster than `shift`, you may pay for it later during alignment. """ if periods == 0: return self if periods > 0: vslicer = slice(None, -periods) islicer = slice(periods, None) else: vslicer = slice(-periods, None) islicer = slice(None, periods) new_obj = self._slice(vslicer, axis=axis) shifted_axis = self._get_axis(axis)[islicer] new_obj.set_axis(shifted_axis, axis=axis, inplace=True) return new_obj.__finalize__(self) def tshift( self: FrameOrSeries, periods: int = 1, freq=None, axis=0 ) -> FrameOrSeries: """ Shift the time index, using the index's frequency if available. Parameters ---------- periods : int Number of periods to move, can be positive or negative. freq : DateOffset, timedelta, or str, default None Increment to use from the tseries module or time rule expressed as a string (e.g. 'EOM'). axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0 Corresponds to the axis that contains the Index. Returns ------- shifted : Series/DataFrame Notes ----- If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown """ index = self._get_axis(axis) if freq is None: freq = getattr(index, "freq", None) if freq is None: freq = getattr(index, "inferred_freq", None) if freq is None: msg = "Freq was not given and was not set in the index" raise ValueError(msg) if periods == 0: return self if isinstance(freq, str): freq = to_offset(freq) block_axis = self._get_block_manager_axis(axis) if isinstance(index, PeriodIndex): orig_freq = to_offset(index.freq) if freq == orig_freq: new_data = self._data.copy() new_data.axes[block_axis] = index.shift(periods) elif orig_freq is not None: raise ValueError( f"Given freq {freq.rule_code} does not match " f"PeriodIndex freq {orig_freq.rule_code}" ) else: new_data = self._data.copy() new_data.axes[block_axis] = index.shift(periods, freq) return self._constructor(new_data).__finalize__(self) def truncate( self: FrameOrSeries, before=None, after=None, axis=None, copy: bool_t = True ) -> FrameOrSeries: """ Truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds. Parameters ---------- before : date, str, int Truncate all rows before this index value. after : date, str, int Truncate all rows after this index value. axis : {0 or 'index', 1 or 'columns'}, optional Axis to truncate. Truncates the index (rows) by default. copy : bool, default is True, Return a copy of the truncated section. Returns ------- type of caller The truncated Series or DataFrame. See Also -------- DataFrame.loc : Select a subset of a DataFrame by label. DataFrame.iloc : Select a subset of a DataFrame by position. Notes ----- If the index being truncated contains only datetime values, `before` and `after` may be specified as strings instead of Timestamps. Examples -------- >>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o >>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n The columns of a DataFrame can be truncated. >>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j For Series, only rows can be truncated. >>> df['A'].truncate(before=2, after=4) 2 b 3 c 4 d Name: A, dtype: object The index values in ``truncate`` can be datetimes or string dates. >>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s') >>> df = pd.DataFrame(index=dates, data={'A': 1}) >>> df.tail() A 2016-01-31 23:59:56 1 2016-01-31 23:59:57 1 2016-01-31 23:59:58 1 2016-01-31 23:59:59 1 2016-02-01 00:00:00 1 >>> df.truncate(before=pd.Timestamp('2016-01-05'), ... after=pd.Timestamp('2016-01-10')).tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Because the index is a DatetimeIndex containing only dates, we can specify `before` and `after` as strings. They will be coerced to Timestamps before truncation. >>> df.truncate('2016-01-05', '2016-01-10').tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Note that ``truncate`` assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates. >>> df.loc['2016-01-05':'2016-01-10', :].tail() A 2016-01-10 23:59:55 1 2016-01-10 23:59:56 1 2016-01-10 23:59:57 1 2016-01-10 23:59:58 1 2016-01-10 23:59:59 1 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) ax = self._get_axis(axis) # GH 17935 # Check that index is sorted if not ax.is_monotonic_increasing and not ax.is_monotonic_decreasing: raise ValueError("truncate requires a sorted index") # if we have a date index, convert to dates, otherwise # treat like a slice if ax.is_all_dates: from pandas.core.tools.datetimes import to_datetime before = to_datetime(before) after = to_datetime(after) if before is not None and after is not None: if before > after: raise ValueError(f"Truncate: {after} must be after {before}") slicer = [slice(None, None)] * self._AXIS_LEN slicer[axis] = slice(before, after) result = self.loc[tuple(slicer)] if isinstance(ax, MultiIndex): setattr(result, self._get_axis_name(axis), ax.truncate(before, after)) if copy: result = result.copy() return result def tz_convert( self: FrameOrSeries, tz, axis=0, level=None, copy: bool_t = True ) -> FrameOrSeries: """ Convert tz-aware axis to target time zone. Parameters ---------- tz : str or tzinfo object axis : the axis to convert level : int, str, default None If axis is a MultiIndex, convert a specific level. Otherwise must be None. copy : bool, default True Also make a copy of the underlying data. Returns ------- %(klass)s Object with time zone converted axis. Raises ------ TypeError If the axis is tz-naive. """ axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_convert(ax, tz): if not hasattr(ax, "tz_convert"): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError( f"{ax_name} is not a valid DatetimeIndex or PeriodIndex" ) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_convert(tz) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_convert(ax.levels[level], tz) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError(f"The level {level} is not valid") ax = _tz_convert(ax, tz) result = self._constructor(self._data, copy=copy) result = result.set_axis(ax, axis=axis, inplace=False) return result.__finalize__(self) def tz_localize( self: FrameOrSeries, tz, axis=0, level=None, copy: bool_t = True, ambiguous="raise", nonexistent: str = "raise", ) -> FrameOrSeries: """ Localize tz-naive index of a Series or DataFrame to target time zone. This operation localizes the Index. To localize the values in a timezone-naive Series, use :meth:`Series.dt.tz_localize`. Parameters ---------- tz : str or tzinfo axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None. copy : bool, default True Also make a copy of the underlying data. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter dictates how ambiguous times should be handled. - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. nonexistent : str, default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. Valid values are: - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Same type as the input. Raises ------ TypeError If the TimeSeries is tz-aware and tz is not None. Examples -------- Localize local times: >>> s = pd.Series([1], ... index=pd.DatetimeIndex(['2018-09-15 01:30:00'])) >>> s.tz_localize('CET') 2018-09-15 01:30:00+02:00 1 dtype: int64 Be careful with DST changes. When there is sequential data, pandas can infer the DST time: >>> s = pd.Series(range(7), ... index=pd.DatetimeIndex(['2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.tz_localize('CET', ambiguous='infer') 2018-10-28 01:30:00+02:00 0 2018-10-28 02:00:00+02:00 1 2018-10-28 02:30:00+02:00 2 2018-10-28 02:00:00+01:00 3 2018-10-28 02:30:00+01:00 4 2018-10-28 03:00:00+01:00 5 2018-10-28 03:30:00+01:00 6 dtype: int64 In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly >>> s = pd.Series(range(3), ... index=pd.DatetimeIndex(['2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.tz_localize('CET', ambiguous=np.array([True, True, False])) 2018-10-28 01:20:00+02:00 0 2018-10-28 02:36:00+02:00 1 2018-10-28 03:46:00+01:00 2 dtype: int64 If the DST transition causes nonexistent times, you can shift these dates forward or backwards with a timedelta object or `'shift_forward'` or `'shift_backwards'`. >>> s = pd.Series(range(2), ... index=pd.DatetimeIndex(['2015-03-29 02:30:00', ... '2015-03-29 03:30:00'])) >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_forward') 2015-03-29 03:00:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_backward') 2015-03-29 01:59:59.999999999+01:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H')) 2015-03-29 03:30:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 """ nonexistent_options = ("raise", "NaT", "shift_forward", "shift_backward") if nonexistent not in nonexistent_options and not isinstance( nonexistent, timedelta ): raise ValueError( "The nonexistent argument must be one of 'raise', " "'NaT', 'shift_forward', 'shift_backward' or " "a timedelta object" ) axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_localize(ax, tz, ambiguous, nonexistent): if not hasattr(ax, "tz_localize"): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError( f"{ax_name} is not a valid DatetimeIndex or PeriodIndex" ) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_localize(tz, ambiguous=ambiguous, nonexistent=nonexistent) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_localize(ax.levels[level], tz, ambiguous, nonexistent) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError(f"The level {level} is not valid") ax = _tz_localize(ax, tz, ambiguous, nonexistent) result = self._constructor(self._data, copy=copy) result = result.set_axis(ax, axis=axis, inplace=False) return result.__finalize__(self) # ---------------------------------------------------------------------- # Numeric Methods def abs(self: FrameOrSeries) -> FrameOrSeries: """ Return a Series/DataFrame with absolute numeric value of each element. This function only applies to elements that are all numeric. Returns ------- abs Series/DataFrame containing the absolute value of each element. See Also -------- numpy.absolute : Calculate the absolute value element-wise. Notes ----- For ``complex`` inputs, ``1.2 + 1j``, the absolute value is :math:`\\sqrt{ a^2 + b^2 }`. Examples -------- Absolute numeric values in a Series. >>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 Absolute numeric values in a Series with complex numbers. >>> s = pd.Series([1.2 + 1j]) >>> s.abs() 0 1.56205 dtype: float64 Absolute numeric values in a Series with a Timedelta element. >>> s = pd.Series([pd.Timedelta('1 days')]) >>> s.abs() 0 1 days dtype: timedelta64[ns] Select rows with data closest to certain value using argsort (from `StackOverflow <https://stackoverflow.com/a/17758115>`__). >>> df = pd.DataFrame({ ... 'a': [4, 5, 6, 7], ... 'b': [10, 20, 30, 40], ... 'c': [100, 50, -30, -50] ... }) >>> df a b c 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 >>> df.loc[(df.c - 43).abs().argsort()] a b c 1 5 20 50 0 4 10 100 2 6 30 -30 3 7 40 -50 """ return np.abs(self) def describe( self: FrameOrSeries, percentiles=None, include=None, exclude=None ) -> FrameOrSeries: """ Generate descriptive statistics. Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding ``NaN`` values. Analyzes both numeric and object series, as well as ``DataFrame`` column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail. Parameters ---------- percentiles : list-like of numbers, optional The percentiles to include in the output. All should fall between 0 and 1. The default is ``[.25, .5, .75]``, which returns the 25th, 50th, and 75th percentiles. include : 'all', list-like of dtypes or None (default), optional A white list of data types to include in the result. Ignored for ``Series``. Here are the options: - 'all' : All columns of the input will be included in the output. - A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit ``numpy.number``. To limit it instead to object columns submit the ``numpy.object`` data type. Strings can also be used in the style of ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To select pandas categorical columns, use ``'category'`` - None (default) : The result will include all numeric columns. exclude : list-like of dtypes or None (default), optional, A black list of data types to omit from the result. Ignored for ``Series``. Here are the options: - A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit ``numpy.number``. To exclude object columns submit the data type ``numpy.object``. Strings can also be used in the style of ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To exclude pandas categorical columns, use ``'category'`` - None (default) : The result will exclude nothing. Returns ------- Series or DataFrame Summary statistics of the Series or Dataframe provided. See Also -------- DataFrame.count: Count number of non-NA/null observations. DataFrame.max: Maximum of the values in the object. DataFrame.min: Minimum of the values in the object. DataFrame.mean: Mean of the values. DataFrame.std: Standard deviation of the observations. DataFrame.select_dtypes: Subset of a DataFrame including/excluding columns based on their dtype. Notes ----- For numeric data, the result's index will include ``count``, ``mean``, ``std``, ``min``, ``max`` as well as lower, ``50`` and upper percentiles. By default the lower percentile is ``25`` and the upper percentile is ``75``. The ``50`` percentile is the same as the median. For object data (e.g. strings or timestamps), the result's index will include ``count``, ``unique``, ``top``, and ``freq``. The ``top`` is the most common value. The ``freq`` is the most common value's frequency. Timestamps also include the ``first`` and ``last`` items. If multiple object values have the highest count, then the ``count`` and ``top`` results will be arbitrarily chosen from among those with the highest count. For mixed data types provided via a ``DataFrame``, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. If ``include='all'`` is provided as an option, the result will include a union of attributes of each type. The `include` and `exclude` parameters can be used to limit which columns in a ``DataFrame`` are analyzed for the output. The parameters are ignored when analyzing a ``Series``. Examples -------- Describing a numeric ``Series``. >>> s = pd.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 dtype: float64 Describing a categorical ``Series``. >>> s = pd.Series(['a', 'a', 'b', 'c']) >>> s.describe() count 4 unique 3 top a freq 2 dtype: object Describing a timestamp ``Series``. >>> s = pd.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) >>> s.describe() count 3 unique 2 top 2010-01-01 00:00:00 freq 2 first 2000-01-01 00:00:00 last 2010-01-01 00:00:00 dtype: object Describing a ``DataFrame``. By default only numeric fields are returned. >>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), ... 'numeric': [1, 2, 3], ... 'object': ['a', 'b', 'c'] ... }) >>> df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Describing all columns of a ``DataFrame`` regardless of data type. >>> df.describe(include='all') categorical numeric object count 3 3.0 3 unique 3 NaN 3 top f NaN c freq 1 NaN 1 mean NaN 2.0 NaN std NaN 1.0 NaN min NaN 1.0 NaN 25% NaN 1.5 NaN 50% NaN 2.0 NaN 75% NaN 2.5 NaN max NaN 3.0 NaN Describing a column from a ``DataFrame`` by accessing it as an attribute. >>> df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64 Including only numeric columns in a ``DataFrame`` description. >>> df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Including only string columns in a ``DataFrame`` description. >>> df.describe(include=[np.object]) object count 3 unique 3 top c freq 1 Including only categorical columns from a ``DataFrame`` description. >>> df.describe(include=['category']) categorical count 3 unique 3 top f freq 1 Excluding numeric columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.number]) categorical object count 3 3 unique 3 3 top f c freq 1 1 Excluding object columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.object]) categorical numeric count 3 3.0 unique 3 NaN top f NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0 """ if self.ndim == 2 and self.columns.size == 0: raise ValueError("Cannot describe a DataFrame without columns") if percentiles is not None: # explicit conversion of `percentiles` to list percentiles = list(percentiles) # get them all to be in [0, 1] validate_percentile(percentiles) # median should always be included if 0.5 not in percentiles: percentiles.append(0.5) percentiles = np.asarray(percentiles) else: percentiles = np.array([0.25, 0.5, 0.75]) # sort and check for duplicates unique_pcts = np.unique(percentiles) if len(unique_pcts) < len(percentiles): raise ValueError("percentiles cannot contain duplicates") percentiles = unique_pcts formatted_percentiles = format_percentiles(percentiles) def describe_numeric_1d(series): stat_index = ( ["count", "mean", "std", "min"] + formatted_percentiles + ["max"] ) d = ( [series.count(), series.mean(), series.std(), series.min()] + series.quantile(percentiles).tolist() + [series.max()] ) return pd.Series(d, index=stat_index, name=series.name) def describe_categorical_1d(data): names = ["count", "unique"] objcounts = data.value_counts() count_unique = len(objcounts[objcounts != 0]) result = [data.count(), count_unique] dtype = None if result[1] > 0: top, freq = objcounts.index[0], objcounts.iloc[0] names += ["top", "freq"] result += [top, freq] # If the DataFrame is empty, set 'top' and 'freq' to None # to maintain output shape consistency else: names += ["top", "freq"] result += [np.nan, np.nan] dtype = "object" return pd.Series(result, index=names, name=data.name, dtype=dtype) def describe_timestamp_1d(data): # GH-30164 stat_index = ["count", "mean", "min"] + formatted_percentiles + ["max"] d = ( [data.count(), data.mean(), data.min()] + data.quantile(percentiles).tolist() + [data.max()] ) return pd.Series(d, index=stat_index, name=data.name) def describe_1d(data): if is_bool_dtype(data): return describe_categorical_1d(data) elif is_numeric_dtype(data): return describe_numeric_1d(data) elif is_datetime64_any_dtype(data): return describe_timestamp_1d(data) elif is_timedelta64_dtype(data): return describe_numeric_1d(data) else: return describe_categorical_1d(data) if self.ndim == 1: return describe_1d(self) elif (include is None) and (exclude is None): # when some numerics are found, keep only numerics data = self.select_dtypes(include=[np.number]) if len(data.columns) == 0: data = self elif include == "all": if exclude is not None: msg = "exclude must be None when include is 'all'" raise ValueError(msg) data = self else: data = self.select_dtypes(include=include, exclude=exclude) ldesc = [describe_1d(s) for _, s in data.items()] # set a convenient order for rows names: List[Optional[Hashable]] = [] ldesc_indexes = sorted((x.index for x in ldesc), key=len) for idxnames in ldesc_indexes: for name in idxnames: if name not in names: names.append(name) d = pd.concat([x.reindex(names, copy=False) for x in ldesc], axis=1, sort=False) d.columns = data.columns.copy() return d _shared_docs[ "pct_change" ] = """ Percentage change between the current and a prior element. Computes the percentage change from the immediately previous row by default. This is useful in comparing the percentage of change in a time series of elements. Parameters ---------- periods : int, default 1 Periods to shift for forming percent change. fill_method : str, default 'pad' How to handle NAs before computing percent changes. limit : int, default None The number of consecutive NAs to fill before stopping. freq : DateOffset, timedelta, or str, optional Increment to use from time series API (e.g. 'M' or BDay()). **kwargs Additional keyword arguments are passed into `DataFrame.shift` or `Series.shift`. Returns ------- chg : Series or DataFrame The same type as the calling object. See Also -------- Series.diff : Compute the difference of two elements in a Series. DataFrame.diff : Compute the difference of two elements in a DataFrame. Series.shift : Shift the index by some number of periods. DataFrame.shift : Shift the index by some number of periods. Examples -------- **Series** >>> s = pd.Series([90, 91, 85]) >>> s 0 90 1 91 2 85 dtype: int64 >>> s.pct_change() 0 NaN 1 0.011111 2 -0.065934 dtype: float64 >>> s.pct_change(periods=2) 0 NaN 1 NaN 2 -0.055556 dtype: float64 See the percentage change in a Series where filling NAs with last valid observation forward to next valid. >>> s = pd.Series([90, 91, None, 85]) >>> s 0 90.0 1 91.0 2 NaN 3 85.0 dtype: float64 >>> s.pct_change(fill_method='ffill') 0 NaN 1 0.011111 2 0.000000 3 -0.065934 dtype: float64 **DataFrame** Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01. >>> df = pd.DataFrame({ ... 'FR': [4.0405, 4.0963, 4.3149], ... 'GR': [1.7246, 1.7482, 1.8519], ... 'IT': [804.74, 810.01, 860.13]}, ... index=['1980-01-01', '1980-02-01', '1980-03-01']) >>> df FR GR IT 1980-01-01 4.0405 1.7246 804.74 1980-02-01 4.0963 1.7482 810.01 1980-03-01 4.3149 1.8519 860.13 >>> df.pct_change() FR GR IT 1980-01-01 NaN NaN NaN 1980-02-01 0.013810 0.013684 0.006549 1980-03-01 0.053365 0.059318 0.061876 Percentage of change in GOOG and APPL stock volume. Shows computing the percentage change between columns. >>> df = pd.DataFrame({ ... '2016': [1769950, 30586265], ... '2015': [1500923, 40912316], ... '2014': [1371819, 41403351]}, ... index=['GOOG', 'APPL']) >>> df 2016 2015 2014 GOOG 1769950 1500923 1371819 APPL 30586265 40912316 41403351 >>> df.pct_change(axis='columns') 2016 2015 2014 GOOG NaN -0.151997 -0.086016 APPL NaN 0.337604 0.012002 """ @Appender(_shared_docs["pct_change"] % _shared_doc_kwargs) def pct_change( self: FrameOrSeries, periods=1, fill_method="pad", limit=None, freq=None, **kwargs, ) -> FrameOrSeries: # TODO: Not sure if above is correct - need someone to confirm. axis = self._get_axis_number(kwargs.pop("axis", self._stat_axis_name)) if fill_method is None: data = self else: data = self._ensure_type( self.fillna(method=fill_method, axis=axis, limit=limit) ) rs = data.div(data.shift(periods=periods, freq=freq, axis=axis, **kwargs)) - 1 if freq is not None: # Shift method is implemented differently when freq is not None # We want to restore the original index rs = rs.loc[~rs.index.duplicated()] rs = rs.reindex_like(data) return rs def _agg_by_level(self, name, axis=0, level=0, skipna=True, **kwargs): if axis is None: raise ValueError("Must specify 'axis' when aggregating by level.") grouped = self.groupby(level=level, axis=axis, sort=False) if hasattr(grouped, name) and skipna: return getattr(grouped, name)(**kwargs) axis = self._get_axis_number(axis) method = getattr(type(self), name) applyf = lambda x: method(x, axis=axis, skipna=skipna, **kwargs) return grouped.aggregate(applyf) @classmethod def _add_numeric_operations(cls): """ Add the operations to the cls; evaluate the doc strings again """ axis_descr, name, name2 = _doc_parms(cls) cls.any = _make_logical_function( cls, "any", name, name2, axis_descr, _any_desc, nanops.nanany, _any_see_also, _any_examples, empty_value=False, ) cls.all = _make_logical_function( cls, "all", name, name2, axis_descr, _all_desc, nanops.nanall, _all_see_also, _all_examples, empty_value=True, ) @Substitution( desc="Return the mean absolute deviation of the values " "for the requested axis.", name1=name, name2=name2, axis_descr=axis_descr, min_count="", see_also="", examples="", ) @Appender(_num_doc_mad) def mad(self, axis=None, skipna=None, level=None): if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level("mad", axis=axis, level=level, skipna=skipna) data = self._get_numeric_data() if axis == 0: demeaned = data - data.mean(axis=0) else: demeaned = data.sub(data.mean(axis=1), axis=0) return np.abs(demeaned).mean(axis=axis, skipna=skipna) cls.mad = mad cls.sem = _make_stat_function_ddof( cls, "sem", name, name2, axis_descr, "Return unbiased standard error of the mean over requested " "axis.\n\nNormalized by N-1 by default. This can be changed " "using the ddof argument", nanops.nansem, ) cls.var = _make_stat_function_ddof( cls, "var", name, name2, axis_descr, "Return unbiased variance over requested axis.\n\nNormalized by " "N-1 by default. This can be changed using the ddof argument", nanops.nanvar, ) cls.std = _make_stat_function_ddof( cls, "std", name, name2, axis_descr, "Return sample standard deviation over requested axis." "\n\nNormalized by N-1 by default. This can be changed using the " "ddof argument", nanops.nanstd, ) cls.cummin = _make_cum_function( cls, "cummin", name, name2, axis_descr, "minimum", np.minimum.accumulate, "min", np.inf, np.nan, _cummin_examples, ) cls.cumsum = _make_cum_function( cls, "cumsum", name, name2, axis_descr, "sum", np.cumsum, "sum", 0.0, np.nan, _cumsum_examples, ) cls.cumprod = _make_cum_function( cls, "cumprod", name, name2, axis_descr, "product", np.cumprod, "prod", 1.0, np.nan, _cumprod_examples, ) cls.cummax = _make_cum_function( cls, "cummax", name, name2, axis_descr, "maximum", np.maximum.accumulate, "max", -np.inf, np.nan, _cummax_examples, ) cls.sum = _make_min_count_stat_function( cls, "sum", name, name2, axis_descr, """Return the sum of the values for the requested axis.\n This is equivalent to the method ``numpy.sum``.""", nanops.nansum, _stat_func_see_also, _sum_examples, ) cls.mean = _make_stat_function( cls, "mean", name, name2, axis_descr, "Return the mean of the values for the requested axis.", nanops.nanmean, ) cls.skew = _make_stat_function( cls, "skew", name, name2, axis_descr, "Return unbiased skew over requested axis.\n\nNormalized by N-1.", nanops.nanskew, ) cls.kurt = _make_stat_function( cls, "kurt", name, name2, axis_descr, "Return unbiased kurtosis over requested axis.\n\n" "Kurtosis obtained using Fisher's definition of\n" "kurtosis (kurtosis of normal == 0.0). Normalized " "by N-1.", nanops.nankurt, ) cls.kurtosis = cls.kurt cls.prod = _make_min_count_stat_function( cls, "prod", name, name2, axis_descr, "Return the product of the values for the requested axis.", nanops.nanprod, examples=_prod_examples, ) cls.product = cls.prod cls.median = _make_stat_function( cls, "median", name, name2, axis_descr, "Return the median of the values for the requested axis.", nanops.nanmedian, ) cls.max = _make_stat_function( cls, "max", name, name2, axis_descr, """Return the maximum of the values for the requested axis.\n If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``.""", nanops.nanmax, _stat_func_see_also, _max_examples, ) cls.min = _make_stat_function( cls, "min", name, name2, axis_descr, """Return the minimum of the values for the requested axis.\n If you want the *index* of the minimum, use ``idxmin``. This is the equivalent of the ``numpy.ndarray`` method ``argmin``.""", nanops.nanmin, _stat_func_see_also, _min_examples, ) @classmethod def _add_series_or_dataframe_operations(cls): """ Add the series or dataframe only operations to the cls; evaluate the doc strings again. """ from pandas.core.window import EWM, Expanding, Rolling, Window @Appender(Rolling.__doc__) def rolling( self, window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None, ): axis = self._get_axis_number(axis) if win_type is not None: return Window( self, window=window, min_periods=min_periods, center=center, win_type=win_type, on=on, axis=axis, closed=closed, ) return Rolling( self, window=window, min_periods=min_periods, center=center, win_type=win_type, on=on, axis=axis, closed=closed, ) cls.rolling = rolling @Appender(Expanding.__doc__) def expanding(self, min_periods=1, center=False, axis=0): axis = self._get_axis_number(axis) return Expanding(self, min_periods=min_periods, center=center, axis=axis) cls.expanding = expanding @Appender(EWM.__doc__) def ewm( self, com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0, ): axis = self._get_axis_number(axis) return EWM( self, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na, axis=axis, ) cls.ewm = ewm @Appender(_shared_docs["transform"] % dict(axis="", **_shared_doc_kwargs)) def transform(self, func, *args, **kwargs): result = self.agg(func, *args, **kwargs) if is_scalar(result) or len(result) != len(self): raise ValueError("transforms cannot produce aggregated results") return result # ---------------------------------------------------------------------- # Misc methods _shared_docs[ "valid_index" ] = """ Return index for %(position)s non-NA/null value. Returns ------- scalar : type of index Notes ----- If all elements are non-NA/null, returns None. Also returns None for empty %(klass)s. """ def _find_valid_index(self, how: str): """ Retrieves the index of the first valid value. Parameters ---------- how : {'first', 'last'} Use this parameter to change between the first or last valid index. Returns ------- idx_first_valid : type of index """ idxpos = find_valid_index(self._values, how) if idxpos is None: return None return self.index[idxpos] @Appender( _shared_docs["valid_index"] % {"position": "first", "klass": "Series/DataFrame"} ) def first_valid_index(self): return self._find_valid_index("first") @Appender( _shared_docs["valid_index"] % {"position": "last", "klass": "Series/DataFrame"} ) def last_valid_index(self): return self._find_valid_index("last") def _doc_parms(cls): """Return a tuple of the doc parms.""" axis_descr = ( f"{{{', '.join(f'{a} ({i})' for i, a in enumerate(cls._AXIS_ORDERS))}}}" ) name = cls._constructor_sliced.__name__ if cls._AXIS_LEN > 1 else "scalar" name2 = cls.__name__ return axis_descr, name, name2 _num_doc = """ %(desc)s Parameters ---------- axis : %(axis_descr)s Axis for the function to be applied on. skipna : bool, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. %(min_count)s\ **kwargs Additional keyword arguments to be passed to the function. Returns ------- %(name1)s or %(name2)s (if level specified)\ %(see_also)s\ %(examples)s """ _num_doc_mad = """ %(desc)s Parameters ---------- axis : %(axis_descr)s Axis for the function to be applied on. skipna : bool, default None Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s. Returns ------- %(name1)s or %(name2)s (if level specified)\ %(see_also)s\ %(examples)s """ _num_ddof_doc = """ %(desc)s Parameters ---------- axis : %(axis_descr)s skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Returns ------- %(name1)s or %(name2)s (if level specified)\n""" _bool_doc = """ %(desc)s Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. * 1 / 'columns' : reduce the columns, return a Series whose index is the original index. * None : reduce all axes, return a scalar. bool_only : bool, default None Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series. skipna : bool, default True Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be %(empty_value)s, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s. **kwargs : any, default None Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- %(name1)s or %(name2)s If level is specified, then, %(name2)s is returned; otherwise, %(name1)s is returned. %(see_also)s %(examples)s""" _all_desc = """\ Return whether all elements are True, potentially over an axis. Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).""" _all_examples = """\ Examples -------- **Series** >>> pd.Series([True, True]).all() True >>> pd.Series([True, False]).all() False >>> pd.Series([]).all() True >>> pd.Series([np.nan]).all() True >>> pd.Series([np.nan]).all(skipna=False) True **DataFrames** Create a dataframe from a dictionary. >>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) >>> df col1 col2 0 True True 1 True False Default behaviour checks if column-wise values all return True. >>> df.all() col1 True col2 False dtype: bool Specify ``axis='columns'`` to check if row-wise values all return True. >>> df.all(axis='columns') 0 True 1 False dtype: bool Or ``axis=None`` for whether every value is True. >>> df.all(axis=None) False """ _all_see_also = """\ See Also -------- Series.all : Return True if all elements are True. DataFrame.any : Return True if one (or more) elements are True. """ _cnum_doc = """ Return cumulative %(desc)s over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative %(desc)s. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The index or the name of the axis. 0 is equivalent to None or 'index'. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. *args, **kwargs : Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- %(name1)s or %(name2)s See Also -------- core.window.Expanding.%(accum_func_name)s : Similar functionality but ignores ``NaN`` values. %(name2)s.%(accum_func_name)s : Return the %(desc)s over %(name2)s axis. %(name2)s.cummax : Return cumulative maximum over %(name2)s axis. %(name2)s.cummin : Return cumulative minimum over %(name2)s axis. %(name2)s.cumsum : Return cumulative sum over %(name2)s axis. %(name2)s.cumprod : Return cumulative product over %(name2)s axis. %(examples)s""" _cummin_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the minimum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0 To iterate over columns and find the minimum in each row, use ``axis=1`` >>> df.cummin(axis=1) A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 """ _cumsum_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumsum() 0 2.0 1 NaN 2 7.0 3 6.0 4 6.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cumsum(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the sum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0 To iterate over columns and find the sum in each row, use ``axis=1`` >>> df.cumsum(axis=1) A B 0 2.0 3.0 1 3.0 NaN 2 1.0 1.0 """ _cumprod_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumprod() 0 2.0 1 NaN 2 10.0 3 -10.0 4 -0.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cumprod(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the product in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cumprod() A B 0 2.0 1.0 1 6.0 NaN 2 6.0 0.0 To iterate over columns and find the product in each row, use ``axis=1`` >>> df.cumprod(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 0.0 """ _cummax_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummax() 0 2.0 1 NaN 2 5.0 3 5.0 4 5.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cummax(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the maximum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cummax() A B 0 2.0 1.0 1 3.0 NaN 2 3.0 1.0 To iterate over columns and find the maximum in each row, use ``axis=1`` >>> df.cummax(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 1.0 """ _any_see_also = """\ See Also -------- numpy.any : Numpy version of this method. Series.any : Return whether any element is True. Series.all : Return whether all elements are True. DataFrame.any : Return whether any element is True over requested axis. DataFrame.all : Return whether all elements are True over requested axis. """ _any_desc = """\ Return whether any element is True, potentially over an axis. Returns False unless there at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).""" _any_examples = """\ Examples -------- **Series** For Series input, the output is a scalar indicating whether any element is True. >>> pd.Series([False, False]).any() False >>> pd.Series([True, False]).any() True >>> pd.Series([]).any() False >>> pd.Series([np.nan]).any() False >>> pd.Series([np.nan]).any(skipna=False) True **DataFrame** Whether each column contains at least one True element (the default). >>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0 >>> df.any() A True B True C False dtype: bool Aggregating over the columns. >>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2 >>> df.any(axis='columns') 0 True 1 True dtype: bool >>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0 >>> df.any(axis='columns') 0 True 1 False dtype: bool Aggregating over the entire DataFrame with ``axis=None``. >>> df.any(axis=None) True `any` for an empty DataFrame is an empty Series. >>> pd.DataFrame([]).any() Series([], dtype: bool) """ _shared_docs[ "stat_func_example" ] = """ Examples -------- >>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.{stat_func}() {default_output} {verb} using level names, as well as indices. >>> s.{stat_func}(level='blooded') blooded warm {level_output_0} cold {level_output_1} Name: legs, dtype: int64 >>> s.{stat_func}(level=0) blooded warm {level_output_0} cold {level_output_1} Name: legs, dtype: int64""" _sum_examples = _shared_docs["stat_func_example"].format( stat_func="sum", verb="Sum", default_output=14, level_output_0=6, level_output_1=8 ) _sum_examples += """ By default, the sum of an empty or all-NA Series is ``0``. >>> pd.Series([]).sum() # min_count=0 is the default 0.0 This can be controlled with the ``min_count`` parameter. For example, if you'd like the sum of an empty series to be NaN, pass ``min_count=1``. >>> pd.Series([]).sum(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).sum() 0.0 >>> pd.Series([np.nan]).sum(min_count=1) nan""" _max_examples = _shared_docs["stat_func_example"].format( stat_func="max", verb="Max", default_output=8, level_output_0=4, level_output_1=8 ) _min_examples = _shared_docs["stat_func_example"].format( stat_func="min", verb="Min", default_output=0, level_output_0=2, level_output_1=0 ) _stat_func_see_also = """ See Also -------- Series.sum : Return the sum. Series.min : Return the minimum. Series.max : Return the maximum. Series.idxmin : Return the index of the minimum. Series.idxmax : Return the index of the maximum. DataFrame.sum : Return the sum over the requested axis. DataFrame.min : Return the minimum over the requested axis. DataFrame.max : Return the maximum over the requested axis. DataFrame.idxmin : Return the index of the minimum over the requested axis. DataFrame.idxmax : Return the index of the maximum over the requested axis.""" _prod_examples = """ Examples -------- By default, the product of an empty or all-NA Series is ``1`` >>> pd.Series([]).prod() 1.0 This can be controlled with the ``min_count`` parameter >>> pd.Series([]).prod(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).prod() 1.0 >>> pd.Series([np.nan]).prod(min_count=1) nan""" _min_count_stub = """\ min_count : int, default 0 The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. .. versionadded:: 0.22.0 Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1. """ def _make_min_count_stat_function( cls, name, name1, name2, axis_descr, desc, f, see_also: str = "", examples: str = "" ): @Substitution( desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, min_count=_min_count_stub, see_also=see_also, examples=examples, ) @Appender(_num_doc) def stat_func( self, axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs, ): if name == "sum": nv.validate_sum(tuple(), kwargs) elif name == "prod": nv.validate_prod(tuple(), kwargs) else: nv.validate_stat_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level( name, axis=axis, level=level, skipna=skipna, min_count=min_count ) return self._reduce( f, name, axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) return set_function_name(stat_func, name, cls) def _make_stat_function( cls, name, name1, name2, axis_descr, desc, f, see_also: str = "", examples: str = "" ): @Substitution( desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, min_count="", see_also=see_also, examples=examples, ) @Appender(_num_doc) def stat_func( self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs ): if name == "median": nv.validate_median(tuple(), kwargs) else: nv.validate_stat_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level(name, axis=axis, level=level, skipna=skipna) return self._reduce( f, name, axis=axis, skipna=skipna, numeric_only=numeric_only ) return set_function_name(stat_func, name, cls) def _make_stat_function_ddof(cls, name, name1, name2, axis_descr, desc, f): @Substitution(desc=desc, name1=name1, name2=name2, axis_descr=axis_descr) @Appender(_num_ddof_doc) def stat_func( self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs ): nv.validate_stat_ddof_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level( name, axis=axis, level=level, skipna=skipna, ddof=ddof ) return self._reduce( f, name, axis=axis, numeric_only=numeric_only, skipna=skipna, ddof=ddof ) return set_function_name(stat_func, name, cls) def _make_cum_function( cls, name, name1, name2, axis_descr, desc, accum_func, accum_func_name, mask_a, mask_b, examples, ): @Substitution( desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, accum_func_name=accum_func_name, examples=examples, ) @Appender(_cnum_doc) def cum_func(self, axis=None, skipna=True, *args, **kwargs): skipna = nv.validate_cum_func_with_skipna(skipna, args, kwargs, name) if axis is None: axis = self._stat_axis_number else: axis = self._get_axis_number(axis) if axis == 1: return cum_func(self.T, axis=0, skipna=skipna, *args, **kwargs).T def na_accum_func(blk_values): # We will be applying this function to block values if blk_values.dtype.kind in ["m", "M"]: # GH#30460, GH#29058 # numpy 1.18 started sorting NaTs at the end instead of beginning, # so we need to work around to maintain backwards-consistency. orig_dtype = blk_values.dtype # We need to define mask before masking NaTs mask = isna(blk_values) if accum_func == np.minimum.accumulate: # Note: the accum_func comparison fails as an "is" comparison y = blk_values.view("i8") y[mask] = np.iinfo(np.int64).max changed = True else: y = blk_values changed = False result = accum_func(y.view("i8"), axis) if skipna: np.putmask(result, mask, iNaT) elif accum_func == np.minimum.accumulate: # Restore NaTs that we masked previously nz = (~np.asarray(mask)).nonzero()[0] if len(nz): # everything up to the first non-na entry stays NaT result[: nz[0]] = iNaT if changed: # restore NaT elements y[mask] = iNaT # TODO: could try/finally for this? if isinstance(blk_values, np.ndarray): result = result.view(orig_dtype) else: # DatetimeArray result = type(blk_values)._from_sequence(result, dtype=orig_dtype) elif skipna and not issubclass( blk_values.dtype.type, (np.integer, np.bool_) ): vals = blk_values.copy().T mask = isna(vals) np.putmask(vals, mask, mask_a) result = accum_func(vals, axis) np.putmask(result, mask, mask_b) else: result = accum_func(blk_values.T, axis) # transpose back for ndarray, not for EA return result.T if hasattr(result, "T") else result result = self._data.apply(na_accum_func) d = self._construct_axes_dict() d["copy"] = False return self._constructor(result, **d).__finalize__(self) return set_function_name(cum_func, name, cls) def _make_logical_function( cls, name, name1, name2, axis_descr, desc, f, see_also, examples, empty_value ): @Substitution( desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, see_also=see_also, examples=examples, empty_value=empty_value, ) @Appender(_bool_doc) def logical_func(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs): nv.validate_logical_func(tuple(), kwargs, fname=name) if level is not None: if bool_only is not None: raise NotImplementedError( "Option bool_only is not implemented with option level." ) return self._agg_by_level(name, axis=axis, level=level, skipna=skipna) return self._reduce( f, name, axis=axis, skipna=skipna, numeric_only=bool_only, filter_type="bool", ) return set_function_name(logical_func, name, cls) import collections from datetime import timedelta import functools import gc import json import operator import pickle import re from textwrap import dedent from typing import ( TYPE_CHECKING, Any, Callable, Dict, FrozenSet, Hashable, List, Mapping, Optional, Sequence, Set, Tuple, Type, Union, ) import warnings import weakref import numpy as np from pandas._config import config from pandas._libs import Timestamp, iNaT, lib from pandas._typing import ( Axis, Dtype, FilePathOrBuffer, FrameOrSeries, JSONSerializable, Label, Level, Renamer, ) from pandas.compat import set_function_name from pandas.compat._optional import import_optional_dependency from pandas.compat.numpy import function as nv from pandas.errors import AbstractMethodError from pandas.util._decorators import ( Appender, Substitution, doc, rewrite_axis_style_signature, ) from pandas.util._validators import ( validate_bool_kwarg, validate_fillna_kwargs, validate_percentile, ) from pandas.core.dtypes.common import ( ensure_int64, ensure_object, ensure_str, is_bool, is_bool_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dict_like, is_extension_array_dtype, is_float, is_integer, is_list_like, is_number, is_numeric_dtype, is_object_dtype, is_period_arraylike, is_re_compilable, is_scalar, is_timedelta64_dtype, pandas_dtype, ) from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import isna, notna import pandas as pd from pandas.core import missing, nanops import pandas.core.algorithms as algos from pandas.core.base import PandasObject, SelectionMixin import pandas.core.common as com from pandas.core.construction import create_series_with_explicit_dtype from pandas.core.indexes.api import ( Index, InvalidIndexError, MultiIndex, RangeIndex, ensure_index, ) from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import Period, PeriodIndex import pandas.core.indexing as indexing from pandas.core.internals import BlockManager from pandas.core.missing import find_valid_index from pandas.core.ops import _align_method_FRAME from pandas.io.formats import format as fmt from pandas.io.formats.format import DataFrameFormatter, format_percentiles from pandas.io.formats.printing import pprint_thing from pandas.tseries.frequencies import to_offset if TYPE_CHECKING: from pandas.core.resample import Resampler # goal is to be able to define the docs close to function, while still being # able to share _shared_docs: Dict[str, str] = dict() _shared_doc_kwargs = dict( axes="keywords for axes", klass="Series/DataFrame", axes_single_arg="int or labels for object", args_transpose="axes to permute (int or label for object)", optional_by=""" by : str or list of str Name or list of names to sort by""", ) def _single_replace(self, to_replace, method, inplace, limit): """ Replaces values in a Series using the fill method specified when no replacement value is given in the replace method """ if self.ndim != 1: raise TypeError( f"cannot replace {to_replace} with method {method} on a " f"{type(self).__name__}" ) orig_dtype = self.dtype result = self if inplace else self.copy() fill_f = missing.get_fill_func(method) mask = missing.mask_missing(result.values, to_replace) values = fill_f(result.values, limit=limit, mask=mask) if values.dtype == orig_dtype and inplace: return result = pd.Series(values, index=self.index, dtype=self.dtype).__finalize__(self) if inplace: self._update_inplace(result._data) return return result bool_t = bool # Need alias because NDFrame has def bool: class NDFrame(PandasObject, SelectionMixin, indexing.IndexingMixin): """ N-dimensional analogue of DataFrame. Store multi-dimensional in a size-mutable, labeled data structure Parameters ---------- data : BlockManager axes : list copy : bool, default False """ _internal_names: List[str] = [ "_data", "_cacher", "_item_cache", "_cache", "_is_copy", "_subtyp", "_name", "_index", "_default_kind", "_default_fill_value", "_metadata", "__array_struct__", "__array_interface__", ] _internal_names_set: Set[str] = set(_internal_names) _accessors: Set[str] = set() _deprecations: FrozenSet[str] = frozenset(["get_values"]) _metadata: List[str] = [] _is_copy = None _data: BlockManager _attrs: Dict[Optional[Hashable], Any] _typ: str # ---------------------------------------------------------------------- # Constructors def __init__( self, data: BlockManager, axes: Optional[List[Index]] = None, copy: bool = False, dtype: Optional[Dtype] = None, attrs: Optional[Mapping[Optional[Hashable], Any]] = None, fastpath: bool = False, ): if not fastpath: if dtype is not None: data = data.astype(dtype) elif copy: data = data.copy() if axes is not None: for i, ax in enumerate(axes): data = data.reindex_axis(ax, axis=i) object.__setattr__(self, "_is_copy", None) object.__setattr__(self, "_data", data) object.__setattr__(self, "_item_cache", {}) if attrs is None: attrs = {} else: attrs = dict(attrs) object.__setattr__(self, "_attrs", attrs) def _init_mgr(self, mgr, axes=None, dtype=None, copy=False): """ passed a manager and a axes dict """ for a, axe in axes.items(): if axe is not None: mgr = mgr.reindex_axis( axe, axis=self._get_block_manager_axis(a), copy=False ) # make a copy if explicitly requested if copy: mgr = mgr.copy() if dtype is not None: # avoid further copies if we can if len(mgr.blocks) > 1 or mgr.blocks[0].values.dtype != dtype: mgr = mgr.astype(dtype=dtype) return mgr # ---------------------------------------------------------------------- @property def attrs(self) -> Dict[Optional[Hashable], Any]: """ Dictionary of global attributes on this object. .. warning:: attrs is experimental and may change without warning. """ if self._attrs is None: self._attrs = {} return self._attrs @attrs.setter def attrs(self, value: Mapping[Optional[Hashable], Any]) -> None: self._attrs = dict(value) def _validate_dtype(self, dtype): """ validate the passed dtype """ if dtype is not None: dtype = pandas_dtype(dtype) # a compound dtype if dtype.kind == "V": raise NotImplementedError( "compound dtypes are not implemented " f"in the {type(self).__name__} constructor" ) return dtype # ---------------------------------------------------------------------- # Construction @property def _constructor(self: FrameOrSeries) -> Type[FrameOrSeries]: """ Used when a manipulation result has the same dimensions as the original. """ raise AbstractMethodError(self) @property def _constructor_sliced(self): """ Used when a manipulation result has one lower dimension(s) as the original, such as DataFrame single columns slicing. """ raise AbstractMethodError(self) @property def _constructor_expanddim(self): """ Used when a manipulation result has one higher dimension as the original, such as Series.to_frame() """ raise NotImplementedError # ---------------------------------------------------------------------- # Axis _AXIS_ALIASES = {"rows": 0} _AXIS_IALIASES = {0: "rows"} _stat_axis_number = 0 _stat_axis_name = "index" _ix = None _AXIS_ORDERS: List[str] _AXIS_NUMBERS: Dict[str, int] _AXIS_NAMES: Dict[int, str] _AXIS_REVERSED: bool _info_axis_number: int _info_axis_name: str _AXIS_LEN: int def _construct_axes_dict(self, axes=None, **kwargs): """Return an axes dictionary for myself.""" d = {a: self._get_axis(a) for a in (axes or self._AXIS_ORDERS)} d.update(kwargs) return d def _construct_axes_from_arguments( self, args, kwargs, require_all: bool = False, sentinel=None ): """ Construct and returns axes if supplied in args/kwargs. If require_all, raise if all axis arguments are not supplied return a tuple of (axes, kwargs). sentinel specifies the default parameter when an axis is not supplied; useful to distinguish when a user explicitly passes None in scenarios where None has special meaning. """ # construct the args args = list(args) for a in self._AXIS_ORDERS: # look for a argument by position if a not in kwargs: try: kwargs[a] = args.pop(0) except IndexError: if require_all: raise TypeError("not enough/duplicate arguments specified!") axes = {a: kwargs.pop(a, sentinel) for a in self._AXIS_ORDERS} return axes, kwargs @classmethod def _get_axis_number(cls, axis): axis = cls._AXIS_ALIASES.get(axis, axis) if is_integer(axis): if axis in cls._AXIS_NAMES: return axis else: try: return cls._AXIS_NUMBERS[axis] except KeyError: pass raise ValueError(f"No axis named {axis} for object type {cls}") @classmethod def _get_axis_name(cls, axis): axis = cls._AXIS_ALIASES.get(axis, axis) if isinstance(axis, str): if axis in cls._AXIS_NUMBERS: return axis else: try: return cls._AXIS_NAMES[axis] except KeyError: pass raise ValueError(f"No axis named {axis} for object type {cls}") def _get_axis(self, axis): name = self._get_axis_name(axis) return getattr(self, name) @classmethod def _get_block_manager_axis(cls, axis): """Map the axis to the block_manager axis.""" axis = cls._get_axis_number(axis) if cls._AXIS_REVERSED: m = cls._AXIS_LEN - 1 return m - axis return axis def _get_axis_resolvers(self, axis: str) -> Dict[str, ABCSeries]: # index or columns axis_index = getattr(self, axis) d = dict() prefix = axis[0] for i, name in enumerate(axis_index.names): if name is not None: key = level = name else: # prefix with 'i' or 'c' depending on the input axis # e.g., you must do ilevel_0 for the 0th level of an unnamed # multiiindex key = f"{prefix}level_{i}" level = i level_values = axis_index.get_level_values(level) s = level_values.to_series() s.index = axis_index d[key] = s # put the index/columns itself in the dict if isinstance(axis_index, MultiIndex): dindex = axis_index else: dindex = axis_index.to_series() d[axis] = dindex return d def _get_index_resolvers(self) -> Dict[str, ABCSeries]: from pandas.core.computation.parsing import clean_column_name d: Dict[str, ABCSeries] = {} for axis_name in self._AXIS_ORDERS: d.update(self._get_axis_resolvers(axis_name)) return {clean_column_name(k): v for k, v in d.items() if not isinstance(k, int)} def _get_cleaned_column_resolvers(self) -> Dict[str, ABCSeries]: """ Return the special character free column resolvers of a dataframe. Column names with special characters are 'cleaned up' so that they can be referred to by backtick quoting. Used in :meth:`DataFrame.eval`. """ from pandas.core.computation.parsing import clean_column_name if isinstance(self, ABCSeries): return {clean_column_name(self.name): self} return { clean_column_name(k): v for k, v in self.items() if not isinstance(k, int) } @property def _info_axis(self): return getattr(self, self._info_axis_name) @property def _stat_axis(self): return getattr(self, self._stat_axis_name) @property def shape(self) -> Tuple[int, ...]: """ Return a tuple of axis dimensions """ return tuple(len(self._get_axis(a)) for a in self._AXIS_ORDERS) @property def axes(self) -> List[Index]: """ Return index label(s) of the internal NDFrame """ # we do it this way because if we have reversed axes, then # the block manager shows then reversed return [self._get_axis(a) for a in self._AXIS_ORDERS] @property def ndim(self) -> int: """ Return an int representing the number of axes / array dimensions. Return 1 if Series. Otherwise return 2 if DataFrame. See Also -------- ndarray.ndim : Number of array dimensions. Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.ndim 1 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.ndim 2 """ return self._data.ndim @property def size(self): """ Return an int representing the number of elements in this object. Return the number of rows if Series. Otherwise return the number of rows times number of columns if DataFrame. See Also -------- ndarray.size : Number of elements in the array. Examples -------- >>> s = pd.Series({'a': 1, 'b': 2, 'c': 3}) >>> s.size 3 >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.size 4 """ return np.prod(self.shape) @property def _selected_obj(self: FrameOrSeries) -> FrameOrSeries: """ internal compat with SelectionMixin """ return self @property def _obj_with_exclusions(self: FrameOrSeries) -> FrameOrSeries: """ internal compat with SelectionMixin """ return self def set_axis(self, labels, axis=0, inplace=False): """ Assign desired index to given axis. Indexes for%(extended_summary_sub)s row labels can be changed by assigning a list-like or Index. .. versionchanged:: 0.21.0 The signature is now `labels` and `axis`, consistent with the rest of pandas API. Previously, the `axis` and `labels` arguments were respectively the first and second positional arguments. Parameters ---------- labels : list-like, Index The values for the new index. axis : %(axes_single_arg)s, default 0 The axis to update. The value 0 identifies the rows%(axis_description_sub)s. inplace : bool, default False Whether to return a new %(klass)s instance. Returns ------- renamed : %(klass)s or None An object of type %(klass)s if inplace=False, None otherwise. See Also -------- %(klass)s.rename_axis : Alter the name of the index%(see_also_sub)s. """ if inplace: setattr(self, self._get_axis_name(axis), labels) else: obj = self.copy() obj.set_axis(labels, axis=axis, inplace=True) return obj def _set_axis(self, axis, labels) -> None: self._data.set_axis(axis, labels) self._clear_item_cache() def swapaxes(self: FrameOrSeries, axis1, axis2, copy=True) -> FrameOrSeries: """ Interchange axes and swap values axes appropriately. Returns ------- y : same as input """ i = self._get_axis_number(axis1) j = self._get_axis_number(axis2) if i == j: if copy: return self.copy() return self mapping = {i: j, j: i} new_axes = (self._get_axis(mapping.get(k, k)) for k in range(self._AXIS_LEN)) new_values = self.values.swapaxes(i, j) if copy: new_values = new_values.copy() return self._constructor(new_values, *new_axes).__finalize__(self) def droplevel(self: FrameOrSeries, level, axis=0) -> FrameOrSeries: """ Return DataFrame with requested index / column level(s) removed. .. versionadded:: 0.24.0 Parameters ---------- level : int, str, or list-like If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels. axis : {0 or 'index', 1 or 'columns'}, default 0 Returns ------- DataFrame DataFrame with requested index / column level(s) removed. Examples -------- >>> df = pd.DataFrame([ ... [1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12] ... ]).set_index([0, 1]).rename_axis(['a', 'b']) >>> df.columns = pd.MultiIndex.from_tuples([ ... ('c', 'e'), ('d', 'f') ... ], names=['level_1', 'level_2']) >>> df level_1 c d level_2 e f a b 1 2 3 4 5 6 7 8 9 10 11 12 >>> df.droplevel('a') level_1 c d level_2 e f b 2 3 4 6 7 8 10 11 12 >>> df.droplevel('level2', axis=1) level_1 c d a b 1 2 3 4 5 6 7 8 9 10 11 12 """ labels = self._get_axis(axis) new_labels = labels.droplevel(level) result = self.set_axis(new_labels, axis=axis, inplace=False) return result def pop(self: FrameOrSeries, item) -> FrameOrSeries: """ Return item and drop from frame. Raise KeyError if not found. Parameters ---------- item : str Label of column to be popped. Returns ------- Series Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=('name', 'class', 'max_speed')) >>> df name class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN >>> df.pop('class') 0 bird 1 bird 2 mammal 3 mammal Name: class, dtype: object >>> df name max_speed 0 falcon 389.0 1 parrot 24.0 2 lion 80.5 3 monkey NaN """ result = self[item] del self[item] try: result._reset_cacher() except AttributeError: pass return result def squeeze(self, axis=None): """ Squeeze 1 dimensional axis objects into scalars. Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged. This method is most useful when you don't know if your object is a Series or DataFrame, but you do know it has just a single column. In that case you can safely call `squeeze` to ensure you have a Series. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default None A specific axis to squeeze. By default, all length-1 axes are squeezed. Returns ------- DataFrame, Series, or scalar The projection after squeezing `axis` or all the axes. See Also -------- Series.iloc : Integer-location based indexing for selecting scalars. DataFrame.iloc : Integer-location based indexing for selecting Series. Series.to_frame : Inverse of DataFrame.squeeze for a single-column DataFrame. Examples -------- >>> primes = pd.Series([2, 3, 5, 7]) Slicing might produce a Series with a single value: >>> even_primes = primes[primes % 2 == 0] >>> even_primes 0 2 dtype: int64 >>> even_primes.squeeze() 2 Squeezing objects with more than one value in every axis does nothing: >>> odd_primes = primes[primes % 2 == 1] >>> odd_primes 1 3 2 5 3 7 dtype: int64 >>> odd_primes.squeeze() 1 3 2 5 3 7 dtype: int64 Squeezing is even more effective when used with DataFrames. >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b']) >>> df a b 0 1 2 1 3 4 Slicing a single column will produce a DataFrame with the columns having only one value: >>> df_a = df[['a']] >>> df_a a 0 1 1 3 So the columns can be squeezed down, resulting in a Series: >>> df_a.squeeze('columns') 0 1 1 3 Name: a, dtype: int64 Slicing a single row from a single column will produce a single scalar DataFrame: >>> df_0a = df.loc[df.index < 1, ['a']] >>> df_0a a 0 1 Squeezing the rows produces a single scalar Series: >>> df_0a.squeeze('rows') a 1 Name: 0, dtype: int64 Squeezing all axes will project directly into a scalar: >>> df_0a.squeeze() 1 """ axis = self._AXIS_NAMES if axis is None else (self._get_axis_number(axis),) return self.iloc[ tuple( 0 if i in axis and len(a) == 1 else slice(None) for i, a in enumerate(self.axes) ) ] # ---------------------------------------------------------------------- # Rename def rename( self: FrameOrSeries, mapper: Optional[Renamer] = None, *, index: Optional[Renamer] = None, columns: Optional[Renamer] = None, axis: Optional[Axis] = None, copy: bool = True, inplace: bool = False, level: Optional[Level] = None, errors: str = "ignore", ) -> Optional[FrameOrSeries]: """ Alter axes input function or functions. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value (Series only). Parameters ---------- %(axes)s : scalar, list-like, dict-like or function, optional Scalar or list-like will alter the ``Series.name`` attribute, and raise on DataFrame. dict-like or functions are transformations to apply to that axis' values copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new %(klass)s. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- renamed : %(klass)s (new object) Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- NDFrame.rename_axis Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 Since ``DataFrame`` doesn't have a ``.name`` attribute, only mapping-type arguments are allowed. >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(2) Traceback (most recent call last): ... TypeError: 'int' object is not callable ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 >>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6 Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 See the :ref:`user guide <basics.rename>` for more. """ if mapper is None and index is None and columns is None: raise TypeError("must pass an index to rename") if index is not None or columns is not None: if axis is not None: raise TypeError( "Cannot specify both 'axis' and any of 'index' or 'columns'" ) elif mapper is not None: raise TypeError( "Cannot specify both 'mapper' and any of 'index' or 'columns'" ) else: # use the mapper argument if axis and self._get_axis_number(axis) == 1: columns = mapper else: index = mapper result = self if inplace else self.copy(deep=copy) for axis_no, replacements in enumerate((index, columns)): if replacements is None: continue ax = self._get_axis(axis_no) baxis = self._get_block_manager_axis(axis_no) f = com.get_rename_function(replacements) if level is not None: level = ax._get_level_number(level) # GH 13473 if not callable(replacements): indexer = ax.get_indexer_for(replacements) if errors == "raise" and len(indexer[indexer == -1]): missing_labels = [ label for index, label in enumerate(replacements) if indexer[index] == -1 ] raise KeyError(f"{missing_labels} not found in axis") result._data = result._data.rename_axis( f, axis=baxis, copy=copy, level=level ) result._clear_item_cache() if inplace: self._update_inplace(result._data) return None else: return result.__finalize__(self) @rewrite_axis_style_signature("mapper", [("copy", True), ("inplace", False)]) def rename_axis(self, mapper=lib.no_default, **kwargs): """ Set the name of the axis for the index or columns. Parameters ---------- mapper : scalar, list-like, optional Value to set the axis name attribute. index, columns : scalar, list-like, dict-like or function, optional A scalar, list-like, dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and/or ``columns``. .. versionchanged:: 0.24.0 axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to rename. copy : bool, default True Also copy underlying data. inplace : bool, default False Modifies the object directly, instead of creating a new Series or DataFrame. Returns ------- Series, DataFrame, or None The same type as the caller or None if `inplace` is True. See Also -------- Series.rename : Alter Series index labels or name. DataFrame.rename : Alter DataFrame index labels or name. Index.rename : Set new names on index. Notes ----- ``DataFrame.rename_axis`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` The first calling convention will only modify the names of the index and/or the names of the Index object that is the columns. In this case, the parameter ``copy`` is ignored. The second calling convention will modify the names of the the corresponding index if mapper is a list or a scalar. However, if mapper is dict-like or a function, it will use the deprecated behavior of modifying the axis *labels*. We *highly* recommend using keyword arguments to clarify your intent. Examples -------- **Series** >>> s = pd.Series(["dog", "cat", "monkey"]) >>> s 0 dog 1 cat 2 monkey dtype: object >>> s.rename_axis("animal") animal 0 dog 1 cat 2 monkey dtype: object **DataFrame** >>> df = pd.DataFrame({"num_legs": [4, 4, 2], ... "num_arms": [0, 0, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs num_arms dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("animal") >>> df num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 >>> df = df.rename_axis("limbs", axis="columns") >>> df limbs num_legs num_arms animal dog 4 0 cat 4 0 monkey 2 2 **MultiIndex** >>> df.index = pd.MultiIndex.from_product([['mammal'], ... ['dog', 'cat', 'monkey']], ... names=['type', 'name']) >>> df limbs num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(index={'type': 'class'}) limbs num_legs num_arms class name mammal dog 4 0 cat 4 0 monkey 2 2 >>> df.rename_axis(columns=str.upper) LIMBS num_legs num_arms type name mammal dog 4 0 cat 4 0 monkey 2 2 """ axes, kwargs = self._construct_axes_from_arguments( (), kwargs, sentinel=lib.no_default ) copy = kwargs.pop("copy", True) inplace = kwargs.pop("inplace", False) axis = kwargs.pop("axis", 0) if axis is not None: axis = self._get_axis_number(axis) if kwargs: raise TypeError( "rename_axis() got an unexpected keyword " f'argument "{list(kwargs.keys())[0]}"' ) inplace = validate_bool_kwarg(inplace, "inplace") if mapper is not lib.no_default: # Use v0.23 behavior if a scalar or list non_mapper = is_scalar(mapper) or ( is_list_like(mapper) and not is_dict_like(mapper) ) if non_mapper: return self._set_axis_name(mapper, axis=axis, inplace=inplace) else: raise ValueError("Use `.rename` to alter labels with a mapper.") else: # Use new behavior. Means that index and/or columns # is specified result = self if inplace else self.copy(deep=copy) for axis in range(self._AXIS_LEN): v = axes.get(self._AXIS_NAMES[axis]) if v is lib.no_default: continue non_mapper = is_scalar(v) or (is_list_like(v) and not is_dict_like(v)) if non_mapper: newnames = v else: f = com.get_rename_function(v) curnames = self._get_axis(axis).names newnames = [f(name) for name in curnames] result._set_axis_name(newnames, axis=axis, inplace=True) if not inplace: return result def _set_axis_name(self, name, axis=0, inplace=False): """ Set the name(s) of the axis. Parameters ---------- name : str or list of str Name(s) to set. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to set the label. The value 0 or 'index' specifies index, and the value 1 or 'columns' specifies columns. inplace : bool, default False If `True`, do operation inplace and return None. .. versionadded:: 0.21.0 Returns ------- Series, DataFrame, or None The same type as the caller or `None` if `inplace` is `True`. See Also -------- DataFrame.rename : Alter the axis labels of :class:`DataFrame`. Series.rename : Alter the index labels or set the index name of :class:`Series`. Index.rename : Set the name of :class:`Index` or :class:`MultiIndex`. Examples -------- >>> df = pd.DataFrame({"num_legs": [4, 4, 2]}, ... ["dog", "cat", "monkey"]) >>> df num_legs dog 4 cat 4 monkey 2 >>> df._set_axis_name("animal") num_legs animal dog 4 cat 4 monkey 2 >>> df.index = pd.MultiIndex.from_product( ... [["mammal"], ['dog', 'cat', 'monkey']]) >>> df._set_axis_name(["type", "name"]) legs type name mammal dog 4 cat 4 monkey 2 """ axis = self._get_axis_number(axis) idx = self._get_axis(axis).set_names(name) inplace = validate_bool_kwarg(inplace, "inplace") renamed = self if inplace else self.copy() renamed.set_axis(idx, axis=axis, inplace=True) if not inplace: return renamed # ---------------------------------------------------------------------- # Comparison Methods def _indexed_same(self, other) -> bool: return all( self._get_axis(a).equals(other._get_axis(a)) for a in self._AXIS_ORDERS ) def equals(self, other): """ Test whether two objects contain the same elements. This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The column headers do not need to have the same type, but the elements within the columns must be the same dtype. Parameters ---------- other : Series or DataFrame The other Series or DataFrame to be compared with the first. Returns ------- bool True if all elements are the same in both objects, False otherwise. See Also -------- Series.eq : Compare two Series objects of the same length and return a Series where each element is True if the element in each Series is equal, False otherwise. DataFrame.eq : Compare two DataFrame objects of the same shape and return a DataFrame where each element is True if the respective element in each DataFrame is equal, False otherwise. testing.assert_series_equal : Raises an AssertionError if left and right are not equal. Provides an easy interface to ignore inequality in dtypes, indexes and precision among others. testing.assert_frame_equal : Like assert_series_equal, but targets DataFrames. numpy.array_equal : Return True if two arrays have the same shape and elements, False otherwise. Notes ----- This function requires that the elements have the same dtype as their respective elements in the other Series or DataFrame. However, the column labels do not need to have the same type, as long as they are still considered equal. Examples -------- >>> df = pd.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 DataFrames df and exactly_equal have the same types and values for their elements and column labels, which will return True. >>> exactly_equal = pd.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True DataFrames df and different_column_type have the same element types and values, but have different types for the column labels, which will still return True. >>> different_column_type = pd.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True DataFrames df and different_data_type have different types for the same values for their elements, and will return False even though their column labels are the same values and types. >>> different_data_type = pd.DataFrame({1: [10.0], 2: [20.0]}) >>> different_data_type 1 2 0 10.0 20.0 >>> df.equals(different_data_type) False """ if not isinstance(other, self._constructor): return False return self._data.equals(other._data) # ------------------------------------------------------------------------- # Unary Methods def __neg__(self): values = com.values_from_object(self) if is_bool_dtype(values): arr = operator.inv(values) elif ( is_numeric_dtype(values) or is_timedelta64_dtype(values) or is_object_dtype(values) ): arr = operator.neg(values) else: raise TypeError(f"Unary negative expects numeric dtype, not {values.dtype}") return self.__array_wrap__(arr) def __pos__(self): values = com.values_from_object(self) if is_bool_dtype(values) or is_period_arraylike(values): arr = values elif ( is_numeric_dtype(values) or is_timedelta64_dtype(values) or is_object_dtype(values) ): arr = operator.pos(values) else: raise TypeError(f"Unary plus expects numeric dtype, not {values.dtype}") return self.__array_wrap__(arr) def __invert__(self): if not self.size: # inv fails with 0 len return self new_data = self._data.apply(operator.invert) result = self._constructor(new_data).__finalize__(self) return result def __nonzero__(self): raise ValueError( f"The truth value of a {type(self).__name__} is ambiguous. " "Use a.empty, a.bool(), a.item(), a.any() or a.all()." ) __bool__ = __nonzero__ def bool(self): """ Return the bool of a single element PandasObject. This must be a boolean scalar value, either True or False. Raise a ValueError if the PandasObject does not have exactly 1 element, or that element is not boolean Returns ------- bool Same single boolean value converted to bool type. """ v = self.squeeze() if isinstance(v, (bool, np.bool_)): return bool(v) elif is_scalar(v): raise ValueError( "bool cannot act on a non-boolean single element " f"{type(self).__name__}" ) self.__nonzero__() def __abs__(self: FrameOrSeries) -> FrameOrSeries: return self.abs() def __round__(self: FrameOrSeries, decimals: int = 0) -> FrameOrSeries: return self.round(decimals) # ------------------------------------------------------------------------- # Label or Level Combination Helpers # # A collection of helper methods for DataFrame/Series operations that # accept a combination of column/index labels and levels. All such # operations should utilize/extend these methods when possible so that we # have consistent precedence and validation logic throughout the library. def _is_level_reference(self, key, axis=0): """ Test whether a key is a level reference for a given axis. To be considered a level reference, `key` must be a string that: - (axis=0): Matches the name of an index level and does NOT match a column label. - (axis=1): Matches the name of a column level and does NOT match an index label. Parameters ---------- key : str Potential level name for the given axis axis : int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_level : bool """ axis = self._get_axis_number(axis) return ( key is not None and is_hashable(key) and key in self.axes[axis].names and not self._is_label_reference(key, axis=axis) ) def _is_label_reference(self, key, axis=0) -> bool_t: """ Test whether a key is a label reference for a given axis. To be considered a label reference, `key` must be a string that: - (axis=0): Matches a column label - (axis=1): Matches an index label Parameters ---------- key: str Potential label name axis: int, default 0 Axis perpendicular to the axis that labels are associated with (0 means search for column labels, 1 means search for index labels) Returns ------- is_label: bool """ axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) return ( key is not None and is_hashable(key) and any(key in self.axes[ax] for ax in other_axes) ) def _is_label_or_level_reference(self, key: str, axis: int = 0) -> bool_t: """ Test whether a key is a label or level reference for a given axis. To be considered either a label or a level reference, `key` must be a string that: - (axis=0): Matches a column label or an index level - (axis=1): Matches an index label or a column level Parameters ---------- key: str Potential label or level name axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- is_label_or_level: bool """ return self._is_level_reference(key, axis=axis) or self._is_label_reference( key, axis=axis ) def _check_label_or_level_ambiguity(self, key, axis: int = 0) -> None: """ Check whether `key` is ambiguous. By ambiguous, we mean that it matches both a level of the input `axis` and a label of the other axis. Parameters ---------- key: str or object Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns). Raises ------ ValueError: `key` is ambiguous """ axis = self._get_axis_number(axis) other_axes = (ax for ax in range(self._AXIS_LEN) if ax != axis) if ( key is not None and is_hashable(key) and key in self.axes[axis].names and any(key in self.axes[ax] for ax in other_axes) ): # Build an informative and grammatical warning level_article, level_type = ( ("an", "index") if axis == 0 else ("a", "column") ) label_article, label_type = ( ("a", "column") if axis == 0 else ("an", "index") ) msg = ( f"'{key}' is both {level_article} {level_type} level and " f"{label_article} {label_type} label, which is ambiguous." ) raise ValueError(msg) def _get_label_or_level_values(self, key: str, axis: int = 0) -> np.ndarray: """ Return a 1-D array of values associated with `key`, a label or level from the given `axis`. Retrieval logic: - (axis=0): Return column values if `key` matches a column label. Otherwise return index level values if `key` matches an index level. - (axis=1): Return row values if `key` matches an index label. Otherwise return column level values if 'key' matches a column level Parameters ---------- key: str Label or level name. axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- values: np.ndarray Raises ------ KeyError if `key` matches neither a label nor a level ValueError if `key` matches multiple labels FutureWarning if `key` is ambiguous. This will become an ambiguity error in a future version """ axis = self._get_axis_number(axis) other_axes = [ax for ax in range(self._AXIS_LEN) if ax != axis] if self._is_label_reference(key, axis=axis): self._check_label_or_level_ambiguity(key, axis=axis) values = self.xs(key, axis=other_axes[0])._values elif self._is_level_reference(key, axis=axis): values = self.axes[axis].get_level_values(key)._values else: raise KeyError(key) # Check for duplicates if values.ndim > 1: if other_axes and isinstance(self._get_axis(other_axes[0]), MultiIndex): multi_message = ( "\n" "For a multi-index, the label must be a " "tuple with elements corresponding to each level." ) else: multi_message = "" label_axis_name = "column" if axis == 0 else "index" raise ValueError( ( f"The {label_axis_name} label '{key}' " f"is not unique.{multi_message}" ) ) return values def _drop_labels_or_levels(self, keys, axis: int = 0): """ Drop labels and/or levels for the given `axis`. For each key in `keys`: - (axis=0): If key matches a column label then drop the column. Otherwise if key matches an index level then drop the level. - (axis=1): If key matches an index label then drop the row. Otherwise if key matches a column level then drop the level. Parameters ---------- keys: str or list of str labels or levels to drop axis: int, default 0 Axis that levels are associated with (0 for index, 1 for columns) Returns ------- dropped: DataFrame Raises ------ ValueError if any `keys` match neither a label nor a level """ axis = self._get_axis_number(axis) # Validate keys keys = com.maybe_make_list(keys) invalid_keys = [ k for k in keys if not self._is_label_or_level_reference(k, axis=axis) ] if invalid_keys: raise ValueError( ( "The following keys are not valid labels or " f"levels for axis {axis}: {invalid_keys}" ) ) # Compute levels and labels to drop levels_to_drop = [k for k in keys if self._is_level_reference(k, axis=axis)] labels_to_drop = [k for k in keys if not self._is_level_reference(k, axis=axis)] # Perform copy upfront and then use inplace operations below. # This ensures that we always perform exactly one copy. # ``copy`` and/or ``inplace`` options could be added in the future. dropped = self.copy() if axis == 0: # Handle dropping index levels if levels_to_drop: dropped.reset_index(levels_to_drop, drop=True, inplace=True) # Handle dropping columns labels if labels_to_drop: dropped.drop(labels_to_drop, axis=1, inplace=True) else: # Handle dropping column levels if levels_to_drop: if isinstance(dropped.columns, MultiIndex): # Drop the specified levels from the MultiIndex dropped.columns = dropped.columns.droplevel(levels_to_drop) else: # Drop the last level of Index by replacing with # a RangeIndex dropped.columns = RangeIndex(dropped.columns.size) # Handle dropping index labels if labels_to_drop: dropped.drop(labels_to_drop, axis=0, inplace=True) return dropped # ---------------------------------------------------------------------- # Iteration def __hash__(self): raise TypeError( f"{repr(type(self).__name__)} objects are mutable, " f"thus they cannot be hashed" ) def __iter__(self): """ Iterate over info axis. Returns ------- iterator Info axis as iterator. """ return iter(self._info_axis) # can we get a better explanation of this? def keys(self): """ Get the 'info axis' (see Indexing for more). This is index for Series, columns for DataFrame. Returns ------- Index Info axis. """ return self._info_axis def items(self): """ Iterate over (label, values) on info axis This is index for Series and columns for DataFrame. Returns ------- Generator """ for h in self._info_axis: yield h, self[h] @Appender(items.__doc__) def iteritems(self): return self.items() def __len__(self) -> int: """Returns length of info axis""" return len(self._info_axis) def __contains__(self, key) -> bool_t: """True if the key is in the info axis""" return key in self._info_axis @property def empty(self) -> bool_t: """ Indicator whether DataFrame is empty. True if DataFrame is entirely empty (no items), meaning any of the axes are of length 0. Returns ------- bool If DataFrame is empty, return True, if not return False. See Also -------- Series.dropna DataFrame.dropna Notes ----- If DataFrame contains only NaNs, it is still not considered empty. See the example below. Examples -------- An example of an actual empty DataFrame. Notice the index is empty: >>> df_empty = pd.DataFrame({'A' : []}) >>> df_empty Empty DataFrame Columns: [A] Index: [] >>> df_empty.empty True If we only have NaNs in our DataFrame, it is not considered empty! We will need to drop the NaNs to make the DataFrame empty: >>> df = pd.DataFrame({'A' : [np.nan]}) >>> df A 0 NaN >>> df.empty False >>> df.dropna().empty True """ return any(len(self._get_axis(a)) == 0 for a in self._AXIS_ORDERS) # ---------------------------------------------------------------------- # Array Interface # This is also set in IndexOpsMixin # GH#23114 Ensure ndarray.__op__(DataFrame) returns NotImplemented __array_priority__ = 1000 def __array__(self, dtype=None) -> np.ndarray: return com.values_from_object(self) def __array_wrap__(self, result, context=None): result = lib.item_from_zerodim(result) if is_scalar(result): # e.g. we get here with np.ptp(series) # ptp also requires the item_from_zerodim return result d = self._construct_axes_dict(self._AXIS_ORDERS, copy=False) return self._constructor(result, **d).__finalize__(self) # ideally we would define this to avoid the getattr checks, but # is slower # @property # def __array_interface__(self): # """ provide numpy array interface method """ # values = self.values # return dict(typestr=values.dtype.str,shape=values.shape,data=values) # ---------------------------------------------------------------------- # Picklability def __getstate__(self) -> Dict[str, Any]: meta = {k: getattr(self, k, None) for k in self._metadata} return dict( _data=self._data, _typ=self._typ, _metadata=self._metadata, attrs=self.attrs, **meta, ) def __setstate__(self, state): if isinstance(state, BlockManager): self._data = state elif isinstance(state, dict): typ = state.get("_typ") if typ is not None: attrs = state.get("_attrs", {}) object.__setattr__(self, "_attrs", attrs) # set in the order of internal names # to avoid definitional recursion # e.g. say fill_value needing _data to be # defined meta = set(self._internal_names + self._metadata) for k in list(meta): if k in state: v = state[k] object.__setattr__(self, k, v) for k, v in state.items(): if k not in meta: object.__setattr__(self, k, v) else: raise NotImplementedError("Pre-0.12 pickles are no longer supported") elif len(state) == 2: raise NotImplementedError("Pre-0.12 pickles are no longer supported") self._item_cache = {} # ---------------------------------------------------------------------- # Rendering Methods def __repr__(self) -> str: # string representation based upon iterating over self # (since, by definition, `PandasContainers` are iterable) prepr = f"[{','.join(map(pprint_thing, self))}]" return f"{type(self).__name__}({prepr})" def _repr_latex_(self): """ Returns a LaTeX representation for a particular object. Mainly for use with nbconvert (jupyter notebook conversion to pdf). """ if config.get_option("display.latex.repr"): return self.to_latex() else: return None def _repr_data_resource_(self): """ Not a real Jupyter special repr method, but we use the same naming convention. """ if config.get_option("display.html.table_schema"): data = self.head(config.get_option("display.max_rows")) payload = json.loads( data.to_json(orient="table"), object_pairs_hook=collections.OrderedDict ) return payload # ---------------------------------------------------------------------- # I/O Methods _shared_docs[ "to_markdown" ] = """ Print %(klass)s in Markdown-friendly format. .. versionadded:: 1.0.0 Parameters ---------- buf : str, Path or StringIO-like, optional, default None Buffer to write to. If None, the output is returned as a string. mode : str, optional Mode in which file is opened. **kwargs These parameters will be passed to `tabulate`. Returns ------- str %(klass)s in Markdown-friendly format. """ _shared_docs[ "to_excel" ] = """ Write %(klass)s to an Excel sheet. To write a single %(klass)s to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an `ExcelWriter` object with a target file name, and specify a sheet in the file to write to. Multiple sheets may be written to by specifying unique `sheet_name`. With all data written to the file it is necessary to save the changes. Note that creating an `ExcelWriter` object with a file name that already exists will result in the contents of the existing file being erased. Parameters ---------- excel_writer : str or ExcelWriter object File path or existing ExcelWriter. sheet_name : str, default 'Sheet1' Name of sheet which will contain DataFrame. na_rep : str, default '' Missing data representation. float_format : str, optional Format string for floating point numbers. For example ``float_format="%%.2f"`` will format 0.1234 to 0.12. columns : sequence or list of str, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of string is given it is assumed to be aliases for the column names. index : bool, default True Write row names (index). index_label : str or sequence, optional Column label for index column(s) if desired. If not specified, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : int, default 0 Upper left cell row to dump data frame. startcol : int, default 0 Upper left cell column to dump data frame. engine : str, optional Write engine to use, 'openpyxl' or 'xlsxwriter'. You can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. merge_cells : bool, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding : str, optional Encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : str, default 'inf' Representation for infinity (there is no native representation for infinity in Excel). verbose : bool, default True Display more information in the error logs. freeze_panes : tuple of int (length 2), optional Specifies the one-based bottommost row and rightmost column that is to be frozen. See Also -------- to_csv : Write DataFrame to a comma-separated values (csv) file. ExcelWriter : Class for writing DataFrame objects into excel sheets. read_excel : Read an Excel file into a pandas DataFrame. read_csv : Read a comma-separated values (csv) file into DataFrame. Notes ----- For compatibility with :meth:`~DataFrame.to_csv`, to_excel serializes lists and dicts to strings before writing. Once a workbook has been saved it is not possible write further data without rewriting the whole workbook. Examples -------- Create, write to and save a workbook: >>> df1 = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df1.to_excel("output.xlsx") # doctest: +SKIP To specify the sheet name: >>> df1.to_excel("output.xlsx", ... sheet_name='Sheet_name_1') # doctest: +SKIP If you wish to write to more than one sheet in the workbook, it is necessary to specify an ExcelWriter object: >>> df2 = df1.copy() >>> with pd.ExcelWriter('output.xlsx') as writer: # doctest: +SKIP ... df1.to_excel(writer, sheet_name='Sheet_name_1') ... df2.to_excel(writer, sheet_name='Sheet_name_2') ExcelWriter can also be used to append to an existing Excel file: >>> with pd.ExcelWriter('output.xlsx', ... mode='a') as writer: # doctest: +SKIP ... df.to_excel(writer, sheet_name='Sheet_name_3') To set the library that is used to write the Excel file, you can pass the `engine` keyword (the default engine is automatically chosen depending on the file extension): >>> df1.to_excel('output1.xlsx', engine='xlsxwriter') # doctest: +SKIP """ @Appender(_shared_docs["to_excel"] % dict(klass="object")) def to_excel( self, excel_writer, sheet_name="Sheet1", na_rep="", float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep="inf", verbose=True, freeze_panes=None, ) -> None: df = self if isinstance(self, ABCDataFrame) else self.to_frame() from pandas.io.formats.excel import ExcelFormatter formatter = ExcelFormatter( df, na_rep=na_rep, cols=columns, header=header, float_format=float_format, index=index, index_label=index_label, merge_cells=merge_cells, inf_rep=inf_rep, ) formatter.write( excel_writer, sheet_name=sheet_name, startrow=startrow, startcol=startcol, freeze_panes=freeze_panes, engine=engine, ) def to_json( self, path_or_buf: Optional[FilePathOrBuffer] = None, orient: Optional[str] = None, date_format: Optional[str] = None, double_precision: int = 10, force_ascii: bool_t = True, date_unit: str = "ms", default_handler: Optional[Callable[[Any], JSONSerializable]] = None, lines: bool_t = False, compression: Optional[str] = "infer", index: bool_t = True, indent: Optional[int] = None, ) -> Optional[str]: """ Convert the object to a JSON string. Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps. Parameters ---------- path_or_buf : str or file handle, optional File path or object. If not specified, the result is returned as a string. orient : str Indication of expected JSON string format. * Series: - default is 'index' - allowed values are: {'split','records','index','table'}. * DataFrame: - default is 'columns' - allowed values are: {'split', 'records', 'index', 'columns', 'values', 'table'}. * The format of the JSON string: - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} - 'columns' : dict like {column -> {index -> value}} - 'values' : just the values array - 'table' : dict like {'schema': {schema}, 'data': {data}} Describing the data, where data component is like ``orient='records'``. .. versionchanged:: 0.20.0 date_format : {None, 'epoch', 'iso'} Type of date conversion. 'epoch' = epoch milliseconds, 'iso' = ISO8601. The default depends on the `orient`. For ``orient='table'``, the default is 'iso'. For all other orients, the default is 'epoch'. double_precision : int, default 10 The number of decimal places to use when encoding floating point values. force_ascii : bool, default True Force encoded string to be ASCII. date_unit : str, default 'ms' (milliseconds) The time unit to encode to, governs timestamp and ISO8601 precision. One of 's', 'ms', 'us', 'ns' for second, millisecond, microsecond, and nanosecond respectively. default_handler : callable, default None Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serialisable object. lines : bool, default False If 'orient' is 'records' write out line delimited json format. Will throw ValueError if incorrect 'orient' since others are not list like. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename. .. versionadded:: 0.21.0 .. versionchanged:: 0.24.0 'infer' option added and set to default index : bool, default True Whether to include the index values in the JSON string. Not including the index (``index=False``) is only supported when orient is 'split' or 'table'. .. versionadded:: 0.23.0 indent : int, optional Length of whitespace used to indent each record. .. versionadded:: 1.0.0 Returns ------- None or str If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None. See Also -------- read_json Notes ----- The behavior of ``indent=0`` varies from the stdlib, which does not indent the output but does insert newlines. Currently, ``indent=0`` and the default ``indent=None`` are equivalent in pandas, though this may change in a future release. Examples -------- >>> df = pd.DataFrame([['a', 'b'], ['c', 'd']], ... index=['row 1', 'row 2'], ... columns=['col 1', 'col 2']) >>> df.to_json(orient='split') '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' Encoding/decoding a Dataframe using ``'records'`` formatted JSON. Note that index labels are not preserved with this encoding. >>> df.to_json(orient='records') '[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' Encoding/decoding a Dataframe using ``'index'`` formatted JSON: >>> df.to_json(orient='index') '{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' Encoding/decoding a Dataframe using ``'columns'`` formatted JSON: >>> df.to_json(orient='columns') '{"col 1":{"row 1":"a","row 2":"c"},"col 2":{"row 1":"b","row 2":"d"}}' Encoding/decoding a Dataframe using ``'values'`` formatted JSON: >>> df.to_json(orient='values') '[["a","b"],["c","d"]]' Encoding with Table Schema >>> df.to_json(orient='table') '{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}' """ from pandas.io import json if date_format is None and orient == "table": date_format = "iso" elif date_format is None: date_format = "epoch" config.is_nonnegative_int(indent) indent = indent or 0 return json.to_json( path_or_buf=path_or_buf, obj=self, orient=orient, date_format=date_format, double_precision=double_precision, force_ascii=force_ascii, date_unit=date_unit, default_handler=default_handler, lines=lines, compression=compression, index=index, indent=indent, ) def to_hdf( self, path_or_buf, key: str, mode: str = "a", complevel: Optional[int] = None, complib: Optional[str] = None, append: bool_t = False, format: Optional[str] = None, index: bool_t = True, min_itemsize: Optional[Union[int, Dict[str, int]]] = None, nan_rep=None, dropna: Optional[bool_t] = None, data_columns: Optional[List[str]] = None, errors: str = "strict", encoding: str = "UTF-8", ) -> None: """ Write the contained data to an HDF5 file using HDFStore. Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects. In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key. For more information see the :ref:`user guide <io.hdf5>`. Parameters ---------- path_or_buf : str or pandas.HDFStore File path or HDFStore object. key : str Identifier for the group in the store. mode : {'a', 'w', 'r+'}, default 'a' Mode to open file: - 'w': write, a new file is created (an existing file with the same name would be deleted). - 'a': append, an existing file is opened for reading and writing, and if the file does not exist it is created. - 'r+': similar to 'a', but the file must already exist. complevel : {0-9}, optional Specifies a compression level for data. A value of 0 disables compression. complib : {'zlib', 'lzo', 'bzip2', 'blosc'}, default 'zlib' Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: 'blosc:blosclz'): {'blosc:blosclz', 'blosc:lz4', 'blosc:lz4hc', 'blosc:snappy', 'blosc:zlib', 'blosc:zstd'}. Specifying a compression library which is not available issues a ValueError. append : bool, default False For Table formats, append the input data to the existing. format : {'fixed', 'table', None}, default 'fixed' Possible values: - 'fixed': Fixed format. Fast writing/reading. Not-appendable, nor searchable. - 'table': Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data. - If None, pd.get_option('io.hdf.default_format') is checked, followed by fallback to "fixed" errors : str, default 'strict' Specifies how encoding and decoding errors are to be handled. See the errors argument for :func:`open` for a full list of options. encoding : str, default "UTF-8" min_itemsize : dict or int, optional Map column names to minimum string sizes for columns. nan_rep : Any, optional How to represent null values as str. Not allowed with append=True. data_columns : list of columns or True, optional List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See :ref:`io.hdf5-query-data-columns`. Applicable only to format='table'. See Also -------- DataFrame.read_hdf : Read from HDF file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. DataFrame.to_sql : Write to a sql table. DataFrame.to_feather : Write out feather-format for DataFrames. DataFrame.to_csv : Write out to a csv file. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, ... index=['a', 'b', 'c']) >>> df.to_hdf('data.h5', key='df', mode='w') We can add another object to the same file: >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_hdf('data.h5', key='s') Reading from HDF file: >>> pd.read_hdf('data.h5', 'df') A B a 1 4 b 2 5 c 3 6 >>> pd.read_hdf('data.h5', 's') 0 1 1 2 2 3 3 4 dtype: int64 Deleting file with data: >>> import os >>> os.remove('data.h5') """ from pandas.io import pytables pytables.to_hdf( path_or_buf, key, self, mode=mode, complevel=complevel, complib=complib, append=append, format=format, index=index, min_itemsize=min_itemsize, nan_rep=nan_rep, dropna=dropna, data_columns=data_columns, errors=errors, encoding=encoding, ) def to_sql( self, name: str, con, schema=None, if_exists: str = "fail", index: bool_t = True, index_label=None, chunksize=None, dtype=None, method=None, ) -> None: """ Write records stored in a DataFrame to a SQL database. Databases supported by SQLAlchemy [1]_ are supported. Tables can be newly created, appended to, or overwritten. Parameters ---------- name : str Name of SQL table. con : sqlalchemy.engine.Engine or sqlite3.Connection Using SQLAlchemy makes it possible to use any DB supported by that library. Legacy support is provided for sqlite3.Connection objects. The user is responsible for engine disposal and connection closure for the SQLAlchemy connectable See `here \ <https://docs.sqlalchemy.org/en/13/core/connections.html>`_. schema : str, optional Specify the schema (if database flavor supports this). If None, use default schema. if_exists : {'fail', 'replace', 'append'}, default 'fail' How to behave if the table already exists. * fail: Raise a ValueError. * replace: Drop the table before inserting new values. * append: Insert new values to the existing table. index : bool, default True Write DataFrame index as a column. Uses `index_label` as the column name in the table. index_label : str or sequence, default None Column label for index column(s). If None is given (default) and `index` is True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. chunksize : int, optional Specify the number of rows in each batch to be written at a time. By default, all rows will be written at once. dtype : dict or scalar, optional Specifying the datatype for columns. If a dictionary is used, the keys should be the column names and the values should be the SQLAlchemy types or strings for the sqlite3 legacy mode. If a scalar is provided, it will be applied to all columns. method : {None, 'multi', callable}, optional Controls the SQL insertion clause used: * None : Uses standard SQL ``INSERT`` clause (one per row). * 'multi': Pass multiple values in a single ``INSERT`` clause. * callable with signature ``(pd_table, conn, keys, data_iter)``. Details and a sample callable implementation can be found in the section :ref:`insert method <io.sql.method>`. .. versionadded:: 0.24.0 Raises ------ ValueError When the table already exists and `if_exists` is 'fail' (the default). See Also -------- read_sql : Read a DataFrame from a table. Notes ----- Timezone aware datetime columns will be written as ``Timestamp with timezone`` type with SQLAlchemy if supported by the database. Otherwise, the datetimes will be stored as timezone unaware timestamps local to the original timezone. .. versionadded:: 0.24.0 References ---------- .. [1] https://docs.sqlalchemy.org .. [2] https://www.python.org/dev/peps/pep-0249/ Examples -------- Create an in-memory SQLite database. >>> from sqlalchemy import create_engine >>> engine = create_engine('sqlite://', echo=False) Create a table from scratch with 3 rows. >>> df = pd.DataFrame({'name' : ['User 1', 'User 2', 'User 3']}) >>> df name 0 User 1 1 User 2 2 User 3 >>> df.to_sql('users', con=engine) >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3')] >>> df1 = pd.DataFrame({'name' : ['User 4', 'User 5']}) >>> df1.to_sql('users', con=engine, if_exists='append') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 1'), (1, 'User 2'), (2, 'User 3'), (0, 'User 4'), (1, 'User 5')] Overwrite the table with just ``df1``. >>> df1.to_sql('users', con=engine, if_exists='replace', ... index_label='id') >>> engine.execute("SELECT * FROM users").fetchall() [(0, 'User 4'), (1, 'User 5')] Specify the dtype (especially useful for integers with missing values). Notice that while pandas is forced to store the data as floating point, the database supports nullable integers. When fetching the data with Python, we get back integer scalars. >>> df = pd.DataFrame({"A": [1, None, 2]}) >>> df A 0 1.0 1 NaN 2 2.0 >>> from sqlalchemy.types import Integer >>> df.to_sql('integers', con=engine, index=False, ... dtype={"A": Integer()}) >>> engine.execute("SELECT * FROM integers").fetchall() [(1,), (None,), (2,)] """ from pandas.io import sql sql.to_sql( self, name, con, schema=schema, if_exists=if_exists, index=index, index_label=index_label, chunksize=chunksize, dtype=dtype, method=method, ) def to_pickle( self, path, compression: Optional[str] = "infer", protocol: int = pickle.HIGHEST_PROTOCOL, ) -> None: """ Pickle (serialize) object to file. Parameters ---------- path : str File path where the pickled object will be stored. compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None}, \ default 'infer' A string representing the compression to use in the output file. By default, infers from the file extension in specified path. protocol : int Int which indicates which protocol should be used by the pickler, default HIGHEST_PROTOCOL (see [1]_ paragraph 12.1.2). The possible values are 0, 1, 2, 3, 4. A negative value for the protocol parameter is equivalent to setting its value to HIGHEST_PROTOCOL. .. [1] https://docs.python.org/3/library/pickle.html. .. versionadded:: 0.21.0. See Also -------- read_pickle : Load pickled pandas object (or any object) from file. DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_sql : Write DataFrame to a SQL database. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Examples -------- >>> original_df = pd.DataFrame({"foo": range(5), "bar": range(5, 10)}) >>> original_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> original_df.to_pickle("./dummy.pkl") >>> unpickled_df = pd.read_pickle("./dummy.pkl") >>> unpickled_df foo bar 0 0 5 1 1 6 2 2 7 3 3 8 4 4 9 >>> import os >>> os.remove("./dummy.pkl") """ from pandas.io.pickle import to_pickle to_pickle(self, path, compression=compression, protocol=protocol) def to_clipboard( self, excel: bool_t = True, sep: Optional[str] = None, **kwargs ) -> None: r""" Copy object to the system clipboard. Write a text representation of object to the system clipboard. This can be pasted into Excel, for example. Parameters ---------- excel : bool, default True Produce output in a csv format for easy pasting into excel. - True, use the provided separator for csv pasting. - False, write a string representation of the object to the clipboard. sep : str, default ``'\t'`` Field delimiter. **kwargs These parameters will be passed to DataFrame.to_csv. See Also -------- DataFrame.to_csv : Write a DataFrame to a comma-separated values (csv) file. read_clipboard : Read text from clipboard and pass to read_table. Notes ----- Requirements for your platform. - Linux : `xclip`, or `xsel` (with `PyQt4` modules) - Windows : none - OS X : none Examples -------- Copy the contents of a DataFrame to the clipboard. >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C']) >>> df.to_clipboard(sep=',') ... # Wrote the following to the system clipboard: ... # ,A,B,C ... # 0,1,2,3 ... # 1,4,5,6 We can omit the index by passing the keyword `index` and setting it to false. >>> df.to_clipboard(sep=',', index=False) ... # Wrote the following to the system clipboard: ... # A,B,C ... # 1,2,3 ... # 4,5,6 """ from pandas.io import clipboards clipboards.to_clipboard(self, excel=excel, sep=sep, **kwargs) def to_xarray(self): """ Return an xarray object from the pandas object. Returns ------- xarray.DataArray or xarray.Dataset Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series. See Also -------- DataFrame.to_hdf : Write DataFrame to an HDF5 file. DataFrame.to_parquet : Write a DataFrame to the binary parquet format. Notes ----- See the `xarray docs <https://xarray.pydata.org/en/stable/>`__ Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0, 2), ... ('parrot', 'bird', 24.0, 2), ... ('lion', 'mammal', 80.5, 4), ... ('monkey', 'mammal', np.nan, 4)], ... columns=['name', 'class', 'max_speed', ... 'num_legs']) >>> df name class max_speed num_legs 0 falcon bird 389.0 2 1 parrot bird 24.0 2 2 lion mammal 80.5 4 3 monkey mammal NaN 4 >>> df.to_xarray() <xarray.Dataset> Dimensions: (index: 4) Coordinates: * index (index) int64 0 1 2 3 Data variables: name (index) object 'falcon' 'parrot' 'lion' 'monkey' class (index) object 'bird' 'bird' 'mammal' 'mammal' max_speed (index) float64 389.0 24.0 80.5 nan num_legs (index) int64 2 2 4 4 >>> df['max_speed'].to_xarray() <xarray.DataArray 'max_speed' (index: 4)> array([389. , 24. , 80.5, nan]) Coordinates: * index (index) int64 0 1 2 3 >>> dates = pd.to_datetime(['2018-01-01', '2018-01-01', ... '2018-01-02', '2018-01-02']) >>> df_multiindex = pd.DataFrame({'date': dates, ... 'animal': ['falcon', 'parrot', ... 'falcon', 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df_multiindex = df_multiindex.set_index(['date', 'animal']) >>> df_multiindex speed date animal 2018-01-01 falcon 350 parrot 18 2018-01-02 falcon 361 parrot 15 >>> df_multiindex.to_xarray() <xarray.Dataset> Dimensions: (animal: 2, date: 2) Coordinates: * date (date) datetime64[ns] 2018-01-01 2018-01-02 * animal (animal) object 'falcon' 'parrot' Data variables: speed (date, animal) int64 350 18 361 15 """ xarray = import_optional_dependency("xarray") if self.ndim == 1: return xarray.DataArray.from_series(self) else: return xarray.Dataset.from_dataframe(self) @Substitution(returns=fmt.return_docstring) def to_latex( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=False, column_format=None, longtable=None, escape=None, encoding=None, decimal=".", multicolumn=None, multicolumn_format=None, multirow=None, caption=None, label=None, ): r""" Render object to a LaTeX tabular, longtable, or nested table/tabular. Requires ``\usepackage{booktabs}``. The output can be copy/pasted into a main LaTeX document or read from an external file with ``\input{table.tex}``. .. versionchanged:: 0.20.2 Added to Series. .. versionchanged:: 1.0.0 Added caption and label arguments. Parameters ---------- buf : str, Path or StringIO-like, optional, default None Buffer to write to. If None, the output is returned as a string. columns : list of label, optional The subset of columns to write. Writes all columns by default. col_space : int, optional The minimum width of each column. header : bool or list of str, default True Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names. index : bool, default True Write row names (index). na_rep : str, default 'NaN' Missing data representation. formatters : list of functions or dict of {str: function}, optional Formatter functions to apply to columns' elements by position or name. The result of each function must be a unicode string. List must be of length equal to the number of columns. float_format : one-parameter function or str, optional, default None Formatter for floating point numbers. For example ``float_format="%%.2f"`` and ``float_format="{:0.2f}".format`` will both result in 0.1234 being formatted as 0.12. sparsify : bool, optional Set to False for a DataFrame with a hierarchical index to print every multiindex key at each row. By default, the value will be read from the config module. index_names : bool, default True Prints the names of the indexes. bold_rows : bool, default False Make the row labels bold in the output. column_format : str, optional The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g. 'rcl' for 3 columns. By default, 'l' will be used for all columns except columns of numbers, which default to 'r'. longtable : bool, optional By default, the value will be read from the pandas config module. Use a longtable environment instead of tabular. Requires adding a \usepackage{longtable} to your LaTeX preamble. escape : bool, optional By default, the value will be read from the pandas config module. When set to False prevents from escaping latex special characters in column names. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'utf-8'. decimal : str, default '.' Character recognized as decimal separator, e.g. ',' in Europe. multicolumn : bool, default True Use \multicolumn to enhance MultiIndex columns. The default will be read from the config module. multicolumn_format : str, default 'l' The alignment for multicolumns, similar to `column_format` The default will be read from the config module. multirow : bool, default False Use \multirow to enhance MultiIndex rows. Requires adding a \usepackage{multirow} to your LaTeX preamble. Will print centered labels (instead of top-aligned) across the contained rows, separating groups via clines. The default will be read from the pandas config module. caption : str, optional The LaTeX caption to be placed inside ``\caption{}`` in the output. .. versionadded:: 1.0.0 label : str, optional The LaTeX label to be placed inside ``\label{}`` in the output. This is used with ``\ref{}`` in the main ``.tex`` file. .. versionadded:: 1.0.0 %(returns)s See Also -------- DataFrame.to_string : Render a DataFrame to a console-friendly tabular output. DataFrame.to_html : Render a DataFrame as an HTML table. Examples -------- >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> print(df.to_latex(index=False)) # doctest: +NORMALIZE_WHITESPACE \begin{tabular}{lll} \toprule name & mask & weapon \\ \midrule Raphael & red & sai \\ Donatello & purple & bo staff \\ \bottomrule \end{tabular} """ # Get defaults from the pandas config if self.ndim == 1: self = self.to_frame() if longtable is None: longtable = config.get_option("display.latex.longtable") if escape is None: escape = config.get_option("display.latex.escape") if multicolumn is None: multicolumn = config.get_option("display.latex.multicolumn") if multicolumn_format is None: multicolumn_format = config.get_option("display.latex.multicolumn_format") if multirow is None: multirow = config.get_option("display.latex.multirow") formatter = DataFrameFormatter( self, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, index_names=index_names, escape=escape, decimal=decimal, ) return formatter.to_latex( buf=buf, column_format=column_format, longtable=longtable, encoding=encoding, multicolumn=multicolumn, multicolumn_format=multicolumn_format, multirow=multirow, caption=caption, label=label, ) def to_csv( self, path_or_buf: Optional[FilePathOrBuffer] = None, sep: str = ",", na_rep: str = "", float_format: Optional[str] = None, columns: Optional[Sequence[Label]] = None, header: Union[bool_t, List[str]] = True, index: bool_t = True, index_label: Optional[Union[bool_t, str, Sequence[Label]]] = None, mode: str = "w", encoding: Optional[str] = None, compression: Optional[Union[str, Mapping[str, str]]] = "infer", quoting: Optional[int] = None, quotechar: str = '"', line_terminator: Optional[str] = None, chunksize: Optional[int] = None, date_format: Optional[str] = None, doublequote: bool_t = True, escapechar: Optional[str] = None, decimal: Optional[str] = ".", ) -> Optional[str]: r""" Write object to a comma-separated values (csv) file. .. versionchanged:: 0.24.0 The order of arguments for Series was changed. Parameters ---------- path_or_buf : str or file handle, default None File path or object, if None is provided the result is returned as a string. If a file object is passed it should be opened with `newline=''`, disabling universal newlines. .. versionchanged:: 0.24.0 Was previously named "path" for Series. sep : str, default ',' String of length 1. Field delimiter for the output file. na_rep : str, default '' Missing data representation. float_format : str, default None Format string for floating point numbers. columns : sequence, optional Columns to write. header : bool or list of str, default True Write out the column names. If a list of strings is given it is assumed to be aliases for the column names. .. versionchanged:: 0.24.0 Previously defaulted to False for Series. index : bool, default True Write row names (index). index_label : str or sequence, or False, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the object uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R. mode : str Python write mode, default 'w'. encoding : str, optional A string representing the encoding to use in the output file, defaults to 'utf-8'. compression : str or dict, default 'infer' If str, represents compression mode. If dict, value at 'method' is the compression mode. Compression mode may be any of the following possible values: {'infer', 'gzip', 'bz2', 'zip', 'xz', None}. If compression mode is 'infer' and `path_or_buf` is path-like, then detect compression mode from the following extensions: '.gz', '.bz2', '.zip' or '.xz'. (otherwise no compression). If dict given and mode is 'zip' or inferred as 'zip', other entries passed as additional compression options. .. versionchanged:: 1.0.0 May now be a dict with key 'method' as compression mode and other entries as additional compression options if compression mode is 'zip'. quoting : optional constant from csv module Defaults to csv.QUOTE_MINIMAL. If you have set a `float_format` then floats are converted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric. quotechar : str, default '\"' String of length 1. Character used to quote fields. line_terminator : str, optional The newline character or character sequence to use in the output file. Defaults to `os.linesep`, which depends on the OS in which this method is called ('\n' for linux, '\r\n' for Windows, i.e.). .. versionchanged:: 0.24.0 chunksize : int or None Rows to write at a time. date_format : str, default None Format string for datetime objects. doublequote : bool, default True Control quoting of `quotechar` inside a field. escapechar : str, default None String of length 1. Character used to escape `sep` and `quotechar` when appropriate. decimal : str, default '.' Character recognized as decimal separator. E.g. use ',' for European data. Returns ------- None or str If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None. See Also -------- read_csv : Load a CSV file into a DataFrame. to_excel : Write DataFrame to an Excel file. Examples -------- >>> df = pd.DataFrame({'name': ['Raphael', 'Donatello'], ... 'mask': ['red', 'purple'], ... 'weapon': ['sai', 'bo staff']}) >>> df.to_csv(index=False) 'name,mask,weapon\nRaphael,red,sai\nDonatello,purple,bo staff\n' Create 'out.zip' containing 'out.csv' >>> compression_opts = dict(method='zip', ... archive_name='out.csv') # doctest: +SKIP >>> df.to_csv('out.zip', index=False, ... compression=compression_opts) # doctest: +SKIP """ df = self if isinstance(self, ABCDataFrame) else self.to_frame() from pandas.io.formats.csvs import CSVFormatter formatter = CSVFormatter( df, path_or_buf, line_terminator=line_terminator, sep=sep, encoding=encoding, compression=compression, quoting=quoting, na_rep=na_rep, float_format=float_format, cols=columns, header=header, index=index, index_label=index_label, mode=mode, chunksize=chunksize, quotechar=quotechar, date_format=date_format, doublequote=doublequote, escapechar=escapechar, decimal=decimal, ) formatter.save() if path_or_buf is None: return formatter.path_or_buf.getvalue() return None # ---------------------------------------------------------------------- # Lookup Caching def _set_as_cached(self, item, cacher) -> None: """ Set the _cacher attribute on the calling object with a weakref to cacher. """ self._cacher = (item, weakref.ref(cacher)) def _reset_cacher(self) -> None: """ Reset the cacher. """ if hasattr(self, "_cacher"): del self._cacher def _maybe_cache_changed(self, item, value) -> None: """ The object has called back to us saying maybe it has changed. """ self._data.set(item, value) @property def _is_cached(self) -> bool_t: """Return boolean indicating if self is cached or not.""" return getattr(self, "_cacher", None) is not None def _get_cacher(self): """return my cacher or None""" cacher = getattr(self, "_cacher", None) if cacher is not None: cacher = cacher[1]() return cacher def _maybe_update_cacher( self, clear: bool_t = False, verify_is_copy: bool_t = True ) -> None: """ See if we need to update our parent cacher if clear, then clear our cache. Parameters ---------- clear : bool, default False Clear the item cache. verify_is_copy : bool, default True Provide is_copy checks. """ cacher = getattr(self, "_cacher", None) if cacher is not None: ref = cacher[1]() # we are trying to reference a dead referant, hence # a copy if ref is None: del self._cacher else: # Note: we need to call ref._maybe_cache_changed even in the # case where it will raise. (Uh, not clear why) try: ref._maybe_cache_changed(cacher[0], self) except AssertionError: # ref._data.setitem can raise # AssertionError because of shape mismatch pass if verify_is_copy: self._check_setitem_copy(stacklevel=5, t="referant") if clear: self._clear_item_cache() def _clear_item_cache(self) -> None: self._item_cache.clear() # ---------------------------------------------------------------------- # Indexing Methods def take( self: FrameOrSeries, indices, axis=0, is_copy: Optional[bool_t] = None, **kwargs ) -> FrameOrSeries: """ Return the elements in the given *positional* indices along an axis. This means that we are not indexing according to actual values in the index attribute of the object. We are indexing according to the actual position of the element in the object. Parameters ---------- indices : array-like An array of ints indicating which positions to take. axis : {0 or 'index', 1 or 'columns', None}, default 0 The axis on which to select elements. ``0`` means that we are selecting rows, ``1`` means that we are selecting columns. is_copy : bool Before pandas 1.0, ``is_copy=False`` can be specified to ensure that the return value is an actual copy. Starting with pandas 1.0, ``take`` always returns a copy, and the keyword is therefore deprecated. .. deprecated:: 1.0.0 **kwargs For compatibility with :meth:`numpy.take`. Has no effect on the output. Returns ------- taken : same type as caller An array-like containing the elements taken from the object. See Also -------- DataFrame.loc : Select a subset of a DataFrame by labels. DataFrame.iloc : Select a subset of a DataFrame by positions. numpy.take : Take elements from an array along an axis. Examples -------- >>> df = pd.DataFrame([('falcon', 'bird', 389.0), ... ('parrot', 'bird', 24.0), ... ('lion', 'mammal', 80.5), ... ('monkey', 'mammal', np.nan)], ... columns=['name', 'class', 'max_speed'], ... index=[0, 2, 3, 1]) >>> df name class max_speed 0 falcon bird 389.0 2 parrot bird 24.0 3 lion mammal 80.5 1 monkey mammal NaN Take elements at positions 0 and 3 along the axis 0 (default). Note how the actual indices selected (0 and 1) do not correspond to our selected indices 0 and 3. That's because we are selecting the 0th and 3rd rows, not rows whose indices equal 0 and 3. >>> df.take([0, 3]) name class max_speed 0 falcon bird 389.0 1 monkey mammal NaN Take elements at indices 1 and 2 along the axis 1 (column selection). >>> df.take([1, 2], axis=1) class max_speed 0 bird 389.0 2 bird 24.0 3 mammal 80.5 1 mammal NaN We may take elements using negative integers for positive indices, starting from the end of the object, just like with Python lists. >>> df.take([-1, -2]) name class max_speed 1 monkey mammal NaN 3 lion mammal 80.5 """ if is_copy is not None: warnings.warn( "is_copy is deprecated and will be removed in a future version. " "'take' always returns a copy, so there is no need to specify this.", FutureWarning, stacklevel=2, ) nv.validate_take(tuple(), kwargs) self._consolidate_inplace() new_data = self._data.take( indices, axis=self._get_block_manager_axis(axis), verify=True ) return self._constructor(new_data).__finalize__(self) def _take_with_is_copy( self: FrameOrSeries, indices, axis=0, **kwargs ) -> FrameOrSeries: """ Internal version of the `take` method that sets the `_is_copy` attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning). See the docstring of `take` for full explanation of the parameters. """ result = self.take(indices=indices, axis=axis, **kwargs) # Maybe set copy if we didn't actually change the index. if not result._get_axis(axis).equals(self._get_axis(axis)): result._set_is_copy(self) return result def xs(self, key, axis=0, level=None, drop_level: bool_t = True): """ Return cross-section from the Series/DataFrame. This method takes a `key` argument to select data at a particular level of a MultiIndex. Parameters ---------- key : label or tuple of label Label contained in the index, or partially in a MultiIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis to retrieve cross-section on. level : object, defaults to first n levels (n=1 or len(key)) In case of a key partially contained in a MultiIndex, indicate which levels are used. Levels can be referred by label or position. drop_level : bool, default True If False, returns object with same levels as self. Returns ------- Series or DataFrame Cross-section from the original Series or DataFrame corresponding to the selected index levels. See Also -------- DataFrame.loc : Access a group of rows and columns by label(s) or a boolean array. DataFrame.iloc : Purely integer-location based indexing for selection by position. Notes ----- `xs` can not be used to set values. MultiIndex Slicers is a generic way to get/set values on any level or levels. It is a superset of `xs` functionality, see :ref:`MultiIndex Slicers <advanced.mi_slicers>`. Examples -------- >>> d = {'num_legs': [4, 4, 2, 2], ... 'num_wings': [0, 0, 2, 2], ... 'class': ['mammal', 'mammal', 'mammal', 'bird'], ... 'animal': ['cat', 'dog', 'bat', 'penguin'], ... 'locomotion': ['walks', 'walks', 'flies', 'walks']} >>> df = pd.DataFrame(data=d) >>> df = df.set_index(['class', 'animal', 'locomotion']) >>> df num_legs num_wings class animal locomotion mammal cat walks 4 0 dog walks 4 0 bat flies 2 2 bird penguin walks 2 2 Get values at specified index >>> df.xs('mammal') num_legs num_wings animal locomotion cat walks 4 0 dog walks 4 0 bat flies 2 2 Get values at several indexes >>> df.xs(('mammal', 'dog')) num_legs num_wings locomotion walks 4 0 Get values at specified index and level >>> df.xs('cat', level=1) num_legs num_wings class locomotion mammal walks 4 0 Get values at several indexes and levels >>> df.xs(('bird', 'walks'), ... level=[0, 'locomotion']) num_legs num_wings animal penguin 2 2 Get values at specified column and axis >>> df.xs('num_wings', axis=1) class animal locomotion mammal cat walks 0 dog walks 0 bat flies 2 bird penguin walks 2 Name: num_wings, dtype: int64 """ axis = self._get_axis_number(axis) labels = self._get_axis(axis) if level is not None: loc, new_ax = labels.get_loc_level(key, level=level, drop_level=drop_level) # create the tuple of the indexer _indexer = [slice(None)] * self.ndim _indexer[axis] = loc indexer = tuple(_indexer) result = self.iloc[indexer] setattr(result, result._get_axis_name(axis), new_ax) return result if axis == 1: return self[key] self._consolidate_inplace() index = self.index if isinstance(index, MultiIndex): loc, new_index = self.index.get_loc_level(key, drop_level=drop_level) else: loc = self.index.get_loc(key) if isinstance(loc, np.ndarray): if loc.dtype == np.bool_: (inds,) = loc.nonzero() return self._take_with_is_copy(inds, axis=axis) else: return self._take_with_is_copy(loc, axis=axis) if not is_scalar(loc): new_index = self.index[loc] if is_scalar(loc): # In this case loc should be an integer if self.ndim == 1: # if we encounter an array-like and we only have 1 dim # that means that their are list/ndarrays inside the Series! # so just return them (GH 6394) return self._values[loc] new_values = self._data.fast_xs(loc) result = self._constructor_sliced( new_values, index=self.columns, name=self.index[loc], dtype=new_values.dtype, ) else: result = self.iloc[loc] result.index = new_index # this could be a view # but only in a single-dtyped view sliceable case result._set_is_copy(self, copy=not result._is_view) return result _xs: Callable = xs def __getitem__(self, item): raise AbstractMethodError(self) def _get_item_cache(self, item): """Return the cached item, item represents a label indexer.""" cache = self._item_cache res = cache.get(item) if res is None: values = self._data.get(item) res = self._box_item_values(item, values) cache[item] = res res._set_as_cached(item, self) # for a chain res._is_copy = self._is_copy return res def _iget_item_cache(self, item: int): """Return the cached item, item represents a positional indexer.""" ax = self._info_axis if ax.is_unique: lower = self._get_item_cache(ax[item]) else: return self._ixs(item, axis=1) return lower def _box_item_values(self, key, values): raise AbstractMethodError(self) def _slice(self: FrameOrSeries, slobj: slice, axis=0) -> FrameOrSeries: """ Construct a slice of this container. Slicing with this method is *always* positional. """ assert isinstance(slobj, slice), type(slobj) axis = self._get_block_manager_axis(axis) result = self._constructor(self._data.get_slice(slobj, axis=axis)) result = result.__finalize__(self) # this could be a view # but only in a single-dtyped view sliceable case is_copy = axis != 0 or result._is_view result._set_is_copy(self, copy=is_copy) return result def _set_item(self, key, value) -> None: self._data.set(key, value) self._clear_item_cache() def _set_is_copy(self, ref, copy: bool_t = True) -> None: if not copy: self._is_copy = None else: assert ref is not None self._is_copy = weakref.ref(ref) def _check_is_chained_assignment_possible(self) -> bool_t: """ Check if we are a view, have a cacher, and are of mixed type. If so, then force a setitem_copy check. Should be called just near setting a value Will return a boolean if it we are a view and are cached, but a single-dtype meaning that the cacher should be updated following setting. """ if self._is_view and self._is_cached: ref = self._get_cacher() if ref is not None and ref._is_mixed_type: self._check_setitem_copy(stacklevel=4, t="referant", force=True) return True elif self._is_copy: self._check_setitem_copy(stacklevel=4, t="referant") return False def _check_setitem_copy(self, stacklevel=4, t="setting", force=False): """ Parameters ---------- stacklevel : int, default 4 the level to show of the stack when the error is output t : str, the type of setting error force : bool, default False If True, then force showing an error. validate if we are doing a setitem on a chained copy. If you call this function, be sure to set the stacklevel such that the user will see the error *at the level of setting* It is technically possible to figure out that we are setting on a copy even WITH a multi-dtyped pandas object. In other words, some blocks may be views while other are not. Currently _is_view will ALWAYS return False for multi-blocks to avoid having to handle this case. df = DataFrame(np.arange(0,9), columns=['count']) df['group'] = 'b' # This technically need not raise SettingWithCopy if both are view # (which is not # generally guaranteed but is usually True. However, # this is in general not a good practice and we recommend using .loc. df.iloc[0:5]['group'] = 'a' """ # return early if the check is not needed if not (force or self._is_copy): return value = config.get_option("mode.chained_assignment") if value is None: return # see if the copy is not actually referred; if so, then dissolve # the copy weakref if self._is_copy is not None and not isinstance(self._is_copy, str): r = self._is_copy() if not gc.get_referents(r) or r.shape == self.shape: self._is_copy = None return # a custom message if isinstance(self._is_copy, str): t = self._is_copy elif t == "referant": t = ( "\n" "A value is trying to be set on a copy of a slice from a " "DataFrame\n\n" "See the caveats in the documentation: " "https://pandas.pydata.org/pandas-docs/stable/user_guide/" "indexing.html#returning-a-view-versus-a-copy" ) else: t = ( "\n" "A value is trying to be set on a copy of a slice from a " "DataFrame.\n" "Try using .loc[row_indexer,col_indexer] = value " "instead\n\nSee the caveats in the documentation: " "https://pandas.pydata.org/pandas-docs/stable/user_guide/" "indexing.html#returning-a-view-versus-a-copy" ) if value == "raise": raise com.SettingWithCopyError(t) elif value == "warn": warnings.warn(t, com.SettingWithCopyWarning, stacklevel=stacklevel) def __delitem__(self, key) -> None: """ Delete item """ deleted = False maybe_shortcut = False if self.ndim == 2 and isinstance(self.columns, MultiIndex): try: maybe_shortcut = key not in self.columns._engine except TypeError: pass if maybe_shortcut: # Allow shorthand to delete all columns whose first len(key) # elements match key: if not isinstance(key, tuple): key = (key,) for col in self.columns: if isinstance(col, tuple) and col[: len(key)] == key: del self[col] deleted = True if not deleted: # If the above loop ran and didn't delete anything because # there was no match, this call should raise the appropriate # exception: self._data.delete(key) # delete from the caches try: del self._item_cache[key] except KeyError: pass # ---------------------------------------------------------------------- # Unsorted def get(self, key, default=None): """ Get item from object for given key (ex: DataFrame column). Returns default value if not found. Parameters ---------- key : object Returns ------- value : same type as items contained in object """ try: return self[key] except (KeyError, ValueError, IndexError): return default @property def _is_view(self): """Return boolean indicating if self is view of another array """ return self._data.is_view def reindex_like( self: FrameOrSeries, other, method: Optional[str] = None, copy: bool_t = True, limit=None, tolerance=None, ) -> FrameOrSeries: """ Return an object with matching indices as other object. Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters ---------- other : Object of the same data type Its row and column indices are used to define the new indices of this object. method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: propagate last valid observation forward to next valid * backfill / bfill: use next valid observation to fill gap * nearest: use nearest valid observations to fill gap. copy : bool, default True Return a new object, even if the passed indexes are the same. limit : int, default None Maximum number of consecutive labels to fill for inexact matches. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- Series or DataFrame Same type as caller, but with changed indices on each axis. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex : Change to new indices or expand indices. Notes ----- Same as calling ``.reindex(index=other.index, columns=other.columns,...)``. Examples -------- >>> df1 = pd.DataFrame([[24.3, 75.7, 'high'], ... [31, 87.8, 'high'], ... [22, 71.6, 'medium'], ... [35, 95, 'medium']], ... columns=['temp_celsius', 'temp_fahrenheit', ... 'windspeed'], ... index=pd.date_range(start='2014-02-12', ... end='2014-02-15', freq='D')) >>> df1 temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium >>> df2 = pd.DataFrame([[28, 'low'], ... [30, 'low'], ... [35.1, 'medium']], ... columns=['temp_celsius', 'windspeed'], ... index=pd.DatetimeIndex(['2014-02-12', '2014-02-13', ... '2014-02-15'])) >>> df2 temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium >>> df2.reindex_like(df1) temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium """ d = other._construct_axes_dict( axes=self._AXIS_ORDERS, method=method, copy=copy, limit=limit, tolerance=tolerance, ) return self.reindex(**d) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace: bool_t = False, errors: str = "raise", ): inplace = validate_bool_kwarg(inplace, "inplace") if labels is not None: if index is not None or columns is not None: raise ValueError("Cannot specify both 'labels' and 'index'/'columns'") axis_name = self._get_axis_name(axis) axes = {axis_name: labels} elif index is not None or columns is not None: axes, _ = self._construct_axes_from_arguments((index, columns), {}) else: raise ValueError( "Need to specify at least one of 'labels', 'index' or 'columns'" ) obj = self for axis, labels in axes.items(): if labels is not None: obj = obj._drop_axis(labels, axis, level=level, errors=errors) if inplace: self._update_inplace(obj) else: return obj def _drop_axis( self: FrameOrSeries, labels, axis, level=None, errors: str = "raise" ) -> FrameOrSeries: """ Drop labels from specified axis. Used in the ``drop`` method internally. Parameters ---------- labels : single label or list-like axis : int or axis name level : int or level name, default None For MultiIndex errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and existing labels are dropped. """ axis = self._get_axis_number(axis) axis_name = self._get_axis_name(axis) axis = self._get_axis(axis) if axis.is_unique: if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError("axis must be a MultiIndex") new_axis = axis.drop(labels, level=level, errors=errors) else: new_axis = axis.drop(labels, errors=errors) result = self.reindex(**{axis_name: new_axis}) # Case for non-unique axis else: labels = ensure_object(com.index_labels_to_array(labels)) if level is not None: if not isinstance(axis, MultiIndex): raise AssertionError("axis must be a MultiIndex") indexer = ~axis.get_level_values(level).isin(labels) # GH 18561 MultiIndex.drop should raise if label is absent if errors == "raise" and indexer.all(): raise KeyError(f"{labels} not found in axis") else: indexer = ~axis.isin(labels) # Check if label doesn't exist along axis labels_missing = (axis.get_indexer_for(labels) == -1).any() if errors == "raise" and labels_missing: raise KeyError(f"{labels} not found in axis") slicer = [slice(None)] * self.ndim slicer[self._get_axis_number(axis_name)] = indexer result = self.loc[tuple(slicer)] return result def _update_inplace(self, result, verify_is_copy: bool_t = True) -> None: """ Replace self internals with result. Parameters ---------- verify_is_copy : bool, default True Provide is_copy checks. """ # NOTE: This does *not* call __finalize__ and that's an explicit # decision that we may revisit in the future. self._reset_cache() self._clear_item_cache() self._data = getattr(result, "_data", result) self._maybe_update_cacher(verify_is_copy=verify_is_copy) def add_prefix(self: FrameOrSeries, prefix: str) -> FrameOrSeries: """ Prefix labels with string `prefix`. For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed. Parameters ---------- prefix : str The string to add before each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_suffix: Suffix row labels with string `suffix`. DataFrame.add_suffix: Suffix column labels with string `suffix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial("{prefix}{}".format, prefix=prefix) mapper = {self._info_axis_name: f} return self.rename(**mapper) # type: ignore def add_suffix(self: FrameOrSeries, suffix: str) -> FrameOrSeries: """ Suffix labels with string `suffix`. For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed. Parameters ---------- suffix : str The string to add after each label. Returns ------- Series or DataFrame New Series or DataFrame with updated labels. See Also -------- Series.add_prefix: Prefix row labels with string `prefix`. DataFrame.add_prefix: Prefix column labels with string `prefix`. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64 >>> df = pd.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6 """ f = functools.partial("{}{suffix}".format, suffix=suffix) mapper = {self._info_axis_name: f} return self.rename(**mapper) # type: ignore def sort_values( self, axis=0, ascending=True, inplace: bool_t = False, kind: str = "quicksort", na_position: str = "last", ignore_index: bool_t = False, ): """ Sort by the values along either axis. Parameters ----------%(optional_by)s axis : %(axes_single_arg)s, default 0 Axis to be sorted. ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also ndarray.np.sort for more information. `mergesort` is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' Puts NaNs at the beginning if `first`; `last` puts NaNs at the end. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- sorted_obj : DataFrame or None DataFrame with sorted values if inplace=False, None otherwise. Examples -------- >>> df = pd.DataFrame({ ... 'col1': ['A', 'A', 'B', np.nan, 'D', 'C'], ... 'col2': [2, 1, 9, 8, 7, 4], ... 'col3': [0, 1, 9, 4, 2, 3], ... }) >>> df col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 3 NaN 8 4 4 D 7 2 5 C 4 3 Sort by col1 >>> df.sort_values(by=['col1']) col1 col2 col3 0 A 2 0 1 A 1 1 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort by multiple columns >>> df.sort_values(by=['col1', 'col2']) col1 col2 col3 1 A 1 1 0 A 2 0 2 B 9 9 5 C 4 3 4 D 7 2 3 NaN 8 4 Sort Descending >>> df.sort_values(by='col1', ascending=False) col1 col2 col3 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 3 NaN 8 4 Putting NAs first >>> df.sort_values(by='col1', ascending=False, na_position='first') col1 col2 col3 3 NaN 8 4 4 D 7 2 5 C 4 3 2 B 9 9 0 A 2 0 1 A 1 1 """ raise AbstractMethodError(self) def reindex(self: FrameOrSeries, *args, **kwargs) -> FrameOrSeries: """ Conform %(klass)s to new index with optional filling logic. Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and ``copy=False``. Parameters ---------- %(optional_labels)s %(axes)s : array-like, optional New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data. %(optional_axis)s method : {None, 'backfill'/'bfill', 'pad'/'ffill', 'nearest'} Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index. * None (default): don't fill gaps * pad / ffill: Propagate last valid observation forward to next valid. * backfill / bfill: Use next valid observation to fill gap. * nearest: Use nearest valid observations to fill gap. copy : bool, default True Return a new object, even if the passed indexes are the same. level : int or name Broadcast across a level, matching Index values on the passed MultiIndex level. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value. limit : int, default None Maximum number of consecutive elements to forward or backward fill. tolerance : optional Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation ``abs(index[indexer] - target) <= tolerance``. Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index's type. .. versionadded:: 0.21.0 (list-like tolerance) Returns ------- %(klass)s with changed index. See Also -------- DataFrame.set_index : Set row labels. DataFrame.reset_index : Remove row labels or move them to new columns. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- ``DataFrame.reindex`` supports two calling conventions * ``(index=index_labels, columns=column_labels, ...)`` * ``(labels, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Create a dataframe with some fictional data. >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = pd.DataFrame({'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 Create a new index and reindex the dataframe. By default values in the new index that do not have corresponding records in the dataframe are assigned ``NaN``. >>> new_index = ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index) http_status response_time Safari 404.0 0.07 Iceweasel NaN NaN Comodo Dragon NaN NaN IE10 404.0 0.08 Chrome 200.0 0.02 We can fill in the missing values by passing a value to the keyword ``fill_value``. Because the index is not monotonically increasing or decreasing, we cannot use arguments to the keyword ``method`` to fill the ``NaN`` values. >>> df.reindex(new_index, fill_value=0) http_status response_time Safari 404 0.07 Iceweasel 0 0.00 Comodo Dragon 0 0.00 IE10 404 0.08 Chrome 200 0.02 >>> df.reindex(new_index, fill_value='missing') http_status response_time Safari 404 0.07 Iceweasel missing missing Comodo Dragon missing missing IE10 404 0.08 Chrome 200 0.02 We can also reindex the columns. >>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN Or we can use "axis-style" keyword arguments >>> df.reindex(['http_status', 'user_agent'], axis="columns") http_status user_agent Firefox 200 NaN Chrome 200 NaN Safari 404 NaN IE10 404 NaN Konqueror 301 NaN To further illustrate the filling functionality in ``reindex``, we will create a dataframe with a monotonically increasing index (for example, a sequence of dates). >>> date_index = pd.date_range('1/1/2010', periods=6, freq='D') >>> df2 = pd.DataFrame({"prices": [100, 101, np.nan, 100, 89, 88]}, ... index=date_index) >>> df2 prices 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 Suppose we decide to expand the dataframe to cover a wider date range. >>> date_index2 = pd.date_range('12/29/2009', periods=10, freq='D') >>> df2.reindex(date_index2) prices 2009-12-29 NaN 2009-12-30 NaN 2009-12-31 NaN 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN The index entries that did not have a value in the original data frame (for example, '2009-12-29') are by default filled with ``NaN``. If desired, we can fill in the missing values using one of several options. For example, to back-propagate the last valid value to fill the ``NaN`` values, pass ``bfill`` as an argument to the ``method`` keyword. >>> df2.reindex(date_index2, method='bfill') prices 2009-12-29 100.0 2009-12-30 100.0 2009-12-31 100.0 2010-01-01 100.0 2010-01-02 101.0 2010-01-03 NaN 2010-01-04 100.0 2010-01-05 89.0 2010-01-06 88.0 2010-01-07 NaN Please note that the ``NaN`` value present in the original dataframe (at index value 2010-01-03) will not be filled by any of the value propagation schemes. This is because filling while reindexing does not look at dataframe values, but only compares the original and desired indexes. If you do want to fill in the ``NaN`` values present in the original dataframe, use the ``fillna()`` method. See the :ref:`user guide <basics.reindexing>` for more. """ # TODO: Decide if we care about having different examples for different # kinds # construct the args axes, kwargs = self._construct_axes_from_arguments(args, kwargs) method = missing.clean_reindex_fill_method(kwargs.pop("method", None)) level = kwargs.pop("level", None) copy = kwargs.pop("copy", True) limit = kwargs.pop("limit", None) tolerance = kwargs.pop("tolerance", None) fill_value = kwargs.pop("fill_value", None) # Series.reindex doesn't use / need the axis kwarg # We pop and ignore it here, to make writing Series/Frame generic code # easier kwargs.pop("axis", None) if kwargs: raise TypeError( "reindex() got an unexpected keyword " f'argument "{list(kwargs.keys())[0]}"' ) self._consolidate_inplace() # if all axes that are requested to reindex are equal, then only copy # if indicated must have index names equal here as well as values if all( self._get_axis(axis).identical(ax) for axis, ax in axes.items() if ax is not None ): if copy: return self.copy() return self # check if we are a multi reindex if self._needs_reindex_multi(axes, method, level): return self._reindex_multi(axes, copy, fill_value) # perform the reindex on the axes return self._reindex_axes( axes, level, limit, tolerance, method, fill_value, copy ).__finalize__(self) def _reindex_axes( self: FrameOrSeries, axes, level, limit, tolerance, method, fill_value, copy ) -> FrameOrSeries: """Perform the reindex for all the axes.""" obj = self for a in self._AXIS_ORDERS: labels = axes[a] if labels is None: continue ax = self._get_axis(a) new_index, indexer = ax.reindex( labels, level=level, limit=limit, tolerance=tolerance, method=method ) axis = self._get_axis_number(a) obj = obj._reindex_with_indexers( {axis: [new_index, indexer]}, fill_value=fill_value, copy=copy, allow_dups=False, ) return obj def _needs_reindex_multi(self, axes, method, level) -> bool_t: """Check if we do need a multi reindex.""" return ( (com.count_not_none(*axes.values()) == self._AXIS_LEN) and method is None and level is None and not self._is_mixed_type ) def _reindex_multi(self, axes, copy, fill_value): raise AbstractMethodError(self) def _reindex_with_indexers( self: FrameOrSeries, reindexers, fill_value=None, copy: bool_t = False, allow_dups: bool_t = False, ) -> FrameOrSeries: """allow_dups indicates an internal call here """ # reindex doing multiple operations on different axes if indicated new_data = self._data for axis in sorted(reindexers.keys()): index, indexer = reindexers[axis] baxis = self._get_block_manager_axis(axis) if index is None: continue index = ensure_index(index) if indexer is not None: indexer = ensure_int64(indexer) # TODO: speed up on homogeneous DataFrame objects new_data = new_data.reindex_indexer( index, indexer, axis=baxis, fill_value=fill_value, allow_dups=allow_dups, copy=copy, ) if copy and new_data is self._data: new_data = new_data.copy() return self._constructor(new_data).__finalize__(self) def filter( self: FrameOrSeries, items=None, like: Optional[str] = None, regex: Optional[str] = None, axis=None, ) -> FrameOrSeries: """ Subset the dataframe rows or columns according to the specified index labels. Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index. Parameters ---------- items : list-like Keep labels from axis which are in items. like : str Keep labels from axis for which "like in label == True". regex : str (regular expression) Keep labels from axis for which re.search(regex, label) == True. axis : {0 or ‘index’, 1 or ‘columns’, None}, default None The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, 'index' for Series, 'columns' for DataFrame. Returns ------- same type as input object See Also -------- DataFrame.loc Notes ----- The ``items``, ``like``, and ``regex`` parameters are enforced to be mutually exclusive. ``axis`` defaults to the info axis that is used when indexing with ``[]``. Examples -------- >>> df = pd.DataFrame(np.array(([1, 2, 3], [4, 5, 6])), ... index=['mouse', 'rabbit'], ... columns=['one', 'two', 'three']) >>> # select columns by name >>> df.filter(items=['one', 'three']) one three mouse 1 3 rabbit 4 6 >>> # select columns by regular expression >>> df.filter(regex='e$', axis=1) one three mouse 1 3 rabbit 4 6 >>> # select rows containing 'bbi' >>> df.filter(like='bbi', axis=0) one two three rabbit 4 5 6 """ nkw = com.count_not_none(items, like, regex) if nkw > 1: raise TypeError( "Keyword arguments `items`, `like`, or `regex` " "are mutually exclusive" ) if axis is None: axis = self._info_axis_name labels = self._get_axis(axis) if items is not None: name = self._get_axis_name(axis) return self.reindex(**{name: [r for r in items if r in labels]}) elif like: def f(x): return like in ensure_str(x) values = labels.map(f) return self.loc(axis=axis)[values] elif regex: def f(x): return matcher.search(ensure_str(x)) is not None matcher = re.compile(regex) values = labels.map(f) return self.loc(axis=axis)[values] else: raise TypeError("Must pass either `items`, `like`, or `regex`") def head(self: FrameOrSeries, n: int = 5) -> FrameOrSeries: """ Return the first `n` rows. This function returns the first `n` rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. For negative values of `n`, this function returns all rows except the last `n` rows, equivalent to ``df[:-n]``. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- same type as caller The first `n` rows of the caller object. See Also -------- DataFrame.tail: Returns the last `n` rows. Examples -------- >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the first 5 lines >>> df.head() animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey Viewing the first `n` lines (three in this case) >>> df.head(3) animal 0 alligator 1 bee 2 falcon For negative values of `n` >>> df.head(-3) animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot """ return self.iloc[:n] def tail(self: FrameOrSeries, n: int = 5) -> FrameOrSeries: """ Return the last `n` rows. This function returns last `n` rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows. For negative values of `n`, this function returns all rows except the first `n` rows, equivalent to ``df[n:]``. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- type of caller The last `n` rows of the caller object. See Also -------- DataFrame.head : The first `n` rows of the caller object. Examples -------- >>> df = pd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion', ... 'monkey', 'parrot', 'shark', 'whale', 'zebra']}) >>> df animal 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last 5 lines >>> df.tail() animal 4 monkey 5 parrot 6 shark 7 whale 8 zebra Viewing the last `n` lines (three in this case) >>> df.tail(3) animal 6 shark 7 whale 8 zebra For negative values of `n` >>> df.tail(-3) animal 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra """ if n == 0: return self.iloc[0:0] return self.iloc[-n:] def sample( self: FrameOrSeries, n=None, frac=None, replace=False, weights=None, random_state=None, axis=None, ) -> FrameOrSeries: """ Return a random sample of items from an axis of object. You can use `random_state` for reproducibility. Parameters ---------- n : int, optional Number of items from axis to return. Cannot be used with `frac`. Default = 1 if `frac` = None. frac : float, optional Fraction of axis items to return. Cannot be used with `n`. replace : bool, default False Allow or disallow sampling of the same row more than once. weights : str or ndarray-like, optional Default 'None' results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. Infinite values not allowed. random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : {0 or ‘index’, 1 or ‘columns’, None}, default None Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames). Returns ------- Series or DataFrame A new object of same type as caller containing `n` items randomly sampled from the caller object. See Also -------- numpy.random.choice: Generates a random sample from a given 1-D numpy array. Notes ----- If `frac` > 1, `replacement` should be set to `True`. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish']) >>> df num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8 Extract 3 random elements from the ``Series`` ``df['num_legs']``: Note that we use `random_state` to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 Name: num_legs, dtype: int64 A random 50% sample of the ``DataFrame`` with replacement: >>> df.sample(frac=0.5, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 An upsample sample of the ``DataFrame`` with replacement: Note that `replace` parameter has to be `True` for `frac` parameter > 1. >>> df.sample(frac=2, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 falcon 2 2 10 falcon 2 2 10 fish 0 0 8 dog 4 0 2 fish 0 0 8 dog 4 0 2 Using a DataFrame column as weights. Rows with larger value in the `num_specimen_seen` column are more likely to be sampled. >>> df.sample(n=2, weights='num_specimen_seen', random_state=1) num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) axis_length = self.shape[axis] # Process random_state argument rs = com.random_state(random_state) # Check weights for compliance if weights is not None: # If a series, align with frame if isinstance(weights, ABCSeries): weights = weights.reindex(self.axes[axis]) # Strings acceptable if a dataframe and axis = 0 if isinstance(weights, str): if isinstance(self, ABCDataFrame): if axis == 0: try: weights = self[weights] except KeyError: raise KeyError( "String passed to weights not a valid column" ) else: raise ValueError( "Strings can only be passed to " "weights when sampling from rows on " "a DataFrame" ) else: raise ValueError( "Strings cannot be passed as weights " "when sampling from a Series." ) weights = pd.Series(weights, dtype="float64") if len(weights) != axis_length: raise ValueError( "Weights and axis to be sampled must be of same length" ) if (weights == np.inf).any() or (weights == -np.inf).any(): raise ValueError("weight vector may not include `inf` values") if (weights < 0).any(): raise ValueError("weight vector many not include negative values") # If has nan, set to zero. weights = weights.fillna(0) # Renormalize if don't sum to 1 if weights.sum() != 1: if weights.sum() != 0: weights = weights / weights.sum() else: raise ValueError("Invalid weights: weights sum to zero") weights = weights.values # If no frac or n, default to n=1. if n is None and frac is None: n = 1 elif frac is not None and frac > 1 and not replace: raise ValueError( "Replace has to be set to `True` when " "upsampling the population `frac` > 1." ) elif n is not None and frac is None and n % 1 != 0: raise ValueError("Only integers accepted as `n` values") elif n is None and frac is not None: n = int(round(frac * axis_length)) elif n is not None and frac is not None: raise ValueError("Please enter a value for `frac` OR `n`, not both") # Check for negative sizes if n < 0: raise ValueError( "A negative number of rows requested. Please provide positive value." ) locs = rs.choice(axis_length, size=n, replace=replace, p=weights) return self.take(locs, axis=axis) _shared_docs[ "pipe" ] = r""" Apply func(self, \*args, \*\*kwargs). Parameters ---------- func : function Function to apply to the %(klass)s. ``args``, and ``kwargs`` are passed into ``func``. Alternatively a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of ``callable`` that expects the %(klass)s. args : iterable, optional Positional arguments passed into ``func``. kwargs : mapping, optional A dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. See Also -------- DataFrame.apply DataFrame.applymap Series.map Notes ----- Use ``.pipe`` when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing >>> f(g(h(df), arg1=a), arg2=b, arg3=c) You can write >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe(f, arg2=b, arg3=c) ... ) If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose ``f`` takes its data as ``arg2``: >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe((f, 'arg2'), arg1=a, arg3=c) ... ) """ @Appender(_shared_docs["pipe"] % _shared_doc_kwargs) def pipe(self, func, *args, **kwargs): return com.pipe(self, func, *args, **kwargs) _shared_docs["aggregate"] = dedent( """ Aggregate using one or more operations over the specified axis. %(versionadded)s Parameters ---------- func : function, str, list or dict Function to use for aggregating the data. If a function, must either work when passed a %(klass)s or when passed to %(klass)s.apply. Accepted combinations are: - function - string function name - list of functions and/or function names, e.g. ``[np.sum, 'mean']`` - dict of axis labels -> functions, function names or list of such. %(axis)s *args Positional arguments to pass to `func`. **kwargs Keyword arguments to pass to `func`. Returns ------- scalar, Series or DataFrame The return can be: * scalar : when Series.agg is called with single function * Series : when DataFrame.agg is called with a single function * DataFrame : when DataFrame.agg is called with several functions Return scalar, Series or DataFrame. %(see_also)s Notes ----- `agg` is an alias for `aggregate`. Use the alias. A passed user-defined-function will be passed a Series for evaluation. %(examples)s""" ) _shared_docs[ "transform" ] = """ Call ``func`` on self producing a %(klass)s with transformed values. Produced %(klass)s will have same axis length as self. Parameters ---------- func : function, str, list or dict Function to use for transforming the data. If a function, must either work when passed a %(klass)s or when passed to %(klass)s.apply. Accepted combinations are: - function - string function name - list of functions and/or function names, e.g. ``[np.exp. 'sqrt']`` - dict of axis labels -> functions, function names or list of such. %(axis)s *args Positional arguments to pass to `func`. **kwargs Keyword arguments to pass to `func`. Returns ------- %(klass)s A %(klass)s that must have the same length as self. Raises ------ ValueError : If the returned %(klass)s has a different length than self. See Also -------- %(klass)s.agg : Only perform aggregating type operations. %(klass)s.apply : Invoke function on a %(klass)s. Examples -------- >>> df = pd.DataFrame({'A': range(3), 'B': range(1, 4)}) >>> df A B 0 0 1 1 1 2 2 2 3 >>> df.transform(lambda x: x + 1) A B 0 1 2 1 2 3 2 3 4 Even though the resulting %(klass)s must have the same length as the input %(klass)s, it is possible to provide several input functions: >>> s = pd.Series(range(3)) >>> s 0 0 1 1 2 2 dtype: int64 >>> s.transform([np.sqrt, np.exp]) sqrt exp 0 0.000000 1.000000 1 1.000000 2.718282 2 1.414214 7.389056 """ # ---------------------------------------------------------------------- # Attribute access def __finalize__( self: FrameOrSeries, other, method=None, **kwargs ) -> FrameOrSeries: """ Propagate metadata from other to self. Parameters ---------- other : the object from which to get the attributes that we are going to propagate method : optional, a passed method name ; possibly to take different types of propagation actions based on this """ if isinstance(other, NDFrame): for name in other.attrs: self.attrs[name] = other.attrs[name] # For subclasses using _metadata. for name in self._metadata: assert isinstance(name, str) object.__setattr__(self, name, getattr(other, name, None)) return self def __getattr__(self, name: str): """ After regular attribute access, try looking up the name This allows simpler access to columns for interactive use. """ # Note: obj.x will always call obj.__getattribute__('x') prior to # calling obj.__getattr__('x'). if ( name in self._internal_names_set or name in self._metadata or name in self._accessors ): return object.__getattribute__(self, name) else: if self._info_axis._can_hold_identifiers_and_holds_name(name): return self[name] return object.__getattribute__(self, name) def __setattr__(self, name: str, value) -> None: """ After regular attribute access, try setting the name This allows simpler access to columns for interactive use. """ # first try regular attribute access via __getattribute__, so that # e.g. ``obj.x`` and ``obj.x = 4`` will always reference/modify # the same attribute. try: object.__getattribute__(self, name) return object.__setattr__(self, name, value) except AttributeError: pass # if this fails, go on to more involved attribute setting # (note that this matches __getattr__, above). if name in self._internal_names_set: object.__setattr__(self, name, value) elif name in self._metadata: object.__setattr__(self, name, value) else: try: existing = getattr(self, name) if isinstance(existing, Index): object.__setattr__(self, name, value) elif name in self._info_axis: self[name] = value else: object.__setattr__(self, name, value) except (AttributeError, TypeError): if isinstance(self, ABCDataFrame) and (is_list_like(value)): warnings.warn( "Pandas doesn't allow columns to be " "created via a new attribute name - see " "https://pandas.pydata.org/pandas-docs/" "stable/indexing.html#attribute-access", stacklevel=2, ) object.__setattr__(self, name, value) def _dir_additions(self): """ add the string-like attributes from the info_axis. If info_axis is a MultiIndex, it's first level values are used. """ additions = { c for c in self._info_axis.unique(level=0)[:100] if isinstance(c, str) and c.isidentifier() } return super()._dir_additions().union(additions) # ---------------------------------------------------------------------- # Consolidation of internals def _protect_consolidate(self, f): """ Consolidate _data -- if the blocks have changed, then clear the cache """ blocks_before = len(self._data.blocks) result = f() if len(self._data.blocks) != blocks_before: self._clear_item_cache() return result def _consolidate_inplace(self) -> None: """Consolidate data in place and return None""" def f(): self._data = self._data.consolidate() self._protect_consolidate(f) def _consolidate(self, inplace: bool_t = False): """ Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray). Parameters ---------- inplace : bool, default False If False return new object, otherwise modify existing object. Returns ------- consolidated : same type as caller """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: self._consolidate_inplace() else: f = lambda: self._data.consolidate() cons_data = self._protect_consolidate(f) return self._constructor(cons_data).__finalize__(self) @property def _is_mixed_type(self): f = lambda: self._data.is_mixed_type return self._protect_consolidate(f) @property def _is_numeric_mixed_type(self): f = lambda: self._data.is_numeric_mixed_type return self._protect_consolidate(f) def _check_inplace_setting(self, value) -> bool_t: """ check whether we allow in-place setting with this type of value """ if self._is_mixed_type: if not self._is_numeric_mixed_type: # allow an actual np.nan thru if is_float(value) and np.isnan(value): return True raise TypeError( "Cannot do inplace boolean setting on " "mixed-types with a non np.nan value" ) return True def _get_numeric_data(self): return self._constructor(self._data.get_numeric_data()).__finalize__(self) def _get_bool_data(self): return self._constructor(self._data.get_bool_data()).__finalize__(self) # ---------------------------------------------------------------------- # Internal Interface Methods @property def values(self) -> np.ndarray: """ Return a Numpy representation of the DataFrame. .. warning:: We recommend using :meth:`DataFrame.to_numpy` instead. Only the values in the DataFrame will be returned, the axes labels will be removed. Returns ------- numpy.ndarray The values of the DataFrame. See Also -------- DataFrame.to_numpy : Recommended alternative to this method. DataFrame.index : Retrieve the index labels. DataFrame.columns : Retrieving the column names. Notes ----- The dtype will be a lower-common-denominator dtype (implicit upcasting); that is to say if the dtypes (even of numeric types) are mixed, the one that accommodates all will be chosen. Use this with care if you are not dealing with the blocks. e.g. If the dtypes are float16 and float32, dtype will be upcast to float32. If dtypes are int32 and uint8, dtype will be upcast to int32. By :func:`numpy.find_common_type` convention, mixing int64 and uint64 will result in a float64 dtype. Examples -------- A DataFrame where all columns are the same type (e.g., int64) results in an array of the same type. >>> df = pd.DataFrame({'age': [ 3, 29], ... 'height': [94, 170], ... 'weight': [31, 115]}) >>> df age height weight 0 3 94 31 1 29 170 115 >>> df.dtypes age int64 height int64 weight int64 dtype: object >>> df.values array([[ 3, 94, 31], [ 29, 170, 115]], dtype=int64) A DataFrame with mixed type columns(e.g., str/object, int64, float32) results in an ndarray of the broadest type that accommodates these mixed types (e.g., object). >>> df2 = pd.DataFrame([('parrot', 24.0, 'second'), ... ('lion', 80.5, 1), ... ('monkey', np.nan, None)], ... columns=('name', 'max_speed', 'rank')) >>> df2.dtypes name object max_speed float64 rank object dtype: object >>> df2.values array([['parrot', 24.0, 'second'], ['lion', 80.5, 1], ['monkey', nan, None]], dtype=object) """ self._consolidate_inplace() return self._data.as_array(transpose=self._AXIS_REVERSED) @property def _values(self) -> np.ndarray: """internal implementation""" return self.values def _internal_get_values(self) -> np.ndarray: """ Return an ndarray after converting sparse values to dense. This is the same as ``.values`` for non-sparse data. For sparse data contained in a `SparseArray`, the data are first converted to a dense representation. Returns ------- numpy.ndarray Numpy representation of DataFrame. See Also -------- values : Numpy representation of DataFrame. SparseArray : Container for sparse data. """ return self.values @property def dtypes(self): """ Return the dtypes in the DataFrame. This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types are stored with the ``object`` dtype. See :ref:`the User Guide <basics.dtypes>` for more. Returns ------- pandas.Series The data type of each column. Examples -------- >>> df = pd.DataFrame({'float': [1.0], ... 'int': [1], ... 'datetime': [pd.Timestamp('20180310')], ... 'string': ['foo']}) >>> df.dtypes float float64 int int64 datetime datetime64[ns] string object dtype: object """ from pandas import Series return Series(self._data.get_dtypes(), index=self._info_axis, dtype=np.object_) def _to_dict_of_blocks(self, copy: bool_t = True): """ Return a dict of dtype -> Constructor Types that each is a homogeneous dtype. Internal ONLY """ return { k: self._constructor(v).__finalize__(self) for k, v, in self._data.to_dict(copy=copy).items() } def astype( self: FrameOrSeries, dtype, copy: bool_t = True, errors: str = "raise" ) -> FrameOrSeries: """ Cast a pandas object to a specified dtype ``dtype``. Parameters ---------- dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, ...}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame's columns to column-specific types. copy : bool, default True Return a copy when ``copy=True`` (be very careful setting ``copy=False`` as changes to values then may propagate to other pandas objects). errors : {'raise', 'ignore'}, default 'raise' Control raising of exceptions on invalid data for provided dtype. - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object. Returns ------- casted : same type as caller See Also -------- to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to a numeric type. numpy.ndarray.astype : Cast a numpy array to a specified type. Examples -------- Create a DataFrame: >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df.dtypes col1 int64 col2 int64 dtype: object Cast all columns to int32: >>> df.astype('int32').dtypes col1 int32 col2 int32 dtype: object Cast col1 to int32 using a dictionary: >>> df.astype({'col1': 'int32'}).dtypes col1 int32 col2 int64 dtype: object Create a series: >>> ser = pd.Series([1, 2], dtype='int32') >>> ser 0 1 1 2 dtype: int32 >>> ser.astype('int64') 0 1 1 2 dtype: int64 Convert to categorical type: >>> ser.astype('category') 0 1 1 2 dtype: category Categories (2, int64): [1, 2] Convert to ordered categorical type with custom ordering: >>> cat_dtype = pd.api.types.CategoricalDtype( ... categories=[2, 1], ordered=True) >>> ser.astype(cat_dtype) 0 1 1 2 dtype: category Categories (2, int64): [2 < 1] Note that using ``copy=False`` and changing data on a new pandas object may propagate changes: >>> s1 = pd.Series([1, 2]) >>> s2 = s1.astype('int64', copy=False) >>> s2[0] = 10 >>> s1 # note that s1[0] has changed too 0 10 1 2 dtype: int64 """ if is_dict_like(dtype): if self.ndim == 1: # i.e. Series if len(dtype) > 1 or self.name not in dtype: raise KeyError( "Only the Series name can be used for " "the key in Series dtype mappings." ) new_type = dtype[self.name] return self.astype(new_type, copy, errors) for col_name in dtype.keys(): if col_name not in self: raise KeyError( "Only a column name can be used for the " "key in a dtype mappings argument." ) results = [] for col_name, col in self.items(): if col_name in dtype: results.append( col.astype(dtype=dtype[col_name], copy=copy, errors=errors) ) else: results.append(col.copy() if copy else col) elif is_extension_array_dtype(dtype) and self.ndim > 1: # GH 18099/22869: columnwise conversion to extension dtype # GH 24704: use iloc to handle duplicate column names results = [ self.iloc[:, i].astype(dtype, copy=copy) for i in range(len(self.columns)) ] else: # else, only a single dtype is given new_data = self._data.astype(dtype=dtype, copy=copy, errors=errors) return self._constructor(new_data).__finalize__(self) # GH 19920: retain column metadata after concat result = pd.concat(results, axis=1, copy=False) result.columns = self.columns return result def copy(self: FrameOrSeries, deep: bool_t = True) -> FrameOrSeries: """ Make a copy of this object's indices and data. When ``deep=True`` (default), a new object will be created with a copy of the calling object's data and indices. Modifications to the data or indices of the copy will not be reflected in the original object (see notes below). When ``deep=False``, a new object will be created without copying the calling object's data or index (only references to the data and index are copied). Any changes to the data of the original will be reflected in the shallow copy (and vice versa). Parameters ---------- deep : bool, default True Make a deep copy, including a copy of the data and the indices. With ``deep=False`` neither the indices nor the data are copied. Returns ------- copy : Series or DataFrame Object type matches caller. Notes ----- When ``deep=True``, data is copied but actual Python objects will not be copied recursively, only the reference to the object. This is in contrast to `copy.deepcopy` in the Standard Library, which recursively copies object data (see examples below). While ``Index`` objects are copied when ``deep=True``, the underlying numpy array is not copied for performance reasons. Since ``Index`` is immutable, the underlying data can be safely shared and a copy is not needed. Examples -------- >>> s = pd.Series([1, 2], index=["a", "b"]) >>> s a 1 b 2 dtype: int64 >>> s_copy = s.copy() >>> s_copy a 1 b 2 dtype: int64 **Shallow copy versus default (deep) copy:** >>> s = pd.Series([1, 2], index=["a", "b"]) >>> deep = s.copy() >>> shallow = s.copy(deep=False) Shallow copy shares data and index with original. >>> s is shallow False >>> s.values is shallow.values and s.index is shallow.index True Deep copy has own copy of data and index. >>> s is deep False >>> s.values is deep.values or s.index is deep.index False Updates to the data shared by shallow copy and original is reflected in both; deep copy remains unchanged. >>> s[0] = 3 >>> shallow[1] = 4 >>> s a 3 b 4 dtype: int64 >>> shallow a 3 b 4 dtype: int64 >>> deep a 1 b 2 dtype: int64 Note that when copying an object containing Python objects, a deep copy will copy the data, but will not do so recursively. Updating a nested data object will be reflected in the deep copy. >>> s = pd.Series([[1, 2], [3, 4]]) >>> deep = s.copy() >>> s[0][0] = 10 >>> s 0 [10, 2] 1 [3, 4] dtype: object >>> deep 0 [10, 2] 1 [3, 4] dtype: object """ data = self._data.copy(deep=deep) return self._constructor(data).__finalize__(self) def __copy__(self: FrameOrSeries, deep: bool_t = True) -> FrameOrSeries: return self.copy(deep=deep) def __deepcopy__(self: FrameOrSeries, memo=None) -> FrameOrSeries: """ Parameters ---------- memo, default None Standard signature. Unused """ return self.copy(deep=True) def _convert( self: FrameOrSeries, datetime: bool_t = False, numeric: bool_t = False, timedelta: bool_t = False, coerce: bool_t = False, copy: bool_t = True, ) -> FrameOrSeries: """ Attempt to infer better dtype for object columns Parameters ---------- datetime : bool, default False If True, convert to date where possible. numeric : bool, default False If True, attempt to convert to numbers (including strings), with unconvertible values becoming NaN. timedelta : bool, default False If True, convert to timedelta where possible. coerce : bool, default False If True, force conversion with unconvertible values converted to nulls (NaN or NaT). copy : bool, default True If True, return a copy even if no copy is necessary (e.g. no conversion was done). Note: This is meant for internal use, and should not be confused with inplace. Returns ------- converted : same as input object """ validate_bool_kwarg(datetime, "datetime") validate_bool_kwarg(numeric, "numeric") validate_bool_kwarg(timedelta, "timedelta") validate_bool_kwarg(coerce, "coerce") validate_bool_kwarg(copy, "copy") return self._constructor( self._data.convert( datetime=datetime, numeric=numeric, timedelta=timedelta, coerce=coerce, copy=copy, ) ).__finalize__(self) def infer_objects(self: FrameOrSeries) -> FrameOrSeries: """ Attempt to infer better dtypes for object columns. Attempts soft conversion of object-dtyped columns, leaving non-object and unconvertible columns unchanged. The inference rules are the same as during normal Series/DataFrame construction. .. versionadded:: 0.21.0 Returns ------- converted : same type as input object See Also -------- to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to numeric type. convert_dtypes : Convert argument to best possible dtype. Examples -------- >>> df = pd.DataFrame({"A": ["a", 1, 2, 3]}) >>> df = df.iloc[1:] >>> df A 1 1 2 2 3 3 >>> df.dtypes A object dtype: object >>> df.infer_objects().dtypes A int64 dtype: object """ # numeric=False necessary to only soft convert; # python objects will still be converted to # native numpy numeric types return self._constructor( self._data.convert( datetime=True, numeric=False, timedelta=True, coerce=False, copy=True ) ).__finalize__(self) def convert_dtypes( self: FrameOrSeries, infer_objects: bool_t = True, convert_string: bool_t = True, convert_integer: bool_t = True, convert_boolean: bool_t = True, ) -> FrameOrSeries: """ Convert columns to best possible dtypes using dtypes supporting ``pd.NA``. .. versionadded:: 1.0.0 Parameters ---------- infer_objects : bool, default True Whether object dtypes should be converted to the best possible types. convert_string : bool, default True Whether object dtypes should be converted to ``StringDtype()``. convert_integer : bool, default True Whether, if possible, conversion can be done to integer extension types. convert_boolean : bool, defaults True Whether object dtypes should be converted to ``BooleanDtypes()``. Returns ------- Series or DataFrame Copy of input object with new dtype. See Also -------- infer_objects : Infer dtypes of objects. to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. to_numeric : Convert argument to a numeric type. Notes ----- By default, ``convert_dtypes`` will attempt to convert a Series (or each Series in a DataFrame) to dtypes that support ``pd.NA``. By using the options ``convert_string``, ``convert_integer``, and ``convert_boolean``, it is possible to turn off individual conversions to ``StringDtype``, the integer extension types or ``BooleanDtype``, respectively. For object-dtyped columns, if ``infer_objects`` is ``True``, use the inference rules as during normal Series/DataFrame construction. Then, if possible, convert to ``StringDtype``, ``BooleanDtype`` or an appropriate integer extension type, otherwise leave as ``object``. If the dtype is integer, convert to an appropriate integer extension type. If the dtype is numeric, and consists of all integers, convert to an appropriate integer extension type. In the future, as new dtypes are added that support ``pd.NA``, the results of this method will change to support those new dtypes. Examples -------- >>> df = pd.DataFrame( ... { ... "a": pd.Series([1, 2, 3], dtype=np.dtype("int32")), ... "b": pd.Series(["x", "y", "z"], dtype=np.dtype("O")), ... "c": pd.Series([True, False, np.nan], dtype=np.dtype("O")), ... "d": pd.Series(["h", "i", np.nan], dtype=np.dtype("O")), ... "e": pd.Series([10, np.nan, 20], dtype=np.dtype("float")), ... "f": pd.Series([np.nan, 100.5, 200], dtype=np.dtype("float")), ... } ... ) Start with a DataFrame with default dtypes. >>> df a b c d e f 0 1 x True h 10.0 NaN 1 2 y False i NaN 100.5 2 3 z NaN NaN 20.0 200.0 >>> df.dtypes a int32 b object c object d object e float64 f float64 dtype: object Convert the DataFrame to use best possible dtypes. >>> dfn = df.convert_dtypes() >>> dfn a b c d e f 0 1 x True h 10 NaN 1 2 y False i <NA> 100.5 2 3 z <NA> <NA> 20 200.0 >>> dfn.dtypes a Int32 b string c boolean d string e Int64 f float64 dtype: object Start with a Series of strings and missing data represented by ``np.nan``. >>> s = pd.Series(["a", "b", np.nan]) >>> s 0 a 1 b 2 NaN dtype: object Obtain a Series with dtype ``StringDtype``. >>> s.convert_dtypes() 0 a 1 b 2 <NA> dtype: string """ if self.ndim == 1: return self._convert_dtypes( infer_objects, convert_string, convert_integer, convert_boolean ) else: results = [ col._convert_dtypes( infer_objects, convert_string, convert_integer, convert_boolean ) for col_name, col in self.items() ] result = pd.concat(results, axis=1, copy=False) return result # ---------------------------------------------------------------------- # Filling NA's @doc(**_shared_doc_kwargs) def fillna( self: FrameOrSeries, value=None, method=None, axis=None, inplace: bool_t = False, limit=None, downcast=None, ) -> Optional[FrameOrSeries]: """ Fill NA/NaN values using the specified method. Parameters ---------- value : scalar, dict, Series, or DataFrame Value to use to fill holes (e.g. 0), alternately a dict/Series/DataFrame of values specifying which value to use for each index (for a Series) or column (for a DataFrame). Values not in the dict/Series/DataFrame will not be filled. This value cannot be a list. method : {{'backfill', 'bfill', 'pad', 'ffill', None}}, default None Method to use for filling holes in reindexed Series pad / ffill: propagate last valid observation forward to next valid backfill / bfill: use next valid observation to fill gap. axis : {axes_single_arg} Axis along which to fill missing values. inplace : bool, default False If True, fill in-place. Note: this will modify any other views on this object (e.g., a no-copy slice for a column in a DataFrame). limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. downcast : dict, default is None A dict of item->dtype of what to downcast if possible, or the string 'infer' which will try to downcast to an appropriate equal type (e.g. float64 to int64 if possible). Returns ------- {klass} or None Object with missing values filled or None if ``inplace=True``. See Also -------- interpolate : Fill NaN values using interpolation. reindex : Conform object to new index. asfreq : Convert TimeSeries to specified frequency. Examples -------- >>> df = pd.DataFrame([[np.nan, 2, np.nan, 0], ... [3, 4, np.nan, 1], ... [np.nan, np.nan, np.nan, 5], ... [np.nan, 3, np.nan, 4]], ... columns=list('ABCD')) >>> df A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 NaN NaN NaN 5 3 NaN 3.0 NaN 4 Replace all NaN elements with 0s. >>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 0.0 4 We can also propagate non-null values forward or backward. >>> df.fillna(method='ffill') A B C D 0 NaN 2.0 NaN 0 1 3.0 4.0 NaN 1 2 3.0 4.0 NaN 5 3 3.0 3.0 NaN 4 Replace all NaN elements in column 'A', 'B', 'C', and 'D', with 0, 1, 2, and 3 respectively. >>> values = {{'A': 0, 'B': 1, 'C': 2, 'D': 3}} >>> df.fillna(value=values) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 Only replace the first NaN element. >>> df.fillna(value=values, limit=1) A B C D 0 0.0 2.0 2.0 0 1 3.0 4.0 NaN 1 2 NaN 1.0 NaN 5 3 NaN 3.0 NaN 4 """ inplace = validate_bool_kwarg(inplace, "inplace") value, method = validate_fillna_kwargs(value, method) self._consolidate_inplace() # set the default here, so functions examining the signaure # can detect if something was set (e.g. in groupby) (GH9221) if axis is None: axis = 0 axis = self._get_axis_number(axis) if value is None: if self._is_mixed_type and axis == 1: if inplace: raise NotImplementedError() result = self.T.fillna(method=method, limit=limit).T # need to downcast here because of all of the transposes result._data = result._data.downcast() return result new_data = self._data.interpolate( method=method, axis=axis, limit=limit, inplace=inplace, coerce=True, downcast=downcast, ) else: if len(self._get_axis(axis)) == 0: return self if self.ndim == 1: if isinstance(value, (dict, ABCSeries)): value = create_series_with_explicit_dtype( value, dtype_if_empty=object ) elif not is_list_like(value): pass else: raise TypeError( '"value" parameter must be a scalar, dict ' "or Series, but you passed a " f'"{type(value).__name__}"' ) new_data = self._data.fillna( value=value, limit=limit, inplace=inplace, downcast=downcast ) elif isinstance(value, (dict, ABCSeries)): if axis == 1: raise NotImplementedError( "Currently only can fill " "with dict/Series column " "by column" ) result = self if inplace else self.copy() for k, v in value.items(): if k not in result: continue obj = result[k] obj.fillna(v, limit=limit, inplace=True, downcast=downcast) return result if not inplace else None elif not is_list_like(value): new_data = self._data.fillna( value=value, limit=limit, inplace=inplace, downcast=downcast ) elif isinstance(value, ABCDataFrame) and self.ndim == 2: new_data = self.where(self.notna(), value) else: raise ValueError(f"invalid fill value with a {type(value)}") if inplace: self._update_inplace(new_data) return None else: return self._constructor(new_data).__finalize__(self) def ffill( self: FrameOrSeries, axis=None, inplace: bool_t = False, limit=None, downcast=None, ) -> Optional[FrameOrSeries]: """ Synonym for :meth:`DataFrame.fillna` with ``method='ffill'``. Returns ------- %(klass)s or None Object with missing values filled or None if ``inplace=True``. """ return self.fillna( method="ffill", axis=axis, inplace=inplace, limit=limit, downcast=downcast ) def bfill( self: FrameOrSeries, axis=None, inplace: bool_t = False, limit=None, downcast=None, ) -> Optional[FrameOrSeries]: """ Synonym for :meth:`DataFrame.fillna` with ``method='bfill'``. Returns ------- %(klass)s or None Object with missing values filled or None if ``inplace=True``. """ return self.fillna( method="bfill", axis=axis, inplace=inplace, limit=limit, downcast=downcast ) _shared_docs[ "replace" ] = """ Replace values given in `to_replace` with `value`. Values of the %(klass)s are replaced with other values dynamically. This differs from updating with ``.loc`` or ``.iloc``, which require you to specify a location to update with some value. Parameters ---------- to_replace : str, regex, list, dict, Series, int, float, or None How to find the values that will be replaced. * numeric, str or regex: - numeric: numeric values equal to `to_replace` will be replaced with `value` - str: string exactly matching `to_replace` will be replaced with `value` - regex: regexs matching `to_replace` will be replaced with `value` * list of str, regex, or numeric: - First, if `to_replace` and `value` are both lists, they **must** be the same length. - Second, if ``regex=True`` then all of the strings in **both** lists will be interpreted as regexs otherwise they will match directly. This doesn't matter much for `value` since there are only a few possible substitution regexes you can use. - str, regex and numeric rules apply as above. * dict: - Dicts can be used to specify different replacement values for different existing values. For example, ``{'a': 'b', 'y': 'z'}`` replaces the value 'a' with 'b' and 'y' with 'z'. To use a dict in this way the `value` parameter should be `None`. - For a DataFrame a dict can specify that different values should be replaced in different columns. For example, ``{'a': 1, 'b': 'z'}`` looks for the value 1 in column 'a' and the value 'z' in column 'b' and replaces these values with whatever is specified in `value`. The `value` parameter should not be ``None`` in this case. You can treat this as a special case of passing two lists except that you are specifying the column to search in. - For a DataFrame nested dictionaries, e.g., ``{'a': {'b': np.nan}}``, are read as follows: look in column 'a' for the value 'b' and replace it with NaN. The `value` parameter should be ``None`` to use a nested dict in this way. You can nest regular expressions as well. Note that column names (the top-level dictionary keys in a nested dictionary) **cannot** be regular expressions. * None: - This means that the `regex` argument must be a string, compiled regular expression, or list, dict, ndarray or Series of such elements. If `value` is also ``None`` then this **must** be a nested dictionary or Series. See the examples section for examples of each of these. value : scalar, dict, list, str, regex, default None Value to replace any values matching `to_replace` with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed. inplace : bool, default False If True, in place. Note: this will modify any other views on this object (e.g. a column from a DataFrame). Returns the caller if this is True. limit : int, default None Maximum size gap to forward or backward fill. regex : bool or same types as `to_replace`, default False Whether to interpret `to_replace` and/or `value` as regular expressions. If this is ``True`` then `to_replace` *must* be a string. Alternatively, this could be a regular expression or a list, dict, or array of regular expressions in which case `to_replace` must be ``None``. method : {'pad', 'ffill', 'bfill', `None`} The method to use when for replacement, when `to_replace` is a scalar, list or tuple and `value` is ``None``. .. versionchanged:: 0.23.0 Added to DataFrame. Returns ------- %(klass)s Object after replacement. Raises ------ AssertionError * If `regex` is not a ``bool`` and `to_replace` is not ``None``. TypeError * If `to_replace` is a ``dict`` and `value` is not a ``list``, ``dict``, ``ndarray``, or ``Series`` * If `to_replace` is ``None`` and `regex` is not compilable into a regular expression or is a list, dict, ndarray, or Series. * When replacing multiple ``bool`` or ``datetime64`` objects and the arguments to `to_replace` does not match the type of the value being replaced ValueError * If a ``list`` or an ``ndarray`` is passed to `to_replace` and `value` but they are not the same length. See Also -------- %(klass)s.fillna : Fill NA values. %(klass)s.where : Replace values based on boolean condition. Series.str.replace : Simple string replacement. Notes ----- * Regex substitution is performed under the hood with ``re.sub``. The rules for substitution for ``re.sub`` are the same. * Regular expressions will only substitute on strings, meaning you cannot provide, for example, a regular expression matching floating point numbers and expect the columns in your frame that have a numeric dtype to be matched. However, if those floating point numbers *are* strings, then you can do this. * This method has *a lot* of options. You are encouraged to experiment and play with this method to gain intuition about how it works. * When dict is used as the `to_replace` value, it is like key(s) in the dict are the to_replace part and value(s) in the dict are the value parameter. Examples -------- **Scalar `to_replace` and `value`** >>> s = pd.Series([0, 1, 2, 3, 4]) >>> s.replace(0, 5) 0 5 1 1 2 2 3 3 4 4 dtype: int64 >>> df = pd.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e **List-like `to_replace`** >>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e >>> s.replace([1, 2], method='bfill') 0 0 1 3 2 3 3 3 4 4 dtype: int64 **dict-like `to_replace`** >>> df.replace({0: 10, 1: 100}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': {0: 100, 4: 400}}) A B C 0 100 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 400 9 e **Regular expression `to_replace`** >>> df = pd.DataFrame({'A': ['bat', 'foo', 'bait'], ... 'B': ['abc', 'bar', 'xyz']}) >>> df.replace(to_replace=r'^ba.$', value='new', regex=True) A B 0 new abc 1 foo new 2 bait xyz >>> df.replace({'A': r'^ba.$'}, {'A': 'new'}, regex=True) A B 0 new abc 1 foo bar 2 bait xyz >>> df.replace(regex=r'^ba.$', value='new') A B 0 new abc 1 foo new 2 bait xyz >>> df.replace(regex={r'^ba.$': 'new', 'foo': 'xyz'}) A B 0 new abc 1 xyz new 2 bait xyz >>> df.replace(regex=[r'^ba.$', 'foo'], value='new') A B 0 new abc 1 new new 2 bait xyz Note that when replacing multiple ``bool`` or ``datetime64`` objects, the data types in the `to_replace` parameter must match the data type of the value being replaced: >>> df = pd.DataFrame({'A': [True, False, True], ... 'B': [False, True, False]}) >>> df.replace({'a string': 'new value', True: False}) # raises Traceback (most recent call last): ... TypeError: Cannot compare types 'ndarray(dtype=bool)' and 'str' This raises a ``TypeError`` because one of the ``dict`` keys is not of the correct type for replacement. Compare the behavior of ``s.replace({'a': None})`` and ``s.replace('a', None)`` to understand the peculiarities of the `to_replace` parameter: >>> s = pd.Series([10, 'a', 'a', 'b', 'a']) When one uses a dict as the `to_replace` value, it is like the value(s) in the dict are equal to the `value` parameter. ``s.replace({'a': None})`` is equivalent to ``s.replace(to_replace={'a': None}, value=None, method=None)``: >>> s.replace({'a': None}) 0 10 1 None 2 None 3 b 4 None dtype: object When ``value=None`` and `to_replace` is a scalar, list or tuple, `replace` uses the method parameter (default 'pad') to do the replacement. So this is why the 'a' values are being replaced by 10 in rows 1 and 2 and 'b' in row 4 in this case. The command ``s.replace('a', None)`` is actually equivalent to ``s.replace(to_replace='a', value=None, method='pad')``: >>> s.replace('a', None) 0 10 1 10 2 10 3 b 4 b dtype: object """ @Appender(_shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): inplace = validate_bool_kwarg(inplace, "inplace") if not is_bool(regex) and to_replace is not None: raise AssertionError("'to_replace' must be 'None' if 'regex' is not a bool") self._consolidate_inplace() if value is None: # passing a single value that is scalar like # when value is None (GH5319), for compat if not is_dict_like(to_replace) and not is_dict_like(regex): to_replace = [to_replace] if isinstance(to_replace, (tuple, list)): if isinstance(self, ABCDataFrame): return self.apply( _single_replace, args=(to_replace, method, inplace, limit) ) return _single_replace(self, to_replace, method, inplace, limit) if not is_dict_like(to_replace): if not is_dict_like(regex): raise TypeError( 'If "to_replace" and "value" are both None ' 'and "to_replace" is not a list, then ' "regex must be a mapping" ) to_replace = regex regex = True items = list(to_replace.items()) keys, values = zip(*items) if items else ([], []) are_mappings = [is_dict_like(v) for v in values] if any(are_mappings): if not all(are_mappings): raise TypeError( "If a nested mapping is passed, all values " "of the top level mapping must be mappings" ) # passed a nested dict/Series to_rep_dict = {} value_dict = {} for k, v in items: keys, values = list(zip(*v.items())) or ([], []) to_rep_dict[k] = list(keys) value_dict[k] = list(values) to_replace, value = to_rep_dict, value_dict else: to_replace, value = keys, values return self.replace( to_replace, value, inplace=inplace, limit=limit, regex=regex ) else: # need a non-zero len on all axes if not self.size: return self new_data = self._data if is_dict_like(to_replace): if is_dict_like(value): # {'A' : NA} -> {'A' : 0} res = self if inplace else self.copy() for c, src in to_replace.items(): if c in value and c in self: # object conversion is handled in # series.replace which is called recursively res[c] = res[c].replace( to_replace=src, value=value[c], inplace=False, regex=regex, ) return None if inplace else res # {'A': NA} -> 0 elif not is_list_like(value): keys = [(k, src) for k, src in to_replace.items() if k in self] keys_len = len(keys) - 1 for i, (k, src) in enumerate(keys): convert = i == keys_len new_data = new_data.replace( to_replace=src, value=value, filter=[k], inplace=inplace, regex=regex, convert=convert, ) else: raise TypeError("value argument must be scalar, dict, or Series") elif is_list_like(to_replace): # [NA, ''] -> [0, 'missing'] if is_list_like(value): if len(to_replace) != len(value): raise ValueError( f"Replacement lists must match in length. " f"Expecting {len(to_replace)} got {len(value)} " ) new_data = self._data.replace_list( src_list=to_replace, dest_list=value, inplace=inplace, regex=regex, ) else: # [NA, ''] -> 0 new_data = self._data.replace( to_replace=to_replace, value=value, inplace=inplace, regex=regex ) elif to_replace is None: if not ( is_re_compilable(regex) or is_list_like(regex) or is_dict_like(regex) ): raise TypeError( f"'regex' must be a string or a compiled regular expression " f"or a list or dict of strings or regular expressions, " f"you passed a {repr(type(regex).__name__)}" ) return self.replace( regex, value, inplace=inplace, limit=limit, regex=True ) else: # dest iterable dict-like if is_dict_like(value): # NA -> {'A' : 0, 'B' : -1} new_data = self._data for k, v in value.items(): if k in self: new_data = new_data.replace( to_replace=to_replace, value=v, filter=[k], inplace=inplace, regex=regex, ) elif not is_list_like(value): # NA -> 0 new_data = self._data.replace( to_replace=to_replace, value=value, inplace=inplace, regex=regex ) else: raise TypeError( f'Invalid "to_replace" type: {repr(type(to_replace).__name__)}' ) if inplace: self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) _shared_docs[ "interpolate" ] = """ Please note that only ``method='linear'`` is supported for DataFrame/Series with a MultiIndex. Parameters ---------- method : str, default 'linear' Interpolation technique to use. One of: * 'linear': Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. * 'time': Works on daily and higher resolution data to interpolate given length of interval. * 'index', 'values': use the actual numerical values of the index. * 'pad': Fill in NaNs using existing values. * 'nearest', 'zero', 'slinear', 'quadratic', 'cubic', 'spline', 'barycentric', 'polynomial': Passed to `scipy.interpolate.interp1d`. These methods use the numerical values of the index. Both 'polynomial' and 'spline' require that you also specify an `order` (int), e.g. ``df.interpolate(method='polynomial', order=5)``. * 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima': Wrappers around the SciPy interpolation methods of similar names. See `Notes`. * 'from_derivatives': Refers to `scipy.interpolate.BPoly.from_derivatives` which replaces 'piecewise_polynomial' interpolation method in scipy 0.18. axis : {0 or 'index', 1 or 'columns', None}, default None Axis to interpolate along. limit : int, optional Maximum number of consecutive NaNs to fill. Must be greater than 0. inplace : bool, default False Update the data in place if possible. limit_direction : {'forward', 'backward', 'both'}, default 'forward' If limit is specified, consecutive NaNs will be filled in this direction. limit_area : {`None`, 'inside', 'outside'}, default None If limit is specified, consecutive NaNs will be filled with this restriction. * ``None``: No fill restriction. * 'inside': Only fill NaNs surrounded by valid values (interpolate). * 'outside': Only fill NaNs outside valid values (extrapolate). .. versionadded:: 0.23.0 downcast : optional, 'infer' or None, defaults to None Downcast dtypes if possible. **kwargs Keyword arguments to pass on to the interpolating function. Returns ------- Series or DataFrame Returns the same object type as the caller, interpolated at some or all ``NaN`` values. See Also -------- fillna : Fill missing values using different methods. scipy.interpolate.Akima1DInterpolator : Piecewise cubic polynomials (Akima interpolator). scipy.interpolate.BPoly.from_derivatives : Piecewise polynomial in the Bernstein basis. scipy.interpolate.interp1d : Interpolate a 1-D function. scipy.interpolate.KroghInterpolator : Interpolate polynomial (Krogh interpolator). scipy.interpolate.PchipInterpolator : PCHIP 1-d monotonic cubic interpolation. scipy.interpolate.CubicSpline : Cubic spline data interpolator. Notes ----- The 'krogh', 'piecewise_polynomial', 'spline', 'pchip' and 'akima' methods are wrappers around the respective SciPy implementations of similar names. These use the actual numerical values of the index. For more information on their behavior, see the `SciPy documentation <https://docs.scipy.org/doc/scipy/reference/interpolate.html#univariate-interpolation>`__ and `SciPy tutorial <https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html>`__. Examples -------- Filling in ``NaN`` in a :class:`~pandas.Series` via linear interpolation. >>> s = pd.Series([0, 1, np.nan, 3]) >>> s 0 0.0 1 1.0 2 NaN 3 3.0 dtype: float64 >>> s.interpolate() 0 0.0 1 1.0 2 2.0 3 3.0 dtype: float64 Filling in ``NaN`` in a Series by padding, but filling at most two consecutive ``NaN`` at a time. >>> s = pd.Series([np.nan, "single_one", np.nan, ... "fill_two_more", np.nan, np.nan, np.nan, ... 4.71, np.nan]) >>> s 0 NaN 1 single_one 2 NaN 3 fill_two_more 4 NaN 5 NaN 6 NaN 7 4.71 8 NaN dtype: object >>> s.interpolate(method='pad', limit=2) 0 NaN 1 single_one 2 single_one 3 fill_two_more 4 fill_two_more 5 fill_two_more 6 NaN 7 4.71 8 4.71 dtype: object Filling in ``NaN`` in a Series via polynomial interpolation or splines: Both 'polynomial' and 'spline' methods require that you also specify an ``order`` (int). >>> s = pd.Series([0, 2, np.nan, 8]) >>> s.interpolate(method='polynomial', order=2) 0 0.000000 1 2.000000 2 4.666667 3 8.000000 dtype: float64 Fill the DataFrame forward (that is, going down) along each column using linear interpolation. Note how the last entry in column 'a' is interpolated differently, because there is no entry after it to use for interpolation. Note how the first entry in column 'b' remains ``NaN``, because there is no entry before it to use for interpolation. >>> df = pd.DataFrame([(0.0, np.nan, -1.0, 1.0), ... (np.nan, 2.0, np.nan, np.nan), ... (2.0, 3.0, np.nan, 9.0), ... (np.nan, 4.0, -4.0, 16.0)], ... columns=list('abcd')) >>> df a b c d 0 0.0 NaN -1.0 1.0 1 NaN 2.0 NaN NaN 2 2.0 3.0 NaN 9.0 3 NaN 4.0 -4.0 16.0 >>> df.interpolate(method='linear', limit_direction='forward', axis=0) a b c d 0 0.0 NaN -1.0 1.0 1 1.0 2.0 -2.0 5.0 2 2.0 3.0 -3.0 9.0 3 2.0 4.0 -4.0 16.0 Using polynomial interpolation. >>> df['d'].interpolate(method='polynomial', order=2) 0 1.0 1 4.0 2 9.0 3 16.0 Name: d, dtype: float64 """ @Appender(_shared_docs["interpolate"] % _shared_doc_kwargs) def interpolate( self, method="linear", axis=0, limit=None, inplace=False, limit_direction="forward", limit_area=None, downcast=None, **kwargs, ): """ Interpolate values according to different methods. """ inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if axis == 0: ax = self._info_axis_name _maybe_transposed_self = self elif axis == 1: _maybe_transposed_self = self.T ax = 1 ax = _maybe_transposed_self._get_axis_number(ax) if _maybe_transposed_self.ndim == 2: alt_ax = 1 - ax else: alt_ax = ax if isinstance(_maybe_transposed_self.index, MultiIndex) and method != "linear": raise ValueError( "Only `method=linear` interpolation is supported on MultiIndexes." ) if _maybe_transposed_self._data.get_dtype_counts().get("object") == len( _maybe_transposed_self.T ): raise TypeError( "Cannot interpolate with all object-dtype columns " "in the DataFrame. Try setting at least one " "column to a numeric dtype." ) # create/use the index if method == "linear": # prior default index = np.arange(len(_maybe_transposed_self._get_axis(alt_ax))) else: index = _maybe_transposed_self._get_axis(alt_ax) methods = {"index", "values", "nearest", "time"} is_numeric_or_datetime = ( is_numeric_dtype(index) or is_datetime64_any_dtype(index) or is_timedelta64_dtype(index) ) if method not in methods and not is_numeric_or_datetime: raise ValueError( "Index column must be numeric or datetime type when " f"using {method} method other than linear. " "Try setting a numeric or datetime index column before " "interpolating." ) if isna(index).any(): raise NotImplementedError( "Interpolation with NaNs in the index " "has not been implemented. Try filling " "those NaNs before interpolating." ) data = _maybe_transposed_self._data new_data = data.interpolate( method=method, axis=ax, index=index, values=_maybe_transposed_self, limit=limit, limit_direction=limit_direction, limit_area=limit_area, inplace=inplace, downcast=downcast, **kwargs, ) if inplace: if axis == 1: new_data = self._constructor(new_data).T._data self._update_inplace(new_data) else: res = self._constructor(new_data).__finalize__(self) if axis == 1: res = res.T return res # ---------------------------------------------------------------------- # Timeseries methods Methods def asof(self, where, subset=None): """ Return the last row(s) without any NaNs before `where`. The last row (for each element in `where`, if list) without any NaN is taken. In case of a :class:`~pandas.DataFrame`, the last row without NaN considering only the subset of columns (if not `None`) If there is no good value, NaN is returned for a Series or a Series of NaN values for a DataFrame Parameters ---------- where : date or array-like of dates Date(s) before which the last row(s) are returned. subset : str or array-like of str, default `None` For DataFrame, if not `None`, only use these columns to check for NaNs. Returns ------- scalar, Series, or DataFrame The return can be: * scalar : when `self` is a Series and `where` is a scalar * Series: when `self` is a Series and `where` is an array-like, or when `self` is a DataFrame and `where` is a scalar * DataFrame : when `self` is a DataFrame and `where` is an array-like Return scalar, Series, or DataFrame. See Also -------- merge_asof : Perform an asof merge. Similar to left join. Notes ----- Dates are assumed to be sorted. Raises if this is not the case. Examples -------- A Series and a scalar `where`. >>> s = pd.Series([1, 2, np.nan, 4], index=[10, 20, 30, 40]) >>> s 10 1.0 20 2.0 30 NaN 40 4.0 dtype: float64 >>> s.asof(20) 2.0 For a sequence `where`, a Series is returned. The first value is NaN, because the first element of `where` is before the first index value. >>> s.asof([5, 20]) 5 NaN 20 2.0 dtype: float64 Missing values are not considered. The following is ``2.0``, not NaN, even though NaN is at the index location for ``30``. >>> s.asof(30) 2.0 Take all columns into consideration >>> df = pd.DataFrame({'a': [10, 20, 30, 40, 50], ... 'b': [None, None, None, None, 500]}, ... index=pd.DatetimeIndex(['2018-02-27 09:01:00', ... '2018-02-27 09:02:00', ... '2018-02-27 09:03:00', ... '2018-02-27 09:04:00', ... '2018-02-27 09:05:00'])) >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30'])) a b 2018-02-27 09:03:30 NaN NaN 2018-02-27 09:04:30 NaN NaN Take a single column into consideration >>> df.asof(pd.DatetimeIndex(['2018-02-27 09:03:30', ... '2018-02-27 09:04:30']), ... subset=['a']) a b 2018-02-27 09:03:30 30.0 NaN 2018-02-27 09:04:30 40.0 NaN """ if isinstance(where, str): where = Timestamp(where) if not self.index.is_monotonic: raise ValueError("asof requires a sorted index") is_series = isinstance(self, ABCSeries) if is_series: if subset is not None: raise ValueError("subset is not valid for Series") else: if subset is None: subset = self.columns if not is_list_like(subset): subset = [subset] is_list = is_list_like(where) if not is_list: start = self.index[0] if isinstance(self.index, PeriodIndex): where = Period(where, freq=self.index.freq) if where < start: if not is_series: from pandas import Series return Series(index=self.columns, name=where, dtype=np.float64) return np.nan # It's always much faster to use a *while* loop here for # Series than pre-computing all the NAs. However a # *while* loop is extremely expensive for DataFrame # so we later pre-compute all the NAs and use the same # code path whether *where* is a scalar or list. # See PR: https://github.com/pandas-dev/pandas/pull/14476 if is_series: loc = self.index.searchsorted(where, side="right") if loc > 0: loc -= 1 values = self._values while loc > 0 and isna(values[loc]): loc -= 1 return values[loc] if not isinstance(where, Index): where = Index(where) if is_list else Index([where]) nulls = self.isna() if is_series else self[subset].isna().any(1) if nulls.all(): if is_series: return self._constructor(np.nan, index=where, name=self.name) elif is_list: from pandas import DataFrame return DataFrame(np.nan, index=where, columns=self.columns) else: from pandas import Series return Series(np.nan, index=self.columns, name=where[0]) locs = self.index.asof_locs(where, ~(nulls.values)) # mask the missing missing = locs == -1 data = self.take(locs) data.index = where data.loc[missing] = np.nan return data if is_list else data.iloc[-1] # ---------------------------------------------------------------------- # Action Methods _shared_docs[ "isna" ] = """ Detect missing values. Return a boolean same-sized object indicating if the values are NA. NA values, such as None or :attr:`numpy.NaN`, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). Returns ------- %(klass)s Mask of bool values for each element in %(klass)s that indicates whether an element is not an NA value. See Also -------- %(klass)s.isnull : Alias of isna. %(klass)s.notna : Boolean inverse of isna. %(klass)s.dropna : Omit axes labels with missing values. isna : Top-level isna. Examples -------- Show which entries in a DataFrame are NA. >>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.isna() 0 False 1 False 2 True dtype: bool """ @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isna(self: FrameOrSeries) -> FrameOrSeries: return isna(self).__finalize__(self) @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isnull(self: FrameOrSeries) -> FrameOrSeries: return isna(self).__finalize__(self) _shared_docs[ "notna" ] = """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings ``''`` or :attr:`numpy.inf` are not considered NA values (unless you set ``pandas.options.mode.use_inf_as_na = True``). NA values, such as None or :attr:`numpy.NaN`, get mapped to False values. Returns ------- %(klass)s Mask of bool values for each element in %(klass)s that indicates whether an element is not an NA value. See Also -------- %(klass)s.notnull : Alias of notna. %(klass)s.isna : Boolean inverse of notna. %(klass)s.dropna : Omit axes labels with missing values. notna : Top-level notna. Examples -------- Show which entries in a DataFrame are not NA. >>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> ser.notna() 0 True 1 True 2 False dtype: bool """ @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notna(self: FrameOrSeries) -> FrameOrSeries: return notna(self).__finalize__(self) @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notnull(self: FrameOrSeries) -> FrameOrSeries: return notna(self).__finalize__(self) def _clip_with_scalar(self, lower, upper, inplace: bool_t = False): if (lower is not None and np.any(isna(lower))) or ( upper is not None and np.any(isna(upper)) ): raise ValueError("Cannot use an NA value as a clip threshold") result = self mask = isna(self.values) with np.errstate(all="ignore"): if upper is not None: subset = self.to_numpy() <= upper result = result.where(subset, upper, axis=None, inplace=False) if lower is not None: subset = self.to_numpy() >= lower result = result.where(subset, lower, axis=None, inplace=False) if np.any(mask): result[mask] = np.nan if inplace: self._update_inplace(result) else: return result def _clip_with_one_bound(self, threshold, method, axis, inplace): if axis is not None: axis = self._get_axis_number(axis) # method is self.le for upper bound and self.ge for lower bound if is_scalar(threshold) and is_number(threshold): if method.__name__ == "le": return self._clip_with_scalar(None, threshold, inplace=inplace) return self._clip_with_scalar(threshold, None, inplace=inplace) subset = method(threshold, axis=axis) | isna(self) # GH #15390 # In order for where method to work, the threshold must # be transformed to NDFrame from other array like structure. if (not isinstance(threshold, ABCSeries)) and is_list_like(threshold): if isinstance(self, ABCSeries): threshold = self._constructor(threshold, index=self.index) else: threshold = _align_method_FRAME(self, threshold, axis, flex=None)[1] return self.where(subset, threshold, axis=axis, inplace=inplace) def clip( self: FrameOrSeries, lower=None, upper=None, axis=None, inplace: bool_t = False, *args, **kwargs, ) -> FrameOrSeries: """ Trim values at input threshold(s). Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis. Parameters ---------- lower : float or array_like, default None Minimum threshold value. All values below this threshold will be set to it. upper : float or array_like, default None Maximum threshold value. All values above this threshold will be set to it. axis : int or str axis name, optional Align object with lower and upper along the given axis. inplace : bool, default False Whether to perform the operation in place on the data. .. versionadded:: 0.21.0 *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- Series or DataFrame Same type as calling object with the values outside the clip boundaries replaced. Examples -------- >>> data = {'col_0': [9, -3, 0, -1, 5], 'col_1': [-2, -7, 6, 8, -5]} >>> df = pd.DataFrame(data) >>> df col_0 col_1 0 9 -2 1 -3 -7 2 0 6 3 -1 8 4 5 -5 Clips per column using lower and upper thresholds: >>> df.clip(-4, 6) col_0 col_1 0 6 -2 1 -3 -4 2 0 6 3 -1 6 4 5 -4 Clips using specific lower and upper thresholds per column element: >>> t = pd.Series([2, -4, -1, 6, 3]) >>> t 0 2 1 -4 2 -1 3 6 4 3 dtype: int64 >>> df.clip(t, t + 4, axis=0) col_0 col_1 0 6 2 1 -3 -4 2 0 3 3 6 8 4 5 3 """ inplace = validate_bool_kwarg(inplace, "inplace") axis = nv.validate_clip_with_axis(axis, args, kwargs) if axis is not None: axis = self._get_axis_number(axis) # GH 17276 # numpy doesn't like NaN as a clip value # so ignore # GH 19992 # numpy doesn't drop a list-like bound containing NaN if not is_list_like(lower) and np.any(isna(lower)): lower = None if not is_list_like(upper) and np.any(isna(upper)): upper = None # GH 2747 (arguments were reversed) if lower is not None and upper is not None: if is_scalar(lower) and is_scalar(upper): lower, upper = min(lower, upper), max(lower, upper) # fast-path for scalars if (lower is None or (is_scalar(lower) and is_number(lower))) and ( upper is None or (is_scalar(upper) and is_number(upper)) ): return self._clip_with_scalar(lower, upper, inplace=inplace) result = self if lower is not None: result = result._clip_with_one_bound( lower, method=self.ge, axis=axis, inplace=inplace ) if upper is not None: if inplace: result = self result = result._clip_with_one_bound( upper, method=self.le, axis=axis, inplace=inplace ) return result _shared_docs[ "groupby" ] = """ Group %(klass)s using a mapper or by a Series of columns. A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups. Parameters ---------- by : mapping, function, label, or list of labels Used to determine the groups for the groupby. If ``by`` is a function, it's called on each value of the object's index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series' values are first aligned; see ``.align()`` method). If an ndarray is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns in ``self``. Notice that a tuple is interpreted as a (single) key. axis : {0 or 'index', 1 or 'columns'}, default 0 Split along rows (0) or columns (1). level : int, level name, or sequence of such, default None If the axis is a MultiIndex (hierarchical), group by a particular level or levels. as_index : bool, default True For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output. sort : bool, default True Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group. group_keys : bool, default True When calling apply, add group keys to index to identify pieces. squeeze : bool, default False Reduce the dimensionality of the return type if possible, otherwise return a consistent type. observed : bool, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionadded:: 0.23.0 Returns ------- %(klass)sGroupBy Returns a groupby object that contains information about the groups. See Also -------- resample : Convenience method for frequency conversion and resampling of time series. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/groupby.html>`_ for more. """ def asfreq( self: FrameOrSeries, freq, method=None, how: Optional[str] = None, normalize: bool_t = False, fill_value=None, ) -> FrameOrSeries: """ Convert TimeSeries to specified frequency. Optionally provide filling method to pad/backfill missing values. Returns the original data conformed to a new index with the specified frequency. ``resample`` is more appropriate if an operation, such as summarization, is necessary to represent the data at the new frequency. Parameters ---------- freq : DateOffset or str method : {'backfill'/'bfill', 'pad'/'ffill'}, default None Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present): * 'pad' / 'ffill': propagate last valid observation forward to next valid * 'backfill' / 'bfill': use NEXT valid observation to fill. how : {'start', 'end'}, default end For PeriodIndex only (see PeriodIndex.asfreq). normalize : bool, default False Whether to reset output index to midnight. fill_value : scalar, optional Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present). Returns ------- converted : same type as caller See Also -------- reindex Notes ----- To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- Start by creating a series with 4 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=4, freq='T') >>> series = pd.Series([0.0, None, 2.0, 3.0], index=index) >>> df = pd.DataFrame({'s':series}) >>> df s 2000-01-01 00:00:00 0.0 2000-01-01 00:01:00 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:03:00 3.0 Upsample the series into 30 second bins. >>> df.asfreq(freq='30S') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 NaN 2000-01-01 00:03:00 3.0 Upsample again, providing a ``fill value``. >>> df.asfreq(freq='30S', fill_value=9.0) s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 9.0 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 9.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 9.0 2000-01-01 00:03:00 3.0 Upsample again, providing a ``method``. >>> df.asfreq(freq='30S', method='bfill') s 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 NaN 2000-01-01 00:01:30 2.0 2000-01-01 00:02:00 2.0 2000-01-01 00:02:30 3.0 2000-01-01 00:03:00 3.0 """ from pandas.core.resample import asfreq return asfreq( self, freq, method=method, how=how, normalize=normalize, fill_value=fill_value, ) def at_time( self: FrameOrSeries, time, asof: bool_t = False, axis=None ) -> FrameOrSeries: """ Select values at particular time of day (e.g., 9:30AM). Parameters ---------- time : datetime.time or str axis : {0 or 'index', 1 or 'columns'}, default 0 .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- between_time : Select values between particular times of the day. first : Select initial periods of time series based on a date offset. last : Select final periods of time series based on a date offset. DatetimeIndex.indexer_at_time : Get just the index locations for values at particular time of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='12H') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-09 12:00:00 2 2018-04-10 00:00:00 3 2018-04-10 12:00:00 4 >>> ts.at_time('12:00') A 2018-04-09 12:00:00 2 2018-04-10 12:00:00 4 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) index = self._get_axis(axis) try: indexer = index.indexer_at_time(time, asof=asof) except AttributeError: raise TypeError("Index must be DatetimeIndex") return self._take_with_is_copy(indexer, axis=axis) def between_time( self: FrameOrSeries, start_time, end_time, include_start: bool_t = True, include_end: bool_t = True, axis=None, ) -> FrameOrSeries: """ Select values between particular times of the day (e.g., 9:00-9:30 AM). By setting ``start_time`` to be later than ``end_time``, you can get the times that are *not* between the two times. Parameters ---------- start_time : datetime.time or str Initial time as a time filter limit. end_time : datetime.time or str End time as a time filter limit. include_start : bool, default True Whether the start time needs to be included in the result. include_end : bool, default True Whether the end time needs to be included in the result. axis : {0 or 'index', 1 or 'columns'}, default 0 Determine range time on index or columns value. .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Data from the original object filtered to the specified dates range. Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- at_time : Select values at a particular time of the day. first : Select initial periods of time series based on a date offset. last : Select final periods of time series based on a date offset. DatetimeIndex.indexer_between_time : Get just the index locations for values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='1D20min') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 00:00:00 1 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 2018-04-12 01:00:00 4 >>> ts.between_time('0:15', '0:45') A 2018-04-10 00:20:00 2 2018-04-11 00:40:00 3 You get the times that are *not* between two times by setting ``start_time`` later than ``end_time``: >>> ts.between_time('0:45', '0:15') A 2018-04-09 00:00:00 1 2018-04-12 01:00:00 4 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) index = self._get_axis(axis) try: indexer = index.indexer_between_time( start_time, end_time, include_start=include_start, include_end=include_end, ) except AttributeError: raise TypeError("Index must be DatetimeIndex") return self._take_with_is_copy(indexer, axis=axis) def resample( self, rule, axis=0, closed: Optional[str] = None, label: Optional[str] = None, convention: str = "start", kind: Optional[str] = None, loffset=None, base: int = 0, on=None, level=None, ) -> "Resampler": """ Resample time-series data. Convenience method for frequency conversion and resampling of time series. Object must have a datetime-like index (`DatetimeIndex`, `PeriodIndex`, or `TimedeltaIndex`), or pass datetime-like values to the `on` or `level` keyword. Parameters ---------- rule : DateOffset, Timedelta or str The offset string or object representing target conversion. axis : {0 or 'index', 1 or 'columns'}, default 0 Which axis to use for up- or down-sampling. For `Series` this will default to 0, i.e. along the rows. Must be `DatetimeIndex`, `TimedeltaIndex` or `PeriodIndex`. closed : {'right', 'left'}, default None Which side of bin interval is closed. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. label : {'right', 'left'}, default None Which bin edge label to label bucket with. The default is 'left' for all frequency offsets except for 'M', 'A', 'Q', 'BM', 'BA', 'BQ', and 'W' which all have a default of 'right'. convention : {'start', 'end', 's', 'e'}, default 'start' For `PeriodIndex` only, controls whether to use the start or end of `rule`. kind : {'timestamp', 'period'}, optional, default None Pass 'timestamp' to convert the resulting index to a `DateTimeIndex` or 'period' to convert it to a `PeriodIndex`. By default the input representation is retained. loffset : timedelta, default None Adjust the resampled time labels. base : int, default 0 For frequencies that evenly subdivide 1 day, the "origin" of the aggregated intervals. For example, for '5min' frequency, base could range from 0 through 4. Defaults to 0. on : str, optional For a DataFrame, column to use instead of index for resampling. Column must be datetime-like. level : str or int, optional For a MultiIndex, level (name or number) to use for resampling. `level` must be datetime-like. Returns ------- Resampler object See Also -------- groupby : Group by mapping, function, label, or list of labels. Series.resample : Resample a Series. DataFrame.resample: Resample a DataFrame. Notes ----- See the `user guide <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#resampling>`_ for more. To learn more about the offset strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects>`__. Examples -------- Start by creating a series with 9 one minute timestamps. >>> index = pd.date_range('1/1/2000', periods=9, freq='T') >>> series = pd.Series(range(9), index=index) >>> series 2000-01-01 00:00:00 0 2000-01-01 00:01:00 1 2000-01-01 00:02:00 2 2000-01-01 00:03:00 3 2000-01-01 00:04:00 4 2000-01-01 00:05:00 5 2000-01-01 00:06:00 6 2000-01-01 00:07:00 7 2000-01-01 00:08:00 8 Freq: T, dtype: int64 Downsample the series into 3 minute bins and sum the values of the timestamps falling into a bin. >>> series.resample('3T').sum() 2000-01-01 00:00:00 3 2000-01-01 00:03:00 12 2000-01-01 00:06:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but label each bin using the right edge instead of the left. Please note that the value in the bucket used as the label is not included in the bucket, which it labels. For example, in the original series the bucket ``2000-01-01 00:03:00`` contains the value 3, but the summed value in the resampled bucket with the label ``2000-01-01 00:03:00`` does not include 3 (if it did, the summed value would be 6, not 3). To include this value close the right side of the bin interval as illustrated in the example below this one. >>> series.resample('3T', label='right').sum() 2000-01-01 00:03:00 3 2000-01-01 00:06:00 12 2000-01-01 00:09:00 21 Freq: 3T, dtype: int64 Downsample the series into 3 minute bins as above, but close the right side of the bin interval. >>> series.resample('3T', label='right', closed='right').sum() 2000-01-01 00:00:00 0 2000-01-01 00:03:00 6 2000-01-01 00:06:00 15 2000-01-01 00:09:00 15 Freq: 3T, dtype: int64 Upsample the series into 30 second bins. >>> series.resample('30S').asfreq()[0:5] # Select first 5 rows 2000-01-01 00:00:00 0.0 2000-01-01 00:00:30 NaN 2000-01-01 00:01:00 1.0 2000-01-01 00:01:30 NaN 2000-01-01 00:02:00 2.0 Freq: 30S, dtype: float64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``pad`` method. >>> series.resample('30S').pad()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 0 2000-01-01 00:01:00 1 2000-01-01 00:01:30 1 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Upsample the series into 30 second bins and fill the ``NaN`` values using the ``bfill`` method. >>> series.resample('30S').bfill()[0:5] 2000-01-01 00:00:00 0 2000-01-01 00:00:30 1 2000-01-01 00:01:00 1 2000-01-01 00:01:30 2 2000-01-01 00:02:00 2 Freq: 30S, dtype: int64 Pass a custom function via ``apply`` >>> def custom_resampler(array_like): ... return np.sum(array_like) + 5 ... >>> series.resample('3T').apply(custom_resampler) 2000-01-01 00:00:00 8 2000-01-01 00:03:00 17 2000-01-01 00:06:00 26 Freq: 3T, dtype: int64 For a Series with a PeriodIndex, the keyword `convention` can be used to control whether to use the start or end of `rule`. Resample a year by quarter using 'start' `convention`. Values are assigned to the first quarter of the period. >>> s = pd.Series([1, 2], index=pd.period_range('2012-01-01', ... freq='A', ... periods=2)) >>> s 2012 1 2013 2 Freq: A-DEC, dtype: int64 >>> s.resample('Q', convention='start').asfreq() 2012Q1 1.0 2012Q2 NaN 2012Q3 NaN 2012Q4 NaN 2013Q1 2.0 2013Q2 NaN 2013Q3 NaN 2013Q4 NaN Freq: Q-DEC, dtype: float64 Resample quarters by month using 'end' `convention`. Values are assigned to the last month of the period. >>> q = pd.Series([1, 2, 3, 4], index=pd.period_range('2018-01-01', ... freq='Q', ... periods=4)) >>> q 2018Q1 1 2018Q2 2 2018Q3 3 2018Q4 4 Freq: Q-DEC, dtype: int64 >>> q.resample('M', convention='end').asfreq() 2018-03 1.0 2018-04 NaN 2018-05 NaN 2018-06 2.0 2018-07 NaN 2018-08 NaN 2018-09 3.0 2018-10 NaN 2018-11 NaN 2018-12 4.0 Freq: M, dtype: float64 For DataFrame objects, the keyword `on` can be used to specify the column instead of the index for resampling. >>> d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df = pd.DataFrame(d) >>> df['week_starting'] = pd.date_range('01/01/2018', ... periods=8, ... freq='W') >>> df price volume week_starting 0 10 50 2018-01-07 1 11 60 2018-01-14 2 9 40 2018-01-21 3 13 100 2018-01-28 4 14 50 2018-02-04 5 18 100 2018-02-11 6 17 40 2018-02-18 7 19 50 2018-02-25 >>> df.resample('M', on='week_starting').mean() price volume week_starting 2018-01-31 10.75 62.5 2018-02-28 17.00 60.0 For a DataFrame with MultiIndex, the keyword `level` can be used to specify on which level the resampling needs to take place. >>> days = pd.date_range('1/1/2000', periods=4, freq='D') >>> d2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19], ... 'volume': [50, 60, 40, 100, 50, 100, 40, 50]}) >>> df2 = pd.DataFrame(d2, ... index=pd.MultiIndex.from_product([days, ... ['morning', ... 'afternoon']] ... )) >>> df2 price volume 2000-01-01 morning 10 50 afternoon 11 60 2000-01-02 morning 9 40 afternoon 13 100 2000-01-03 morning 14 50 afternoon 18 100 2000-01-04 morning 17 40 afternoon 19 50 >>> df2.resample('D', level=0).sum() price volume 2000-01-01 21 110 2000-01-02 22 140 2000-01-03 32 150 2000-01-04 36 90 """ from pandas.core.resample import get_resampler axis = self._get_axis_number(axis) return get_resampler( self, freq=rule, label=label, closed=closed, axis=axis, kind=kind, loffset=loffset, convention=convention, base=base, key=on, level=level, ) def first(self: FrameOrSeries, offset) -> FrameOrSeries: """ Method to subset initial periods of time series data based on a date offset. Parameters ---------- offset : str, DateOffset, dateutil.relativedelta Returns ------- subset : same type as caller Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- last : Select final periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1,2,3,4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 Get the rows for the first 3 days: >>> ts.first('3D') A 2018-04-09 1 2018-04-11 2 Notice the data for 3 first calender days were returned, not the first 3 days observed in the dataset, and therefore data for 2018-04-13 was not returned. """ if not isinstance(self.index, DatetimeIndex): raise TypeError("'first' only supports a DatetimeIndex index") if len(self.index) == 0: return self offset = to_offset(offset) end_date = end = self.index[0] + offset # Tick-like, e.g. 3 weeks if not offset.is_anchored() and hasattr(offset, "_inc"): if end_date in self.index: end = self.index.searchsorted(end_date, side="left") return self.iloc[:end] return self.loc[:end] def last(self: FrameOrSeries, offset) -> FrameOrSeries: """ Method to subset final periods of time series data based on a date offset. Parameters ---------- offset : str, DateOffset, dateutil.relativedelta Returns ------- subset : same type as caller Raises ------ TypeError If the index is not a :class:`DatetimeIndex` See Also -------- first : Select initial periods of time series based on a date offset. at_time : Select values at a particular time of the day. between_time : Select values between particular times of the day. Examples -------- >>> i = pd.date_range('2018-04-09', periods=4, freq='2D') >>> ts = pd.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 Get the rows for the last 3 days: >>> ts.last('3D') A 2018-04-13 3 2018-04-15 4 Notice the data for 3 last calender days were returned, not the last 3 observed days in the dataset, and therefore data for 2018-04-11 was not returned. """ if not isinstance(self.index, DatetimeIndex): raise TypeError("'last' only supports a DatetimeIndex index") if len(self.index) == 0: return self offset = to_offset(offset) start_date = self.index[-1] - offset start = self.index.searchsorted(start_date, side="right") return self.iloc[start:] def rank( self: FrameOrSeries, axis=0, method: str = "average", numeric_only: Optional[bool_t] = None, na_option: str = "keep", ascending: bool_t = True, pct: bool_t = False, ) -> FrameOrSeries: """ Compute numerical data ranks (1 through n) along axis. By default, equal values are assigned a rank that is the average of the ranks of those values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Index to direct ranking. method : {'average', 'min', 'max', 'first', 'dense'}, default 'average' How to rank the group of records that have the same value (i.e. ties): * average: average rank of the group * min: lowest rank in the group * max: highest rank in the group * first: ranks assigned in order they appear in the array * dense: like 'min', but rank always increases by 1 between groups. numeric_only : bool, optional For DataFrame objects, rank only numeric columns if set to True. na_option : {'keep', 'top', 'bottom'}, default 'keep' How to rank NaN values: * keep: assign NaN rank to NaN values * top: assign smallest rank to NaN values if ascending * bottom: assign highest rank to NaN values if ascending. ascending : bool, default True Whether or not the elements should be ranked in ascending order. pct : bool, default False Whether or not to display the returned rankings in percentile form. Returns ------- same type as caller Return a Series or DataFrame with data ranks as values. See Also -------- core.groupby.GroupBy.rank : Rank of values within each group. Examples -------- >>> df = pd.DataFrame(data={'Animal': ['cat', 'penguin', 'dog', ... 'spider', 'snake'], ... 'Number_legs': [4, 2, 4, 8, np.nan]}) >>> df Animal Number_legs 0 cat 4.0 1 penguin 2.0 2 dog 4.0 3 spider 8.0 4 snake NaN The following example shows how the method behaves with the above parameters: * default_rank: this is the default behaviour obtained without using any parameter. * max_rank: setting ``method = 'max'`` the records that have the same values are ranked using the highest rank (e.g.: since 'cat' and 'dog' are both in the 2nd and 3rd position, rank 3 is assigned.) * NA_bottom: choosing ``na_option = 'bottom'``, if there are records with NaN values they are placed at the bottom of the ranking. * pct_rank: when setting ``pct = True``, the ranking is expressed as percentile rank. >>> df['default_rank'] = df['Number_legs'].rank() >>> df['max_rank'] = df['Number_legs'].rank(method='max') >>> df['NA_bottom'] = df['Number_legs'].rank(na_option='bottom') >>> df['pct_rank'] = df['Number_legs'].rank(pct=True) >>> df Animal Number_legs default_rank max_rank NA_bottom pct_rank 0 cat 4.0 2.5 3.0 2.5 0.625 1 penguin 2.0 1.0 1.0 1.0 0.250 2 dog 4.0 2.5 3.0 2.5 0.625 3 spider 8.0 4.0 4.0 4.0 1.000 4 snake NaN NaN NaN 5.0 NaN """ axis = self._get_axis_number(axis) if na_option not in {"keep", "top", "bottom"}: msg = "na_option must be one of 'keep', 'top', or 'bottom'" raise ValueError(msg) def ranker(data): ranks = algos.rank( data.values, axis=axis, method=method, ascending=ascending, na_option=na_option, pct=pct, ) ranks = self._constructor(ranks, **data._construct_axes_dict()) return ranks.__finalize__(self) # if numeric_only is None, and we can't get anything, we try with # numeric_only=True if numeric_only is None: try: return ranker(self) except TypeError: numeric_only = True if numeric_only: data = self._get_numeric_data() else: data = self return ranker(data) _shared_docs[ "align" ] = """ Align two objects on their axes with the specified join method. Join method is specified for each axis Index. Parameters ---------- other : DataFrame or Series join : {'outer', 'inner', 'left', 'right'}, default 'outer' axis : allowed axis of the other object, default None Align on index (0), columns (1), or both (None). level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level. copy : bool, default True Always returns new objects. If copy=False and no reindexing is required then original objects are returned. fill_value : scalar, default np.NaN Value to use for missing values. Defaults to NaN, but can be any "compatible" value. method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None Method to use for filling holes in reindexed Series: - pad / ffill: propagate last valid observation forward to next valid. - backfill / bfill: use NEXT valid observation to fill gap. limit : int, default None If method is specified, this is the maximum number of consecutive NaN values to forward/backward fill. In other words, if there is a gap with more than this number of consecutive NaNs, it will only be partially filled. If method is not specified, this is the maximum number of entries along the entire axis where NaNs will be filled. Must be greater than 0 if not None. fill_axis : %(axes_single_arg)s, default 0 Filling axis, method and limit. broadcast_axis : %(axes_single_arg)s, default None Broadcast values along this axis, if aligning two objects of different dimensions. Returns ------- (left, right) : (%(klass)s, type of other) Aligned objects. """ @Appender(_shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): method = missing.clean_fill_method(method) if broadcast_axis == 1 and self.ndim != other.ndim: if isinstance(self, ABCSeries): # this means other is a DataFrame, and we need to broadcast # self cons = self._constructor_expanddim df = cons( {c: self for c in other.columns}, **other._construct_axes_dict() ) return df._align_frame( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) elif isinstance(other, ABCSeries): # this means self is a DataFrame, and we need to broadcast # other cons = other._constructor_expanddim df = cons( {c: other for c in self.columns}, **self._construct_axes_dict() ) return self._align_frame( df, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) if axis is not None: axis = self._get_axis_number(axis) if isinstance(other, ABCDataFrame): return self._align_frame( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) elif isinstance(other, ABCSeries): return self._align_series( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, ) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def _align_frame( self, other, join="outer", axis=None, level=None, copy: bool_t = True, fill_value=None, method=None, limit=None, fill_axis=0, ): # defaults join_index, join_columns = None, None ilidx, iridx = None, None clidx, cridx = None, None is_series = isinstance(self, ABCSeries) if axis is None or axis == 0: if not self.index.equals(other.index): join_index, ilidx, iridx = self.index.join( other.index, how=join, level=level, return_indexers=True ) if axis is None or axis == 1: if not is_series and not self.columns.equals(other.columns): join_columns, clidx, cridx = self.columns.join( other.columns, how=join, level=level, return_indexers=True ) if is_series: reindexers = {0: [join_index, ilidx]} else: reindexers = {0: [join_index, ilidx], 1: [join_columns, clidx]} left = self._reindex_with_indexers( reindexers, copy=copy, fill_value=fill_value, allow_dups=True ) # other must be always DataFrame right = other._reindex_with_indexers( {0: [join_index, iridx], 1: [join_columns, cridx]}, copy=copy, fill_value=fill_value, allow_dups=True, ) if method is not None: left = self._ensure_type( left.fillna(method=method, axis=fill_axis, limit=limit) ) right = right.fillna(method=method, axis=fill_axis, limit=limit) # if DatetimeIndex have different tz, convert to UTC if is_datetime64tz_dtype(left.index): if left.index.tz != right.index.tz: if join_index is not None: left.index = join_index right.index = join_index return left.__finalize__(self), right.__finalize__(other) def _align_series( self, other, join="outer", axis=None, level=None, copy: bool_t = True, fill_value=None, method=None, limit=None, fill_axis=0, ): is_series = isinstance(self, ABCSeries) # series/series compat, other must always be a Series if is_series: if axis: raise ValueError("cannot align series to a series other than axis 0") # equal if self.index.equals(other.index): join_index, lidx, ridx = None, None, None else: join_index, lidx, ridx = self.index.join( other.index, how=join, level=level, return_indexers=True ) left = self._reindex_indexer(join_index, lidx, copy) right = other._reindex_indexer(join_index, ridx, copy) else: # one has > 1 ndim fdata = self._data if axis == 0: join_index = self.index lidx, ridx = None, None if not self.index.equals(other.index): join_index, lidx, ridx = self.index.join( other.index, how=join, level=level, return_indexers=True ) if lidx is not None: fdata = fdata.reindex_indexer(join_index, lidx, axis=1) elif axis == 1: join_index = self.columns lidx, ridx = None, None if not self.columns.equals(other.index): join_index, lidx, ridx = self.columns.join( other.index, how=join, level=level, return_indexers=True ) if lidx is not None: fdata = fdata.reindex_indexer(join_index, lidx, axis=0) else: raise ValueError("Must specify axis=0 or 1") if copy and fdata is self._data: fdata = fdata.copy() left = self._constructor(fdata) if ridx is None: right = other else: right = other.reindex(join_index, level=level) # fill fill_na = notna(fill_value) or (method is not None) if fill_na: left = left.fillna(fill_value, method=method, limit=limit, axis=fill_axis) right = right.fillna(fill_value, method=method, limit=limit) # if DatetimeIndex have different tz, convert to UTC if is_series or (not is_series and axis == 0): if is_datetime64tz_dtype(left.index): if left.index.tz != right.index.tz: if join_index is not None: left.index = join_index right.index = join_index return left.__finalize__(self), right.__finalize__(other) def _where( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): """ Equivalent to public method `where`, except that `other` is not applied as a function even if callable. Used in __setitem__. """ inplace = validate_bool_kwarg(inplace, "inplace") # align the cond to same shape as myself cond = com.apply_if_callable(cond, self) if isinstance(cond, NDFrame): cond, _ = cond.align(self, join="right", broadcast_axis=1) else: if not hasattr(cond, "shape"): cond = np.asanyarray(cond) if cond.shape != self.shape: raise ValueError("Array conditional must be same shape as self") cond = self._constructor(cond, **self._construct_axes_dict()) # make sure we are boolean fill_value = bool(inplace) cond = cond.fillna(fill_value) msg = "Boolean array expected for the condition, not {dtype}" if not isinstance(cond, ABCDataFrame): # This is a single-dimensional object. if not is_bool_dtype(cond): raise ValueError(msg.format(dtype=cond.dtype)) elif not cond.empty: for dt in cond.dtypes: if not is_bool_dtype(dt): raise ValueError(msg.format(dtype=dt)) cond = -cond if inplace else cond # try to align with other try_quick = True if hasattr(other, "align"): # align with me if other.ndim <= self.ndim: _, other = self.align( other, join="left", axis=axis, level=level, fill_value=np.nan ) # if we are NOT aligned, raise as we cannot where index if axis is None and not all( other._get_axis(i).equals(ax) for i, ax in enumerate(self.axes) ): raise InvalidIndexError # slice me out of the other else: raise NotImplementedError( "cannot align with a higher dimensional NDFrame" ) if isinstance(other, np.ndarray): if other.shape != self.shape: if self.ndim == 1: icond = cond.values # GH 2745 / GH 4192 # treat like a scalar if len(other) == 1: other = np.array(other[0]) # GH 3235 # match True cond to other elif len(cond[icond]) == len(other): # try to not change dtype at first (if try_quick) if try_quick: new_other = com.values_from_object(self) new_other = new_other.copy() new_other[icond] = other other = new_other else: raise ValueError( "Length of replacements must equal series length" ) else: raise ValueError( "other must be the same shape as self when an ndarray" ) # we are the same shape, so create an actual object for alignment else: other = self._constructor(other, **self._construct_axes_dict()) if axis is None: axis = 0 if self.ndim == getattr(other, "ndim", 0): align = True else: align = self._get_axis_number(axis) == 1 block_axis = self._get_block_manager_axis(axis) if inplace: # we may have different type blocks come out of putmask, so # reconstruct the block manager self._check_inplace_setting(other) new_data = self._data.putmask( mask=cond, new=other, align=align, inplace=True, axis=block_axis, transpose=self._AXIS_REVERSED, ) self._update_inplace(new_data) else: new_data = self._data.where( other=other, cond=cond, align=align, errors=errors, try_cast=try_cast, axis=block_axis, ) return self._constructor(new_data).__finalize__(self) _shared_docs[ "where" ] = """ Replace values where the condition is %(cond_rev)s. Parameters ---------- cond : bool %(klass)s, array-like, or callable Where `cond` is %(cond)s, keep the original value. Where %(cond_rev)s, replace with corresponding value from `other`. If `cond` is callable, it is computed on the %(klass)s and should return boolean %(klass)s or array. The callable must not change input %(klass)s (though pandas doesn't check it). other : scalar, %(klass)s, or callable Entries where `cond` is %(cond_rev)s are replaced with corresponding value from `other`. If other is callable, it is computed on the %(klass)s and should return scalar or %(klass)s. The callable must not change input %(klass)s (though pandas doesn't check it). inplace : bool, default False Whether to perform the operation in place on the data. axis : int, default None Alignment axis if needed. level : int, default None Alignment level if needed. errors : str, {'raise', 'ignore'}, default 'raise' Note that currently this parameter won't affect the results and will always coerce to a suitable dtype. - 'raise' : allow exceptions to be raised. - 'ignore' : suppress exceptions. On error return original object. try_cast : bool, default False Try to cast the result back to the input type (if possible). Returns ------- Same type as caller See Also -------- :func:`DataFrame.%(name_other)s` : Return an object of same shape as self. Notes ----- The %(name)s method is an application of the if-then idiom. For each element in the calling DataFrame, if ``cond`` is ``%(cond)s`` the element is used; otherwise the corresponding element from the DataFrame ``other`` is used. The signature for :func:`DataFrame.where` differs from :func:`numpy.where`. Roughly ``df1.where(m, df2)`` is equivalent to ``np.where(m, df1, df2)``. For further details and examples see the ``%(name)s`` documentation in :ref:`indexing <indexing.where_mask>`. Examples -------- >>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64 >>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 >>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64 >>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> df A B 0 0 1 1 2 3 2 4 5 3 6 7 4 8 9 >>> m = df %% 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True """ @Appender( _shared_docs["where"] % dict( _shared_doc_kwargs, cond="True", cond_rev="False", name="where", name_other="mask", ) ) def where( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): other = com.apply_if_callable(other, self) return self._where( cond, other, inplace, axis, level, errors=errors, try_cast=try_cast ) @Appender( _shared_docs["where"] % dict( _shared_doc_kwargs, cond="False", cond_rev="True", name="mask", name_other="where", ) ) def mask( self, cond, other=np.nan, inplace=False, axis=None, level=None, errors="raise", try_cast=False, ): inplace = validate_bool_kwarg(inplace, "inplace") cond = com.apply_if_callable(cond, self) # see gh-21891 if not hasattr(cond, "__invert__"): cond = np.array(cond) return self.where( ~cond, other=other, inplace=inplace, axis=axis, level=level, try_cast=try_cast, errors=errors, ) _shared_docs[ "shift" ] = """ Shift index by desired number of periods with an optional time `freq`. When `freq` is not passed, shift the index without realigning the data. If `freq` is passed (in this case, the index must be date or datetime, or it will raise a `NotImplementedError`), the index will be increased using the periods and the `freq`. Parameters ---------- periods : int Number of periods to shift. Can be positive or negative. freq : DateOffset, tseries.offsets, timedelta, or str, optional Offset to use from the tseries module or time rule (e.g. 'EOM'). If `freq` is specified then the index values are shifted but the data is not realigned. That is, use `freq` if you would like to extend the index when shifting and preserve the original data. axis : {0 or 'index', 1 or 'columns', None}, default None Shift direction. fill_value : object, optional The scalar value to use for newly introduced missing values. the default depends on the dtype of `self`. For numeric data, ``np.nan`` is used. For datetime, timedelta, or period data, etc. :attr:`NaT` is used. For extension dtypes, ``self.dtype.na_value`` is used. .. versionchanged:: 0.24.0 Returns ------- %(klass)s Copy of input object, shifted. See Also -------- Index.shift : Shift values of Index. DatetimeIndex.shift : Shift values of DatetimeIndex. PeriodIndex.shift : Shift values of PeriodIndex. tshift : Shift the time index, using the index's frequency if available. Examples -------- >>> df = pd.DataFrame({'Col1': [10, 20, 15, 30, 45], ... 'Col2': [13, 23, 18, 33, 48], ... 'Col3': [17, 27, 22, 37, 52]}) >>> df.shift(periods=3) Col1 Col2 Col3 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 10.0 13.0 17.0 4 20.0 23.0 27.0 >>> df.shift(periods=1, axis='columns') Col1 Col2 Col3 0 NaN 10.0 13.0 1 NaN 20.0 23.0 2 NaN 15.0 18.0 3 NaN 30.0 33.0 4 NaN 45.0 48.0 >>> df.shift(periods=3, fill_value=0) Col1 Col2 Col3 0 0 0 0 1 0 0 0 2 0 0 0 3 10 13 17 4 20 23 27 """ @Appender(_shared_docs["shift"] % _shared_doc_kwargs) def shift( self: FrameOrSeries, periods=1, freq=None, axis=0, fill_value=None ) -> FrameOrSeries: if periods == 0: return self.copy() block_axis = self._get_block_manager_axis(axis) if freq is None: new_data = self._data.shift( periods=periods, axis=block_axis, fill_value=fill_value ) else: return self.tshift(periods, freq) return self._constructor(new_data).__finalize__(self) def slice_shift(self: FrameOrSeries, periods: int = 1, axis=0) -> FrameOrSeries: """ Equivalent to `shift` without copying data. The shifted data will not include the dropped periods and the shifted axis will be smaller than the original. Parameters ---------- periods : int Number of periods to move, can be positive or negative. Returns ------- shifted : same type as caller Notes ----- While the `slice_shift` is faster than `shift`, you may pay for it later during alignment. """ if periods == 0: return self if periods > 0: vslicer = slice(None, -periods) islicer = slice(periods, None) else: vslicer = slice(-periods, None) islicer = slice(None, periods) new_obj = self._slice(vslicer, axis=axis) shifted_axis = self._get_axis(axis)[islicer] new_obj.set_axis(shifted_axis, axis=axis, inplace=True) return new_obj.__finalize__(self) def tshift( self: FrameOrSeries, periods: int = 1, freq=None, axis=0 ) -> FrameOrSeries: """ Shift the time index, using the index's frequency if available. Parameters ---------- periods : int Number of periods to move, can be positive or negative. freq : DateOffset, timedelta, or str, default None Increment to use from the tseries module or time rule expressed as a string (e.g. 'EOM'). axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0 Corresponds to the axis that contains the Index. Returns ------- shifted : Series/DataFrame Notes ----- If freq is not specified then tries to use the freq or inferred_freq attributes of the index. If neither of those attributes exist, a ValueError is thrown """ index = self._get_axis(axis) if freq is None: freq = getattr(index, "freq", None) if freq is None: freq = getattr(index, "inferred_freq", None) if freq is None: msg = "Freq was not given and was not set in the index" raise ValueError(msg) if periods == 0: return self if isinstance(freq, str): freq = to_offset(freq) block_axis = self._get_block_manager_axis(axis) if isinstance(index, PeriodIndex): orig_freq = to_offset(index.freq) if freq == orig_freq: new_data = self._data.copy() new_data.axes[block_axis] = index.shift(periods) elif orig_freq is not None: raise ValueError( f"Given freq {freq.rule_code} does not match " f"PeriodIndex freq {orig_freq.rule_code}" ) else: new_data = self._data.copy() new_data.axes[block_axis] = index.shift(periods, freq) return self._constructor(new_data).__finalize__(self) def truncate( self: FrameOrSeries, before=None, after=None, axis=None, copy: bool_t = True ) -> FrameOrSeries: """ Truncate a Series or DataFrame before and after some index value. This is a useful shorthand for boolean indexing based on index values above or below certain thresholds. Parameters ---------- before : date, str, int Truncate all rows before this index value. after : date, str, int Truncate all rows after this index value. axis : {0 or 'index', 1 or 'columns'}, optional Axis to truncate. Truncates the index (rows) by default. copy : bool, default is True, Return a copy of the truncated section. Returns ------- type of caller The truncated Series or DataFrame. See Also -------- DataFrame.loc : Select a subset of a DataFrame by label. DataFrame.iloc : Select a subset of a DataFrame by position. Notes ----- If the index being truncated contains only datetime values, `before` and `after` may be specified as strings instead of Timestamps. Examples -------- >>> df = pd.DataFrame({'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o']}, ... index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o >>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n The columns of a DataFrame can be truncated. >>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j For Series, only rows can be truncated. >>> df['A'].truncate(before=2, after=4) 2 b 3 c 4 d Name: A, dtype: object The index values in ``truncate`` can be datetimes or string dates. >>> dates = pd.date_range('2016-01-01', '2016-02-01', freq='s') >>> df = pd.DataFrame(index=dates, data={'A': 1}) >>> df.tail() A 2016-01-31 23:59:56 1 2016-01-31 23:59:57 1 2016-01-31 23:59:58 1 2016-01-31 23:59:59 1 2016-02-01 00:00:00 1 >>> df.truncate(before=pd.Timestamp('2016-01-05'), ... after=pd.Timestamp('2016-01-10')).tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Because the index is a DatetimeIndex containing only dates, we can specify `before` and `after` as strings. They will be coerced to Timestamps before truncation. >>> df.truncate('2016-01-05', '2016-01-10').tail() A 2016-01-09 23:59:56 1 2016-01-09 23:59:57 1 2016-01-09 23:59:58 1 2016-01-09 23:59:59 1 2016-01-10 00:00:00 1 Note that ``truncate`` assumes a 0 value for any unspecified time component (midnight). This differs from partial string slicing, which returns any partially matching dates. >>> df.loc['2016-01-05':'2016-01-10', :].tail() A 2016-01-10 23:59:55 1 2016-01-10 23:59:56 1 2016-01-10 23:59:57 1 2016-01-10 23:59:58 1 2016-01-10 23:59:59 1 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) ax = self._get_axis(axis) # GH 17935 # Check that index is sorted if not ax.is_monotonic_increasing and not ax.is_monotonic_decreasing: raise ValueError("truncate requires a sorted index") # if we have a date index, convert to dates, otherwise # treat like a slice if ax.is_all_dates: from pandas.core.tools.datetimes import to_datetime before = to_datetime(before) after = to_datetime(after) if before is not None and after is not None: if before > after: raise ValueError(f"Truncate: {after} must be after {before}") slicer = [slice(None, None)] * self._AXIS_LEN slicer[axis] = slice(before, after) result = self.loc[tuple(slicer)] if isinstance(ax, MultiIndex): setattr(result, self._get_axis_name(axis), ax.truncate(before, after)) if copy: result = result.copy() return result def tz_convert( self: FrameOrSeries, tz, axis=0, level=None, copy: bool_t = True ) -> FrameOrSeries: """ Convert tz-aware axis to target time zone. Parameters ---------- tz : str or tzinfo object axis : the axis to convert level : int, str, default None If axis is a MultiIndex, convert a specific level. Otherwise must be None. copy : bool, default True Also make a copy of the underlying data. Returns ------- %(klass)s Object with time zone converted axis. Raises ------ TypeError If the axis is tz-naive. """ axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_convert(ax, tz): if not hasattr(ax, "tz_convert"): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError( f"{ax_name} is not a valid DatetimeIndex or PeriodIndex" ) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_convert(tz) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_convert(ax.levels[level], tz) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError(f"The level {level} is not valid") ax = _tz_convert(ax, tz) result = self._constructor(self._data, copy=copy) result = result.set_axis(ax, axis=axis, inplace=False) return result.__finalize__(self) def tz_localize( self: FrameOrSeries, tz, axis=0, level=None, copy: bool_t = True, ambiguous="raise", nonexistent: str = "raise", ) -> FrameOrSeries: """ Localize tz-naive index of a Series or DataFrame to target time zone. This operation localizes the Index. To localize the values in a timezone-naive Series, use :meth:`Series.dt.tz_localize`. Parameters ---------- tz : str or tzinfo axis : the axis to localize level : int, str, default None If axis ia a MultiIndex, localize a specific level. Otherwise must be None. copy : bool, default True Also make a copy of the underlying data. ambiguous : 'infer', bool-ndarray, 'NaT', default 'raise' When clocks moved backward due to DST, ambiguous times may arise. For example in Central European Time (UTC+01), when going from 03:00 DST to 02:00 non-DST, 02:30:00 local time occurs both at 00:30:00 UTC and at 01:30:00 UTC. In such a situation, the `ambiguous` parameter dictates how ambiguous times should be handled. - 'infer' will attempt to infer fall dst-transition hours based on order - bool-ndarray where True signifies a DST time, False designates a non-DST time (note that this flag is only applicable for ambiguous times) - 'NaT' will return NaT where there are ambiguous times - 'raise' will raise an AmbiguousTimeError if there are ambiguous times. nonexistent : str, default 'raise' A nonexistent time does not exist in a particular timezone where clocks moved forward due to DST. Valid values are: - 'shift_forward' will shift the nonexistent time forward to the closest existing time - 'shift_backward' will shift the nonexistent time backward to the closest existing time - 'NaT' will return NaT where there are nonexistent times - timedelta objects will shift nonexistent times by the timedelta - 'raise' will raise an NonExistentTimeError if there are nonexistent times. .. versionadded:: 0.24.0 Returns ------- Series or DataFrame Same type as the input. Raises ------ TypeError If the TimeSeries is tz-aware and tz is not None. Examples -------- Localize local times: >>> s = pd.Series([1], ... index=pd.DatetimeIndex(['2018-09-15 01:30:00'])) >>> s.tz_localize('CET') 2018-09-15 01:30:00+02:00 1 dtype: int64 Be careful with DST changes. When there is sequential data, pandas can infer the DST time: >>> s = pd.Series(range(7), ... index=pd.DatetimeIndex(['2018-10-28 01:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 02:00:00', ... '2018-10-28 02:30:00', ... '2018-10-28 03:00:00', ... '2018-10-28 03:30:00'])) >>> s.tz_localize('CET', ambiguous='infer') 2018-10-28 01:30:00+02:00 0 2018-10-28 02:00:00+02:00 1 2018-10-28 02:30:00+02:00 2 2018-10-28 02:00:00+01:00 3 2018-10-28 02:30:00+01:00 4 2018-10-28 03:00:00+01:00 5 2018-10-28 03:30:00+01:00 6 dtype: int64 In some cases, inferring the DST is impossible. In such cases, you can pass an ndarray to the ambiguous parameter to set the DST explicitly >>> s = pd.Series(range(3), ... index=pd.DatetimeIndex(['2018-10-28 01:20:00', ... '2018-10-28 02:36:00', ... '2018-10-28 03:46:00'])) >>> s.tz_localize('CET', ambiguous=np.array([True, True, False])) 2018-10-28 01:20:00+02:00 0 2018-10-28 02:36:00+02:00 1 2018-10-28 03:46:00+01:00 2 dtype: int64 If the DST transition causes nonexistent times, you can shift these dates forward or backwards with a timedelta object or `'shift_forward'` or `'shift_backwards'`. >>> s = pd.Series(range(2), ... index=pd.DatetimeIndex(['2015-03-29 02:30:00', ... '2015-03-29 03:30:00'])) >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_forward') 2015-03-29 03:00:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent='shift_backward') 2015-03-29 01:59:59.999999999+01:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 >>> s.tz_localize('Europe/Warsaw', nonexistent=pd.Timedelta('1H')) 2015-03-29 03:30:00+02:00 0 2015-03-29 03:30:00+02:00 1 dtype: int64 """ nonexistent_options = ("raise", "NaT", "shift_forward", "shift_backward") if nonexistent not in nonexistent_options and not isinstance( nonexistent, timedelta ): raise ValueError( "The nonexistent argument must be one of 'raise', " "'NaT', 'shift_forward', 'shift_backward' or " "a timedelta object" ) axis = self._get_axis_number(axis) ax = self._get_axis(axis) def _tz_localize(ax, tz, ambiguous, nonexistent): if not hasattr(ax, "tz_localize"): if len(ax) > 0: ax_name = self._get_axis_name(axis) raise TypeError( f"{ax_name} is not a valid DatetimeIndex or PeriodIndex" ) else: ax = DatetimeIndex([], tz=tz) else: ax = ax.tz_localize(tz, ambiguous=ambiguous, nonexistent=nonexistent) return ax # if a level is given it must be a MultiIndex level or # equivalent to the axis name if isinstance(ax, MultiIndex): level = ax._get_level_number(level) new_level = _tz_localize(ax.levels[level], tz, ambiguous, nonexistent) ax = ax.set_levels(new_level, level=level) else: if level not in (None, 0, ax.name): raise ValueError(f"The level {level} is not valid") ax = _tz_localize(ax, tz, ambiguous, nonexistent) result = self._constructor(self._data, copy=copy) result = result.set_axis(ax, axis=axis, inplace=False) return result.__finalize__(self) # ---------------------------------------------------------------------- # Numeric Methods def abs(self: FrameOrSeries) -> FrameOrSeries: """ Return a Series/DataFrame with absolute numeric value of each element. This function only applies to elements that are all numeric. Returns ------- abs Series/DataFrame containing the absolute value of each element. See Also -------- numpy.absolute : Calculate the absolute value element-wise. Notes ----- For ``complex`` inputs, ``1.2 + 1j``, the absolute value is :math:`\\sqrt{ a^2 + b^2 }`. Examples -------- Absolute numeric values in a Series. >>> s = pd.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 Absolute numeric values in a Series with complex numbers. >>> s = pd.Series([1.2 + 1j]) >>> s.abs() 0 1.56205 dtype: float64 Absolute numeric values in a Series with a Timedelta element. >>> s = pd.Series([pd.Timedelta('1 days')]) >>> s.abs() 0 1 days dtype: timedelta64[ns] Select rows with data closest to certain value using argsort (from `StackOverflow <https://stackoverflow.com/a/17758115>`__). >>> df = pd.DataFrame({ ... 'a': [4, 5, 6, 7], ... 'b': [10, 20, 30, 40], ... 'c': [100, 50, -30, -50] ... }) >>> df a b c 0 4 10 100 1 5 20 50 2 6 30 -30 3 7 40 -50 >>> df.loc[(df.c - 43).abs().argsort()] a b c 1 5 20 50 0 4 10 100 2 6 30 -30 3 7 40 -50 """ return np.abs(self) def describe( self: FrameOrSeries, percentiles=None, include=None, exclude=None ) -> FrameOrSeries: """ Generate descriptive statistics. Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding ``NaN`` values. Analyzes both numeric and object series, as well as ``DataFrame`` column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail. Parameters ---------- percentiles : list-like of numbers, optional The percentiles to include in the output. All should fall between 0 and 1. The default is ``[.25, .5, .75]``, which returns the 25th, 50th, and 75th percentiles. include : 'all', list-like of dtypes or None (default), optional A white list of data types to include in the result. Ignored for ``Series``. Here are the options: - 'all' : All columns of the input will be included in the output. - A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit ``numpy.number``. To limit it instead to object columns submit the ``numpy.object`` data type. Strings can also be used in the style of ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To select pandas categorical columns, use ``'category'`` - None (default) : The result will include all numeric columns. exclude : list-like of dtypes or None (default), optional, A black list of data types to omit from the result. Ignored for ``Series``. Here are the options: - A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit ``numpy.number``. To exclude object columns submit the data type ``numpy.object``. Strings can also be used in the style of ``select_dtypes`` (e.g. ``df.describe(include=['O'])``). To exclude pandas categorical columns, use ``'category'`` - None (default) : The result will exclude nothing. Returns ------- Series or DataFrame Summary statistics of the Series or Dataframe provided. See Also -------- DataFrame.count: Count number of non-NA/null observations. DataFrame.max: Maximum of the values in the object. DataFrame.min: Minimum of the values in the object. DataFrame.mean: Mean of the values. DataFrame.std: Standard deviation of the observations. DataFrame.select_dtypes: Subset of a DataFrame including/excluding columns based on their dtype. Notes ----- For numeric data, the result's index will include ``count``, ``mean``, ``std``, ``min``, ``max`` as well as lower, ``50`` and upper percentiles. By default the lower percentile is ``25`` and the upper percentile is ``75``. The ``50`` percentile is the same as the median. For object data (e.g. strings or timestamps), the result's index will include ``count``, ``unique``, ``top``, and ``freq``. The ``top`` is the most common value. The ``freq`` is the most common value's frequency. Timestamps also include the ``first`` and ``last`` items. If multiple object values have the highest count, then the ``count`` and ``top`` results will be arbitrarily chosen from among those with the highest count. For mixed data types provided via a ``DataFrame``, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. If ``include='all'`` is provided as an option, the result will include a union of attributes of each type. The `include` and `exclude` parameters can be used to limit which columns in a ``DataFrame`` are analyzed for the output. The parameters are ignored when analyzing a ``Series``. Examples -------- Describing a numeric ``Series``. >>> s = pd.Series([1, 2, 3]) >>> s.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 dtype: float64 Describing a categorical ``Series``. >>> s = pd.Series(['a', 'a', 'b', 'c']) >>> s.describe() count 4 unique 3 top a freq 2 dtype: object Describing a timestamp ``Series``. >>> s = pd.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) >>> s.describe() count 3 unique 2 top 2010-01-01 00:00:00 freq 2 first 2000-01-01 00:00:00 last 2010-01-01 00:00:00 dtype: object Describing a ``DataFrame``. By default only numeric fields are returned. >>> df = pd.DataFrame({'categorical': pd.Categorical(['d','e','f']), ... 'numeric': [1, 2, 3], ... 'object': ['a', 'b', 'c'] ... }) >>> df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Describing all columns of a ``DataFrame`` regardless of data type. >>> df.describe(include='all') categorical numeric object count 3 3.0 3 unique 3 NaN 3 top f NaN c freq 1 NaN 1 mean NaN 2.0 NaN std NaN 1.0 NaN min NaN 1.0 NaN 25% NaN 1.5 NaN 50% NaN 2.0 NaN 75% NaN 2.5 NaN max NaN 3.0 NaN Describing a column from a ``DataFrame`` by accessing it as an attribute. >>> df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64 Including only numeric columns in a ``DataFrame`` description. >>> df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Including only string columns in a ``DataFrame`` description. >>> df.describe(include=[np.object]) object count 3 unique 3 top c freq 1 Including only categorical columns from a ``DataFrame`` description. >>> df.describe(include=['category']) categorical count 3 unique 3 top f freq 1 Excluding numeric columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.number]) categorical object count 3 3 unique 3 3 top f c freq 1 1 Excluding object columns from a ``DataFrame`` description. >>> df.describe(exclude=[np.object]) categorical numeric count 3 3.0 unique 3 NaN top f NaN freq 1 NaN mean NaN 2.0 std NaN 1.0 min NaN 1.0 25% NaN 1.5 50% NaN 2.0 75% NaN 2.5 max NaN 3.0 """ if self.ndim == 2 and self.columns.size == 0: raise ValueError("Cannot describe a DataFrame without columns") if percentiles is not None: # explicit conversion of `percentiles` to list percentiles = list(percentiles) # get them all to be in [0, 1] validate_percentile(percentiles) # median should always be included if 0.5 not in percentiles: percentiles.append(0.5) percentiles = np.asarray(percentiles) else: percentiles = np.array([0.25, 0.5, 0.75]) # sort and check for duplicates unique_pcts = np.unique(percentiles) if len(unique_pcts) < len(percentiles): raise ValueError("percentiles cannot contain duplicates") percentiles = unique_pcts formatted_percentiles = format_percentiles(percentiles) def describe_numeric_1d(series): stat_index = ( ["count", "mean", "std", "min"] + formatted_percentiles + ["max"] ) d = ( [series.count(), series.mean(), series.std(), series.min()] + series.quantile(percentiles).tolist() + [series.max()] ) return pd.Series(d, index=stat_index, name=series.name) def describe_categorical_1d(data): names = ["count", "unique"] objcounts = data.value_counts() count_unique = len(objcounts[objcounts != 0]) result = [data.count(), count_unique] dtype = None if result[1] > 0: top, freq = objcounts.index[0], objcounts.iloc[0] names += ["top", "freq"] result += [top, freq] # If the DataFrame is empty, set 'top' and 'freq' to None # to maintain output shape consistency else: names += ["top", "freq"] result += [np.nan, np.nan] dtype = "object" return pd.Series(result, index=names, name=data.name, dtype=dtype) def describe_timestamp_1d(data): # GH-30164 stat_index = ["count", "mean", "min"] + formatted_percentiles + ["max"] d = ( [data.count(), data.mean(), data.min()] + data.quantile(percentiles).tolist() + [data.max()] ) return pd.Series(d, index=stat_index, name=data.name) def describe_1d(data): if is_bool_dtype(data): return describe_categorical_1d(data) elif is_numeric_dtype(data): return describe_numeric_1d(data) elif is_datetime64_any_dtype(data): return describe_timestamp_1d(data) elif is_timedelta64_dtype(data): return describe_numeric_1d(data) else: return describe_categorical_1d(data) if self.ndim == 1: return describe_1d(self) elif (include is None) and (exclude is None): # when some numerics are found, keep only numerics data = self.select_dtypes(include=[np.number]) if len(data.columns) == 0: data = self elif include == "all": if exclude is not None: msg = "exclude must be None when include is 'all'" raise ValueError(msg) data = self else: data = self.select_dtypes(include=include, exclude=exclude) ldesc = [describe_1d(s) for _, s in data.items()] # set a convenient order for rows names: List[Optional[Hashable]] = [] ldesc_indexes = sorted((x.index for x in ldesc), key=len) for idxnames in ldesc_indexes: for name in idxnames: if name not in names: names.append(name) d = pd.concat([x.reindex(names, copy=False) for x in ldesc], axis=1, sort=False) d.columns = data.columns.copy() return d _shared_docs[ "pct_change" ] = """ Percentage change between the current and a prior element. Computes the percentage change from the immediately previous row by default. This is useful in comparing the percentage of change in a time series of elements. Parameters ---------- periods : int, default 1 Periods to shift for forming percent change. fill_method : str, default 'pad' How to handle NAs before computing percent changes. limit : int, default None The number of consecutive NAs to fill before stopping. freq : DateOffset, timedelta, or str, optional Increment to use from time series API (e.g. 'M' or BDay()). **kwargs Additional keyword arguments are passed into `DataFrame.shift` or `Series.shift`. Returns ------- chg : Series or DataFrame The same type as the calling object. See Also -------- Series.diff : Compute the difference of two elements in a Series. DataFrame.diff : Compute the difference of two elements in a DataFrame. Series.shift : Shift the index by some number of periods. DataFrame.shift : Shift the index by some number of periods. Examples -------- **Series** >>> s = pd.Series([90, 91, 85]) >>> s 0 90 1 91 2 85 dtype: int64 >>> s.pct_change() 0 NaN 1 0.011111 2 -0.065934 dtype: float64 >>> s.pct_change(periods=2) 0 NaN 1 NaN 2 -0.055556 dtype: float64 See the percentage change in a Series where filling NAs with last valid observation forward to next valid. >>> s = pd.Series([90, 91, None, 85]) >>> s 0 90.0 1 91.0 2 NaN 3 85.0 dtype: float64 >>> s.pct_change(fill_method='ffill') 0 NaN 1 0.011111 2 0.000000 3 -0.065934 dtype: float64 **DataFrame** Percentage change in French franc, Deutsche Mark, and Italian lira from 1980-01-01 to 1980-03-01. >>> df = pd.DataFrame({ ... 'FR': [4.0405, 4.0963, 4.3149], ... 'GR': [1.7246, 1.7482, 1.8519], ... 'IT': [804.74, 810.01, 860.13]}, ... index=['1980-01-01', '1980-02-01', '1980-03-01']) >>> df FR GR IT 1980-01-01 4.0405 1.7246 804.74 1980-02-01 4.0963 1.7482 810.01 1980-03-01 4.3149 1.8519 860.13 >>> df.pct_change() FR GR IT 1980-01-01 NaN NaN NaN 1980-02-01 0.013810 0.013684 0.006549 1980-03-01 0.053365 0.059318 0.061876 Percentage of change in GOOG and APPL stock volume. Shows computing the percentage change between columns. >>> df = pd.DataFrame({ ... '2016': [1769950, 30586265], ... '2015': [1500923, 40912316], ... '2014': [1371819, 41403351]}, ... index=['GOOG', 'APPL']) >>> df 2016 2015 2014 GOOG 1769950 1500923 1371819 APPL 30586265 40912316 41403351 >>> df.pct_change(axis='columns') 2016 2015 2014 GOOG NaN -0.151997 -0.086016 APPL NaN 0.337604 0.012002 """ @Appender(_shared_docs["pct_change"] % _shared_doc_kwargs) def pct_change( self: FrameOrSeries, periods=1, fill_method="pad", limit=None, freq=None, **kwargs, ) -> FrameOrSeries: # TODO: Not sure if above is correct - need someone to confirm. axis = self._get_axis_number(kwargs.pop("axis", self._stat_axis_name)) if fill_method is None: data = self else: data = self._ensure_type( self.fillna(method=fill_method, axis=axis, limit=limit) ) rs = data.div(data.shift(periods=periods, freq=freq, axis=axis, **kwargs)) - 1 if freq is not None: # Shift method is implemented differently when freq is not None # We want to restore the original index rs = rs.loc[~rs.index.duplicated()] rs = rs.reindex_like(data) return rs def _agg_by_level(self, name, axis=0, level=0, skipna=True, **kwargs): if axis is None: raise ValueError("Must specify 'axis' when aggregating by level.") grouped = self.groupby(level=level, axis=axis, sort=False) if hasattr(grouped, name) and skipna: return getattr(grouped, name)(**kwargs) axis = self._get_axis_number(axis) method = getattr(type(self), name) applyf = lambda x: method(x, axis=axis, skipna=skipna, **kwargs) return grouped.aggregate(applyf) @classmethod def _add_numeric_operations(cls): """ Add the operations to the cls; evaluate the doc strings again """ axis_descr, name, name2 = _doc_parms(cls) cls.any = _make_logical_function( cls, "any", name, name2, axis_descr, _any_desc, nanops.nanany, _any_see_also, _any_examples, empty_value=False, ) cls.all = _make_logical_function( cls, "all", name, name2, axis_descr, _all_desc, nanops.nanall, _all_see_also, _all_examples, empty_value=True, ) @Substitution( desc="Return the mean absolute deviation of the values " "for the requested axis.", name1=name, name2=name2, axis_descr=axis_descr, min_count="", see_also="", examples="", ) @Appender(_num_doc_mad) def mad(self, axis=None, skipna=None, level=None): if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level("mad", axis=axis, level=level, skipna=skipna) data = self._get_numeric_data() if axis == 0: demeaned = data - data.mean(axis=0) else: demeaned = data.sub(data.mean(axis=1), axis=0) return np.abs(demeaned).mean(axis=axis, skipna=skipna) cls.mad = mad cls.sem = _make_stat_function_ddof( cls, "sem", name, name2, axis_descr, "Return unbiased standard error of the mean over requested " "axis.\n\nNormalized by N-1 by default. This can be changed " "using the ddof argument", nanops.nansem, ) cls.var = _make_stat_function_ddof( cls, "var", name, name2, axis_descr, "Return unbiased variance over requested axis.\n\nNormalized by " "N-1 by default. This can be changed using the ddof argument", nanops.nanvar, ) cls.std = _make_stat_function_ddof( cls, "std", name, name2, axis_descr, "Return sample standard deviation over requested axis." "\n\nNormalized by N-1 by default. This can be changed using the " "ddof argument", nanops.nanstd, ) cls.cummin = _make_cum_function( cls, "cummin", name, name2, axis_descr, "minimum", np.minimum.accumulate, "min", np.inf, np.nan, _cummin_examples, ) cls.cumsum = _make_cum_function( cls, "cumsum", name, name2, axis_descr, "sum", np.cumsum, "sum", 0.0, np.nan, _cumsum_examples, ) cls.cumprod = _make_cum_function( cls, "cumprod", name, name2, axis_descr, "product", np.cumprod, "prod", 1.0, np.nan, _cumprod_examples, ) cls.cummax = _make_cum_function( cls, "cummax", name, name2, axis_descr, "maximum", np.maximum.accumulate, "max", -np.inf, np.nan, _cummax_examples, ) cls.sum = _make_min_count_stat_function( cls, "sum", name, name2, axis_descr, """Return the sum of the values for the requested axis.\n This is equivalent to the method ``numpy.sum``.""", nanops.nansum, _stat_func_see_also, _sum_examples, ) cls.mean = _make_stat_function( cls, "mean", name, name2, axis_descr, "Return the mean of the values for the requested axis.", nanops.nanmean, ) cls.skew = _make_stat_function( cls, "skew", name, name2, axis_descr, "Return unbiased skew over requested axis.\n\nNormalized by N-1.", nanops.nanskew, ) cls.kurt = _make_stat_function( cls, "kurt", name, name2, axis_descr, "Return unbiased kurtosis over requested axis.\n\n" "Kurtosis obtained using Fisher's definition of\n" "kurtosis (kurtosis of normal == 0.0). Normalized " "by N-1.", nanops.nankurt, ) cls.kurtosis = cls.kurt cls.prod = _make_min_count_stat_function( cls, "prod", name, name2, axis_descr, "Return the product of the values for the requested axis.", nanops.nanprod, examples=_prod_examples, ) cls.product = cls.prod cls.median = _make_stat_function( cls, "median", name, name2, axis_descr, "Return the median of the values for the requested axis.", nanops.nanmedian, ) cls.max = _make_stat_function( cls, "max", name, name2, axis_descr, """Return the maximum of the values for the requested axis.\n If you want the *index* of the maximum, use ``idxmax``. This is the equivalent of the ``numpy.ndarray`` method ``argmax``.""", nanops.nanmax, _stat_func_see_also, _max_examples, ) cls.min = _make_stat_function( cls, "min", name, name2, axis_descr, """Return the minimum of the values for the requested axis.\n If you want the *index* of the minimum, use ``idxmin``. This is the equivalent of the ``numpy.ndarray`` method ``argmin``.""", nanops.nanmin, _stat_func_see_also, _min_examples, ) @classmethod def _add_series_or_dataframe_operations(cls): """ Add the series or dataframe only operations to the cls; evaluate the doc strings again. """ from pandas.core.window import EWM, Expanding, Rolling, Window @Appender(Rolling.__doc__) def rolling( self, window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None, ): axis = self._get_axis_number(axis) if win_type is not None: return Window( self, window=window, min_periods=min_periods, center=center, win_type=win_type, on=on, axis=axis, closed=closed, ) return Rolling( self, window=window, min_periods=min_periods, center=center, win_type=win_type, on=on, axis=axis, closed=closed, ) cls.rolling = rolling @Appender(Expanding.__doc__) def expanding(self, min_periods=1, center=False, axis=0): axis = self._get_axis_number(axis) return Expanding(self, min_periods=min_periods, center=center, axis=axis) cls.expanding = expanding @Appender(EWM.__doc__) def ewm( self, com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False, axis=0, ): axis = self._get_axis_number(axis) return EWM( self, com=com, span=span, halflife=halflife, alpha=alpha, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na, axis=axis, ) cls.ewm = ewm @Appender(_shared_docs["transform"] % dict(axis="", **_shared_doc_kwargs)) def transform(self, func, *args, **kwargs): result = self.agg(func, *args, **kwargs) if is_scalar(result) or len(result) != len(self): raise ValueError("transforms cannot produce aggregated results") return result # ---------------------------------------------------------------------- # Misc methods _shared_docs[ "valid_index" ] = """ Return index for %(position)s non-NA/null value. Returns ------- scalar : type of index Notes ----- If all elements are non-NA/null, returns None. Also returns None for empty %(klass)s. """ def _find_valid_index(self, how: str): """ Retrieves the index of the first valid value. Parameters ---------- how : {'first', 'last'} Use this parameter to change between the first or last valid index. Returns ------- idx_first_valid : type of index """ idxpos = find_valid_index(self._values, how) if idxpos is None: return None return self.index[idxpos] @Appender( _shared_docs["valid_index"] % {"position": "first", "klass": "Series/DataFrame"} ) def first_valid_index(self): return self._find_valid_index("first") @Appender( _shared_docs["valid_index"] % {"position": "last", "klass": "Series/DataFrame"} ) def last_valid_index(self): return self._find_valid_index("last") def _doc_parms(cls): """Return a tuple of the doc parms.""" axis_descr = ( f"{{{', '.join(f'{a} ({i})' for i, a in enumerate(cls._AXIS_ORDERS))}}}" ) name = cls._constructor_sliced.__name__ if cls._AXIS_LEN > 1 else "scalar" name2 = cls.__name__ return axis_descr, name, name2 _num_doc = """ %(desc)s Parameters ---------- axis : %(axis_descr)s Axis for the function to be applied on. skipna : bool, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. %(min_count)s\ **kwargs Additional keyword arguments to be passed to the function. Returns ------- %(name1)s or %(name2)s (if level specified)\ %(see_also)s\ %(examples)s """ _num_doc_mad = """ %(desc)s Parameters ---------- axis : %(axis_descr)s Axis for the function to be applied on. skipna : bool, default None Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s. Returns ------- %(name1)s or %(name2)s (if level specified)\ %(see_also)s\ %(examples)s """ _num_ddof_doc = """ %(desc)s Parameters ---------- axis : %(axis_descr)s skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s. ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. Returns ------- %(name1)s or %(name2)s (if level specified)\n""" _bool_doc = """ %(desc)s Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default 0 Indicate which axis or axes should be reduced. * 0 / 'index' : reduce the index, return a Series whose index is the original column labels. * 1 / 'columns' : reduce the columns, return a Series whose index is the original index. * None : reduce all axes, return a scalar. bool_only : bool, default None Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series. skipna : bool, default True Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be %(empty_value)s, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a %(name1)s. **kwargs : any, default None Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- %(name1)s or %(name2)s If level is specified, then, %(name2)s is returned; otherwise, %(name1)s is returned. %(see_also)s %(examples)s""" _all_desc = """\ Return whether all elements are True, potentially over an axis. Returns True unless there at least one element within a series or along a Dataframe axis that is False or equivalent (e.g. zero or empty).""" _all_examples = """\ Examples -------- **Series** >>> pd.Series([True, True]).all() True >>> pd.Series([True, False]).all() False >>> pd.Series([]).all() True >>> pd.Series([np.nan]).all() True >>> pd.Series([np.nan]).all(skipna=False) True **DataFrames** Create a dataframe from a dictionary. >>> df = pd.DataFrame({'col1': [True, True], 'col2': [True, False]}) >>> df col1 col2 0 True True 1 True False Default behaviour checks if column-wise values all return True. >>> df.all() col1 True col2 False dtype: bool Specify ``axis='columns'`` to check if row-wise values all return True. >>> df.all(axis='columns') 0 True 1 False dtype: bool Or ``axis=None`` for whether every value is True. >>> df.all(axis=None) False """ _all_see_also = """\ See Also -------- Series.all : Return True if all elements are True. DataFrame.any : Return True if one (or more) elements are True. """ _cnum_doc = """ Return cumulative %(desc)s over a DataFrame or Series axis. Returns a DataFrame or Series of the same size containing the cumulative %(desc)s. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The index or the name of the axis. 0 is equivalent to None or 'index'. skipna : bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. *args, **kwargs : Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- %(name1)s or %(name2)s See Also -------- core.window.Expanding.%(accum_func_name)s : Similar functionality but ignores ``NaN`` values. %(name2)s.%(accum_func_name)s : Return the %(desc)s over %(name2)s axis. %(name2)s.cummax : Return cumulative maximum over %(name2)s axis. %(name2)s.cummin : Return cumulative minimum over %(name2)s axis. %(name2)s.cumsum : Return cumulative sum over %(name2)s axis. %(name2)s.cumprod : Return cumulative product over %(name2)s axis. %(examples)s""" _cummin_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the minimum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cummin() A B 0 2.0 1.0 1 2.0 NaN 2 1.0 0.0 To iterate over columns and find the minimum in each row, use ``axis=1`` >>> df.cummin(axis=1) A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 """ _cumsum_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumsum() 0 2.0 1 NaN 2 7.0 3 6.0 4 6.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cumsum(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the sum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cumsum() A B 0 2.0 1.0 1 5.0 NaN 2 6.0 1.0 To iterate over columns and find the sum in each row, use ``axis=1`` >>> df.cumsum(axis=1) A B 0 2.0 3.0 1 3.0 NaN 2 1.0 1.0 """ _cumprod_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cumprod() 0 2.0 1 NaN 2 10.0 3 -10.0 4 -0.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cumprod(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the product in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cumprod() A B 0 2.0 1.0 1 6.0 NaN 2 6.0 0.0 To iterate over columns and find the product in each row, use ``axis=1`` >>> df.cumprod(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 0.0 """ _cummax_examples = """\ Examples -------- **Series** >>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64 By default, NA values are ignored. >>> s.cummax() 0 2.0 1 NaN 2 5.0 3 5.0 4 5.0 dtype: float64 To include NA values in the operation, use ``skipna=False`` >>> s.cummax(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64 **DataFrame** >>> df = pd.DataFrame([[2.0, 1.0], ... [3.0, np.nan], ... [1.0, 0.0]], ... columns=list('AB')) >>> df A B 0 2.0 1.0 1 3.0 NaN 2 1.0 0.0 By default, iterates over rows and finds the maximum in each column. This is equivalent to ``axis=None`` or ``axis='index'``. >>> df.cummax() A B 0 2.0 1.0 1 3.0 NaN 2 3.0 1.0 To iterate over columns and find the maximum in each row, use ``axis=1`` >>> df.cummax(axis=1) A B 0 2.0 2.0 1 3.0 NaN 2 1.0 1.0 """ _any_see_also = """\ See Also -------- numpy.any : Numpy version of this method. Series.any : Return whether any element is True. Series.all : Return whether all elements are True. DataFrame.any : Return whether any element is True over requested axis. DataFrame.all : Return whether all elements are True over requested axis. """ _any_desc = """\ Return whether any element is True, potentially over an axis. Returns False unless there at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).""" _any_examples = """\ Examples -------- **Series** For Series input, the output is a scalar indicating whether any element is True. >>> pd.Series([False, False]).any() False >>> pd.Series([True, False]).any() True >>> pd.Series([]).any() False >>> pd.Series([np.nan]).any() False >>> pd.Series([np.nan]).any(skipna=False) True **DataFrame** Whether each column contains at least one True element (the default). >>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0 >>> df.any() A True B True C False dtype: bool Aggregating over the columns. >>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2 >>> df.any(axis='columns') 0 True 1 True dtype: bool >>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0 >>> df.any(axis='columns') 0 True 1 False dtype: bool Aggregating over the entire DataFrame with ``axis=None``. >>> df.any(axis=None) True `any` for an empty DataFrame is an empty Series. >>> pd.DataFrame([]).any() Series([], dtype: bool) """ _shared_docs[ "stat_func_example" ] = """ Examples -------- >>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64 >>> s.{stat_func}() {default_output} {verb} using level names, as well as indices. >>> s.{stat_func}(level='blooded') blooded warm {level_output_0} cold {level_output_1} Name: legs, dtype: int64 >>> s.{stat_func}(level=0) blooded warm {level_output_0} cold {level_output_1} Name: legs, dtype: int64""" _sum_examples = _shared_docs["stat_func_example"].format( stat_func="sum", verb="Sum", default_output=14, level_output_0=6, level_output_1=8 ) _sum_examples += """ By default, the sum of an empty or all-NA Series is ``0``. >>> pd.Series([]).sum() # min_count=0 is the default 0.0 This can be controlled with the ``min_count`` parameter. For example, if you'd like the sum of an empty series to be NaN, pass ``min_count=1``. >>> pd.Series([]).sum(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).sum() 0.0 >>> pd.Series([np.nan]).sum(min_count=1) nan""" _max_examples = _shared_docs["stat_func_example"].format( stat_func="max", verb="Max", default_output=8, level_output_0=4, level_output_1=8 ) _min_examples = _shared_docs["stat_func_example"].format( stat_func="min", verb="Min", default_output=0, level_output_0=2, level_output_1=0 ) _stat_func_see_also = """ See Also -------- Series.sum : Return the sum. Series.min : Return the minimum. Series.max : Return the maximum. Series.idxmin : Return the index of the minimum. Series.idxmax : Return the index of the maximum. DataFrame.sum : Return the sum over the requested axis. DataFrame.min : Return the minimum over the requested axis. DataFrame.max : Return the maximum over the requested axis. DataFrame.idxmin : Return the index of the minimum over the requested axis. DataFrame.idxmax : Return the index of the maximum over the requested axis.""" _prod_examples = """ Examples -------- By default, the product of an empty or all-NA Series is ``1`` >>> pd.Series([]).prod() 1.0 This can be controlled with the ``min_count`` parameter >>> pd.Series([]).prod(min_count=1) nan Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and empty series identically. >>> pd.Series([np.nan]).prod() 1.0 >>> pd.Series([np.nan]).prod(min_count=1) nan""" _min_count_stub = """\ min_count : int, default 0 The required number of valid values to perform the operation. If fewer than ``min_count`` non-NA values are present the result will be NA. .. versionadded:: 0.22.0 Added with the default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1. """ def _make_min_count_stat_function( cls, name, name1, name2, axis_descr, desc, f, see_also: str = "", examples: str = "" ): @Substitution( desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, min_count=_min_count_stub, see_also=see_also, examples=examples, ) @Appender(_num_doc) def stat_func( self, axis=None, skipna=None, level=None, numeric_only=None, min_count=0, **kwargs, ): if name == "sum": nv.validate_sum(tuple(), kwargs) elif name == "prod": nv.validate_prod(tuple(), kwargs) else: nv.validate_stat_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level( name, axis=axis, level=level, skipna=skipna, min_count=min_count ) return self._reduce( f, name, axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) return set_function_name(stat_func, name, cls) def _make_stat_function( cls, name, name1, name2, axis_descr, desc, f, see_also: str = "", examples: str = "" ): @Substitution( desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, min_count="", see_also=see_also, examples=examples, ) @Appender(_num_doc) def stat_func( self, axis=None, skipna=None, level=None, numeric_only=None, **kwargs ): if name == "median": nv.validate_median(tuple(), kwargs) else: nv.validate_stat_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level(name, axis=axis, level=level, skipna=skipna) return self._reduce( f, name, axis=axis, skipna=skipna, numeric_only=numeric_only ) return set_function_name(stat_func, name, cls) def _make_stat_function_ddof(cls, name, name1, name2, axis_descr, desc, f): @Substitution(desc=desc, name1=name1, name2=name2, axis_descr=axis_descr) @Appender(_num_ddof_doc) def stat_func( self, axis=None, skipna=None, level=None, ddof=1, numeric_only=None, **kwargs ): nv.validate_stat_ddof_func(tuple(), kwargs, fname=name) if skipna is None: skipna = True if axis is None: axis = self._stat_axis_number if level is not None: return self._agg_by_level( name, axis=axis, level=level, skipna=skipna, ddof=ddof ) return self._reduce( f, name, axis=axis, numeric_only=numeric_only, skipna=skipna, ddof=ddof ) return set_function_name(stat_func, name, cls) def _make_cum_function( cls, name, name1, name2, axis_descr, desc, accum_func, accum_func_name, mask_a, mask_b, examples, ): @Substitution( desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, accum_func_name=accum_func_name, examples=examples, ) @Appender(_cnum_doc) def cum_func(self, axis=None, skipna=True, *args, **kwargs): skipna = nv.validate_cum_func_with_skipna(skipna, args, kwargs, name) if axis is None: axis = self._stat_axis_number else: axis = self._get_axis_number(axis) if axis == 1: return cum_func(self.T, axis=0, skipna=skipna, *args, **kwargs).T def na_accum_func(blk_values): # We will be applying this function to block values if blk_values.dtype.kind in ["m", "M"]: # GH#30460, GH#29058 # numpy 1.18 started sorting NaTs at the end instead of beginning, # so we need to work around to maintain backwards-consistency. orig_dtype = blk_values.dtype # We need to define mask before masking NaTs mask = isna(blk_values) if accum_func == np.minimum.accumulate: # Note: the accum_func comparison fails as an "is" comparison y = blk_values.view("i8") y[mask] = np.iinfo(np.int64).max changed = True else: y = blk_values changed = False result = accum_func(y.view("i8"), axis) if skipna: np.putmask(result, mask, iNaT) elif accum_func == np.minimum.accumulate: # Restore NaTs that we masked previously nz = (~np.asarray(mask)).nonzero()[0] if len(nz): # everything up to the first non-na entry stays NaT result[: nz[0]] = iNaT if changed: # restore NaT elements y[mask] = iNaT # TODO: could try/finally for this? if isinstance(blk_values, np.ndarray): result = result.view(orig_dtype) else: # DatetimeArray result = type(blk_values)._from_sequence(result, dtype=orig_dtype) elif skipna and not issubclass( blk_values.dtype.type, (np.integer, np.bool_) ): vals = blk_values.copy().T mask = isna(vals) np.putmask(vals, mask, mask_a) result = accum_func(vals, axis) np.putmask(result, mask, mask_b) else: result = accum_func(blk_values.T, axis) # transpose back for ndarray, not for EA return result.T if hasattr(result, "T") else result result = self._data.apply(na_accum_func) d = self._construct_axes_dict() d["copy"] = False return self._constructor(result, **d).__finalize__(self) return set_function_name(cum_func, name, cls) def _make_logical_function( cls, name, name1, name2, axis_descr, desc, f, see_also, examples, empty_value ): @Substitution( desc=desc, name1=name1, name2=name2, axis_descr=axis_descr, see_also=see_also, examples=examples, empty_value=empty_value, ) @Appender(_bool_doc) def logical_func(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs): nv.validate_logical_func(tuple(), kwargs, fname=name) if level is not None: if bool_only is not None: raise NotImplementedError( "Option bool_only is not implemented with option level." ) return self._agg_by_level(name, axis=axis, level=level, skipna=skipna) return self._reduce( f, name, axis=axis, skipna=skipna, numeric_only=bool_only, filter_type="bool", ) return set_function_name(logical_func, name, cls)
BugsInPy/BugsInPy/temp/projects/pandas/bug-55-fixed/pandas/pandas/core/generic.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-55-buggy/pandas/pandas/core/generic.py
pandas-bug-169
""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ import collections from collections import OrderedDict, abc import functools from io import StringIO import itertools import sys from textwrap import dedent from typing import FrozenSet, List, Optional, Set, Tuple, Type, Union import warnings import numpy as np import numpy.ma as ma from pandas._config import get_option from pandas._libs import algos as libalgos, lib from pandas.compat import PY36, raise_with_traceback from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, deprecate_kwarg, rewrite_axis_style_signature, ) from pandas.util._validators import validate_axis_style_args, validate_bool_kwarg from pandas.core.dtypes.cast import ( cast_scalar_to_array, coerce_to_dtypes, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_cast_to_datetime, maybe_convert_platform, maybe_downcast_to_dtype, maybe_infer_to_datetimelike, maybe_upcast, maybe_upcast_putmask, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_platform_int, infer_dtype_from_object, is_bool_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_extension_type, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_named_tuple, is_nested_list_like, is_object_dtype, is_scalar, is_sequence, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import algorithms, common as com, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import Categorical, ExtensionArray from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin as DatetimeLikeArray from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.generic import NDFrame, _shared_docs from pandas.core.index import ( Index, MultiIndex, ensure_index, ensure_index_from_sequences, ) from pandas.core.indexes import base as ibase from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import PeriodIndex from pandas.core.indexing import ( check_bool_indexer, convert_to_index_sliceable, maybe_droplevels, ) from pandas.core.internals import BlockManager from pandas.core.internals.construction import ( arrays_to_mgr, get_names_from_index, init_dict, init_ndarray, masked_rec_array_to_mgr, reorder_arrays, sanitize_index, to_arrays, ) from pandas.core.series import Series from pandas.io.formats import console, format as fmt from pandas.io.formats.printing import pprint_thing import pandas.plotting # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes="index, columns", klass="DataFrame", axes_single_arg="{0 or 'index', 1 or 'columns'}", axis="""axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", optional_by=""" by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels .. versionchanged:: 0.23.0 Allow specifying index or column level names.""", versionadded_to_excel="", optional_labels="""labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", optional_axis="""axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", ) _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : tuple of (str, str), default ('_x', '_y') Suffix to apply to overlapping column names in the left and right side, respectively. To raise an exception on overlapping columns use (False, False). copy : bool, default True If False, avoid copy if possible. indicator : bool or str, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 0.21.0 Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects .. versionchanged :: 0.23.0 If data is a dict, column order follows insertion-order for Python 3.6 and later. .. versionchanged :: 0.25.0 If data is a list of dicts, column order follows insertion-order Python 3.6 and later. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. DataFrame.from_items : From sequence of (key, value) pairs read_csv, pandas.read_table, pandas.read_clipboard. Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 """ @property def _constructor(self): return DataFrame _constructor_sliced = Series # type: Type[Series] _deprecations = NDFrame._deprecations | frozenset( ["from_items"] ) # type: FrozenSet[str] _accessors = set() # type: Set[str] @property def _constructor_expanddim(self): raise NotImplementedError("Not supported for DataFrames!") # ---------------------------------------------------------------------- # Constructors def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr( data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy ) elif isinstance(data, dict): mgr = init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data.soften_mask() # set hardmask False if it was True data[mask] = fill_value else: data = data.copy() mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = init_dict(data, index, columns, dtype=dtype) elif getattr(data, "name", None) is not None: mgr = init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) # For data is list-like, or Iterable (will consume into list) elif isinstance(data, abc.Iterable) and not isinstance(data, (str, bytes)): if not isinstance(data, abc.Sequence): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], "ndim", 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = to_arrays(data, columns, dtype=dtype) columns = ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = get_names_from_index(data) elif isinstance(data[0], Categorical): index = ibase.default_index(len(data[0])) else: index = ibase.default_index(len(data)) mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = init_dict({}, index, columns, dtype=dtype) else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as e: exc = TypeError( "DataFrame constructor called with " "incompatible data and dtype: {e}".format(e=e) ) raise_with_traceback(exc) if arr.ndim == 0 and index is not None and columns is not None: values = cast_scalar_to_array( (len(index), len(columns)), data, dtype=dtype ) mgr = init_ndarray( values, index, columns, dtype=values.dtype, copy=False ) else: raise ValueError("DataFrame constructor not properly called!") NDFrame.__init__(self, mgr, fastpath=True) # ---------------------------------------------------------------------- @property def axes(self): """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self): """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self): """ Whether all the columns in a DataFrame have the same type. Returns ------- bool Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ if self._data.any_extension_types: return len({block.dtype for block in self._data.blocks}) == 1 else: return not self._data.is_mixed_type # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self): """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width=False): """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case off non-interactive session, no boundaries apply. `ignore_width` is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( (not ignore_width) and width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(l) for l in value.split("\n")) return repr_width < width def _info_repr(self): """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self): """ Return a string representation for a particular DataFrame. """ buf = StringIO("") if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string( buf=buf, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, line_width=width, show_dimensions=show_dimensions, ) return buf.getvalue() def _repr_html_(self): """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO("") self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"&lt;", 1) val = val.replace(">", r"&gt;", 1) return "<pre>" + val + "</pre>" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") return self.to_html( max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, notebook=True, ) else: return None @Substitution( header="Write out the column names. If a list of strings " "is given, it is assumed to be aliases for the " "column names", col_space_type="int", col_space="The minimum width of each column", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, min_rows=None, max_cols=None, show_dimensions=False, decimal=".", line_width=None, ): """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ formatter = fmt.DataFrameFormatter( self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, line_width=line_width, ) formatter.to_string() if buf is None: result = formatter.buf.getvalue() return result # ---------------------------------------------------------------------- @property def style(self): """ Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame. See Also -------- io.formats.style.Styler """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterator over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. %s label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print('label:', label) ... print('content:', content, sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"] % "Yields\n ------") def items(self): if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) @Appender(_shared_docs["items"] % "Returns\n -------") def iteritems(self): return self.items() def iterrows(self): """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. it : generator A generator that iterates over the rows of the frame. See Also -------- itertuples : Iterate over DataFrame rows as namedtuples of the values. items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned. Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python 3 supports at most 255 arguments to constructor if name is not None and len(self.columns) + index < 256: itertuple = collections.namedtuple(name, fields, rename=True) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self): """ Returns length of info axis, but here we use the index. """ return len(self.index) def dot(self, other): """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Serie. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( "Dot product shape mismatch, " "{s} vs {r}".format(s=lvals.shape, r=rvals.shape) ) if isinstance(other, DataFrame): return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns ) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError("unsupported type: {oth}".format(oth=type(other))) def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.T.dot(np.transpose(other)).T # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient="columns", dtype=None, columns=None): """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """ index = None orient = orient.lower() if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == "columns": if columns is not None: raise ValueError( "cannot use columns parameter with " "orient='columns'" ) else: # pragma: no cover raise ValueError("only recognize index or columns for orient") return cls(data, index=index, columns=columns, dtype=dtype) def to_numpy(self, dtype=None, copy=False): """ Convert the DataFrame to a NumPy array. .. versionadded:: 0.24.0 By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray` copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogenous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ result = np.array(self.values, dtype=dtype, copy=copy) return result def to_dict(self, orient="dict", into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn( "DataFrame columns are not unique, some " "columns will be omitted.", UserWarning, stacklevel=2, ) # GH16122 into_c = com.standardize_mapping(into) if orient.lower().startswith("d"): return into_c((k, v.to_dict(into)) for k, v in self.items()) elif orient.lower().startswith("l"): return into_c((k, v.tolist()) for k, v in self.items()) elif orient.lower().startswith("sp"): return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(com.maybe_box_datetimelike, t)) for t in self.itertuples(index=False, name=None) ], ), ) ) elif orient.lower().startswith("s"): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in self.items()) elif orient.lower().startswith("r"): columns = self.columns.tolist() rows = ( dict(zip(columns, row)) for row in self.itertuples(index=False, name=None) ) return [ into_c((k, com.maybe_box_datetimelike(v)) for k, v in row.items()) for row in rows ] elif orient.lower().startswith("i"): if not self.index.is_unique: raise ValueError("DataFrame index must be unique for orient='index'.") return into_c( (t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None) ) else: raise ValueError("orient '{o}' not understood".format(o=orient)) def to_gbq( self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists="fail", auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None, verbose=None, private_key=None, ): """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists, do nothing. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 verbose : bool, deprecated Deprecated in pandas-gbq version 0.4.0. Use the `logging module to adjust verbosity instead <https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__. private_key : str, deprecated Deprecated in pandas-gbq version 0.8.0. Use the ``credentials`` parameter and :func:`google.oauth2.service_account.Credentials.from_service_account_info` or :func:`google.oauth2.service_account.Credentials.from_service_account_file` instead. Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. Jupyter/IPython notebook on remote host). See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, verbose=verbose, private_key=private_key, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None, ): """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets nrows : int, default None Number of rows to read if data is an iterator Returns ------- DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in data.items(): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = to_arrays(data, columns) if columns is not None: columns = ensure_index(columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns, coerce_float=coerce_float) arr_columns = ensure_index(arr_columns) if columns is not None: columns = ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) except Exception: result_index = index if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records( self, index=True, convert_datetime64=None, column_dtypes=None, index_dtypes=None ): """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. convert_datetime64 : bool, default None .. deprecated:: 0.23.0 Whether to convert the index to datetime.datetime if it is a DatetimeIndex. column_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = "<S{}".format(df.index.str.len().max()) >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """ if convert_datetime64 is not None: warnings.warn( "The 'convert_datetime64' parameter is " "deprecated and will be removed in a future " "version", FutureWarning, stacklevel=2, ) if index: if is_datetime64_any_dtype(self.index) and convert_datetime64: ix_vals = [self.index.to_pydatetime()] else: if isinstance(self.index, MultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index.values))) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c]._internal_get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, MultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = "level_%d" % count count += 1 elif index_names[0] is None: index_names = ["index"] names = [str(name) for name in itertools.chain(index_names, self.columns)] else: arrays = [self[c]._internal_get_values() for c in self.columns] names = [str(c) for c in self.columns] index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): formats.append(dtype_mapping) else: element = "row" if i < index_len else "column" msg = ( "Invalid dtype {dtype} specified for " "{element} {name}" ).format(dtype=dtype_mapping, element=element, name=name) raise ValueError(msg) return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats}) @classmethod def from_items(cls, items, columns=None, orient="columns"): """ Construct a DataFrame from a list of tuples. .. deprecated:: 0.23.0 `from_items` is deprecated and will be removed in a future version. Use :meth:`DataFrame.from_dict(dict(items)) <DataFrame.from_dict>` instead. :meth:`DataFrame.from_dict(OrderedDict(items)) <DataFrame.from_dict>` may be used to preserve the key order. Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series. Parameters ---------- items : sequence of (key, value) pairs Values should be arrays or Series. columns : sequence of column labels, optional Must be passed if orient='index'. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the input correspond to column labels, pass 'columns' (default). Otherwise if the keys correspond to the index, pass 'index'. Returns ------- DataFrame """ warnings.warn( "from_items is deprecated. Please use " "DataFrame.from_dict(dict(items), ...) instead. " "DataFrame.from_dict(OrderedDict(items)) may be used to " "preserve the key order.", FutureWarning, stacklevel=2, ) keys, values = zip(*items) if orient == "columns": if columns is not None: columns = ensure_index(columns) idict = dict(items) if len(idict) < len(items): if not columns.equals(ensure_index(keys)): raise ValueError( "With non-unique item names, passed " "columns must be identical" ) arrays = values else: arrays = [idict[k] for k in columns if k in idict] else: columns = ensure_index(keys) arrays = values # GH 17312 # Provide more informative error msg when scalar values passed try: return cls._from_arrays(arrays, columns, None) except ValueError: if not is_nested_list_like(values): raise ValueError( "The value in each (key, value) pair " "must be an array, Series, or dict" ) elif orient == "index": if columns is None: raise TypeError("Must pass columns with orient='index'") keys = ensure_index(keys) # GH 17312 # Provide more informative error msg when scalar values passed try: arr = np.array(values, dtype=object).T data = [lib.maybe_convert_objects(v) for v in arr] return cls._from_arrays(data, columns, keys) except TypeError: if not is_nested_list_like(values): raise ValueError( "The value in each (key, value) pair " "must be an array, Series, or dict" ) else: # pragma: no cover raise ValueError("'orient' must be either 'columns' or 'index'") @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None): mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) def to_sparse(self, fill_value=None, kind="block"): """ Convert to SparseDataFrame. .. deprecated:: 0.25.0 Implement the sparse version of the DataFrame meaning that any data matching a specific value it's omitted in the representation. The sparse DataFrame allows for a more efficient storage. Parameters ---------- fill_value : float, default None The specific value that should be omitted in the representation. kind : {'block', 'integer'}, default 'block' The kind of the SparseIndex tracking where data is not equal to the fill value: - 'block' tracks only the locations and sizes of blocks of data. - 'integer' keeps an array with all the locations of the data. In most cases 'block' is recommended, since it's more memory efficient. Returns ------- SparseDataFrame The sparse representation of the DataFrame. See Also -------- DataFrame.to_dense : Converts the DataFrame back to the its dense form. Examples -------- >>> df = pd.DataFrame([(np.nan, np.nan), ... (1., np.nan), ... (np.nan, 1.)]) >>> df 0 1 0 NaN NaN 1 1.0 NaN 2 NaN 1.0 >>> type(df) <class 'pandas.core.frame.DataFrame'> >>> sdf = df.to_sparse() # doctest: +SKIP >>> sdf # doctest: +SKIP 0 1 0 NaN NaN 1 1.0 NaN 2 NaN 1.0 >>> type(sdf) # doctest: +SKIP <class 'pandas.core.sparse.frame.SparseDataFrame'> """ warnings.warn( "DataFrame.to_sparse is deprecated and will be removed " "in a future version", FutureWarning, stacklevel=2, ) from pandas.core.sparse.api import SparseDataFrame with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="SparseDataFrame") return SparseDataFrame( self._series, index=self.index, columns=self.columns, default_kind=kind, default_fill_value=fill_value, ) @deprecate_kwarg(old_arg_name="encoding", new_arg_name=None) def to_stata( self, fname, convert_dates=None, write_index=True, encoding="latin-1", byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None, ): """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- fname : str, buffer or path object String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written. convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. encoding : str Default is latin-1. Unicode is not supported. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {114, 117}, default 114 Version to use in the output dta file. Version 114 can be used read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 114 limits string variables to 244 characters or fewer while 117 allows strings with lengths up to 2,000,000 characters. .. versionadded:: 0.23.0 convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. .. versionadded:: 0.23.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ kwargs = {} if version not in (114, 117): raise ValueError("Only formats 114 and 117 supported.") if version == 114: if convert_strl is not None: raise ValueError( "strl support is only available when using " "format 117" ) from pandas.io.stata import StataWriter as statawriter else: from pandas.io.stata import StataWriter117 as statawriter kwargs["convert_strl"] = convert_strl writer = statawriter( fname, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, **kwargs ) writer.write_file() def to_feather(self, fname): """ Write out the binary feather-format for DataFrames. .. versionadded:: 0.20.0 Parameters ---------- fname : str string file path """ from pandas.io.feather_format import to_feather to_feather(self, fname) def to_parquet( self, fname, engine="auto", compression="snappy", index=None, partition_cols=None, **kwargs ): """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- fname : str File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset. .. versionchanged:: 0.24.0 engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, the behavior depends on the chosen engine. .. versionadded:: 0.24.0 partition_cols : list, optional, default None Column names by which to partition the dataset Columns are partitioned in the order they are given .. versionadded:: 0.24.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 """ from pandas.io.parquet import to_parquet to_parquet( self, fname, engine, compression=compression, index=index, partition_cols=partition_cols, **kwargs ) @Substitution( header="Whether to print column labels, default True", col_space_type="str or int", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.\n\n" " .. versionadded:: 0.25.0\n" " Ability to use str", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=".", bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, ): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.display.html.border``. table_id : str, optional A css id is included in the opening `<table>` tag if specified. .. versionadded:: 0.23.0 render_links : bool, default False Convert URLs to HTML links. .. versionadded:: 0.24.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, table_id=table_id, render_links=render_links, ) # TODO: a generic formatter wld b in DataFrameFormatter formatter.to_html(classes=classes, notebook=notebook, border=border) if buf is None: return formatter.buf.getvalue() # ---------------------------------------------------------------------- def info( self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None ): """ Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage. Parameters ---------- verbose : bool, optional Whether to print the full summary. By default, the setting in ``pandas.options.display.max_info_columns`` is followed. buf : writable buffer, defaults to sys.stdout Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than `max_cols` columns, the truncated output is used. By default, the setting in ``pandas.options.display.max_info_columns`` is used. memory_usage : bool, str, optional Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the ``pandas.options.display.memory_usage`` setting. True always show memory usage. False never shows memory usage. A value of 'deep' is equivalent to "True with deep introspection". Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. null_counts : bool, optional Whether to show the non-null counts. By default, this is shown only if the frame is smaller than ``pandas.options.display.max_info_rows`` and ``pandas.options.display.max_info_columns``. A value of True always shows the counts, and False never shows the counts. Returns ------- None This method prints a summary of a DataFrame and returns None. See Also -------- DataFrame.describe: Generate descriptive statistics of DataFrame columns. DataFrame.memory_usage: Memory usage of DataFrame columns. Examples -------- >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): int_col 5 non-null int64 text_col 5 non-null object float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open("df_info.txt", "w", ... encoding="utf-8") as f: # doctest: +SKIP ... f.write(s) 260 The `memory_usage` parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization: >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = pd.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): column_1 1000000 non-null object column_2 1000000 non-null object column_3 1000000 non-null object dtypes: object(3) memory usage: 22.9+ MB >>> df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): column_1 1000000 non-null object column_2 1000000 non-null object column_3 1000000 non-null object dtypes: object(3) memory usage: 188.8 MB """ if buf is None: # pragma: no cover buf = sys.stdout lines = [] lines.append(str(type(self))) lines.append(self.index._summary()) if len(self.columns) == 0: lines.append("Empty {name}".format(name=type(self).__name__)) fmt.buffer_put_lines(buf, lines) return cols = self.columns # hack if max_cols is None: max_cols = get_option("display.max_info_columns", len(self.columns) + 1) max_rows = get_option("display.max_info_rows", len(self) + 1) if null_counts is None: show_counts = (len(self.columns) <= max_cols) and (len(self) < max_rows) else: show_counts = null_counts exceeds_info_cols = len(self.columns) > max_cols def _verbose_repr(): lines.append("Data columns (total %d columns):" % len(self.columns)) space = max(len(pprint_thing(k)) for k in self.columns) + 4 counts = None tmpl = "{count}{dtype}" if show_counts: counts = self.count() if len(cols) != len(counts): # pragma: no cover raise AssertionError( "Columns must equal counts " "({cols:d} != {counts:d})".format( cols=len(cols), counts=len(counts) ) ) tmpl = "{count} non-null {dtype}" dtypes = self.dtypes for i, col in enumerate(self.columns): dtype = dtypes.iloc[i] col = pprint_thing(col) count = "" if show_counts: count = counts.iloc[i] lines.append( _put_str(col, space) + tmpl.format(count=count, dtype=dtype) ) def _non_verbose_repr(): lines.append(self.columns._summary(name="Columns")) def _sizeof_fmt(num, size_qualifier): # returns size in human readable format for x in ["bytes", "KB", "MB", "GB", "TB"]: if num < 1024.0: return "{num:3.1f}{size_q} " "{x}".format( num=num, size_q=size_qualifier, x=x ) num /= 1024.0 return "{num:3.1f}{size_q} {pb}".format( num=num, size_q=size_qualifier, pb="PB" ) if verbose: _verbose_repr() elif verbose is False: # specifically set to False, not nesc None _non_verbose_repr() else: if exceeds_info_cols: _non_verbose_repr() else: _verbose_repr() counts = self._data.get_dtype_counts() dtypes = ["{k}({kk:d})".format(k=k[0], kk=k[1]) for k in sorted(counts.items())] lines.append("dtypes: {types}".format(types=", ".join(dtypes))) if memory_usage is None: memory_usage = get_option("display.memory_usage") if memory_usage: # append memory usage of df to display size_qualifier = "" if memory_usage == "deep": deep = True else: # size_qualifier is just a best effort; not guaranteed to catch # all cases (e.g., it misses categorical data even with object # categories) deep = False if "object" in counts or self.index._is_memory_usage_qualified(): size_qualifier = "+" mem_usage = self.memory_usage(index=True, deep=deep).sum() lines.append( "memory usage: {mem}\n".format( mem=_sizeof_fmt(mem_usage, size_qualifier) ) ) fmt.buffer_put_lines(buf, lines) def memory_usage(self, index=True, deep=False): """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.0+0.0j 1 True 1 1 1.0 1.0+0.0j 1 True 2 1 1.0 1.0+0.0j 1 True 3 1 1.0 1.0+0.0j 1 True 4 1 1.0 1.0+0.0j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5216 """ result = Series( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, ) if index: result = Series(self.index.memory_usage(deep=deep), index=["Index"]).append( result ) return result def transpose(self, *args, **kwargs): """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- copy : bool, default False If True, the underlying data is copied. Otherwise (default), no copy is made if possible. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, dict()) return super().transpose(1, 0, **kwargs) T = property(transpose) # ---------------------------------------------------------------------- # Picklability # legacy pickle formats def _unpickle_frame_compat(self, state): # pragma: no cover if len(state) == 2: # pragma: no cover series, idx = state columns = sorted(series) else: series, cols, idx = state columns = com._unpickle_array(cols) index = com._unpickle_array(idx) self._data = self._init_dict(series, index, columns, None) def _unpickle_matrix_compat(self, state): # pragma: no cover # old unpickling (vals, idx, cols), object_state = state index = com._unpickle_array(idx) dm = DataFrame(vals, index=index, columns=com._unpickle_array(cols), copy=False) if object_state is not None: ovals, _, ocols = object_state objects = DataFrame( ovals, index=index, columns=com._unpickle_array(ocols), copy=False ) dm = dm.join(objects) self._data = dm._data # ---------------------------------------------------------------------- # Getting and setting elements def _get_value(self, index, col, takeable: bool = False): """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar """ if takeable: series = self._iget_item_cache(col) return com.maybe_box_datetimelike(series._values[index]) series = self._get_item_cache(col) engine = self.index._engine try: return engine.get_value(series._values, index) except KeyError: # GH 20629 if self.index.nlevels > 1: # partial indexing forbidden raise except (TypeError, ValueError): pass # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) def _set_value(self, index, col, value, takeable: bool = False): """ Put single value at passed column and index. Parameters ---------- index : row label col : column label value : scalar takeable : interpret the index/col as indexers, default False Returns ------- DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object. """ try: if takeable is True: series = self._iget_item_cache(col) return series._set_value(index, value, takeable=True) series = self._get_item_cache(col) engine = self.index._engine engine.set_value(series._values, index, value) return self except (KeyError, TypeError): # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) return self def _ixs(self, i: int, axis: int = 0): """ Parameters ---------- i : int axis : int Notes ----- If slice passed, the resulting data will be a view. """ # irow if axis == 0: label = self.index[i] new_values = self._data.fast_xs(i) if is_scalar(new_values): return new_values # if we are a copy, mark as such copy = isinstance(new_values, np.ndarray) and new_values.base is None result = self._constructor_sliced( new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype, ) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] # if the values returned are not the same length # as the index (iow a not found value), iget returns # a 0-len ndarray. This is effectively catching # a numpy error (as numpy should really raise) values = self._data.iget(i) if len(self.index) and not len(values): values = np.array([np.nan] * len(self.index), dtype=object) result = self._box_col_values(values, label) # this is a cached value, mark it so result._set_as_cached(label, self) return result def __getitem__(self, key): key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key): # shortcut if the key is in columns if self.columns.is_unique and key in self.columns: if self.columns.nlevels > 1: return self._getitem_multilevel(key) return self._get_item_cache(key) # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self._getitem_frame(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self.take(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, MultiIndex): data = data[key] return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match " "DataFrame index.", UserWarning, stacklevel=3, ) elif len(key) != len(self.index): raise ValueError( "Item wrong length %d instead of %d." % (len(key), len(self.index)) ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self.take(indexer, axis=0) def _getitem_multilevel(self, key): loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor( new_values, index=self.index, columns=result_columns ) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _getitem_frame(self, key): if key.values.size and not is_bool_dtype(key.values): raise ValueError("Must pass DataFrame with boolean values only") return self.where(key) def query(self, expr, inplace=False, **kwargs): """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. .. versionadded:: 0.25.0 You can refer to column names that contain spaces by surrounding them in backticks. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. inplace : bool Whether the query should modify the data in place or return a modified copy. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame DataFrame resulting from the provided query expression. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = "expr must be a string to be evaluated, {0} given" raise ValueError(msg.format(type(expr))) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. kwargs : dict See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, or pandas object The result of the evaluation. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") resolvers = kwargs.pop("resolvers", None) kwargs["level"] = kwargs.pop("level", 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() column_resolvers = self._get_space_character_free_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None): """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ def _get_info_slice(obj, indexer): """Slice the info axis of `obj` with `indexer`.""" if not hasattr(obj, "_info_axis_number"): msg = "object of type {typ!r} has no info axis" raise TypeError(msg.format(typ=type(obj).__name__)) slices = [slice(None)] * obj.ndim slices[obj._info_axis_number] = indexer return tuple(slices) if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = tuple(map(frozenset, (include, exclude))) if not any(selection): raise ValueError("at least one of include or exclude must be " "nonempty") # convert the myriad valid dtypes object to a single representation include, exclude = map( lambda x: frozenset(map(infer_dtype_from_object, x)), selection ) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError( "include and exclude overlap on {inc_ex}".format( inc_ex=(include & exclude) ) ) # empty include/exclude -> defaults to True # three cases (we've already raised if both are empty) # case 1: empty include, nonempty exclude # we have True, True, ... True for include, same for exclude # in the loop below we get the excluded # and when we call '&' below we get only the excluded # case 2: nonempty include, empty exclude # same as case 1, but with include # case 3: both nonempty # the "union" of the logic of case 1 and case 2: # we get the included and excluded, and return their logical and include_these = Series(not bool(include), index=self.columns) exclude_these = Series(not bool(exclude), index=self.columns) def is_dtype_instance_mapper(idx, dtype): return idx, functools.partial(issubclass, dtype.type) for idx, f in itertools.starmap( is_dtype_instance_mapper, enumerate(self.dtypes) ): if include: # checks for the case of empty include or exclude include_these.iloc[idx] = any(map(f, include)) if exclude: exclude_these.iloc[idx] = not any(map(f, exclude)) dtype_indexer = include_these & exclude_these return self.loc[_get_info_slice(self, dtype_indexer)] def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ Provide boxed values for a column. """ klass = self._constructor_sliced return klass(values, index=self.index, name=items, fastpath=True) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key, value): self._check_setitem_copy() self.loc[key] = value def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError( "Item wrong length %d instead of %d!" % (len(key), len(self.index)) ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.loc._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError("Columns must be same length as key") for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: indexer = self.loc._get_listlike_indexer( key, axis=1, raise_missing=False )[1] self._check_setitem_copy() self.loc._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict()) if key.values.size and not is_bool_dtype(key.values): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _ensure_valid_index(self, value): """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value): try: value = Series(value) except (ValueError, NotImplementedError, TypeError): raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a " "Series" ) self._data = self._data.reindex_axis( value.index.copy(), axis=1, fill_value=np.nan ) def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def insert(self, loc, column, value, allow_duplicates=False): """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns) column : string, number, or hashable object label of the inserted column value : int, Series, or array-like allow_duplicates : bool, optional """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs): r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. For Python 3.6 and above, later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. For Python 3.5 and below, the order of keyword arguments is not specified, you cannot refer to newly created or modified columns. All items are computed first, and then assigned in alphabetical order. .. versionchanged :: 0.23.0 Keyword argument order is maintained for Python 3.6 and later. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 In Python 3.6+, you can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy() # >= 3.6 preserve order of kwargs if PY36: for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) else: # <= 3.5: do all calculations first... results = OrderedDict() for k, v in kwargs.items(): results[k] = com.apply_if_callable(v, data) # <= 3.5 and earlier results = sorted(results.items()) # ... and then assign for k, v in results: data[k] = v return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- numpy.ndarray """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except Exception as e: # duplicate axis if not value.index.is_unique: raise e # other raise TypeError( "incompatible index of inserted column " "with frame index" ) return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, MultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, ExtensionArray): # Explicitly copy here, instead of in sanitize_index, # as sanitize_index won't copy an EA, even with copy=True value = value.copy() value = sanitize_index(value, self.index, copy=False) elif isinstance(value, Index) or is_sequence(value): # turn me into an ndarray value = sanitize_index(value, self.index, copy=False) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com.asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: # cast ignores pandas dtypes. so save the dtype first infer_dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) # upcast value = cast_scalar_to_array(len(self.index), value) value = maybe_cast_to_datetime(value, infer_dtype) # return internal types directly if is_extension_type(value) or is_extension_array_dtype(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if not self.columns.is_unique or isinstance(self.columns, MultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): return { item: Series(self._data.iget(idx), index=self.index, name=item) for idx, item in enumerate(self.columns) } def lookup(self, row_labels, col_labels): """ Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup col_labels : sequence The column labels to use for lookup Returns ------- numpy.ndarray Notes ----- Akin to:: result = [df.get_value(row, col) for row, col in zip(row_labels, col_labels)] Examples -------- values : ndarray The found values """ n = len(row_labels) if n != len(col_labels): raise ValueError("Row labels must have same size as column labels") thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError("One or more row labels was not found") if (cidx == -1).any(): raise KeyError("One or more column labels was not found") flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype="O") for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes["columns"] if columns is not None: frame = frame._reindex_columns( columns, method, copy, level, fill_value, limit, tolerance ) index = axes["index"] if index is not None: frame = frame._reindex_index( index, method, copy, level, fill_value, limit, tolerance ) return frame def _reindex_index( self, new_index, method, copy, level, fill_value=np.nan, limit=None, tolerance=None, ): new_index, indexer = self.index.reindex( new_index, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_columns( self, new_columns, method, copy, level, fill_value=None, limit=None, tolerance=None, ): new_columns, indexer = self.columns.reindex( new_columns, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_multi(self, axes, copy, fill_value): """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi( self.values, indexer, fill_value=fill_value ) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @Appender(_shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.reindex.__doc__) @rewrite_axis_style_signature( "labels", [ ("method", None), ("copy", True), ("level", None), ("fill_value", np.nan), ("limit", None), ("tolerance", None), ], ) def reindex(self, *args, **kwargs): axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("labels", None) return super().reindex(**kwargs) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). .. versionadded:: 0.21.0 columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame DataFrame without the removed index or column labels. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @rewrite_axis_style_signature( "mapper", [("copy", True), ("inplace", False), ("level", None), ("errors", "ignore")], ) def rename(self, *args, **kwargs): """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper : dict-like or function Dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : int or str Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame DataFrame with the renamed axis labels. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ axes = validate_axis_style_args(self, args, kwargs, "mapper", "rename") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("mapper", None) return super().rename(**kwargs) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.fillna.__doc__) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs ): return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, **kwargs ) @Appender(_shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @Appender(_shared_docs["shift"] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None): return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def set_index( self, keys, drop=True, append=False, inplace=False, verify_integrity=False ): """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing = [] for col in keys: if isinstance( col, (ABCIndexClass, ABCSeries, np.ndarray, list, abc.Iterator) ): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError: raise TypeError( err_msg + " Received column of " "type {}".format(type(col)) ) else: if not found: missing.append(col) if missing: raise KeyError("None of {} are in the columns".format(missing)) if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = [x for x in self.index.names] if isinstance(self.index, ABCMultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove = [] for col in keys: if isinstance(col, ABCMultiIndex): for n in range(col.nlevels): arrays.append(col._get_level_values(n)) names.extend(col.names) elif isinstance(col, (ABCIndexClass, ABCSeries)): # if Index then not MultiIndex (treated above) arrays.append(col) names.append(col.name) elif isinstance(col, (list, np.ndarray)): arrays.append(col) names.append(None) elif isinstance(col, abc.Iterator): arrays.append(list(col)) names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( "Length mismatch: Expected {len_self} rows, " "received array of length {len_col}".format( len_self=len(self), len_col=len(arrays[-1]) ) ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError("Index has duplicate keys: {dup}".format(dup=duplicates)) # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index( self, level=None, drop=False, inplace=False, col_level=0, col_fill="" ): """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame DataFrame with the new index. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): values = index._values if not isinstance(index, (PeriodIndex, DatetimeIndex)): if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 # we can have situations where the whole mask is -1, # meaning there is nothing found in labels, so make all nan's if mask.all(): values = np.empty(len(mask)) values.fill(np.nan) else: values = values.take(labels) # TODO(https://github.com/pandas-dev/pandas/issues/24206) # Push this into maybe_upcast_putmask? # We can't pass EAs there right now. Looks a bit # complicated. # So we unbox the ndarray_values, op, re-box. values_type = type(values) values_dtype = values.dtype if issubclass(values_type, DatetimeLikeArray): values = values._data if mask.any(): values, changed = maybe_upcast_putmask(values, mask, np.nan) if issubclass(values_type, DatetimeLikeArray): values = values_type(values, dtype=values_dtype) return values new_index = ibase.default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: if isinstance(self.index, MultiIndex): names = [ n if n is not None else ("level_%d" % i) for (i, n) in enumerate(self.index.names) ] to_insert = zip(self.index.levels, self.index.codes) else: default = "index" if "index" not in self else "level_0" names = [default] if self.index.name is None else [self.index.name] to_insert = ((self.index, None),) multi_col = isinstance(self.columns, MultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if not (level is None or i in level): continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " "with incomplete column name " "{}".format(name) ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj # ---------------------------------------------------------------------- # Reindex-based selection methods @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isna(self): return super().isna() @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isnull(self): return super().isnull() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notna(self): return super().notna() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notnull(self): return super().notnull() def dropna(self, axis=0, how="any", thresh=None, subset=None, inplace=False): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. deprecated:: 0.23.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 msg = ( "supplying multiple axes to axis is deprecated and " "will be removed in a future version." ) warnings.warn(msg, FutureWarning, stacklevel=2) result = self for ax in axis: result = result.dropna(how=how, thresh=thresh, subset=subset, axis=ax) else: axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == "any": mask = count == len(agg_obj._get_axis(agg_axis)) elif how == "all": mask = count > 0 else: if how is not None: raise ValueError("invalid how option: {h}".format(h=how)) else: raise TypeError("must specify how or thresh") result = self.loc(axis=axis)[mask] if inplace: self._update_inplace(result) else: return result def drop_duplicates(self, subset=None, keep="first", inplace=False): """ Return DataFrame with duplicate rows removed, optionally only considering certain columns. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : boolean, default False Whether to drop duplicates in place or to return a copy Returns ------- DataFrame """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, "inplace") duplicated = self.duplicated(subset, keep=keep) if inplace: inds, = (-duplicated)._ndarray_values.nonzero() new_data = self._data.take(inds) self._update_inplace(new_data) else: return self[-duplicated] def duplicated(self, subset=None, keep="first"): """ Return boolean Series denoting duplicate rows, optionally only considering certain columns. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series """ from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT if self.empty: return Series(dtype=bool) def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT) ) return labels.astype("i8", copy=False), len(shape) if subset is None: subset = self.columns elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_values.__doc__) def sort_values( self, by, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError( "Length of ascending (%d) != length of by (%d)" % (len(ascending), len(by)) ) if len(by) > 1: from pandas.core.sorting import lexsort_indexer keys = [self._get_label_or_level_values(x, axis=axis) for x in by] indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) else: from pandas.core.sorting import nargsort by = by[0] k = self._get_label_or_level_values(by, axis=axis) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position ) new_data = self._data.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_index.__doc__) def sort_index( self, axis=0, level=None, ascending=True, inplace=False, kind="quicksort", na_position="last", sort_remaining=True, by=None, ): # TODO: this can be combined with Series.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") # 10726 if by is not None: warnings.warn( "by argument to sort_index is deprecated, " "please use .sort_values(by=...)", FutureWarning, stacklevel=2, ) if level is not None: raise ValueError("unable to simultaneously sort by and level") return self.sort_values(by, axis=axis, ascending=ascending, inplace=inplace) axis = self._get_axis_number(axis) labels = self._get_axis(axis) # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer labels = labels._sort_levels_monotonic() if level is not None: new_axis, indexer = labels.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(labels, MultiIndex): from pandas.core.sorting import lexsort_indexer indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and labels.is_monotonic_increasing) or ( not ascending and labels.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( labels, kind=kind, ascending=ascending, na_position=na_position ) baxis = self._get_block_manager_axis(axis) new_data = self._data.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def nlargest(self, n, columns, keep="first"): """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep="first"): """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "a". >>> df.nsmallest(3, 'population') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 11300 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Nauru 11300 182 NR Anguilla 11300 311 AI """ return algorithms.SelectNFrame( self, n=n, keep=keep, columns=columns ).nsmallest() def swaplevel(self, i=-2, j=-1, axis=0): """ Swap levels i and j in a MultiIndex on a particular axis. Parameters ---------- i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- DataFrame """ result = self.copy() axis = self._get_axis_number(axis) if axis == 0: result.index = result.index.swaplevel(i, j) else: result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0): """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- type of caller (new object) """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy() if axis == 0: result.index = result.index.reorder_levels(order) else: result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other, func, fill_value=None, level=None): this, other = self.align(other, join="outer", level=level, copy=False) new_index, new_columns = this.index, this.columns def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) if ops.should_series_dispatch(this, other, func): # iterate over columns return ops.dispatch_to_series(this, other, _arith_op) else: result = _arith_op(this.values, other.values) return self._constructor( result, index=new_index, columns=new_columns, copy=False ) def _combine_match_index(self, other, func, level=None): left, right = self.align(other, join="outer", axis=0, level=level, copy=False) assert left.index.equals(right.index) if left._is_mixed_type or right._is_mixed_type: # operate column-wise; avoid costly object-casting in `.values` return ops.dispatch_to_series(left, right, func) else: # fastpath --> operate directly on values with np.errstate(all="ignore"): new_data = func(left.values.T, right.values).T return self._constructor( new_data, index=left.index, columns=self.columns, copy=False ) def _combine_match_columns(self, other, func, level=None): assert isinstance(other, Series) left, right = self.align(other, join="outer", axis=1, level=level, copy=False) assert left.columns.equals(right.index) return ops.dispatch_to_series(left, right, func, axis="columns") def _combine_const(self, other, func): assert lib.is_scalar(other) or np.ndim(other) == 0 return ops.dispatch_to_series(self, other, func) def combine(self, other, func, fill_value=None, overwrite=True): """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) arr = func(series, otherSeries) arr = maybe_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns) def combine_first(self, other): """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ import pandas.core.computation.expressions as expressions def extract_values(arr): # Does two things: # 1. maybe gets the values from the Series / Index # 2. convert datelike to i8 if isinstance(arr, (ABCIndexClass, ABCSeries)): arr = arr._values if needs_i8_conversion(arr): if is_extension_array_dtype(arr.dtype): arr = arr.asi8 else: arr = arr.view("i8") return arr def combiner(x, y): mask = isna(x) if isinstance(mask, (ABCIndexClass, ABCSeries)): mask = mask._values x_values = extract_values(x) y_values = extract_values(y) # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) return self.combine(other, combiner, overwrite=False) @deprecate_kwarg( old_arg_name="raise_conflict", new_arg_name="errors", mapping={False: "ignore", True: "raise"}, ) def update( self, other, join="left", overwrite=True, filter_func=None, errors="ignore" ): """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. .. versionchanged :: 0.24.0 Changed from `raise_conflict=False|True` to `errors='ignore'|'raise'`. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError( "The parameter errors must be either " "'ignore' or 'raise'" ) if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all="ignore"): mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ----------%s index : string or object, optional Column to use to make new frame's index. If None, uses existing index. columns : string or object Column to use to make new frame's columns. values : string, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. .. versionchanged :: 0.23.0 Also accept list of column names. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot(self, index=None, columns=None, values=None): from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions fill_value : scalar, default None Value to replace missing values with margins : boolean, default False Add all row / columns (e.g. for subtotal / grand totals) dropna : boolean, default True Do not include columns whose entries are all NaN margins_name : string, default 'All' Name of the row / column that will contain the totals when margins is True. observed : boolean, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionchanged :: 0.25.0 Returns ------- DataFrame See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9.0 7.500000 6.0 small 5.500000 9.0 8.500000 8.0 foo large 2.000000 5.0 4.500000 4.0 small 2.333333 6.0 4.333333 2.0 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ): from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) def stack(self, level=-1, dropna=True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. The new index levels are sorted. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def explode(self, column: Union[str, Tuple]) -> "DataFrame": """ Transform each element of a list-like to a row, replicating the index values. .. versionadded:: 0.25.0 Parameters ---------- column : str or tuple Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : if columns of the frame are not unique. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels DataFrame.melt : Unpivot a DataFrame from wide format to long format Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 foo 1 2 [] 1 3 [3, 4] 1 >>> df.explode('A') A B 0 1 1 0 2 1 0 3 1 1 foo 1 2 NaN 1 3 3 1 3 4 1 """ if not (is_scalar(column) or isinstance(column, tuple)): raise ValueError("column must be a scalar") if not self.columns.is_unique: raise ValueError("columns must be unique") result = self[column].explode() return ( self.drop([column], axis=1) .join(result) .reindex(columns=self.columns, copy=False) ) def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, string, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name fill_value : replace NaN with this value if the unstack produces missing values Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) _shared_docs[ "melt" ] = """ Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. %(versionadded)s Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or string, optional If columns are a MultiIndex then use this level to melt. Returns ------- DataFrame Unpivoted DataFrame. See Also -------- %(other)s pivot_table DataFrame.pivot Series.explode Examples -------- >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ @Appender( _shared_docs["melt"] % dict( caller="df.melt(", versionadded=".. versionadded:: 0.20.0\n", other="melt" ) ) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ): from pandas.core.reshape.melt import melt return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0): """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). .. versionadded:: 0.16.1. Returns ------- DataFrame See Also -------- Series.diff: First discrete difference for a Series. DataFrame.pct_change: Percent change over given number of periods. DataFrame.shift: Shift index by desired number of periods with an optional time freq. Examples -------- Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0.0 0.0 1 NaN -1.0 3.0 2 NaN -1.0 7.0 3 NaN -1.0 13.0 4 NaN 0.0 20.0 5 NaN 2.0 28.0 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: Union[str, List[str]], ndim: int, subset: Optional[Union[Series, ABCDataFrame]] = None, ) -> Union[Series, ABCDataFrame]: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_summary_and_see_also_doc = dedent( """ The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.EWM : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @Substitution( see_also=_agg_summary_and_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) result = None try: result, how = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, axis=0, *args, **kwargs): if axis == 1: # NDFrame.aggregate returns a tuple, and we need to transpose # only result result, how = self.T._aggregate(arg, *args, **kwargs) result = result.T if result is not None else result return result, how return super()._aggregate(arg, *args, **kwargs) agg = aggregate @Appender(_shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) if axis == 1: return self.T.transform(func, *args, **kwargs).T return super().transform(func, *args, **kwargs) def apply( self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds ): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. broadcast : bool, optional Only relevant for aggregation functions: * ``False`` or ``None`` : returns a Series whose length is the length of the index or the number of columns (based on the `axis` parameter) * ``True`` : results will be broadcast to the original shape of the frame, the original index and columns will be retained. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='broadcast'. raw : bool, default False * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. reduce : bool or None, default None Try to apply reduction procedures. If the DataFrame is empty, `apply` will use `reduce` to determine whether the result should be a Series or a DataFrame. If ``reduce=None`` (the default), `apply`'s return value will be guessed by calling `func` on an empty Series (note: while guessing, exceptions raised by `func` will be ignored). If ``reduce=True`` a Series will always be returned, and if ``reduce=False`` a DataFrame will always be returned. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by ``result_type='reduce'``. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Notes ----- In the current implementation apply calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing result_type='expand' will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, broadcast=broadcast, raw=raw, reduce=reduce, result_type=result_type, args=args, kwds=kwds, ) return op.get_result() def applymap(self, func): """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. Notes ----- In the current implementation applymap calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func) return lib.map_infer(x.astype(object).values, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append(self, other, ignore_index=False, verify_integrity=False, sort=None): """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. sort : boolean, default None Sort columns if the columns of `self` and `other` are not aligned. The default sorting is deprecated and will change to not-sorting in a future version of pandas. Explicitly pass ``sort=True`` to silence the warning and sort. Explicitly pass ``sort=False`` to silence the warning and not sort. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True" " or if the Series has a name" ) if other.name is None: index = None else: # other must have the same index name as self, otherwise # index name will be reset index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) try: combined_columns = self.columns.append(idx_diff) except TypeError: combined_columns = self.columns.astype(object).append(idx_diff) other = other.reindex(combined_columns, copy=False) other = DataFrame( other.values.reshape((1, len(other))), index=index, columns=combined_columns, ) other = other._convert(datetime=True, timedelta=True) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list) and not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.reindex(columns=self.columns) from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self] + other else: to_concat = [self, other] return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) def join(self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False): """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it. lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Support for specifying index levels as the `on` parameter was added in version 0.23.0. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN """ # For SparseDataFrame's benefit return self._join_compat( other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort ) def _join_compat( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ): from pandas.core.reshape.merge import merge from pandas.core.reshape.concat import concat if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported" " for joining on index" ) frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat(frames, axis=1, join="outer", verify_integrity=True) return res.reindex(self.index, copy=False) else: return concat(frames, axis=1, join=how, verify_integrity=True) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ): from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round(self, decimals=0, *args, **kwargs): """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = [col for col in _dict_round(self, decimals)] elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.items()] else: raise TypeError("decimals must be an integer, a dict-like or a " "Series") if len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method="pearson", min_periods=1): """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith Series.corr Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if method == "pearson": correl = libalgos.nancorr(ensure_float64(mat), minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(ensure_float64(mat), minp=min_periods) elif method == "kendall" or callable(method): if min_periods is None: min_periods = 1 mat = ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " "'{method}' was supplied".format(method=method) ) return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods=None): """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.EWM.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if notna(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = libalgos.nancorr(ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=idx, columns=cols) def corrwith(self, other, axis=0, drop=False, method="pearson"): """ Compute pairwise correlation between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series( map(c, zip(left.values.T, right.values.T)), index=left.columns ) else: raise ValueError( "Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable".format(method=method) ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype("int64") def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, MultiIndex): raise TypeError( "Can only count levels on hierarchical " "{ax}.".format(ax=self._get_axis_name(axis)) ) if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notna(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, str): level = count_axis._get_level_number(level) level_index = count_axis.levels[level] level_codes = ensure_int64(count_axis.codes[level]) counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): if axis is None and filter_type == "bool": labels = None constructor = None else: # TODO: Make other agg func handle axis=None properly axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) constructor = self._constructor def f(x): return op(x, axis=axis, skipna=skipna, **kwds) # exclude timedelta/datetime unless we are uniform types if ( axis == 1 and self._is_datelike_mixed_type and ( not self._is_homogeneous_type and not is_datetime64tz_dtype(self.dtypes[0]) ) ): numeric_only = True if numeric_only is None: try: values = self.values result = f(values) if filter_type == "bool" and is_object_dtype(values) and axis is None: # work around https://github.com/numpy/numpy/issues/10489 # TODO: combine with hasattr(result, 'dtype') further down # hard since we don't have `values` down there. result = np.bool_(result) except Exception as e: # try by-column first if filter_type is None and axis == 0: try: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series # we only end up here if we have not specified # numeric_only and yet we have tried a # column-by-column reduction, where we have mixed type. # So let's just do what we can from pandas.core.apply import frame_apply opa = frame_apply( self, func=f, result_type="expand", ignore_failures=True ) result = opa.get_result() if result.ndim == self.ndim: result = result.iloc[0] return result except Exception: pass if filter_type is None or filter_type == "numeric": data = self._get_numeric_data() elif filter_type == "bool": data = self._get_bool_data() else: # pragma: no cover e = NotImplementedError( "Handling exception with filter_type {f} not" "implemented.".format(f=filter_type) ) raise_with_traceback(e) with np.errstate(all="ignore"): result = f(data.values) labels = data._get_agg_axis(axis) else: if numeric_only: if filter_type is None or filter_type == "numeric": data = self._get_numeric_data() elif filter_type == "bool": # GH 25101, # GH 24434 data = self._get_bool_data() if axis == 0 else self else: # pragma: no cover msg = ( "Generating numeric_only data with filter_type {f}" "not supported.".format(f=filter_type) ) raise NotImplementedError(msg) values = data.values labels = data._get_agg_axis(axis) else: values = self.values result = f(values) if hasattr(result, "dtype") and is_object_dtype(result.dtype): try: if filter_type is None or filter_type == "numeric": result = result.astype(np.float64) elif filter_type == "bool" and notna(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = coerce_to_dtypes(result, self.dtypes) if constructor is not None: result = Series(result, index=labels) return result def nunique(self, axis=0, dropna=True): """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. .. versionadded:: 0.20.0 Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis=0, skipna=True): """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin Notes ----- This method is the DataFrame version of ``ndarray.argmin``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True): """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax Notes ----- This method is the DataFrame version of ``ndarray.argmax``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError("Axis must be 0 or 1 (got %r)" % axis_num) def mode(self, axis=0, numeric_only=False, dropna=True): """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains ``NaN``, because they have only one mode, but the DataFrame has two rows. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation="linear"): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ self._check_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T result = data._data.quantile( qs=q, axis=1, interpolation=interpolation, transposed=is_transposed ) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp(self, freq=None, how="start", axis=0, copy=True): """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with DatetimeIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how)) elif axis == 1: new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how)) else: # pragma: no cover raise AssertionError("Axis must be 0 or 1. Got {ax!s}".format(ax=axis)) return self._constructor(new_data) def to_period(self, freq=None, axis=0, copy=True): """ Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- TimeSeries with PeriodIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_period(freq=freq)) elif axis == 1: new_data.set_axis(0, self.columns.to_period(freq=freq)) else: # pragma: no cover raise AssertionError("Axis must be 0 or 1. Got {ax!s}".format(ax=axis)) return self._constructor(new_data) def isin(self, values): """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are " "allowed to be passed to DataFrame.isin(), " "you passed a " "{0!r}".format(type(values).__name__) ) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns, ) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) DataFrame._setup_axes( ["index", "columns"], info_axis=1, stat_axis=0, axes_are_reversed=True, aliases={"rows": 0}, docs={ "index": "The index (row labels) of the DataFrame.", "columns": "The column labels of the DataFrame.", }, ) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() ops.add_flex_arithmetic_methods(DataFrame) ops.add_special_arithmetic_methods(DataFrame) def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = OrderedDict() for index, s in data.items(): for col, v in s.items(): new_data[col] = new_data.get(col, OrderedDict()) new_data[col][index] = v return new_data def _put_str(s, space): return "{s}".format(s=s)[:space].ljust(space) """ DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ import collections from collections import OrderedDict, abc import functools from io import StringIO import itertools import sys from textwrap import dedent from typing import FrozenSet, List, Optional, Set, Tuple, Type, Union import warnings import numpy as np import numpy.ma as ma from pandas._config import get_option from pandas._libs import algos as libalgos, lib from pandas.compat import PY36, raise_with_traceback from pandas.compat.numpy import function as nv from pandas.util._decorators import ( Appender, Substitution, deprecate_kwarg, rewrite_axis_style_signature, ) from pandas.util._validators import validate_axis_style_args, validate_bool_kwarg from pandas.core.dtypes.cast import ( cast_scalar_to_array, coerce_to_dtypes, find_common_type, infer_dtype_from_scalar, invalidate_string_dtypes, maybe_cast_to_datetime, maybe_convert_platform, maybe_downcast_to_dtype, maybe_infer_to_datetimelike, maybe_upcast, maybe_upcast_putmask, ) from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_platform_int, infer_dtype_from_object, is_bool_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_extension_type, is_float_dtype, is_hashable, is_integer, is_integer_dtype, is_iterator, is_list_like, is_named_tuple, is_nested_list_like, is_object_dtype, is_scalar, is_sequence, needs_i8_conversion, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna, notna from pandas.core import algorithms, common as com, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import Categorical, ExtensionArray from pandas.core.arrays.datetimelike import DatetimeLikeArrayMixin as DatetimeLikeArray from pandas.core.arrays.sparse import SparseFrameAccessor from pandas.core.generic import NDFrame, _shared_docs from pandas.core.index import ( Index, MultiIndex, ensure_index, ensure_index_from_sequences, ) from pandas.core.indexes import base as ibase from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import PeriodIndex from pandas.core.indexing import ( check_bool_indexer, convert_to_index_sliceable, maybe_droplevels, ) from pandas.core.internals import BlockManager from pandas.core.internals.construction import ( arrays_to_mgr, get_names_from_index, init_dict, init_ndarray, masked_rec_array_to_mgr, reorder_arrays, sanitize_index, to_arrays, ) from pandas.core.series import Series from pandas.io.formats import console, format as fmt from pandas.io.formats.printing import pprint_thing import pandas.plotting # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes="index, columns", klass="DataFrame", axes_single_arg="{0 or 'index', 1 or 'columns'}", axis="""axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index': apply function to each column. If 1 or 'columns': apply function to each row.""", optional_by=""" by : str or list of str Name or list of names to sort by. - if `axis` is 0 or `'index'` then `by` may contain index levels and/or column labels - if `axis` is 1 or `'columns'` then `by` may contain column levels and/or index labels .. versionchanged:: 0.23.0 Allow specifying index or column level names.""", versionadded_to_excel="", optional_labels="""labels : array-like, optional New labels / index to conform the axis specified by 'axis' to.""", optional_axis="""axis : int or str, optional Axis to target. Can be either the axis name ('index', 'columns') or number (0, 1).""", ) _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame or named Series objects with a database-style join. The join is done on columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame or named Series Object to merge with. how : {'left', 'right', 'outer', 'inner'}, default 'inner' Type of merge to be performed. * left: use only keys from left frame, similar to a SQL left outer join; preserve key order. * right: use only keys from right frame, similar to a SQL right outer join; preserve key order. * outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. * inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on : label or list Column or index level names to join on. These must be found in both DataFrames. If `on` is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index : bool, default False Use the index from the right DataFrame as the join key. Same caveats as left_index. sort : bool, default False Sort the join keys lexicographically in the result DataFrame. If False, the order of the join keys depends on the join type (how keyword). suffixes : tuple of (str, str), default ('_x', '_y') Suffix to apply to overlapping column names in the left and right side, respectively. To raise an exception on overlapping columns use (False, False). copy : bool, default True If False, avoid copy if possible. indicator : bool or str, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. validate : str, optional If specified, checks if merge is of specified type. * "one_to_one" or "1:1": check if merge keys are unique in both left and right datasets. * "one_to_many" or "1:m": check if merge keys are unique in left dataset. * "many_to_one" or "m:1": check if merge keys are unique in right dataset. * "many_to_many" or "m:m": allowed, but does not result in checks. .. versionadded:: 0.21.0 Returns ------- DataFrame A DataFrame of the two merged objects. See Also -------- merge_ordered : Merge with optional filling/interpolation. merge_asof : Merge on nearest keys. DataFrame.join : Similar method using indices. Notes ----- Support for specifying index levels as the `on`, `left_on`, and `right_on` parameters was added in version 0.23.0 Support for merging named Series objects was added in version 0.24.0 Examples -------- >>> df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}) >>> df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> df1.merge(df2, left_on='lkey', right_on='rkey') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2 with specified left and right suffixes appended to any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', ... suffixes=('_left', '_right')) lkey value_left rkey value_right 0 foo 1 foo 5 1 foo 1 foo 8 2 foo 5 foo 5 3 foo 5 foo 8 4 bar 2 bar 6 5 baz 3 baz 7 Merge DataFrames df1 and df2, but raise an exception if the DataFrames have any overlapping columns. >>> df1.merge(df2, left_on='lkey', right_on='rkey', suffixes=(False, False)) Traceback (most recent call last): ... ValueError: columns overlap but no suffix specified: Index(['value'], dtype='object') """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure. Parameters ---------- data : ndarray (structured or homogeneous), Iterable, dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects .. versionchanged :: 0.23.0 If data is a dict, column order follows insertion-order for Python 3.6 and later. .. versionchanged :: 0.25.0 If data is a list of dicts, column order follows insertion-order Python 3.6 and later. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, ..., n) if no column labels are provided dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input See Also -------- DataFrame.from_records : Constructor from tuples, also record arrays. DataFrame.from_dict : From dicts of Series, arrays, or dicts. DataFrame.from_items : From sequence of (key, value) pairs read_csv, pandas.read_table, pandas.read_clipboard. Examples -------- Constructing DataFrame from a dictionary. >>> d = {'col1': [1, 2], 'col2': [3, 4]} >>> df = pd.DataFrame(data=d) >>> df col1 col2 0 1 3 1 2 4 Notice that the inferred dtype is int64. >>> df.dtypes col1 int64 col2 int64 dtype: object To enforce a single dtype: >>> df = pd.DataFrame(data=d, dtype=np.int8) >>> df.dtypes col1 int8 col2 int8 dtype: object Constructing DataFrame from numpy ndarray: >>> df2 = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), ... columns=['a', 'b', 'c']) >>> df2 a b c 0 1 2 3 1 4 5 6 2 7 8 9 """ @property def _constructor(self): return DataFrame _constructor_sliced = Series # type: Type[Series] _deprecations = NDFrame._deprecations | frozenset( ["from_items"] ) # type: FrozenSet[str] _accessors = set() # type: Set[str] @property def _constructor_expanddim(self): raise NotImplementedError("Not supported for DataFrames!") # ---------------------------------------------------------------------- # Constructors def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr( data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy ) elif isinstance(data, dict): mgr = init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = maybe_upcast(data, copy=True) data.soften_mask() # set hardmask False if it was True data[mask] = fill_value else: data = data.copy() mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = {k: data[k] for k in data_columns} if columns is None: columns = data_columns mgr = init_dict(data, index, columns, dtype=dtype) elif getattr(data, "name", None) is not None: mgr = init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) # For data is list-like, or Iterable (will consume into list) elif isinstance(data, abc.Iterable) and not isinstance(data, (str, bytes)): if not isinstance(data, abc.Sequence): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], "ndim", 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = to_arrays(data, columns, dtype=dtype) columns = ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = get_names_from_index(data) elif isinstance(data[0], Categorical): index = ibase.default_index(len(data[0])) else: index = ibase.default_index(len(data)) mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = init_dict({}, index, columns, dtype=dtype) else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as e: exc = TypeError( "DataFrame constructor called with " "incompatible data and dtype: {e}".format(e=e) ) raise_with_traceback(exc) if arr.ndim == 0 and index is not None and columns is not None: values = cast_scalar_to_array( (len(index), len(columns)), data, dtype=dtype ) mgr = init_ndarray( values, index, columns, dtype=values.dtype, copy=False ) else: raise ValueError("DataFrame constructor not properly called!") NDFrame.__init__(self, mgr, fastpath=True) # ---------------------------------------------------------------------- @property def axes(self): """ Return a list representing the axes of the DataFrame. It has the row axis labels and column axis labels as the only members. They are returned in that order. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.axes [RangeIndex(start=0, stop=2, step=1), Index(['col1', 'col2'], dtype='object')] """ return [self.index, self.columns] @property def shape(self): """ Return a tuple representing the dimensionality of the DataFrame. See Also -------- ndarray.shape Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]}) >>> df.shape (2, 2) >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4], ... 'col3': [5, 6]}) >>> df.shape (2, 3) """ return len(self.index), len(self.columns) @property def _is_homogeneous_type(self): """ Whether all the columns in a DataFrame have the same type. Returns ------- bool Examples -------- >>> DataFrame({"A": [1, 2], "B": [3, 4]})._is_homogeneous_type True >>> DataFrame({"A": [1, 2], "B": [3.0, 4.0]})._is_homogeneous_type False Items with the same type but different sizes are considered different types. >>> DataFrame({ ... "A": np.array([1, 2], dtype=np.int32), ... "B": np.array([1, 2], dtype=np.int64)})._is_homogeneous_type False """ if self._data.any_extension_types: return len({block.dtype for block in self._data.blocks}) == 1 else: return not self._data.is_mixed_type # ---------------------------------------------------------------------- # Rendering Methods def _repr_fits_vertical_(self): """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width=False): """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case off non-interactive session, no boundaries apply. `ignore_width` is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = console.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if (max_columns and nb_columns > max_columns) or ( (not ignore_width) and width and nb_columns > (width // 2) ): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not console.in_interactive_session(): return True if get_option("display.width") is not None or console.in_ipython_frontend(): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actually checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[: min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max(len(l) for l in value.split("\n")) return repr_width < width def _info_repr(self): """ True if the repr should show the info view. """ info_repr_option = get_option("display.large_repr") == "info" return info_repr_option and not ( self._repr_fits_horizontal_() and self._repr_fits_vertical_() ) def __repr__(self): """ Return a string representation for a particular DataFrame. """ buf = StringIO("") if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None self.to_string( buf=buf, max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, line_width=width, show_dimensions=show_dimensions, ) return buf.getvalue() def _repr_html_(self): """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ if self._info_repr(): buf = StringIO("") self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace("<", r"&lt;", 1) val = val.replace(">", r"&gt;", 1) return "<pre>" + val + "</pre>" if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") return self.to_html( max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, notebook=True, ) else: return None @Substitution( header="Write out the column names. If a list of strings " "is given, it is assumed to be aliases for the " "column names", col_space_type="int", col_space="The minimum width of each column", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_string( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, min_rows=None, max_cols=None, show_dimensions=False, decimal=".", line_width=None, ): """ Render a DataFrame to a console-friendly tabular output. %(shared_params)s line_width : int, optional Width to wrap a line in characters. %(returns)s See Also -------- to_html : Convert DataFrame to HTML. Examples -------- >>> d = {'col1': [1, 2, 3], 'col2': [4, 5, 6]} >>> df = pd.DataFrame(d) >>> print(df.to_string()) col1 col2 0 1 4 1 2 5 2 3 6 """ formatter = fmt.DataFrameFormatter( self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, min_rows=min_rows, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, line_width=line_width, ) formatter.to_string() if buf is None: result = formatter.buf.getvalue() return result # ---------------------------------------------------------------------- @property def style(self): """ Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame. See Also -------- io.formats.style.Styler """ from pandas.io.formats.style import Styler return Styler(self) _shared_docs[ "items" ] = r""" Iterator over (column name, Series) pairs. Iterates over the DataFrame columns, returning a tuple with the column name and the content as a Series. %s label : object The column names for the DataFrame being iterated over. content : Series The column entries belonging to each label, as a Series. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.itertuples : Iterate over DataFrame rows as namedtuples of the values. Examples -------- >>> df = pd.DataFrame({'species': ['bear', 'bear', 'marsupial'], ... 'population': [1864, 22000, 80000]}, ... index=['panda', 'polar', 'koala']) >>> df species population panda bear 1864 polar bear 22000 koala marsupial 80000 >>> for label, content in df.items(): ... print('label:', label) ... print('content:', content, sep='\n') ... label: species content: panda bear polar bear koala marsupial Name: species, dtype: object label: population content: panda 1864 polar 22000 koala 80000 Name: population, dtype: int64 """ @Appender(_shared_docs["items"] % "Yields\n ------") def items(self): if self.columns.is_unique and hasattr(self, "_item_cache"): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) @Appender(_shared_docs["items"] % "Returns\n -------") def iteritems(self): return self.items() def iterrows(self): """ Iterate over DataFrame rows as (index, Series) pairs. Yields ------ index : label or tuple of label The index of the row. A tuple for a `MultiIndex`. data : Series The data of the row as a Series. it : generator A generator that iterates over the rows of the frame. See Also -------- itertuples : Iterate over DataFrame rows as namedtuples of the values. items : Iterate over (column name, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples. Parameters ---------- index : bool, default True If True, return the index as the first element of the tuple. name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Returns ------- iterator An object to iterate over namedtuples for each row in the DataFrame with the first field possibly being the index and following fields being the column values. See Also -------- DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. DataFrame.items : Iterate over (column name, Series) pairs. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned. Examples -------- >>> df = pd.DataFrame({'num_legs': [4, 2], 'num_wings': [0, 2]}, ... index=['dog', 'hawk']) >>> df num_legs num_wings dog 4 0 hawk 2 2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='dog', num_legs=4, num_wings=0) Pandas(Index='hawk', num_legs=2, num_wings=2) By setting the `index` parameter to False we can remove the index as the first element of the tuple: >>> for row in df.itertuples(index=False): ... print(row) ... Pandas(num_legs=4, num_wings=0) Pandas(num_legs=2, num_wings=2) With the `name` parameter set we set a custom name for the yielded namedtuples: >>> for row in df.itertuples(name='Animal'): ... print(row) ... Animal(Index='dog', num_legs=4, num_wings=0) Animal(Index='hawk', num_legs=2, num_wings=2) """ arrays = [] fields = list(self.columns) if index: arrays.append(self.index) fields.insert(0, "Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python 3 supports at most 255 arguments to constructor if name is not None and len(self.columns) + index < 256: itertuple = collections.namedtuple(name, fields, rename=True) return map(itertuple._make, zip(*arrays)) # fallback to regular tuples return zip(*arrays) def __len__(self): """ Returns length of info axis, but here we use the index. """ return len(self.index) def dot(self, other): """ Compute the matrix multiplication between the DataFrame and other. This method computes the matrix product between the DataFrame and the values of an other Series, DataFrame or a numpy array. It can also be called using ``self @ other`` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the matrix product with. Returns ------- Series or DataFrame If other is a Series, return the matrix product between self and other as a Serie. If other is a DataFrame or a numpy.array, return the matrix product of self and other in a DataFrame of a np.array. See Also -------- Series.dot: Similar method for Series. Notes ----- The dimensions of DataFrame and other must be compatible in order to compute the matrix multiplication. In addition, the column names of DataFrame and the index of other must contain the same values, as they will be aligned prior to the multiplication. The dot method for Series computes the inner product, instead of the matrix product here. Examples -------- Here we multiply a DataFrame with a Series. >>> df = pd.DataFrame([[0, 1, -2, -1], [1, 1, 1, 1]]) >>> s = pd.Series([1, 1, 2, 1]) >>> df.dot(s) 0 -4 1 5 dtype: int64 Here we multiply a DataFrame with another DataFrame. >>> other = pd.DataFrame([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(other) 0 1 0 1 4 1 2 2 Note that the dot method give the same result as @ >>> df @ other 0 1 0 1 4 1 2 2 The dot method works also if other is an np.array. >>> arr = np.array([[0, 1], [1, 2], [-1, -1], [2, 0]]) >>> df.dot(arr) 0 1 0 1 4 1 2 2 Note how shuffling of the objects does not change the result. >>> s2 = s.reindex([1, 0, 2, 3]) >>> df.dot(s2) 0 -4 1 5 dtype: int64 """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if len(common) > len(self.columns) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError( "Dot product shape mismatch, " "{s} vs {r}".format(s=lvals.shape, r=rvals.shape) ) if isinstance(other, DataFrame): return self._constructor( np.dot(lvals, rvals), index=left.index, columns=other.columns ) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError("unsupported type: {oth}".format(oth=type(other))) def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.T.dot(np.transpose(other)).T # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient="columns", dtype=None, columns=None): """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ValueError if used with ``orient='columns'``. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from ndarray (structured dtype), list of tuples, dict, or DataFrame. DataFrame : DataFrame object creation using constructor. Examples -------- By default the keys of the dict become the DataFrame columns: >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': ['a', 'b', 'c', 'd']} >>> pd.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 a b c d When using the 'index' orientation, the column names can be specified manually: >>> pd.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 a b c d """ index = None orient = orient.lower() if orient == "index": if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient == "columns": if columns is not None: raise ValueError( "cannot use columns parameter with " "orient='columns'" ) else: # pragma: no cover raise ValueError("only recognize index or columns for orient") return cls(data, index=index, columns=columns, dtype=dtype) def to_numpy(self, dtype=None, copy=False): """ Convert the DataFrame to a NumPy array. .. versionadded:: 0.24.0 By default, the dtype of the returned array will be the common NumPy dtype of all types in the DataFrame. For example, if the dtypes are ``float16`` and ``float32``, the results dtype will be ``float32``. This may require copying data and coercing values, which may be expensive. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to pass to :meth:`numpy.asarray` copy : bool, default False Whether to ensure that the returned value is a not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. Returns ------- numpy.ndarray See Also -------- Series.to_numpy : Similar method for Series. Examples -------- >>> pd.DataFrame({"A": [1, 2], "B": [3, 4]}).to_numpy() array([[1, 3], [2, 4]]) With heterogenous data, the lowest common type will have to be used. >>> df = pd.DataFrame({"A": [1, 2], "B": [3.0, 4.5]}) >>> df.to_numpy() array([[1. , 3. ], [2. , 4.5]]) For a mix of numeric and non-numeric types, the output array will have object dtype. >>> df['C'] = pd.date_range('2000', periods=2) >>> df.to_numpy() array([[1, 3.0, Timestamp('2000-01-01 00:00:00')], [2, 4.5, Timestamp('2000-01-02 00:00:00')]], dtype=object) """ result = np.array(self.values, dtype=dtype, copy=copy) return result def to_dict(self, orient="dict", into=dict): """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ if not self.columns.is_unique: warnings.warn( "DataFrame columns are not unique, some " "columns will be omitted.", UserWarning, stacklevel=2, ) # GH16122 into_c = com.standardize_mapping(into) if orient.lower().startswith("d"): return into_c((k, v.to_dict(into)) for k, v in self.items()) elif orient.lower().startswith("l"): return into_c((k, v.tolist()) for k, v in self.items()) elif orient.lower().startswith("sp"): return into_c( ( ("index", self.index.tolist()), ("columns", self.columns.tolist()), ( "data", [ list(map(com.maybe_box_datetimelike, t)) for t in self.itertuples(index=False, name=None) ], ), ) ) elif orient.lower().startswith("s"): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in self.items()) elif orient.lower().startswith("r"): columns = self.columns.tolist() rows = ( dict(zip(columns, row)) for row in self.itertuples(index=False, name=None) ) return [ into_c((k, com.maybe_box_datetimelike(v)) for k, v in row.items()) for row in rows ] elif orient.lower().startswith("i"): if not self.index.is_unique: raise ValueError("DataFrame index must be unique for orient='index'.") return into_c( (t[0], dict(zip(self.columns, t[1:]))) for t in self.itertuples(name=None) ) else: raise ValueError("orient '{o}' not understood".format(o=orient)) def to_gbq( self, destination_table, project_id=None, chunksize=None, reauth=False, if_exists="fail", auth_local_webserver=False, table_schema=None, location=None, progress_bar=True, credentials=None, verbose=None, private_key=None, ): """ Write a DataFrame to a Google BigQuery table. This function requires the `pandas-gbq package <https://pandas-gbq.readthedocs.io>`__. See the `How to authenticate with Google BigQuery <https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html>`__ guide for authentication instructions. Parameters ---------- destination_table : str Name of table to be written, in the form ``dataset.tablename``. project_id : str, optional Google BigQuery Account project ID. Optional when available from the environment. chunksize : int, optional Number of rows to be inserted in each chunk from the dataframe. Set to ``None`` to load the whole dataframe at once. reauth : bool, default False Force Google BigQuery to re-authenticate the user. This is useful if multiple accounts are used. if_exists : str, default 'fail' Behavior when the destination table exists. Value can be one of: ``'fail'`` If table exists, do nothing. ``'replace'`` If table exists, drop it, recreate it, and insert data. ``'append'`` If table exists, insert data. Create if does not exist. auth_local_webserver : bool, default False Use the `local webserver flow`_ instead of the `console flow`_ when getting user credentials. .. _local webserver flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server .. _console flow: http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console *New in version 0.2.0 of pandas-gbq*. table_schema : list of dicts, optional List of BigQuery table fields to which according DataFrame columns conform to, e.g. ``[{'name': 'col1', 'type': 'STRING'},...]``. If schema is not provided, it will be generated according to dtypes of DataFrame columns. See BigQuery API documentation on available names of a field. *New in version 0.3.1 of pandas-gbq*. location : str, optional Location where the load job should run. See the `BigQuery locations documentation <https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a list of available locations. The location must match that of the target dataset. *New in version 0.5.0 of pandas-gbq*. progress_bar : bool, default True Use the library `tqdm` to show the progress bar for the upload, chunk by chunk. *New in version 0.5.0 of pandas-gbq*. credentials : google.auth.credentials.Credentials, optional Credentials for accessing Google APIs. Use this parameter to override default credentials, such as to use Compute Engine :class:`google.auth.compute_engine.Credentials` or Service Account :class:`google.oauth2.service_account.Credentials` directly. *New in version 0.8.0 of pandas-gbq*. .. versionadded:: 0.24.0 verbose : bool, deprecated Deprecated in pandas-gbq version 0.4.0. Use the `logging module to adjust verbosity instead <https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__. private_key : str, deprecated Deprecated in pandas-gbq version 0.8.0. Use the ``credentials`` parameter and :func:`google.oauth2.service_account.Credentials.from_service_account_info` or :func:`google.oauth2.service_account.Credentials.from_service_account_file` instead. Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. Jupyter/IPython notebook on remote host). See Also -------- pandas_gbq.to_gbq : This function in the pandas-gbq library. read_gbq : Read a DataFrame from Google BigQuery. """ from pandas.io import gbq gbq.to_gbq( self, destination_table, project_id=project_id, chunksize=chunksize, reauth=reauth, if_exists=if_exists, auth_local_webserver=auth_local_webserver, table_schema=table_schema, location=location, progress_bar=progress_bar, credentials=credentials, verbose=verbose, private_key=private_key, ) @classmethod def from_records( cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None, ): """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values of non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets nrows : int, default None Number of rows to read if data is an iterator Returns ------- DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, "dtype") and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in data.items(): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = to_arrays(data, columns) if columns is not None: columns = ensure_index(columns) arr_columns = columns else: arrays, arr_columns = to_arrays(data, columns, coerce_float=coerce_float) arr_columns = ensure_index(arr_columns) if columns is not None: columns = ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if isinstance(index, str) or not hasattr(index, "__iter__"): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: index_data = [arrays[arr_columns.get_loc(field)] for field in index] result_index = ensure_index_from_sequences(index_data, names=index) exclude.update(index) except Exception: result_index = index if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records( self, index=True, convert_datetime64=None, column_dtypes=None, index_dtypes=None ): """ Convert DataFrame to a NumPy record array. Index will be included as the first field of the record array if requested. Parameters ---------- index : bool, default True Include index in resulting record array, stored in 'index' field or using the index label, if set. convert_datetime64 : bool, default None .. deprecated:: 0.23.0 Whether to convert the index to datetime.datetime if it is a DatetimeIndex. column_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all columns. If a dictionary, a mapping of column names and indices (zero-indexed) to specific data types. index_dtypes : str, type, dict, default None .. versionadded:: 0.24.0 If a string or type, the data type to store all index levels. If a dictionary, a mapping of index level names and indices (zero-indexed) to specific data types. This mapping is applied only if `index=True`. Returns ------- numpy.recarray NumPy ndarray with the DataFrame labels as fields and each row of the DataFrame as entries. See Also -------- DataFrame.from_records: Convert structured or record ndarray to DataFrame. numpy.recarray: An ndarray that allows field access using attributes, analogous to typed columns in a spreadsheet. Examples -------- >>> df = pd.DataFrame({'A': [1, 2], 'B': [0.5, 0.75]}, ... index=['a', 'b']) >>> df A B a 1 0.50 b 2 0.75 >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('index', 'O'), ('A', '<i8'), ('B', '<f8')]) If the DataFrame index has no label then the recarray field name is set to 'index'. If the index has a label then this is used as the field name: >>> df.index = df.index.rename("I") >>> df.to_records() rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i8'), ('B', '<f8')]) The index can be excluded from the record array: >>> df.to_records(index=False) rec.array([(1, 0.5 ), (2, 0.75)], dtype=[('A', '<i8'), ('B', '<f8')]) Data types can be specified for the columns: >>> df.to_records(column_dtypes={"A": "int32"}) rec.array([('a', 1, 0.5 ), ('b', 2, 0.75)], dtype=[('I', 'O'), ('A', '<i4'), ('B', '<f8')]) As well as for the index: >>> df.to_records(index_dtypes="<S2") rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S2'), ('A', '<i8'), ('B', '<f8')]) >>> index_dtypes = "<S{}".format(df.index.str.len().max()) >>> df.to_records(index_dtypes=index_dtypes) rec.array([(b'a', 1, 0.5 ), (b'b', 2, 0.75)], dtype=[('I', 'S1'), ('A', '<i8'), ('B', '<f8')]) """ if convert_datetime64 is not None: warnings.warn( "The 'convert_datetime64' parameter is " "deprecated and will be removed in a future " "version", FutureWarning, stacklevel=2, ) if index: if is_datetime64_any_dtype(self.index) and convert_datetime64: ix_vals = [self.index.to_pydatetime()] else: if isinstance(self.index, MultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = list(map(np.array, zip(*self.index.values))) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c]._internal_get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, MultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = "level_%d" % count count += 1 elif index_names[0] is None: index_names = ["index"] names = [str(name) for name in itertools.chain(index_names, self.columns)] else: arrays = [self[c]._internal_get_values() for c in self.columns] names = [str(c) for c in self.columns] index_names = [] index_len = len(index_names) formats = [] for i, v in enumerate(arrays): index = i # When the names and arrays are collected, we # first collect those in the DataFrame's index, # followed by those in its columns. # # Thus, the total length of the array is: # len(index_names) + len(DataFrame.columns). # # This check allows us to see whether we are # handling a name / array in the index or column. if index < index_len: dtype_mapping = index_dtypes name = index_names[index] else: index -= index_len dtype_mapping = column_dtypes name = self.columns[index] # We have a dictionary, so we get the data type # associated with the index or column (which can # be denoted by its name in the DataFrame or its # position in DataFrame's array of indices or # columns, whichever is applicable. if is_dict_like(dtype_mapping): if name in dtype_mapping: dtype_mapping = dtype_mapping[name] elif index in dtype_mapping: dtype_mapping = dtype_mapping[index] else: dtype_mapping = None # If no mapping can be found, use the array's # dtype attribute for formatting. # # A valid dtype must either be a type or # string naming a type. if dtype_mapping is None: formats.append(v.dtype) elif isinstance(dtype_mapping, (type, np.dtype, str)): formats.append(dtype_mapping) else: element = "row" if i < index_len else "column" msg = ( "Invalid dtype {dtype} specified for " "{element} {name}" ).format(dtype=dtype_mapping, element=element, name=name) raise ValueError(msg) return np.rec.fromarrays(arrays, dtype={"names": names, "formats": formats}) @classmethod def from_items(cls, items, columns=None, orient="columns"): """ Construct a DataFrame from a list of tuples. .. deprecated:: 0.23.0 `from_items` is deprecated and will be removed in a future version. Use :meth:`DataFrame.from_dict(dict(items)) <DataFrame.from_dict>` instead. :meth:`DataFrame.from_dict(OrderedDict(items)) <DataFrame.from_dict>` may be used to preserve the key order. Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series. Parameters ---------- items : sequence of (key, value) pairs Values should be arrays or Series. columns : sequence of column labels, optional Must be passed if orient='index'. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the input correspond to column labels, pass 'columns' (default). Otherwise if the keys correspond to the index, pass 'index'. Returns ------- DataFrame """ warnings.warn( "from_items is deprecated. Please use " "DataFrame.from_dict(dict(items), ...) instead. " "DataFrame.from_dict(OrderedDict(items)) may be used to " "preserve the key order.", FutureWarning, stacklevel=2, ) keys, values = zip(*items) if orient == "columns": if columns is not None: columns = ensure_index(columns) idict = dict(items) if len(idict) < len(items): if not columns.equals(ensure_index(keys)): raise ValueError( "With non-unique item names, passed " "columns must be identical" ) arrays = values else: arrays = [idict[k] for k in columns if k in idict] else: columns = ensure_index(keys) arrays = values # GH 17312 # Provide more informative error msg when scalar values passed try: return cls._from_arrays(arrays, columns, None) except ValueError: if not is_nested_list_like(values): raise ValueError( "The value in each (key, value) pair " "must be an array, Series, or dict" ) elif orient == "index": if columns is None: raise TypeError("Must pass columns with orient='index'") keys = ensure_index(keys) # GH 17312 # Provide more informative error msg when scalar values passed try: arr = np.array(values, dtype=object).T data = [lib.maybe_convert_objects(v) for v in arr] return cls._from_arrays(data, columns, keys) except TypeError: if not is_nested_list_like(values): raise ValueError( "The value in each (key, value) pair " "must be an array, Series, or dict" ) else: # pragma: no cover raise ValueError("'orient' must be either 'columns' or 'index'") @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None): mgr = arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) def to_sparse(self, fill_value=None, kind="block"): """ Convert to SparseDataFrame. .. deprecated:: 0.25.0 Implement the sparse version of the DataFrame meaning that any data matching a specific value it's omitted in the representation. The sparse DataFrame allows for a more efficient storage. Parameters ---------- fill_value : float, default None The specific value that should be omitted in the representation. kind : {'block', 'integer'}, default 'block' The kind of the SparseIndex tracking where data is not equal to the fill value: - 'block' tracks only the locations and sizes of blocks of data. - 'integer' keeps an array with all the locations of the data. In most cases 'block' is recommended, since it's more memory efficient. Returns ------- SparseDataFrame The sparse representation of the DataFrame. See Also -------- DataFrame.to_dense : Converts the DataFrame back to the its dense form. Examples -------- >>> df = pd.DataFrame([(np.nan, np.nan), ... (1., np.nan), ... (np.nan, 1.)]) >>> df 0 1 0 NaN NaN 1 1.0 NaN 2 NaN 1.0 >>> type(df) <class 'pandas.core.frame.DataFrame'> >>> sdf = df.to_sparse() # doctest: +SKIP >>> sdf # doctest: +SKIP 0 1 0 NaN NaN 1 1.0 NaN 2 NaN 1.0 >>> type(sdf) # doctest: +SKIP <class 'pandas.core.sparse.frame.SparseDataFrame'> """ warnings.warn( "DataFrame.to_sparse is deprecated and will be removed " "in a future version", FutureWarning, stacklevel=2, ) from pandas.core.sparse.api import SparseDataFrame with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="SparseDataFrame") return SparseDataFrame( self._series, index=self.index, columns=self.columns, default_kind=kind, default_fill_value=fill_value, ) @deprecate_kwarg(old_arg_name="encoding", new_arg_name=None) def to_stata( self, fname, convert_dates=None, write_index=True, encoding="latin-1", byteorder=None, time_stamp=None, data_label=None, variable_labels=None, version=114, convert_strl=None, ): """ Export DataFrame object to Stata dta format. Writes the DataFrame to a Stata dataset file. "dta" files contain a Stata dataset. Parameters ---------- fname : str, buffer or path object String, path object (pathlib.Path or py._path.local.LocalPath) or object implementing a binary write() function. If using a buffer then the buffer will not be automatically closed after the file data has been written. convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when writing the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information. write_index : bool Write the index to Stata dataset. encoding : str Default is latin-1. Unicode is not supported. byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder`. time_stamp : datetime A datetime to use as file creation date. Default is the current time. data_label : str, optional A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. version : {114, 117}, default 114 Version to use in the output dta file. Version 114 can be used read by Stata 10 and later. Version 117 can be read by Stata 13 or later. Version 114 limits string variables to 244 characters or fewer while 117 allows strings with lengths up to 2,000,000 characters. .. versionadded:: 0.23.0 convert_strl : list, optional List of column names to convert to string columns to Stata StrL format. Only available if version is 117. Storing strings in the StrL format can produce smaller dta files if strings have more than 8 characters and values are repeated. .. versionadded:: 0.23.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are neither datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters See Also -------- read_stata : Import Stata data files. io.stata.StataWriter : Low-level writer for Stata data files. io.stata.StataWriter117 : Low-level writer for version 117 files. Examples -------- >>> df = pd.DataFrame({'animal': ['falcon', 'parrot', 'falcon', ... 'parrot'], ... 'speed': [350, 18, 361, 15]}) >>> df.to_stata('animals.dta') # doctest: +SKIP """ kwargs = {} if version not in (114, 117): raise ValueError("Only formats 114 and 117 supported.") if version == 114: if convert_strl is not None: raise ValueError( "strl support is only available when using " "format 117" ) from pandas.io.stata import StataWriter as statawriter else: from pandas.io.stata import StataWriter117 as statawriter kwargs["convert_strl"] = convert_strl writer = statawriter( fname, self, convert_dates=convert_dates, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels, **kwargs ) writer.write_file() def to_feather(self, fname): """ Write out the binary feather-format for DataFrames. .. versionadded:: 0.20.0 Parameters ---------- fname : str string file path """ from pandas.io.feather_format import to_feather to_feather(self, fname) def to_parquet( self, fname, engine="auto", compression="snappy", index=None, partition_cols=None, **kwargs ): """ Write a DataFrame to the binary parquet format. .. versionadded:: 0.21.0 This function writes the dataframe as a `parquet file <https://parquet.apache.org/>`_. You can choose different parquet backends, and have the option of compression. See :ref:`the user guide <io.parquet>` for more details. Parameters ---------- fname : str File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset. .. versionchanged:: 0.24.0 engine : {'auto', 'pyarrow', 'fastparquet'}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy' Name of the compression to use. Use ``None`` for no compression. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, the behavior depends on the chosen engine. .. versionadded:: 0.24.0 partition_cols : list, optional, default None Column names by which to partition the dataset Columns are partitioned in the order they are given .. versionadded:: 0.24.0 **kwargs Additional arguments passed to the parquet library. See :ref:`pandas io <io.parquet>` for more details. See Also -------- read_parquet : Read a parquet file. DataFrame.to_csv : Write a csv file. DataFrame.to_sql : Write to a sql table. DataFrame.to_hdf : Write to hdf. Notes ----- This function requires either the `fastparquet <https://pypi.org/project/fastparquet>`_ or `pyarrow <https://arrow.apache.org/docs/python/>`_ library. Examples -------- >>> df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) >>> df.to_parquet('df.parquet.gzip', ... compression='gzip') # doctest: +SKIP >>> pd.read_parquet('df.parquet.gzip') # doctest: +SKIP col1 col2 0 1 3 1 2 4 """ from pandas.io.parquet import to_parquet to_parquet( self, fname, engine, compression=compression, index=index, partition_cols=partition_cols, **kwargs ) @Substitution( header="Whether to print column labels, default True", col_space_type="str or int", col_space="The minimum width of each column in CSS length " "units. An int is assumed to be px units.\n\n" " .. versionadded:: 0.25.0\n" " Ability to use str", ) @Substitution(shared_params=fmt.common_docstring, returns=fmt.return_docstring) def to_html( self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep="NaN", formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, max_rows=None, max_cols=None, show_dimensions=False, decimal=".", bold_rows=True, classes=None, escape=True, notebook=False, border=None, table_id=None, render_links=False, ): """ Render a DataFrame as an HTML table. %(shared_params)s bold_rows : bool, default True Make the row labels bold in the output. classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table. escape : bool, default True Convert the characters <, >, and & to HTML-safe sequences. notebook : {True, False}, default False Whether the generated HTML is for IPython Notebook. border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.display.html.border``. table_id : str, optional A css id is included in the opening `<table>` tag if specified. .. versionadded:: 0.23.0 render_links : bool, default False Convert URLs to HTML links. .. versionadded:: 0.24.0 %(returns)s See Also -------- to_string : Convert DataFrame to a string. """ if justify is not None and justify not in fmt._VALID_JUSTIFY_PARAMETERS: raise ValueError("Invalid value for justify parameter") formatter = fmt.DataFrameFormatter( self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal, table_id=table_id, render_links=render_links, ) # TODO: a generic formatter wld b in DataFrameFormatter formatter.to_html(classes=classes, notebook=notebook, border=border) if buf is None: return formatter.buf.getvalue() # ---------------------------------------------------------------------- def info( self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None ): """ Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage. Parameters ---------- verbose : bool, optional Whether to print the full summary. By default, the setting in ``pandas.options.display.max_info_columns`` is followed. buf : writable buffer, defaults to sys.stdout Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than `max_cols` columns, the truncated output is used. By default, the setting in ``pandas.options.display.max_info_columns`` is used. memory_usage : bool, str, optional Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the ``pandas.options.display.memory_usage`` setting. True always show memory usage. False never shows memory usage. A value of 'deep' is equivalent to "True with deep introspection". Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. null_counts : bool, optional Whether to show the non-null counts. By default, this is shown only if the frame is smaller than ``pandas.options.display.max_info_rows`` and ``pandas.options.display.max_info_columns``. A value of True always shows the counts, and False never shows the counts. Returns ------- None This method prints a summary of a DataFrame and returns None. See Also -------- DataFrame.describe: Generate descriptive statistics of DataFrame columns. DataFrame.memory_usage: Memory usage of DataFrame columns. Examples -------- >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = pd.DataFrame({"int_col": int_values, "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): int_col 5 non-null int64 text_col 5 non-null object float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) <class 'pandas.core.frame.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 248.0+ bytes Pipe output of DataFrame.info to buffer instead of sys.stdout, get buffer content and writes to a text file: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> s = buffer.getvalue() >>> with open("df_info.txt", "w", ... encoding="utf-8") as f: # doctest: +SKIP ... f.write(s) 260 The `memory_usage` parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization: >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = pd.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): column_1 1000000 non-null object column_2 1000000 non-null object column_3 1000000 non-null object dtypes: object(3) memory usage: 22.9+ MB >>> df.info(memory_usage='deep') <class 'pandas.core.frame.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): column_1 1000000 non-null object column_2 1000000 non-null object column_3 1000000 non-null object dtypes: object(3) memory usage: 188.8 MB """ if buf is None: # pragma: no cover buf = sys.stdout lines = [] lines.append(str(type(self))) lines.append(self.index._summary()) if len(self.columns) == 0: lines.append("Empty {name}".format(name=type(self).__name__)) fmt.buffer_put_lines(buf, lines) return cols = self.columns # hack if max_cols is None: max_cols = get_option("display.max_info_columns", len(self.columns) + 1) max_rows = get_option("display.max_info_rows", len(self) + 1) if null_counts is None: show_counts = (len(self.columns) <= max_cols) and (len(self) < max_rows) else: show_counts = null_counts exceeds_info_cols = len(self.columns) > max_cols def _verbose_repr(): lines.append("Data columns (total %d columns):" % len(self.columns)) space = max(len(pprint_thing(k)) for k in self.columns) + 4 counts = None tmpl = "{count}{dtype}" if show_counts: counts = self.count() if len(cols) != len(counts): # pragma: no cover raise AssertionError( "Columns must equal counts " "({cols:d} != {counts:d})".format( cols=len(cols), counts=len(counts) ) ) tmpl = "{count} non-null {dtype}" dtypes = self.dtypes for i, col in enumerate(self.columns): dtype = dtypes.iloc[i] col = pprint_thing(col) count = "" if show_counts: count = counts.iloc[i] lines.append( _put_str(col, space) + tmpl.format(count=count, dtype=dtype) ) def _non_verbose_repr(): lines.append(self.columns._summary(name="Columns")) def _sizeof_fmt(num, size_qualifier): # returns size in human readable format for x in ["bytes", "KB", "MB", "GB", "TB"]: if num < 1024.0: return "{num:3.1f}{size_q} " "{x}".format( num=num, size_q=size_qualifier, x=x ) num /= 1024.0 return "{num:3.1f}{size_q} {pb}".format( num=num, size_q=size_qualifier, pb="PB" ) if verbose: _verbose_repr() elif verbose is False: # specifically set to False, not nesc None _non_verbose_repr() else: if exceeds_info_cols: _non_verbose_repr() else: _verbose_repr() counts = self._data.get_dtype_counts() dtypes = ["{k}({kk:d})".format(k=k[0], kk=k[1]) for k in sorted(counts.items())] lines.append("dtypes: {types}".format(types=", ".join(dtypes))) if memory_usage is None: memory_usage = get_option("display.memory_usage") if memory_usage: # append memory usage of df to display size_qualifier = "" if memory_usage == "deep": deep = True else: # size_qualifier is just a best effort; not guaranteed to catch # all cases (e.g., it misses categorical data even with object # categories) deep = False if "object" in counts or self.index._is_memory_usage_qualified(): size_qualifier = "+" mem_usage = self.memory_usage(index=True, deep=deep).sum() lines.append( "memory usage: {mem}\n".format( mem=_sizeof_fmt(mem_usage, size_qualifier) ) ) fmt.buffer_put_lines(buf, lines) def memory_usage(self, index=True, deep=False): """ Return the memory usage of each column in bytes. The memory usage can optionally include the contribution of the index and elements of `object` dtype. This value is displayed in `DataFrame.info` by default. This can be suppressed by setting ``pandas.options.display.memory_usage`` to False. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the DataFrame's index in returned Series. If ``index=True``, the memory usage of the index is the first item in the output. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned values. Returns ------- Series A Series whose index is the original column names and whose values is the memory usage of each column in bytes. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of an ndarray. Series.memory_usage : Bytes consumed by a Series. Categorical : Memory-efficient array for string values with many repeated values. DataFrame.info : Concise summary of a DataFrame. Examples -------- >>> dtypes = ['int64', 'float64', 'complex128', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = pd.DataFrame(data) >>> df.head() int64 float64 complex128 object bool 0 1 1.0 1.0+0.0j 1 True 1 1 1.0 1.0+0.0j 1 True 2 1 1.0 1.0+0.0j 1 True 3 1 1.0 1.0+0.0j 1 True 4 1 1.0 1.0+0.0j 1 True >>> df.memory_usage() Index 128 int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 >>> df.memory_usage(index=False) int64 40000 float64 40000 complex128 80000 object 40000 bool 5000 dtype: int64 The memory footprint of `object` dtype columns is ignored by default: >>> df.memory_usage(deep=True) Index 128 int64 40000 float64 40000 complex128 80000 object 160000 bool 5000 dtype: int64 Use a Categorical for efficient storage of an object-dtype column with many repeated values. >>> df['object'].astype('category').memory_usage(deep=True) 5216 """ result = Series( [c.memory_usage(index=False, deep=deep) for col, c in self.items()], index=self.columns, ) if index: result = Series(self.index.memory_usage(deep=deep), index=["Index"]).append( result ) return result def transpose(self, *args, **kwargs): """ Transpose index and columns. Reflect the DataFrame over its main diagonal by writing rows as columns and vice-versa. The property :attr:`.T` is an accessor to the method :meth:`transpose`. Parameters ---------- copy : bool, default False If True, the underlying data is copied. Otherwise (default), no copy is made if possible. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame The transposed DataFrame. See Also -------- numpy.transpose : Permute the dimensions of a given array. Notes ----- Transposing a DataFrame with mixed dtypes will result in a homogeneous DataFrame with the `object` dtype. In such a case, a copy of the data is always made. Examples -------- **Square DataFrame with homogeneous dtype** >>> d1 = {'col1': [1, 2], 'col2': [3, 4]} >>> df1 = pd.DataFrame(data=d1) >>> df1 col1 col2 0 1 3 1 2 4 >>> df1_transposed = df1.T # or df1.transpose() >>> df1_transposed 0 1 col1 1 2 col2 3 4 When the dtype is homogeneous in the original DataFrame, we get a transposed DataFrame with the same dtype: >>> df1.dtypes col1 int64 col2 int64 dtype: object >>> df1_transposed.dtypes 0 int64 1 int64 dtype: object **Non-square DataFrame with mixed dtypes** >>> d2 = {'name': ['Alice', 'Bob'], ... 'score': [9.5, 8], ... 'employed': [False, True], ... 'kids': [0, 0]} >>> df2 = pd.DataFrame(data=d2) >>> df2 name score employed kids 0 Alice 9.5 False 0 1 Bob 8.0 True 0 >>> df2_transposed = df2.T # or df2.transpose() >>> df2_transposed 0 1 name Alice Bob score 9.5 8 employed False True kids 0 0 When the DataFrame has mixed dtypes, we get a transposed DataFrame with the `object` dtype: >>> df2.dtypes name object score float64 employed bool kids int64 dtype: object >>> df2_transposed.dtypes 0 object 1 object dtype: object """ nv.validate_transpose(args, dict()) return super().transpose(1, 0, **kwargs) T = property(transpose) # ---------------------------------------------------------------------- # Picklability # legacy pickle formats def _unpickle_frame_compat(self, state): # pragma: no cover if len(state) == 2: # pragma: no cover series, idx = state columns = sorted(series) else: series, cols, idx = state columns = com._unpickle_array(cols) index = com._unpickle_array(idx) self._data = self._init_dict(series, index, columns, None) def _unpickle_matrix_compat(self, state): # pragma: no cover # old unpickling (vals, idx, cols), object_state = state index = com._unpickle_array(idx) dm = DataFrame(vals, index=index, columns=com._unpickle_array(cols), copy=False) if object_state is not None: ovals, _, ocols = object_state objects = DataFrame( ovals, index=index, columns=com._unpickle_array(ocols), copy=False ) dm = dm.join(objects) self._data = dm._data # ---------------------------------------------------------------------- # Getting and setting elements def _get_value(self, index, col, takeable: bool = False): """ Quickly retrieve single value at passed column and index. Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- scalar """ if takeable: series = self._iget_item_cache(col) return com.maybe_box_datetimelike(series._values[index]) series = self._get_item_cache(col) engine = self.index._engine try: return engine.get_value(series._values, index) except KeyError: # GH 20629 if self.index.nlevels > 1: # partial indexing forbidden raise except (TypeError, ValueError): pass # we cannot handle direct indexing # use positional col = self.columns.get_loc(col) index = self.index.get_loc(index) return self._get_value(index, col, takeable=True) def _set_value(self, index, col, value, takeable: bool = False): """ Put single value at passed column and index. Parameters ---------- index : row label col : column label value : scalar takeable : interpret the index/col as indexers, default False Returns ------- DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object. """ try: if takeable is True: series = self._iget_item_cache(col) return series._set_value(index, value, takeable=True) series = self._get_item_cache(col) engine = self.index._engine engine.set_value(series._values, index, value) return self except (KeyError, TypeError): # set using a non-recursive method & reset the cache if takeable: self.iloc[index, col] = value else: self.loc[index, col] = value self._item_cache.pop(col, None) return self def _ixs(self, i: int, axis: int = 0): """ Parameters ---------- i : int axis : int Notes ----- If slice passed, the resulting data will be a view. """ # irow if axis == 0: label = self.index[i] new_values = self._data.fast_xs(i) if is_scalar(new_values): return new_values # if we are a copy, mark as such copy = isinstance(new_values, np.ndarray) and new_values.base is None result = self._constructor_sliced( new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype, ) result._set_is_copy(self, copy=copy) return result # icol else: label = self.columns[i] # if the values returned are not the same length # as the index (iow a not found value), iget returns # a 0-len ndarray. This is effectively catching # a numpy error (as numpy should really raise) values = self._data.iget(i) if len(self.index) and not len(values): values = np.array([np.nan] * len(self.index), dtype=object) result = self._box_col_values(values, label) # this is a cached value, mark it so result._set_as_cached(label, self) return result def __getitem__(self, key): key = lib.item_from_zerodim(key) key = com.apply_if_callable(key, self) if is_hashable(key): # shortcut if the key is in columns if self.columns.is_unique and key in self.columns: if self.columns.nlevels > 1: return self._getitem_multilevel(key) return self._get_item_cache(key) # Do we have a slicer (on rows)? indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._slice(indexer, axis=0) # Do we have a (boolean) DataFrame? if isinstance(key, DataFrame): return self._getitem_frame(key) # Do we have a (boolean) 1d indexer? if com.is_bool_indexer(key): return self._getitem_bool_array(key) # We are left with two options: a single key, and a collection of keys, # We interpret tuples as collections only for non-MultiIndex is_single_key = isinstance(key, tuple) or not is_list_like(key) if is_single_key: if self.columns.nlevels > 1: return self._getitem_multilevel(key) indexer = self.columns.get_loc(key) if is_integer(indexer): indexer = [indexer] else: if is_iterator(key): key = list(key) indexer = self.loc._get_listlike_indexer(key, axis=1, raise_missing=True)[1] # take() does not accept boolean indexers if getattr(indexer, "dtype", None) == bool: indexer = np.where(indexer)[0] data = self.take(indexer, axis=1) if is_single_key: # What does looking for a single key in a non-unique index return? # The behavior is inconsistent. It returns a Series, except when # - the key itself is repeated (test on data.shape, #9519), or # - we have a MultiIndex on columns (test on self.columns, #21309) if data.shape[1] == 1 and not isinstance(self.columns, MultiIndex): data = data[key] return data def _getitem_bool_array(self, key): # also raises Exception if object array with NA values # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn( "Boolean Series key will be reindexed to match " "DataFrame index.", UserWarning, stacklevel=3, ) elif len(key) != len(self.index): raise ValueError( "Item wrong length %d instead of %d." % (len(key), len(self.index)) ) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self.take(indexer, axis=0) def _getitem_multilevel(self, key): loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor( new_values, index=self.index, columns=result_columns ) result = result.__finalize__(self) # If there is only one column being returned, and its name is # either an empty string, or a tuple with an empty string as its # first element, then treat the empty string as a placeholder # and return the column as if the user had provided that empty # string in the key. If the result is a Series, exclude the # implied empty string from its name. if len(result.columns) == 1: top = result.columns[0] if isinstance(top, tuple): top = top[0] if top == "": result = result[""] if isinstance(result, Series): result = self._constructor_sliced( result, index=self.index, name=key ) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _getitem_frame(self, key): if key.values.size and not is_bool_dtype(key.values): raise ValueError("Must pass DataFrame with boolean values only") return self.where(key) def query(self, expr, inplace=False, **kwargs): """ Query the columns of a DataFrame with a boolean expression. Parameters ---------- expr : str The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. .. versionadded:: 0.25.0 You can refer to column names that contain spaces by surrounding them in backticks. For example, if one of your columns is called ``a a`` and you want to sum it with ``b``, your query should be ```a a` + b``. inplace : bool Whether the query should modify the data in place or return a modified copy. **kwargs See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- DataFrame DataFrame resulting from the provided query expression. See Also -------- eval : Evaluate a string describing operations on DataFrame columns. DataFrame.eval : Evaluate a string describing operations on DataFrame columns. Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. Please note that Python keywords may not be used as identifiers. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), ... 'B': range(10, 0, -2), ... 'C C': range(10, 5, -1)}) >>> df A B C C 0 1 10 10 1 2 8 9 2 3 6 8 3 4 4 7 4 5 2 6 >>> df.query('A > B') A B C C 4 5 2 6 The previous expression is equivalent to >>> df[df.A > df.B] A B C C 4 5 2 6 For columns with spaces in their name, you can use backtick quoting. >>> df.query('B == `C C`') A B C C 0 1 10 10 The previous expression is equivalent to >>> df[df.B == df['C C']] A B C C 0 1 10 10 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(expr, str): msg = "expr must be a string to be evaluated, {0} given" raise ValueError(msg.format(type(expr))) kwargs["level"] = kwargs.pop("level", 0) + 1 kwargs["target"] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=False, **kwargs): """ Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. This allows `eval` to run arbitrary code, which can make you vulnerable to code injection if you pass user input to this function. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. kwargs : dict See the documentation for :func:`eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ndarray, scalar, or pandas object The result of the evaluation. See Also -------- DataFrame.query : Evaluates a boolean expression to query the columns of a frame. DataFrame.assign : Can evaluate an expression or function to create new values for a column. eval : Evaluate a Python expression as a string using various backends. Notes ----- For more details see the API documentation for :func:`~eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> df = pd.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 """ from pandas.core.computation.eval import eval as _eval inplace = validate_bool_kwarg(inplace, "inplace") resolvers = kwargs.pop("resolvers", None) kwargs["level"] = kwargs.pop("level", 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() column_resolvers = self._get_space_character_free_column_resolvers() resolvers = column_resolvers, index_resolvers if "target" not in kwargs: kwargs["target"] = self kwargs["resolvers"] = kwargs.get("resolvers", ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None): """ Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include, exclude : scalar or list-like A selection of dtypes or strings to be included/excluded. At least one of these parameters must be supplied. Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. Notes ----- * To select all *numeric* types, use ``np.number`` or ``'number'`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or ``'datetime64'`` * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or ``'timedelta64'`` * To select Pandas categorical dtypes, use ``'category'`` * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in 0.20.0) or ``'datetime64[ns, tz]'`` Examples -------- >>> df = pd.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ def _get_info_slice(obj, indexer): """Slice the info axis of `obj` with `indexer`.""" if not hasattr(obj, "_info_axis_number"): msg = "object of type {typ!r} has no info axis" raise TypeError(msg.format(typ=type(obj).__name__)) slices = [slice(None)] * obj.ndim slices[obj._info_axis_number] = indexer return tuple(slices) if not is_list_like(include): include = (include,) if include is not None else () if not is_list_like(exclude): exclude = (exclude,) if exclude is not None else () selection = tuple(map(frozenset, (include, exclude))) if not any(selection): raise ValueError("at least one of include or exclude must be " "nonempty") # convert the myriad valid dtypes object to a single representation include, exclude = map( lambda x: frozenset(map(infer_dtype_from_object, x)), selection ) for dtypes in (include, exclude): invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError( "include and exclude overlap on {inc_ex}".format( inc_ex=(include & exclude) ) ) # empty include/exclude -> defaults to True # three cases (we've already raised if both are empty) # case 1: empty include, nonempty exclude # we have True, True, ... True for include, same for exclude # in the loop below we get the excluded # and when we call '&' below we get only the excluded # case 2: nonempty include, empty exclude # same as case 1, but with include # case 3: both nonempty # the "union" of the logic of case 1 and case 2: # we get the included and excluded, and return their logical and include_these = Series(not bool(include), index=self.columns) exclude_these = Series(not bool(exclude), index=self.columns) def is_dtype_instance_mapper(idx, dtype): return idx, functools.partial(issubclass, dtype.type) for idx, f in itertools.starmap( is_dtype_instance_mapper, enumerate(self.dtypes) ): if include: # checks for the case of empty include or exclude include_these.iloc[idx] = any(map(f, include)) if exclude: exclude_these.iloc[idx] = not any(map(f, exclude)) dtype_indexer = include_these & exclude_these return self.loc[_get_info_slice(self, dtype_indexer)] def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ Provide boxed values for a column. """ klass = self._constructor_sliced return klass(values, index=self.index, name=items, fastpath=True) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._setitem_slice(indexer, value) if isinstance(key, DataFrame) or getattr(key, "ndim", None) == 2: self._setitem_frame(key, value) elif isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key, value): self._check_setitem_copy() self.loc[key] = value def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError( "Item wrong length %d instead of %d!" % (len(key), len(self.index)) ) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.loc._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError("Columns must be same length as key") for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: indexer = self.loc._get_listlike_indexer( key, axis=1, raise_missing=False )[1] self._check_setitem_copy() self.loc._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if isinstance(key, np.ndarray): if key.shape != self.shape: raise ValueError("Array conditional must be same shape as self") key = self._constructor(key, **self._construct_axes_dict()) if key.values.size and not is_bool_dtype(key.values): raise TypeError( "Must pass DataFrame or 2-d ndarray with boolean values only" ) self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _ensure_valid_index(self, value): """ Ensure that if we don't have an index, that we can create one from the passed value. """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value): try: value = Series(value) except (ValueError, NotImplementedError, TypeError): raise ValueError( "Cannot set a frame with no defined index " "and a value that cannot be converted to a " "Series" ) self._data = self._data.reindex_axis( value.index.copy(), axis=1, fill_value=np.nan ) def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def insert(self, loc, column, value, allow_duplicates=False): """ Insert column into DataFrame at specified location. Raises a ValueError if `column` is already contained in the DataFrame, unless `allow_duplicates` is set to True. Parameters ---------- loc : int Insertion index. Must verify 0 <= loc <= len(columns) column : string, number, or hashable object label of the inserted column value : int, Series, or array-like allow_duplicates : bool, optional """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs): r""" Assign new columns to a DataFrame. Returns a new object with all original columns in addition to new ones. Existing columns that are re-assigned will be overwritten. Parameters ---------- **kwargs : dict of {str: callable or Series} The column names are keywords. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Assigning multiple columns within the same ``assign`` is possible. For Python 3.6 and above, later items in '\*\*kwargs' may refer to newly created or modified columns in 'df'; items are computed and assigned into 'df' in order. For Python 3.5 and below, the order of keyword arguments is not specified, you cannot refer to newly created or modified columns. All items are computed first, and then assigned in alphabetical order. .. versionchanged :: 0.23.0 Keyword argument order is maintained for Python 3.6 and later. Examples -------- >>> df = pd.DataFrame({'temp_c': [17.0, 25.0]}, ... index=['Portland', 'Berkeley']) >>> df temp_c Portland 17.0 Berkeley 25.0 Where the value is a callable, evaluated on `df`: >>> df.assign(temp_f=lambda x: x.temp_c * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 Alternatively, the same behavior can be achieved by directly referencing an existing Series or sequence: >>> df.assign(temp_f=df['temp_c'] * 9 / 5 + 32) temp_c temp_f Portland 17.0 62.6 Berkeley 25.0 77.0 In Python 3.6+, you can create multiple columns within the same assign where one of the columns depends on another one defined within the same assign: >>> df.assign(temp_f=lambda x: x['temp_c'] * 9 / 5 + 32, ... temp_k=lambda x: (x['temp_f'] + 459.67) * 5 / 9) temp_c temp_f temp_k Portland 17.0 62.6 290.15 Berkeley 25.0 77.0 298.15 """ data = self.copy() # >= 3.6 preserve order of kwargs if PY36: for k, v in kwargs.items(): data[k] = com.apply_if_callable(v, data) else: # <= 3.5: do all calculations first... results = OrderedDict() for k, v in kwargs.items(): results[k] = com.apply_if_callable(v, data) # <= 3.5 and earlier results = sorted(results.items()) # ... and then assign for k, v in results: data[k] = v return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- numpy.ndarray """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except Exception as e: # duplicate axis if not value.index.is_unique: raise e # other raise TypeError( "incompatible index of inserted column " "with frame index" ) return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, MultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, ExtensionArray): # Explicitly copy here, instead of in sanitize_index, # as sanitize_index won't copy an EA, even with copy=True value = value.copy() value = sanitize_index(value, self.index, copy=False) elif isinstance(value, Index) or is_sequence(value): # turn me into an ndarray value = sanitize_index(value, self.index, copy=False) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = maybe_convert_platform(value) else: value = com.asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = maybe_infer_to_datetimelike(value) else: # cast ignores pandas dtypes. so save the dtype first infer_dtype, _ = infer_dtype_from_scalar(value, pandas_dtype=True) # upcast value = cast_scalar_to_array(len(self.index), value) value = maybe_cast_to_datetime(value, infer_dtype) # return internal types directly if is_extension_type(value) or is_extension_array_dtype(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if not self.columns.is_unique or isinstance(self.columns, MultiIndex): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): return { item: Series(self._data.iget(idx), index=self.index, name=item) for idx, item in enumerate(self.columns) } def lookup(self, row_labels, col_labels): """ Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup col_labels : sequence The column labels to use for lookup Returns ------- numpy.ndarray Notes ----- Akin to:: result = [df.get_value(row, col) for row, col in zip(row_labels, col_labels)] Examples -------- values : ndarray The found values """ n = len(row_labels) if n != len(col_labels): raise ValueError("Row labels must have same size as column labels") thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError("One or more row labels was not found") if (cidx == -1).any(): raise KeyError("One or more column labels was not found") flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype="O") for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self._get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes["columns"] if columns is not None: frame = frame._reindex_columns( columns, method, copy, level, fill_value, limit, tolerance ) index = axes["index"] if index is not None: frame = frame._reindex_index( index, method, copy, level, fill_value, limit, tolerance ) return frame def _reindex_index( self, new_index, method, copy, level, fill_value=np.nan, limit=None, tolerance=None, ): new_index, indexer = self.index.reindex( new_index, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_columns( self, new_columns, method, copy, level, fill_value=None, limit=None, tolerance=None, ): new_columns, indexer = self.columns.reindex( new_columns, method=method, level=level, limit=limit, tolerance=tolerance ) return self._reindex_with_indexers( {1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False, ) def _reindex_multi(self, axes, copy, fill_value): """ We are guaranteed non-Nones in the axes. """ new_index, row_indexer = self.index.reindex(axes["index"]) new_columns, col_indexer = self.columns.reindex(axes["columns"]) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algorithms.take_2d_multi( self.values, indexer, fill_value=fill_value ) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers( {0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value, ) @Appender(_shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.reindex.__doc__) @rewrite_axis_style_signature( "labels", [ ("method", None), ("copy", True), ("level", None), ("fill_value", np.nan), ("limit", None), ("tolerance", None), ], ) def reindex(self, *args, **kwargs): axes = validate_axis_style_args(self, args, kwargs, "labels", "reindex") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("labels", None) return super().reindex(**kwargs) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """ Drop specified labels from rows or columns. Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index or column labels to drop. axis : {0 or 'index', 1 or 'columns'}, default 0 Whether to drop labels from the index (0 or 'index') or columns (1 or 'columns'). index : single label or list-like Alternative to specifying axis (``labels, axis=0`` is equivalent to ``index=labels``). .. versionadded:: 0.21.0 columns : single label or list-like Alternative to specifying axis (``labels, axis=1`` is equivalent to ``columns=labels``). .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level from which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- DataFrame DataFrame without the removed index or column labels. Raises ------ KeyError If any of the labels is not found in the selected axis. See Also -------- DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted where (all or any) data are missing. DataFrame.drop_duplicates : Return DataFrame with duplicate rows removed, optionally only considering certain columns. Series.drop : Return Series with specified index labels removed. Examples -------- >>> df = pd.DataFrame(np.arange(12).reshape(3, 4), ... columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 Drop columns >>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11 >>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11 Drop a row by index >>> df.drop([0, 1]) A B C D 2 8 9 10 11 Drop columns and/or rows of MultiIndex DataFrame >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = pd.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @rewrite_axis_style_signature( "mapper", [("copy", True), ("inplace", False), ("level", None), ("errors", "ignore")], ) def rename(self, *args, **kwargs): """ Alter axes labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- mapper : dict-like or function Dict-like or functions transformations to apply to that axis' values. Use either ``mapper`` and ``axis`` to specify the axis to target with ``mapper``, or ``index`` and ``columns``. index : dict-like or function Alternative to specifying axis (``mapper, axis=0`` is equivalent to ``index=mapper``). columns : dict-like or function Alternative to specifying axis (``mapper, axis=1`` is equivalent to ``columns=mapper``). axis : int or str Axis to target with ``mapper``. Can be either the axis name ('index', 'columns') or number (0, 1). The default is 'index'. copy : bool, default True Also copy underlying data. inplace : bool, default False Whether to return a new DataFrame. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'ignore', 'raise'}, default 'ignore' If 'raise', raise a `KeyError` when a dict-like `mapper`, `index`, or `columns` contains labels that are not present in the Index being transformed. If 'ignore', existing keys will be renamed and extra keys will be ignored. Returns ------- DataFrame DataFrame with the renamed axis labels. Raises ------ KeyError If any of the labels is not found in the selected axis and "errors='raise'". See Also -------- DataFrame.rename_axis : Set the name of the axis. Examples -------- ``DataFrame.rename`` supports two calling conventions * ``(index=index_mapper, columns=columns_mapper, ...)`` * ``(mapper, axis={'index', 'columns'}, ...)`` We *highly* recommend using keyword arguments to clarify your intent. Rename columns using a mapping: >>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: "x", 1: "y", 2: "z"}) A B x 1 4 y 2 5 z 3 6 Cast index labels to a different type: >>> df.index RangeIndex(start=0, stop=3, step=1) >>> df.rename(index=str).index Index(['0', '1', '2'], dtype='object') >>> df.rename(columns={"A": "a", "B": "b", "C": "c"}, errors="raise") Traceback (most recent call last): KeyError: ['C'] not found in axis Using axis-style parameters >>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6 >>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6 """ axes = validate_axis_style_args(self, args, kwargs, "mapper", "rename") kwargs.update(axes) # Pop these, since the values are in `kwargs` under different names kwargs.pop("axis", None) kwargs.pop("mapper", None) return super().rename(**kwargs) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.fillna.__doc__) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs ): return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, **kwargs ) @Appender(_shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @Appender(_shared_docs["shift"] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None): return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def set_index( self, keys, drop=True, append=False, inplace=False, verify_integrity=False ): """ Set the DataFrame index using existing columns. Set the DataFrame index (row labels) using one or more existing columns or arrays (of the correct length). The index can replace the existing index or expand on it. Parameters ---------- keys : label or array-like or list of labels/arrays This parameter can be either a single column key, a single array of the same length as the calling DataFrame, or a list containing an arbitrary combination of column keys and arrays. Here, "array" encompasses :class:`Series`, :class:`Index`, ``np.ndarray``, and instances of :class:`~collections.abc.Iterator`. drop : bool, default True Delete columns to be used as the new index. append : bool, default False Whether to append columns to existing index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). verify_integrity : bool, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method. Returns ------- DataFrame Changed row labels. See Also -------- DataFrame.reset_index : Opposite of set_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame({'month': [1, 4, 7, 10], ... 'year': [2012, 2014, 2013, 2014], ... 'sale': [55, 40, 84, 31]}) >>> df month year sale 0 1 2012 55 1 4 2014 40 2 7 2013 84 3 10 2014 31 Set the index to become the 'month' column: >>> df.set_index('month') year sale month 1 2012 55 4 2014 40 7 2013 84 10 2014 31 Create a MultiIndex using columns 'year' and 'month': >>> df.set_index(['year', 'month']) sale year month 2012 1 55 2014 4 40 2013 7 84 2014 10 31 Create a MultiIndex using an Index and a column: >>> df.set_index([pd.Index([1, 2, 3, 4]), 'year']) month sale year 1 2012 1 55 2 2014 4 40 3 2013 7 84 4 2014 10 31 Create a MultiIndex using two Series: >>> s = pd.Series([1, 2, 3, 4]) >>> df.set_index([s, s**2]) month year sale 1 1 1 2012 55 2 4 4 2014 40 3 9 7 2013 84 4 16 10 2014 31 """ inplace = validate_bool_kwarg(inplace, "inplace") if not isinstance(keys, list): keys = [keys] err_msg = ( 'The parameter "keys" may be a column key, one-dimensional ' "array, or a list containing only valid column keys and " "one-dimensional arrays." ) missing = [] for col in keys: if isinstance( col, (ABCIndexClass, ABCSeries, np.ndarray, list, abc.Iterator) ): # arrays are fine as long as they are one-dimensional # iterators get converted to list below if getattr(col, "ndim", 1) != 1: raise ValueError(err_msg) else: # everything else gets tried as a key; see GH 24969 try: found = col in self.columns except TypeError: raise TypeError( err_msg + " Received column of " "type {}".format(type(col)) ) else: if not found: missing.append(col) if missing: raise KeyError("None of {} are in the columns".format(missing)) if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = [x for x in self.index.names] if isinstance(self.index, ABCMultiIndex): for i in range(self.index.nlevels): arrays.append(self.index._get_level_values(i)) else: arrays.append(self.index) to_remove = [] for col in keys: if isinstance(col, ABCMultiIndex): for n in range(col.nlevels): arrays.append(col._get_level_values(n)) names.extend(col.names) elif isinstance(col, (ABCIndexClass, ABCSeries)): # if Index then not MultiIndex (treated above) arrays.append(col) names.append(col.name) elif isinstance(col, (list, np.ndarray)): arrays.append(col) names.append(None) elif isinstance(col, abc.Iterator): arrays.append(list(col)) names.append(None) # from here, col can only be a column label else: arrays.append(frame[col]._values) names.append(col) if drop: to_remove.append(col) if len(arrays[-1]) != len(self): # check newest element against length of calling frame, since # ensure_index_from_sequences would not raise for append=False. raise ValueError( "Length mismatch: Expected {len_self} rows, " "received array of length {len_col}".format( len_self=len(self), len_col=len(arrays[-1]) ) ) index = ensure_index_from_sequences(arrays, names) if verify_integrity and not index.is_unique: duplicates = index[index.duplicated()].unique() raise ValueError("Index has duplicate keys: {dup}".format(dup=duplicates)) # use set to handle duplicate column names gracefully in case of drop for c in set(to_remove): del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index( self, level=None, drop=False, inplace=False, col_level=0, col_fill="" ): """ Reset the index, or a level of it. Reset the index of the DataFrame, and use the default one instead. If the DataFrame has a MultiIndex, this method can remove one or more levels. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default. drop : bool, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : bool, default False Modify the DataFrame in place (do not create a new object). col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- DataFrame DataFrame with the new index. See Also -------- DataFrame.set_index : Opposite of reset_index. DataFrame.reindex : Change to new indices or expand indices. DataFrame.reindex_like : Change to same indices as other DataFrame. Examples -------- >>> df = pd.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal NaN When we reset the index, the old index is added as a column, and a new sequential index is used: >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal NaN We can use the `drop` parameter to avoid the old index being added as a column: >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal NaN You can also use `reset_index` with `MultiIndex`. >>> index = pd.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> columns = pd.MultiIndex.from_tuples([('speed', 'max'), ... ('species', 'type')]) >>> df = pd.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=columns) >>> df speed species max type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey NaN jump If the index has multiple levels, we can reset a subset of them: >>> df.reset_index(level='class') class speed species max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we are not dropping the index, by default, it is placed in the top level. We can place it in another level: >>> df.reset_index(level='class', col_level=1) speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump When the index is inserted under another level, we can specify under which one with the parameter `col_fill`: >>> df.reset_index(level='class', col_level=1, col_fill='species') species speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump If we specify a nonexistent level for `col_fill`, it is created: >>> df.reset_index(level='class', col_level=1, col_fill='genus') genus speed species class max type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal NaN jump """ inplace = validate_bool_kwarg(inplace, "inplace") if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): values = index._values if not isinstance(index, (PeriodIndex, DatetimeIndex)): if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 # we can have situations where the whole mask is -1, # meaning there is nothing found in labels, so make all nan's if mask.all(): values = np.empty(len(mask)) values.fill(np.nan) else: values = values.take(labels) # TODO(https://github.com/pandas-dev/pandas/issues/24206) # Push this into maybe_upcast_putmask? # We can't pass EAs there right now. Looks a bit # complicated. # So we unbox the ndarray_values, op, re-box. values_type = type(values) values_dtype = values.dtype if issubclass(values_type, DatetimeLikeArray): values = values._data if mask.any(): values, changed = maybe_upcast_putmask(values, mask, np.nan) if issubclass(values_type, DatetimeLikeArray): values = values_type(values, dtype=values_dtype) return values new_index = ibase.default_index(len(new_obj)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if not drop: if isinstance(self.index, MultiIndex): names = [ n if n is not None else ("level_%d" % i) for (i, n) in enumerate(self.index.names) ] to_insert = zip(self.index.levels, self.index.codes) else: default = "index" if "index" not in self else "level_0" names = [default] if self.index.name is None else [self.index.name] to_insert = ((self.index, None),) multi_col = isinstance(self.columns, MultiIndex) for i, (lev, lab) in reversed(list(enumerate(to_insert))): if not (level is None or i in level): continue name = names[i] if multi_col: col_name = list(name) if isinstance(name, tuple) else [name] if col_fill is None: if len(col_name) not in (1, self.columns.nlevels): raise ValueError( "col_fill=None is incompatible " "with incomplete column name " "{}".format(name) ) col_fill = col_name[0] lev_num = self.columns._get_level_number(col_level) name_lst = [col_fill] * lev_num + col_name missing = self.columns.nlevels - len(name_lst) name_lst += [col_fill] * missing name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) new_obj.insert(0, name, level_values) new_obj.index = new_index if not inplace: return new_obj # ---------------------------------------------------------------------- # Reindex-based selection methods @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isna(self): return super().isna() @Appender(_shared_docs["isna"] % _shared_doc_kwargs) def isnull(self): return super().isnull() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notna(self): return super().notna() @Appender(_shared_docs["notna"] % _shared_doc_kwargs) def notnull(self): return super().notnull() def dropna(self, axis=0, how="any", thresh=None, subset=None, inplace=False): """ Remove missing values. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 Determine if rows or columns which contain missing values are removed. * 0, or 'index' : Drop rows which contain missing values. * 1, or 'columns' : Drop columns which contain missing value. .. deprecated:: 0.23.0 Pass tuple or list to drop on multiple axes. Only a single axis is allowed. how : {'any', 'all'}, default 'any' Determine if row or column is removed from DataFrame, when we have at least one NA or all NA. * 'any' : If any NA values are present, drop that row or column. * 'all' : If all values are NA, drop that row or column. thresh : int, optional Require that many non-NA values. subset : array-like, optional Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include. inplace : bool, default False If True, do operation inplace and return None. Returns ------- DataFrame DataFrame with NA entries dropped from it. See Also -------- DataFrame.isna: Indicate missing values. DataFrame.notna : Indicate existing (non-missing) values. DataFrame.fillna : Replace missing values. Series.dropna : Drop missing values. Index.dropna : Drop missing indices. Examples -------- >>> df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": [np.nan, 'Batmobile', 'Bullwhip'], ... "born": [pd.NaT, pd.Timestamp("1940-04-25"), ... pd.NaT]}) >>> df name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Drop the rows where at least one element is missing. >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 Drop the columns where at least one element is missing. >>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman Drop the rows where all elements are missing. >>> df.dropna(how='all') name toy born 0 Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Keep only the rows with at least 2 non-NA values. >>> df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT Define in which columns to look for missing values. >>> df.dropna(subset=['name', 'born']) name toy born 1 Batman Batmobile 1940-04-25 Keep the DataFrame with valid entries in the same variable. >>> df.dropna(inplace=True) >>> df name toy born 1 Batman Batmobile 1940-04-25 """ inplace = validate_bool_kwarg(inplace, "inplace") if isinstance(axis, (tuple, list)): # GH20987 msg = ( "supplying multiple axes to axis is deprecated and " "will be removed in a future version." ) warnings.warn(msg, FutureWarning, stacklevel=2) result = self for ax in axis: result = result.dropna(how=how, thresh=thresh, subset=subset, axis=ax) else: axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == "any": mask = count == len(agg_obj._get_axis(agg_axis)) elif how == "all": mask = count > 0 else: if how is not None: raise ValueError("invalid how option: {h}".format(h=how)) else: raise TypeError("must specify how or thresh") result = self.loc(axis=axis)[mask] if inplace: self._update_inplace(result) else: return result def drop_duplicates(self, subset=None, keep="first", inplace=False): """ Return DataFrame with duplicate rows removed, optionally only considering certain columns. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. inplace : boolean, default False Whether to drop duplicates in place or to return a copy Returns ------- DataFrame """ if self.empty: return self.copy() inplace = validate_bool_kwarg(inplace, "inplace") duplicated = self.duplicated(subset, keep=keep) if inplace: inds, = (-duplicated)._ndarray_values.nonzero() new_data = self._data.take(inds) self._update_inplace(new_data) else: return self[-duplicated] def duplicated(self, subset=None, keep="first"): """ Return boolean Series denoting duplicate rows, optionally only considering certain columns. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- Series """ from pandas.core.sorting import get_group_index from pandas._libs.hashtable import duplicated_int64, _SIZE_HINT_LIMIT if self.empty: return Series(dtype=bool) def f(vals): labels, shape = algorithms.factorize( vals, size_hint=min(len(self), _SIZE_HINT_LIMIT) ) return labels.astype("i8", copy=False), len(shape) if subset is None: subset = self.columns elif ( not np.iterable(subset) or isinstance(subset, str) or isinstance(subset, tuple) and subset in self.columns ): subset = (subset,) # Verify all columns in subset exist in the queried dataframe # Otherwise, raise a KeyError, same as if you try to __getitem__ with a # key that doesn't exist. diff = Index(subset).difference(self.columns) if not diff.empty: raise KeyError(diff) vals = (col.values for name, col in self.items() if name in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_values.__doc__) def sort_values( self, by, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ): inplace = validate_bool_kwarg(inplace, "inplace") axis = self._get_axis_number(axis) if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError( "Length of ascending (%d) != length of by (%d)" % (len(ascending), len(by)) ) if len(by) > 1: from pandas.core.sorting import lexsort_indexer keys = [self._get_label_or_level_values(x, axis=axis) for x in by] indexer = lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = ensure_platform_int(indexer) else: from pandas.core.sorting import nargsort by = by[0] k = self._get_label_or_level_values(by, axis=axis) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = nargsort( k, kind=kind, ascending=ascending, na_position=na_position ) new_data = self._data.take( indexer, axis=self._get_block_manager_axis(axis), verify=False ) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) @Substitution(**_shared_doc_kwargs) @Appender(NDFrame.sort_index.__doc__) def sort_index( self, axis=0, level=None, ascending=True, inplace=False, kind="quicksort", na_position="last", sort_remaining=True, by=None, ): # TODO: this can be combined with Series.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") # 10726 if by is not None: warnings.warn( "by argument to sort_index is deprecated, " "please use .sort_values(by=...)", FutureWarning, stacklevel=2, ) if level is not None: raise ValueError("unable to simultaneously sort by and level") return self.sort_values(by, axis=axis, ascending=ascending, inplace=inplace) axis = self._get_axis_number(axis) labels = self._get_axis(axis) # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer labels = labels._sort_levels_monotonic() if level is not None: new_axis, indexer = labels.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(labels, MultiIndex): from pandas.core.sorting import lexsort_indexer indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and labels.is_monotonic_increasing) or ( not ascending and labels.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( labels, kind=kind, ascending=ascending, na_position=na_position ) baxis = self._get_block_manager_axis(axis) new_data = self._data.take(indexer, axis=baxis, verify=False) # reconstruct axis if needed new_data.axes[baxis] = new_data.axes[baxis]._sort_levels_monotonic() if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def nlargest(self, n, columns, keep="first"): """ Return the first `n` rows ordered by `columns` in descending order. Return the first `n` rows with the largest values in `columns`, in descending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=False).head(n)``, but more performant. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. See Also -------- DataFrame.nsmallest : Return the first `n` rows ordered by `columns` in ascending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Notes ----- This function cannot be used with all column types. For example, when specifying columns with `object` or `category` dtypes, ``TypeError`` is raised. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nlargest`` to select the three rows having the largest values in column "population". >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT When using ``keep='last'``, ties are resolved in reverse order: >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN When using ``keep='all'``, all duplicate items are maintained: >>> df.nlargest(3, 'population', keep='all') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN To order by the largest values in column "population" and then "GDP", we can specify multiple columns like in the next example. >>> df.nlargest(3, ['population', 'GDP']) population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return algorithms.SelectNFrame(self, n=n, keep=keep, columns=columns).nlargest() def nsmallest(self, n, columns, keep="first"): """ Return the first `n` rows ordered by `columns` in ascending order. Return the first `n` rows with the smallest values in `columns`, in ascending order. The columns that are not specified are returned as well, but not used for ordering. This method is equivalent to ``df.sort_values(columns, ascending=True).head(n)``, but more performant. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last', 'all'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. - ``all`` : do not drop any duplicates, even it means selecting more than `n` items. .. versionadded:: 0.24.0 Returns ------- DataFrame See Also -------- DataFrame.nlargest : Return the first `n` rows ordered by `columns` in descending order. DataFrame.sort_values : Sort DataFrame by the values. DataFrame.head : Return the first `n` rows without re-ordering. Examples -------- >>> df = pd.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "a". >>> df.nsmallest(3, 'population') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 11300 182 NR When using ``keep='all'``, all duplicate items are maintained: >>> df.nsmallest(3, 'population', keep='all') population GDP alpha-2 Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI To order by the largest values in column "a" and then "c", we can specify multiple columns like in the next example. >>> df.nsmallest(3, ['population', 'GDP']) population GDP alpha-2 Tuvalu 11300 38 TV Nauru 11300 182 NR Anguilla 11300 311 AI """ return algorithms.SelectNFrame( self, n=n, keep=keep, columns=columns ).nsmallest() def swaplevel(self, i=-2, j=-1, axis=0): """ Swap levels i and j in a MultiIndex on a particular axis. Parameters ---------- i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- DataFrame """ result = self.copy() axis = self._get_axis_number(axis) if axis == 0: result.index = result.index.swaplevel(i, j) else: result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0): """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- type of caller (new object) """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError("Can only reorder levels on a hierarchical axis.") result = self.copy() if axis == 0: result.index = result.index.reorder_levels(order) else: result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other, func, fill_value=None, level=None): this, other = self.align(other, join="outer", level=level, copy=False) new_index, new_columns = this.index, this.columns def _arith_op(left, right): # for the mixed_type case where we iterate over columns, # _arith_op(left, right) is equivalent to # left._binop(right, func, fill_value=fill_value) left, right = ops.fill_binop(left, right, fill_value) return func(left, right) if ops.should_series_dispatch(this, other, func): # iterate over columns return ops.dispatch_to_series(this, other, _arith_op) else: result = _arith_op(this.values, other.values) return self._constructor( result, index=new_index, columns=new_columns, copy=False ) def _combine_match_index(self, other, func, level=None): left, right = self.align(other, join="outer", axis=0, level=level, copy=False) assert left.index.equals(right.index) if left._is_mixed_type or right._is_mixed_type: # operate column-wise; avoid costly object-casting in `.values` return ops.dispatch_to_series(left, right, func) else: # fastpath --> operate directly on values with np.errstate(all="ignore"): new_data = func(left.values.T, right.values).T return self._constructor( new_data, index=left.index, columns=self.columns, copy=False ) def _combine_match_columns(self, other, func, level=None): assert isinstance(other, Series) left, right = self.align(other, join="outer", axis=1, level=level, copy=False) assert left.columns.equals(right.index) return ops.dispatch_to_series(left, right, func, axis="columns") def _combine_const(self, other, func): assert lib.is_scalar(other) or np.ndim(other) == 0 return ops.dispatch_to_series(self, other, func) def combine(self, other, func, fill_value=None, overwrite=True): """ Perform column-wise combine with another DataFrame. Combines a DataFrame with `other` DataFrame using `func` to element-wise combine columns. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame The DataFrame to merge column-wise. func : function Function that takes two series as inputs and return a Series or a scalar. Used to merge the two dataframes column by columns. fill_value : scalar value, default None The value to fill NaNs with prior to passing any column to the merge func. overwrite : bool, default True If True, columns in `self` that do not exist in `other` will be overwritten with NaNs. Returns ------- DataFrame Combination of the provided DataFrames. See Also -------- DataFrame.combine_first : Combine two DataFrame objects and default to non-null values in frame calling the method. Examples -------- Combine using a simple function that chooses the smaller column. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> take_smaller = lambda s1, s2: s1 if s1.sum() < s2.sum() else s2 >>> df1.combine(df2, take_smaller) A B 0 0 3 1 0 3 Example using a true element-wise combine function. >>> df1 = pd.DataFrame({'A': [5, 0], 'B': [2, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, np.minimum) A B 0 1 2 1 0 3 Using `fill_value` fills Nones prior to passing the column to the merge function. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 4.0 However, if the same element in both dataframes is None, that None is preserved >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [None, 3]}) >>> df1.combine(df2, take_smaller, fill_value=-5) A B 0 0 -5.0 1 0 3.0 Example that demonstrates the use of `overwrite` and behavior when the axis differ between the dataframes. >>> df1 = pd.DataFrame({'A': [0, 0], 'B': [4, 4]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [-10, 1], }, index=[1, 2]) >>> df1.combine(df2, take_smaller) A B C 0 NaN NaN NaN 1 NaN 3.0 -10.0 2 NaN 3.0 1.0 >>> df1.combine(df2, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 -10.0 2 NaN 3.0 1.0 Demonstrating the preference of the passed in dataframe. >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1], }, index=[1, 2]) >>> df2.combine(df1, take_smaller) A B C 0 0.0 NaN NaN 1 0.0 3.0 NaN 2 NaN 3.0 NaN >>> df2.combine(df1, take_smaller, overwrite=False) A B C 0 0.0 NaN NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isna(series) other_mask = isna(otherSeries) # don't overwrite columns unnecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value if col not in self.columns: # If self DataFrame does not have col in other DataFrame, # try to promote series, which is all NaN, as other_dtype. new_dtype = other_dtype try: series = series.astype(new_dtype, copy=False) except ValueError: # e.g. new_dtype is integer types pass else: # if we have different dtypes, possibly promote new_dtype = find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) arr = func(series, otherSeries) arr = maybe_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns) def combine_first(self, other): """ Update null elements with value in the same location in `other`. Combine two DataFrame objects by filling null values in one DataFrame with non-null values from other DataFrame. The row and column indexes of the resulting DataFrame will be the union of the two. Parameters ---------- other : DataFrame Provided DataFrame to use to fill null values. Returns ------- DataFrame See Also -------- DataFrame.combine : Perform series-wise operation on two DataFrames using a given function. Examples -------- >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [None, 4]}) >>> df2 = pd.DataFrame({'A': [1, 1], 'B': [3, 3]}) >>> df1.combine_first(df2) A B 0 1.0 3.0 1 0.0 4.0 Null values still persist if the location of that null value does not exist in `other` >>> df1 = pd.DataFrame({'A': [None, 0], 'B': [4, None]}) >>> df2 = pd.DataFrame({'B': [3, 3], 'C': [1, 1]}, index=[1, 2]) >>> df1.combine_first(df2) A B C 0 NaN 4.0 NaN 1 0.0 3.0 1.0 2 NaN 3.0 1.0 """ import pandas.core.computation.expressions as expressions def extract_values(arr): # Does two things: # 1. maybe gets the values from the Series / Index # 2. convert datelike to i8 if isinstance(arr, (ABCIndexClass, ABCSeries)): arr = arr._values if needs_i8_conversion(arr): if is_extension_array_dtype(arr.dtype): arr = arr.asi8 else: arr = arr.view("i8") return arr def combiner(x, y): mask = isna(x) if isinstance(mask, (ABCIndexClass, ABCSeries)): mask = mask._values x_values = extract_values(x) y_values = extract_values(y) # If the column y in other DataFrame is not in first DataFrame, # just return y_values. if y.name not in self.columns: return y_values return expressions.where(mask, y_values, x_values) return self.combine(other, combiner, overwrite=False) @deprecate_kwarg( old_arg_name="raise_conflict", new_arg_name="errors", mapping={False: "ignore", True: "raise"}, ) def update( self, other, join="left", overwrite=True, filter_func=None, errors="ignore" ): """ Modify in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : bool, default True How to handle non-NA values for overlapping keys: * True: overwrite original DataFrame's values with values from `other`. * False: only update values that are NA in the original DataFrame. filter_func : callable(1d-array) -> bool 1d-array, optional Can choose to replace values other than NA. Return True for values that should be updated. errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and `other` both contain non-NA data in the same place. .. versionchanged :: 0.24.0 Changed from `raise_conflict=False|True` to `errors='ignore'|'raise'`. Returns ------- None : method directly changes calling object Raises ------ ValueError * When `errors='raise'` and there's overlapping non-NA data. * When `errors` is not either `'ignore'` or `'raise'` NotImplementedError * If `join != 'left'` See Also -------- dict.update : Similar method for dictionaries. DataFrame.merge : For column(s)-on-columns(s) operations. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, 5, 6], ... 'C': [7, 8, 9]}) >>> df.update(new_df) >>> df A B 0 1 4 1 2 5 2 3 6 The DataFrame's length does not increase as a result of the update, only values at matching index/column labels are updated. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e', 'f', 'g', 'h', 'i']}) >>> df.update(new_df) >>> df A B 0 a d 1 b e 2 c f For Series, it's name attribute must be set. >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_column = pd.Series(['d', 'e'], name='B', index=[0, 2]) >>> df.update(new_column) >>> df A B 0 a d 1 b y 2 c e >>> df = pd.DataFrame({'A': ['a', 'b', 'c'], ... 'B': ['x', 'y', 'z']}) >>> new_df = pd.DataFrame({'B': ['d', 'e']}, index=[1, 2]) >>> df.update(new_df) >>> df A B 0 a x 1 b d 2 c e If `other` contains NaNs the corresponding values are not updated in the original dataframe. >>> df = pd.DataFrame({'A': [1, 2, 3], ... 'B': [400, 500, 600]}) >>> new_df = pd.DataFrame({'B': [4, np.nan, 6]}) >>> df.update(new_df) >>> df A B 0 1 4.0 1 2 500.0 2 3 6.0 """ import pandas.core.computation.expressions as expressions # TODO: Support other joins if join != "left": # pragma: no cover raise NotImplementedError("Only left join is supported") if errors not in ["ignore", "raise"]: raise ValueError( "The parameter errors must be either " "'ignore' or 'raise'" ) if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col]._values that = other[col]._values if filter_func is not None: with np.errstate(all="ignore"): mask = ~filter_func(this) | isna(that) else: if errors == "raise": mask_this = notna(that) mask_that = notna(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isna(that) else: mask = notna(this) # don't overwrite columns unnecessarily if mask.all(): continue self[col] = expressions.where(mask, this, that) # ---------------------------------------------------------------------- # Data reshaping _shared_docs[ "pivot" ] = """ Return reshaped DataFrame organized by given index / column values. Reshape data (produce a "pivot" table) based on column values. Uses unique values from specified `index` / `columns` to form axes of the resulting DataFrame. This function does not support data aggregation, multiple values will result in a MultiIndex in the columns. See the :ref:`User Guide <reshaping>` for more on reshaping. Parameters ----------%s index : string or object, optional Column to use to make new frame's index. If None, uses existing index. columns : string or object Column to use to make new frame's columns. values : string, object or a list of the previous, optional Column(s) to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns. .. versionchanged :: 0.23.0 Also accept list of column names. Returns ------- DataFrame Returns reshaped DataFrame. Raises ------ ValueError: When there are any `index`, `columns` combinations with multiple values. `DataFrame.pivot_table` when you need to aggregate. See Also -------- DataFrame.pivot_table : Generalization of pivot that can handle duplicate values for one index/column pair. DataFrame.unstack : Pivot based on the index values instead of a column. Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods. Examples -------- >>> df = pd.DataFrame({'foo': ['one', 'one', 'one', 'two', 'two', ... 'two'], ... 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], ... 'baz': [1, 2, 3, 4, 5, 6], ... 'zoo': ['x', 'y', 'z', 'q', 'w', 't']}) >>> df foo bar baz zoo 0 one A 1 x 1 one B 2 y 2 one C 3 z 3 two A 4 q 4 two B 5 w 5 two C 6 t >>> df.pivot(index='foo', columns='bar', values='baz') bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] bar A B C foo one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar', values=['baz', 'zoo']) baz zoo bar A B C A B C foo one 1 2 3 x y z two 4 5 6 q w t A ValueError is raised if there are any duplicates. >>> df = pd.DataFrame({"foo": ['one', 'one', 'two', 'two'], ... "bar": ['A', 'A', 'B', 'C'], ... "baz": [1, 2, 3, 4]}) >>> df foo bar baz 0 one A 1 1 one A 2 2 two B 3 3 two C 4 Notice that the first two rows are the same for our `index` and `columns` arguments. >>> df.pivot(index='foo', columns='bar', values='baz') Traceback (most recent call last): ... ValueError: Index contains duplicate entries, cannot reshape """ @Substitution("") @Appender(_shared_docs["pivot"]) def pivot(self, index=None, columns=None, values=None): from pandas.core.reshape.pivot import pivot return pivot(self, index=index, columns=columns, values=values) _shared_docs[ "pivot_table" ] = """ Create a spreadsheet-style pivot table as a DataFrame. The levels in the pivot table will be stored in MultiIndex objects (hierarchical indexes) on the index and columns of the result DataFrame. Parameters ----------%s values : column to aggregate, optional index : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values. columns : column, Grouper, array, or list of the previous If an array is passed, it must be the same length as the data. The list can contain any of the other types (except list). Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values. aggfunc : function, list of functions, dict, default numpy.mean If list of functions passed, the resulting pivot table will have hierarchical columns whose top level are the function names (inferred from the function objects themselves) If dict is passed, the key is column to aggregate and value is function or list of functions fill_value : scalar, default None Value to replace missing values with margins : boolean, default False Add all row / columns (e.g. for subtotal / grand totals) dropna : boolean, default True Do not include columns whose entries are all NaN margins_name : string, default 'All' Name of the row / column that will contain the totals when margins is True. observed : boolean, default False This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers. .. versionchanged :: 0.25.0 Returns ------- DataFrame See Also -------- DataFrame.pivot : Pivot without aggregation that can handle non-numeric data. Examples -------- >>> df = pd.DataFrame({"A": ["foo", "foo", "foo", "foo", "foo", ... "bar", "bar", "bar", "bar"], ... "B": ["one", "one", "one", "two", "two", ... "one", "one", "two", "two"], ... "C": ["small", "large", "large", "small", ... "small", "large", "small", "small", ... "large"], ... "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], ... "E": [2, 4, 5, 5, 6, 6, 8, 9, 9]}) >>> df A B C D E 0 foo one small 1 2 1 foo one large 2 4 2 foo one large 2 5 3 foo two small 3 5 4 foo two small 3 6 5 bar one large 4 6 6 bar one small 5 8 7 bar two small 6 9 8 bar two large 7 9 This first example aggregates values by taking the sum. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum) >>> table C large small A B bar one 4.0 5.0 two 7.0 6.0 foo one 4.0 1.0 two NaN 6.0 We can also fill missing values using the `fill_value` parameter. >>> table = pd.pivot_table(df, values='D', index=['A', 'B'], ... columns=['C'], aggfunc=np.sum, fill_value=0) >>> table C large small A B bar one 4 5 two 7 6 foo one 4 1 two 0 6 The next example aggregates by taking the mean across multiple columns. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': np.mean}) >>> table D E A C bar large 5.500000 7.500000 small 5.500000 8.500000 foo large 2.000000 4.500000 small 2.333333 4.333333 We can also calculate multiple types of aggregations for any given value column. >>> table = pd.pivot_table(df, values=['D', 'E'], index=['A', 'C'], ... aggfunc={'D': np.mean, ... 'E': [min, max, np.mean]}) >>> table D E mean max mean min A C bar large 5.500000 9.0 7.500000 6.0 small 5.500000 9.0 8.500000 8.0 foo large 2.000000 5.0 4.500000 4.0 small 2.333333 6.0 4.333333 2.0 """ @Substitution("") @Appender(_shared_docs["pivot_table"]) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=True, margins_name="All", observed=False, ): from pandas.core.reshape.pivot import pivot_table return pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, ) def stack(self, level=-1, dropna=True): """ Stack the prescribed level(s) from columns to index. Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. The new index levels are sorted. Parameters ---------- level : int, str, list, default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. Stacking a column level onto the index axis can create combinations of index and column values that are missing from the original dataframe. See Examples section. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = pd.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat weight 0 height 1 dog weight 2 height 3 dtype: int64 **Multi level columns: simple case** >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = pd.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = pd.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NaNs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg NaN 1.0 m 2.0 NaN dog kg NaN 3.0 m 4.0 NaN **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height NaN 2.0 weight 1.0 NaN dog height NaN 4.0 weight 3.0 NaN >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 **Dropping missing values** >>> df_multi_level_cols3 = pd.DataFrame([[None, 1.0], [2.0, 3.0]], ... index=['cat', 'dog'], ... columns=multicol2) Note that rows where all values are missing are dropped by default but this behaviour can be controlled via the dropna keyword parameter: >>> df_multi_level_cols3 weight height kg m cat NaN 1.0 dog 2.0 3.0 >>> df_multi_level_cols3.stack(dropna=False) height weight cat kg NaN NaN m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN >>> df_multi_level_cols3.stack(dropna=True) height weight cat m 1.0 NaN dog kg NaN 2.0 m 3.0 NaN """ from pandas.core.reshape.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def explode(self, column: Union[str, Tuple]) -> "DataFrame": """ Transform each element of a list-like to a row, replicating the index values. .. versionadded:: 0.25.0 Parameters ---------- column : str or tuple Returns ------- DataFrame Exploded lists to rows of the subset columns; index will be duplicated for these rows. Raises ------ ValueError : if columns of the frame are not unique. See Also -------- DataFrame.unstack : Pivot a level of the (necessarily hierarchical) index labels DataFrame.melt : Unpivot a DataFrame from wide format to long format Series.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> df = pd.DataFrame({'A': [[1, 2, 3], 'foo', [], [3, 4]], 'B': 1}) >>> df A B 0 [1, 2, 3] 1 1 foo 1 2 [] 1 3 [3, 4] 1 >>> df.explode('A') A B 0 1 1 0 2 1 0 3 1 1 foo 1 2 NaN 1 3 3 1 3 4 1 """ if not (is_scalar(column) or isinstance(column, tuple)): raise ValueError("column must be a scalar") if not self.columns.is_unique: raise ValueError("columns must be unique") result = self[column].explode() return ( self.drop([column], axis=1) .join(result) .reindex(columns=self.columns, copy=False) ) def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, string, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name fill_value : replace NaN with this value if the unstack produces missing values Returns ------- Series or DataFrame See Also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) _shared_docs[ "melt" ] = """ Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set. This function is useful to massage a DataFrame into a format where one or more columns are identifier variables (`id_vars`), while all other columns, considered measured variables (`value_vars`), are "unpivoted" to the row axis, leaving just two non-identifier columns, 'variable' and 'value'. %(versionadded)s Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. If not specified, uses all columns that are not set as `id_vars`. var_name : scalar Name to use for the 'variable' column. If None it uses ``frame.columns.name`` or 'variable'. value_name : scalar, default 'value' Name to use for the 'value' column. col_level : int or string, optional If columns are a MultiIndex then use this level to melt. Returns ------- DataFrame Unpivoted DataFrame. See Also -------- %(other)s pivot_table DataFrame.pivot Series.explode Examples -------- >>> df = pd.DataFrame({'A': {0: 'a', 1: 'b', 2: 'c'}, ... 'B': {0: 1, 1: 3, 2: 5}, ... 'C': {0: 2, 1: 4, 2: 6}}) >>> df A B C 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)sid_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=['A'], value_vars=['B', 'C']) A variable value 0 a B 1 1 b B 3 2 c B 5 3 a C 2 4 b C 4 5 c C 6 The names of 'variable' and 'value' columns can be customized: >>> %(caller)sid_vars=['A'], value_vars=['B'], ... var_name='myVarname', value_name='myValname') A myVarname myValname 0 a B 1 1 b B 3 2 c B 5 If you have multi-index columns: >>> df.columns = [list('ABC'), list('DEF')] >>> df A B C D E F 0 a 1 2 1 b 3 4 2 c 5 6 >>> %(caller)scol_level=0, id_vars=['A'], value_vars=['B']) A variable value 0 a B 1 1 b B 3 2 c B 5 >>> %(caller)sid_vars=[('A', 'D')], value_vars=[('B', 'E')]) (A, D) variable_0 variable_1 value 0 a B E 1 1 b B E 3 2 c B E 5 """ @Appender( _shared_docs["melt"] % dict( caller="df.melt(", versionadded=".. versionadded:: 0.20.0\n", other="melt" ) ) def melt( self, id_vars=None, value_vars=None, var_name=None, value_name="value", col_level=None, ): from pandas.core.reshape.melt import melt return melt( self, id_vars=id_vars, value_vars=value_vars, var_name=var_name, value_name=value_name, col_level=col_level, ) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0): """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is the element in the same column of the previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). .. versionadded:: 0.16.1. Returns ------- DataFrame See Also -------- Series.diff: First discrete difference for a Series. DataFrame.pct_change: Percent change over given number of periods. DataFrame.shift: Shift index by desired number of periods with an optional time freq. Examples -------- Difference with previous row >>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0 Difference with previous column >>> df.diff(axis=1) a b c 0 NaN 0.0 0.0 1 NaN -1.0 3.0 2 NaN -1.0 7.0 3 NaN -1.0 13.0 4 NaN 0.0 20.0 5 NaN 2.0 28.0 Difference with 3rd previous row >>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0 Difference with following row >>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def _gotitem( self, key: Union[str, List[str]], ndim: int, subset: Optional[Union[Series, ABCDataFrame]] = None, ) -> Union[Series, ABCDataFrame]: """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ if subset is None: subset = self elif subset.ndim == 1: # is Series return subset # TODO: _shallow_copy(subset)? return subset[key] _agg_summary_and_see_also_doc = dedent( """ The aggregation operations are always performed over an axis, either the index (default) or the column axis. This behavior is different from `numpy` aggregation functions (`mean`, `median`, `prod`, `sum`, `std`, `var`), where the default is to compute the aggregation of the flattened array, e.g., ``numpy.mean(arr_2d)`` as opposed to ``numpy.mean(arr_2d, axis=0)``. `agg` is an alias for `aggregate`. Use the alias. See Also -------- DataFrame.apply : Perform any type of operations. DataFrame.transform : Perform transformation type operations. core.groupby.GroupBy : Perform operations over groups. core.resample.Resampler : Perform operations over resampled bins. core.window.Rolling : Perform operations over rolling window. core.window.Expanding : Perform operations over expanding window. core.window.EWM : Perform operation over exponential weighted window. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> df = pd.DataFrame([[1, 2, 3], ... [4, 5, 6], ... [7, 8, 9], ... [np.nan, np.nan, np.nan]], ... columns=['A', 'B', 'C']) Aggregate these functions over the rows. >>> df.agg(['sum', 'min']) A B C sum 12.0 15.0 18.0 min 1.0 2.0 3.0 Different aggregations per column. >>> df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']}) A B max NaN 8.0 min 1.0 2.0 sum 12.0 NaN Aggregate over the columns. >>> df.agg("mean", axis="columns") 0 2.0 1 5.0 2 8.0 3 NaN dtype: float64 """ ) @Substitution( see_also=_agg_summary_and_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs ) @Appender(_shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) result = None try: result, how = self._aggregate(func, axis=axis, *args, **kwargs) except TypeError: pass if result is None: return self.apply(func, axis=axis, args=args, **kwargs) return result def _aggregate(self, arg, axis=0, *args, **kwargs): if axis == 1: # NDFrame.aggregate returns a tuple, and we need to transpose # only result result, how = self.T._aggregate(arg, *args, **kwargs) result = result.T if result is not None else result return result, how return super()._aggregate(arg, *args, **kwargs) agg = aggregate @Appender(_shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs): axis = self._get_axis_number(axis) if axis == 1: return self.T.transform(func, *args, **kwargs).T return super().transform(func, *args, **kwargs) def apply( self, func, axis=0, broadcast=None, raw=False, reduce=None, result_type=None, args=(), **kwds ): """ Apply a function along an axis of the DataFrame. Objects passed to the function are Series objects whose index is either the DataFrame's index (``axis=0``) or the DataFrame's columns (``axis=1``). By default (``result_type=None``), the final return type is inferred from the return type of the applied function. Otherwise, it depends on the `result_type` argument. Parameters ---------- func : function Function to apply to each column or row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied: * 0 or 'index': apply function to each column. * 1 or 'columns': apply function to each row. broadcast : bool, optional Only relevant for aggregation functions: * ``False`` or ``None`` : returns a Series whose length is the length of the index or the number of columns (based on the `axis` parameter) * ``True`` : results will be broadcast to the original shape of the frame, the original index and columns will be retained. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by result_type='broadcast'. raw : bool, default False * ``False`` : passes each row or column as a Series to the function. * ``True`` : the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance. reduce : bool or None, default None Try to apply reduction procedures. If the DataFrame is empty, `apply` will use `reduce` to determine whether the result should be a Series or a DataFrame. If ``reduce=None`` (the default), `apply`'s return value will be guessed by calling `func` on an empty Series (note: while guessing, exceptions raised by `func` will be ignored). If ``reduce=True`` a Series will always be returned, and if ``reduce=False`` a DataFrame will always be returned. .. deprecated:: 0.23.0 This argument will be removed in a future version, replaced by ``result_type='reduce'``. result_type : {'expand', 'reduce', 'broadcast', None}, default None These only act when ``axis=1`` (columns): * 'expand' : list-like results will be turned into columns. * 'reduce' : returns a Series if possible rather than expanding list-like results. This is the opposite of 'expand'. * 'broadcast' : results will be broadcast to the original shape of the DataFrame, the original index and columns will be retained. The default behaviour (None) depends on the return value of the applied function: list-like results will be returned as a Series of those. However if the apply function returns a Series these are expanded to columns. .. versionadded:: 0.23.0 args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- Series or DataFrame Result of applying ``func`` along the given axis of the DataFrame. See Also -------- DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Notes ----- In the current implementation apply calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B']) >>> df A B 0 4 9 1 4 9 2 4 9 Using a numpy universal function (in this case the same as ``np.sqrt(df)``): >>> df.apply(np.sqrt) A B 0 2.0 3.0 1 2.0 3.0 2 2.0 3.0 Using a reducing function on either axis >>> df.apply(np.sum, axis=0) A 12 B 27 dtype: int64 >>> df.apply(np.sum, axis=1) 0 13 1 13 2 13 dtype: int64 Returning a list-like will result in a Series >>> df.apply(lambda x: [1, 2], axis=1) 0 [1, 2] 1 [1, 2] 2 [1, 2] dtype: object Passing result_type='expand' will expand list-like results to columns of a Dataframe >>> df.apply(lambda x: [1, 2], axis=1, result_type='expand') 0 1 0 1 2 1 1 2 2 1 2 Returning a Series inside the function is similar to passing ``result_type='expand'``. The resulting column names will be the Series index. >>> df.apply(lambda x: pd.Series([1, 2], index=['foo', 'bar']), axis=1) foo bar 0 1 2 1 1 2 2 1 2 Passing ``result_type='broadcast'`` will ensure the same shape result, whether list-like or scalar is returned by the function, and broadcast it along the axis. The resulting column names will be the originals. >>> df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') A B 0 1 2 1 1 2 2 1 2 """ from pandas.core.apply import frame_apply op = frame_apply( self, func=func, axis=axis, broadcast=broadcast, raw=raw, reduce=reduce, result_type=result_type, args=args, kwds=kwds, ) return op.get_result() def applymap(self, func): """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. Returns ------- DataFrame Transformed DataFrame. See Also -------- DataFrame.apply : Apply a function along input axis of DataFrame. Notes ----- In the current implementation applymap calls `func` twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if `func` has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]]) >>> df 0 1 0 1.000 2.120 1 3.356 4.567 >>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5 Note that a vectorized version of `func` often exists, which will be much faster. You could square each number elementwise. >>> df.applymap(lambda x: x**2) 0 1 0 1.000000 4.494400 1 11.262736 20.857489 But it's better to avoid applymap in that case. >>> df ** 2 0 1 0 1.000000 4.494400 1 11.262736 20.857489 """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): if x.empty: return lib.map_infer(x, func) return lib.map_infer(x.astype(object).values, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append(self, other, ignore_index=False, verify_integrity=False, sort=None): """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. sort : boolean, default None Sort columns if the columns of `self` and `other` are not aligned. The default sorting is deprecated and will change to not-sorting in a future version of pandas. Explicitly pass ``sort=True`` to silence the warning and sort. Explicitly pass ``sort=False`` to silence the warning and not sort. .. versionadded:: 0.23.0 Returns ------- DataFrame See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = pd.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient: >>> pd.concat([pd.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): other = Series(other) if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True" " or if the Series has a name" ) if other.name is None: index = None else: # other must have the same index name as self, otherwise # index name will be reset index = Index([other.name], name=self.index.name) idx_diff = other.index.difference(self.columns) try: combined_columns = self.columns.append(idx_diff) except TypeError: combined_columns = self.columns.astype(object).append(idx_diff) other = other.reindex(combined_columns, copy=False) other = DataFrame( other.values.reshape((1, len(other))), index=index, columns=combined_columns, ) other = other._convert(datetime=True, timedelta=True) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list) and not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.reindex(columns=self.columns) from pandas.core.reshape.concat import concat if isinstance(other, (list, tuple)): to_concat = [self] + other else: to_concat = [self, other] return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity, sort=sort, ) def join(self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False): """ Join columns of another DataFrame. Join columns with `other` DataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame. on : str, list of str, or array-like, optional Column or index level name(s) in the caller to join on the index in `other`, otherwise joins index-on-index. If multiple values given, the `other` DataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. how : {'left', 'right', 'outer', 'inner'}, default 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use `other`'s index. * outer: form union of calling frame's index (or column if on is specified) with `other`'s index, and sort it. lexicographically. * inner: form intersection of calling frame's index (or column if on is specified) with `other`'s index, preserving the order of the calling's one. lsuffix : str, default '' Suffix to use from left frame's overlapping columns. rsuffix : str, default '' Suffix to use from right frame's overlapping columns. sort : bool, default False Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword). Returns ------- DataFrame A dataframe containing columns from both the caller and `other`. See Also -------- DataFrame.merge : For column(s)-on-columns(s) operations. Notes ----- Parameters `on`, `lsuffix`, and `rsuffix` are not supported when passing a list of `DataFrame` objects. Support for specifying index levels as the `on` parameter was added in version 0.23.0. Examples -------- >>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other key B 0 K0 B0 1 K1 B1 2 K2 B2 Join DataFrames using their indexes. >>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both `df` and `other`. The joined DataFrame will have key as its index. >>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the `on` parameter. DataFrame.join always uses `other`'s index but we can use any column in `df`. This method preserves the original DataFrame's index in the result. >>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN """ # For SparseDataFrame's benefit return self._join_compat( other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort ) def _join_compat( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False ): from pandas.core.reshape.merge import merge from pandas.core.reshape.concat import concat if isinstance(other, Series): if other.name is None: raise ValueError("Other Series must have a name") other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge( self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort, ) else: if on is not None: raise ValueError( "Joining multiple DataFrames only supported" " for joining on index" ) frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) # join indexes only using concat if can_concat: if how == "left": res = concat(frames, axis=1, join="outer", verify_integrity=True) return res.reindex(self.index, copy=False) else: return concat(frames, axis=1, join=how, verify_integrity=True) joined = frames[0] for frame in frames[1:]: joined = merge( joined, frame, how=how, left_index=True, right_index=True ) return joined @Substitution("") @Appender(_merge_doc, indents=2) def merge( self, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ): from pandas.core.reshape.merge import merge return merge( self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) def round(self, decimals=0, *args, **kwargs): """ Round a DataFrame to a variable number of decimal places. Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. *args Additional keywords have no effect but might be accepted for compatibility with numpy. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- DataFrame A DataFrame with the affected columns rounded to the specified number of decimal places. See Also -------- numpy.around : Round a numpy array to the given number of decimals. Series.round : Round a Series to the given number of decimals. Examples -------- >>> df = pd.DataFrame([(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats']) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18 By providing an integer each column is rounded to the same number of decimal places >>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2 With a dict, the number of places for specific columns can be specified with the column names as key and the number of decimal places as value >>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 Using a Series, the number of places for specific columns can be specified with the column names as index and the number of decimal places as value >>> decimals = pd.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0 """ from pandas.core.reshape.concat import concat def _dict_round(df, decimals): for col, vals in df.items(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = [col for col in _dict_round(self, decimals)] elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.items()] else: raise TypeError("decimals must be an integer, a dict-like or a " "Series") if len(new_cols) > 0: return self._constructor( concat(new_cols, axis=1), index=self.index, columns=self.columns ) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method="pearson", min_periods=1): """ Compute pairwise correlation of columns, excluding NA/null values. Parameters ---------- method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for Pearson and Spearman correlation. Returns ------- DataFrame Correlation matrix. See Also -------- DataFrame.corrwith Series.corr Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)], ... columns=['dogs', 'cats']) >>> df.corr(method=histogram_intersection) dogs cats dogs 1.0 0.3 cats 0.3 1.0 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if method == "pearson": correl = libalgos.nancorr(ensure_float64(mat), minp=min_periods) elif method == "spearman": correl = libalgos.nancorr_spearman(ensure_float64(mat), minp=min_periods) elif method == "kendall" or callable(method): if min_periods is None: min_periods = 1 mat = ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = np.nan elif i == j: c = 1.0 elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c else: raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " "'{method}' was supplied".format(method=method) ) return self._constructor(correl, index=idx, columns=cols) def cov(self, min_periods=None): """ Compute pairwise covariance of columns, excluding NA/null values. Compute the pairwise covariance among the series of a DataFrame. The returned data frame is the `covariance matrix <https://en.wikipedia.org/wiki/Covariance_matrix>`__ of the columns of the DataFrame. Both NA and null values are automatically excluded from the calculation. (See the note below about bias from missing values.) A threshold can be set for the minimum number of observations for each value created. Comparisons with observations below this threshold will be returned as ``NaN``. This method is generally used for the analysis of time series data to understand the relationship between different measures across time. Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame The covariance matrix of the series of the DataFrame. See Also -------- Series.cov : Compute covariance with another Series. core.window.EWM.cov: Exponential weighted sample covariance. core.window.Expanding.cov : Expanding sample covariance. core.window.Rolling.cov : Rolling sample covariance. Notes ----- Returns the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1. For DataFrames that have Series that are missing data (assuming that data is `missing at random <https://en.wikipedia.org/wiki/Missing_data#Missing_at_random>`__) the returned covariance matrix will be an unbiased estimate of the variance and covariance between the member Series. However, for many applications this estimate may not be acceptable because the estimate covariance matrix is not guaranteed to be positive semi-definite. This could lead to estimate correlations having absolute values which are greater than one, and/or a non-invertible covariance matrix. See `Estimation of covariance matrices <http://en.wikipedia.org/w/index.php?title=Estimation_of_covariance_ matrices>`__ for more details. Examples -------- >>> df = pd.DataFrame([(1, 2), (0, 3), (2, 0), (1, 1)], ... columns=['dogs', 'cats']) >>> df.cov() dogs cats dogs 0.666667 -1.000000 cats -1.000000 1.666667 >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(1000, 5), ... columns=['a', 'b', 'c', 'd', 'e']) >>> df.cov() a b c d e a 0.998438 -0.020161 0.059277 -0.008943 0.014144 b -0.020161 1.059352 -0.008543 -0.024738 0.009826 c 0.059277 -0.008543 1.010670 -0.001486 -0.000271 d -0.008943 -0.024738 -0.001486 0.921297 -0.013692 e 0.014144 0.009826 -0.000271 -0.013692 0.977795 **Minimum number of periods** This method also supports an optional ``min_periods`` keyword that specifies the required minimum number of non-NA observations for each column pair in order to have a valid result: >>> np.random.seed(42) >>> df = pd.DataFrame(np.random.randn(20, 3), ... columns=['a', 'b', 'c']) >>> df.loc[df.index[:5], 'a'] = np.nan >>> df.loc[df.index[5:10], 'b'] = np.nan >>> df.cov(min_periods=12) a b c a 0.316741 NaN -0.150812 b NaN 1.248003 0.191417 c -0.150812 0.191417 0.895202 """ numeric_df = self._get_numeric_data() cols = numeric_df.columns idx = cols.copy() mat = numeric_df.values if notna(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = libalgos.nancorr(ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=idx, columns=cols) def corrwith(self, other, axis=0, drop=False, method="pearson"): """ Compute pairwise correlation between rows or columns of DataFrame with rows or columns of Series or DataFrame. DataFrames are first aligned along both axes before computing the correlations. Parameters ---------- other : DataFrame, Series Object with which to compute correlations. axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise. drop : bool, default False Drop missing indices from result. method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float .. versionadded:: 0.24.0 Returns ------- Series Pairwise correlations. See Also -------- DataFrame.corr """ axis = self._get_axis_number(axis) this = self._get_numeric_data() if isinstance(other, Series): return this.apply(lambda x: other.corr(x, method=method), axis=axis) other = other._get_numeric_data() left, right = this.align(other, join="inner", copy=False) if axis == 1: left = left.T right = right.T if method == "pearson": # mask missing values left = left + right * 0 right = right + left * 0 # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom elif method in ["kendall", "spearman"] or callable(method): def c(x): return nanops.nancorr(x[0], x[1], method=method) correl = Series( map(c, zip(left.values.T, right.values.T)), index=left.columns ) else: raise ValueError( "Invalid method {method} was passed, " "valid methods are: 'pearson', 'kendall', " "'spearman', or callable".format(method=method) ) if not drop: # Find non-matching labels along the given axis # and append missing correlations (GH 22375) raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) idx_diff = result_index.difference(correl.index) if len(idx_diff) > 0: correl = correl.append(Series([np.nan] * len(idx_diff), index=idx_diff)) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Count non-NA cells for each column or row. The values `None`, `NaN`, `NaT`, and optionally `numpy.inf` (depending on `pandas.options.mode.use_inf_as_na`) are considered NA. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 If 0 or 'index' counts are generated for each column. If 1 or 'columns' counts are generated for each **row**. level : int or str, optional If the axis is a `MultiIndex` (hierarchical), count along a particular `level`, collapsing into a `DataFrame`. A `str` specifies the level name. numeric_only : bool, default False Include only `float`, `int` or `boolean` data. Returns ------- Series or DataFrame For each column/row the number of non-NA/null entries. If `level` is specified returns a `DataFrame`. See Also -------- Series.count: Number of non-NA elements in a Series. DataFrame.shape: Number of DataFrame rows and columns (including NA elements). DataFrame.isna: Boolean same-sized DataFrame showing places of NA elements. Examples -------- Constructing DataFrame from a dictionary: >>> df = pd.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df Person Age Single 0 John 24.0 False 1 Myla NaN True 2 Lewis 21.0 True 3 John 33.0 True 4 Myla 26.0 False Notice the uncounted NA values: >>> df.count() Person 5 Age 4 Single 5 dtype: int64 Counts for each **row**: >>> df.count(axis='columns') 0 3 1 2 2 3 3 3 4 3 dtype: int64 Counts for one level of a `MultiIndex`: >>> df.set_index(["Person", "Single"]).count(level="Person") Age Person John 2 Lewis 1 Myla 1 """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type or frame._data.any_extension_types: # the or any_extension_types is really only hit for single- # column frames with an extension array result = notna(frame).sum(axis=axis) else: # GH13407 series_counts = notna(frame).sum(axis=axis) counts = series_counts.values result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype("int64") def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, MultiIndex): raise TypeError( "Can only count levels on hierarchical " "{ax}.".format(ax=self._get_axis_name(axis)) ) if frame._is_mixed_type: # Since we have mixed types, calling notna(frame.values) might # upcast everything to object mask = notna(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notna(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, str): level = count_axis._get_level_number(level) level_index = count_axis.levels[level] level_codes = ensure_int64(count_axis.codes[level]) counts = lib.count_level_2d(mask, level_codes, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): if axis is None and filter_type == "bool": labels = None constructor = None else: # TODO: Make other agg func handle axis=None properly axis = self._get_axis_number(axis) labels = self._get_agg_axis(axis) constructor = self._constructor def f(x): return op(x, axis=axis, skipna=skipna, **kwds) # exclude timedelta/datetime unless we are uniform types if ( axis == 1 and self._is_datelike_mixed_type and ( not self._is_homogeneous_type and not is_datetime64tz_dtype(self.dtypes[0]) ) ): numeric_only = True if numeric_only is None: try: values = self.values result = f(values) if filter_type == "bool" and is_object_dtype(values) and axis is None: # work around https://github.com/numpy/numpy/issues/10489 # TODO: combine with hasattr(result, 'dtype') further down # hard since we don't have `values` down there. result = np.bool_(result) except Exception as e: # try by-column first if filter_type is None and axis == 0: try: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series # we only end up here if we have not specified # numeric_only and yet we have tried a # column-by-column reduction, where we have mixed type. # So let's just do what we can from pandas.core.apply import frame_apply opa = frame_apply( self, func=f, result_type="expand", ignore_failures=True ) result = opa.get_result() if result.ndim == self.ndim: result = result.iloc[0] return result except Exception: pass if filter_type is None or filter_type == "numeric": data = self._get_numeric_data() elif filter_type == "bool": data = self._get_bool_data() else: # pragma: no cover e = NotImplementedError( "Handling exception with filter_type {f} not" "implemented.".format(f=filter_type) ) raise_with_traceback(e) with np.errstate(all="ignore"): result = f(data.values) labels = data._get_agg_axis(axis) else: if numeric_only: if filter_type is None or filter_type == "numeric": data = self._get_numeric_data() elif filter_type == "bool": # GH 25101, # GH 24434 data = self._get_bool_data() if axis == 0 else self else: # pragma: no cover msg = ( "Generating numeric_only data with filter_type {f}" "not supported.".format(f=filter_type) ) raise NotImplementedError(msg) values = data.values labels = data._get_agg_axis(axis) else: values = self.values result = f(values) if hasattr(result, "dtype") and is_object_dtype(result.dtype): try: if filter_type is None or filter_type == "numeric": result = result.astype(np.float64) elif filter_type == "bool" and notna(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = coerce_to_dtypes(result, self.dtypes) if constructor is not None: result = Series(result, index=labels) return result def nunique(self, axis=0, dropna=True): """ Count distinct observations over requested axis. Return Series with number of distinct observations. Can ignore NaN values. .. versionadded:: 0.20.0 Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series See Also -------- Series.nunique: Method nunique for Series. DataFrame.count: Count non-NA cells for each column or row. Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 1, 1]}) >>> df.nunique() A 3 B 1 dtype: int64 >>> df.nunique(axis=1) 0 1 1 2 2 2 dtype: int64 """ return self.apply(Series.nunique, axis=axis, dropna=dropna) def idxmin(self, axis=0, skipna=True): """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of minima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmin Notes ----- This method is the DataFrame version of ``ndarray.argmin``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True): """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. Returns ------- Series Indexes of maxima along the specified axis. Raises ------ ValueError * If the row/column is empty See Also -------- Series.idxmax Notes ----- This method is the DataFrame version of ``ndarray.argmax``. """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else np.nan for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ Let's be explicit about this. """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError("Axis must be 0 or 1 (got %r)" % axis_num) def mode(self, axis=0, numeric_only=False, dropna=True): """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- DataFrame The modes of each column or row. See Also -------- Series.mode : Return the highest frequency value in a Series. Series.value_counts : Return the counts of values in a Series. Examples -------- >>> df = pd.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains ``NaN``, because they have only one mode, but the DataFrame has two rows. >>> df.mode() species legs wings 0 bird 2.0 0.0 1 NaN NaN 2.0 Setting ``dropna=False`` ``NaN`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 NaN Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0 To compute the mode over columns and not rows, use the axis parameter: >>> df.mode(axis='columns', numeric_only=True) 0 1 falcon 2.0 NaN horse 4.0 NaN spider 0.0 8.0 ostrich 2.0 NaN """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode(dropna=dropna) return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation="linear"): """ Return values at the given quantile over requested axis. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) Value between 0 <= q <= 1, the quantile(s) to compute. axis : {0, 1, 'index', 'columns'} (default 0) Equals 0 or 'index' for row-wise, 1 or 'columns' for column-wise. numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- Series or DataFrame If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. See Also -------- core.window.Rolling.quantile: Rolling quantile. numpy.percentile: Numpy function to compute the percentile. Examples -------- >>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 Specifying `numeric_only=False` will also compute the quantile of datetime and timedelta data. >>> df = pd.DataFrame({'A': [1, 2], ... 'B': [pd.Timestamp('2010'), ... pd.Timestamp('2011')], ... 'C': [pd.Timedelta('1 days'), ... pd.Timedelta('2 days')]}) >>> df.quantile(0.5, numeric_only=False) A 1.5 B 2010-07-02 12:00:00 C 1 days 12:00:00 Name: 0.5, dtype: object """ self._check_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T if len(data.columns) == 0: # GH#23925 _get_numeric_data may have dropped all columns cols = Index([], name=self.columns.name) if is_list_like(q): return self._constructor([], index=q, columns=cols) return self._constructor_sliced([], index=cols, name=q) result = data._data.quantile( qs=q, axis=1, interpolation=interpolation, transposed=is_transposed ) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp(self, freq=None, how="start", axis=0, copy=True): """ Cast to DatetimeIndex of timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- DataFrame with DatetimeIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how)) elif axis == 1: new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how)) else: # pragma: no cover raise AssertionError("Axis must be 0 or 1. Got {ax!s}".format(ax=axis)) return self._constructor(new_data) def to_period(self, freq=None, axis=0, copy=True): """ Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default Frequency of the PeriodIndex. axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default). copy : bool, default True If False then underlying input data is not copied. Returns ------- TimeSeries with PeriodIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_period(freq=freq)) elif axis == 1: new_data.set_axis(0, self.columns.to_period(freq=freq)) else: # pragma: no cover raise AssertionError("Axis must be 0 or 1. Got {ax!s}".format(ax=axis)) return self._constructor(new_data) def isin(self, values): """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dict, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame DataFrame of booleans showing whether each element in the DataFrame is contained in values. See Also -------- DataFrame.eq: Equality test for DataFrame. Series.isin: Equivalent method on Series. Series.str.contains: Test if pattern or regex is contained within a string of a Series or Index. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in df2. >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ if isinstance(values, dict): from pandas.core.reshape.concat import concat values = collections.defaultdict(list, values) return concat( ( self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns) ), axis=1, ) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self), axis="index") elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError( "only list-like or dict-like objects are " "allowed to be passed to DataFrame.isin(), " "you passed a " "{0!r}".format(type(values).__name__) ) return DataFrame( algorithms.isin(self.values.ravel(), values).reshape(self.shape), self.index, self.columns, ) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) hist = pandas.plotting.hist_frame boxplot = pandas.plotting.boxplot_frame sparse = CachedAccessor("sparse", SparseFrameAccessor) DataFrame._setup_axes( ["index", "columns"], info_axis=1, stat_axis=0, axes_are_reversed=True, aliases={"rows": 0}, docs={ "index": "The index (row labels) of the DataFrame.", "columns": "The column labels of the DataFrame.", }, ) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() ops.add_flex_arithmetic_methods(DataFrame) ops.add_special_arithmetic_methods(DataFrame) def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = OrderedDict() for index, s in data.items(): for col, v in s.items(): new_data[col] = new_data.get(col, OrderedDict()) new_data[col][index] = v return new_data def _put_str(s, space): return "{s}".format(s=s)[:space].ljust(space)
BugsInPy/BugsInPy/temp/projects/pandas/bug-169-fixed/pandas/pandas/core/frame.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-169-buggy/pandas/pandas/core/frame.py
pandas-bug-21
""" Data structure for 1-dimensional cross-sectional and time series data """ from io import StringIO from shutil import get_terminal_size from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Tuple, Type, Union, ) import warnings import numpy as np from pandas._config import get_option from pandas._libs import lib, properties, reshape, tslibs from pandas._typing import ArrayLike, Axis, DtypeObj, Label from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, doc from pandas.util._validators import validate_bool_kwarg, validate_percentile from pandas.core.dtypes.cast import ( convert_dtypes, maybe_cast_to_extension_array, validate_numeric_casting, ) from pandas.core.dtypes.common import ( ensure_platform_int, is_bool, is_categorical_dtype, is_dict_like, is_extension_array_dtype, is_integer, is_iterator, is_list_like, is_object_dtype, is_scalar, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeIndex, ABCMultiIndex, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, notna, remove_na_arraylike, ) import pandas as pd from pandas.core import algorithms, base, generic, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.arrays.categorical import CategoricalAccessor from pandas.core.arrays.sparse import SparseAccessor import pandas.core.common as com from pandas.core.construction import ( create_series_with_explicit_dtype, extract_array, is_empty_data, sanitize_array, ) from pandas.core.generic import NDFrame from pandas.core.indexers import unpack_1tuple from pandas.core.indexes.accessors import CombinedDatetimelikeProperties from pandas.core.indexes.api import ( Float64Index, Index, InvalidIndexError, MultiIndex, ensure_index, ) import pandas.core.indexes.base as ibase from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core.indexing import check_bool_indexer from pandas.core.internals import SingleBlockManager from pandas.core.strings import StringMethods from pandas.core.tools.datetimes import to_datetime import pandas.io.formats.format as fmt import pandas.plotting if TYPE_CHECKING: from pandas.core.frame import DataFrame from pandas.core.groupby.generic import SeriesGroupBy __all__ = ["Series"] _shared_doc_kwargs = dict( axes="index", klass="Series", axes_single_arg="{0 or 'index'}", axis="""axis : {0 or 'index'} Parameter needed for compatibility with DataFrame.""", inplace="""inplace : boolean, default False If True, performs operation inplace and returns None.""", unique="np.ndarray", duplicated="Series", optional_by="", optional_mapper="", optional_labels="", optional_axis="", versionadded_to_excel="\n .. versionadded:: 0.20.0\n", ) def _coerce_method(converter): """ Install the scalar coercion methods. """ def wrapper(self): if len(self) == 1: return converter(self.iloc[0]) raise TypeError(f"cannot convert the series to {converter}") wrapper.__name__ = f"__{converter.__name__}__" return wrapper # ---------------------------------------------------------------------- # Series class class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). Operations between Series (+, -, /, *, **) align values based on their associated index values-- they need not be the same length. The result index will be the sorted union of the two indexes. Parameters ---------- data : array-like, Iterable, dict, or scalar value Contains data stored in Series. .. versionchanged:: 0.23.0 If data is a dict, argument order is maintained for Python 3.6 and later. index : array-like or Index (1d) Values must be hashable and have the same length as `data`. Non-unique index values are allowed. Will default to RangeIndex (0, 1, 2, ..., n) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : str, numpy.dtype, or ExtensionDtype, optional Data type for the output Series. If not specified, this will be inferred from `data`. See the :ref:`user guide <basics.dtypes>` for more usages. name : str, optional The name to give to the Series. copy : bool, default False Copy input data. """ _typ = "series" _name: Label _metadata: List[str] = ["name"] _internal_names_set = {"index"} | generic.NDFrame._internal_names_set _accessors = {"dt", "cat", "str", "sparse"} _deprecations = ( base.IndexOpsMixin._deprecations | generic.NDFrame._deprecations | frozenset(["compress", "ptp"]) ) # Override cache_readonly bc Series is mutable hasnans = property( base.IndexOpsMixin.hasnans.func, doc=base.IndexOpsMixin.hasnans.__doc__ ) _mgr: SingleBlockManager div: Callable[["Series", Any], "Series"] rdiv: Callable[["Series", Any], "Series"] # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index=None, dtype=None, name=None, copy=False, fastpath=False ): if ( isinstance(data, SingleBlockManager) and index is None and dtype is None and copy is False ): # GH#33357 called with just the SingleBlockManager NDFrame.__init__(self, data) self.name = name return # we are called internally, so short-circuit if fastpath: # data is an ndarray, index is defined if not isinstance(data, SingleBlockManager): data = SingleBlockManager.from_array(data, index) if copy: data = data.copy() if index is None: index = data.index else: name = ibase.maybe_extract_name(name, data, type(self)) if is_empty_data(data) and dtype is None: # gh-17261 warnings.warn( "The default dtype for empty Series will be 'object' instead " "of 'float64' in a future version. Specify a dtype explicitly " "to silence this warning.", DeprecationWarning, stacklevel=2, ) # uncomment the line below when removing the DeprecationWarning # dtype = np.dtype(object) if index is not None: index = ensure_index(index) if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, MultiIndex): raise NotImplementedError( "initializing a Series from a MultiIndex is not supported" ) elif isinstance(data, Index): if dtype is not None: # astype copies data = data.astype(dtype) else: # need to copy to avoid aliasing issues data = data._values.copy() if isinstance(data, ABCDatetimeIndex) and data.tz is not None: # GH#24096 need copy to be deep for datetime64tz case # TODO: See if we can avoid these copies data = data._values.copy(deep=True) copy = False elif isinstance(data, np.ndarray): if len(data.dtype): # GH#13296 we are dealing with a compound dtype, which # should be treated as 2D raise ValueError( "Cannot construct a Series from an ndarray with " "compound dtype. Use DataFrame instead." ) pass elif isinstance(data, ABCSeries): if index is None: index = data.index else: data = data.reindex(index, copy=copy) data = data._mgr elif is_dict_like(data): data, index = self._init_dict(data, index, dtype) dtype = None copy = False elif isinstance(data, SingleBlockManager): if index is None: index = data.index elif not data.index.equals(index) or copy: # GH#19275 SingleBlockManager input should only be called # internally raise AssertionError( "Cannot pass both SingleBlockManager " "`data` argument and a different " "`index` argument. `copy` must be False." ) elif is_extension_array_dtype(data): pass elif isinstance(data, (set, frozenset)): raise TypeError(f"'{type(data).__name__}' type is unordered") else: data = com.maybe_iterable_to_list(data) if index is None: if not is_list_like(data): data = [data] index = ibase.default_index(len(data)) elif is_list_like(data): # a scalar numpy array is list-like but doesn't # have a proper length try: if len(index) != len(data): raise ValueError( f"Length of passed values is {len(data)}, " f"index implies {len(index)}." ) except TypeError: pass # create/copy the manager if isinstance(data, SingleBlockManager): if dtype is not None: data = data.astype(dtype=dtype, errors="ignore", copy=copy) elif copy: data = data.copy() else: data = sanitize_array(data, index, dtype, copy, raise_cast_failure=True) data = SingleBlockManager.from_array(data, index) generic.NDFrame.__init__(self, data) self.name = name self._set_axis(0, index, fastpath=True) def _init_dict(self, data, index=None, dtype=None): """ Derive the "_mgr" and "index" attributes of a new Series from a dictionary input. Parameters ---------- data : dict or dict-like Data used to populate the new Series. index : Index or index-like, default None Index for the new Series: if None, use dict keys. dtype : dtype, default None The dtype for the new Series: if None, infer from data. Returns ------- _data : BlockManager for the new Series index : index for the new Series """ # Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')] # raises KeyError), so we iterate the entire dict, and align if data: keys, values = zip(*data.items()) values = list(values) elif index is not None: # fastpath for Series(data=None). Just use broadcasting a scalar # instead of reindexing. values = na_value_for_dtype(dtype) keys = index else: keys, values = [], [] # Input is now list-like, so rely on "standard" construction: # TODO: passing np.float64 to not break anything yet. See GH-17261 s = create_series_with_explicit_dtype( values, index=keys, dtype=dtype, dtype_if_empty=np.float64 ) # Now we just make sure the order is respected, if any if data and index is not None: s = s.reindex(index, copy=False) return s._mgr, s.index # ---------------------------------------------------------------------- @property def _constructor(self) -> Type["Series"]: return Series @property def _constructor_expanddim(self) -> Type["DataFrame"]: from pandas.core.frame import DataFrame return DataFrame # types @property def _can_hold_na(self): return self._mgr._can_hold_na _index = None def _set_axis(self, axis: int, labels, fastpath: bool = False) -> None: """ Override generic, we want to set the _typ here. This is called from the cython code when we set the `index` attribute directly, e.g. `series.index = [1, 2, 3]`. """ if not fastpath: labels = ensure_index(labels) is_all_dates = labels.is_all_dates if is_all_dates: if not isinstance(labels, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): try: labels = DatetimeIndex(labels) # need to set here because we changed the index if fastpath: self._mgr.set_axis(axis, labels) except (tslibs.OutOfBoundsDatetime, ValueError): # labels may exceeds datetime bounds, # or not be a DatetimeIndex pass object.__setattr__(self, "_index", labels) if not fastpath: # The ensure_index call above ensures we have an Index object self._mgr.set_axis(axis, labels) # ndarray compatibility @property def dtype(self) -> DtypeObj: """ Return the dtype object of the underlying data. """ return self._mgr.dtype @property def dtypes(self) -> DtypeObj: """ Return the dtype object of the underlying data. """ # DataFrame compatibility return self.dtype @property def name(self) -> Label: """ Return the name of the Series. The name of a Series becomes its index or column name if it is used to form a DataFrame. It is also used whenever displaying the Series using the interpreter. Returns ------- label (hashable object) The name of the Series, also the column name if part of a DataFrame. See Also -------- Series.rename : Sets the Series name when given a scalar input. Index.name : Corresponding Index property. Examples -------- The Series name can be set initially when calling the constructor. >>> s = pd.Series([1, 2, 3], dtype=np.int64, name='Numbers') >>> s 0 1 1 2 2 3 Name: Numbers, dtype: int64 >>> s.name = "Integers" >>> s 0 1 1 2 2 3 Name: Integers, dtype: int64 The name of a Series within a DataFrame is its column name. >>> df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], ... columns=["Odd Numbers", "Even Numbers"]) >>> df Odd Numbers Even Numbers 0 1 2 1 3 4 2 5 6 >>> df["Even Numbers"].name 'Even Numbers' """ return self._name @name.setter def name(self, value: Label) -> None: if not is_hashable(value): raise TypeError("Series.name must be a hashable type") object.__setattr__(self, "_name", value) @property def values(self): """ Return Series as ndarray or ndarray-like depending on the dtype. .. warning:: We recommend using :attr:`Series.array` or :meth:`Series.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- numpy.ndarray or ndarray-like See Also -------- Series.array : Reference to the underlying data. Series.to_numpy : A NumPy array representing the underlying data. Examples -------- >>> pd.Series([1, 2, 3]).values array([1, 2, 3]) >>> pd.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object) >>> pd.Series(list('aabc')).astype('category').values [a, a, b, c] Categories (3, object): [a, b, c] Timezone aware datetime data is converted to UTC: >>> pd.Series(pd.date_range('20130101', periods=3, ... tz='US/Eastern')).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]') """ return self._mgr.external_values() @property def _values(self): """ Return the internal repr of this data (defined by Block.interval_values). This are the values as stored in the Block (ndarray or ExtensionArray depending on the Block class), with datetime64[ns] and timedelta64[ns] wrapped in ExtensionArrays to match Index._values behavior. Differs from the public ``.values`` for certain data types, because of historical backwards compatibility of the public attribute (e.g. period returns object ndarray and datetimetz a datetime64[ns] ndarray for ``.values`` while it returns an ExtensionArray for ``._values`` in those cases). Differs from ``.array`` in that this still returns the numpy array if the Block is backed by a numpy array (except for datetime64 and timedelta64 dtypes), while ``.array`` ensures to always return an ExtensionArray. Overview: dtype | values | _values | array | ----------- | ------------- | ------------- | ------------- | Numeric | ndarray | ndarray | PandasArray | Category | Categorical | Categorical | Categorical | dt64[ns] | ndarray[M8ns] | DatetimeArray | DatetimeArray | dt64[ns tz] | ndarray[M8ns] | DatetimeArray | DatetimeArray | td64[ns] | ndarray[m8ns] | TimedeltaArray| ndarray[m8ns] | Period | ndarray[obj] | PeriodArray | PeriodArray | Nullable | EA | EA | EA | """ return self._mgr.internal_values() @Appender(base.IndexOpsMixin.array.__doc__) # type: ignore @property def array(self) -> ExtensionArray: return self._mgr._block.array_values() # ops def ravel(self, order="C"): """ Return the flattened underlying data as an ndarray. Returns ------- numpy.ndarray or ndarray-like Flattened data of the Series. See Also -------- numpy.ndarray.ravel : Return a flattened array. """ return self._values.ravel(order=order) def __len__(self) -> int: """ Return the length of the Series. """ return len(self._mgr) def view(self, dtype=None) -> "Series": """ Create a new view of the Series. This function will return a new Series with a view of the same underlying values in memory, optionally reinterpreted with a new data type. The new data type must preserve the same size in bytes as to not cause index misalignment. Parameters ---------- dtype : data type Data type object or one of their string representations. Returns ------- Series A new Series object as a view of the same data in memory. See Also -------- numpy.ndarray.view : Equivalent numpy function to create a new view of the same data in memory. Notes ----- Series are instantiated with ``dtype=float64`` by default. While ``numpy.ndarray.view()`` will return a view with the same data type as the original array, ``Series.view()`` (without specified dtype) will try using ``float64`` and may fail if the original data type size in bytes is not the same. Examples -------- >>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8') >>> s 0 -2 1 -1 2 0 3 1 4 2 dtype: int8 The 8 bit signed integer representation of `-1` is `0b11111111`, but the same bytes represent 255 if read as an 8 bit unsigned integer: >>> us = s.view('uint8') >>> us 0 254 1 255 2 0 3 1 4 2 dtype: uint8 The views share the same underlying values: >>> us[0] = 128 >>> s 0 -128 1 -1 2 0 3 1 4 2 dtype: int8 """ return self._constructor( self._values.view(dtype), index=self.index ).__finalize__(self, method="view") # ---------------------------------------------------------------------- # NDArray Compat _HANDLED_TYPES = (Index, ExtensionArray, np.ndarray) def __array_ufunc__( self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any ): # TODO: handle DataFrame cls = type(self) # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # Determine if we should defer. no_defer = (np.ndarray.__array_ufunc__, cls.__array_ufunc__) for item in inputs: higher_priority = ( hasattr(item, "__array_priority__") and item.__array_priority__ > self.__array_priority__ ) has_array_ufunc = ( hasattr(item, "__array_ufunc__") and type(item).__array_ufunc__ not in no_defer and not isinstance(item, self._HANDLED_TYPES) ) if higher_priority or has_array_ufunc: return NotImplemented # align all the inputs. names = [getattr(x, "name") for x in inputs if hasattr(x, "name")] types = tuple(type(x) for x in inputs) # TODO: dataframe alignable = [x for x, t in zip(inputs, types) if issubclass(t, Series)] if len(alignable) > 1: # This triggers alignment. # At the moment, there aren't any ufuncs with more than two inputs # so this ends up just being x1.index | x2.index, but we write # it to handle *args. index = alignable[0].index for s in alignable[1:]: index |= s.index inputs = tuple( x.reindex(index) if issubclass(t, Series) else x for x, t in zip(inputs, types) ) else: index = self.index inputs = tuple(extract_array(x, extract_numpy=True) for x in inputs) result = getattr(ufunc, method)(*inputs, **kwargs) name = names[0] if len(set(names)) == 1 else None def construct_return(result): if lib.is_scalar(result): return result elif result.ndim > 1: # e.g. np.subtract.outer if method == "outer": # GH#27198 raise NotImplementedError return result return self._constructor(result, index=index, name=name, copy=False) if type(result) is tuple: # multiple return values return tuple(construct_return(x) for x in result) elif method == "at": # no return value return None else: return construct_return(result) def __array__(self, dtype=None) -> np.ndarray: """ Return the values as a NumPy array. Users should not call this directly. Rather, it is invoked by :func:`numpy.array` and :func:`numpy.asarray`. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to use for the resulting NumPy array. By default, the dtype is inferred from the data. Returns ------- numpy.ndarray The values in the series converted to a :class:`numpy.ndarray` with the specified `dtype`. See Also -------- array : Create a new array from data. Series.array : Zero-copy view to the array backing the Series. Series.to_numpy : Series method for similar behavior. Examples -------- >>> ser = pd.Series([1, 2, 3]) >>> np.asarray(ser) array([1, 2, 3]) For timezone-aware data, the timezones may be retained with ``dtype='object'`` >>> tzser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> np.asarray(tzser, dtype="object") array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or the values may be localized to UTC and the tzinfo discarded with ``dtype='datetime64[ns]'`` >>> np.asarray(tzser, dtype="datetime64[ns]") # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', ...], dtype='datetime64[ns]') """ return np.asarray(self.array, dtype) # ---------------------------------------------------------------------- # Unary Methods # coercion __float__ = _coerce_method(float) __long__ = _coerce_method(int) __int__ = _coerce_method(int) # ---------------------------------------------------------------------- # indexers @property def axes(self) -> List[Index]: """ Return a list of the row axis labels. """ return [self.index] # ---------------------------------------------------------------------- # Indexing Methods @Appender(generic.NDFrame.take.__doc__) def take(self, indices, axis=0, is_copy=None, **kwargs) -> "Series": if is_copy is not None: warnings.warn( "is_copy is deprecated and will be removed in a future version. " "'take' always returns a copy, so there is no need to specify this.", FutureWarning, stacklevel=2, ) nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) new_index = self.index.take(indices) new_values = self._values.take(indices) result = self._constructor(new_values, index=new_index, fastpath=True) return result.__finalize__(self, method="take") def _take_with_is_copy(self, indices, axis=0): """ Internal version of the `take` method that sets the `_is_copy` attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning). For Series this does the same as the public take (it never sets `_is_copy`). See the docstring of `take` for full explanation of the parameters. """ return self.take(indices=indices, axis=axis) def _ixs(self, i: int, axis: int = 0): """ Return the i-th value or values in the Series by location. Parameters ---------- i : int Returns ------- scalar (int) or Series (slice, sequence) """ return self._values[i] def _slice(self, slobj: slice, axis: int = 0) -> "Series": # axis kwarg is retained for compat with NDFrame method # _slice is *always* positional return self._get_values(slobj) def __getitem__(self, key): key = com.apply_if_callable(key, self) if key is Ellipsis: return self key_is_scalar = is_scalar(key) if isinstance(key, (list, tuple)): key = unpack_1tuple(key) if is_integer(key) and self.index._should_fallback_to_positional(): return self._values[key] elif key_is_scalar: return self._get_value(key) if ( isinstance(key, tuple) and is_hashable(key) and isinstance(self.index, MultiIndex) ): # Otherwise index.get_value will raise InvalidIndexError try: result = self._get_value(key) return result except KeyError: # We still have the corner case where this tuple is a key # in the first level of our MultiIndex return self._get_values_tuple(key) if is_iterator(key): key = list(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) key = np.asarray(key, dtype=bool) return self._get_values(key) return self._get_with(key) def _get_with(self, key): # other: fancy integer or otherwise if isinstance(key, slice): # _convert_slice_indexer to determin if this slice is positional # or label based, and if the latter, convert to positional slobj = self.index._convert_slice_indexer(key, kind="getitem") return self._slice(slobj) elif isinstance(key, ABCDataFrame): raise TypeError( "Indexing a Series with DataFrame is not " "supported, use the appropriate DataFrame column" ) elif isinstance(key, tuple): return self._get_values_tuple(key) elif not is_list_like(key): # e.g. scalars that aren't recognized by lib.is_scalar, GH#32684 return self.loc[key] if not isinstance(key, (list, np.ndarray, ExtensionArray, Series, Index)): key = list(key) if isinstance(key, Index): key_type = key.inferred_type else: key_type = lib.infer_dtype(key, skipna=False) # Note: The key_type == "boolean" case should be caught by the # com.is_bool_indexer check in __getitem__ if key_type == "integer": # We need to decide whether to treat this as a positional indexer # (i.e. self.iloc) or label-based (i.e. self.loc) if not self.index._should_fallback_to_positional(): return self.loc[key] else: return self.iloc[key] if isinstance(key, list): # handle the dup indexing case GH#4246 return self.loc[key] return self.reindex(key) def _get_values_tuple(self, key): # mpl hackaround if com.any_none(*key): # suppress warning from slicing the index with a 2d indexer. # eventually we'll want Series itself to warn. with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "Support for multi-dim", DeprecationWarning ) return self._get_values(key) if not isinstance(self.index, MultiIndex): raise ValueError("Can only tuple-index with a MultiIndex") # If key is contained, would have returned by now indexer, new_index = self.index.get_loc_level(key) return self._constructor(self._values[indexer], index=new_index).__finalize__( self, ) def _get_values(self, indexer): try: return self._constructor(self._mgr.get_slice(indexer)).__finalize__(self,) except ValueError: # mpl compat if we look up e.g. ser[:, np.newaxis]; # see tests.series.timeseries.test_mpl_compat_hack return self._values[indexer] def _get_value(self, label, takeable: bool = False): """ Quickly retrieve single value at passed index label. Parameters ---------- label : object takeable : interpret the index as indexers, default False Returns ------- scalar value """ if takeable: return self._values[label] # Similar to Index.get_value, but we do not fall back to positional loc = self.index.get_loc(label) return self.index._get_values_for_loc(self, loc, label) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) cacher_needs_updating = self._check_is_chained_assignment_possible() if key is Ellipsis: key = slice(None) try: self._set_with_engine(key, value) except (KeyError, ValueError): values = self._values if is_integer(key) and not self.index.inferred_type == "integer": # positional setter values[key] = value else: # GH#12862 adding an new key to the Series self.loc[key] = value except TypeError as e: if isinstance(key, tuple) and not isinstance(self.index, MultiIndex): raise ValueError("Can only tuple-index with a MultiIndex") from e if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) key = np.asarray(key, dtype=bool) try: self._where(~key, value, inplace=True) except InvalidIndexError: self.iloc[key] = value return else: self._set_with(key, value) if cacher_needs_updating: self._maybe_update_cacher() def _set_with_engine(self, key, value): # fails with AttributeError for IntervalIndex loc = self.index._engine.get_loc(key) validate_numeric_casting(self.dtype, value) self._values[loc] = value def _set_with(self, key, value): # other: fancy integer or otherwise if isinstance(key, slice): # extract_array so that if we set e.g. ser[-5:] = ser[:5] # we get the first five values, and not 5 NaNs indexer = self.index._convert_slice_indexer(key, kind="getitem") self.iloc[indexer] = extract_array(value, extract_numpy=True) else: assert not isinstance(key, tuple) if is_scalar(key): key = [key] if isinstance(key, Index): key_type = key.inferred_type key = key._values else: key_type = lib.infer_dtype(key, skipna=False) # Note: key_type == "boolean" should not occur because that # should be caught by the is_bool_indexer check in __setitem__ if key_type == "integer": if not self.index._should_fallback_to_positional(): self.loc[key] = value else: self.iloc[key] = value else: self.loc[key] = value def _set_value(self, label, value, takeable: bool = False): """ Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index. Parameters ---------- label : object Partial indexing with MultiIndex not allowed. value : object Scalar value. takeable : interpret the index as indexers, default False """ try: if takeable: self._values[label] = value else: loc = self.index.get_loc(label) validate_numeric_casting(self.dtype, value) self._values[loc] = value except KeyError: # set using a non-recursive method self.loc[label] = value # ---------------------------------------------------------------------- # Unsorted @property def _is_mixed_type(self): return False def repeat(self, repeats, axis=None) -> "Series": """ Repeat elements of a Series. Returns a new Series where each element of the current Series is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty Series. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- Series Newly created Series with repeated elements. See Also -------- Index.repeat : Equivalent function for Index. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object >>> s.repeat(2) 0 a 0 a 1 b 1 b 2 c 2 c dtype: object >>> s.repeat([1, 2, 3]) 0 a 1 b 1 b 2 c 2 c 2 c dtype: object """ nv.validate_repeat(tuple(), dict(axis=axis)) new_index = self.index.repeat(repeats) new_values = self._values.repeat(repeats) return self._constructor(new_values, index=new_index).__finalize__( self, method="repeat" ) def reset_index(self, level=None, drop=False, name=None, inplace=False): """ Generate a new DataFrame or Series with the index reset. This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation. Parameters ---------- level : int, str, tuple, or list, default optional For a Series with a MultiIndex, only remove the specified levels from the index. Removes all levels by default. drop : bool, default False Just reset the index, without inserting it as a column in the new DataFrame. name : object, optional The name to use for the column containing the original Series values. Uses ``self.name`` by default. This argument is ignored when `drop` is True. inplace : bool, default False Modify the Series in place (do not create a new object). Returns ------- Series or DataFrame When `drop` is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When `drop` is True, a `Series` is returned. In either case, if ``inplace=True``, no value is returned. See Also -------- DataFrame.reset_index: Analogous function for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4], name='foo', ... index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) Generate a DataFrame with default index. >>> s.reset_index() idx foo 0 a 1 1 b 2 2 c 3 3 d 4 To specify the name of the new column use `name`. >>> s.reset_index(name='values') idx values 0 a 1 1 b 2 2 c 3 3 d 4 To generate a new Series with the default set `drop` to True. >>> s.reset_index(drop=True) 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 To update the Series in place, without generating a new one set `inplace` to True. Note that it also requires ``drop=True``. >>> s.reset_index(inplace=True, drop=True) >>> s 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 The `level` parameter is interesting for Series with a multi-level index. >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']), ... np.array(['one', 'two', 'one', 'two'])] >>> s2 = pd.Series( ... range(4), name='foo', ... index=pd.MultiIndex.from_arrays(arrays, ... names=['a', 'b'])) To remove a specific level from the Index, use `level`. >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3 If `level` is not set, all levels are removed from the Index. >>> s2.reset_index() a b foo 0 bar one 0 1 bar two 1 2 baz one 2 3 baz two 3 """ inplace = validate_bool_kwarg(inplace, "inplace") if drop: new_index = ibase.default_index(len(self)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if inplace: self.index = new_index # set name if it was passed, otherwise, keep the previous name self.name = name or self.name else: return self._constructor( self._values.copy(), index=new_index ).__finalize__(self, method="reset_index") elif inplace: raise TypeError( "Cannot reset_index inplace on a Series to create a DataFrame" ) else: df = self.to_frame(name) return df.reset_index(level=level, drop=drop) # ---------------------------------------------------------------------- # Rendering Methods def __repr__(self) -> str: """ Return a string representation for a particular Series. """ buf = StringIO("") width, height = get_terminal_size() max_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.max_rows") ) min_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.min_rows") ) show_dimensions = get_option("display.show_dimensions") self.to_string( buf=buf, name=self.name, dtype=self.dtype, min_rows=min_rows, max_rows=max_rows, length=show_dimensions, ) result = buf.getvalue() return result def to_string( self, buf=None, na_rep="NaN", float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None, min_rows=None, ): """ Render a string representation of the Series. Parameters ---------- buf : StringIO-like, optional Buffer to write to. na_rep : str, optional String representation of NaN to use, default 'NaN'. float_format : one-parameter function, optional Formatter function to apply to columns' elements if they are floats, default None. header : bool, default True Add the Series header (index name). index : bool, optional Add index (row) labels, default True. length : bool, default False Add the Series length. dtype : bool, default False Add the Series dtype. name : bool, default False Add the Series name if not None. max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. min_rows : int, optional The number of rows to display in a truncated repr (when number of rows is above `max_rows`). Returns ------- str or None String representation of Series if ``buf=None``, otherwise None. """ formatter = fmt.SeriesFormatter( self, name=name, length=length, header=header, index=index, dtype=dtype, na_rep=na_rep, float_format=float_format, min_rows=min_rows, max_rows=max_rows, ) result = formatter.to_string() # catch contract violations if not isinstance(result, str): raise AssertionError( "result must be of type str, type " f"of result is {repr(type(result).__name__)}" ) if buf is None: return result else: try: buf.write(result) except AttributeError: with open(buf, "w") as f: f.write(result) @Appender( """ Examples -------- >>> s = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") >>> print(s.to_markdown()) | | animal | |---:|:---------| | 0 | elk | | 1 | pig | | 2 | dog | | 3 | quetzal | """ ) @Substitution(klass="Series") @Appender(generic._shared_docs["to_markdown"]) def to_markdown( self, buf: Optional[IO[str]] = None, mode: Optional[str] = None, **kwargs ) -> Optional[str]: return self.to_frame().to_markdown(buf, mode, **kwargs) # ---------------------------------------------------------------------- def items(self) -> Iterable[Tuple[Label, Any]]: """ Lazily iterate over (index, value) tuples. This method returns an iterable tuple (index, value). This is convenient if you want to create a lazy iterator. Returns ------- iterable Iterable of tuples containing the (index, value) pairs from a Series. See Also -------- DataFrame.items : Iterate over (column name, Series) pairs. DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. Examples -------- >>> s = pd.Series(['A', 'B', 'C']) >>> for index, value in s.items(): ... print(f"Index : {index}, Value : {value}") Index : 0, Value : A Index : 1, Value : B Index : 2, Value : C """ return zip(iter(self.index), iter(self)) @Appender(items.__doc__) def iteritems(self) -> Iterable[Tuple[Label, Any]]: return self.items() # ---------------------------------------------------------------------- # Misc public methods def keys(self) -> Index: """ Return alias for index. Returns ------- Index Index of the Series. """ return self.index def to_dict(self, into=dict): """ Convert Series to {label -> value} dict or dict-like object. Parameters ---------- into : class, default dict The collections.abc.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- collections.abc.Mapping Key-value representation of Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_dict() {0: 1, 1: 2, 2: 3, 3: 4} >>> from collections import OrderedDict, defaultdict >>> s.to_dict(OrderedDict) OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)]) >>> dd = defaultdict(list) >>> s.to_dict(dd) defaultdict(<class 'list'>, {0: 1, 1: 2, 2: 3, 3: 4}) """ # GH16122 into_c = com.standardize_mapping(into) return into_c(self.items()) def to_frame(self, name=None) -> "DataFrame": """ Convert Series to DataFrame. Parameters ---------- name : object, default None The passed name should substitute for the series name (if it has one). Returns ------- DataFrame DataFrame representation of Series. Examples -------- >>> s = pd.Series(["a", "b", "c"], ... name="vals") >>> s.to_frame() vals 0 a 1 b 2 c """ if name is None: df = self._constructor_expanddim(self) else: df = self._constructor_expanddim({name: self}) return df def _set_name(self, name, inplace=False) -> "Series": """ Set the Series name. Parameters ---------- name : str inplace : bool Whether to modify `self` directly or return a copy. """ inplace = validate_bool_kwarg(inplace, "inplace") ser = self if inplace else self.copy() ser.name = name return ser @Appender( """ Examples -------- >>> ser = pd.Series([390., 350., 30., 20.], ... index=['Falcon', 'Falcon', 'Parrot', 'Parrot'], name="Max Speed") >>> ser Falcon 390.0 Falcon 350.0 Parrot 30.0 Parrot 20.0 Name: Max Speed, dtype: float64 >>> ser.groupby(["a", "b", "a", "b"]).mean() a 210.0 b 185.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level=0).mean() Falcon 370.0 Parrot 25.0 Name: Max Speed, dtype: float64 >>> ser.groupby(ser > 100).mean() Max Speed False 25.0 True 370.0 Name: Max Speed, dtype: float64 **Grouping by Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> ser = pd.Series([390., 350., 30., 20.], index=index, name="Max Speed") >>> ser Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level=0).mean() Animal Falcon 370.0 Parrot 25.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level="Type").mean() Type Captive 210.0 Wild 185.0 Name: Max Speed, dtype: float64 """ ) @Appender(generic._shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, ) -> "SeriesGroupBy": from pandas.core.groupby.generic import SeriesGroupBy if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return SeriesGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, ) # ---------------------------------------------------------------------- # Statistics, overridden ndarray methods # TODO: integrate bottleneck def count(self, level=None): """ Return number of non-NA/null observations in the Series. Parameters ---------- level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series. Returns ------- int or Series (if level specified) Number of non-null values in the Series. See Also -------- DataFrame.count : Count non-NA cells for each column or row. Examples -------- >>> s = pd.Series([0.0, 1.0, np.nan]) >>> s.count() 2 """ if level is None: return notna(self.array).sum() if isinstance(level, str): level = self.index._get_level_number(level) lev = self.index.levels[level] level_codes = np.array(self.index.codes[level], subok=False, copy=True) mask = level_codes == -1 if mask.any(): level_codes[mask] = cnt = len(lev) lev = lev.insert(cnt, lev._na_value) obs = level_codes[notna(self._values)] out = np.bincount(obs, minlength=len(lev) or None) return self._constructor(out, index=lev, dtype="int64").__finalize__( self, method="count" ) def mode(self, dropna=True) -> "Series": """ Return the mode(s) of the dataset. Always returns Series even if only one value is returned. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- Series Modes of the Series in sorted order. """ # TODO: Add option for bins like value_counts() return algorithms.mode(self, dropna=dropna) def unique(self): """ Return unique values of Series object. Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort. Returns ------- ndarray or ExtensionArray The unique values returned as a NumPy array. See Notes. See Also -------- unique : Top-level unique method for any 1-d array-like object. Index.unique : Return Index with unique values from an Index object. Notes ----- Returns the unique values as a NumPy array. In case of an extension-array backed Series, a new :class:`~api.extensions.ExtensionArray` of that type with just the unique values is returned. This includes * Categorical * Period * Datetime with Timezone * Interval * Sparse * IntegerNA See Examples section. Examples -------- >>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3]) >>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] An unordered Categorical will return categories in the order of appearance. >>> pd.Series(pd.Categorical(list('baabc'))).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() [b, a, c] Categories (3, object): [a < b < c] """ result = super().unique() return result def drop_duplicates(self, keep="first", inplace=False) -> Optional["Series"]: """ Return Series with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' Method to handle dropping duplicates: - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : bool, default ``False`` If ``True``, performs operation inplace and returns None. Returns ------- Series Series with duplicates dropped. See Also -------- Index.drop_duplicates : Equivalent method on Index. DataFrame.drop_duplicates : Equivalent method on DataFrame. Series.duplicated : Related method on Series, indicating duplicate Series values. Examples -------- Generate a Series with duplicated entries. >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the 'keep' parameter, the selection behaviour of duplicated values can be changed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value 'last' for parameter 'keep' keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value ``False`` for parameter 'keep' discards all sets of duplicated entries. Setting the value of 'inplace' to ``True`` performs the operation inplace and returns ``None``. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") result = super().drop_duplicates(keep=keep) if inplace: self._update_inplace(result) return None else: return result def duplicated(self, keep="first") -> "Series": """ Indicate duplicate Series values. Duplicated values are indicated as ``True`` values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' Method to handle dropping duplicates: - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- Series Series indicating whether each value has occurred in the preceding values. See Also -------- Index.duplicated : Equivalent method on pandas.Index. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Series.drop_duplicates : Remove duplicate values from Series. Examples -------- By default, for each set of duplicated values, the first occurrence is set on False and all others on True: >>> animals = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> animals.duplicated() 0 False 1 False 2 True 3 False 4 True dtype: bool which is equivalent to >>> animals.duplicated(keep='first') 0 False 1 False 2 True 3 False 4 True dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> animals.duplicated(keep='last') 0 True 1 False 2 True 3 False 4 False dtype: bool By setting keep on ``False``, all duplicates are True: >>> animals.duplicated(keep=False) 0 True 1 False 2 True 3 False 4 True dtype: bool """ return super().duplicated(keep=keep) def idxmin(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the minimum value. If multiple values equal the minimum, the first row label with that value is returned. Parameters ---------- axis : int, default 0 For compatibility with DataFrame.idxmin. Redundant for application on Series. skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the minimum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmin : Return indices of the minimum values along the given axis. DataFrame.idxmin : Return index of first occurrence of minimum over requested axis. Series.idxmax : Return index *label* of the first occurrence of maximum of values. Notes ----- This method is the Series version of ``ndarray.argmin``. This method returns the label of the minimum, while ``ndarray.argmin`` returns the position. To get the position, use ``series.values.argmin()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 1], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 1.0 dtype: float64 >>> s.idxmin() 'A' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmin(skipna=False) nan """ skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs) i = nanops.nanargmin(self._values, skipna=skipna) if i == -1: return np.nan return self.index[i] def idxmax(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the maximum value. If multiple values equal the maximum, the first row label with that value is returned. Parameters ---------- axis : int, default 0 For compatibility with DataFrame.idxmax. Redundant for application on Series. skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the maximum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmax : Return indices of the maximum values along the given axis. DataFrame.idxmax : Return index of first occurrence of maximum over requested axis. Series.idxmin : Return index *label* of the first occurrence of minimum of values. Notes ----- This method is the Series version of ``ndarray.argmax``. This method returns the label of the maximum, while ``ndarray.argmax`` returns the position. To get the position, use ``series.values.argmax()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64 >>> s.idxmax() 'C' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmax(skipna=False) nan """ skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs) i = nanops.nanargmax(self._values, skipna=skipna) if i == -1: return np.nan return self.index[i] def round(self, decimals=0, *args, **kwargs) -> "Series": """ Round each value in a Series to the given number of decimals. Parameters ---------- decimals : int, default 0 Number of decimal places to round to. If decimals is negative, it specifies the number of positions to the left of the decimal point. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Series Rounded values of the Series. See Also -------- numpy.around : Round values of an np.array. DataFrame.round : Round values of a DataFrame. Examples -------- >>> s = pd.Series([0.1, 1.3, 2.7]) >>> s.round() 0 0.0 1 1.0 2 3.0 dtype: float64 """ nv.validate_round(args, kwargs) result = self._values.round(decimals) result = self._constructor(result, index=self.index).__finalize__( self, method="round" ) return result def quantile(self, q=0.5, interpolation="linear"): """ Return value at the given quantile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) The quantile(s) to compute, which can lie in range: 0 <= q <= 1. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- float or Series If ``q`` is an array, a Series will be returned where the index is ``q`` and the values are the quantiles, otherwise a float will be returned. See Also -------- core.window.Rolling.quantile : Calculate the rolling quantile. numpy.percentile : Returns the q-th percentile(s) of the array elements. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 """ validate_percentile(q) # We dispatch to DataFrame so that core.internals only has to worry # about 2D cases. df = self.to_frame() result = df.quantile(q=q, interpolation=interpolation, numeric_only=False) if result.ndim == 2: result = result.iloc[:, 0] if is_list_like(q): result.name = self.name return self._constructor(result, index=Float64Index(q), name=self.name) else: # scalar return result.iloc[0] def corr(self, other, method="pearson", min_periods=None) -> float: """ Compute correlation with `other` Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the correlation. method : {'pearson', 'kendall', 'spearman'} or callable Method used to compute correlation: - pearson : Standard correlation coefficient - kendall : Kendall Tau correlation coefficient - spearman : Spearman rank correlation - callable: Callable with input two 1d ndarrays and returning a float. .. versionadded:: 0.24.0 Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Correlation with other. See Also -------- DataFrame.corr : Compute pairwise correlation between columns. DataFrame.corrwith : Compute pairwise correlation with another DataFrame or Series. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> s1 = pd.Series([.2, .0, .6, .2]) >>> s2 = pd.Series([.3, .6, .0, .1]) >>> s1.corr(s2, method=histogram_intersection) 0.3 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan if method in ["pearson", "spearman", "kendall"] or callable(method): return nanops.nancorr( this.values, other.values, method=method, min_periods=min_periods ) raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) def cov(self, other, min_periods=None) -> float: """ Compute covariance with Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the covariance. min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Covariance between Series and other normalized by N-1 (unbiased estimator). See Also -------- DataFrame.cov : Compute pairwise covariance of columns. Examples -------- >>> s1 = pd.Series([0.90010907, 0.13484424, 0.62036035]) >>> s2 = pd.Series([0.12528585, 0.26962463, 0.51111198]) >>> s1.cov(s2) -0.01685762652715874 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan return nanops.nancov(this.values, other.values, min_periods=min_periods) def diff(self, periods: int = 1) -> "Series": """ First discrete difference of element. Calculates the difference of a Series element compared with another element in the Series (default is element in previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. Returns ------- Series First differences of the Series. See Also -------- Series.pct_change: Percent change over given number of periods. Series.shift: Shift index by desired number of periods with an optional time freq. DataFrame.diff: First discrete difference of object. Notes ----- For boolean dtypes, this uses :meth:`operator.xor` rather than :meth:`operator.sub`. Examples -------- Difference with previous row >>> s = pd.Series([1, 1, 2, 3, 5, 8]) >>> s.diff() 0 NaN 1 0.0 2 1.0 3 1.0 4 2.0 5 3.0 dtype: float64 Difference with 3rd previous row >>> s.diff(periods=3) 0 NaN 1 NaN 2 NaN 3 2.0 4 4.0 5 6.0 dtype: float64 Difference with following row >>> s.diff(periods=-1) 0 0.0 1 -1.0 2 -1.0 3 -2.0 4 -3.0 5 NaN dtype: float64 """ result = algorithms.diff(self.array, periods) return self._constructor(result, index=self.index).__finalize__( self, method="diff" ) def autocorr(self, lag=1) -> float: """ Compute the lag-N autocorrelation. This method computes the Pearson correlation between the Series and its shifted self. Parameters ---------- lag : int, default 1 Number of lags to apply before performing autocorrelation. Returns ------- float The Pearson correlation between self and self.shift(lag). See Also -------- Series.corr : Compute the correlation between two Series. Series.shift : Shift index by desired number of periods. DataFrame.corr : Compute pairwise correlation of columns. DataFrame.corrwith : Compute pairwise correlation between rows or columns of two DataFrame objects. Notes ----- If the Pearson correlation is not well defined return 'NaN'. Examples -------- >>> s = pd.Series([0.25, 0.5, 0.2, -0.05]) >>> s.autocorr() # doctest: +ELLIPSIS 0.10355... >>> s.autocorr(lag=2) # doctest: +ELLIPSIS -0.99999... If the Pearson correlation is not well defined, then 'NaN' is returned. >>> s = pd.Series([1, 0, 0, 0]) >>> s.autocorr() nan """ return self.corr(self.shift(lag)) def dot(self, other): """ Compute the dot product between the Series and the columns of other. This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array. It can also be called using `self @ other` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the dot product with its columns. Returns ------- scalar, Series or numpy.ndarray Return the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array. See Also -------- DataFrame.dot: Compute the matrix product with the DataFrame. Series.mul: Multiplication of series and other, element-wise. Notes ----- The Series and other has to share the same index if other is a Series or a DataFrame. Examples -------- >>> s = pd.Series([0, 1, 2, 3]) >>> other = pd.Series([-1, 2, -3, 4]) >>> s.dot(other) 8 >>> s @ other 8 >>> df = pd.DataFrame([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(df) 0 24 1 14 dtype: int64 >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(arr) array([24, 14]) """ if isinstance(other, (Series, ABCDataFrame)): common = self.index.union(other.index) if len(common) > len(self.index) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(index=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: lvals = self.values rvals = np.asarray(other) if lvals.shape[0] != rvals.shape[0]: raise Exception( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, ABCDataFrame): return self._constructor( np.dot(lvals, rvals), index=other.columns ).__finalize__(self, method="dot") elif isinstance(other, Series): return np.dot(lvals, rvals) elif isinstance(rvals, np.ndarray): return np.dot(lvals, rvals) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(np.transpose(other)) @doc(base.IndexOpsMixin.searchsorted, klass="Series") def searchsorted(self, value, side="left", sorter=None): return algorithms.searchsorted(self._values, value, side=side, sorter=sorter) # ------------------------------------------------------------------- # Combination def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, do not use the index labels. verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """ from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] to_concat.extend(to_append) else: to_concat = [self, to_append] if any(isinstance(x, (ABCDataFrame,)) for x in to_concat[1:]): msg = ( f"to_append should be a Series or list/tuple of Series, " f"got DataFrame" ) raise TypeError(msg) return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity ) def _binop(self, other, func, level=None, fill_value=None): """ Perform generic binary operation with optional fill value. Parameters ---------- other : Series func : binary operator fill_value : float or object Value to substitute for NA/null values. If both Series are NA in a location, the result will be NA regardless of the passed fill value. level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level. Returns ------- Series """ if not isinstance(other, Series): raise AssertionError("Other operand must be Series") this = self if not self.index.equals(other.index): this, other = self.align(other, level=level, join="outer", copy=False) this_vals, other_vals = ops.fill_binop(this.values, other.values, fill_value) with np.errstate(all="ignore"): result = func(this_vals, other_vals) name = ops.get_op_result_name(self, other) ret = this._construct_result(result, name) return ret def _construct_result( self, result: Union[ArrayLike, Tuple[ArrayLike, ArrayLike]], name: Label ) -> Union["Series", Tuple["Series", "Series"]]: """ Construct an appropriately-labelled Series from the result of an op. Parameters ---------- result : ndarray or ExtensionArray name : Label Returns ------- Series In the case of __divmod__ or __rdivmod__, a 2-tuple of Series. """ if isinstance(result, tuple): # produced by divmod or rdivmod res1 = self._construct_result(result[0], name=name) res2 = self._construct_result(result[1], name=name) # GH#33427 assertions to keep mypy happy assert isinstance(res1, Series) assert isinstance(res2, Series) return (res1, res2) # We do not pass dtype to ensure that the Series constructor # does inference in the case where `result` has object-dtype. out = self._constructor(result, index=self.index) out = out.__finalize__(self) # Set the result's name after __finalize__ is called because __finalize__ # would set it back to self.name out.name = name return out def combine(self, other, func, fill_value=None) -> "Series": """ Combine the Series with a Series or scalar according to `func`. Combine the Series and `other` using `func` to perform elementwise selection for combined Series. `fill_value` is assumed when value is missing at some index from one of the two objects being combined. Parameters ---------- other : Series or scalar The value(s) to be combined with the `Series`. func : function Function that takes two scalars as inputs and returns an element. fill_value : scalar, optional The value to assume when an index is missing from one Series or the other. The default specifies to use the appropriate NaN value for the underlying dtype of the Series. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine_first : Combine Series values, choosing the calling Series' values first. Examples -------- Consider 2 Datasets ``s1`` and ``s2`` containing highest clocked speeds of different birds. >>> s1 = pd.Series({'falcon': 330.0, 'eagle': 160.0}) >>> s1 falcon 330.0 eagle 160.0 dtype: float64 >>> s2 = pd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0}) >>> s2 falcon 345.0 eagle 200.0 duck 30.0 dtype: float64 Now, to combine the two datasets and view the highest speeds of the birds across the two datasets >>> s1.combine(s2, max) duck NaN eagle 200.0 falcon 345.0 dtype: float64 In the previous example, the resulting value for duck is missing, because the maximum of a NaN and a float is a NaN. So, in the example, we set ``fill_value=0``, so the maximum value returned will be the value from some dataset. >>> s1.combine(s2, max, fill_value=0) duck 30.0 eagle 200.0 falcon 345.0 dtype: float64 """ if fill_value is None: fill_value = na_value_for_dtype(self.dtype, compat=False) if isinstance(other, Series): # If other is a Series, result is based on union of Series, # so do this element by element new_index = self.index.union(other.index) new_name = ops.get_op_result_name(self, other) new_values = [] for idx in new_index: lv = self.get(idx, fill_value) rv = other.get(idx, fill_value) with np.errstate(all="ignore"): new_values.append(func(lv, rv)) else: # Assume that other is a scalar, so apply the function for # each element in the Series new_index = self.index with np.errstate(all="ignore"): new_values = [func(lv, other) for lv in self._values] new_name = self.name if is_categorical_dtype(self.dtype): pass elif is_extension_array_dtype(self.dtype): # TODO: can we do this for only SparseDtype? # The function can return something of any type, so check # if the type is compatible with the calling EA. new_values = maybe_cast_to_extension_array(type(self._values), new_values) return self._constructor(new_values, index=new_index, name=new_name) def combine_first(self, other) -> "Series": """ Combine Series values, choosing the calling Series's values first. Parameters ---------- other : Series The value(s) to be combined with the `Series`. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine : Perform elementwise operation on two Series using a given function. Notes ----- Result index will be the union of the two indexes. Examples -------- >>> s1 = pd.Series([1, np.nan]) >>> s2 = pd.Series([3, 4]) >>> s1.combine_first(s2) 0 1.0 1 4.0 dtype: float64 """ new_index = self.index.union(other.index) this = self.reindex(new_index, copy=False) other = other.reindex(new_index, copy=False) if this.dtype.kind == "M" and other.dtype.kind != "M": other = to_datetime(other) return this.where(notna(this), other) def update(self, other) -> None: """ Modify Series in place using non-NA values from passed Series. Aligns on index. Parameters ---------- other : Series Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = pd.Series(['a', 'b', 'c']) >>> s.update(pd.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If ``other`` contains NaNs the corresponding values are not updated in the original Series. >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, np.nan, 6])) >>> s 0 4 1 2 2 6 dtype: int64 """ other = other.reindex_like(self) mask = notna(other) self._mgr = self._mgr.putmask(mask=mask, new=other) self._maybe_update_cacher() # ---------------------------------------------------------------------- # Reindexing, sorting def sort_values( self, axis=0, ascending=True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", ignore_index: bool = False, ): """ Sort by the values. Sort a Series in ascending or descending order by some criterion. Parameters ---------- axis : {0 or 'index'}, default 0 Axis to direct sorting. The value 'index' is accepted for compatibility with DataFrame.sort_values. ascending : bool, default True If True, sort values in ascending order, otherwise descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. na_position : {'first' or 'last'}, default 'last' Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- Series Series ordered by values. See Also -------- Series.sort_index : Sort by the Series indices. DataFrame.sort_values : Sort DataFrame by the values along either axis. DataFrame.sort_index : Sort DataFrame by indices. Examples -------- >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 Sort values ascending order (default behaviour) >>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64 Sort values descending order >>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values inplace >>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values putting NAs first >>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64 Sort a series of strings >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object >>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) # GH 5856/5853 if inplace and self._is_cached: raise ValueError( "This Series is a view of some other array, to " "sort in-place you must create a copy" ) def _try_kind_sort(arr): # easier to ask forgiveness than permission try: # if kind==mergesort, it can fail for object dtype return arr.argsort(kind=kind) except TypeError: # stable sort not available for object dtype # uses the argsort default quicksort return arr.argsort(kind="quicksort") arr = self._values sorted_index = np.empty(len(self), dtype=np.int32) bad = isna(arr) good = ~bad idx = ibase.default_index(len(self)) argsorted = _try_kind_sort(arr[good]) if is_list_like(ascending): if len(ascending) != 1: raise ValueError( f"Length of ascending ({len(ascending)}) must be 1 for Series" ) ascending = ascending[0] if not is_bool(ascending): raise ValueError("ascending must be boolean") if not ascending: argsorted = argsorted[::-1] if na_position == "last": n = good.sum() sorted_index[:n] = idx[good][argsorted] sorted_index[n:] = idx[bad] elif na_position == "first": n = bad.sum() sorted_index[n:] = idx[good][argsorted] sorted_index[:n] = idx[bad] else: raise ValueError(f"invalid na_position: {na_position}") result = self._constructor(arr[sorted_index], index=self.index[sorted_index]) if ignore_index: result.index = ibase.default_index(len(sorted_index)) if inplace: self._update_inplace(result) else: return result.__finalize__(self, method="sort_values") def sort_index( self, axis=0, level=None, ascending: bool = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, ): """ Sort Series by index labels. Returns a new Series sorted by label if `inplace` argument is ``False``, otherwise updates the original series and returns None. Parameters ---------- axis : int, default 0 Axis to direct sorting. This can only be 0 for Series. level : int, optional If not None, sort on values in specified index level(s). ascending : bool or list of bools, default True Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- Series The original Series sorted by the labels. See Also -------- DataFrame.sort_index: Sort DataFrame by the index. DataFrame.sort_values: Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4]) >>> s.sort_index() 1 c 2 b 3 a 4 d dtype: object Sort Descending >>> s.sort_index(ascending=False) 4 d 3 a 2 b 1 c dtype: object Sort Inplace >>> s.sort_index(inplace=True) >>> s 1 c 2 b 3 a 4 d dtype: object By default NaNs are put at the end, but use `na_position` to place them at the beginning >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan]) >>> s.sort_index(na_position='first') NaN d 1.0 c 2.0 b 3.0 a dtype: object Specify index level to sort >>> arrays = [np.array(['qux', 'qux', 'foo', 'foo', ... 'baz', 'baz', 'bar', 'bar']), ... np.array(['two', 'one', 'two', 'one', ... 'two', 'one', 'two', 'one'])] >>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays) >>> s.sort_index(level=1) bar one 8 baz one 6 foo one 4 qux one 2 bar two 7 baz two 5 foo two 3 qux two 1 dtype: int64 Does not sort by remaining levels when sorting by levels >>> s.sort_index(level=1, sort_remaining=False) qux one 2 foo one 4 baz one 6 bar one 8 qux two 1 foo two 3 baz two 5 bar two 7 dtype: int64 """ # TODO: this can be combined with DataFrame.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) index = self.index if level is not None: new_index, indexer = index.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(index, MultiIndex): from pandas.core.sorting import lexsort_indexer labels = index._sort_levels_monotonic() indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and index.is_monotonic_increasing) or ( not ascending and index.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( index, kind=kind, ascending=ascending, na_position=na_position ) indexer = ensure_platform_int(indexer) new_index = index.take(indexer) new_index = new_index._sort_levels_monotonic() new_values = self._values.take(indexer) result = self._constructor(new_values, index=new_index) if ignore_index: result.index = ibase.default_index(len(result)) if inplace: self._update_inplace(result) else: return result.__finalize__(self, method="sort_index") def argsort(self, axis=0, kind="quicksort", order=None) -> "Series": """ Override ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values. Parameters ---------- axis : {0 or "index"} Has no effect but is accepted for compatibility with numpy. kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See np.sort for more information. 'mergesort' is the only stable algorithm. order : None Has no effect but is accepted for compatibility with numpy. Returns ------- Series Positions of values within the sort order with -1 indicating nan values. See Also -------- numpy.ndarray.argsort : Returns the indices that would sort this array. """ values = self._values mask = isna(values) if mask.any(): result = Series(-1, index=self.index, name=self.name, dtype="int64") notmask = ~mask result[notmask] = np.argsort(values[notmask], kind=kind) return self._constructor(result, index=self.index).__finalize__( self, method="argsort" ) else: return self._constructor( np.argsort(values, kind=kind), index=self.index, dtype="int64" ).__finalize__(self, method="argsort") def nlargest(self, n=5, keep="first") -> "Series": """ Return the largest `n` elements. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. See Also -------- Series.nsmallest: Get the `n` smallest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest() def nsmallest(self, n=5, keep="first") -> "Series": """ Return the smallest `n` elements. Parameters ---------- n : int, default 5 Return this many ascending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` smallest values in the Series, sorted in increasing order. See Also -------- Series.nlargest: Get the `n` largest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Brunei": 434000, "Malta": 434000, ... "Maldives": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Brunei 434000 Malta 434000 Maldives 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` smallest elements where ``n=5`` by default. >>> s.nsmallest() Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 Iceland 337000 dtype: int64 The `n` smallest elements where ``n=3``. Default `keep` value is 'first' so Nauru and Tuvalu will be kept. >>> s.nsmallest(3) Monserat 5200 Nauru 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` and keeping the last duplicates. Anguilla and Tuvalu will be kept since they are the last with value 11300 based on the index order. >>> s.nsmallest(3, keep='last') Monserat 5200 Anguilla 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` with all duplicates kept. Note that the returned Series has four elements due to the three duplicates. >>> s.nsmallest(3, keep='all') Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest() def swaplevel(self, i=-2, j=-1, copy=True) -> "Series": """ Swap levels i and j in a :class:`MultiIndex`. Default is to swap the two innermost levels of the index. Parameters ---------- i, j : int, str Level of the indices to be swapped. Can pass level name as string. copy : bool, default True Whether to copy underlying data. Returns ------- Series Series with levels swapped in MultiIndex. """ assert isinstance(self.index, ABCMultiIndex) new_index = self.index.swaplevel(i, j) return self._constructor(self._values, index=new_index, copy=copy).__finalize__( self, method="swaplevel" ) def reorder_levels(self, order) -> "Series": """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int representing new level order Reference level by number or key. Returns ------- type of caller (new object) """ if not isinstance(self.index, MultiIndex): # pragma: no cover raise Exception("Can only reorder levels on a hierarchical axis.") result = self.copy() assert isinstance(result.index, ABCMultiIndex) result.index = result.index.reorder_levels(order) return result def explode(self) -> "Series": """ Transform each element of a list-like to a row, replicating the index values. .. versionadded:: 0.25.0 Returns ------- Series Exploded lists to rows; index will be duplicated for these rows. See Also -------- Series.str.split : Split string values on specified separator. Series.unstack : Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. DataFrame.melt : Unpivot a DataFrame from wide format to long format. DataFrame.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> s = pd.Series([[1, 2, 3], 'foo', [], [3, 4]]) >>> s 0 [1, 2, 3] 1 foo 2 [] 3 [3, 4] dtype: object >>> s.explode() 0 1 0 2 0 3 1 foo 2 NaN 3 3 3 4 dtype: object """ if not len(self) or not is_object_dtype(self): return self.copy() values, counts = reshape.explode(np.asarray(self.array)) result = Series(values, index=self.index.repeat(counts), name=self.name) return result def unstack(self, level=-1, fill_value=None): """ Unstack, also known as pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted. Parameters ---------- level : int, str, or list of these, default last level Level(s) to unstack, can pass level name. fill_value : scalar value, default None Value to use when replacing NaN values. Returns ------- DataFrame Unstacked Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4], ... index=pd.MultiIndex.from_product([['one', 'two'], ... ['a', 'b']])) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) # ---------------------------------------------------------------------- # function application def map(self, arg, na_action=None) -> "Series": """ Map values of Series according to input correspondence. Used for substituting each value in a Series with another value, that may be derived from a function, a ``dict`` or a :class:`Series`. Parameters ---------- arg : function, collections.abc.Mapping subclass or Series Mapping correspondence. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to the mapping correspondence. Returns ------- Series Same index as caller. See Also -------- Series.apply : For applying more complex functions on a Series. DataFrame.apply : Apply a function row-/column-wise. DataFrame.applymap : Apply a function elementwise on a whole DataFrame. Notes ----- When ``arg`` is a dictionary, values in Series that are not in the dictionary (as keys) are converted to ``NaN``. However, if the dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e. provides a method for default values), then this default is used rather than ``NaN``. Examples -------- >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object ``map`` accepts a ``dict`` or a ``Series``. Values that are not found in the ``dict`` are converted to ``NaN``, unless the dict has a default value (e.g. ``defaultdict``): >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object It also accepts a function: >>> s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object To avoid applying the function to missing values (and keep them as ``NaN``) ``na_action='ignore'`` can be used: >>> s.map('I am a {}'.format, na_action='ignore') 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object """ new_values = super()._map_values(arg, na_action=na_action) return self._constructor(new_values, index=self.index).__finalize__( self, method="map" ) def _gotitem(self, key, ndim, subset=None) -> "Series": """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 Requested ndim of result. subset : object, default None Subset to act on. """ return self _agg_see_also_doc = dedent( """ See Also -------- Series.apply : Invoke function on a Series. Series.transform : Transform function producing a Series with like indexes. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs, ) @Appender(generic._shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) result, how = self._aggregate(func, *args, **kwargs) if result is None: # we can be called from an inner function which # passes this meta-data kwargs.pop("_axis", None) kwargs.pop("_level", None) # try a regular apply, this evaluates lambdas # row-by-row; however if the lambda is expected a Series # expression, e.g.: lambda x: x-x.quantile(0.25) # this will fail, so we can try a vectorized evaluation # we cannot FIRST try the vectorized evaluation, because # then .agg and .apply would have different semantics if the # operation is actually defined on the Series, e.g. str try: result = self.apply(func, *args, **kwargs) except (ValueError, AttributeError, TypeError): result = func(self, *args, **kwargs) return result agg = aggregate @Appender(generic._shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) return super().transform(func, *args, **kwargs) def apply(self, func, convert_dtype=True, args=(), **kwds): """ Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values. Parameters ---------- func : function Python function or NumPy ufunc to apply. convert_dtype : bool, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. args : tuple Positional arguments passed to func after the series value. **kwds Additional keyword arguments passed to func. Returns ------- Series or DataFrame If func returns a Series object the result will be a DataFrame. See Also -------- Series.map: For element-wise operations. Series.agg: Only perform aggregating type operations. Series.transform: Only perform transforming type operations. Examples -------- Create a series with typical summer temperatures for each city. >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply()``. >>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply()``. >>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64 """ if len(self) == 0: return self._constructor(dtype=self.dtype, index=self.index).__finalize__( self, method="apply" ) # dispatch to agg if isinstance(func, (list, dict)): return self.aggregate(func, *args, **kwds) # if we are a string, try to dispatch if isinstance(func, str): return self._try_aggregate_string_function(func, *args, **kwds) # handle ufuncs and lambdas if kwds or args and not isinstance(func, np.ufunc): def f(x): return func(x, *args, **kwds) else: f = func with np.errstate(all="ignore"): if isinstance(f, np.ufunc): return f(self) # row-wise access if is_extension_array_dtype(self.dtype) and hasattr(self._values, "map"): # GH#23179 some EAs do not have `map` mapped = self._values.map(f) else: values = self.astype(object)._values mapped = lib.map_infer(values, f, convert=convert_dtype) if len(mapped) and isinstance(mapped[0], Series): # GH 25959 use pd.array instead of tolist # so extension arrays can be used return self._constructor_expanddim(pd.array(mapped), index=self.index) else: return self._constructor(mapped, index=self.index).__finalize__( self, method="apply" ) def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): """ Perform a reduction operation. If we have an ndarray as a value, then simply perform the operation, otherwise delegate to the object. """ delegate = self._values if axis is not None: self._get_axis_number(axis) if isinstance(delegate, ExtensionArray): # dispatch to ExtensionArray interface return delegate._reduce(name, skipna=skipna, **kwds) else: # dispatch to numpy arrays if numeric_only: raise NotImplementedError( f"Series.{name} does not implement numeric_only." ) with np.errstate(all="ignore"): return op(delegate, skipna=skipna, **kwds) def _reindex_indexer(self, new_index, indexer, copy): if indexer is None: if copy: return self.copy() return self new_values = algorithms.take_1d( self._values, indexer, allow_fill=True, fill_value=None ) return self._constructor(new_values, index=new_index) def _needs_reindex_multi(self, axes, method, level): """ Check if we do need a multi reindex; this is for compat with higher dims. """ return False @doc(NDFrame.align, **_shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) def rename( self, index=None, *, axis=None, copy=True, inplace=False, level=None, errors="ignore", ): """ Alter Series index labels or name. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- axis : {0 or "index"} Unused. Accepted for compatibility with DataFrame method only. index : scalar, hashable sequence, dict-like or function, optional Functions or dict-like are transformations to apply to the index. Scalar or hashable sequence-like will alter the ``Series.name`` attribute. **kwargs Additional keyword arguments passed to the function. Only the "inplace" keyword is used. Returns ------- Series Series with index labels or name altered. See Also -------- DataFrame.rename : Corresponding DataFrame method. Series.rename_axis : Set the name of the axis. Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 """ if callable(index) or is_dict_like(index): return super().rename( index, copy=copy, inplace=inplace, level=level, errors=errors ) else: return self._set_name(index, inplace=inplace) @Appender( """ Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.set_axis(['a', 'b', 'c'], axis=0) a 1 b 2 c 3 dtype: int64 """ ) @Substitution( **_shared_doc_kwargs, extended_summary_sub="", axis_description_sub="", see_also_sub="", ) @Appender(generic.NDFrame.set_axis.__doc__) def set_axis(self, labels, axis: Axis = 0, inplace: bool = False): return super().set_axis(labels, axis=axis, inplace=inplace) @Substitution(**_shared_doc_kwargs) @Appender(generic.NDFrame.reindex.__doc__) def reindex(self, index=None, **kwargs): return super().reindex(index=index, **kwargs) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ) -> "Series": """ Return Series with specified index labels removed. Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index labels to drop. axis : 0, default 0 Redundant for application on Series. index : single label or list-like Redundant for application on Series, but 'index' can be used instead of 'labels'. columns : single label or list-like No change is made to the Series; use 'index' or 'labels' instead. level : int or level name, optional For MultiIndex, level for which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- Series Series with specified index labels removed. Raises ------ KeyError If none of the labels are found in the index. See Also -------- Series.reindex : Return only specified index labels of Series. Series.dropna : Return series without null values. Series.drop_duplicates : Return Series with duplicate values removed. DataFrame.drop : Drop specified labels from rows or columns. Examples -------- >>> s = pd.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: int64 Drop labels B en C >>> s.drop(labels=['B', 'C']) A 0 dtype: int64 Drop 2nd level label in MultiIndex Series >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s lama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64 >>> s.drop(labels='weight', level=1) lama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @doc(NDFrame.fillna, **_shared_doc_kwargs) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, ) -> Optional["Series"]: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) @doc(NDFrame.replace, **_shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @doc(NDFrame.shift, **_shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None) -> "Series": return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def memory_usage(self, index=True, deep=False): """ Return the memory usage of the Series. The memory usage can optionally include the contribution of the index and of elements of `object` dtype. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the Series index. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned value. Returns ------- int Bytes of memory consumed. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. DataFrame.memory_usage : Bytes consumed by a DataFrame. Examples -------- >>> s = pd.Series(range(3)) >>> s.memory_usage() 152 Not including the index gives the size of the rest of the data, which is necessarily smaller: >>> s.memory_usage(index=False) 24 The memory footprint of `object` values is ignored by default: >>> s = pd.Series(["a", "b"]) >>> s.values array(['a', 'b'], dtype=object) >>> s.memory_usage() 144 >>> s.memory_usage(deep=True) 260 """ v = super().memory_usage(deep=deep) if index: v += self.index.memory_usage(deep=deep) return v def isin(self, values) -> "Series": """ Check whether `values` are contained in Series. Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- Series Series of booleans indicating if each element is in values. Raises ------ TypeError * If `values` is a string See Also -------- DataFrame.isin : Equivalent method on DataFrame. Examples -------- >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool """ result = algorithms.isin(self, values) return self._constructor(result, index=self.index).__finalize__( self, method="isin" ) def between(self, left, right, inclusive=True) -> "Series": """ Return boolean Series equivalent to left <= series <= right. This function returns a boolean vector containing `True` wherever the corresponding Series element is between the boundary values `left` and `right`. NA values are treated as `False`. Parameters ---------- left : scalar or list-like Left boundary. right : scalar or list-like Right boundary. inclusive : bool, default True Include boundaries. Returns ------- Series Series representing whether each element is between left and right (inclusive). See Also -------- Series.gt : Greater than of series and other. Series.lt : Less than of series and other. Notes ----- This function is equivalent to ``(left <= ser) & (ser <= right)`` Examples -------- >>> s = pd.Series([2, 0, 4, 8, np.nan]) Boundary values are included by default: >>> s.between(1, 4) 0 True 1 False 2 True 3 False 4 False dtype: bool With `inclusive` set to ``False`` boundary values are excluded: >>> s.between(1, 4, inclusive=False) 0 True 1 False 2 False 3 False 4 False dtype: bool `left` and `right` can be any scalar value: >>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve']) >>> s.between('Anna', 'Daniel') 0 False 1 True 2 True 3 False dtype: bool """ if inclusive: lmask = self >= left rmask = self <= right else: lmask = self > left rmask = self < right return lmask & rmask # ---------------------------------------------------------------------- # Convert to types that support pd.NA def _convert_dtypes( self, infer_objects: bool = True, convert_string: bool = True, convert_integer: bool = True, convert_boolean: bool = True, ) -> "Series": input_series = self if infer_objects: input_series = input_series.infer_objects() if is_object_dtype(input_series): input_series = input_series.copy() if convert_string or convert_integer or convert_boolean: inferred_dtype = convert_dtypes( input_series._values, convert_string, convert_integer, convert_boolean ) try: result = input_series.astype(inferred_dtype) except TypeError: result = input_series.copy() else: result = input_series.copy() return result @Appender(generic._shared_docs["isna"] % _shared_doc_kwargs) def isna(self) -> "Series": return super().isna() @Appender(generic._shared_docs["isna"] % _shared_doc_kwargs) def isnull(self) -> "Series": return super().isnull() @Appender(generic._shared_docs["notna"] % _shared_doc_kwargs) def notna(self) -> "Series": return super().notna() @Appender(generic._shared_docs["notna"] % _shared_doc_kwargs) def notnull(self) -> "Series": return super().notnull() def dropna(self, axis=0, inplace=False, how=None): """ Return a new Series with missing values removed. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index'}, default 0 There is only one axis to drop values from. inplace : bool, default False If True, do operation inplace and return None. how : str, optional Not in use. Kept for compatibility. Returns ------- Series Series with NA entries dropped from it. See Also -------- Series.isna: Indicate missing values. Series.notna : Indicate existing (non-missing) values. Series.fillna : Replace missing values. DataFrame.dropna : Drop rows or columns which contain NA values. Index.dropna : Drop missing indices. Examples -------- >>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 Drop NA values from a Series. >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 Keep the Series with valid entries in the same variable. >>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64 Empty strings are not considered NA values. ``None`` is considered an NA value. >>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis or 0) if self._can_hold_na: result = remove_na_arraylike(self) if inplace: self._update_inplace(result) else: return result else: if inplace: # do nothing pass else: return self.copy() # ---------------------------------------------------------------------- # Time series-oriented methods def to_timestamp(self, freq=None, how="start", copy=True) -> "Series": """ Cast to DatetimeIndex of Timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. copy : bool, default True Whether or not to return a copy. Returns ------- Series with DatetimeIndex """ new_values = self._values if copy: new_values = new_values.copy() assert isinstance(self.index, (ABCDatetimeIndex, ABCPeriodIndex)) new_index = self.index.to_timestamp(freq=freq, how=how) return self._constructor(new_values, index=new_index).__finalize__( self, method="to_timestamp" ) def to_period(self, freq=None, copy=True) -> "Series": """ Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default None Frequency associated with the PeriodIndex. copy : bool, default True Whether or not to return a copy. Returns ------- Series Series with index converted to PeriodIndex. """ new_values = self._values if copy: new_values = new_values.copy() assert isinstance(self.index, ABCDatetimeIndex) new_index = self.index.to_period(freq=freq) return self._constructor(new_values, index=new_index).__finalize__( self, method="to_period" ) # ---------------------------------------------------------------------- # Add index _AXIS_ORDERS = ["index"] _AXIS_NUMBERS = {"index": 0} _AXIS_NAMES = {0: "index"} _AXIS_REVERSED = False _AXIS_LEN = len(_AXIS_ORDERS) _info_axis_number = 0 _info_axis_name = "index" index: "Index" = properties.AxisProperty( axis=0, doc="The index (axis labels) of the Series." ) # ---------------------------------------------------------------------- # Accessor Methods # ---------------------------------------------------------------------- str = CachedAccessor("str", StringMethods) dt = CachedAccessor("dt", CombinedDatetimelikeProperties) cat = CachedAccessor("cat", CategoricalAccessor) plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) sparse = CachedAccessor("sparse", SparseAccessor) # ---------------------------------------------------------------------- # Add plotting methods to Series hist = pandas.plotting.hist_series Series._add_numeric_operations() Series._add_series_or_dataframe_operations() # Add arithmetic! ops.add_flex_arithmetic_methods(Series) ops.add_special_arithmetic_methods(Series) """ Data structure for 1-dimensional cross-sectional and time series data """ from io import StringIO from shutil import get_terminal_size from textwrap import dedent from typing import ( IO, TYPE_CHECKING, Any, Callable, Iterable, List, Optional, Tuple, Type, Union, ) import warnings import numpy as np from pandas._config import get_option from pandas._libs import lib, properties, reshape, tslibs from pandas._typing import ArrayLike, Axis, DtypeObj, Label from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, doc from pandas.util._validators import validate_bool_kwarg, validate_percentile from pandas.core.dtypes.cast import ( convert_dtypes, maybe_cast_to_extension_array, validate_numeric_casting, ) from pandas.core.dtypes.common import ( ensure_platform_int, is_bool, is_categorical_dtype, is_dict_like, is_extension_array_dtype, is_integer, is_iterator, is_list_like, is_object_dtype, is_scalar, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeIndex, ABCMultiIndex, ABCPeriodIndex, ABCSeries, ) from pandas.core.dtypes.inference import is_hashable from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, notna, remove_na_arraylike, ) import pandas as pd from pandas.core import algorithms, base, generic, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.arrays.categorical import CategoricalAccessor from pandas.core.arrays.sparse import SparseAccessor import pandas.core.common as com from pandas.core.construction import ( create_series_with_explicit_dtype, extract_array, is_empty_data, sanitize_array, ) from pandas.core.generic import NDFrame from pandas.core.indexers import unpack_1tuple from pandas.core.indexes.accessors import CombinedDatetimelikeProperties from pandas.core.indexes.api import ( Float64Index, Index, InvalidIndexError, MultiIndex, ensure_index, ) import pandas.core.indexes.base as ibase from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core.indexing import check_bool_indexer from pandas.core.internals import SingleBlockManager from pandas.core.strings import StringMethods from pandas.core.tools.datetimes import to_datetime import pandas.io.formats.format as fmt import pandas.plotting if TYPE_CHECKING: from pandas.core.frame import DataFrame from pandas.core.groupby.generic import SeriesGroupBy __all__ = ["Series"] _shared_doc_kwargs = dict( axes="index", klass="Series", axes_single_arg="{0 or 'index'}", axis="""axis : {0 or 'index'} Parameter needed for compatibility with DataFrame.""", inplace="""inplace : boolean, default False If True, performs operation inplace and returns None.""", unique="np.ndarray", duplicated="Series", optional_by="", optional_mapper="", optional_labels="", optional_axis="", versionadded_to_excel="\n .. versionadded:: 0.20.0\n", ) def _coerce_method(converter): """ Install the scalar coercion methods. """ def wrapper(self): if len(self) == 1: return converter(self.iloc[0]) raise TypeError(f"cannot convert the series to {converter}") wrapper.__name__ = f"__{converter.__name__}__" return wrapper # ---------------------------------------------------------------------- # Series class class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). Operations between Series (+, -, /, *, **) align values based on their associated index values-- they need not be the same length. The result index will be the sorted union of the two indexes. Parameters ---------- data : array-like, Iterable, dict, or scalar value Contains data stored in Series. .. versionchanged:: 0.23.0 If data is a dict, argument order is maintained for Python 3.6 and later. index : array-like or Index (1d) Values must be hashable and have the same length as `data`. Non-unique index values are allowed. Will default to RangeIndex (0, 1, 2, ..., n) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : str, numpy.dtype, or ExtensionDtype, optional Data type for the output Series. If not specified, this will be inferred from `data`. See the :ref:`user guide <basics.dtypes>` for more usages. name : str, optional The name to give to the Series. copy : bool, default False Copy input data. """ _typ = "series" _name: Label _metadata: List[str] = ["name"] _internal_names_set = {"index"} | generic.NDFrame._internal_names_set _accessors = {"dt", "cat", "str", "sparse"} _deprecations = ( base.IndexOpsMixin._deprecations | generic.NDFrame._deprecations | frozenset(["compress", "ptp"]) ) # Override cache_readonly bc Series is mutable hasnans = property( base.IndexOpsMixin.hasnans.func, doc=base.IndexOpsMixin.hasnans.__doc__ ) _mgr: SingleBlockManager div: Callable[["Series", Any], "Series"] rdiv: Callable[["Series", Any], "Series"] # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index=None, dtype=None, name=None, copy=False, fastpath=False ): if ( isinstance(data, SingleBlockManager) and index is None and dtype is None and copy is False ): # GH#33357 called with just the SingleBlockManager NDFrame.__init__(self, data) self.name = name return # we are called internally, so short-circuit if fastpath: # data is an ndarray, index is defined if not isinstance(data, SingleBlockManager): data = SingleBlockManager.from_array(data, index) if copy: data = data.copy() if index is None: index = data.index else: name = ibase.maybe_extract_name(name, data, type(self)) if is_empty_data(data) and dtype is None: # gh-17261 warnings.warn( "The default dtype for empty Series will be 'object' instead " "of 'float64' in a future version. Specify a dtype explicitly " "to silence this warning.", DeprecationWarning, stacklevel=2, ) # uncomment the line below when removing the DeprecationWarning # dtype = np.dtype(object) if index is not None: index = ensure_index(index) if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, MultiIndex): raise NotImplementedError( "initializing a Series from a MultiIndex is not supported" ) elif isinstance(data, Index): if dtype is not None: # astype copies data = data.astype(dtype) else: # need to copy to avoid aliasing issues data = data._values.copy() if isinstance(data, ABCDatetimeIndex) and data.tz is not None: # GH#24096 need copy to be deep for datetime64tz case # TODO: See if we can avoid these copies data = data._values.copy(deep=True) copy = False elif isinstance(data, np.ndarray): if len(data.dtype): # GH#13296 we are dealing with a compound dtype, which # should be treated as 2D raise ValueError( "Cannot construct a Series from an ndarray with " "compound dtype. Use DataFrame instead." ) pass elif isinstance(data, ABCSeries): if index is None: index = data.index else: data = data.reindex(index, copy=copy) data = data._mgr elif is_dict_like(data): data, index = self._init_dict(data, index, dtype) dtype = None copy = False elif isinstance(data, SingleBlockManager): if index is None: index = data.index elif not data.index.equals(index) or copy: # GH#19275 SingleBlockManager input should only be called # internally raise AssertionError( "Cannot pass both SingleBlockManager " "`data` argument and a different " "`index` argument. `copy` must be False." ) elif is_extension_array_dtype(data): pass elif isinstance(data, (set, frozenset)): raise TypeError(f"'{type(data).__name__}' type is unordered") else: data = com.maybe_iterable_to_list(data) if index is None: if not is_list_like(data): data = [data] index = ibase.default_index(len(data)) elif is_list_like(data): # a scalar numpy array is list-like but doesn't # have a proper length try: if len(index) != len(data): raise ValueError( f"Length of passed values is {len(data)}, " f"index implies {len(index)}." ) except TypeError: pass # create/copy the manager if isinstance(data, SingleBlockManager): if dtype is not None: data = data.astype(dtype=dtype, errors="ignore", copy=copy) elif copy: data = data.copy() else: data = sanitize_array(data, index, dtype, copy, raise_cast_failure=True) data = SingleBlockManager.from_array(data, index) generic.NDFrame.__init__(self, data) self.name = name self._set_axis(0, index, fastpath=True) def _init_dict(self, data, index=None, dtype=None): """ Derive the "_mgr" and "index" attributes of a new Series from a dictionary input. Parameters ---------- data : dict or dict-like Data used to populate the new Series. index : Index or index-like, default None Index for the new Series: if None, use dict keys. dtype : dtype, default None The dtype for the new Series: if None, infer from data. Returns ------- _data : BlockManager for the new Series index : index for the new Series """ # Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')] # raises KeyError), so we iterate the entire dict, and align if data: keys, values = zip(*data.items()) values = list(values) elif index is not None: # fastpath for Series(data=None). Just use broadcasting a scalar # instead of reindexing. values = na_value_for_dtype(dtype) keys = index else: keys, values = [], [] # Input is now list-like, so rely on "standard" construction: # TODO: passing np.float64 to not break anything yet. See GH-17261 s = create_series_with_explicit_dtype( values, index=keys, dtype=dtype, dtype_if_empty=np.float64 ) # Now we just make sure the order is respected, if any if data and index is not None: s = s.reindex(index, copy=False) return s._mgr, s.index # ---------------------------------------------------------------------- @property def _constructor(self) -> Type["Series"]: return Series @property def _constructor_expanddim(self) -> Type["DataFrame"]: from pandas.core.frame import DataFrame return DataFrame # types @property def _can_hold_na(self): return self._mgr._can_hold_na _index = None def _set_axis(self, axis: int, labels, fastpath: bool = False) -> None: """ Override generic, we want to set the _typ here. This is called from the cython code when we set the `index` attribute directly, e.g. `series.index = [1, 2, 3]`. """ if not fastpath: labels = ensure_index(labels) is_all_dates = labels.is_all_dates if is_all_dates: if not isinstance(labels, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): try: labels = DatetimeIndex(labels) # need to set here because we changed the index if fastpath: self._mgr.set_axis(axis, labels) except (tslibs.OutOfBoundsDatetime, ValueError): # labels may exceeds datetime bounds, # or not be a DatetimeIndex pass object.__setattr__(self, "_index", labels) if not fastpath: # The ensure_index call above ensures we have an Index object self._mgr.set_axis(axis, labels) # ndarray compatibility @property def dtype(self) -> DtypeObj: """ Return the dtype object of the underlying data. """ return self._mgr.dtype @property def dtypes(self) -> DtypeObj: """ Return the dtype object of the underlying data. """ # DataFrame compatibility return self.dtype @property def name(self) -> Label: """ Return the name of the Series. The name of a Series becomes its index or column name if it is used to form a DataFrame. It is also used whenever displaying the Series using the interpreter. Returns ------- label (hashable object) The name of the Series, also the column name if part of a DataFrame. See Also -------- Series.rename : Sets the Series name when given a scalar input. Index.name : Corresponding Index property. Examples -------- The Series name can be set initially when calling the constructor. >>> s = pd.Series([1, 2, 3], dtype=np.int64, name='Numbers') >>> s 0 1 1 2 2 3 Name: Numbers, dtype: int64 >>> s.name = "Integers" >>> s 0 1 1 2 2 3 Name: Integers, dtype: int64 The name of a Series within a DataFrame is its column name. >>> df = pd.DataFrame([[1, 2], [3, 4], [5, 6]], ... columns=["Odd Numbers", "Even Numbers"]) >>> df Odd Numbers Even Numbers 0 1 2 1 3 4 2 5 6 >>> df["Even Numbers"].name 'Even Numbers' """ return self._name @name.setter def name(self, value: Label) -> None: if not is_hashable(value): raise TypeError("Series.name must be a hashable type") object.__setattr__(self, "_name", value) @property def values(self): """ Return Series as ndarray or ndarray-like depending on the dtype. .. warning:: We recommend using :attr:`Series.array` or :meth:`Series.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- numpy.ndarray or ndarray-like See Also -------- Series.array : Reference to the underlying data. Series.to_numpy : A NumPy array representing the underlying data. Examples -------- >>> pd.Series([1, 2, 3]).values array([1, 2, 3]) >>> pd.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object) >>> pd.Series(list('aabc')).astype('category').values [a, a, b, c] Categories (3, object): [a, b, c] Timezone aware datetime data is converted to UTC: >>> pd.Series(pd.date_range('20130101', periods=3, ... tz='US/Eastern')).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]') """ return self._mgr.external_values() @property def _values(self): """ Return the internal repr of this data (defined by Block.interval_values). This are the values as stored in the Block (ndarray or ExtensionArray depending on the Block class), with datetime64[ns] and timedelta64[ns] wrapped in ExtensionArrays to match Index._values behavior. Differs from the public ``.values`` for certain data types, because of historical backwards compatibility of the public attribute (e.g. period returns object ndarray and datetimetz a datetime64[ns] ndarray for ``.values`` while it returns an ExtensionArray for ``._values`` in those cases). Differs from ``.array`` in that this still returns the numpy array if the Block is backed by a numpy array (except for datetime64 and timedelta64 dtypes), while ``.array`` ensures to always return an ExtensionArray. Overview: dtype | values | _values | array | ----------- | ------------- | ------------- | ------------- | Numeric | ndarray | ndarray | PandasArray | Category | Categorical | Categorical | Categorical | dt64[ns] | ndarray[M8ns] | DatetimeArray | DatetimeArray | dt64[ns tz] | ndarray[M8ns] | DatetimeArray | DatetimeArray | td64[ns] | ndarray[m8ns] | TimedeltaArray| ndarray[m8ns] | Period | ndarray[obj] | PeriodArray | PeriodArray | Nullable | EA | EA | EA | """ return self._mgr.internal_values() @Appender(base.IndexOpsMixin.array.__doc__) # type: ignore @property def array(self) -> ExtensionArray: return self._mgr._block.array_values() # ops def ravel(self, order="C"): """ Return the flattened underlying data as an ndarray. Returns ------- numpy.ndarray or ndarray-like Flattened data of the Series. See Also -------- numpy.ndarray.ravel : Return a flattened array. """ return self._values.ravel(order=order) def __len__(self) -> int: """ Return the length of the Series. """ return len(self._mgr) def view(self, dtype=None) -> "Series": """ Create a new view of the Series. This function will return a new Series with a view of the same underlying values in memory, optionally reinterpreted with a new data type. The new data type must preserve the same size in bytes as to not cause index misalignment. Parameters ---------- dtype : data type Data type object or one of their string representations. Returns ------- Series A new Series object as a view of the same data in memory. See Also -------- numpy.ndarray.view : Equivalent numpy function to create a new view of the same data in memory. Notes ----- Series are instantiated with ``dtype=float64`` by default. While ``numpy.ndarray.view()`` will return a view with the same data type as the original array, ``Series.view()`` (without specified dtype) will try using ``float64`` and may fail if the original data type size in bytes is not the same. Examples -------- >>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8') >>> s 0 -2 1 -1 2 0 3 1 4 2 dtype: int8 The 8 bit signed integer representation of `-1` is `0b11111111`, but the same bytes represent 255 if read as an 8 bit unsigned integer: >>> us = s.view('uint8') >>> us 0 254 1 255 2 0 3 1 4 2 dtype: uint8 The views share the same underlying values: >>> us[0] = 128 >>> s 0 -128 1 -1 2 0 3 1 4 2 dtype: int8 """ return self._constructor( self._values.view(dtype), index=self.index ).__finalize__(self, method="view") # ---------------------------------------------------------------------- # NDArray Compat _HANDLED_TYPES = (Index, ExtensionArray, np.ndarray) def __array_ufunc__( self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any ): # TODO: handle DataFrame cls = type(self) # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # Determine if we should defer. no_defer = (np.ndarray.__array_ufunc__, cls.__array_ufunc__) for item in inputs: higher_priority = ( hasattr(item, "__array_priority__") and item.__array_priority__ > self.__array_priority__ ) has_array_ufunc = ( hasattr(item, "__array_ufunc__") and type(item).__array_ufunc__ not in no_defer and not isinstance(item, self._HANDLED_TYPES) ) if higher_priority or has_array_ufunc: return NotImplemented # align all the inputs. names = [getattr(x, "name") for x in inputs if hasattr(x, "name")] types = tuple(type(x) for x in inputs) # TODO: dataframe alignable = [x for x, t in zip(inputs, types) if issubclass(t, Series)] if len(alignable) > 1: # This triggers alignment. # At the moment, there aren't any ufuncs with more than two inputs # so this ends up just being x1.index | x2.index, but we write # it to handle *args. index = alignable[0].index for s in alignable[1:]: index |= s.index inputs = tuple( x.reindex(index) if issubclass(t, Series) else x for x, t in zip(inputs, types) ) else: index = self.index inputs = tuple(extract_array(x, extract_numpy=True) for x in inputs) result = getattr(ufunc, method)(*inputs, **kwargs) name = names[0] if len(set(names)) == 1 else None def construct_return(result): if lib.is_scalar(result): return result elif result.ndim > 1: # e.g. np.subtract.outer if method == "outer": # GH#27198 raise NotImplementedError return result return self._constructor(result, index=index, name=name, copy=False) if type(result) is tuple: # multiple return values return tuple(construct_return(x) for x in result) elif method == "at": # no return value return None else: return construct_return(result) def __array__(self, dtype=None) -> np.ndarray: """ Return the values as a NumPy array. Users should not call this directly. Rather, it is invoked by :func:`numpy.array` and :func:`numpy.asarray`. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to use for the resulting NumPy array. By default, the dtype is inferred from the data. Returns ------- numpy.ndarray The values in the series converted to a :class:`numpy.ndarray` with the specified `dtype`. See Also -------- array : Create a new array from data. Series.array : Zero-copy view to the array backing the Series. Series.to_numpy : Series method for similar behavior. Examples -------- >>> ser = pd.Series([1, 2, 3]) >>> np.asarray(ser) array([1, 2, 3]) For timezone-aware data, the timezones may be retained with ``dtype='object'`` >>> tzser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> np.asarray(tzser, dtype="object") array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or the values may be localized to UTC and the tzinfo discarded with ``dtype='datetime64[ns]'`` >>> np.asarray(tzser, dtype="datetime64[ns]") # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', ...], dtype='datetime64[ns]') """ return np.asarray(self.array, dtype) # ---------------------------------------------------------------------- # Unary Methods # coercion __float__ = _coerce_method(float) __long__ = _coerce_method(int) __int__ = _coerce_method(int) # ---------------------------------------------------------------------- # indexers @property def axes(self) -> List[Index]: """ Return a list of the row axis labels. """ return [self.index] # ---------------------------------------------------------------------- # Indexing Methods @Appender(generic.NDFrame.take.__doc__) def take(self, indices, axis=0, is_copy=None, **kwargs) -> "Series": if is_copy is not None: warnings.warn( "is_copy is deprecated and will be removed in a future version. " "'take' always returns a copy, so there is no need to specify this.", FutureWarning, stacklevel=2, ) nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) new_index = self.index.take(indices) new_values = self._values.take(indices) result = self._constructor(new_values, index=new_index, fastpath=True) return result.__finalize__(self, method="take") def _take_with_is_copy(self, indices, axis=0): """ Internal version of the `take` method that sets the `_is_copy` attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning). For Series this does the same as the public take (it never sets `_is_copy`). See the docstring of `take` for full explanation of the parameters. """ return self.take(indices=indices, axis=axis) def _ixs(self, i: int, axis: int = 0): """ Return the i-th value or values in the Series by location. Parameters ---------- i : int Returns ------- scalar (int) or Series (slice, sequence) """ return self._values[i] def _slice(self, slobj: slice, axis: int = 0) -> "Series": # axis kwarg is retained for compat with NDFrame method # _slice is *always* positional return self._get_values(slobj) def __getitem__(self, key): key = com.apply_if_callable(key, self) if key is Ellipsis: return self key_is_scalar = is_scalar(key) if isinstance(key, (list, tuple)): key = unpack_1tuple(key) if is_integer(key) and self.index._should_fallback_to_positional(): return self._values[key] elif key_is_scalar: return self._get_value(key) if ( isinstance(key, tuple) and is_hashable(key) and isinstance(self.index, MultiIndex) ): # Otherwise index.get_value will raise InvalidIndexError try: result = self._get_value(key) return result except KeyError: # We still have the corner case where this tuple is a key # in the first level of our MultiIndex return self._get_values_tuple(key) if is_iterator(key): key = list(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) key = np.asarray(key, dtype=bool) return self._get_values(key) return self._get_with(key) def _get_with(self, key): # other: fancy integer or otherwise if isinstance(key, slice): # _convert_slice_indexer to determin if this slice is positional # or label based, and if the latter, convert to positional slobj = self.index._convert_slice_indexer(key, kind="getitem") return self._slice(slobj) elif isinstance(key, ABCDataFrame): raise TypeError( "Indexing a Series with DataFrame is not " "supported, use the appropriate DataFrame column" ) elif isinstance(key, tuple): return self._get_values_tuple(key) elif not is_list_like(key): # e.g. scalars that aren't recognized by lib.is_scalar, GH#32684 return self.loc[key] if not isinstance(key, (list, np.ndarray, ExtensionArray, Series, Index)): key = list(key) if isinstance(key, Index): key_type = key.inferred_type else: key_type = lib.infer_dtype(key, skipna=False) # Note: The key_type == "boolean" case should be caught by the # com.is_bool_indexer check in __getitem__ if key_type == "integer": # We need to decide whether to treat this as a positional indexer # (i.e. self.iloc) or label-based (i.e. self.loc) if not self.index._should_fallback_to_positional(): return self.loc[key] else: return self.iloc[key] # handle the dup indexing case GH#4246 return self.loc[key] def _get_values_tuple(self, key): # mpl hackaround if com.any_none(*key): # suppress warning from slicing the index with a 2d indexer. # eventually we'll want Series itself to warn. with warnings.catch_warnings(): warnings.filterwarnings( "ignore", "Support for multi-dim", DeprecationWarning ) return self._get_values(key) if not isinstance(self.index, MultiIndex): raise ValueError("Can only tuple-index with a MultiIndex") # If key is contained, would have returned by now indexer, new_index = self.index.get_loc_level(key) return self._constructor(self._values[indexer], index=new_index).__finalize__( self, ) def _get_values(self, indexer): try: return self._constructor(self._mgr.get_slice(indexer)).__finalize__(self,) except ValueError: # mpl compat if we look up e.g. ser[:, np.newaxis]; # see tests.series.timeseries.test_mpl_compat_hack return self._values[indexer] def _get_value(self, label, takeable: bool = False): """ Quickly retrieve single value at passed index label. Parameters ---------- label : object takeable : interpret the index as indexers, default False Returns ------- scalar value """ if takeable: return self._values[label] # Similar to Index.get_value, but we do not fall back to positional loc = self.index.get_loc(label) return self.index._get_values_for_loc(self, loc, label) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) cacher_needs_updating = self._check_is_chained_assignment_possible() if key is Ellipsis: key = slice(None) try: self._set_with_engine(key, value) except (KeyError, ValueError): values = self._values if is_integer(key) and not self.index.inferred_type == "integer": # positional setter values[key] = value else: # GH#12862 adding an new key to the Series self.loc[key] = value except TypeError as e: if isinstance(key, tuple) and not isinstance(self.index, MultiIndex): raise ValueError("Can only tuple-index with a MultiIndex") from e if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) key = np.asarray(key, dtype=bool) try: self._where(~key, value, inplace=True) except InvalidIndexError: self.iloc[key] = value return else: self._set_with(key, value) if cacher_needs_updating: self._maybe_update_cacher() def _set_with_engine(self, key, value): # fails with AttributeError for IntervalIndex loc = self.index._engine.get_loc(key) validate_numeric_casting(self.dtype, value) self._values[loc] = value def _set_with(self, key, value): # other: fancy integer or otherwise if isinstance(key, slice): # extract_array so that if we set e.g. ser[-5:] = ser[:5] # we get the first five values, and not 5 NaNs indexer = self.index._convert_slice_indexer(key, kind="getitem") self.iloc[indexer] = extract_array(value, extract_numpy=True) else: assert not isinstance(key, tuple) if is_scalar(key): key = [key] if isinstance(key, Index): key_type = key.inferred_type key = key._values else: key_type = lib.infer_dtype(key, skipna=False) # Note: key_type == "boolean" should not occur because that # should be caught by the is_bool_indexer check in __setitem__ if key_type == "integer": if not self.index._should_fallback_to_positional(): self.loc[key] = value else: self.iloc[key] = value else: self.loc[key] = value def _set_value(self, label, value, takeable: bool = False): """ Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index. Parameters ---------- label : object Partial indexing with MultiIndex not allowed. value : object Scalar value. takeable : interpret the index as indexers, default False """ try: if takeable: self._values[label] = value else: loc = self.index.get_loc(label) validate_numeric_casting(self.dtype, value) self._values[loc] = value except KeyError: # set using a non-recursive method self.loc[label] = value # ---------------------------------------------------------------------- # Unsorted @property def _is_mixed_type(self): return False def repeat(self, repeats, axis=None) -> "Series": """ Repeat elements of a Series. Returns a new Series where each element of the current Series is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty Series. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- Series Newly created Series with repeated elements. See Also -------- Index.repeat : Equivalent function for Index. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object >>> s.repeat(2) 0 a 0 a 1 b 1 b 2 c 2 c dtype: object >>> s.repeat([1, 2, 3]) 0 a 1 b 1 b 2 c 2 c 2 c dtype: object """ nv.validate_repeat(tuple(), dict(axis=axis)) new_index = self.index.repeat(repeats) new_values = self._values.repeat(repeats) return self._constructor(new_values, index=new_index).__finalize__( self, method="repeat" ) def reset_index(self, level=None, drop=False, name=None, inplace=False): """ Generate a new DataFrame or Series with the index reset. This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation. Parameters ---------- level : int, str, tuple, or list, default optional For a Series with a MultiIndex, only remove the specified levels from the index. Removes all levels by default. drop : bool, default False Just reset the index, without inserting it as a column in the new DataFrame. name : object, optional The name to use for the column containing the original Series values. Uses ``self.name`` by default. This argument is ignored when `drop` is True. inplace : bool, default False Modify the Series in place (do not create a new object). Returns ------- Series or DataFrame When `drop` is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When `drop` is True, a `Series` is returned. In either case, if ``inplace=True``, no value is returned. See Also -------- DataFrame.reset_index: Analogous function for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4], name='foo', ... index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) Generate a DataFrame with default index. >>> s.reset_index() idx foo 0 a 1 1 b 2 2 c 3 3 d 4 To specify the name of the new column use `name`. >>> s.reset_index(name='values') idx values 0 a 1 1 b 2 2 c 3 3 d 4 To generate a new Series with the default set `drop` to True. >>> s.reset_index(drop=True) 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 To update the Series in place, without generating a new one set `inplace` to True. Note that it also requires ``drop=True``. >>> s.reset_index(inplace=True, drop=True) >>> s 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 The `level` parameter is interesting for Series with a multi-level index. >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']), ... np.array(['one', 'two', 'one', 'two'])] >>> s2 = pd.Series( ... range(4), name='foo', ... index=pd.MultiIndex.from_arrays(arrays, ... names=['a', 'b'])) To remove a specific level from the Index, use `level`. >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3 If `level` is not set, all levels are removed from the Index. >>> s2.reset_index() a b foo 0 bar one 0 1 bar two 1 2 baz one 2 3 baz two 3 """ inplace = validate_bool_kwarg(inplace, "inplace") if drop: new_index = ibase.default_index(len(self)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if inplace: self.index = new_index # set name if it was passed, otherwise, keep the previous name self.name = name or self.name else: return self._constructor( self._values.copy(), index=new_index ).__finalize__(self, method="reset_index") elif inplace: raise TypeError( "Cannot reset_index inplace on a Series to create a DataFrame" ) else: df = self.to_frame(name) return df.reset_index(level=level, drop=drop) # ---------------------------------------------------------------------- # Rendering Methods def __repr__(self) -> str: """ Return a string representation for a particular Series. """ buf = StringIO("") width, height = get_terminal_size() max_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.max_rows") ) min_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.min_rows") ) show_dimensions = get_option("display.show_dimensions") self.to_string( buf=buf, name=self.name, dtype=self.dtype, min_rows=min_rows, max_rows=max_rows, length=show_dimensions, ) result = buf.getvalue() return result def to_string( self, buf=None, na_rep="NaN", float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None, min_rows=None, ): """ Render a string representation of the Series. Parameters ---------- buf : StringIO-like, optional Buffer to write to. na_rep : str, optional String representation of NaN to use, default 'NaN'. float_format : one-parameter function, optional Formatter function to apply to columns' elements if they are floats, default None. header : bool, default True Add the Series header (index name). index : bool, optional Add index (row) labels, default True. length : bool, default False Add the Series length. dtype : bool, default False Add the Series dtype. name : bool, default False Add the Series name if not None. max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. min_rows : int, optional The number of rows to display in a truncated repr (when number of rows is above `max_rows`). Returns ------- str or None String representation of Series if ``buf=None``, otherwise None. """ formatter = fmt.SeriesFormatter( self, name=name, length=length, header=header, index=index, dtype=dtype, na_rep=na_rep, float_format=float_format, min_rows=min_rows, max_rows=max_rows, ) result = formatter.to_string() # catch contract violations if not isinstance(result, str): raise AssertionError( "result must be of type str, type " f"of result is {repr(type(result).__name__)}" ) if buf is None: return result else: try: buf.write(result) except AttributeError: with open(buf, "w") as f: f.write(result) @Appender( """ Examples -------- >>> s = pd.Series(["elk", "pig", "dog", "quetzal"], name="animal") >>> print(s.to_markdown()) | | animal | |---:|:---------| | 0 | elk | | 1 | pig | | 2 | dog | | 3 | quetzal | """ ) @Substitution(klass="Series") @Appender(generic._shared_docs["to_markdown"]) def to_markdown( self, buf: Optional[IO[str]] = None, mode: Optional[str] = None, **kwargs ) -> Optional[str]: return self.to_frame().to_markdown(buf, mode, **kwargs) # ---------------------------------------------------------------------- def items(self) -> Iterable[Tuple[Label, Any]]: """ Lazily iterate over (index, value) tuples. This method returns an iterable tuple (index, value). This is convenient if you want to create a lazy iterator. Returns ------- iterable Iterable of tuples containing the (index, value) pairs from a Series. See Also -------- DataFrame.items : Iterate over (column name, Series) pairs. DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. Examples -------- >>> s = pd.Series(['A', 'B', 'C']) >>> for index, value in s.items(): ... print(f"Index : {index}, Value : {value}") Index : 0, Value : A Index : 1, Value : B Index : 2, Value : C """ return zip(iter(self.index), iter(self)) @Appender(items.__doc__) def iteritems(self) -> Iterable[Tuple[Label, Any]]: return self.items() # ---------------------------------------------------------------------- # Misc public methods def keys(self) -> Index: """ Return alias for index. Returns ------- Index Index of the Series. """ return self.index def to_dict(self, into=dict): """ Convert Series to {label -> value} dict or dict-like object. Parameters ---------- into : class, default dict The collections.abc.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- collections.abc.Mapping Key-value representation of Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_dict() {0: 1, 1: 2, 2: 3, 3: 4} >>> from collections import OrderedDict, defaultdict >>> s.to_dict(OrderedDict) OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)]) >>> dd = defaultdict(list) >>> s.to_dict(dd) defaultdict(<class 'list'>, {0: 1, 1: 2, 2: 3, 3: 4}) """ # GH16122 into_c = com.standardize_mapping(into) return into_c(self.items()) def to_frame(self, name=None) -> "DataFrame": """ Convert Series to DataFrame. Parameters ---------- name : object, default None The passed name should substitute for the series name (if it has one). Returns ------- DataFrame DataFrame representation of Series. Examples -------- >>> s = pd.Series(["a", "b", "c"], ... name="vals") >>> s.to_frame() vals 0 a 1 b 2 c """ if name is None: df = self._constructor_expanddim(self) else: df = self._constructor_expanddim({name: self}) return df def _set_name(self, name, inplace=False) -> "Series": """ Set the Series name. Parameters ---------- name : str inplace : bool Whether to modify `self` directly or return a copy. """ inplace = validate_bool_kwarg(inplace, "inplace") ser = self if inplace else self.copy() ser.name = name return ser @Appender( """ Examples -------- >>> ser = pd.Series([390., 350., 30., 20.], ... index=['Falcon', 'Falcon', 'Parrot', 'Parrot'], name="Max Speed") >>> ser Falcon 390.0 Falcon 350.0 Parrot 30.0 Parrot 20.0 Name: Max Speed, dtype: float64 >>> ser.groupby(["a", "b", "a", "b"]).mean() a 210.0 b 185.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level=0).mean() Falcon 370.0 Parrot 25.0 Name: Max Speed, dtype: float64 >>> ser.groupby(ser > 100).mean() Max Speed False 25.0 True 370.0 Name: Max Speed, dtype: float64 **Grouping by Indexes** We can groupby different levels of a hierarchical index using the `level` parameter: >>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> ser = pd.Series([390., 350., 30., 20.], index=index, name="Max Speed") >>> ser Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level=0).mean() Animal Falcon 370.0 Parrot 25.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level="Type").mean() Type Captive 210.0 Wild 185.0 Name: Max Speed, dtype: float64 """ ) @Appender(generic._shared_docs["groupby"] % _shared_doc_kwargs) def groupby( self, by=None, axis=0, level=None, as_index: bool = True, sort: bool = True, group_keys: bool = True, squeeze: bool = False, observed: bool = False, ) -> "SeriesGroupBy": from pandas.core.groupby.generic import SeriesGroupBy if level is None and by is None: raise TypeError("You have to supply one of 'by' and 'level'") axis = self._get_axis_number(axis) return SeriesGroupBy( obj=self, keys=by, axis=axis, level=level, as_index=as_index, sort=sort, group_keys=group_keys, squeeze=squeeze, observed=observed, ) # ---------------------------------------------------------------------- # Statistics, overridden ndarray methods # TODO: integrate bottleneck def count(self, level=None): """ Return number of non-NA/null observations in the Series. Parameters ---------- level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series. Returns ------- int or Series (if level specified) Number of non-null values in the Series. See Also -------- DataFrame.count : Count non-NA cells for each column or row. Examples -------- >>> s = pd.Series([0.0, 1.0, np.nan]) >>> s.count() 2 """ if level is None: return notna(self.array).sum() if isinstance(level, str): level = self.index._get_level_number(level) lev = self.index.levels[level] level_codes = np.array(self.index.codes[level], subok=False, copy=True) mask = level_codes == -1 if mask.any(): level_codes[mask] = cnt = len(lev) lev = lev.insert(cnt, lev._na_value) obs = level_codes[notna(self._values)] out = np.bincount(obs, minlength=len(lev) or None) return self._constructor(out, index=lev, dtype="int64").__finalize__( self, method="count" ) def mode(self, dropna=True) -> "Series": """ Return the mode(s) of the dataset. Always returns Series even if only one value is returned. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- Series Modes of the Series in sorted order. """ # TODO: Add option for bins like value_counts() return algorithms.mode(self, dropna=dropna) def unique(self): """ Return unique values of Series object. Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort. Returns ------- ndarray or ExtensionArray The unique values returned as a NumPy array. See Notes. See Also -------- unique : Top-level unique method for any 1-d array-like object. Index.unique : Return Index with unique values from an Index object. Notes ----- Returns the unique values as a NumPy array. In case of an extension-array backed Series, a new :class:`~api.extensions.ExtensionArray` of that type with just the unique values is returned. This includes * Categorical * Period * Datetime with Timezone * Interval * Sparse * IntegerNA See Examples section. Examples -------- >>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3]) >>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] An unordered Categorical will return categories in the order of appearance. >>> pd.Series(pd.Categorical(list('baabc'))).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() [b, a, c] Categories (3, object): [a < b < c] """ result = super().unique() return result def drop_duplicates(self, keep="first", inplace=False) -> Optional["Series"]: """ Return Series with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' Method to handle dropping duplicates: - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : bool, default ``False`` If ``True``, performs operation inplace and returns None. Returns ------- Series Series with duplicates dropped. See Also -------- Index.drop_duplicates : Equivalent method on Index. DataFrame.drop_duplicates : Equivalent method on DataFrame. Series.duplicated : Related method on Series, indicating duplicate Series values. Examples -------- Generate a Series with duplicated entries. >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the 'keep' parameter, the selection behaviour of duplicated values can be changed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value 'last' for parameter 'keep' keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value ``False`` for parameter 'keep' discards all sets of duplicated entries. Setting the value of 'inplace' to ``True`` performs the operation inplace and returns ``None``. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") result = super().drop_duplicates(keep=keep) if inplace: self._update_inplace(result) return None else: return result def duplicated(self, keep="first") -> "Series": """ Indicate duplicate Series values. Duplicated values are indicated as ``True`` values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' Method to handle dropping duplicates: - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- Series Series indicating whether each value has occurred in the preceding values. See Also -------- Index.duplicated : Equivalent method on pandas.Index. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Series.drop_duplicates : Remove duplicate values from Series. Examples -------- By default, for each set of duplicated values, the first occurrence is set on False and all others on True: >>> animals = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> animals.duplicated() 0 False 1 False 2 True 3 False 4 True dtype: bool which is equivalent to >>> animals.duplicated(keep='first') 0 False 1 False 2 True 3 False 4 True dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> animals.duplicated(keep='last') 0 True 1 False 2 True 3 False 4 False dtype: bool By setting keep on ``False``, all duplicates are True: >>> animals.duplicated(keep=False) 0 True 1 False 2 True 3 False 4 True dtype: bool """ return super().duplicated(keep=keep) def idxmin(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the minimum value. If multiple values equal the minimum, the first row label with that value is returned. Parameters ---------- axis : int, default 0 For compatibility with DataFrame.idxmin. Redundant for application on Series. skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the minimum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmin : Return indices of the minimum values along the given axis. DataFrame.idxmin : Return index of first occurrence of minimum over requested axis. Series.idxmax : Return index *label* of the first occurrence of maximum of values. Notes ----- This method is the Series version of ``ndarray.argmin``. This method returns the label of the minimum, while ``ndarray.argmin`` returns the position. To get the position, use ``series.values.argmin()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 1], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 1.0 dtype: float64 >>> s.idxmin() 'A' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmin(skipna=False) nan """ skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs) i = nanops.nanargmin(self._values, skipna=skipna) if i == -1: return np.nan return self.index[i] def idxmax(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the maximum value. If multiple values equal the maximum, the first row label with that value is returned. Parameters ---------- axis : int, default 0 For compatibility with DataFrame.idxmax. Redundant for application on Series. skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the maximum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmax : Return indices of the maximum values along the given axis. DataFrame.idxmax : Return index of first occurrence of maximum over requested axis. Series.idxmin : Return index *label* of the first occurrence of minimum of values. Notes ----- This method is the Series version of ``ndarray.argmax``. This method returns the label of the maximum, while ``ndarray.argmax`` returns the position. To get the position, use ``series.values.argmax()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64 >>> s.idxmax() 'C' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmax(skipna=False) nan """ skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs) i = nanops.nanargmax(self._values, skipna=skipna) if i == -1: return np.nan return self.index[i] def round(self, decimals=0, *args, **kwargs) -> "Series": """ Round each value in a Series to the given number of decimals. Parameters ---------- decimals : int, default 0 Number of decimal places to round to. If decimals is negative, it specifies the number of positions to the left of the decimal point. *args, **kwargs Additional arguments and keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Series Rounded values of the Series. See Also -------- numpy.around : Round values of an np.array. DataFrame.round : Round values of a DataFrame. Examples -------- >>> s = pd.Series([0.1, 1.3, 2.7]) >>> s.round() 0 0.0 1 1.0 2 3.0 dtype: float64 """ nv.validate_round(args, kwargs) result = self._values.round(decimals) result = self._constructor(result, index=self.index).__finalize__( self, method="round" ) return result def quantile(self, q=0.5, interpolation="linear"): """ Return value at the given quantile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) The quantile(s) to compute, which can lie in range: 0 <= q <= 1. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- float or Series If ``q`` is an array, a Series will be returned where the index is ``q`` and the values are the quantiles, otherwise a float will be returned. See Also -------- core.window.Rolling.quantile : Calculate the rolling quantile. numpy.percentile : Returns the q-th percentile(s) of the array elements. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 """ validate_percentile(q) # We dispatch to DataFrame so that core.internals only has to worry # about 2D cases. df = self.to_frame() result = df.quantile(q=q, interpolation=interpolation, numeric_only=False) if result.ndim == 2: result = result.iloc[:, 0] if is_list_like(q): result.name = self.name return self._constructor(result, index=Float64Index(q), name=self.name) else: # scalar return result.iloc[0] def corr(self, other, method="pearson", min_periods=None) -> float: """ Compute correlation with `other` Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the correlation. method : {'pearson', 'kendall', 'spearman'} or callable Method used to compute correlation: - pearson : Standard correlation coefficient - kendall : Kendall Tau correlation coefficient - spearman : Spearman rank correlation - callable: Callable with input two 1d ndarrays and returning a float. .. versionadded:: 0.24.0 Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior. min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Correlation with other. See Also -------- DataFrame.corr : Compute pairwise correlation between columns. DataFrame.corrwith : Compute pairwise correlation with another DataFrame or Series. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> s1 = pd.Series([.2, .0, .6, .2]) >>> s2 = pd.Series([.3, .6, .0, .1]) >>> s1.corr(s2, method=histogram_intersection) 0.3 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan if method in ["pearson", "spearman", "kendall"] or callable(method): return nanops.nancorr( this.values, other.values, method=method, min_periods=min_periods ) raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " f"'{method}' was supplied" ) def cov(self, other, min_periods=None) -> float: """ Compute covariance with Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the covariance. min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Covariance between Series and other normalized by N-1 (unbiased estimator). See Also -------- DataFrame.cov : Compute pairwise covariance of columns. Examples -------- >>> s1 = pd.Series([0.90010907, 0.13484424, 0.62036035]) >>> s2 = pd.Series([0.12528585, 0.26962463, 0.51111198]) >>> s1.cov(s2) -0.01685762652715874 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan return nanops.nancov(this.values, other.values, min_periods=min_periods) def diff(self, periods: int = 1) -> "Series": """ First discrete difference of element. Calculates the difference of a Series element compared with another element in the Series (default is element in previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. Returns ------- Series First differences of the Series. See Also -------- Series.pct_change: Percent change over given number of periods. Series.shift: Shift index by desired number of periods with an optional time freq. DataFrame.diff: First discrete difference of object. Notes ----- For boolean dtypes, this uses :meth:`operator.xor` rather than :meth:`operator.sub`. Examples -------- Difference with previous row >>> s = pd.Series([1, 1, 2, 3, 5, 8]) >>> s.diff() 0 NaN 1 0.0 2 1.0 3 1.0 4 2.0 5 3.0 dtype: float64 Difference with 3rd previous row >>> s.diff(periods=3) 0 NaN 1 NaN 2 NaN 3 2.0 4 4.0 5 6.0 dtype: float64 Difference with following row >>> s.diff(periods=-1) 0 0.0 1 -1.0 2 -1.0 3 -2.0 4 -3.0 5 NaN dtype: float64 """ result = algorithms.diff(self.array, periods) return self._constructor(result, index=self.index).__finalize__( self, method="diff" ) def autocorr(self, lag=1) -> float: """ Compute the lag-N autocorrelation. This method computes the Pearson correlation between the Series and its shifted self. Parameters ---------- lag : int, default 1 Number of lags to apply before performing autocorrelation. Returns ------- float The Pearson correlation between self and self.shift(lag). See Also -------- Series.corr : Compute the correlation between two Series. Series.shift : Shift index by desired number of periods. DataFrame.corr : Compute pairwise correlation of columns. DataFrame.corrwith : Compute pairwise correlation between rows or columns of two DataFrame objects. Notes ----- If the Pearson correlation is not well defined return 'NaN'. Examples -------- >>> s = pd.Series([0.25, 0.5, 0.2, -0.05]) >>> s.autocorr() # doctest: +ELLIPSIS 0.10355... >>> s.autocorr(lag=2) # doctest: +ELLIPSIS -0.99999... If the Pearson correlation is not well defined, then 'NaN' is returned. >>> s = pd.Series([1, 0, 0, 0]) >>> s.autocorr() nan """ return self.corr(self.shift(lag)) def dot(self, other): """ Compute the dot product between the Series and the columns of other. This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array. It can also be called using `self @ other` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the dot product with its columns. Returns ------- scalar, Series or numpy.ndarray Return the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array. See Also -------- DataFrame.dot: Compute the matrix product with the DataFrame. Series.mul: Multiplication of series and other, element-wise. Notes ----- The Series and other has to share the same index if other is a Series or a DataFrame. Examples -------- >>> s = pd.Series([0, 1, 2, 3]) >>> other = pd.Series([-1, 2, -3, 4]) >>> s.dot(other) 8 >>> s @ other 8 >>> df = pd.DataFrame([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(df) 0 24 1 14 dtype: int64 >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(arr) array([24, 14]) """ if isinstance(other, (Series, ABCDataFrame)): common = self.index.union(other.index) if len(common) > len(self.index) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(index=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: lvals = self.values rvals = np.asarray(other) if lvals.shape[0] != rvals.shape[0]: raise Exception( f"Dot product shape mismatch, {lvals.shape} vs {rvals.shape}" ) if isinstance(other, ABCDataFrame): return self._constructor( np.dot(lvals, rvals), index=other.columns ).__finalize__(self, method="dot") elif isinstance(other, Series): return np.dot(lvals, rvals) elif isinstance(rvals, np.ndarray): return np.dot(lvals, rvals) else: # pragma: no cover raise TypeError(f"unsupported type: {type(other)}") def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(np.transpose(other)) @doc(base.IndexOpsMixin.searchsorted, klass="Series") def searchsorted(self, value, side="left", sorter=None): return algorithms.searchsorted(self._values, value, side=side, sorter=sorter) # ------------------------------------------------------------------- # Combination def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, do not use the index labels. verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """ from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] to_concat.extend(to_append) else: to_concat = [self, to_append] if any(isinstance(x, (ABCDataFrame,)) for x in to_concat[1:]): msg = ( f"to_append should be a Series or list/tuple of Series, " f"got DataFrame" ) raise TypeError(msg) return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity ) def _binop(self, other, func, level=None, fill_value=None): """ Perform generic binary operation with optional fill value. Parameters ---------- other : Series func : binary operator fill_value : float or object Value to substitute for NA/null values. If both Series are NA in a location, the result will be NA regardless of the passed fill value. level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level. Returns ------- Series """ if not isinstance(other, Series): raise AssertionError("Other operand must be Series") this = self if not self.index.equals(other.index): this, other = self.align(other, level=level, join="outer", copy=False) this_vals, other_vals = ops.fill_binop(this.values, other.values, fill_value) with np.errstate(all="ignore"): result = func(this_vals, other_vals) name = ops.get_op_result_name(self, other) ret = this._construct_result(result, name) return ret def _construct_result( self, result: Union[ArrayLike, Tuple[ArrayLike, ArrayLike]], name: Label ) -> Union["Series", Tuple["Series", "Series"]]: """ Construct an appropriately-labelled Series from the result of an op. Parameters ---------- result : ndarray or ExtensionArray name : Label Returns ------- Series In the case of __divmod__ or __rdivmod__, a 2-tuple of Series. """ if isinstance(result, tuple): # produced by divmod or rdivmod res1 = self._construct_result(result[0], name=name) res2 = self._construct_result(result[1], name=name) # GH#33427 assertions to keep mypy happy assert isinstance(res1, Series) assert isinstance(res2, Series) return (res1, res2) # We do not pass dtype to ensure that the Series constructor # does inference in the case where `result` has object-dtype. out = self._constructor(result, index=self.index) out = out.__finalize__(self) # Set the result's name after __finalize__ is called because __finalize__ # would set it back to self.name out.name = name return out def combine(self, other, func, fill_value=None) -> "Series": """ Combine the Series with a Series or scalar according to `func`. Combine the Series and `other` using `func` to perform elementwise selection for combined Series. `fill_value` is assumed when value is missing at some index from one of the two objects being combined. Parameters ---------- other : Series or scalar The value(s) to be combined with the `Series`. func : function Function that takes two scalars as inputs and returns an element. fill_value : scalar, optional The value to assume when an index is missing from one Series or the other. The default specifies to use the appropriate NaN value for the underlying dtype of the Series. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine_first : Combine Series values, choosing the calling Series' values first. Examples -------- Consider 2 Datasets ``s1`` and ``s2`` containing highest clocked speeds of different birds. >>> s1 = pd.Series({'falcon': 330.0, 'eagle': 160.0}) >>> s1 falcon 330.0 eagle 160.0 dtype: float64 >>> s2 = pd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0}) >>> s2 falcon 345.0 eagle 200.0 duck 30.0 dtype: float64 Now, to combine the two datasets and view the highest speeds of the birds across the two datasets >>> s1.combine(s2, max) duck NaN eagle 200.0 falcon 345.0 dtype: float64 In the previous example, the resulting value for duck is missing, because the maximum of a NaN and a float is a NaN. So, in the example, we set ``fill_value=0``, so the maximum value returned will be the value from some dataset. >>> s1.combine(s2, max, fill_value=0) duck 30.0 eagle 200.0 falcon 345.0 dtype: float64 """ if fill_value is None: fill_value = na_value_for_dtype(self.dtype, compat=False) if isinstance(other, Series): # If other is a Series, result is based on union of Series, # so do this element by element new_index = self.index.union(other.index) new_name = ops.get_op_result_name(self, other) new_values = [] for idx in new_index: lv = self.get(idx, fill_value) rv = other.get(idx, fill_value) with np.errstate(all="ignore"): new_values.append(func(lv, rv)) else: # Assume that other is a scalar, so apply the function for # each element in the Series new_index = self.index with np.errstate(all="ignore"): new_values = [func(lv, other) for lv in self._values] new_name = self.name if is_categorical_dtype(self.dtype): pass elif is_extension_array_dtype(self.dtype): # TODO: can we do this for only SparseDtype? # The function can return something of any type, so check # if the type is compatible with the calling EA. new_values = maybe_cast_to_extension_array(type(self._values), new_values) return self._constructor(new_values, index=new_index, name=new_name) def combine_first(self, other) -> "Series": """ Combine Series values, choosing the calling Series's values first. Parameters ---------- other : Series The value(s) to be combined with the `Series`. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine : Perform elementwise operation on two Series using a given function. Notes ----- Result index will be the union of the two indexes. Examples -------- >>> s1 = pd.Series([1, np.nan]) >>> s2 = pd.Series([3, 4]) >>> s1.combine_first(s2) 0 1.0 1 4.0 dtype: float64 """ new_index = self.index.union(other.index) this = self.reindex(new_index, copy=False) other = other.reindex(new_index, copy=False) if this.dtype.kind == "M" and other.dtype.kind != "M": other = to_datetime(other) return this.where(notna(this), other) def update(self, other) -> None: """ Modify Series in place using non-NA values from passed Series. Aligns on index. Parameters ---------- other : Series Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = pd.Series(['a', 'b', 'c']) >>> s.update(pd.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If ``other`` contains NaNs the corresponding values are not updated in the original Series. >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, np.nan, 6])) >>> s 0 4 1 2 2 6 dtype: int64 """ other = other.reindex_like(self) mask = notna(other) self._mgr = self._mgr.putmask(mask=mask, new=other) self._maybe_update_cacher() # ---------------------------------------------------------------------- # Reindexing, sorting def sort_values( self, axis=0, ascending=True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", ignore_index: bool = False, ): """ Sort by the values. Sort a Series in ascending or descending order by some criterion. Parameters ---------- axis : {0 or 'index'}, default 0 Axis to direct sorting. The value 'index' is accepted for compatibility with DataFrame.sort_values. ascending : bool, default True If True, sort values in ascending order, otherwise descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. na_position : {'first' or 'last'}, default 'last' Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- Series Series ordered by values. See Also -------- Series.sort_index : Sort by the Series indices. DataFrame.sort_values : Sort DataFrame by the values along either axis. DataFrame.sort_index : Sort DataFrame by indices. Examples -------- >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 Sort values ascending order (default behaviour) >>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64 Sort values descending order >>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values inplace >>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values putting NAs first >>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64 Sort a series of strings >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object >>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) # GH 5856/5853 if inplace and self._is_cached: raise ValueError( "This Series is a view of some other array, to " "sort in-place you must create a copy" ) def _try_kind_sort(arr): # easier to ask forgiveness than permission try: # if kind==mergesort, it can fail for object dtype return arr.argsort(kind=kind) except TypeError: # stable sort not available for object dtype # uses the argsort default quicksort return arr.argsort(kind="quicksort") arr = self._values sorted_index = np.empty(len(self), dtype=np.int32) bad = isna(arr) good = ~bad idx = ibase.default_index(len(self)) argsorted = _try_kind_sort(arr[good]) if is_list_like(ascending): if len(ascending) != 1: raise ValueError( f"Length of ascending ({len(ascending)}) must be 1 for Series" ) ascending = ascending[0] if not is_bool(ascending): raise ValueError("ascending must be boolean") if not ascending: argsorted = argsorted[::-1] if na_position == "last": n = good.sum() sorted_index[:n] = idx[good][argsorted] sorted_index[n:] = idx[bad] elif na_position == "first": n = bad.sum() sorted_index[n:] = idx[good][argsorted] sorted_index[:n] = idx[bad] else: raise ValueError(f"invalid na_position: {na_position}") result = self._constructor(arr[sorted_index], index=self.index[sorted_index]) if ignore_index: result.index = ibase.default_index(len(sorted_index)) if inplace: self._update_inplace(result) else: return result.__finalize__(self, method="sort_values") def sort_index( self, axis=0, level=None, ascending: bool = True, inplace: bool = False, kind: str = "quicksort", na_position: str = "last", sort_remaining: bool = True, ignore_index: bool = False, ): """ Sort Series by index labels. Returns a new Series sorted by label if `inplace` argument is ``False``, otherwise updates the original series and returns None. Parameters ---------- axis : int, default 0 Axis to direct sorting. This can only be 0 for Series. level : int, optional If not None, sort on values in specified index level(s). ascending : bool or list of bools, default True Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. ignore_index : bool, default False If True, the resulting axis will be labeled 0, 1, …, n - 1. .. versionadded:: 1.0.0 Returns ------- Series The original Series sorted by the labels. See Also -------- DataFrame.sort_index: Sort DataFrame by the index. DataFrame.sort_values: Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4]) >>> s.sort_index() 1 c 2 b 3 a 4 d dtype: object Sort Descending >>> s.sort_index(ascending=False) 4 d 3 a 2 b 1 c dtype: object Sort Inplace >>> s.sort_index(inplace=True) >>> s 1 c 2 b 3 a 4 d dtype: object By default NaNs are put at the end, but use `na_position` to place them at the beginning >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan]) >>> s.sort_index(na_position='first') NaN d 1.0 c 2.0 b 3.0 a dtype: object Specify index level to sort >>> arrays = [np.array(['qux', 'qux', 'foo', 'foo', ... 'baz', 'baz', 'bar', 'bar']), ... np.array(['two', 'one', 'two', 'one', ... 'two', 'one', 'two', 'one'])] >>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays) >>> s.sort_index(level=1) bar one 8 baz one 6 foo one 4 qux one 2 bar two 7 baz two 5 foo two 3 qux two 1 dtype: int64 Does not sort by remaining levels when sorting by levels >>> s.sort_index(level=1, sort_remaining=False) qux one 2 foo one 4 baz one 6 bar one 8 qux two 1 foo two 3 baz two 5 bar two 7 dtype: int64 """ # TODO: this can be combined with DataFrame.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) index = self.index if level is not None: new_index, indexer = index.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(index, MultiIndex): from pandas.core.sorting import lexsort_indexer labels = index._sort_levels_monotonic() indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and index.is_monotonic_increasing) or ( not ascending and index.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( index, kind=kind, ascending=ascending, na_position=na_position ) indexer = ensure_platform_int(indexer) new_index = index.take(indexer) new_index = new_index._sort_levels_monotonic() new_values = self._values.take(indexer) result = self._constructor(new_values, index=new_index) if ignore_index: result.index = ibase.default_index(len(result)) if inplace: self._update_inplace(result) else: return result.__finalize__(self, method="sort_index") def argsort(self, axis=0, kind="quicksort", order=None) -> "Series": """ Override ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values. Parameters ---------- axis : {0 or "index"} Has no effect but is accepted for compatibility with numpy. kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See np.sort for more information. 'mergesort' is the only stable algorithm. order : None Has no effect but is accepted for compatibility with numpy. Returns ------- Series Positions of values within the sort order with -1 indicating nan values. See Also -------- numpy.ndarray.argsort : Returns the indices that would sort this array. """ values = self._values mask = isna(values) if mask.any(): result = Series(-1, index=self.index, name=self.name, dtype="int64") notmask = ~mask result[notmask] = np.argsort(values[notmask], kind=kind) return self._constructor(result, index=self.index).__finalize__( self, method="argsort" ) else: return self._constructor( np.argsort(values, kind=kind), index=self.index, dtype="int64" ).__finalize__(self, method="argsort") def nlargest(self, n=5, keep="first") -> "Series": """ Return the largest `n` elements. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. See Also -------- Series.nsmallest: Get the `n` smallest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest() def nsmallest(self, n=5, keep="first") -> "Series": """ Return the smallest `n` elements. Parameters ---------- n : int, default 5 Return this many ascending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` smallest values in the Series, sorted in increasing order. See Also -------- Series.nlargest: Get the `n` largest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Brunei": 434000, "Malta": 434000, ... "Maldives": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Brunei 434000 Malta 434000 Maldives 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` smallest elements where ``n=5`` by default. >>> s.nsmallest() Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 Iceland 337000 dtype: int64 The `n` smallest elements where ``n=3``. Default `keep` value is 'first' so Nauru and Tuvalu will be kept. >>> s.nsmallest(3) Monserat 5200 Nauru 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` and keeping the last duplicates. Anguilla and Tuvalu will be kept since they are the last with value 11300 based on the index order. >>> s.nsmallest(3, keep='last') Monserat 5200 Anguilla 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` with all duplicates kept. Note that the returned Series has four elements due to the three duplicates. >>> s.nsmallest(3, keep='all') Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest() def swaplevel(self, i=-2, j=-1, copy=True) -> "Series": """ Swap levels i and j in a :class:`MultiIndex`. Default is to swap the two innermost levels of the index. Parameters ---------- i, j : int, str Level of the indices to be swapped. Can pass level name as string. copy : bool, default True Whether to copy underlying data. Returns ------- Series Series with levels swapped in MultiIndex. """ assert isinstance(self.index, ABCMultiIndex) new_index = self.index.swaplevel(i, j) return self._constructor(self._values, index=new_index, copy=copy).__finalize__( self, method="swaplevel" ) def reorder_levels(self, order) -> "Series": """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int representing new level order Reference level by number or key. Returns ------- type of caller (new object) """ if not isinstance(self.index, MultiIndex): # pragma: no cover raise Exception("Can only reorder levels on a hierarchical axis.") result = self.copy() assert isinstance(result.index, ABCMultiIndex) result.index = result.index.reorder_levels(order) return result def explode(self) -> "Series": """ Transform each element of a list-like to a row, replicating the index values. .. versionadded:: 0.25.0 Returns ------- Series Exploded lists to rows; index will be duplicated for these rows. See Also -------- Series.str.split : Split string values on specified separator. Series.unstack : Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. DataFrame.melt : Unpivot a DataFrame from wide format to long format. DataFrame.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> s = pd.Series([[1, 2, 3], 'foo', [], [3, 4]]) >>> s 0 [1, 2, 3] 1 foo 2 [] 3 [3, 4] dtype: object >>> s.explode() 0 1 0 2 0 3 1 foo 2 NaN 3 3 3 4 dtype: object """ if not len(self) or not is_object_dtype(self): return self.copy() values, counts = reshape.explode(np.asarray(self.array)) result = Series(values, index=self.index.repeat(counts), name=self.name) return result def unstack(self, level=-1, fill_value=None): """ Unstack, also known as pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted. Parameters ---------- level : int, str, or list of these, default last level Level(s) to unstack, can pass level name. fill_value : scalar value, default None Value to use when replacing NaN values. Returns ------- DataFrame Unstacked Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4], ... index=pd.MultiIndex.from_product([['one', 'two'], ... ['a', 'b']])) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) # ---------------------------------------------------------------------- # function application def map(self, arg, na_action=None) -> "Series": """ Map values of Series according to input correspondence. Used for substituting each value in a Series with another value, that may be derived from a function, a ``dict`` or a :class:`Series`. Parameters ---------- arg : function, collections.abc.Mapping subclass or Series Mapping correspondence. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to the mapping correspondence. Returns ------- Series Same index as caller. See Also -------- Series.apply : For applying more complex functions on a Series. DataFrame.apply : Apply a function row-/column-wise. DataFrame.applymap : Apply a function elementwise on a whole DataFrame. Notes ----- When ``arg`` is a dictionary, values in Series that are not in the dictionary (as keys) are converted to ``NaN``. However, if the dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e. provides a method for default values), then this default is used rather than ``NaN``. Examples -------- >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object ``map`` accepts a ``dict`` or a ``Series``. Values that are not found in the ``dict`` are converted to ``NaN``, unless the dict has a default value (e.g. ``defaultdict``): >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object It also accepts a function: >>> s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object To avoid applying the function to missing values (and keep them as ``NaN``) ``na_action='ignore'`` can be used: >>> s.map('I am a {}'.format, na_action='ignore') 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object """ new_values = super()._map_values(arg, na_action=na_action) return self._constructor(new_values, index=self.index).__finalize__( self, method="map" ) def _gotitem(self, key, ndim, subset=None) -> "Series": """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 Requested ndim of result. subset : object, default None Subset to act on. """ return self _agg_see_also_doc = dedent( """ See Also -------- Series.apply : Invoke function on a Series. Series.transform : Transform function producing a Series with like indexes. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs, ) @Appender(generic._shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) result, how = self._aggregate(func, *args, **kwargs) if result is None: # we can be called from an inner function which # passes this meta-data kwargs.pop("_axis", None) kwargs.pop("_level", None) # try a regular apply, this evaluates lambdas # row-by-row; however if the lambda is expected a Series # expression, e.g.: lambda x: x-x.quantile(0.25) # this will fail, so we can try a vectorized evaluation # we cannot FIRST try the vectorized evaluation, because # then .agg and .apply would have different semantics if the # operation is actually defined on the Series, e.g. str try: result = self.apply(func, *args, **kwargs) except (ValueError, AttributeError, TypeError): result = func(self, *args, **kwargs) return result agg = aggregate @Appender(generic._shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) return super().transform(func, *args, **kwargs) def apply(self, func, convert_dtype=True, args=(), **kwds): """ Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values. Parameters ---------- func : function Python function or NumPy ufunc to apply. convert_dtype : bool, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. args : tuple Positional arguments passed to func after the series value. **kwds Additional keyword arguments passed to func. Returns ------- Series or DataFrame If func returns a Series object the result will be a DataFrame. See Also -------- Series.map: For element-wise operations. Series.agg: Only perform aggregating type operations. Series.transform: Only perform transforming type operations. Examples -------- Create a series with typical summer temperatures for each city. >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply()``. >>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply()``. >>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64 """ if len(self) == 0: return self._constructor(dtype=self.dtype, index=self.index).__finalize__( self, method="apply" ) # dispatch to agg if isinstance(func, (list, dict)): return self.aggregate(func, *args, **kwds) # if we are a string, try to dispatch if isinstance(func, str): return self._try_aggregate_string_function(func, *args, **kwds) # handle ufuncs and lambdas if kwds or args and not isinstance(func, np.ufunc): def f(x): return func(x, *args, **kwds) else: f = func with np.errstate(all="ignore"): if isinstance(f, np.ufunc): return f(self) # row-wise access if is_extension_array_dtype(self.dtype) and hasattr(self._values, "map"): # GH#23179 some EAs do not have `map` mapped = self._values.map(f) else: values = self.astype(object)._values mapped = lib.map_infer(values, f, convert=convert_dtype) if len(mapped) and isinstance(mapped[0], Series): # GH 25959 use pd.array instead of tolist # so extension arrays can be used return self._constructor_expanddim(pd.array(mapped), index=self.index) else: return self._constructor(mapped, index=self.index).__finalize__( self, method="apply" ) def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): """ Perform a reduction operation. If we have an ndarray as a value, then simply perform the operation, otherwise delegate to the object. """ delegate = self._values if axis is not None: self._get_axis_number(axis) if isinstance(delegate, ExtensionArray): # dispatch to ExtensionArray interface return delegate._reduce(name, skipna=skipna, **kwds) else: # dispatch to numpy arrays if numeric_only: raise NotImplementedError( f"Series.{name} does not implement numeric_only." ) with np.errstate(all="ignore"): return op(delegate, skipna=skipna, **kwds) def _reindex_indexer(self, new_index, indexer, copy): if indexer is None: if copy: return self.copy() return self new_values = algorithms.take_1d( self._values, indexer, allow_fill=True, fill_value=None ) return self._constructor(new_values, index=new_index) def _needs_reindex_multi(self, axes, method, level): """ Check if we do need a multi reindex; this is for compat with higher dims. """ return False @doc(NDFrame.align, **_shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) def rename( self, index=None, *, axis=None, copy=True, inplace=False, level=None, errors="ignore", ): """ Alter Series index labels or name. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- axis : {0 or "index"} Unused. Accepted for compatibility with DataFrame method only. index : scalar, hashable sequence, dict-like or function, optional Functions or dict-like are transformations to apply to the index. Scalar or hashable sequence-like will alter the ``Series.name`` attribute. **kwargs Additional keyword arguments passed to the function. Only the "inplace" keyword is used. Returns ------- Series Series with index labels or name altered. See Also -------- DataFrame.rename : Corresponding DataFrame method. Series.rename_axis : Set the name of the axis. Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 """ if callable(index) or is_dict_like(index): return super().rename( index, copy=copy, inplace=inplace, level=level, errors=errors ) else: return self._set_name(index, inplace=inplace) @Appender( """ Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.set_axis(['a', 'b', 'c'], axis=0) a 1 b 2 c 3 dtype: int64 """ ) @Substitution( **_shared_doc_kwargs, extended_summary_sub="", axis_description_sub="", see_also_sub="", ) @Appender(generic.NDFrame.set_axis.__doc__) def set_axis(self, labels, axis: Axis = 0, inplace: bool = False): return super().set_axis(labels, axis=axis, inplace=inplace) @Substitution(**_shared_doc_kwargs) @Appender(generic.NDFrame.reindex.__doc__) def reindex(self, index=None, **kwargs): return super().reindex(index=index, **kwargs) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ) -> "Series": """ Return Series with specified index labels removed. Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index labels to drop. axis : 0, default 0 Redundant for application on Series. index : single label or list-like Redundant for application on Series, but 'index' can be used instead of 'labels'. columns : single label or list-like No change is made to the Series; use 'index' or 'labels' instead. level : int or level name, optional For MultiIndex, level for which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- Series Series with specified index labels removed. Raises ------ KeyError If none of the labels are found in the index. See Also -------- Series.reindex : Return only specified index labels of Series. Series.dropna : Return series without null values. Series.drop_duplicates : Return Series with duplicate values removed. DataFrame.drop : Drop specified labels from rows or columns. Examples -------- >>> s = pd.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: int64 Drop labels B en C >>> s.drop(labels=['B', 'C']) A 0 dtype: int64 Drop 2nd level label in MultiIndex Series >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s lama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64 >>> s.drop(labels='weight', level=1) lama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @doc(NDFrame.fillna, **_shared_doc_kwargs) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, ) -> Optional["Series"]: return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, ) @doc(NDFrame.replace, **_shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @doc(NDFrame.shift, **_shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None) -> "Series": return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def memory_usage(self, index=True, deep=False): """ Return the memory usage of the Series. The memory usage can optionally include the contribution of the index and of elements of `object` dtype. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the Series index. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned value. Returns ------- int Bytes of memory consumed. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. DataFrame.memory_usage : Bytes consumed by a DataFrame. Examples -------- >>> s = pd.Series(range(3)) >>> s.memory_usage() 152 Not including the index gives the size of the rest of the data, which is necessarily smaller: >>> s.memory_usage(index=False) 24 The memory footprint of `object` values is ignored by default: >>> s = pd.Series(["a", "b"]) >>> s.values array(['a', 'b'], dtype=object) >>> s.memory_usage() 144 >>> s.memory_usage(deep=True) 260 """ v = super().memory_usage(deep=deep) if index: v += self.index.memory_usage(deep=deep) return v def isin(self, values) -> "Series": """ Check whether `values` are contained in Series. Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- Series Series of booleans indicating if each element is in values. Raises ------ TypeError * If `values` is a string See Also -------- DataFrame.isin : Equivalent method on DataFrame. Examples -------- >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool """ result = algorithms.isin(self, values) return self._constructor(result, index=self.index).__finalize__( self, method="isin" ) def between(self, left, right, inclusive=True) -> "Series": """ Return boolean Series equivalent to left <= series <= right. This function returns a boolean vector containing `True` wherever the corresponding Series element is between the boundary values `left` and `right`. NA values are treated as `False`. Parameters ---------- left : scalar or list-like Left boundary. right : scalar or list-like Right boundary. inclusive : bool, default True Include boundaries. Returns ------- Series Series representing whether each element is between left and right (inclusive). See Also -------- Series.gt : Greater than of series and other. Series.lt : Less than of series and other. Notes ----- This function is equivalent to ``(left <= ser) & (ser <= right)`` Examples -------- >>> s = pd.Series([2, 0, 4, 8, np.nan]) Boundary values are included by default: >>> s.between(1, 4) 0 True 1 False 2 True 3 False 4 False dtype: bool With `inclusive` set to ``False`` boundary values are excluded: >>> s.between(1, 4, inclusive=False) 0 True 1 False 2 False 3 False 4 False dtype: bool `left` and `right` can be any scalar value: >>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve']) >>> s.between('Anna', 'Daniel') 0 False 1 True 2 True 3 False dtype: bool """ if inclusive: lmask = self >= left rmask = self <= right else: lmask = self > left rmask = self < right return lmask & rmask # ---------------------------------------------------------------------- # Convert to types that support pd.NA def _convert_dtypes( self, infer_objects: bool = True, convert_string: bool = True, convert_integer: bool = True, convert_boolean: bool = True, ) -> "Series": input_series = self if infer_objects: input_series = input_series.infer_objects() if is_object_dtype(input_series): input_series = input_series.copy() if convert_string or convert_integer or convert_boolean: inferred_dtype = convert_dtypes( input_series._values, convert_string, convert_integer, convert_boolean ) try: result = input_series.astype(inferred_dtype) except TypeError: result = input_series.copy() else: result = input_series.copy() return result @Appender(generic._shared_docs["isna"] % _shared_doc_kwargs) def isna(self) -> "Series": return super().isna() @Appender(generic._shared_docs["isna"] % _shared_doc_kwargs) def isnull(self) -> "Series": return super().isnull() @Appender(generic._shared_docs["notna"] % _shared_doc_kwargs) def notna(self) -> "Series": return super().notna() @Appender(generic._shared_docs["notna"] % _shared_doc_kwargs) def notnull(self) -> "Series": return super().notnull() def dropna(self, axis=0, inplace=False, how=None): """ Return a new Series with missing values removed. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index'}, default 0 There is only one axis to drop values from. inplace : bool, default False If True, do operation inplace and return None. how : str, optional Not in use. Kept for compatibility. Returns ------- Series Series with NA entries dropped from it. See Also -------- Series.isna: Indicate missing values. Series.notna : Indicate existing (non-missing) values. Series.fillna : Replace missing values. DataFrame.dropna : Drop rows or columns which contain NA values. Index.dropna : Drop missing indices. Examples -------- >>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 Drop NA values from a Series. >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 Keep the Series with valid entries in the same variable. >>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64 Empty strings are not considered NA values. ``None`` is considered an NA value. >>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis or 0) if self._can_hold_na: result = remove_na_arraylike(self) if inplace: self._update_inplace(result) else: return result else: if inplace: # do nothing pass else: return self.copy() # ---------------------------------------------------------------------- # Time series-oriented methods def to_timestamp(self, freq=None, how="start", copy=True) -> "Series": """ Cast to DatetimeIndex of Timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. copy : bool, default True Whether or not to return a copy. Returns ------- Series with DatetimeIndex """ new_values = self._values if copy: new_values = new_values.copy() assert isinstance(self.index, (ABCDatetimeIndex, ABCPeriodIndex)) new_index = self.index.to_timestamp(freq=freq, how=how) return self._constructor(new_values, index=new_index).__finalize__( self, method="to_timestamp" ) def to_period(self, freq=None, copy=True) -> "Series": """ Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default None Frequency associated with the PeriodIndex. copy : bool, default True Whether or not to return a copy. Returns ------- Series Series with index converted to PeriodIndex. """ new_values = self._values if copy: new_values = new_values.copy() assert isinstance(self.index, ABCDatetimeIndex) new_index = self.index.to_period(freq=freq) return self._constructor(new_values, index=new_index).__finalize__( self, method="to_period" ) # ---------------------------------------------------------------------- # Add index _AXIS_ORDERS = ["index"] _AXIS_NUMBERS = {"index": 0} _AXIS_NAMES = {0: "index"} _AXIS_REVERSED = False _AXIS_LEN = len(_AXIS_ORDERS) _info_axis_number = 0 _info_axis_name = "index" index: "Index" = properties.AxisProperty( axis=0, doc="The index (axis labels) of the Series." ) # ---------------------------------------------------------------------- # Accessor Methods # ---------------------------------------------------------------------- str = CachedAccessor("str", StringMethods) dt = CachedAccessor("dt", CombinedDatetimelikeProperties) cat = CachedAccessor("cat", CategoricalAccessor) plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) sparse = CachedAccessor("sparse", SparseAccessor) # ---------------------------------------------------------------------- # Add plotting methods to Series hist = pandas.plotting.hist_series Series._add_numeric_operations() Series._add_series_or_dataframe_operations() # Add arithmetic! ops.add_flex_arithmetic_methods(Series) ops.add_special_arithmetic_methods(Series)
BugsInPy/BugsInPy/temp/projects/pandas/bug-21-fixed/pandas/pandas/core/series.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-21-buggy/pandas/pandas/core/series.py
pandas-bug-124
import codecs from functools import wraps import re import textwrap from typing import Dict, List import warnings import numpy as np import pandas._libs.lib as lib import pandas._libs.ops as libops from pandas.util._decorators import Appender, deprecate_kwarg from pandas.core.dtypes.common import ( ensure_object, is_bool_dtype, is_categorical_dtype, is_integer, is_list_like, is_re, is_scalar, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna from pandas.core.algorithms import take_1d from pandas.core.base import NoNewAttributesMixin import pandas.core.common as com _cpython_optimized_encoders = ( "utf-8", "utf8", "latin-1", "latin1", "iso-8859-1", "mbcs", "ascii", ) _cpython_optimized_decoders = _cpython_optimized_encoders + ("utf-16", "utf-32") _shared_docs = dict() # type: Dict[str, str] def cat_core(list_of_columns: List, sep: str): """ Auxiliary function for :meth:`str.cat` Parameters ---------- list_of_columns : list of numpy arrays List of arrays to be concatenated with sep; these arrays may not contain NaNs! sep : string The separator string for concatenating the columns. Returns ------- nd.array The concatenation of list_of_columns with sep. """ if sep == "": # no need to interleave sep if it is empty return np.sum(list_of_columns, axis=0) list_with_sep = [sep] * (2 * len(list_of_columns) - 1) list_with_sep[::2] = list_of_columns return np.sum(list_with_sep, axis=0) def cat_safe(list_of_columns: List, sep: str): """ Auxiliary function for :meth:`str.cat`. Same signature as cat_core, but handles TypeErrors in concatenation, which happen if the arrays in list_of columns have the wrong dtypes or content. Parameters ---------- list_of_columns : list of numpy arrays List of arrays to be concatenated with sep; these arrays may not contain NaNs! sep : string The separator string for concatenating the columns. Returns ------- nd.array The concatenation of list_of_columns with sep. """ try: result = cat_core(list_of_columns, sep) except TypeError: # if there are any non-string values (wrong dtype or hidden behind # object dtype), np.sum will fail; catch and return with better message for column in list_of_columns: dtype = lib.infer_dtype(column, skipna=True) if dtype not in ["string", "empty"]: raise TypeError( "Concatenation requires list-likes containing only " "strings (or missing values). Offending values found in " "column {}".format(dtype) ) from None return result def _na_map(f, arr, na_result=np.nan, dtype=object): # should really _check_ for NA return _map(f, arr, na_mask=True, na_value=na_result, dtype=dtype) def _map(f, arr, na_mask=False, na_value=np.nan, dtype=object): if not len(arr): return np.ndarray(0, dtype=dtype) if isinstance(arr, ABCSeries): arr = arr.values if not isinstance(arr, np.ndarray): arr = np.asarray(arr, dtype=object) if na_mask: mask = isna(arr) convert = not np.all(mask) try: result = lib.map_infer_mask(arr, f, mask.view(np.uint8), convert) except (TypeError, AttributeError) as e: # Reraise the exception if callable `f` got wrong number of args. # The user may want to be warned by this, instead of getting NaN p_err = ( r"((takes)|(missing)) (?(2)from \d+ to )?\d+ " r"(?(3)required )positional arguments?" ) if len(e.args) >= 1 and re.search(p_err, e.args[0]): # FIXME: this should be totally avoidable raise e def g(x): try: return f(x) except (TypeError, AttributeError): return na_value return _map(g, arr, dtype=dtype) if na_value is not np.nan: np.putmask(result, mask, na_value) if result.dtype == object: result = lib.maybe_convert_objects(result) return result else: return lib.map_infer(arr, f) def str_count(arr, pat, flags=0): """ Count occurrences of pattern in each string of the Series/Index. This function is used to count the number of times a particular regex pattern is repeated in each of the string elements of the :class:`~pandas.Series`. Parameters ---------- pat : str Valid regular expression. flags : int, default 0, meaning no flags Flags for the `re` module. For a complete list, `see here <https://docs.python.org/3/howto/regex.html#compilation-flags>`_. **kwargs For compatibility with other string methods. Not used. Returns ------- Series or Index Same type as the calling object containing the integer counts. See Also -------- re : Standard library module for regular expressions. str.count : Standard library version, without regular expression support. Notes ----- Some characters need to be escaped when passing in `pat`. eg. ``'$'`` has a special meaning in regex and must be escaped when finding this literal character. Examples -------- >>> s = pd.Series(['A', 'B', 'Aaba', 'Baca', np.nan, 'CABA', 'cat']) >>> s.str.count('a') 0 0.0 1 0.0 2 2.0 3 2.0 4 NaN 5 0.0 6 1.0 dtype: float64 Escape ``'$'`` to find the literal dollar sign. >>> s = pd.Series(['$', 'B', 'Aab$', '$$ca', 'C$B$', 'cat']) >>> s.str.count('\\$') 0 1 1 0 2 1 3 2 4 2 5 0 dtype: int64 This is also available on Index >>> pd.Index(['A', 'A', 'Aaba', 'cat']).str.count('a') Int64Index([0, 0, 2, 1], dtype='int64') """ regex = re.compile(pat, flags=flags) f = lambda x: len(regex.findall(x)) return _na_map(f, arr, dtype=int) def str_contains(arr, pat, case=True, flags=0, na=np.nan, regex=True): """ Test if pattern or regex is contained within a string of a Series or Index. Return boolean Series or Index based on whether a given pattern or regex is contained within a string of a Series or Index. Parameters ---------- pat : str Character sequence or regular expression. case : bool, default True If True, case sensitive. flags : int, default 0 (no flags) Flags to pass through to the re module, e.g. re.IGNORECASE. na : default NaN Fill value for missing values. regex : bool, default True If True, assumes the pat is a regular expression. If False, treats the pat as a literal string. Returns ------- Series or Index of boolean values A Series or Index of boolean values indicating whether the given pattern is contained within the string of each element of the Series or Index. See Also -------- match : Analogous, but stricter, relying on re.match instead of re.search. Series.str.startswith : Test if the start of each string element matches a pattern. Series.str.endswith : Same as startswith, but tests the end of string. Examples -------- Returning a Series of booleans using only a literal pattern. >>> s1 = pd.Series(['Mouse', 'dog', 'house and parrot', '23', np.NaN]) >>> s1.str.contains('og', regex=False) 0 False 1 True 2 False 3 False 4 NaN dtype: object Returning an Index of booleans using only a literal pattern. >>> ind = pd.Index(['Mouse', 'dog', 'house and parrot', '23.0', np.NaN]) >>> ind.str.contains('23', regex=False) Index([False, False, False, True, nan], dtype='object') Specifying case sensitivity using `case`. >>> s1.str.contains('oG', case=True, regex=True) 0 False 1 False 2 False 3 False 4 NaN dtype: object Specifying `na` to be `False` instead of `NaN` replaces NaN values with `False`. If Series or Index does not contain NaN values the resultant dtype will be `bool`, otherwise, an `object` dtype. >>> s1.str.contains('og', na=False, regex=True) 0 False 1 True 2 False 3 False 4 False dtype: bool Returning 'house' or 'dog' when either expression occurs in a string. >>> s1.str.contains('house|dog', regex=True) 0 False 1 True 2 True 3 False 4 NaN dtype: object Ignoring case sensitivity using `flags` with regex. >>> import re >>> s1.str.contains('PARROT', flags=re.IGNORECASE, regex=True) 0 False 1 False 2 True 3 False 4 NaN dtype: object Returning any digit using regular expression. >>> s1.str.contains('\\d', regex=True) 0 False 1 False 2 False 3 True 4 NaN dtype: object Ensure `pat` is a not a literal pattern when `regex` is set to True. Note in the following example one might expect only `s2[1]` and `s2[3]` to return `True`. However, '.0' as a regex matches any character followed by a 0. >>> s2 = pd.Series(['40', '40.0', '41', '41.0', '35']) >>> s2.str.contains('.0', regex=True) 0 True 1 True 2 False 3 True 4 False dtype: bool """ if regex: if not case: flags |= re.IGNORECASE regex = re.compile(pat, flags=flags) if regex.groups > 0: warnings.warn( "This pattern has match groups. To actually get the" " groups, use str.extract.", UserWarning, stacklevel=3, ) f = lambda x: bool(regex.search(x)) else: if case: f = lambda x: pat in x else: upper_pat = pat.upper() f = lambda x: upper_pat in x uppered = _na_map(lambda x: x.upper(), arr) return _na_map(f, uppered, na, dtype=bool) return _na_map(f, arr, na, dtype=bool) def str_startswith(arr, pat, na=np.nan): """ Test if the start of each string element matches a pattern. Equivalent to :meth:`str.startswith`. Parameters ---------- pat : str Character sequence. Regular expressions are not accepted. na : object, default NaN Object shown if element tested is not a string. Returns ------- Series or Index of bool A Series of booleans indicating whether the given pattern matches the start of each string element. See Also -------- str.startswith : Python standard library string method. Series.str.endswith : Same as startswith, but tests the end of string. Series.str.contains : Tests if string element contains a pattern. Examples -------- >>> s = pd.Series(['bat', 'Bear', 'cat', np.nan]) >>> s 0 bat 1 Bear 2 cat 3 NaN dtype: object >>> s.str.startswith('b') 0 True 1 False 2 False 3 NaN dtype: object Specifying `na` to be `False` instead of `NaN`. >>> s.str.startswith('b', na=False) 0 True 1 False 2 False 3 False dtype: bool """ f = lambda x: x.startswith(pat) return _na_map(f, arr, na, dtype=bool) def str_endswith(arr, pat, na=np.nan): """ Test if the end of each string element matches a pattern. Equivalent to :meth:`str.endswith`. Parameters ---------- pat : str Character sequence. Regular expressions are not accepted. na : object, default NaN Object shown if element tested is not a string. Returns ------- Series or Index of bool A Series of booleans indicating whether the given pattern matches the end of each string element. See Also -------- str.endswith : Python standard library string method. Series.str.startswith : Same as endswith, but tests the start of string. Series.str.contains : Tests if string element contains a pattern. Examples -------- >>> s = pd.Series(['bat', 'bear', 'caT', np.nan]) >>> s 0 bat 1 bear 2 caT 3 NaN dtype: object >>> s.str.endswith('t') 0 True 1 False 2 False 3 NaN dtype: object Specifying `na` to be `False` instead of `NaN`. >>> s.str.endswith('t', na=False) 0 True 1 False 2 False 3 False dtype: bool """ f = lambda x: x.endswith(pat) return _na_map(f, arr, na, dtype=bool) def str_replace(arr, pat, repl, n=-1, case=None, flags=0, regex=True): r""" Replace occurrences of pattern/regex in the Series/Index with some other string. Equivalent to :meth:`str.replace` or :func:`re.sub`. Parameters ---------- pat : str or compiled regex String can be a character sequence or regular expression. repl : str or callable Replacement string or a callable. The callable is passed the regex match object and must return a replacement string to be used. See :func:`re.sub`. n : int, default -1 (all) Number of replacements to make from start. case : bool, default None Determines if replace is case sensitive: - If True, case sensitive (the default if `pat` is a string) - Set to False for case insensitive - Cannot be set if `pat` is a compiled regex. flags : int, default 0 (no flags) Regex module flags, e.g. re.IGNORECASE. Cannot be set if `pat` is a compiled regex. regex : bool, default True Determines if assumes the passed-in pattern is a regular expression: - If True, assumes the passed-in pattern is a regular expression. - If False, treats the pattern as a literal string - Cannot be set to False if `pat` is a compiled regex or `repl` is a callable. .. versionadded:: 0.23.0 Returns ------- Series or Index of object A copy of the object with all matching occurrences of `pat` replaced by `repl`. Raises ------ ValueError * if `regex` is False and `repl` is a callable or `pat` is a compiled regex * if `pat` is a compiled regex and `case` or `flags` is set Notes ----- When `pat` is a compiled regex, all flags should be included in the compiled regex. Use of `case`, `flags`, or `regex=False` with a compiled regex will raise an error. Examples -------- When `pat` is a string and `regex` is True (the default), the given `pat` is compiled as a regex. When `repl` is a string, it replaces matching regex patterns as with :meth:`re.sub`. NaN value(s) in the Series are left as is: >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f.', 'ba', regex=True) 0 bao 1 baz 2 NaN dtype: object When `pat` is a string and `regex` is False, every `pat` is replaced with `repl` as with :meth:`str.replace`: >>> pd.Series(['f.o', 'fuz', np.nan]).str.replace('f.', 'ba', regex=False) 0 bao 1 fuz 2 NaN dtype: object When `repl` is a callable, it is called on every `pat` using :func:`re.sub`. The callable should expect one positional argument (a regex object) and return a string. To get the idea: >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', repr) 0 <_sre.SRE_Match object; span=(0, 1), match='f'>oo 1 <_sre.SRE_Match object; span=(0, 1), match='f'>uz 2 NaN dtype: object Reverse every lowercase alphabetic word: >>> repl = lambda m: m.group(0)[::-1] >>> pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(r'[a-z]+', repl) 0 oof 123 1 rab zab 2 NaN dtype: object Using regex groups (extract second group and swap case): >>> pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)" >>> repl = lambda m: m.group('two').swapcase() >>> pd.Series(['One Two Three', 'Foo Bar Baz']).str.replace(pat, repl) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') 0 foo 1 bar 2 NaN dtype: object """ # Check whether repl is valid (GH 13438, GH 15055) if not (isinstance(repl, str) or callable(repl)): raise TypeError("repl must be a string or callable") is_compiled_re = is_re(pat) if regex: if is_compiled_re: if (case is not None) or (flags != 0): raise ValueError( "case and flags cannot be set when pat is a compiled regex" ) else: # not a compiled regex # set default case if case is None: case = True # add case flag, if provided if case is False: flags |= re.IGNORECASE if is_compiled_re or len(pat) > 1 or flags or callable(repl): n = n if n >= 0 else 0 compiled = re.compile(pat, flags=flags) f = lambda x: compiled.sub(repl=repl, string=x, count=n) else: f = lambda x: x.replace(pat, repl, n) else: if is_compiled_re: raise ValueError( "Cannot use a compiled regex as replacement pattern with regex=False" ) if callable(repl): raise ValueError("Cannot use a callable replacement when regex=False") f = lambda x: x.replace(pat, repl, n) return _na_map(f, arr) def str_repeat(arr, repeats): """ Duplicate each string in the Series or Index. Parameters ---------- repeats : int or sequence of int Same value for all (int) or different value per (sequence). Returns ------- Series or Index of object Series or Index of repeated string objects specified by input parameter repeats. Examples -------- >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object Single int repeats string in Series >>> s.str.repeat(repeats=2) 0 aa 1 bb 2 cc dtype: object Sequence of int repeats corresponding string in Series >>> s.str.repeat(repeats=[1, 2, 3]) 0 a 1 bb 2 ccc dtype: object """ if is_scalar(repeats): def scalar_rep(x): try: return bytes.__mul__(x, repeats) except TypeError: return str.__mul__(x, repeats) return _na_map(scalar_rep, arr) else: def rep(x, r): try: return bytes.__mul__(x, r) except TypeError: return str.__mul__(x, r) repeats = np.asarray(repeats, dtype=object) result = libops.vec_binop(com.values_from_object(arr), repeats, rep) return result def str_match(arr, pat, case=True, flags=0, na=np.nan): """ Determine if each string matches a regular expression. Parameters ---------- pat : str Character sequence or regular expression. case : bool, default True If True, case sensitive. flags : int, default 0 (no flags) Regex module flags, e.g. re.IGNORECASE. na : default NaN Fill value for missing values. Returns ------- Series/array of boolean values See Also -------- contains : Analogous, but less strict, relying on re.search instead of re.match. extract : Extract matched groups. """ if not case: flags |= re.IGNORECASE regex = re.compile(pat, flags=flags) dtype = bool f = lambda x: bool(regex.match(x)) return _na_map(f, arr, na, dtype=dtype) def _get_single_group_name(rx): try: return list(rx.groupindex.keys()).pop() except IndexError: return None def _groups_or_na_fun(regex): """Used in both extract_noexpand and extract_frame""" if regex.groups == 0: raise ValueError("pattern contains no capture groups") empty_row = [np.nan] * regex.groups def f(x): if not isinstance(x, str): return empty_row m = regex.search(x) if m: return [np.nan if item is None else item for item in m.groups()] else: return empty_row return f def _result_dtype(arr): # workaround #27953 # ideally we just pass `dtype=arr.dtype` unconditionally, but this fails # when the list of values is empty. if arr.dtype.name == "string": return "string" else: return object def _str_extract_noexpand(arr, pat, flags=0): """ Find groups in each string in the Series using passed regular expression. This function is called from str_extract(expand=False), and can return Series, DataFrame, or Index. """ from pandas import DataFrame regex = re.compile(pat, flags=flags) groups_or_na = _groups_or_na_fun(regex) if regex.groups == 1: result = np.array([groups_or_na(val)[0] for val in arr], dtype=object) name = _get_single_group_name(regex) else: if isinstance(arr, ABCIndexClass): raise ValueError("only one regex group is supported with Index") name = None names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] if arr.empty: result = DataFrame(columns=columns, dtype=object) else: result = DataFrame( [groups_or_na(val) for val in arr], columns=columns, index=arr.index, dtype=object, ) return result, name def _str_extract_frame(arr, pat, flags=0): """ For each subject string in the Series, extract groups from the first match of regular expression pat. This function is called from str_extract(expand=True), and always returns a DataFrame. """ from pandas import DataFrame regex = re.compile(pat, flags=flags) groups_or_na = _groups_or_na_fun(regex) names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] if len(arr) == 0: return DataFrame(columns=columns, dtype=object) try: result_index = arr.index except AttributeError: result_index = None dtype = _result_dtype(arr) return DataFrame( [groups_or_na(val) for val in arr], columns=columns, index=result_index, dtype=dtype, ) def str_extract(arr, pat, flags=0, expand=True): r""" Extract capture groups in the regex `pat` as columns in a DataFrame. For each subject string in the Series, extract groups from the first match of regular expression `pat`. Parameters ---------- pat : str Regular expression pattern with capturing groups. flags : int, default 0 (no flags) Flags from the ``re`` module, e.g. ``re.IGNORECASE``, that modify regular expression matching for things like case, spaces, etc. For more details, see :mod:`re`. expand : bool, default True If True, return DataFrame with one column per capture group. If False, return a Series/Index if there is one capture group or DataFrame if there are multiple capture groups. Returns ------- DataFrame or Series or Index A DataFrame with one row for each subject string, and one column for each group. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. The dtype of each result column is always object, even when no match is found. If ``expand=False`` and pat has only one capture group, then return a Series (if subject is a Series) or Index (if subject is an Index). See Also -------- extractall : Returns all matches (not just the first match). Examples -------- A pattern with two groups will return a DataFrame with two columns. Non-matches will be NaN. >>> s = pd.Series(['a1', 'b2', 'c3']) >>> s.str.extract(r'([ab])(\d)') 0 1 0 a 1 1 b 2 2 NaN NaN A pattern may contain optional groups. >>> s.str.extract(r'([ab])?(\d)') 0 1 0 a 1 1 b 2 2 NaN 3 Named groups will become column names in the result. >>> s.str.extract(r'(?P<letter>[ab])(?P<digit>\d)') letter digit 0 a 1 1 b 2 2 NaN NaN A pattern with one group will return a DataFrame with one column if expand=True. >>> s.str.extract(r'[ab](\d)', expand=True) 0 0 1 1 2 2 NaN A pattern with one group will return a Series if expand=False. >>> s.str.extract(r'[ab](\d)', expand=False) 0 1 1 2 2 NaN dtype: object """ if not isinstance(expand, bool): raise ValueError("expand must be True or False") if expand: return _str_extract_frame(arr._orig, pat, flags=flags) else: result, name = _str_extract_noexpand(arr._parent, pat, flags=flags) return arr._wrap_result(result, name=name, expand=expand) def str_extractall(arr, pat, flags=0): r""" For each subject string in the Series, extract groups from all matches of regular expression pat. When each subject string in the Series has exactly one match, extractall(pat).xs(0, level='match') is the same as extract(pat). Parameters ---------- pat : str Regular expression pattern with capturing groups. flags : int, default 0 (no flags) A ``re`` module flag, for example ``re.IGNORECASE``. These allow to modify regular expression matching for things like case, spaces, etc. Multiple flags can be combined with the bitwise OR operator, for example ``re.IGNORECASE | re.MULTILINE``. Returns ------- DataFrame A ``DataFrame`` with one row for each match, and one column for each group. Its rows have a ``MultiIndex`` with first levels that come from the subject ``Series``. The last level is named 'match' and indexes the matches in each item of the ``Series``. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. See Also -------- extract : Returns first match only (not all matches). Examples -------- A pattern with one group will return a DataFrame with one column. Indices with no matches will not appear in the result. >>> s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"]) >>> s.str.extractall(r"[ab](\d)") 0 match A 0 1 1 2 B 0 1 Capture group names are used for column names of the result. >>> s.str.extractall(r"[ab](?P<digit>\d)") digit match A 0 1 1 2 B 0 1 A pattern with two groups will return a DataFrame with two columns. >>> s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") letter digit match A 0 a 1 1 a 2 B 0 b 1 Optional groups that do not match are NaN in the result. >>> s.str.extractall(r"(?P<letter>[ab])?(?P<digit>\d)") letter digit match A 0 a 1 1 a 2 B 0 b 1 C 0 NaN 1 """ regex = re.compile(pat, flags=flags) # the regex must contain capture groups. if regex.groups == 0: raise ValueError("pattern contains no capture groups") if isinstance(arr, ABCIndexClass): arr = arr.to_series().reset_index(drop=True) names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] match_list = [] index_list = [] is_mi = arr.index.nlevels > 1 for subject_key, subject in arr.items(): if isinstance(subject, str): if not is_mi: subject_key = (subject_key,) for match_i, match_tuple in enumerate(regex.findall(subject)): if isinstance(match_tuple, str): match_tuple = (match_tuple,) na_tuple = [np.NaN if group == "" else group for group in match_tuple] match_list.append(na_tuple) result_key = tuple(subject_key + (match_i,)) index_list.append(result_key) from pandas import MultiIndex index = MultiIndex.from_tuples(index_list, names=arr.index.names + ["match"]) dtype = _result_dtype(arr) result = arr._constructor_expanddim( match_list, index=index, columns=columns, dtype=dtype ) return result def str_get_dummies(arr, sep="|"): """ Split each string in the Series by sep and return a DataFrame of dummy/indicator variables. Parameters ---------- sep : str, default "|" String to split on. Returns ------- DataFrame Dummy variables corresponding to values of the Series. See Also -------- get_dummies : Convert categorical variable into dummy/indicator variables. Examples -------- >>> pd.Series(['a|b', 'a', 'a|c']).str.get_dummies() a b c 0 1 1 0 1 1 0 0 2 1 0 1 >>> pd.Series(['a|b', np.nan, 'a|c']).str.get_dummies() a b c 0 1 1 0 1 0 0 0 2 1 0 1 """ arr = arr.fillna("") try: arr = sep + arr + sep except TypeError: arr = sep + arr.astype(str) + sep tags = set() for ts in arr.str.split(sep): tags.update(ts) tags = sorted(tags - {""}) dummies = np.empty((len(arr), len(tags)), dtype=np.int64) for i, t in enumerate(tags): pat = sep + t + sep dummies[:, i] = lib.map_infer(arr.to_numpy(), lambda x: pat in x) return dummies, tags def str_join(arr, sep): """ Join lists contained as elements in the Series/Index with passed delimiter. If the elements of a Series are lists themselves, join the content of these lists using the delimiter passed to the function. This function is an equivalent to :meth:`str.join`. Parameters ---------- sep : str Delimiter to use between list entries. Returns ------- Series/Index: object The list entries concatenated by intervening occurrences of the delimiter. Raises ------ AttributeError If the supplied Series contains neither strings nor lists. See Also -------- str.join : Standard library version of this method. Series.str.split : Split strings around given separator/delimiter. Notes ----- If any of the list items is not a string object, the result of the join will be `NaN`. Examples -------- Example with a list that contains non-string elements. >>> s = pd.Series([['lion', 'elephant', 'zebra'], ... [1.1, 2.2, 3.3], ... ['cat', np.nan, 'dog'], ... ['cow', 4.5, 'goat'], ... ['duck', ['swan', 'fish'], 'guppy']]) >>> s 0 [lion, elephant, zebra] 1 [1.1, 2.2, 3.3] 2 [cat, nan, dog] 3 [cow, 4.5, goat] 4 [duck, [swan, fish], guppy] dtype: object Join all lists using a '-'. The lists containing object(s) of types other than str will produce a NaN. >>> s.str.join('-') 0 lion-elephant-zebra 1 NaN 2 NaN 3 NaN 4 NaN dtype: object """ return _na_map(sep.join, arr) def str_findall(arr, pat, flags=0): """ Find all occurrences of pattern or regular expression in the Series/Index. Equivalent to applying :func:`re.findall` to all the elements in the Series/Index. Parameters ---------- pat : str Pattern or regular expression. flags : int, default 0 Flags from ``re`` module, e.g. `re.IGNORECASE` (default is 0, which means no flags). Returns ------- Series/Index of lists of strings All non-overlapping matches of pattern or regular expression in each string of this Series/Index. See Also -------- count : Count occurrences of pattern or regular expression in each string of the Series/Index. extractall : For each string in the Series, extract groups from all matches of regular expression and return a DataFrame with one row for each match and one column for each group. re.findall : The equivalent ``re`` function to all non-overlapping matches of pattern or regular expression in string, as a list of strings. Examples -------- >>> s = pd.Series(['Lion', 'Monkey', 'Rabbit']) The search for the pattern 'Monkey' returns one match: >>> s.str.findall('Monkey') 0 [] 1 [Monkey] 2 [] dtype: object On the other hand, the search for the pattern 'MONKEY' doesn't return any match: >>> s.str.findall('MONKEY') 0 [] 1 [] 2 [] dtype: object Flags can be added to the pattern or regular expression. For instance, to find the pattern 'MONKEY' ignoring the case: >>> import re >>> s.str.findall('MONKEY', flags=re.IGNORECASE) 0 [] 1 [Monkey] 2 [] dtype: object When the pattern matches more than one string in the Series, all matches are returned: >>> s.str.findall('on') 0 [on] 1 [on] 2 [] dtype: object Regular expressions are supported too. For instance, the search for all the strings ending with the word 'on' is shown next: >>> s.str.findall('on$') 0 [on] 1 [] 2 [] dtype: object If the pattern is found more than once in the same string, then a list of multiple strings is returned: >>> s.str.findall('b') 0 [] 1 [] 2 [b, b] dtype: object """ regex = re.compile(pat, flags=flags) return _na_map(regex.findall, arr) def str_find(arr, sub, start=0, end=None, side="left"): """ Return indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. side : {'left', 'right'}, default 'left' Specifies a starting side, equivalent to ``find`` or ``rfind``. Returns ------- Series or Index Indexes where substring is found. """ if not isinstance(sub, str): msg = "expected a string object, not {0}" raise TypeError(msg.format(type(sub).__name__)) if side == "left": method = "find" elif side == "right": method = "rfind" else: # pragma: no cover raise ValueError("Invalid side") if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return _na_map(f, arr, dtype=int) def str_index(arr, sub, start=0, end=None, side="left"): if not isinstance(sub, str): msg = "expected a string object, not {0}" raise TypeError(msg.format(type(sub).__name__)) if side == "left": method = "index" elif side == "right": method = "rindex" else: # pragma: no cover raise ValueError("Invalid side") if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return _na_map(f, arr, dtype=int) def str_pad(arr, width, side="left", fillchar=" "): """ Pad strings in the Series/Index up to width. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with character defined in `fillchar`. side : {'left', 'right', 'both'}, default 'left' Side from which to fill resulting string. fillchar : str, default ' ' Additional character for filling, default is whitespace. Returns ------- Series or Index of object Returns Series or Index with minimum number of char in object. See Also -------- Series.str.rjust : Fills the left side of strings with an arbitrary character. Equivalent to ``Series.str.pad(side='left')``. Series.str.ljust : Fills the right side of strings with an arbitrary character. Equivalent to ``Series.str.pad(side='right')``. Series.str.center : Fills boths sides of strings with an arbitrary character. Equivalent to ``Series.str.pad(side='both')``. Series.str.zfill : Pad strings in the Series/Index by prepending '0' character. Equivalent to ``Series.str.pad(side='left', fillchar='0')``. Examples -------- >>> s = pd.Series(["caribou", "tiger"]) >>> s 0 caribou 1 tiger dtype: object >>> s.str.pad(width=10) 0 caribou 1 tiger dtype: object >>> s.str.pad(width=10, side='right', fillchar='-') 0 caribou--- 1 tiger----- dtype: object >>> s.str.pad(width=10, side='both', fillchar='-') 0 -caribou-- 1 --tiger--- dtype: object """ if not isinstance(fillchar, str): msg = "fillchar must be a character, not {0}" raise TypeError(msg.format(type(fillchar).__name__)) if len(fillchar) != 1: raise TypeError("fillchar must be a character, not str") if not is_integer(width): msg = "width must be of integer type, not {0}" raise TypeError(msg.format(type(width).__name__)) if side == "left": f = lambda x: x.rjust(width, fillchar) elif side == "right": f = lambda x: x.ljust(width, fillchar) elif side == "both": f = lambda x: x.center(width, fillchar) else: # pragma: no cover raise ValueError("Invalid side") return _na_map(f, arr) def str_split(arr, pat=None, n=None): if pat is None: if n is None or n == 0: n = -1 f = lambda x: x.split(pat, n) else: if len(pat) == 1: if n is None or n == 0: n = -1 f = lambda x: x.split(pat, n) else: if n is None or n == -1: n = 0 regex = re.compile(pat) f = lambda x: regex.split(x, maxsplit=n) res = _na_map(f, arr) return res def str_rsplit(arr, pat=None, n=None): if n is None or n == 0: n = -1 f = lambda x: x.rsplit(pat, n) res = _na_map(f, arr) return res def str_slice(arr, start=None, stop=None, step=None): """ Slice substrings from each element in the Series or Index. Parameters ---------- start : int, optional Start position for slice operation. stop : int, optional Stop position for slice operation. step : int, optional Step size for slice operation. Returns ------- Series or Index of object Series or Index from sliced substring from original string object. See Also -------- Series.str.slice_replace : Replace a slice with a string. Series.str.get : Return element at position. Equivalent to `Series.str.slice(start=i, stop=i+1)` with `i` being the position. Examples -------- >>> s = pd.Series(["koala", "fox", "chameleon"]) >>> s 0 koala 1 fox 2 chameleon dtype: object >>> s.str.slice(start=1) 0 oala 1 ox 2 hameleon dtype: object >>> s.str.slice(start=-1) 0 a 1 x 2 n dtype: object >>> s.str.slice(stop=2) 0 ko 1 fo 2 ch dtype: object >>> s.str.slice(step=2) 0 kaa 1 fx 2 caeen dtype: object >>> s.str.slice(start=0, stop=5, step=3) 0 kl 1 f 2 cm dtype: object Equivalent behaviour to: >>> s.str[0:5:3] 0 kl 1 f 2 cm dtype: object """ obj = slice(start, stop, step) f = lambda x: x[obj] return _na_map(f, arr) def str_slice_replace(arr, start=None, stop=None, repl=None): """ Replace a positional slice of a string with another value. Parameters ---------- start : int, optional Left index position to use for the slice. If not specified (None), the slice is unbounded on the left, i.e. slice from the start of the string. stop : int, optional Right index position to use for the slice. If not specified (None), the slice is unbounded on the right, i.e. slice until the end of the string. repl : str, optional String for replacement. If not specified (None), the sliced region is replaced with an empty string. Returns ------- Series or Index Same type as the original object. See Also -------- Series.str.slice : Just slicing without replacement. Examples -------- >>> s = pd.Series(['a', 'ab', 'abc', 'abdc', 'abcde']) >>> s 0 a 1 ab 2 abc 3 abdc 4 abcde dtype: object Specify just `start`, meaning replace `start` until the end of the string with `repl`. >>> s.str.slice_replace(1, repl='X') 0 aX 1 aX 2 aX 3 aX 4 aX dtype: object Specify just `stop`, meaning the start of the string to `stop` is replaced with `repl`, and the rest of the string is included. >>> s.str.slice_replace(stop=2, repl='X') 0 X 1 X 2 Xc 3 Xdc 4 Xcde dtype: object Specify `start` and `stop`, meaning the slice from `start` to `stop` is replaced with `repl`. Everything before or after `start` and `stop` is included as is. >>> s.str.slice_replace(start=1, stop=3, repl='X') 0 aX 1 aX 2 aX 3 aXc 4 aXde dtype: object """ if repl is None: repl = "" def f(x): if x[start:stop] == "": local_stop = start else: local_stop = stop y = "" if start is not None: y += x[:start] y += repl if stop is not None: y += x[local_stop:] return y return _na_map(f, arr) def str_strip(arr, to_strip=None, side="both"): """ Strip whitespace (including newlines) from each string in the Series/Index. Parameters ---------- to_strip : str or unicode side : {'left', 'right', 'both'}, default 'both' Returns ------- Series or Index """ if side == "both": f = lambda x: x.strip(to_strip) elif side == "left": f = lambda x: x.lstrip(to_strip) elif side == "right": f = lambda x: x.rstrip(to_strip) else: # pragma: no cover raise ValueError("Invalid side") return _na_map(f, arr) def str_wrap(arr, width, **kwargs): r""" Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. This method has the same keyword parameters and defaults as :class:`textwrap.TextWrapper`. Parameters ---------- width : int Maximum line width. expand_tabs : bool, optional If True, tab characters will be expanded to spaces (default: True). replace_whitespace : bool, optional If True, each whitespace character (as defined by string.whitespace) remaining after tab expansion will be replaced by a single space (default: True). drop_whitespace : bool, optional If True, whitespace that, after wrapping, happens to end up at the beginning or end of a line is dropped (default: True). break_long_words : bool, optional If True, then words longer than width will be broken in order to ensure that no lines are longer than width. If it is false, long words will not be broken, and some lines may be longer than width (default: True). break_on_hyphens : bool, optional If True, wrapping will occur preferably on whitespace and right after hyphens in compound words, as it is customary in English. If false, only whitespaces will be considered as potentially good places for line breaks, but you need to set break_long_words to false if you want truly insecable words (default: True). Returns ------- Series or Index Notes ----- Internally, this method uses a :class:`textwrap.TextWrapper` instance with default settings. To achieve behavior matching R's stringr library str_wrap function, use the arguments: - expand_tabs = False - replace_whitespace = True - drop_whitespace = True - break_long_words = False - break_on_hyphens = False Examples -------- >>> s = pd.Series(['line to be wrapped', 'another line to be wrapped']) >>> s.str.wrap(12) 0 line to be\nwrapped 1 another line\nto be\nwrapped dtype: object """ kwargs["width"] = width tw = textwrap.TextWrapper(**kwargs) return _na_map(lambda s: "\n".join(tw.wrap(s)), arr) def str_translate(arr, table): """ Map all characters in the string through the given mapping table. Equivalent to standard :meth:`str.translate`. Parameters ---------- table : dict Table is a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. Characters mapped to None are deleted. :meth:`str.maketrans` is a helper function for making translation tables. Returns ------- Series or Index """ return _na_map(lambda x: x.translate(table), arr) def str_get(arr, i): """ Extract element from each component at specified position. Extract element from lists, tuples, or strings in each element in the Series/Index. Parameters ---------- i : int Position of element to extract. Returns ------- Series or Index Examples -------- >>> s = pd.Series(["String", ... (1, 2, 3), ... ["a", "b", "c"], ... 123, ... -456, ... {1: "Hello", "2": "World"}]) >>> s 0 String 1 (1, 2, 3) 2 [a, b, c] 3 123 4 -456 5 {1: 'Hello', '2': 'World'} dtype: object >>> s.str.get(1) 0 t 1 2 2 b 3 NaN 4 NaN 5 Hello dtype: object >>> s.str.get(-1) 0 g 1 3 2 c 3 NaN 4 NaN 5 None dtype: object """ def f(x): if isinstance(x, dict): return x.get(i) elif len(x) > i >= -len(x): return x[i] return np.nan return _na_map(f, arr) def str_decode(arr, encoding, errors="strict"): """ Decode character string in the Series/Index using indicated encoding. Equivalent to :meth:`str.decode` in python2 and :meth:`bytes.decode` in python3. Parameters ---------- encoding : str errors : str, optional Returns ------- Series or Index """ if encoding in _cpython_optimized_decoders: # CPython optimized implementation f = lambda x: x.decode(encoding, errors) else: decoder = codecs.getdecoder(encoding) f = lambda x: decoder(x, errors)[0] return _na_map(f, arr) def str_encode(arr, encoding, errors="strict"): """ Encode character string in the Series/Index using indicated encoding. Equivalent to :meth:`str.encode`. Parameters ---------- encoding : str errors : str, optional Returns ------- encoded : Series/Index of objects """ if encoding in _cpython_optimized_encoders: # CPython optimized implementation f = lambda x: x.encode(encoding, errors) else: encoder = codecs.getencoder(encoding) f = lambda x: encoder(x, errors)[0] return _na_map(f, arr) def forbid_nonstring_types(forbidden, name=None): """ Decorator to forbid specific types for a method of StringMethods. For calling `.str.{method}` on a Series or Index, it is necessary to first initialize the :class:`StringMethods` object, and then call the method. However, different methods allow different input types, and so this can not be checked during :meth:`StringMethods.__init__`, but must be done on a per-method basis. This decorator exists to facilitate this process, and make it explicit which (inferred) types are disallowed by the method. :meth:`StringMethods.__init__` allows the *union* of types its different methods allow (after skipping NaNs; see :meth:`StringMethods._validate`), namely: ['string', 'empty', 'bytes', 'mixed', 'mixed-integer']. The default string types ['string', 'empty'] are allowed for all methods. For the additional types ['bytes', 'mixed', 'mixed-integer'], each method then needs to forbid the types it is not intended for. Parameters ---------- forbidden : list-of-str or None List of forbidden non-string types, may be one or more of `['bytes', 'mixed', 'mixed-integer']`. name : str, default None Name of the method to use in the error message. By default, this is None, in which case the name from the method being wrapped will be copied. However, for working with further wrappers (like _pat_wrapper and _noarg_wrapper), it is necessary to specify the name. Returns ------- func : wrapper The method to which the decorator is applied, with an added check that enforces the inferred type to not be in the list of forbidden types. Raises ------ TypeError If the inferred type of the underlying data is in `forbidden`. """ # deal with None forbidden = [] if forbidden is None else forbidden allowed_types = {"string", "empty", "bytes", "mixed", "mixed-integer"} - set( forbidden ) def _forbid_nonstring_types(func): func_name = func.__name__ if name is None else name @wraps(func) def wrapper(self, *args, **kwargs): if self._inferred_dtype not in allowed_types: msg = ( "Cannot use .str.{name} with values of inferred dtype " "{inf_type!r}.".format( name=func_name, inf_type=self._inferred_dtype ) ) raise TypeError(msg) return func(self, *args, **kwargs) wrapper.__name__ = func_name return wrapper return _forbid_nonstring_types def _noarg_wrapper( f, name=None, docstring=None, forbidden_types=["bytes"], returns_string=True, **kargs, ): @forbid_nonstring_types(forbidden_types, name=name) def wrapper(self): result = _na_map(f, self._parent, **kargs) return self._wrap_result(result, returns_string=returns_string) wrapper.__name__ = f.__name__ if name is None else name if docstring is not None: wrapper.__doc__ = docstring else: raise ValueError("Provide docstring") return wrapper def _pat_wrapper( f, flags=False, na=False, name=None, forbidden_types=["bytes"], returns_string=True, **kwargs, ): @forbid_nonstring_types(forbidden_types, name=name) def wrapper1(self, pat): result = f(self._parent, pat) return self._wrap_result(result, returns_string=returns_string) @forbid_nonstring_types(forbidden_types, name=name) def wrapper2(self, pat, flags=0, **kwargs): result = f(self._parent, pat, flags=flags, **kwargs) return self._wrap_result(result, returns_string=returns_string) @forbid_nonstring_types(forbidden_types, name=name) def wrapper3(self, pat, na=np.nan): result = f(self._parent, pat, na=na) return self._wrap_result(result, returns_string=returns_string) wrapper = wrapper3 if na else wrapper2 if flags else wrapper1 wrapper.__name__ = f.__name__ if name is None else name if f.__doc__: wrapper.__doc__ = f.__doc__ return wrapper def copy(source): "Copy a docstring from another source function (if present)" def do_copy(target): if source.__doc__: target.__doc__ = source.__doc__ return target return do_copy class StringMethods(NoNewAttributesMixin): """ Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python's string methods, with some inspiration from R's stringr package. Examples -------- >>> s.str.split('_') >>> s.str.replace('_', '') """ def __init__(self, data): self._inferred_dtype = self._validate(data) self._is_categorical = is_categorical_dtype(data) self._is_string = data.dtype.name == "string" # .values.categories works for both Series/Index self._parent = data.values.categories if self._is_categorical else data # save orig to blow up categoricals to the right type self._orig = data self._freeze() @staticmethod def _validate(data): """ Auxiliary function for StringMethods, infers and checks dtype of data. This is a "first line of defence" at the creation of the StringMethods- object (see _make_accessor), and just checks that the dtype is in the *union* of the allowed types over all string methods below; this restriction is then refined on a per-method basis using the decorator @forbid_nonstring_types (more info in the corresponding docstring). This really should exclude all series/index with any non-string values, but that isn't practical for performance reasons until we have a str dtype (GH 9343 / 13877) Parameters ---------- data : The content of the Series Returns ------- dtype : inferred dtype of data """ from pandas import StringDtype if isinstance(data, ABCMultiIndex): raise AttributeError( "Can only use .str accessor with Index, not MultiIndex" ) # see _libs/lib.pyx for list of inferred types allowed_types = ["string", "empty", "bytes", "mixed", "mixed-integer"] values = getattr(data, "values", data) # Series / Index values = getattr(values, "categories", values) # categorical / normal # explicitly allow StringDtype if isinstance(values.dtype, StringDtype): return "string" try: inferred_dtype = lib.infer_dtype(values, skipna=True) except ValueError: # GH#27571 mostly occurs with ExtensionArray inferred_dtype = None if inferred_dtype not in allowed_types: raise AttributeError("Can only use .str accessor with string values!") return inferred_dtype def __getitem__(self, key): if isinstance(key, slice): return self.slice(start=key.start, stop=key.stop, step=key.step) else: return self.get(key) def __iter__(self): i = 0 g = self.get(i) while g.notna().any(): yield g i += 1 g = self.get(i) def _wrap_result( self, result, use_codes=True, name=None, expand=None, fill_value=np.nan, returns_string=True, ): from pandas import Index, Series, MultiIndex # for category, we do the stuff on the categories, so blow it up # to the full series again # But for some operations, we have to do the stuff on the full values, # so make it possible to skip this step as the method already did this # before the transformation... if use_codes and self._is_categorical: # if self._orig is a CategoricalIndex, there is no .cat-accessor result = take_1d( result, Series(self._orig, copy=False).cat.codes, fill_value=fill_value ) if not hasattr(result, "ndim") or not hasattr(result, "dtype"): return result assert result.ndim < 3 # We can be wrapping a string / object / categorical result, in which # case we'll want to return the same dtype as the input. # Or we can be wrapping a numeric output, in which case we don't want # to return a StringArray. if self._is_string and returns_string: dtype = "string" else: dtype = None if expand is None: # infer from ndim if expand is not specified expand = result.ndim != 1 elif expand is True and not isinstance(self._orig, ABCIndexClass): # required when expand=True is explicitly specified # not needed when inferred def cons_row(x): if is_list_like(x): return x else: return [x] result = [cons_row(x) for x in result] if result: # propagate nan values to match longest sequence (GH 18450) max_len = max(len(x) for x in result) result = [ x * max_len if len(x) == 0 or x[0] is np.nan else x for x in result ] if not isinstance(expand, bool): raise ValueError("expand must be True or False") if expand is False: # if expand is False, result should have the same name # as the original otherwise specified if name is None: name = getattr(result, "name", None) if name is None: # do not use logical or, _orig may be a DataFrame # which has "name" column name = self._orig.name # Wait until we are sure result is a Series or Index before # checking attributes (GH 12180) if isinstance(self._orig, ABCIndexClass): # if result is a boolean np.array, return the np.array # instead of wrapping it into a boolean Index (GH 8875) if is_bool_dtype(result): return result if expand: result = list(result) out = MultiIndex.from_tuples(result, names=name) if out.nlevels == 1: # We had all tuples of length-one, which are # better represented as a regular Index. out = out.get_level_values(0) return out else: return Index(result, name=name) else: index = self._orig.index if expand: cons = self._orig._constructor_expanddim result = cons(result, columns=name, index=index, dtype=dtype) else: # Must be a Series cons = self._orig._constructor result = cons(result, name=name, index=index, dtype=dtype) return result def _get_series_list(self, others): """ Auxiliary function for :meth:`str.cat`. Turn potentially mixed input into a list of Series (elements without an index must match the length of the calling Series/Index). Parameters ---------- others : Series, DataFrame, np.ndarray, list-like or list-like of Objects that are either Series, Index or np.ndarray (1-dim). Returns ------- list of Series Others transformed into list of Series. """ from pandas import Series, DataFrame # self._orig is either Series or Index idx = self._orig if isinstance(self._orig, ABCIndexClass) else self._orig.index # Generally speaking, all objects without an index inherit the index # `idx` of the calling Series/Index - i.e. must have matching length. # Objects with an index (i.e. Series/Index/DataFrame) keep their own. if isinstance(others, ABCSeries): return [others] elif isinstance(others, ABCIndexClass): return [Series(others.values, index=others)] elif isinstance(others, ABCDataFrame): return [others[x] for x in others] elif isinstance(others, np.ndarray) and others.ndim == 2: others = DataFrame(others, index=idx) return [others[x] for x in others] elif is_list_like(others, allow_sets=False): others = list(others) # ensure iterators do not get read twice etc # in case of list-like `others`, all elements must be # either Series/Index/np.ndarray (1-dim)... if all( isinstance(x, (ABCSeries, ABCIndexClass)) or (isinstance(x, np.ndarray) and x.ndim == 1) for x in others ): los = [] while others: # iterate through list and append each element los = los + self._get_series_list(others.pop(0)) return los # ... or just strings elif all(not is_list_like(x) for x in others): return [Series(others, index=idx)] raise TypeError( "others must be Series, Index, DataFrame, np.ndarrary " "or list-like (either containing only strings or " "containing only objects of type Series/Index/" "np.ndarray[1-dim])" ) @forbid_nonstring_types(["bytes", "mixed", "mixed-integer"]) def cat(self, others=None, sep=None, na_rep=None, join="left"): """ Concatenate strings in the Series/Index with given separator. If `others` is specified, this function concatenates the Series/Index and elements of `others` element-wise. If `others` is not passed, then all values in the Series/Index are concatenated into a single string with a given `sep`. Parameters ---------- others : Series, Index, DataFrame, np.ndarray or list-like Series, Index, DataFrame, np.ndarray (one- or two-dimensional) and other list-likes of strings must have the same length as the calling Series/Index, with the exception of indexed objects (i.e. Series/Index/DataFrame) if `join` is not None. If others is a list-like that contains a combination of Series, Index or np.ndarray (1-dim), then all elements will be unpacked and must satisfy the above criteria individually. If others is None, the method returns the concatenation of all strings in the calling Series/Index. sep : str, default '' The separator between the different elements/columns. By default the empty string `''` is used. na_rep : str or None, default None Representation that is inserted for all missing values: - If `na_rep` is None, and `others` is None, missing values in the Series/Index are omitted from the result. - If `na_rep` is None, and `others` is not None, a row containing a missing value in any of the columns (before concatenation) will have a missing value in the result. join : {'left', 'right', 'outer', 'inner'}, default 'left' Determines the join-style between the calling Series/Index and any Series/Index/DataFrame in `others` (objects without an index need to match the length of the calling Series/Index). To disable alignment, use `.values` on any Series/Index/DataFrame in `others`. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Changed default of `join` from None to `'left'`. Returns ------- str, Series or Index If `others` is None, `str` is returned, otherwise a `Series/Index` (same type as caller) of objects is returned. See Also -------- split : Split each string in the Series/Index. join : Join lists contained as elements in the Series/Index. Examples -------- When not passing `others`, all values are concatenated into a single string: >>> s = pd.Series(['a', 'b', np.nan, 'd']) >>> s.str.cat(sep=' ') 'a b d' By default, NA values in the Series are ignored. Using `na_rep`, they can be given a representation: >>> s.str.cat(sep=' ', na_rep='?') 'a b ? d' If `others` is specified, corresponding values are concatenated with the separator. Result will be a Series of strings. >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',') 0 a,A 1 b,B 2 NaN 3 d,D dtype: object Missing values will remain missing in the result, but can again be represented using `na_rep` >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',', na_rep='-') 0 a,A 1 b,B 2 -,C 3 d,D dtype: object If `sep` is not specified, the values are concatenated without separation. >>> s.str.cat(['A', 'B', 'C', 'D'], na_rep='-') 0 aA 1 bB 2 -C 3 dD dtype: object Series with different indexes can be aligned before concatenation. The `join`-keyword works as in other methods. >>> t = pd.Series(['d', 'a', 'e', 'c'], index=[3, 0, 4, 2]) >>> s.str.cat(t, join='left', na_rep='-') 0 aa 1 b- 2 -c 3 dd dtype: object >>> >>> s.str.cat(t, join='outer', na_rep='-') 0 aa 1 b- 2 -c 3 dd 4 -e dtype: object >>> >>> s.str.cat(t, join='inner', na_rep='-') 0 aa 2 -c 3 dd dtype: object >>> >>> s.str.cat(t, join='right', na_rep='-') 3 dd 0 aa 4 -e 2 -c dtype: object For more examples, see :ref:`here <text.concatenate>`. """ from pandas import Index, Series, concat if isinstance(others, str): raise ValueError("Did you mean to supply a `sep` keyword?") if sep is None: sep = "" if isinstance(self._orig, ABCIndexClass): data = Series(self._orig, index=self._orig) else: # Series data = self._orig # concatenate Series/Index with itself if no "others" if others is None: data = ensure_object(data) na_mask = isna(data) if na_rep is None and na_mask.any(): data = data[~na_mask] elif na_rep is not None and na_mask.any(): data = np.where(na_mask, na_rep, data) return sep.join(data) try: # turn anything in "others" into lists of Series others = self._get_series_list(others) except ValueError: # do not catch TypeError raised by _get_series_list raise ValueError( "If `others` contains arrays or lists (or other " "list-likes without an index), these must all be " "of the same length as the calling Series/Index." ) # align if required if any(not data.index.equals(x.index) for x in others): # Need to add keys for uniqueness in case of duplicate columns others = concat( others, axis=1, join=(join if join == "inner" else "outer"), keys=range(len(others)), sort=False, copy=False, ) data, others = data.align(others, join=join) others = [others[x] for x in others] # again list of Series all_cols = [ensure_object(x) for x in [data] + others] na_masks = np.array([isna(x) for x in all_cols]) union_mask = np.logical_or.reduce(na_masks, axis=0) if na_rep is None and union_mask.any(): # no na_rep means NaNs for all rows where any column has a NaN # only necessary if there are actually any NaNs result = np.empty(len(data), dtype=object) np.putmask(result, union_mask, np.nan) not_masked = ~union_mask result[not_masked] = cat_safe([x[not_masked] for x in all_cols], sep) elif na_rep is not None and union_mask.any(): # fill NaNs with na_rep in case there are actually any NaNs all_cols = [ np.where(nm, na_rep, col) for nm, col in zip(na_masks, all_cols) ] result = cat_safe(all_cols, sep) else: # no NaNs - can just concatenate result = cat_safe(all_cols, sep) if isinstance(self._orig, ABCIndexClass): # add dtype for case that result is all-NA result = Index(result, dtype=object, name=self._orig.name) else: # Series if is_categorical_dtype(self._orig.dtype): # We need to infer the new categories. dtype = None else: dtype = self._orig.dtype result = Series(result, dtype=dtype, index=data.index, name=self._orig.name) return result _shared_docs[ "str_split" ] = r""" Split strings around given separator/delimiter. Splits the string in the Series/Index from the %(side)s, at the specified delimiter string. Equivalent to :meth:`str.%(method)s`. Parameters ---------- pat : str, optional String or regular expression to split on. If not specified, split on whitespace. n : int, default -1 (all) Limit number of splits in output. ``None``, 0 and -1 will be interpreted as return all splits. expand : bool, default False Expand the splitted strings into separate columns. * If ``True``, return DataFrame/MultiIndex expanding dimensionality. * If ``False``, return Series/Index, containing lists of strings. Returns ------- Series, Index, DataFrame or MultiIndex Type matches caller unless ``expand=True`` (see Notes). See Also -------- Series.str.split : Split strings around given separator/delimiter. Series.str.rsplit : Splits string around given separator/delimiter, starting from the right. Series.str.join : Join lists contained as elements in the Series/Index with passed delimiter. str.split : Standard library version for split. str.rsplit : Standard library version for rsplit. Notes ----- The handling of the `n` keyword depends on the number of found splits: - If found splits > `n`, make first `n` splits only - If found splits <= `n`, make all splits - If for a certain row the number of found splits < `n`, append `None` for padding up to `n` if ``expand=True`` If using ``expand=True``, Series and Index callers return DataFrame and MultiIndex objects, respectively. Examples -------- >>> s = pd.Series(["this is a regular sentence", ... "https://docs.python.org/3/tutorial/index.html", ... np.nan]) 0 this is a regular sentence 1 https://docs.python.org/3/tutorial/index.html 2 NaN dtype: object In the default setting, the string is split by whitespace. >>> s.str.split() 0 [this, is, a, regular, sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object Without the `n` parameter, the outputs of `rsplit` and `split` are identical. >>> s.str.rsplit() 0 [this, is, a, regular, sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object The `n` parameter can be used to limit the number of splits on the delimiter. The outputs of `split` and `rsplit` are different. >>> s.str.split(n=2) 0 [this, is, a regular sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object >>> s.str.rsplit(n=2) 0 [this is a, regular, sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object The `pat` parameter can be used to split by other characters. >>> s.str.split(pat = "/") 0 [this is a regular sentence] 1 [https:, , docs.python.org, 3, tutorial, index... 2 NaN dtype: object When using ``expand=True``, the split elements will expand out into separate columns. If NaN is present, it is propagated throughout the columns during the split. >>> s.str.split(expand=True) 0 1 2 3 0 this is a regular 1 https://docs.python.org/3/tutorial/index.html None None None 2 NaN NaN NaN NaN \ 4 0 sentence 1 None 2 NaN For slightly more complex use cases like splitting the html document name from a url, a combination of parameter settings can be used. >>> s.str.rsplit("/", n=1, expand=True) 0 1 0 this is a regular sentence None 1 https://docs.python.org/3/tutorial index.html 2 NaN NaN Remember to escape special characters when explicitly using regular expressions. >>> s = pd.Series(["1+1=2"]) >>> s.str.split(r"\+|=", expand=True) 0 1 2 0 1 1 2 """ @Appender(_shared_docs["str_split"] % {"side": "beginning", "method": "split"}) @forbid_nonstring_types(["bytes"]) def split(self, pat=None, n=-1, expand=False): result = str_split(self._parent, pat, n=n) return self._wrap_result(result, expand=expand, returns_string=expand) @Appender(_shared_docs["str_split"] % {"side": "end", "method": "rsplit"}) @forbid_nonstring_types(["bytes"]) def rsplit(self, pat=None, n=-1, expand=False): result = str_rsplit(self._parent, pat, n=n) return self._wrap_result(result, expand=expand, returns_string=expand) _shared_docs[ "str_partition" ] = """ Split the string at the %(side)s occurrence of `sep`. This method splits the string at the %(side)s occurrence of `sep`, and returns 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return %(return)s. Parameters ---------- sep : str, default whitespace String to split on. pat : str, default whitespace .. deprecated:: 0.24.0 Use ``sep`` instead. expand : bool, default True If True, return DataFrame/MultiIndex expanding dimensionality. If False, return Series/Index. Returns ------- DataFrame/MultiIndex or Series/Index of objects See Also -------- %(also)s Series.str.split : Split strings around given separators. str.partition : Standard library version. Examples -------- >>> s = pd.Series(['Linda van der Berg', 'George Pitt-Rivers']) >>> s 0 Linda van der Berg 1 George Pitt-Rivers dtype: object >>> s.str.partition() 0 1 2 0 Linda van der Berg 1 George Pitt-Rivers To partition by the last space instead of the first one: >>> s.str.rpartition() 0 1 2 0 Linda van der Berg 1 George Pitt-Rivers To partition by something different than a space: >>> s.str.partition('-') 0 1 2 0 Linda van der Berg 1 George Pitt - Rivers To return a Series containing tuples instead of a DataFrame: >>> s.str.partition('-', expand=False) 0 (Linda van der Berg, , ) 1 (George Pitt, -, Rivers) dtype: object Also available on indices: >>> idx = pd.Index(['X 123', 'Y 999']) >>> idx Index(['X 123', 'Y 999'], dtype='object') Which will create a MultiIndex: >>> idx.str.partition() MultiIndex([('X', ' ', '123'), ('Y', ' ', '999')], dtype='object') Or an index with tuples with ``expand=False``: >>> idx.str.partition(expand=False) Index([('X', ' ', '123'), ('Y', ' ', '999')], dtype='object') """ @Appender( _shared_docs["str_partition"] % { "side": "first", "return": "3 elements containing the string itself, followed by two " "empty strings", "also": "rpartition : Split the string at the last occurrence of `sep`.", } ) @deprecate_kwarg(old_arg_name="pat", new_arg_name="sep") @forbid_nonstring_types(["bytes"]) def partition(self, sep=" ", expand=True): f = lambda x: x.partition(sep) result = _na_map(f, self._parent) return self._wrap_result(result, expand=expand, returns_string=expand) @Appender( _shared_docs["str_partition"] % { "side": "last", "return": "3 elements containing two empty strings, followed by the " "string itself", "also": "partition : Split the string at the first occurrence of `sep`.", } ) @deprecate_kwarg(old_arg_name="pat", new_arg_name="sep") @forbid_nonstring_types(["bytes"]) def rpartition(self, sep=" ", expand=True): f = lambda x: x.rpartition(sep) result = _na_map(f, self._parent) return self._wrap_result(result, expand=expand, returns_string=expand) @copy(str_get) def get(self, i): result = str_get(self._parent, i) return self._wrap_result(result) @copy(str_join) @forbid_nonstring_types(["bytes"]) def join(self, sep): result = str_join(self._parent, sep) return self._wrap_result(result) @copy(str_contains) @forbid_nonstring_types(["bytes"]) def contains(self, pat, case=True, flags=0, na=np.nan, regex=True): result = str_contains( self._parent, pat, case=case, flags=flags, na=na, regex=regex ) return self._wrap_result(result, fill_value=na, returns_string=False) @copy(str_match) @forbid_nonstring_types(["bytes"]) def match(self, pat, case=True, flags=0, na=np.nan): result = str_match(self._parent, pat, case=case, flags=flags, na=na) return self._wrap_result(result, fill_value=na, returns_string=False) @copy(str_replace) @forbid_nonstring_types(["bytes"]) def replace(self, pat, repl, n=-1, case=None, flags=0, regex=True): result = str_replace( self._parent, pat, repl, n=n, case=case, flags=flags, regex=regex ) return self._wrap_result(result) @copy(str_repeat) @forbid_nonstring_types(["bytes"]) def repeat(self, repeats): result = str_repeat(self._parent, repeats) return self._wrap_result(result) @copy(str_pad) @forbid_nonstring_types(["bytes"]) def pad(self, width, side="left", fillchar=" "): result = str_pad(self._parent, width, side=side, fillchar=fillchar) return self._wrap_result(result) _shared_docs[ "str_pad" ] = """ Filling %(side)s side of strings in the Series/Index with an additional character. Equivalent to :meth:`str.%(method)s`. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar``. fillchar : str Additional character for filling, default is whitespace. Returns ------- filled : Series/Index of objects. """ @Appender(_shared_docs["str_pad"] % dict(side="left and right", method="center")) @forbid_nonstring_types(["bytes"]) def center(self, width, fillchar=" "): return self.pad(width, side="both", fillchar=fillchar) @Appender(_shared_docs["str_pad"] % dict(side="right", method="ljust")) @forbid_nonstring_types(["bytes"]) def ljust(self, width, fillchar=" "): return self.pad(width, side="right", fillchar=fillchar) @Appender(_shared_docs["str_pad"] % dict(side="left", method="rjust")) @forbid_nonstring_types(["bytes"]) def rjust(self, width, fillchar=" "): return self.pad(width, side="left", fillchar=fillchar) @forbid_nonstring_types(["bytes"]) def zfill(self, width): """ Pad strings in the Series/Index by prepending '0' characters. Strings in the Series/Index are padded with '0' characters on the left of the string to reach a total string length `width`. Strings in the Series/Index with length greater or equal to `width` are unchanged. Parameters ---------- width : int Minimum length of resulting string; strings with length less than `width` be prepended with '0' characters. Returns ------- Series/Index of objects. See Also -------- Series.str.rjust : Fills the left side of strings with an arbitrary character. Series.str.ljust : Fills the right side of strings with an arbitrary character. Series.str.pad : Fills the specified sides of strings with an arbitrary character. Series.str.center : Fills boths sides of strings with an arbitrary character. Notes ----- Differs from :meth:`str.zfill` which has special handling for '+'/'-' in the string. Examples -------- >>> s = pd.Series(['-1', '1', '1000', 10, np.nan]) >>> s 0 -1 1 1 2 1000 3 10 4 NaN dtype: object Note that ``10`` and ``NaN`` are not strings, therefore they are converted to ``NaN``. The minus sign in ``'-1'`` is treated as a regular character and the zero is added to the left of it (:meth:`str.zfill` would have moved it to the left). ``1000`` remains unchanged as it is longer than `width`. >>> s.str.zfill(3) 0 0-1 1 001 2 1000 3 NaN 4 NaN dtype: object """ result = str_pad(self._parent, width, side="left", fillchar="0") return self._wrap_result(result) @copy(str_slice) def slice(self, start=None, stop=None, step=None): result = str_slice(self._parent, start, stop, step) return self._wrap_result(result) @copy(str_slice_replace) @forbid_nonstring_types(["bytes"]) def slice_replace(self, start=None, stop=None, repl=None): result = str_slice_replace(self._parent, start, stop, repl) return self._wrap_result(result) @copy(str_decode) def decode(self, encoding, errors="strict"): # need to allow bytes here result = str_decode(self._parent, encoding, errors) # TODO: Not sure how to handle this. return self._wrap_result(result, returns_string=False) @copy(str_encode) @forbid_nonstring_types(["bytes"]) def encode(self, encoding, errors="strict"): result = str_encode(self._parent, encoding, errors) return self._wrap_result(result, returns_string=False) _shared_docs[ "str_strip" ] = r""" Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the Series/Index from %(side)s. Equivalent to :meth:`str.%(method)s`. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns ------- Series or Index of object See Also -------- Series.str.strip : Remove leading and trailing characters in Series/Index. Series.str.lstrip : Remove leading characters in Series/Index. Series.str.rstrip : Remove trailing characters in Series/Index. Examples -------- >>> s = pd.Series(['1. Ant. ', '2. Bee!\n', '3. Cat?\t', np.nan]) >>> s 0 1. Ant. 1 2. Bee!\n 2 3. Cat?\t 3 NaN dtype: object >>> s.str.strip() 0 1. Ant. 1 2. Bee! 2 3. Cat? 3 NaN dtype: object >>> s.str.lstrip('123.') 0 Ant. 1 Bee!\n 2 Cat?\t 3 NaN dtype: object >>> s.str.rstrip('.!? \n\t') 0 1. Ant 1 2. Bee 2 3. Cat 3 NaN dtype: object >>> s.str.strip('123.!? \n\t') 0 Ant 1 Bee 2 Cat 3 NaN dtype: object """ @Appender( _shared_docs["str_strip"] % dict(side="left and right sides", method="strip") ) @forbid_nonstring_types(["bytes"]) def strip(self, to_strip=None): result = str_strip(self._parent, to_strip, side="both") return self._wrap_result(result) @Appender(_shared_docs["str_strip"] % dict(side="left side", method="lstrip")) @forbid_nonstring_types(["bytes"]) def lstrip(self, to_strip=None): result = str_strip(self._parent, to_strip, side="left") return self._wrap_result(result) @Appender(_shared_docs["str_strip"] % dict(side="right side", method="rstrip")) @forbid_nonstring_types(["bytes"]) def rstrip(self, to_strip=None): result = str_strip(self._parent, to_strip, side="right") return self._wrap_result(result) @copy(str_wrap) @forbid_nonstring_types(["bytes"]) def wrap(self, width, **kwargs): result = str_wrap(self._parent, width, **kwargs) return self._wrap_result(result) @copy(str_get_dummies) @forbid_nonstring_types(["bytes"]) def get_dummies(self, sep="|"): # we need to cast to Series of strings as only that has all # methods available for making the dummies... data = self._orig.astype(str) if self._is_categorical else self._parent result, name = str_get_dummies(data, sep) return self._wrap_result( result, use_codes=(not self._is_categorical), name=name, expand=True, returns_string=False, ) @copy(str_translate) @forbid_nonstring_types(["bytes"]) def translate(self, table): result = str_translate(self._parent, table) return self._wrap_result(result) count = _pat_wrapper(str_count, flags=True, name="count", returns_string=False) startswith = _pat_wrapper( str_startswith, na=True, name="startswith", returns_string=False ) endswith = _pat_wrapper( str_endswith, na=True, name="endswith", returns_string=False ) findall = _pat_wrapper( str_findall, flags=True, name="findall", returns_string=False ) @copy(str_extract) @forbid_nonstring_types(["bytes"]) def extract(self, pat, flags=0, expand=True): return str_extract(self, pat, flags=flags, expand=expand) @copy(str_extractall) @forbid_nonstring_types(["bytes"]) def extractall(self, pat, flags=0): return str_extractall(self._orig, pat, flags=flags) _shared_docs[ "find" ] = """ Return %(side)s indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Equivalent to standard :meth:`str.%(method)s`. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. Returns ------- Series or Index of int. See Also -------- %(also)s """ @Appender( _shared_docs["find"] % dict( side="lowest", method="find", also="rfind : Return highest indexes in each strings.", ) ) @forbid_nonstring_types(["bytes"]) def find(self, sub, start=0, end=None): result = str_find(self._parent, sub, start=start, end=end, side="left") return self._wrap_result(result, returns_string=False) @Appender( _shared_docs["find"] % dict( side="highest", method="rfind", also="find : Return lowest indexes in each strings.", ) ) @forbid_nonstring_types(["bytes"]) def rfind(self, sub, start=0, end=None): result = str_find(self._parent, sub, start=start, end=end, side="right") return self._wrap_result(result, returns_string=False) @forbid_nonstring_types(["bytes"]) def normalize(self, form): """ Return the Unicode normal form for the strings in the Series/Index. For more information on the forms, see the :func:`unicodedata.normalize`. Parameters ---------- form : {'NFC', 'NFKC', 'NFD', 'NFKD'} Unicode form. Returns ------- normalized : Series/Index of objects """ import unicodedata f = lambda x: unicodedata.normalize(form, x) result = _na_map(f, self._parent) return self._wrap_result(result) _shared_docs[ "index" ] = """ Return %(side)s indexes in each strings where the substring is fully contained between [start:end]. This is the same as ``str.%(similar)s`` except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard ``str.%(method)s``. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. Returns ------- Series or Index of object See Also -------- %(also)s """ @Appender( _shared_docs["index"] % dict( side="lowest", similar="find", method="index", also="rindex : Return highest indexes in each strings.", ) ) @forbid_nonstring_types(["bytes"]) def index(self, sub, start=0, end=None): result = str_index(self._parent, sub, start=start, end=end, side="left") return self._wrap_result(result, returns_string=False) @Appender( _shared_docs["index"] % dict( side="highest", similar="rfind", method="rindex", also="index : Return lowest indexes in each strings.", ) ) @forbid_nonstring_types(["bytes"]) def rindex(self, sub, start=0, end=None): result = str_index(self._parent, sub, start=start, end=end, side="right") return self._wrap_result(result, returns_string=False) _shared_docs[ "len" ] = """ Compute the length of each element in the Series/Index. The element may be a sequence (such as a string, tuple or list) or a collection (such as a dictionary). Returns ------- Series or Index of int A Series or Index of integer values indicating the length of each element in the Series or Index. See Also -------- str.len : Python built-in function returning the length of an object. Series.size : Returns the length of the Series. Examples -------- Returns the length (number of characters) in a string. Returns the number of entries for dictionaries, lists or tuples. >>> s = pd.Series(['dog', ... '', ... 5, ... {'foo' : 'bar'}, ... [2, 3, 5, 7], ... ('one', 'two', 'three')]) >>> s 0 dog 1 2 5 3 {'foo': 'bar'} 4 [2, 3, 5, 7] 5 (one, two, three) dtype: object >>> s.str.len() 0 3.0 1 0.0 2 NaN 3 1.0 4 4.0 5 3.0 dtype: float64 """ len = _noarg_wrapper( len, docstring=_shared_docs["len"], forbidden_types=None, dtype=int, returns_string=False, ) _shared_docs[ "casemethods" ] = """ Convert strings in the Series/Index to %(type)s. %(version)s Equivalent to :meth:`str.%(method)s`. Returns ------- Series or Index of object See Also -------- Series.str.lower : Converts all characters to lowercase. Series.str.upper : Converts all characters to uppercase. Series.str.title : Converts first character of each word to uppercase and remaining to lowercase. Series.str.capitalize : Converts first character to uppercase and remaining to lowercase. Series.str.swapcase : Converts uppercase to lowercase and lowercase to uppercase. Series.str.casefold: Removes all case distinctions in the string. Examples -------- >>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object >>> s.str.lower() 0 lower 1 capitals 2 this is a sentence 3 swapcase dtype: object >>> s.str.upper() 0 LOWER 1 CAPITALS 2 THIS IS A SENTENCE 3 SWAPCASE dtype: object >>> s.str.title() 0 Lower 1 Capitals 2 This Is A Sentence 3 Swapcase dtype: object >>> s.str.capitalize() 0 Lower 1 Capitals 2 This is a sentence 3 Swapcase dtype: object >>> s.str.swapcase() 0 LOWER 1 capitals 2 THIS IS A SENTENCE 3 sWaPcAsE dtype: object """ # _doc_args holds dict of strings to use in substituting casemethod docs _doc_args = {} # type: Dict[str, Dict[str, str]] _doc_args["lower"] = dict(type="lowercase", method="lower", version="") _doc_args["upper"] = dict(type="uppercase", method="upper", version="") _doc_args["title"] = dict(type="titlecase", method="title", version="") _doc_args["capitalize"] = dict( type="be capitalized", method="capitalize", version="" ) _doc_args["swapcase"] = dict(type="be swapcased", method="swapcase", version="") _doc_args["casefold"] = dict( type="be casefolded", method="casefold", version="\n .. versionadded:: 0.25.0\n", ) lower = _noarg_wrapper( lambda x: x.lower(), name="lower", docstring=_shared_docs["casemethods"] % _doc_args["lower"], ) upper = _noarg_wrapper( lambda x: x.upper(), name="upper", docstring=_shared_docs["casemethods"] % _doc_args["upper"], ) title = _noarg_wrapper( lambda x: x.title(), name="title", docstring=_shared_docs["casemethods"] % _doc_args["title"], ) capitalize = _noarg_wrapper( lambda x: x.capitalize(), name="capitalize", docstring=_shared_docs["casemethods"] % _doc_args["capitalize"], ) swapcase = _noarg_wrapper( lambda x: x.swapcase(), name="swapcase", docstring=_shared_docs["casemethods"] % _doc_args["swapcase"], ) casefold = _noarg_wrapper( lambda x: x.casefold(), name="casefold", docstring=_shared_docs["casemethods"] % _doc_args["casefold"], ) _shared_docs[ "ismethods" ] = """ Check whether all characters in each string are %(type)s. This is equivalent to running the Python string method :meth:`str.%(method)s` for each element of the Series/Index. If a string has zero characters, ``False`` is returned for that check. Returns ------- Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See Also -------- Series.str.isalpha : Check whether all characters are alphabetic. Series.str.isnumeric : Check whether all characters are numeric. Series.str.isalnum : Check whether all characters are alphanumeric. Series.str.isdigit : Check whether all characters are digits. Series.str.isdecimal : Check whether all characters are decimal. Series.str.isspace : Check whether all characters are whitespace. Series.str.islower : Check whether all characters are lowercase. Series.str.isupper : Check whether all characters are uppercase. Series.str.istitle : Check whether all characters are titlecase. Examples -------- **Checks for Alphabetic and Numeric Characters** >>> s1 = pd.Series(['one', 'one1', '1', '']) >>> s1.str.isalpha() 0 True 1 False 2 False 3 False dtype: bool >>> s1.str.isnumeric() 0 False 1 False 2 True 3 False dtype: bool >>> s1.str.isalnum() 0 True 1 True 2 True 3 False dtype: bool Note that checks against characters mixed with any additional punctuation or whitespace will evaluate to false for an alphanumeric check. >>> s2 = pd.Series(['A B', '1.5', '3,000']) >>> s2.str.isalnum() 0 False 1 False 2 False dtype: bool **More Detailed Checks for Numeric Characters** There are several different but overlapping sets of numeric characters that can be checked for. >>> s3 = pd.Series(['23', '³', '⅕', '']) The ``s3.str.isdecimal`` method checks for characters used to form numbers in base 10. >>> s3.str.isdecimal() 0 True 1 False 2 False 3 False dtype: bool The ``s.str.isdigit`` method is the same as ``s3.str.isdecimal`` but also includes special digits, like superscripted and subscripted digits in unicode. >>> s3.str.isdigit() 0 True 1 True 2 False 3 False dtype: bool The ``s.str.isnumeric`` method is the same as ``s3.str.isdigit`` but also includes other characters that can represent quantities such as unicode fractions. >>> s3.str.isnumeric() 0 True 1 True 2 True 3 False dtype: bool **Checks for Whitespace** >>> s4 = pd.Series([' ', '\\t\\r\\n ', '']) >>> s4.str.isspace() 0 True 1 True 2 False dtype: bool **Checks for Character Case** >>> s5 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) >>> s5.str.islower() 0 True 1 False 2 False 3 False dtype: bool >>> s5.str.isupper() 0 False 1 False 2 True 3 False dtype: bool The ``s5.str.istitle`` method checks for whether all words are in title case (whether only the first letter of each word is capitalized). Words are assumed to be as any sequence of non-numeric characters separated by whitespace characters. >>> s5.str.istitle() 0 False 1 True 2 False 3 False dtype: bool """ _doc_args["isalnum"] = dict(type="alphanumeric", method="isalnum") _doc_args["isalpha"] = dict(type="alphabetic", method="isalpha") _doc_args["isdigit"] = dict(type="digits", method="isdigit") _doc_args["isspace"] = dict(type="whitespace", method="isspace") _doc_args["islower"] = dict(type="lowercase", method="islower") _doc_args["isupper"] = dict(type="uppercase", method="isupper") _doc_args["istitle"] = dict(type="titlecase", method="istitle") _doc_args["isnumeric"] = dict(type="numeric", method="isnumeric") _doc_args["isdecimal"] = dict(type="decimal", method="isdecimal") isalnum = _noarg_wrapper( lambda x: x.isalnum(), name="isalnum", docstring=_shared_docs["ismethods"] % _doc_args["isalnum"], returns_string=False, ) isalpha = _noarg_wrapper( lambda x: x.isalpha(), name="isalpha", docstring=_shared_docs["ismethods"] % _doc_args["isalpha"], returns_string=False, ) isdigit = _noarg_wrapper( lambda x: x.isdigit(), name="isdigit", docstring=_shared_docs["ismethods"] % _doc_args["isdigit"], returns_string=False, ) isspace = _noarg_wrapper( lambda x: x.isspace(), name="isspace", docstring=_shared_docs["ismethods"] % _doc_args["isspace"], returns_string=False, ) islower = _noarg_wrapper( lambda x: x.islower(), name="islower", docstring=_shared_docs["ismethods"] % _doc_args["islower"], returns_string=False, ) isupper = _noarg_wrapper( lambda x: x.isupper(), name="isupper", docstring=_shared_docs["ismethods"] % _doc_args["isupper"], returns_string=False, ) istitle = _noarg_wrapper( lambda x: x.istitle(), name="istitle", docstring=_shared_docs["ismethods"] % _doc_args["istitle"], returns_string=False, ) isnumeric = _noarg_wrapper( lambda x: x.isnumeric(), name="isnumeric", docstring=_shared_docs["ismethods"] % _doc_args["isnumeric"], returns_string=False, ) isdecimal = _noarg_wrapper( lambda x: x.isdecimal(), name="isdecimal", docstring=_shared_docs["ismethods"] % _doc_args["isdecimal"], returns_string=False, ) @classmethod def _make_accessor(cls, data): cls._validate(data) return cls(data) import codecs from functools import wraps import re import textwrap from typing import Dict, List import warnings import numpy as np import pandas._libs.lib as lib import pandas._libs.ops as libops from pandas.util._decorators import Appender, deprecate_kwarg from pandas.core.dtypes.common import ( ensure_object, is_bool_dtype, is_categorical_dtype, is_integer, is_list_like, is_re, is_scalar, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCIndexClass, ABCMultiIndex, ABCSeries, ) from pandas.core.dtypes.missing import isna from pandas.core.algorithms import take_1d from pandas.core.base import NoNewAttributesMixin import pandas.core.common as com _cpython_optimized_encoders = ( "utf-8", "utf8", "latin-1", "latin1", "iso-8859-1", "mbcs", "ascii", ) _cpython_optimized_decoders = _cpython_optimized_encoders + ("utf-16", "utf-32") _shared_docs = dict() # type: Dict[str, str] def cat_core(list_of_columns: List, sep: str): """ Auxiliary function for :meth:`str.cat` Parameters ---------- list_of_columns : list of numpy arrays List of arrays to be concatenated with sep; these arrays may not contain NaNs! sep : string The separator string for concatenating the columns. Returns ------- nd.array The concatenation of list_of_columns with sep. """ if sep == "": # no need to interleave sep if it is empty return np.sum(list_of_columns, axis=0) list_with_sep = [sep] * (2 * len(list_of_columns) - 1) list_with_sep[::2] = list_of_columns return np.sum(list_with_sep, axis=0) def cat_safe(list_of_columns: List, sep: str): """ Auxiliary function for :meth:`str.cat`. Same signature as cat_core, but handles TypeErrors in concatenation, which happen if the arrays in list_of columns have the wrong dtypes or content. Parameters ---------- list_of_columns : list of numpy arrays List of arrays to be concatenated with sep; these arrays may not contain NaNs! sep : string The separator string for concatenating the columns. Returns ------- nd.array The concatenation of list_of_columns with sep. """ try: result = cat_core(list_of_columns, sep) except TypeError: # if there are any non-string values (wrong dtype or hidden behind # object dtype), np.sum will fail; catch and return with better message for column in list_of_columns: dtype = lib.infer_dtype(column, skipna=True) if dtype not in ["string", "empty"]: raise TypeError( "Concatenation requires list-likes containing only " "strings (or missing values). Offending values found in " "column {}".format(dtype) ) from None return result def _na_map(f, arr, na_result=np.nan, dtype=object): # should really _check_ for NA return _map(f, arr, na_mask=True, na_value=na_result, dtype=dtype) def _map(f, arr, na_mask=False, na_value=np.nan, dtype=object): if not len(arr): return np.ndarray(0, dtype=dtype) if isinstance(arr, ABCSeries): arr = arr.values if not isinstance(arr, np.ndarray): arr = np.asarray(arr, dtype=object) if na_mask: mask = isna(arr) convert = not np.all(mask) try: result = lib.map_infer_mask(arr, f, mask.view(np.uint8), convert) except (TypeError, AttributeError) as e: # Reraise the exception if callable `f` got wrong number of args. # The user may want to be warned by this, instead of getting NaN p_err = ( r"((takes)|(missing)) (?(2)from \d+ to )?\d+ " r"(?(3)required )positional arguments?" ) if len(e.args) >= 1 and re.search(p_err, e.args[0]): # FIXME: this should be totally avoidable raise e def g(x): try: return f(x) except (TypeError, AttributeError): return na_value return _map(g, arr, dtype=dtype) if na_value is not np.nan: np.putmask(result, mask, na_value) if result.dtype == object: result = lib.maybe_convert_objects(result) return result else: return lib.map_infer(arr, f) def str_count(arr, pat, flags=0): """ Count occurrences of pattern in each string of the Series/Index. This function is used to count the number of times a particular regex pattern is repeated in each of the string elements of the :class:`~pandas.Series`. Parameters ---------- pat : str Valid regular expression. flags : int, default 0, meaning no flags Flags for the `re` module. For a complete list, `see here <https://docs.python.org/3/howto/regex.html#compilation-flags>`_. **kwargs For compatibility with other string methods. Not used. Returns ------- Series or Index Same type as the calling object containing the integer counts. See Also -------- re : Standard library module for regular expressions. str.count : Standard library version, without regular expression support. Notes ----- Some characters need to be escaped when passing in `pat`. eg. ``'$'`` has a special meaning in regex and must be escaped when finding this literal character. Examples -------- >>> s = pd.Series(['A', 'B', 'Aaba', 'Baca', np.nan, 'CABA', 'cat']) >>> s.str.count('a') 0 0.0 1 0.0 2 2.0 3 2.0 4 NaN 5 0.0 6 1.0 dtype: float64 Escape ``'$'`` to find the literal dollar sign. >>> s = pd.Series(['$', 'B', 'Aab$', '$$ca', 'C$B$', 'cat']) >>> s.str.count('\\$') 0 1 1 0 2 1 3 2 4 2 5 0 dtype: int64 This is also available on Index >>> pd.Index(['A', 'A', 'Aaba', 'cat']).str.count('a') Int64Index([0, 0, 2, 1], dtype='int64') """ regex = re.compile(pat, flags=flags) f = lambda x: len(regex.findall(x)) return _na_map(f, arr, dtype=int) def str_contains(arr, pat, case=True, flags=0, na=np.nan, regex=True): """ Test if pattern or regex is contained within a string of a Series or Index. Return boolean Series or Index based on whether a given pattern or regex is contained within a string of a Series or Index. Parameters ---------- pat : str Character sequence or regular expression. case : bool, default True If True, case sensitive. flags : int, default 0 (no flags) Flags to pass through to the re module, e.g. re.IGNORECASE. na : default NaN Fill value for missing values. regex : bool, default True If True, assumes the pat is a regular expression. If False, treats the pat as a literal string. Returns ------- Series or Index of boolean values A Series or Index of boolean values indicating whether the given pattern is contained within the string of each element of the Series or Index. See Also -------- match : Analogous, but stricter, relying on re.match instead of re.search. Series.str.startswith : Test if the start of each string element matches a pattern. Series.str.endswith : Same as startswith, but tests the end of string. Examples -------- Returning a Series of booleans using only a literal pattern. >>> s1 = pd.Series(['Mouse', 'dog', 'house and parrot', '23', np.NaN]) >>> s1.str.contains('og', regex=False) 0 False 1 True 2 False 3 False 4 NaN dtype: object Returning an Index of booleans using only a literal pattern. >>> ind = pd.Index(['Mouse', 'dog', 'house and parrot', '23.0', np.NaN]) >>> ind.str.contains('23', regex=False) Index([False, False, False, True, nan], dtype='object') Specifying case sensitivity using `case`. >>> s1.str.contains('oG', case=True, regex=True) 0 False 1 False 2 False 3 False 4 NaN dtype: object Specifying `na` to be `False` instead of `NaN` replaces NaN values with `False`. If Series or Index does not contain NaN values the resultant dtype will be `bool`, otherwise, an `object` dtype. >>> s1.str.contains('og', na=False, regex=True) 0 False 1 True 2 False 3 False 4 False dtype: bool Returning 'house' or 'dog' when either expression occurs in a string. >>> s1.str.contains('house|dog', regex=True) 0 False 1 True 2 True 3 False 4 NaN dtype: object Ignoring case sensitivity using `flags` with regex. >>> import re >>> s1.str.contains('PARROT', flags=re.IGNORECASE, regex=True) 0 False 1 False 2 True 3 False 4 NaN dtype: object Returning any digit using regular expression. >>> s1.str.contains('\\d', regex=True) 0 False 1 False 2 False 3 True 4 NaN dtype: object Ensure `pat` is a not a literal pattern when `regex` is set to True. Note in the following example one might expect only `s2[1]` and `s2[3]` to return `True`. However, '.0' as a regex matches any character followed by a 0. >>> s2 = pd.Series(['40', '40.0', '41', '41.0', '35']) >>> s2.str.contains('.0', regex=True) 0 True 1 True 2 False 3 True 4 False dtype: bool """ if regex: if not case: flags |= re.IGNORECASE regex = re.compile(pat, flags=flags) if regex.groups > 0: warnings.warn( "This pattern has match groups. To actually get the" " groups, use str.extract.", UserWarning, stacklevel=3, ) f = lambda x: bool(regex.search(x)) else: if case: f = lambda x: pat in x else: upper_pat = pat.upper() f = lambda x: upper_pat in x uppered = _na_map(lambda x: x.upper(), arr) return _na_map(f, uppered, na, dtype=bool) return _na_map(f, arr, na, dtype=bool) def str_startswith(arr, pat, na=np.nan): """ Test if the start of each string element matches a pattern. Equivalent to :meth:`str.startswith`. Parameters ---------- pat : str Character sequence. Regular expressions are not accepted. na : object, default NaN Object shown if element tested is not a string. Returns ------- Series or Index of bool A Series of booleans indicating whether the given pattern matches the start of each string element. See Also -------- str.startswith : Python standard library string method. Series.str.endswith : Same as startswith, but tests the end of string. Series.str.contains : Tests if string element contains a pattern. Examples -------- >>> s = pd.Series(['bat', 'Bear', 'cat', np.nan]) >>> s 0 bat 1 Bear 2 cat 3 NaN dtype: object >>> s.str.startswith('b') 0 True 1 False 2 False 3 NaN dtype: object Specifying `na` to be `False` instead of `NaN`. >>> s.str.startswith('b', na=False) 0 True 1 False 2 False 3 False dtype: bool """ f = lambda x: x.startswith(pat) return _na_map(f, arr, na, dtype=bool) def str_endswith(arr, pat, na=np.nan): """ Test if the end of each string element matches a pattern. Equivalent to :meth:`str.endswith`. Parameters ---------- pat : str Character sequence. Regular expressions are not accepted. na : object, default NaN Object shown if element tested is not a string. Returns ------- Series or Index of bool A Series of booleans indicating whether the given pattern matches the end of each string element. See Also -------- str.endswith : Python standard library string method. Series.str.startswith : Same as endswith, but tests the start of string. Series.str.contains : Tests if string element contains a pattern. Examples -------- >>> s = pd.Series(['bat', 'bear', 'caT', np.nan]) >>> s 0 bat 1 bear 2 caT 3 NaN dtype: object >>> s.str.endswith('t') 0 True 1 False 2 False 3 NaN dtype: object Specifying `na` to be `False` instead of `NaN`. >>> s.str.endswith('t', na=False) 0 True 1 False 2 False 3 False dtype: bool """ f = lambda x: x.endswith(pat) return _na_map(f, arr, na, dtype=bool) def str_replace(arr, pat, repl, n=-1, case=None, flags=0, regex=True): r""" Replace occurrences of pattern/regex in the Series/Index with some other string. Equivalent to :meth:`str.replace` or :func:`re.sub`. Parameters ---------- pat : str or compiled regex String can be a character sequence or regular expression. repl : str or callable Replacement string or a callable. The callable is passed the regex match object and must return a replacement string to be used. See :func:`re.sub`. n : int, default -1 (all) Number of replacements to make from start. case : bool, default None Determines if replace is case sensitive: - If True, case sensitive (the default if `pat` is a string) - Set to False for case insensitive - Cannot be set if `pat` is a compiled regex. flags : int, default 0 (no flags) Regex module flags, e.g. re.IGNORECASE. Cannot be set if `pat` is a compiled regex. regex : bool, default True Determines if assumes the passed-in pattern is a regular expression: - If True, assumes the passed-in pattern is a regular expression. - If False, treats the pattern as a literal string - Cannot be set to False if `pat` is a compiled regex or `repl` is a callable. .. versionadded:: 0.23.0 Returns ------- Series or Index of object A copy of the object with all matching occurrences of `pat` replaced by `repl`. Raises ------ ValueError * if `regex` is False and `repl` is a callable or `pat` is a compiled regex * if `pat` is a compiled regex and `case` or `flags` is set Notes ----- When `pat` is a compiled regex, all flags should be included in the compiled regex. Use of `case`, `flags`, or `regex=False` with a compiled regex will raise an error. Examples -------- When `pat` is a string and `regex` is True (the default), the given `pat` is compiled as a regex. When `repl` is a string, it replaces matching regex patterns as with :meth:`re.sub`. NaN value(s) in the Series are left as is: >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f.', 'ba', regex=True) 0 bao 1 baz 2 NaN dtype: object When `pat` is a string and `regex` is False, every `pat` is replaced with `repl` as with :meth:`str.replace`: >>> pd.Series(['f.o', 'fuz', np.nan]).str.replace('f.', 'ba', regex=False) 0 bao 1 fuz 2 NaN dtype: object When `repl` is a callable, it is called on every `pat` using :func:`re.sub`. The callable should expect one positional argument (a regex object) and return a string. To get the idea: >>> pd.Series(['foo', 'fuz', np.nan]).str.replace('f', repr) 0 <_sre.SRE_Match object; span=(0, 1), match='f'>oo 1 <_sre.SRE_Match object; span=(0, 1), match='f'>uz 2 NaN dtype: object Reverse every lowercase alphabetic word: >>> repl = lambda m: m.group(0)[::-1] >>> pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(r'[a-z]+', repl) 0 oof 123 1 rab zab 2 NaN dtype: object Using regex groups (extract second group and swap case): >>> pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)" >>> repl = lambda m: m.group('two').swapcase() >>> pd.Series(['One Two Three', 'Foo Bar Baz']).str.replace(pat, repl) 0 tWO 1 bAR dtype: object Using a compiled regex with flags >>> import re >>> regex_pat = re.compile(r'FUZ', flags=re.IGNORECASE) >>> pd.Series(['foo', 'fuz', np.nan]).str.replace(regex_pat, 'bar') 0 foo 1 bar 2 NaN dtype: object """ # Check whether repl is valid (GH 13438, GH 15055) if not (isinstance(repl, str) or callable(repl)): raise TypeError("repl must be a string or callable") is_compiled_re = is_re(pat) if regex: if is_compiled_re: if (case is not None) or (flags != 0): raise ValueError( "case and flags cannot be set when pat is a compiled regex" ) else: # not a compiled regex # set default case if case is None: case = True # add case flag, if provided if case is False: flags |= re.IGNORECASE if is_compiled_re or len(pat) > 1 or flags or callable(repl): n = n if n >= 0 else 0 compiled = re.compile(pat, flags=flags) f = lambda x: compiled.sub(repl=repl, string=x, count=n) else: f = lambda x: x.replace(pat, repl, n) else: if is_compiled_re: raise ValueError( "Cannot use a compiled regex as replacement pattern with regex=False" ) if callable(repl): raise ValueError("Cannot use a callable replacement when regex=False") f = lambda x: x.replace(pat, repl, n) return _na_map(f, arr) def str_repeat(arr, repeats): """ Duplicate each string in the Series or Index. Parameters ---------- repeats : int or sequence of int Same value for all (int) or different value per (sequence). Returns ------- Series or Index of object Series or Index of repeated string objects specified by input parameter repeats. Examples -------- >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object Single int repeats string in Series >>> s.str.repeat(repeats=2) 0 aa 1 bb 2 cc dtype: object Sequence of int repeats corresponding string in Series >>> s.str.repeat(repeats=[1, 2, 3]) 0 a 1 bb 2 ccc dtype: object """ if is_scalar(repeats): def scalar_rep(x): try: return bytes.__mul__(x, repeats) except TypeError: return str.__mul__(x, repeats) return _na_map(scalar_rep, arr) else: def rep(x, r): try: return bytes.__mul__(x, r) except TypeError: return str.__mul__(x, r) repeats = np.asarray(repeats, dtype=object) result = libops.vec_binop(com.values_from_object(arr), repeats, rep) return result def str_match(arr, pat, case=True, flags=0, na=np.nan): """ Determine if each string matches a regular expression. Parameters ---------- pat : str Character sequence or regular expression. case : bool, default True If True, case sensitive. flags : int, default 0 (no flags) Regex module flags, e.g. re.IGNORECASE. na : default NaN Fill value for missing values. Returns ------- Series/array of boolean values See Also -------- contains : Analogous, but less strict, relying on re.search instead of re.match. extract : Extract matched groups. """ if not case: flags |= re.IGNORECASE regex = re.compile(pat, flags=flags) dtype = bool f = lambda x: bool(regex.match(x)) return _na_map(f, arr, na, dtype=dtype) def _get_single_group_name(rx): try: return list(rx.groupindex.keys()).pop() except IndexError: return None def _groups_or_na_fun(regex): """Used in both extract_noexpand and extract_frame""" if regex.groups == 0: raise ValueError("pattern contains no capture groups") empty_row = [np.nan] * regex.groups def f(x): if not isinstance(x, str): return empty_row m = regex.search(x) if m: return [np.nan if item is None else item for item in m.groups()] else: return empty_row return f def _result_dtype(arr): # workaround #27953 # ideally we just pass `dtype=arr.dtype` unconditionally, but this fails # when the list of values is empty. if arr.dtype.name == "string": return "string" else: return object def _str_extract_noexpand(arr, pat, flags=0): """ Find groups in each string in the Series using passed regular expression. This function is called from str_extract(expand=False), and can return Series, DataFrame, or Index. """ from pandas import DataFrame regex = re.compile(pat, flags=flags) groups_or_na = _groups_or_na_fun(regex) if regex.groups == 1: result = np.array([groups_or_na(val)[0] for val in arr], dtype=object) name = _get_single_group_name(regex) else: if isinstance(arr, ABCIndexClass): raise ValueError("only one regex group is supported with Index") name = None names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] if arr.empty: result = DataFrame(columns=columns, dtype=object) else: result = DataFrame( [groups_or_na(val) for val in arr], columns=columns, index=arr.index, dtype=object, ) return result, name def _str_extract_frame(arr, pat, flags=0): """ For each subject string in the Series, extract groups from the first match of regular expression pat. This function is called from str_extract(expand=True), and always returns a DataFrame. """ from pandas import DataFrame regex = re.compile(pat, flags=flags) groups_or_na = _groups_or_na_fun(regex) names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] if len(arr) == 0: return DataFrame(columns=columns, dtype=object) try: result_index = arr.index except AttributeError: result_index = None dtype = _result_dtype(arr) return DataFrame( [groups_or_na(val) for val in arr], columns=columns, index=result_index, dtype=dtype, ) def str_extract(arr, pat, flags=0, expand=True): r""" Extract capture groups in the regex `pat` as columns in a DataFrame. For each subject string in the Series, extract groups from the first match of regular expression `pat`. Parameters ---------- pat : str Regular expression pattern with capturing groups. flags : int, default 0 (no flags) Flags from the ``re`` module, e.g. ``re.IGNORECASE``, that modify regular expression matching for things like case, spaces, etc. For more details, see :mod:`re`. expand : bool, default True If True, return DataFrame with one column per capture group. If False, return a Series/Index if there is one capture group or DataFrame if there are multiple capture groups. Returns ------- DataFrame or Series or Index A DataFrame with one row for each subject string, and one column for each group. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. The dtype of each result column is always object, even when no match is found. If ``expand=False`` and pat has only one capture group, then return a Series (if subject is a Series) or Index (if subject is an Index). See Also -------- extractall : Returns all matches (not just the first match). Examples -------- A pattern with two groups will return a DataFrame with two columns. Non-matches will be NaN. >>> s = pd.Series(['a1', 'b2', 'c3']) >>> s.str.extract(r'([ab])(\d)') 0 1 0 a 1 1 b 2 2 NaN NaN A pattern may contain optional groups. >>> s.str.extract(r'([ab])?(\d)') 0 1 0 a 1 1 b 2 2 NaN 3 Named groups will become column names in the result. >>> s.str.extract(r'(?P<letter>[ab])(?P<digit>\d)') letter digit 0 a 1 1 b 2 2 NaN NaN A pattern with one group will return a DataFrame with one column if expand=True. >>> s.str.extract(r'[ab](\d)', expand=True) 0 0 1 1 2 2 NaN A pattern with one group will return a Series if expand=False. >>> s.str.extract(r'[ab](\d)', expand=False) 0 1 1 2 2 NaN dtype: object """ if not isinstance(expand, bool): raise ValueError("expand must be True or False") if expand: return _str_extract_frame(arr._orig, pat, flags=flags) else: result, name = _str_extract_noexpand(arr._parent, pat, flags=flags) return arr._wrap_result(result, name=name, expand=expand) def str_extractall(arr, pat, flags=0): r""" For each subject string in the Series, extract groups from all matches of regular expression pat. When each subject string in the Series has exactly one match, extractall(pat).xs(0, level='match') is the same as extract(pat). Parameters ---------- pat : str Regular expression pattern with capturing groups. flags : int, default 0 (no flags) A ``re`` module flag, for example ``re.IGNORECASE``. These allow to modify regular expression matching for things like case, spaces, etc. Multiple flags can be combined with the bitwise OR operator, for example ``re.IGNORECASE | re.MULTILINE``. Returns ------- DataFrame A ``DataFrame`` with one row for each match, and one column for each group. Its rows have a ``MultiIndex`` with first levels that come from the subject ``Series``. The last level is named 'match' and indexes the matches in each item of the ``Series``. Any capture group names in regular expression pat will be used for column names; otherwise capture group numbers will be used. See Also -------- extract : Returns first match only (not all matches). Examples -------- A pattern with one group will return a DataFrame with one column. Indices with no matches will not appear in the result. >>> s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"]) >>> s.str.extractall(r"[ab](\d)") 0 match A 0 1 1 2 B 0 1 Capture group names are used for column names of the result. >>> s.str.extractall(r"[ab](?P<digit>\d)") digit match A 0 1 1 2 B 0 1 A pattern with two groups will return a DataFrame with two columns. >>> s.str.extractall(r"(?P<letter>[ab])(?P<digit>\d)") letter digit match A 0 a 1 1 a 2 B 0 b 1 Optional groups that do not match are NaN in the result. >>> s.str.extractall(r"(?P<letter>[ab])?(?P<digit>\d)") letter digit match A 0 a 1 1 a 2 B 0 b 1 C 0 NaN 1 """ regex = re.compile(pat, flags=flags) # the regex must contain capture groups. if regex.groups == 0: raise ValueError("pattern contains no capture groups") if isinstance(arr, ABCIndexClass): arr = arr.to_series().reset_index(drop=True) names = dict(zip(regex.groupindex.values(), regex.groupindex.keys())) columns = [names.get(1 + i, i) for i in range(regex.groups)] match_list = [] index_list = [] is_mi = arr.index.nlevels > 1 for subject_key, subject in arr.items(): if isinstance(subject, str): if not is_mi: subject_key = (subject_key,) for match_i, match_tuple in enumerate(regex.findall(subject)): if isinstance(match_tuple, str): match_tuple = (match_tuple,) na_tuple = [np.NaN if group == "" else group for group in match_tuple] match_list.append(na_tuple) result_key = tuple(subject_key + (match_i,)) index_list.append(result_key) from pandas import MultiIndex index = MultiIndex.from_tuples(index_list, names=arr.index.names + ["match"]) dtype = _result_dtype(arr) result = arr._constructor_expanddim( match_list, index=index, columns=columns, dtype=dtype ) return result def str_get_dummies(arr, sep="|"): """ Split each string in the Series by sep and return a DataFrame of dummy/indicator variables. Parameters ---------- sep : str, default "|" String to split on. Returns ------- DataFrame Dummy variables corresponding to values of the Series. See Also -------- get_dummies : Convert categorical variable into dummy/indicator variables. Examples -------- >>> pd.Series(['a|b', 'a', 'a|c']).str.get_dummies() a b c 0 1 1 0 1 1 0 0 2 1 0 1 >>> pd.Series(['a|b', np.nan, 'a|c']).str.get_dummies() a b c 0 1 1 0 1 0 0 0 2 1 0 1 """ arr = arr.fillna("") try: arr = sep + arr + sep except TypeError: arr = sep + arr.astype(str) + sep tags = set() for ts in arr.str.split(sep): tags.update(ts) tags = sorted(tags - {""}) dummies = np.empty((len(arr), len(tags)), dtype=np.int64) for i, t in enumerate(tags): pat = sep + t + sep dummies[:, i] = lib.map_infer(arr.to_numpy(), lambda x: pat in x) return dummies, tags def str_join(arr, sep): """ Join lists contained as elements in the Series/Index with passed delimiter. If the elements of a Series are lists themselves, join the content of these lists using the delimiter passed to the function. This function is an equivalent to :meth:`str.join`. Parameters ---------- sep : str Delimiter to use between list entries. Returns ------- Series/Index: object The list entries concatenated by intervening occurrences of the delimiter. Raises ------ AttributeError If the supplied Series contains neither strings nor lists. See Also -------- str.join : Standard library version of this method. Series.str.split : Split strings around given separator/delimiter. Notes ----- If any of the list items is not a string object, the result of the join will be `NaN`. Examples -------- Example with a list that contains non-string elements. >>> s = pd.Series([['lion', 'elephant', 'zebra'], ... [1.1, 2.2, 3.3], ... ['cat', np.nan, 'dog'], ... ['cow', 4.5, 'goat'], ... ['duck', ['swan', 'fish'], 'guppy']]) >>> s 0 [lion, elephant, zebra] 1 [1.1, 2.2, 3.3] 2 [cat, nan, dog] 3 [cow, 4.5, goat] 4 [duck, [swan, fish], guppy] dtype: object Join all lists using a '-'. The lists containing object(s) of types other than str will produce a NaN. >>> s.str.join('-') 0 lion-elephant-zebra 1 NaN 2 NaN 3 NaN 4 NaN dtype: object """ return _na_map(sep.join, arr) def str_findall(arr, pat, flags=0): """ Find all occurrences of pattern or regular expression in the Series/Index. Equivalent to applying :func:`re.findall` to all the elements in the Series/Index. Parameters ---------- pat : str Pattern or regular expression. flags : int, default 0 Flags from ``re`` module, e.g. `re.IGNORECASE` (default is 0, which means no flags). Returns ------- Series/Index of lists of strings All non-overlapping matches of pattern or regular expression in each string of this Series/Index. See Also -------- count : Count occurrences of pattern or regular expression in each string of the Series/Index. extractall : For each string in the Series, extract groups from all matches of regular expression and return a DataFrame with one row for each match and one column for each group. re.findall : The equivalent ``re`` function to all non-overlapping matches of pattern or regular expression in string, as a list of strings. Examples -------- >>> s = pd.Series(['Lion', 'Monkey', 'Rabbit']) The search for the pattern 'Monkey' returns one match: >>> s.str.findall('Monkey') 0 [] 1 [Monkey] 2 [] dtype: object On the other hand, the search for the pattern 'MONKEY' doesn't return any match: >>> s.str.findall('MONKEY') 0 [] 1 [] 2 [] dtype: object Flags can be added to the pattern or regular expression. For instance, to find the pattern 'MONKEY' ignoring the case: >>> import re >>> s.str.findall('MONKEY', flags=re.IGNORECASE) 0 [] 1 [Monkey] 2 [] dtype: object When the pattern matches more than one string in the Series, all matches are returned: >>> s.str.findall('on') 0 [on] 1 [on] 2 [] dtype: object Regular expressions are supported too. For instance, the search for all the strings ending with the word 'on' is shown next: >>> s.str.findall('on$') 0 [on] 1 [] 2 [] dtype: object If the pattern is found more than once in the same string, then a list of multiple strings is returned: >>> s.str.findall('b') 0 [] 1 [] 2 [b, b] dtype: object """ regex = re.compile(pat, flags=flags) return _na_map(regex.findall, arr) def str_find(arr, sub, start=0, end=None, side="left"): """ Return indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. side : {'left', 'right'}, default 'left' Specifies a starting side, equivalent to ``find`` or ``rfind``. Returns ------- Series or Index Indexes where substring is found. """ if not isinstance(sub, str): msg = "expected a string object, not {0}" raise TypeError(msg.format(type(sub).__name__)) if side == "left": method = "find" elif side == "right": method = "rfind" else: # pragma: no cover raise ValueError("Invalid side") if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return _na_map(f, arr, dtype=int) def str_index(arr, sub, start=0, end=None, side="left"): if not isinstance(sub, str): msg = "expected a string object, not {0}" raise TypeError(msg.format(type(sub).__name__)) if side == "left": method = "index" elif side == "right": method = "rindex" else: # pragma: no cover raise ValueError("Invalid side") if end is None: f = lambda x: getattr(x, method)(sub, start) else: f = lambda x: getattr(x, method)(sub, start, end) return _na_map(f, arr, dtype=int) def str_pad(arr, width, side="left", fillchar=" "): """ Pad strings in the Series/Index up to width. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with character defined in `fillchar`. side : {'left', 'right', 'both'}, default 'left' Side from which to fill resulting string. fillchar : str, default ' ' Additional character for filling, default is whitespace. Returns ------- Series or Index of object Returns Series or Index with minimum number of char in object. See Also -------- Series.str.rjust : Fills the left side of strings with an arbitrary character. Equivalent to ``Series.str.pad(side='left')``. Series.str.ljust : Fills the right side of strings with an arbitrary character. Equivalent to ``Series.str.pad(side='right')``. Series.str.center : Fills boths sides of strings with an arbitrary character. Equivalent to ``Series.str.pad(side='both')``. Series.str.zfill : Pad strings in the Series/Index by prepending '0' character. Equivalent to ``Series.str.pad(side='left', fillchar='0')``. Examples -------- >>> s = pd.Series(["caribou", "tiger"]) >>> s 0 caribou 1 tiger dtype: object >>> s.str.pad(width=10) 0 caribou 1 tiger dtype: object >>> s.str.pad(width=10, side='right', fillchar='-') 0 caribou--- 1 tiger----- dtype: object >>> s.str.pad(width=10, side='both', fillchar='-') 0 -caribou-- 1 --tiger--- dtype: object """ if not isinstance(fillchar, str): msg = "fillchar must be a character, not {0}" raise TypeError(msg.format(type(fillchar).__name__)) if len(fillchar) != 1: raise TypeError("fillchar must be a character, not str") if not is_integer(width): msg = "width must be of integer type, not {0}" raise TypeError(msg.format(type(width).__name__)) if side == "left": f = lambda x: x.rjust(width, fillchar) elif side == "right": f = lambda x: x.ljust(width, fillchar) elif side == "both": f = lambda x: x.center(width, fillchar) else: # pragma: no cover raise ValueError("Invalid side") return _na_map(f, arr) def str_split(arr, pat=None, n=None): if pat is None: if n is None or n == 0: n = -1 f = lambda x: x.split(pat, n) else: if len(pat) == 1: if n is None or n == 0: n = -1 f = lambda x: x.split(pat, n) else: if n is None or n == -1: n = 0 regex = re.compile(pat) f = lambda x: regex.split(x, maxsplit=n) res = _na_map(f, arr) return res def str_rsplit(arr, pat=None, n=None): if n is None or n == 0: n = -1 f = lambda x: x.rsplit(pat, n) res = _na_map(f, arr) return res def str_slice(arr, start=None, stop=None, step=None): """ Slice substrings from each element in the Series or Index. Parameters ---------- start : int, optional Start position for slice operation. stop : int, optional Stop position for slice operation. step : int, optional Step size for slice operation. Returns ------- Series or Index of object Series or Index from sliced substring from original string object. See Also -------- Series.str.slice_replace : Replace a slice with a string. Series.str.get : Return element at position. Equivalent to `Series.str.slice(start=i, stop=i+1)` with `i` being the position. Examples -------- >>> s = pd.Series(["koala", "fox", "chameleon"]) >>> s 0 koala 1 fox 2 chameleon dtype: object >>> s.str.slice(start=1) 0 oala 1 ox 2 hameleon dtype: object >>> s.str.slice(start=-1) 0 a 1 x 2 n dtype: object >>> s.str.slice(stop=2) 0 ko 1 fo 2 ch dtype: object >>> s.str.slice(step=2) 0 kaa 1 fx 2 caeen dtype: object >>> s.str.slice(start=0, stop=5, step=3) 0 kl 1 f 2 cm dtype: object Equivalent behaviour to: >>> s.str[0:5:3] 0 kl 1 f 2 cm dtype: object """ obj = slice(start, stop, step) f = lambda x: x[obj] return _na_map(f, arr) def str_slice_replace(arr, start=None, stop=None, repl=None): """ Replace a positional slice of a string with another value. Parameters ---------- start : int, optional Left index position to use for the slice. If not specified (None), the slice is unbounded on the left, i.e. slice from the start of the string. stop : int, optional Right index position to use for the slice. If not specified (None), the slice is unbounded on the right, i.e. slice until the end of the string. repl : str, optional String for replacement. If not specified (None), the sliced region is replaced with an empty string. Returns ------- Series or Index Same type as the original object. See Also -------- Series.str.slice : Just slicing without replacement. Examples -------- >>> s = pd.Series(['a', 'ab', 'abc', 'abdc', 'abcde']) >>> s 0 a 1 ab 2 abc 3 abdc 4 abcde dtype: object Specify just `start`, meaning replace `start` until the end of the string with `repl`. >>> s.str.slice_replace(1, repl='X') 0 aX 1 aX 2 aX 3 aX 4 aX dtype: object Specify just `stop`, meaning the start of the string to `stop` is replaced with `repl`, and the rest of the string is included. >>> s.str.slice_replace(stop=2, repl='X') 0 X 1 X 2 Xc 3 Xdc 4 Xcde dtype: object Specify `start` and `stop`, meaning the slice from `start` to `stop` is replaced with `repl`. Everything before or after `start` and `stop` is included as is. >>> s.str.slice_replace(start=1, stop=3, repl='X') 0 aX 1 aX 2 aX 3 aXc 4 aXde dtype: object """ if repl is None: repl = "" def f(x): if x[start:stop] == "": local_stop = start else: local_stop = stop y = "" if start is not None: y += x[:start] y += repl if stop is not None: y += x[local_stop:] return y return _na_map(f, arr) def str_strip(arr, to_strip=None, side="both"): """ Strip whitespace (including newlines) from each string in the Series/Index. Parameters ---------- to_strip : str or unicode side : {'left', 'right', 'both'}, default 'both' Returns ------- Series or Index """ if side == "both": f = lambda x: x.strip(to_strip) elif side == "left": f = lambda x: x.lstrip(to_strip) elif side == "right": f = lambda x: x.rstrip(to_strip) else: # pragma: no cover raise ValueError("Invalid side") return _na_map(f, arr) def str_wrap(arr, width, **kwargs): r""" Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. This method has the same keyword parameters and defaults as :class:`textwrap.TextWrapper`. Parameters ---------- width : int Maximum line width. expand_tabs : bool, optional If True, tab characters will be expanded to spaces (default: True). replace_whitespace : bool, optional If True, each whitespace character (as defined by string.whitespace) remaining after tab expansion will be replaced by a single space (default: True). drop_whitespace : bool, optional If True, whitespace that, after wrapping, happens to end up at the beginning or end of a line is dropped (default: True). break_long_words : bool, optional If True, then words longer than width will be broken in order to ensure that no lines are longer than width. If it is false, long words will not be broken, and some lines may be longer than width (default: True). break_on_hyphens : bool, optional If True, wrapping will occur preferably on whitespace and right after hyphens in compound words, as it is customary in English. If false, only whitespaces will be considered as potentially good places for line breaks, but you need to set break_long_words to false if you want truly insecable words (default: True). Returns ------- Series or Index Notes ----- Internally, this method uses a :class:`textwrap.TextWrapper` instance with default settings. To achieve behavior matching R's stringr library str_wrap function, use the arguments: - expand_tabs = False - replace_whitespace = True - drop_whitespace = True - break_long_words = False - break_on_hyphens = False Examples -------- >>> s = pd.Series(['line to be wrapped', 'another line to be wrapped']) >>> s.str.wrap(12) 0 line to be\nwrapped 1 another line\nto be\nwrapped dtype: object """ kwargs["width"] = width tw = textwrap.TextWrapper(**kwargs) return _na_map(lambda s: "\n".join(tw.wrap(s)), arr) def str_translate(arr, table): """ Map all characters in the string through the given mapping table. Equivalent to standard :meth:`str.translate`. Parameters ---------- table : dict Table is a mapping of Unicode ordinals to Unicode ordinals, strings, or None. Unmapped characters are left untouched. Characters mapped to None are deleted. :meth:`str.maketrans` is a helper function for making translation tables. Returns ------- Series or Index """ return _na_map(lambda x: x.translate(table), arr) def str_get(arr, i): """ Extract element from each component at specified position. Extract element from lists, tuples, or strings in each element in the Series/Index. Parameters ---------- i : int Position of element to extract. Returns ------- Series or Index Examples -------- >>> s = pd.Series(["String", ... (1, 2, 3), ... ["a", "b", "c"], ... 123, ... -456, ... {1: "Hello", "2": "World"}]) >>> s 0 String 1 (1, 2, 3) 2 [a, b, c] 3 123 4 -456 5 {1: 'Hello', '2': 'World'} dtype: object >>> s.str.get(1) 0 t 1 2 2 b 3 NaN 4 NaN 5 Hello dtype: object >>> s.str.get(-1) 0 g 1 3 2 c 3 NaN 4 NaN 5 None dtype: object """ def f(x): if isinstance(x, dict): return x.get(i) elif len(x) > i >= -len(x): return x[i] return np.nan return _na_map(f, arr) def str_decode(arr, encoding, errors="strict"): """ Decode character string in the Series/Index using indicated encoding. Equivalent to :meth:`str.decode` in python2 and :meth:`bytes.decode` in python3. Parameters ---------- encoding : str errors : str, optional Returns ------- Series or Index """ if encoding in _cpython_optimized_decoders: # CPython optimized implementation f = lambda x: x.decode(encoding, errors) else: decoder = codecs.getdecoder(encoding) f = lambda x: decoder(x, errors)[0] return _na_map(f, arr) def str_encode(arr, encoding, errors="strict"): """ Encode character string in the Series/Index using indicated encoding. Equivalent to :meth:`str.encode`. Parameters ---------- encoding : str errors : str, optional Returns ------- encoded : Series/Index of objects """ if encoding in _cpython_optimized_encoders: # CPython optimized implementation f = lambda x: x.encode(encoding, errors) else: encoder = codecs.getencoder(encoding) f = lambda x: encoder(x, errors)[0] return _na_map(f, arr) def forbid_nonstring_types(forbidden, name=None): """ Decorator to forbid specific types for a method of StringMethods. For calling `.str.{method}` on a Series or Index, it is necessary to first initialize the :class:`StringMethods` object, and then call the method. However, different methods allow different input types, and so this can not be checked during :meth:`StringMethods.__init__`, but must be done on a per-method basis. This decorator exists to facilitate this process, and make it explicit which (inferred) types are disallowed by the method. :meth:`StringMethods.__init__` allows the *union* of types its different methods allow (after skipping NaNs; see :meth:`StringMethods._validate`), namely: ['string', 'empty', 'bytes', 'mixed', 'mixed-integer']. The default string types ['string', 'empty'] are allowed for all methods. For the additional types ['bytes', 'mixed', 'mixed-integer'], each method then needs to forbid the types it is not intended for. Parameters ---------- forbidden : list-of-str or None List of forbidden non-string types, may be one or more of `['bytes', 'mixed', 'mixed-integer']`. name : str, default None Name of the method to use in the error message. By default, this is None, in which case the name from the method being wrapped will be copied. However, for working with further wrappers (like _pat_wrapper and _noarg_wrapper), it is necessary to specify the name. Returns ------- func : wrapper The method to which the decorator is applied, with an added check that enforces the inferred type to not be in the list of forbidden types. Raises ------ TypeError If the inferred type of the underlying data is in `forbidden`. """ # deal with None forbidden = [] if forbidden is None else forbidden allowed_types = {"string", "empty", "bytes", "mixed", "mixed-integer"} - set( forbidden ) def _forbid_nonstring_types(func): func_name = func.__name__ if name is None else name @wraps(func) def wrapper(self, *args, **kwargs): if self._inferred_dtype not in allowed_types: msg = ( "Cannot use .str.{name} with values of inferred dtype " "{inf_type!r}.".format( name=func_name, inf_type=self._inferred_dtype ) ) raise TypeError(msg) return func(self, *args, **kwargs) wrapper.__name__ = func_name return wrapper return _forbid_nonstring_types def _noarg_wrapper( f, name=None, docstring=None, forbidden_types=["bytes"], returns_string=True, **kargs, ): @forbid_nonstring_types(forbidden_types, name=name) def wrapper(self): result = _na_map(f, self._parent, **kargs) return self._wrap_result(result, returns_string=returns_string) wrapper.__name__ = f.__name__ if name is None else name if docstring is not None: wrapper.__doc__ = docstring else: raise ValueError("Provide docstring") return wrapper def _pat_wrapper( f, flags=False, na=False, name=None, forbidden_types=["bytes"], returns_string=True, **kwargs, ): @forbid_nonstring_types(forbidden_types, name=name) def wrapper1(self, pat): result = f(self._parent, pat) return self._wrap_result(result, returns_string=returns_string) @forbid_nonstring_types(forbidden_types, name=name) def wrapper2(self, pat, flags=0, **kwargs): result = f(self._parent, pat, flags=flags, **kwargs) return self._wrap_result(result, returns_string=returns_string) @forbid_nonstring_types(forbidden_types, name=name) def wrapper3(self, pat, na=np.nan): result = f(self._parent, pat, na=na) return self._wrap_result(result, returns_string=returns_string) wrapper = wrapper3 if na else wrapper2 if flags else wrapper1 wrapper.__name__ = f.__name__ if name is None else name if f.__doc__: wrapper.__doc__ = f.__doc__ return wrapper def copy(source): "Copy a docstring from another source function (if present)" def do_copy(target): if source.__doc__: target.__doc__ = source.__doc__ return target return do_copy class StringMethods(NoNewAttributesMixin): """ Vectorized string functions for Series and Index. NAs stay NA unless handled otherwise by a particular method. Patterned after Python's string methods, with some inspiration from R's stringr package. Examples -------- >>> s.str.split('_') >>> s.str.replace('_', '') """ def __init__(self, data): self._inferred_dtype = self._validate(data) self._is_categorical = is_categorical_dtype(data) self._is_string = data.dtype.name == "string" # .values.categories works for both Series/Index self._parent = data.values.categories if self._is_categorical else data # save orig to blow up categoricals to the right type self._orig = data self._freeze() @staticmethod def _validate(data): """ Auxiliary function for StringMethods, infers and checks dtype of data. This is a "first line of defence" at the creation of the StringMethods- object (see _make_accessor), and just checks that the dtype is in the *union* of the allowed types over all string methods below; this restriction is then refined on a per-method basis using the decorator @forbid_nonstring_types (more info in the corresponding docstring). This really should exclude all series/index with any non-string values, but that isn't practical for performance reasons until we have a str dtype (GH 9343 / 13877) Parameters ---------- data : The content of the Series Returns ------- dtype : inferred dtype of data """ from pandas import StringDtype if isinstance(data, ABCMultiIndex): raise AttributeError( "Can only use .str accessor with Index, not MultiIndex" ) # see _libs/lib.pyx for list of inferred types allowed_types = ["string", "empty", "bytes", "mixed", "mixed-integer"] values = getattr(data, "values", data) # Series / Index values = getattr(values, "categories", values) # categorical / normal # explicitly allow StringDtype if isinstance(values.dtype, StringDtype): return "string" try: inferred_dtype = lib.infer_dtype(values, skipna=True) except ValueError: # GH#27571 mostly occurs with ExtensionArray inferred_dtype = None if inferred_dtype not in allowed_types: raise AttributeError("Can only use .str accessor with string values!") return inferred_dtype def __getitem__(self, key): if isinstance(key, slice): return self.slice(start=key.start, stop=key.stop, step=key.step) else: return self.get(key) def __iter__(self): i = 0 g = self.get(i) while g.notna().any(): yield g i += 1 g = self.get(i) def _wrap_result( self, result, use_codes=True, name=None, expand=None, fill_value=np.nan, returns_string=True, ): from pandas import Index, Series, MultiIndex # for category, we do the stuff on the categories, so blow it up # to the full series again # But for some operations, we have to do the stuff on the full values, # so make it possible to skip this step as the method already did this # before the transformation... if use_codes and self._is_categorical: # if self._orig is a CategoricalIndex, there is no .cat-accessor result = take_1d( result, Series(self._orig, copy=False).cat.codes, fill_value=fill_value ) if not hasattr(result, "ndim") or not hasattr(result, "dtype"): return result assert result.ndim < 3 # We can be wrapping a string / object / categorical result, in which # case we'll want to return the same dtype as the input. # Or we can be wrapping a numeric output, in which case we don't want # to return a StringArray. if self._is_string and returns_string: dtype = "string" else: dtype = None if expand is None: # infer from ndim if expand is not specified expand = result.ndim != 1 elif expand is True and not isinstance(self._orig, ABCIndexClass): # required when expand=True is explicitly specified # not needed when inferred def cons_row(x): if is_list_like(x): return x else: return [x] result = [cons_row(x) for x in result] if result: # propagate nan values to match longest sequence (GH 18450) max_len = max(len(x) for x in result) result = [ x * max_len if len(x) == 0 or x[0] is np.nan else x for x in result ] if not isinstance(expand, bool): raise ValueError("expand must be True or False") if expand is False: # if expand is False, result should have the same name # as the original otherwise specified if name is None: name = getattr(result, "name", None) if name is None: # do not use logical or, _orig may be a DataFrame # which has "name" column name = self._orig.name # Wait until we are sure result is a Series or Index before # checking attributes (GH 12180) if isinstance(self._orig, ABCIndexClass): # if result is a boolean np.array, return the np.array # instead of wrapping it into a boolean Index (GH 8875) if is_bool_dtype(result): return result if expand: result = list(result) out = MultiIndex.from_tuples(result, names=name) if out.nlevels == 1: # We had all tuples of length-one, which are # better represented as a regular Index. out = out.get_level_values(0) return out else: return Index(result, name=name) else: index = self._orig.index if expand: cons = self._orig._constructor_expanddim result = cons(result, columns=name, index=index, dtype=dtype) else: # Must be a Series cons = self._orig._constructor result = cons(result, name=name, index=index, dtype=dtype) return result def _get_series_list(self, others): """ Auxiliary function for :meth:`str.cat`. Turn potentially mixed input into a list of Series (elements without an index must match the length of the calling Series/Index). Parameters ---------- others : Series, DataFrame, np.ndarray, list-like or list-like of Objects that are either Series, Index or np.ndarray (1-dim). Returns ------- list of Series Others transformed into list of Series. """ from pandas import Series, DataFrame # self._orig is either Series or Index idx = self._orig if isinstance(self._orig, ABCIndexClass) else self._orig.index # Generally speaking, all objects without an index inherit the index # `idx` of the calling Series/Index - i.e. must have matching length. # Objects with an index (i.e. Series/Index/DataFrame) keep their own. if isinstance(others, ABCSeries): return [others] elif isinstance(others, ABCIndexClass): return [Series(others.values, index=others)] elif isinstance(others, ABCDataFrame): return [others[x] for x in others] elif isinstance(others, np.ndarray) and others.ndim == 2: others = DataFrame(others, index=idx) return [others[x] for x in others] elif is_list_like(others, allow_sets=False): others = list(others) # ensure iterators do not get read twice etc # in case of list-like `others`, all elements must be # either Series/Index/np.ndarray (1-dim)... if all( isinstance(x, (ABCSeries, ABCIndexClass)) or (isinstance(x, np.ndarray) and x.ndim == 1) for x in others ): los = [] while others: # iterate through list and append each element los = los + self._get_series_list(others.pop(0)) return los # ... or just strings elif all(not is_list_like(x) for x in others): return [Series(others, index=idx)] raise TypeError( "others must be Series, Index, DataFrame, np.ndarrary " "or list-like (either containing only strings or " "containing only objects of type Series/Index/" "np.ndarray[1-dim])" ) @forbid_nonstring_types(["bytes", "mixed", "mixed-integer"]) def cat(self, others=None, sep=None, na_rep=None, join="left"): """ Concatenate strings in the Series/Index with given separator. If `others` is specified, this function concatenates the Series/Index and elements of `others` element-wise. If `others` is not passed, then all values in the Series/Index are concatenated into a single string with a given `sep`. Parameters ---------- others : Series, Index, DataFrame, np.ndarray or list-like Series, Index, DataFrame, np.ndarray (one- or two-dimensional) and other list-likes of strings must have the same length as the calling Series/Index, with the exception of indexed objects (i.e. Series/Index/DataFrame) if `join` is not None. If others is a list-like that contains a combination of Series, Index or np.ndarray (1-dim), then all elements will be unpacked and must satisfy the above criteria individually. If others is None, the method returns the concatenation of all strings in the calling Series/Index. sep : str, default '' The separator between the different elements/columns. By default the empty string `''` is used. na_rep : str or None, default None Representation that is inserted for all missing values: - If `na_rep` is None, and `others` is None, missing values in the Series/Index are omitted from the result. - If `na_rep` is None, and `others` is not None, a row containing a missing value in any of the columns (before concatenation) will have a missing value in the result. join : {'left', 'right', 'outer', 'inner'}, default 'left' Determines the join-style between the calling Series/Index and any Series/Index/DataFrame in `others` (objects without an index need to match the length of the calling Series/Index). To disable alignment, use `.values` on any Series/Index/DataFrame in `others`. .. versionadded:: 0.23.0 .. versionchanged:: 1.0.0 Changed default of `join` from None to `'left'`. Returns ------- str, Series or Index If `others` is None, `str` is returned, otherwise a `Series/Index` (same type as caller) of objects is returned. See Also -------- split : Split each string in the Series/Index. join : Join lists contained as elements in the Series/Index. Examples -------- When not passing `others`, all values are concatenated into a single string: >>> s = pd.Series(['a', 'b', np.nan, 'd']) >>> s.str.cat(sep=' ') 'a b d' By default, NA values in the Series are ignored. Using `na_rep`, they can be given a representation: >>> s.str.cat(sep=' ', na_rep='?') 'a b ? d' If `others` is specified, corresponding values are concatenated with the separator. Result will be a Series of strings. >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',') 0 a,A 1 b,B 2 NaN 3 d,D dtype: object Missing values will remain missing in the result, but can again be represented using `na_rep` >>> s.str.cat(['A', 'B', 'C', 'D'], sep=',', na_rep='-') 0 a,A 1 b,B 2 -,C 3 d,D dtype: object If `sep` is not specified, the values are concatenated without separation. >>> s.str.cat(['A', 'B', 'C', 'D'], na_rep='-') 0 aA 1 bB 2 -C 3 dD dtype: object Series with different indexes can be aligned before concatenation. The `join`-keyword works as in other methods. >>> t = pd.Series(['d', 'a', 'e', 'c'], index=[3, 0, 4, 2]) >>> s.str.cat(t, join='left', na_rep='-') 0 aa 1 b- 2 -c 3 dd dtype: object >>> >>> s.str.cat(t, join='outer', na_rep='-') 0 aa 1 b- 2 -c 3 dd 4 -e dtype: object >>> >>> s.str.cat(t, join='inner', na_rep='-') 0 aa 2 -c 3 dd dtype: object >>> >>> s.str.cat(t, join='right', na_rep='-') 3 dd 0 aa 4 -e 2 -c dtype: object For more examples, see :ref:`here <text.concatenate>`. """ from pandas import Index, Series, concat if isinstance(others, str): raise ValueError("Did you mean to supply a `sep` keyword?") if sep is None: sep = "" if isinstance(self._orig, ABCIndexClass): data = Series(self._orig, index=self._orig) else: # Series data = self._orig # concatenate Series/Index with itself if no "others" if others is None: data = ensure_object(data) na_mask = isna(data) if na_rep is None and na_mask.any(): data = data[~na_mask] elif na_rep is not None and na_mask.any(): data = np.where(na_mask, na_rep, data) return sep.join(data) try: # turn anything in "others" into lists of Series others = self._get_series_list(others) except ValueError: # do not catch TypeError raised by _get_series_list raise ValueError( "If `others` contains arrays or lists (or other " "list-likes without an index), these must all be " "of the same length as the calling Series/Index." ) # align if required if any(not data.index.equals(x.index) for x in others): # Need to add keys for uniqueness in case of duplicate columns others = concat( others, axis=1, join=(join if join == "inner" else "outer"), keys=range(len(others)), sort=False, copy=False, ) data, others = data.align(others, join=join) others = [others[x] for x in others] # again list of Series all_cols = [ensure_object(x) for x in [data] + others] na_masks = np.array([isna(x) for x in all_cols]) union_mask = np.logical_or.reduce(na_masks, axis=0) if na_rep is None and union_mask.any(): # no na_rep means NaNs for all rows where any column has a NaN # only necessary if there are actually any NaNs result = np.empty(len(data), dtype=object) np.putmask(result, union_mask, np.nan) not_masked = ~union_mask result[not_masked] = cat_safe([x[not_masked] for x in all_cols], sep) elif na_rep is not None and union_mask.any(): # fill NaNs with na_rep in case there are actually any NaNs all_cols = [ np.where(nm, na_rep, col) for nm, col in zip(na_masks, all_cols) ] result = cat_safe(all_cols, sep) else: # no NaNs - can just concatenate result = cat_safe(all_cols, sep) if isinstance(self._orig, ABCIndexClass): # add dtype for case that result is all-NA result = Index(result, dtype=object, name=self._orig.name) else: # Series if is_categorical_dtype(self._orig.dtype): # We need to infer the new categories. dtype = None else: dtype = self._orig.dtype result = Series(result, dtype=dtype, index=data.index, name=self._orig.name) return result _shared_docs[ "str_split" ] = r""" Split strings around given separator/delimiter. Splits the string in the Series/Index from the %(side)s, at the specified delimiter string. Equivalent to :meth:`str.%(method)s`. Parameters ---------- pat : str, optional String or regular expression to split on. If not specified, split on whitespace. n : int, default -1 (all) Limit number of splits in output. ``None``, 0 and -1 will be interpreted as return all splits. expand : bool, default False Expand the splitted strings into separate columns. * If ``True``, return DataFrame/MultiIndex expanding dimensionality. * If ``False``, return Series/Index, containing lists of strings. Returns ------- Series, Index, DataFrame or MultiIndex Type matches caller unless ``expand=True`` (see Notes). See Also -------- Series.str.split : Split strings around given separator/delimiter. Series.str.rsplit : Splits string around given separator/delimiter, starting from the right. Series.str.join : Join lists contained as elements in the Series/Index with passed delimiter. str.split : Standard library version for split. str.rsplit : Standard library version for rsplit. Notes ----- The handling of the `n` keyword depends on the number of found splits: - If found splits > `n`, make first `n` splits only - If found splits <= `n`, make all splits - If for a certain row the number of found splits < `n`, append `None` for padding up to `n` if ``expand=True`` If using ``expand=True``, Series and Index callers return DataFrame and MultiIndex objects, respectively. Examples -------- >>> s = pd.Series(["this is a regular sentence", ... "https://docs.python.org/3/tutorial/index.html", ... np.nan]) 0 this is a regular sentence 1 https://docs.python.org/3/tutorial/index.html 2 NaN dtype: object In the default setting, the string is split by whitespace. >>> s.str.split() 0 [this, is, a, regular, sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object Without the `n` parameter, the outputs of `rsplit` and `split` are identical. >>> s.str.rsplit() 0 [this, is, a, regular, sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object The `n` parameter can be used to limit the number of splits on the delimiter. The outputs of `split` and `rsplit` are different. >>> s.str.split(n=2) 0 [this, is, a regular sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object >>> s.str.rsplit(n=2) 0 [this is a, regular, sentence] 1 [https://docs.python.org/3/tutorial/index.html] 2 NaN dtype: object The `pat` parameter can be used to split by other characters. >>> s.str.split(pat = "/") 0 [this is a regular sentence] 1 [https:, , docs.python.org, 3, tutorial, index... 2 NaN dtype: object When using ``expand=True``, the split elements will expand out into separate columns. If NaN is present, it is propagated throughout the columns during the split. >>> s.str.split(expand=True) 0 1 2 3 0 this is a regular 1 https://docs.python.org/3/tutorial/index.html None None None 2 NaN NaN NaN NaN \ 4 0 sentence 1 None 2 NaN For slightly more complex use cases like splitting the html document name from a url, a combination of parameter settings can be used. >>> s.str.rsplit("/", n=1, expand=True) 0 1 0 this is a regular sentence None 1 https://docs.python.org/3/tutorial index.html 2 NaN NaN Remember to escape special characters when explicitly using regular expressions. >>> s = pd.Series(["1+1=2"]) >>> s.str.split(r"\+|=", expand=True) 0 1 2 0 1 1 2 """ @Appender(_shared_docs["str_split"] % {"side": "beginning", "method": "split"}) @forbid_nonstring_types(["bytes"]) def split(self, pat=None, n=-1, expand=False): result = str_split(self._parent, pat, n=n) return self._wrap_result(result, expand=expand, returns_string=expand) @Appender(_shared_docs["str_split"] % {"side": "end", "method": "rsplit"}) @forbid_nonstring_types(["bytes"]) def rsplit(self, pat=None, n=-1, expand=False): result = str_rsplit(self._parent, pat, n=n) return self._wrap_result(result, expand=expand, returns_string=expand) _shared_docs[ "str_partition" ] = """ Split the string at the %(side)s occurrence of `sep`. This method splits the string at the %(side)s occurrence of `sep`, and returns 3 elements containing the part before the separator, the separator itself, and the part after the separator. If the separator is not found, return %(return)s. Parameters ---------- sep : str, default whitespace String to split on. pat : str, default whitespace .. deprecated:: 0.24.0 Use ``sep`` instead. expand : bool, default True If True, return DataFrame/MultiIndex expanding dimensionality. If False, return Series/Index. Returns ------- DataFrame/MultiIndex or Series/Index of objects See Also -------- %(also)s Series.str.split : Split strings around given separators. str.partition : Standard library version. Examples -------- >>> s = pd.Series(['Linda van der Berg', 'George Pitt-Rivers']) >>> s 0 Linda van der Berg 1 George Pitt-Rivers dtype: object >>> s.str.partition() 0 1 2 0 Linda van der Berg 1 George Pitt-Rivers To partition by the last space instead of the first one: >>> s.str.rpartition() 0 1 2 0 Linda van der Berg 1 George Pitt-Rivers To partition by something different than a space: >>> s.str.partition('-') 0 1 2 0 Linda van der Berg 1 George Pitt - Rivers To return a Series containing tuples instead of a DataFrame: >>> s.str.partition('-', expand=False) 0 (Linda van der Berg, , ) 1 (George Pitt, -, Rivers) dtype: object Also available on indices: >>> idx = pd.Index(['X 123', 'Y 999']) >>> idx Index(['X 123', 'Y 999'], dtype='object') Which will create a MultiIndex: >>> idx.str.partition() MultiIndex([('X', ' ', '123'), ('Y', ' ', '999')], dtype='object') Or an index with tuples with ``expand=False``: >>> idx.str.partition(expand=False) Index([('X', ' ', '123'), ('Y', ' ', '999')], dtype='object') """ @Appender( _shared_docs["str_partition"] % { "side": "first", "return": "3 elements containing the string itself, followed by two " "empty strings", "also": "rpartition : Split the string at the last occurrence of `sep`.", } ) @deprecate_kwarg(old_arg_name="pat", new_arg_name="sep") @forbid_nonstring_types(["bytes"]) def partition(self, sep=" ", expand=True): f = lambda x: x.partition(sep) result = _na_map(f, self._parent) return self._wrap_result(result, expand=expand, returns_string=expand) @Appender( _shared_docs["str_partition"] % { "side": "last", "return": "3 elements containing two empty strings, followed by the " "string itself", "also": "partition : Split the string at the first occurrence of `sep`.", } ) @deprecate_kwarg(old_arg_name="pat", new_arg_name="sep") @forbid_nonstring_types(["bytes"]) def rpartition(self, sep=" ", expand=True): f = lambda x: x.rpartition(sep) result = _na_map(f, self._parent) return self._wrap_result(result, expand=expand, returns_string=expand) @copy(str_get) def get(self, i): result = str_get(self._parent, i) return self._wrap_result(result) @copy(str_join) @forbid_nonstring_types(["bytes"]) def join(self, sep): result = str_join(self._parent, sep) return self._wrap_result(result) @copy(str_contains) @forbid_nonstring_types(["bytes"]) def contains(self, pat, case=True, flags=0, na=np.nan, regex=True): result = str_contains( self._parent, pat, case=case, flags=flags, na=na, regex=regex ) return self._wrap_result(result, fill_value=na, returns_string=False) @copy(str_match) @forbid_nonstring_types(["bytes"]) def match(self, pat, case=True, flags=0, na=np.nan): result = str_match(self._parent, pat, case=case, flags=flags, na=na) return self._wrap_result(result, fill_value=na, returns_string=False) @copy(str_replace) @forbid_nonstring_types(["bytes"]) def replace(self, pat, repl, n=-1, case=None, flags=0, regex=True): result = str_replace( self._parent, pat, repl, n=n, case=case, flags=flags, regex=regex ) return self._wrap_result(result) @copy(str_repeat) @forbid_nonstring_types(["bytes"]) def repeat(self, repeats): result = str_repeat(self._parent, repeats) return self._wrap_result(result) @copy(str_pad) @forbid_nonstring_types(["bytes"]) def pad(self, width, side="left", fillchar=" "): result = str_pad(self._parent, width, side=side, fillchar=fillchar) return self._wrap_result(result) _shared_docs[ "str_pad" ] = """ Filling %(side)s side of strings in the Series/Index with an additional character. Equivalent to :meth:`str.%(method)s`. Parameters ---------- width : int Minimum width of resulting string; additional characters will be filled with ``fillchar``. fillchar : str Additional character for filling, default is whitespace. Returns ------- filled : Series/Index of objects. """ @Appender(_shared_docs["str_pad"] % dict(side="left and right", method="center")) @forbid_nonstring_types(["bytes"]) def center(self, width, fillchar=" "): return self.pad(width, side="both", fillchar=fillchar) @Appender(_shared_docs["str_pad"] % dict(side="right", method="ljust")) @forbid_nonstring_types(["bytes"]) def ljust(self, width, fillchar=" "): return self.pad(width, side="right", fillchar=fillchar) @Appender(_shared_docs["str_pad"] % dict(side="left", method="rjust")) @forbid_nonstring_types(["bytes"]) def rjust(self, width, fillchar=" "): return self.pad(width, side="left", fillchar=fillchar) @forbid_nonstring_types(["bytes"]) def zfill(self, width): """ Pad strings in the Series/Index by prepending '0' characters. Strings in the Series/Index are padded with '0' characters on the left of the string to reach a total string length `width`. Strings in the Series/Index with length greater or equal to `width` are unchanged. Parameters ---------- width : int Minimum length of resulting string; strings with length less than `width` be prepended with '0' characters. Returns ------- Series/Index of objects. See Also -------- Series.str.rjust : Fills the left side of strings with an arbitrary character. Series.str.ljust : Fills the right side of strings with an arbitrary character. Series.str.pad : Fills the specified sides of strings with an arbitrary character. Series.str.center : Fills boths sides of strings with an arbitrary character. Notes ----- Differs from :meth:`str.zfill` which has special handling for '+'/'-' in the string. Examples -------- >>> s = pd.Series(['-1', '1', '1000', 10, np.nan]) >>> s 0 -1 1 1 2 1000 3 10 4 NaN dtype: object Note that ``10`` and ``NaN`` are not strings, therefore they are converted to ``NaN``. The minus sign in ``'-1'`` is treated as a regular character and the zero is added to the left of it (:meth:`str.zfill` would have moved it to the left). ``1000`` remains unchanged as it is longer than `width`. >>> s.str.zfill(3) 0 0-1 1 001 2 1000 3 NaN 4 NaN dtype: object """ result = str_pad(self._parent, width, side="left", fillchar="0") return self._wrap_result(result) @copy(str_slice) def slice(self, start=None, stop=None, step=None): result = str_slice(self._parent, start, stop, step) return self._wrap_result(result) @copy(str_slice_replace) @forbid_nonstring_types(["bytes"]) def slice_replace(self, start=None, stop=None, repl=None): result = str_slice_replace(self._parent, start, stop, repl) return self._wrap_result(result) @copy(str_decode) def decode(self, encoding, errors="strict"): # need to allow bytes here result = str_decode(self._parent, encoding, errors) # TODO: Not sure how to handle this. return self._wrap_result(result, returns_string=False) @copy(str_encode) @forbid_nonstring_types(["bytes"]) def encode(self, encoding, errors="strict"): result = str_encode(self._parent, encoding, errors) return self._wrap_result(result, returns_string=False) _shared_docs[ "str_strip" ] = r""" Remove leading and trailing characters. Strip whitespaces (including newlines) or a set of specified characters from each string in the Series/Index from %(side)s. Equivalent to :meth:`str.%(method)s`. Parameters ---------- to_strip : str or None, default None Specifying the set of characters to be removed. All combinations of this set of characters will be stripped. If None then whitespaces are removed. Returns ------- Series or Index of object See Also -------- Series.str.strip : Remove leading and trailing characters in Series/Index. Series.str.lstrip : Remove leading characters in Series/Index. Series.str.rstrip : Remove trailing characters in Series/Index. Examples -------- >>> s = pd.Series(['1. Ant. ', '2. Bee!\n', '3. Cat?\t', np.nan]) >>> s 0 1. Ant. 1 2. Bee!\n 2 3. Cat?\t 3 NaN dtype: object >>> s.str.strip() 0 1. Ant. 1 2. Bee! 2 3. Cat? 3 NaN dtype: object >>> s.str.lstrip('123.') 0 Ant. 1 Bee!\n 2 Cat?\t 3 NaN dtype: object >>> s.str.rstrip('.!? \n\t') 0 1. Ant 1 2. Bee 2 3. Cat 3 NaN dtype: object >>> s.str.strip('123.!? \n\t') 0 Ant 1 Bee 2 Cat 3 NaN dtype: object """ @Appender( _shared_docs["str_strip"] % dict(side="left and right sides", method="strip") ) @forbid_nonstring_types(["bytes"]) def strip(self, to_strip=None): result = str_strip(self._parent, to_strip, side="both") return self._wrap_result(result) @Appender(_shared_docs["str_strip"] % dict(side="left side", method="lstrip")) @forbid_nonstring_types(["bytes"]) def lstrip(self, to_strip=None): result = str_strip(self._parent, to_strip, side="left") return self._wrap_result(result) @Appender(_shared_docs["str_strip"] % dict(side="right side", method="rstrip")) @forbid_nonstring_types(["bytes"]) def rstrip(self, to_strip=None): result = str_strip(self._parent, to_strip, side="right") return self._wrap_result(result) @copy(str_wrap) @forbid_nonstring_types(["bytes"]) def wrap(self, width, **kwargs): result = str_wrap(self._parent, width, **kwargs) return self._wrap_result(result) @copy(str_get_dummies) @forbid_nonstring_types(["bytes"]) def get_dummies(self, sep="|"): # we need to cast to Series of strings as only that has all # methods available for making the dummies... data = self._orig.astype(str) if self._is_categorical else self._parent result, name = str_get_dummies(data, sep) return self._wrap_result( result, use_codes=(not self._is_categorical), name=name, expand=True, returns_string=False, ) @copy(str_translate) @forbid_nonstring_types(["bytes"]) def translate(self, table): result = str_translate(self._parent, table) return self._wrap_result(result) count = _pat_wrapper(str_count, flags=True, name="count", returns_string=False) startswith = _pat_wrapper( str_startswith, na=True, name="startswith", returns_string=False ) endswith = _pat_wrapper( str_endswith, na=True, name="endswith", returns_string=False ) findall = _pat_wrapper( str_findall, flags=True, name="findall", returns_string=False ) @copy(str_extract) @forbid_nonstring_types(["bytes"]) def extract(self, pat, flags=0, expand=True): return str_extract(self, pat, flags=flags, expand=expand) @copy(str_extractall) @forbid_nonstring_types(["bytes"]) def extractall(self, pat, flags=0): return str_extractall(self._orig, pat, flags=flags) _shared_docs[ "find" ] = """ Return %(side)s indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. Return -1 on failure. Equivalent to standard :meth:`str.%(method)s`. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. Returns ------- Series or Index of int. See Also -------- %(also)s """ @Appender( _shared_docs["find"] % dict( side="lowest", method="find", also="rfind : Return highest indexes in each strings.", ) ) @forbid_nonstring_types(["bytes"]) def find(self, sub, start=0, end=None): result = str_find(self._parent, sub, start=start, end=end, side="left") return self._wrap_result(result, returns_string=False) @Appender( _shared_docs["find"] % dict( side="highest", method="rfind", also="find : Return lowest indexes in each strings.", ) ) @forbid_nonstring_types(["bytes"]) def rfind(self, sub, start=0, end=None): result = str_find(self._parent, sub, start=start, end=end, side="right") return self._wrap_result(result, returns_string=False) @forbid_nonstring_types(["bytes"]) def normalize(self, form): """ Return the Unicode normal form for the strings in the Series/Index. For more information on the forms, see the :func:`unicodedata.normalize`. Parameters ---------- form : {'NFC', 'NFKC', 'NFD', 'NFKD'} Unicode form. Returns ------- normalized : Series/Index of objects """ import unicodedata f = lambda x: unicodedata.normalize(form, x) result = _na_map(f, self._parent) return self._wrap_result(result) _shared_docs[ "index" ] = """ Return %(side)s indexes in each strings where the substring is fully contained between [start:end]. This is the same as ``str.%(similar)s`` except instead of returning -1, it raises a ValueError when the substring is not found. Equivalent to standard ``str.%(method)s``. Parameters ---------- sub : str Substring being searched. start : int Left edge index. end : int Right edge index. Returns ------- Series or Index of object See Also -------- %(also)s """ @Appender( _shared_docs["index"] % dict( side="lowest", similar="find", method="index", also="rindex : Return highest indexes in each strings.", ) ) @forbid_nonstring_types(["bytes"]) def index(self, sub, start=0, end=None): result = str_index(self._parent, sub, start=start, end=end, side="left") return self._wrap_result(result, returns_string=False) @Appender( _shared_docs["index"] % dict( side="highest", similar="rfind", method="rindex", also="index : Return lowest indexes in each strings.", ) ) @forbid_nonstring_types(["bytes"]) def rindex(self, sub, start=0, end=None): result = str_index(self._parent, sub, start=start, end=end, side="right") return self._wrap_result(result, returns_string=False) _shared_docs[ "len" ] = """ Compute the length of each element in the Series/Index. The element may be a sequence (such as a string, tuple or list) or a collection (such as a dictionary). Returns ------- Series or Index of int A Series or Index of integer values indicating the length of each element in the Series or Index. See Also -------- str.len : Python built-in function returning the length of an object. Series.size : Returns the length of the Series. Examples -------- Returns the length (number of characters) in a string. Returns the number of entries for dictionaries, lists or tuples. >>> s = pd.Series(['dog', ... '', ... 5, ... {'foo' : 'bar'}, ... [2, 3, 5, 7], ... ('one', 'two', 'three')]) >>> s 0 dog 1 2 5 3 {'foo': 'bar'} 4 [2, 3, 5, 7] 5 (one, two, three) dtype: object >>> s.str.len() 0 3.0 1 0.0 2 NaN 3 1.0 4 4.0 5 3.0 dtype: float64 """ len = _noarg_wrapper( len, docstring=_shared_docs["len"], forbidden_types=None, dtype=int, returns_string=False, ) _shared_docs[ "casemethods" ] = """ Convert strings in the Series/Index to %(type)s. %(version)s Equivalent to :meth:`str.%(method)s`. Returns ------- Series or Index of object See Also -------- Series.str.lower : Converts all characters to lowercase. Series.str.upper : Converts all characters to uppercase. Series.str.title : Converts first character of each word to uppercase and remaining to lowercase. Series.str.capitalize : Converts first character to uppercase and remaining to lowercase. Series.str.swapcase : Converts uppercase to lowercase and lowercase to uppercase. Series.str.casefold: Removes all case distinctions in the string. Examples -------- >>> s = pd.Series(['lower', 'CAPITALS', 'this is a sentence', 'SwApCaSe']) >>> s 0 lower 1 CAPITALS 2 this is a sentence 3 SwApCaSe dtype: object >>> s.str.lower() 0 lower 1 capitals 2 this is a sentence 3 swapcase dtype: object >>> s.str.upper() 0 LOWER 1 CAPITALS 2 THIS IS A SENTENCE 3 SWAPCASE dtype: object >>> s.str.title() 0 Lower 1 Capitals 2 This Is A Sentence 3 Swapcase dtype: object >>> s.str.capitalize() 0 Lower 1 Capitals 2 This is a sentence 3 Swapcase dtype: object >>> s.str.swapcase() 0 LOWER 1 capitals 2 THIS IS A SENTENCE 3 sWaPcAsE dtype: object """ # _doc_args holds dict of strings to use in substituting casemethod docs _doc_args = {} # type: Dict[str, Dict[str, str]] _doc_args["lower"] = dict(type="lowercase", method="lower", version="") _doc_args["upper"] = dict(type="uppercase", method="upper", version="") _doc_args["title"] = dict(type="titlecase", method="title", version="") _doc_args["capitalize"] = dict( type="be capitalized", method="capitalize", version="" ) _doc_args["swapcase"] = dict(type="be swapcased", method="swapcase", version="") _doc_args["casefold"] = dict( type="be casefolded", method="casefold", version="\n .. versionadded:: 0.25.0\n", ) lower = _noarg_wrapper( lambda x: x.lower(), name="lower", docstring=_shared_docs["casemethods"] % _doc_args["lower"], ) upper = _noarg_wrapper( lambda x: x.upper(), name="upper", docstring=_shared_docs["casemethods"] % _doc_args["upper"], ) title = _noarg_wrapper( lambda x: x.title(), name="title", docstring=_shared_docs["casemethods"] % _doc_args["title"], ) capitalize = _noarg_wrapper( lambda x: x.capitalize(), name="capitalize", docstring=_shared_docs["casemethods"] % _doc_args["capitalize"], ) swapcase = _noarg_wrapper( lambda x: x.swapcase(), name="swapcase", docstring=_shared_docs["casemethods"] % _doc_args["swapcase"], ) casefold = _noarg_wrapper( lambda x: x.casefold(), name="casefold", docstring=_shared_docs["casemethods"] % _doc_args["casefold"], ) _shared_docs[ "ismethods" ] = """ Check whether all characters in each string are %(type)s. This is equivalent to running the Python string method :meth:`str.%(method)s` for each element of the Series/Index. If a string has zero characters, ``False`` is returned for that check. Returns ------- Series or Index of bool Series or Index of boolean values with the same length as the original Series/Index. See Also -------- Series.str.isalpha : Check whether all characters are alphabetic. Series.str.isnumeric : Check whether all characters are numeric. Series.str.isalnum : Check whether all characters are alphanumeric. Series.str.isdigit : Check whether all characters are digits. Series.str.isdecimal : Check whether all characters are decimal. Series.str.isspace : Check whether all characters are whitespace. Series.str.islower : Check whether all characters are lowercase. Series.str.isupper : Check whether all characters are uppercase. Series.str.istitle : Check whether all characters are titlecase. Examples -------- **Checks for Alphabetic and Numeric Characters** >>> s1 = pd.Series(['one', 'one1', '1', '']) >>> s1.str.isalpha() 0 True 1 False 2 False 3 False dtype: bool >>> s1.str.isnumeric() 0 False 1 False 2 True 3 False dtype: bool >>> s1.str.isalnum() 0 True 1 True 2 True 3 False dtype: bool Note that checks against characters mixed with any additional punctuation or whitespace will evaluate to false for an alphanumeric check. >>> s2 = pd.Series(['A B', '1.5', '3,000']) >>> s2.str.isalnum() 0 False 1 False 2 False dtype: bool **More Detailed Checks for Numeric Characters** There are several different but overlapping sets of numeric characters that can be checked for. >>> s3 = pd.Series(['23', '³', '⅕', '']) The ``s3.str.isdecimal`` method checks for characters used to form numbers in base 10. >>> s3.str.isdecimal() 0 True 1 False 2 False 3 False dtype: bool The ``s.str.isdigit`` method is the same as ``s3.str.isdecimal`` but also includes special digits, like superscripted and subscripted digits in unicode. >>> s3.str.isdigit() 0 True 1 True 2 False 3 False dtype: bool The ``s.str.isnumeric`` method is the same as ``s3.str.isdigit`` but also includes other characters that can represent quantities such as unicode fractions. >>> s3.str.isnumeric() 0 True 1 True 2 True 3 False dtype: bool **Checks for Whitespace** >>> s4 = pd.Series([' ', '\\t\\r\\n ', '']) >>> s4.str.isspace() 0 True 1 True 2 False dtype: bool **Checks for Character Case** >>> s5 = pd.Series(['leopard', 'Golden Eagle', 'SNAKE', '']) >>> s5.str.islower() 0 True 1 False 2 False 3 False dtype: bool >>> s5.str.isupper() 0 False 1 False 2 True 3 False dtype: bool The ``s5.str.istitle`` method checks for whether all words are in title case (whether only the first letter of each word is capitalized). Words are assumed to be as any sequence of non-numeric characters separated by whitespace characters. >>> s5.str.istitle() 0 False 1 True 2 False 3 False dtype: bool """ _doc_args["isalnum"] = dict(type="alphanumeric", method="isalnum") _doc_args["isalpha"] = dict(type="alphabetic", method="isalpha") _doc_args["isdigit"] = dict(type="digits", method="isdigit") _doc_args["isspace"] = dict(type="whitespace", method="isspace") _doc_args["islower"] = dict(type="lowercase", method="islower") _doc_args["isupper"] = dict(type="uppercase", method="isupper") _doc_args["istitle"] = dict(type="titlecase", method="istitle") _doc_args["isnumeric"] = dict(type="numeric", method="isnumeric") _doc_args["isdecimal"] = dict(type="decimal", method="isdecimal") # force _noarg_wrapper return type with dtype=bool (GH 29624) isalnum = _noarg_wrapper( lambda x: x.isalnum(), name="isalnum", docstring=_shared_docs["ismethods"] % _doc_args["isalnum"], returns_string=False, dtype=bool, ) isalpha = _noarg_wrapper( lambda x: x.isalpha(), name="isalpha", docstring=_shared_docs["ismethods"] % _doc_args["isalpha"], returns_string=False, dtype=bool, ) isdigit = _noarg_wrapper( lambda x: x.isdigit(), name="isdigit", docstring=_shared_docs["ismethods"] % _doc_args["isdigit"], returns_string=False, dtype=bool, ) isspace = _noarg_wrapper( lambda x: x.isspace(), name="isspace", docstring=_shared_docs["ismethods"] % _doc_args["isspace"], returns_string=False, dtype=bool, ) islower = _noarg_wrapper( lambda x: x.islower(), name="islower", docstring=_shared_docs["ismethods"] % _doc_args["islower"], returns_string=False, dtype=bool, ) isupper = _noarg_wrapper( lambda x: x.isupper(), name="isupper", docstring=_shared_docs["ismethods"] % _doc_args["isupper"], returns_string=False, dtype=bool, ) istitle = _noarg_wrapper( lambda x: x.istitle(), name="istitle", docstring=_shared_docs["ismethods"] % _doc_args["istitle"], returns_string=False, dtype=bool, ) isnumeric = _noarg_wrapper( lambda x: x.isnumeric(), name="isnumeric", docstring=_shared_docs["ismethods"] % _doc_args["isnumeric"], returns_string=False, dtype=bool, ) isdecimal = _noarg_wrapper( lambda x: x.isdecimal(), name="isdecimal", docstring=_shared_docs["ismethods"] % _doc_args["isdecimal"], returns_string=False, dtype=bool, ) @classmethod def _make_accessor(cls, data): cls._validate(data) return cls(data)
BugsInPy/BugsInPy/temp/projects/pandas/bug-124-fixed/pandas/pandas/core/strings.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-124-buggy/pandas/pandas/core/strings.py
pandas-bug-136
""" SQL-style merge routines """ import copy import datetime from functools import partial import string import warnings import numpy as np from pandas._libs import hashtable as libhashtable, lib import pandas._libs.join as libjoin from pandas.errors import MergeError from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_object, is_array_like, is_bool, is_bool_dtype, is_categorical_dtype, is_datetime64tz_dtype, is_datetimelike, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_int64_dtype, is_integer, is_integer_dtype, is_list_like, is_number, is_numeric_dtype, is_object_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import isnull, na_value_for_dtype from pandas import Categorical, DataFrame, Index, MultiIndex, Series, Timedelta import pandas.core.algorithms as algos from pandas.core.arrays.categorical import _recode_for_categories import pandas.core.common as com from pandas.core.frame import _merge_doc from pandas.core.internals import _transform_index, concatenate_block_managers import pandas.core.sorting as sorting from pandas.core.sorting import is_int64_overflow_possible @Substitution("\nleft : DataFrame") @Appender(_merge_doc, indents=0) def merge( left, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ): op = _MergeOperation( left, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) return op.get_result() if __debug__: merge.__doc__ = _merge_doc % "\nleft : DataFrame" def _groupby_and_merge(by, on, left, right, _merge_pieces, check_duplicates=True): """ groupby & merge; we are always performing a left-by type operation Parameters ---------- by: field to group on: duplicates field left: left frame right: right frame _merge_pieces: function for merging check_duplicates: bool, default True should we check & clean duplicates """ pieces = [] if not isinstance(by, (list, tuple)): by = [by] lby = left.groupby(by, sort=False) # if we can groupby the rhs # then we can get vastly better perf try: # we will check & remove duplicates if indicated if check_duplicates: if on is None: on = [] elif not isinstance(on, (list, tuple)): on = [on] if right.duplicated(by + on).any(): right = right.drop_duplicates(by + on, keep="last") rby = right.groupby(by, sort=False) except KeyError: rby = None for key, lhs in lby: if rby is None: rhs = right else: try: rhs = right.take(rby.indices[key]) except KeyError: # key doesn't exist in left lcols = lhs.columns.tolist() cols = lcols + [r for r in right.columns if r not in set(lcols)] merged = lhs.reindex(columns=cols) merged.index = range(len(merged)) pieces.append(merged) continue merged = _merge_pieces(lhs, rhs) # make sure join keys are in the merged # TODO, should _merge_pieces do this? for k in by: try: if k in merged: merged[k] = key except KeyError: pass pieces.append(merged) # preserve the original order # if we have a missing piece this can be reset from pandas.core.reshape.concat import concat result = concat(pieces, ignore_index=True) result = result.reindex(columns=pieces[0].columns, copy=False) return result, lby def merge_ordered( left, right, on=None, left_on=None, right_on=None, left_by=None, right_by=None, fill_method=None, suffixes=("_x", "_y"), how="outer", ): """ Perform merge with optional filling/interpolation designed for ordered data like time series data. Optionally perform group-wise merge (see examples). Parameters ---------- left : DataFrame right : DataFrame on : label or list Field names to join on. Must be found in both DataFrames. left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs left_by : column name or list of column names Group left DataFrame by group columns and merge piece by piece with right DataFrame right_by : column name or list of column names Group right DataFrame by group columns and merge piece by piece with left DataFrame fill_method : {'ffill', None}, default None Interpolation method for data suffixes : Sequence, default is ("_x", "_y") A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in `left` and `right` respectively. Pass a value of `None` instead of a string to indicate that the column name from `left` or `right` should be left as-is, with no suffix. At least one of the values must not be None. .. versionchanged:: 0.25.0 how : {'left', 'right', 'outer', 'inner'}, default 'outer' * left: use only keys from left frame (SQL: left outer join) * right: use only keys from right frame (SQL: right outer join) * outer: use union of keys from both frames (SQL: full outer join) * inner: use intersection of keys from both frames (SQL: inner join) Returns ------- merged : DataFrame The output type will the be same as 'left', if it is a subclass of DataFrame. See Also -------- merge merge_asof Examples -------- >>> A >>> B key lvalue group key rvalue 0 a 1 a 0 b 1 1 c 2 a 1 c 2 2 e 3 a 2 d 3 3 a 1 b 4 c 2 b 5 e 3 b >>> merge_ordered(A, B, fill_method='ffill', left_by='group') group key lvalue rvalue 0 a a 1 NaN 1 a b 1 1.0 2 a c 2 2.0 3 a d 2 3.0 4 a e 3 3.0 5 b a 1 NaN 6 b b 1 1.0 7 b c 2 2.0 8 b d 2 3.0 9 b e 3 3.0 """ def _merger(x, y): # perform the ordered merge operation op = _OrderedMerge( x, y, on=on, left_on=left_on, right_on=right_on, suffixes=suffixes, fill_method=fill_method, how=how, ) return op.get_result() if left_by is not None and right_by is not None: raise ValueError("Can only group either left or right frames") elif left_by is not None: result, _ = _groupby_and_merge( left_by, on, left, right, lambda x, y: _merger(x, y), check_duplicates=False ) elif right_by is not None: result, _ = _groupby_and_merge( right_by, on, right, left, lambda x, y: _merger(y, x), check_duplicates=False, ) else: result = _merger(left, right) return result def merge_asof( left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, suffixes=("_x", "_y"), tolerance=None, allow_exact_matches=True, direction="backward", ): """ Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys. Both DataFrames must be sorted by the key. For each row in the left DataFrame: - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key. - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key. - A "nearest" search selects the row in the right DataFrame whose 'on' key is closest in absolute distance to the left's key. The default is "backward" and is compatible in versions below 0.20.0. The direction parameter was added in version 0.20.0 and introduces "forward" and "nearest". Optionally match on equivalent keys with 'by' before searching with 'on'. Parameters ---------- left : DataFrame right : DataFrame on : label Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given. left_on : label Field name to join on in left DataFrame. right_on : label Field name to join on in right DataFrame. left_index : bool Use the index of the left DataFrame as the join key. right_index : bool Use the index of the right DataFrame as the join key. by : column name or list of column names Match on these columns before performing merge operation. left_by : column name Field names to match on in the left DataFrame. right_by : column name Field names to match on in the right DataFrame. suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively. tolerance : int or Timedelta, optional, default None Select asof tolerance within this range; must be compatible with the merge index. allow_exact_matches : bool, default True - If True, allow matching with the same 'on' value (i.e. less-than-or-equal-to / greater-than-or-equal-to) - If False, don't match the same 'on' value (i.e., strictly less-than / strictly greater-than) direction : 'backward' (default), 'forward', or 'nearest' Whether to search for prior, subsequent, or closest matches. .. versionadded:: 0.20.0 Returns ------- merged : DataFrame See Also -------- merge merge_ordered Examples -------- >>> left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) >>> left a left_val 0 1 a 1 5 b 2 10 c >>> right = pd.DataFrame({'a': [1, 2, 3, 6, 7], ... 'right_val': [1, 2, 3, 6, 7]}) >>> right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7 >>> pd.merge_asof(left, right, on='a') a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7 >>> pd.merge_asof(left, right, on='a', allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0 >>> pd.merge_asof(left, right, on='a', direction='forward') a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaN >>> pd.merge_asof(left, right, on='a', direction='nearest') a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7 We can use indexed DataFrames as well. >>> left = pd.DataFrame({'left_val': ['a', 'b', 'c']}, index=[1, 5, 10]) >>> left left_val 1 a 5 b 10 c >>> right = pd.DataFrame({'right_val': [1, 2, 3, 6, 7]}, ... index=[1, 2, 3, 6, 7]) >>> right right_val 1 1 2 2 3 3 6 6 7 7 >>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7 Here is a real-world times-series example >>> quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 >>> trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 By default we are taking the asof of the quotes >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker') time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 2ms between the quote time and the trade time >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('2ms')) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However *prior* data will propagate forward >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('10ms'), ... allow_exact_matches=False) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN """ op = _AsOfMerge( left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, by=by, left_by=left_by, right_by=right_by, suffixes=suffixes, how="asof", tolerance=tolerance, allow_exact_matches=allow_exact_matches, direction=direction, ) return op.get_result() # TODO: transformations?? # TODO: only copy DataFrames when modification necessary class _MergeOperation: """ Perform a database (SQL) merge operation between two DataFrame objects using either columns as keys or their row indexes """ _merge_type = "merge" def __init__( self, left, right, how="inner", on=None, left_on=None, right_on=None, axis=1, left_index=False, right_index=False, sort=True, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ): left = validate_operand(left) right = validate_operand(right) self.left = self.orig_left = left self.right = self.orig_right = right self.how = how self.axis = axis self.on = com.maybe_make_list(on) self.left_on = com.maybe_make_list(left_on) self.right_on = com.maybe_make_list(right_on) self.copy = copy self.suffixes = suffixes self.sort = sort self.left_index = left_index self.right_index = right_index self.indicator = indicator if isinstance(self.indicator, str): self.indicator_name = self.indicator elif isinstance(self.indicator, bool): self.indicator_name = "_merge" if self.indicator else None else: raise ValueError( "indicator option can only accept boolean or string arguments" ) if not is_bool(left_index): raise ValueError( "left_index parameter must be of type bool, not " "{left_index}".format(left_index=type(left_index)) ) if not is_bool(right_index): raise ValueError( "right_index parameter must be of type bool, not " "{right_index}".format(right_index=type(right_index)) ) # warn user when merging between different levels if left.columns.nlevels != right.columns.nlevels: msg = ( "merging between different levels can give an unintended " "result ({left} levels on the left, {right} on the right)" ).format(left=left.columns.nlevels, right=right.columns.nlevels) warnings.warn(msg, UserWarning) self._validate_specification() # note this function has side effects ( self.left_join_keys, self.right_join_keys, self.join_names, ) = self._get_merge_keys() # validate the merge keys dtypes. We may need to coerce # to avoid incompat dtypes self._maybe_coerce_merge_keys() # If argument passed to validate, # check if columns specified as unique # are in fact unique. if validate is not None: self._validate(validate) def get_result(self): if self.indicator: self.left, self.right = self._indicator_pre_merge(self.left, self.right) join_index, left_indexer, right_indexer = self._get_join_info() ldata, rdata = self.left._data, self.right._data lsuf, rsuf = self.suffixes llabels, rlabels = _items_overlap_with_suffix( ldata.items, lsuf, rdata.items, rsuf ) lindexers = {1: left_indexer} if left_indexer is not None else {} rindexers = {1: right_indexer} if right_indexer is not None else {} result_data = concatenate_block_managers( [(ldata, lindexers), (rdata, rindexers)], axes=[llabels.append(rlabels), join_index], concat_axis=0, copy=self.copy, ) typ = self.left._constructor result = typ(result_data).__finalize__(self, method=self._merge_type) if self.indicator: result = self._indicator_post_merge(result) self._maybe_add_join_keys(result, left_indexer, right_indexer) self._maybe_restore_index_levels(result) return result def _indicator_pre_merge(self, left, right): columns = left.columns.union(right.columns) for i in ["_left_indicator", "_right_indicator"]: if i in columns: raise ValueError( "Cannot use `indicator=True` option when " "data contains a column named {name}".format(name=i) ) if self.indicator_name in columns: raise ValueError( "Cannot use name of an existing column for indicator column" ) left = left.copy() right = right.copy() left["_left_indicator"] = 1 left["_left_indicator"] = left["_left_indicator"].astype("int8") right["_right_indicator"] = 2 right["_right_indicator"] = right["_right_indicator"].astype("int8") return left, right def _indicator_post_merge(self, result): result["_left_indicator"] = result["_left_indicator"].fillna(0) result["_right_indicator"] = result["_right_indicator"].fillna(0) result[self.indicator_name] = Categorical( (result["_left_indicator"] + result["_right_indicator"]), categories=[1, 2, 3], ) result[self.indicator_name] = result[self.indicator_name].cat.rename_categories( ["left_only", "right_only", "both"] ) result = result.drop(labels=["_left_indicator", "_right_indicator"], axis=1) return result def _maybe_restore_index_levels(self, result): """ Restore index levels specified as `on` parameters Here we check for cases where `self.left_on` and `self.right_on` pairs each reference an index level in their respective DataFrames. The joined columns corresponding to these pairs are then restored to the index of `result`. **Note:** This method has side effects. It modifies `result` in-place Parameters ---------- result: DataFrame merge result Returns ------- None """ names_to_restore = [] for name, left_key, right_key in zip( self.join_names, self.left_on, self.right_on ): if ( self.orig_left._is_level_reference(left_key) and self.orig_right._is_level_reference(right_key) and name not in result.index.names ): names_to_restore.append(name) if names_to_restore: result.set_index(names_to_restore, inplace=True) def _maybe_add_join_keys(self, result, left_indexer, right_indexer): left_has_missing = None right_has_missing = None keys = zip(self.join_names, self.left_on, self.right_on) for i, (name, lname, rname) in enumerate(keys): if not _should_fill(lname, rname): continue take_left, take_right = None, None if name in result: if left_indexer is not None and right_indexer is not None: if name in self.left: if left_has_missing is None: left_has_missing = (left_indexer == -1).any() if left_has_missing: take_right = self.right_join_keys[i] if not is_dtype_equal( result[name].dtype, self.left[name].dtype ): take_left = self.left[name]._values elif name in self.right: if right_has_missing is None: right_has_missing = (right_indexer == -1).any() if right_has_missing: take_left = self.left_join_keys[i] if not is_dtype_equal( result[name].dtype, self.right[name].dtype ): take_right = self.right[name]._values elif left_indexer is not None and is_array_like(self.left_join_keys[i]): take_left = self.left_join_keys[i] take_right = self.right_join_keys[i] if take_left is not None or take_right is not None: if take_left is None: lvals = result[name]._values else: lfill = na_value_for_dtype(take_left.dtype) lvals = algos.take_1d(take_left, left_indexer, fill_value=lfill) if take_right is None: rvals = result[name]._values else: rfill = na_value_for_dtype(take_right.dtype) rvals = algos.take_1d(take_right, right_indexer, fill_value=rfill) # if we have an all missing left_indexer # make sure to just use the right values mask = left_indexer == -1 if mask.all(): key_col = rvals else: key_col = Index(lvals).where(~mask, rvals) if result._is_label_reference(name): result[name] = key_col elif result._is_level_reference(name): if isinstance(result.index, MultiIndex): key_col.name = name idx_list = [ result.index.get_level_values(level_name) if level_name != name else key_col for level_name in result.index.names ] result.set_index(idx_list, inplace=True) else: result.index = Index(key_col, name=name) else: result.insert(i, name or "key_{i}".format(i=i), key_col) def _get_join_indexers(self): """ return the join indexers """ return _get_join_indexers( self.left_join_keys, self.right_join_keys, sort=self.sort, how=self.how ) def _get_join_info(self): left_ax = self.left._data.axes[self.axis] right_ax = self.right._data.axes[self.axis] if self.left_index and self.right_index and self.how != "asof": join_index, left_indexer, right_indexer = left_ax.join( right_ax, how=self.how, return_indexers=True, sort=self.sort ) elif self.right_index and self.how == "left": join_index, left_indexer, right_indexer = _left_join_on_index( left_ax, right_ax, self.left_join_keys, sort=self.sort ) elif self.left_index and self.how == "right": join_index, right_indexer, left_indexer = _left_join_on_index( right_ax, left_ax, self.right_join_keys, sort=self.sort ) else: (left_indexer, right_indexer) = self._get_join_indexers() if self.right_index: if len(self.left) > 0: join_index = self._create_join_index( self.left.index, self.right.index, left_indexer, right_indexer, how="right", ) else: join_index = self.right.index.take(right_indexer) left_indexer = np.array([-1] * len(join_index)) elif self.left_index: if len(self.right) > 0: join_index = self._create_join_index( self.right.index, self.left.index, right_indexer, left_indexer, how="left", ) else: join_index = self.left.index.take(left_indexer) right_indexer = np.array([-1] * len(join_index)) else: join_index = Index(np.arange(len(left_indexer))) if len(join_index) == 0: join_index = join_index.astype(object) return join_index, left_indexer, right_indexer def _create_join_index( self, index, other_index, indexer, other_indexer, how="left" ): """ Create a join index by rearranging one index to match another Parameters ---------- index: Index being rearranged other_index: Index used to supply values not found in index indexer: how to rearrange index how: replacement is only necessary if indexer based on other_index Returns ------- join_index """ if self.how in (how, "outer") and not isinstance(other_index, MultiIndex): # if final index requires values in other_index but not target # index, indexer may hold missing (-1) values, causing Index.take # to take the final value in target index. So, we set the last # element to be the desired fill value. We do not use allow_fill # and fill_value because it throws a ValueError on integer indices mask = indexer == -1 if np.any(mask): fill_value = na_value_for_dtype(index.dtype, compat=False) index = index.append(Index([fill_value])) return index.take(indexer) def _get_merge_keys(self): """ Note: has side effects (copy/delete key columns) Parameters ---------- left right on Returns ------- left_keys, right_keys """ left_keys = [] right_keys = [] join_names = [] right_drop = [] left_drop = [] left, right = self.left, self.right is_lkey = lambda x: is_array_like(x) and len(x) == len(left) is_rkey = lambda x: is_array_like(x) and len(x) == len(right) # Note that pd.merge_asof() has separate 'on' and 'by' parameters. A # user could, for example, request 'left_index' and 'left_by'. In a # regular pd.merge(), users cannot specify both 'left_index' and # 'left_on'. (Instead, users have a MultiIndex). That means the # self.left_on in this function is always empty in a pd.merge(), but # a pd.merge_asof(left_index=True, left_by=...) will result in a # self.left_on array with a None in the middle of it. This requires # a work-around as designated in the code below. # See _validate_specification() for where this happens. # ugh, spaghetti re #733 if _any(self.left_on) and _any(self.right_on): for lk, rk in zip(self.left_on, self.right_on): if is_lkey(lk): left_keys.append(lk) if is_rkey(rk): right_keys.append(rk) join_names.append(None) # what to do? else: if rk is not None: right_keys.append(right._get_label_or_level_values(rk)) join_names.append(rk) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index) join_names.append(right.index.name) else: if not is_rkey(rk): if rk is not None: right_keys.append(right._get_label_or_level_values(rk)) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index) if lk is not None and lk == rk: # avoid key upcast in corner case (length-0) if len(left) > 0: right_drop.append(rk) else: left_drop.append(lk) else: right_keys.append(rk) if lk is not None: left_keys.append(left._get_label_or_level_values(lk)) join_names.append(lk) else: # work-around for merge_asof(left_index=True) left_keys.append(left.index) join_names.append(left.index.name) elif _any(self.left_on): for k in self.left_on: if is_lkey(k): left_keys.append(k) join_names.append(None) else: left_keys.append(left._get_label_or_level_values(k)) join_names.append(k) if isinstance(self.right.index, MultiIndex): right_keys = [ lev._values.take(lev_codes) for lev, lev_codes in zip( self.right.index.levels, self.right.index.codes ) ] else: right_keys = [self.right.index._values] elif _any(self.right_on): for k in self.right_on: if is_rkey(k): right_keys.append(k) join_names.append(None) else: right_keys.append(right._get_label_or_level_values(k)) join_names.append(k) if isinstance(self.left.index, MultiIndex): left_keys = [ lev._values.take(lev_codes) for lev, lev_codes in zip( self.left.index.levels, self.left.index.codes ) ] else: left_keys = [self.left.index.values] if left_drop: self.left = self.left._drop_labels_or_levels(left_drop) if right_drop: self.right = self.right._drop_labels_or_levels(right_drop) return left_keys, right_keys, join_names def _maybe_coerce_merge_keys(self): # we have valid mergees but we may have to further # coerce these if they are originally incompatible types # # for example if these are categorical, but are not dtype_equal # or if we have object and integer dtypes for lk, rk, name in zip( self.left_join_keys, self.right_join_keys, self.join_names ): if (len(lk) and not len(rk)) or (not len(lk) and len(rk)): continue lk_is_cat = is_categorical_dtype(lk) rk_is_cat = is_categorical_dtype(rk) lk_is_object = is_object_dtype(lk) rk_is_object = is_object_dtype(rk) # if either left or right is a categorical # then the must match exactly in categories & ordered if lk_is_cat and rk_is_cat: if lk.is_dtype_equal(rk): continue elif lk_is_cat or rk_is_cat: pass elif is_dtype_equal(lk.dtype, rk.dtype): continue msg = ( "You are trying to merge on {lk_dtype} and " "{rk_dtype} columns. If you wish to proceed " "you should use pd.concat".format(lk_dtype=lk.dtype, rk_dtype=rk.dtype) ) # if we are numeric, then allow differing # kinds to proceed, eg. int64 and int8, int and float # further if we are object, but we infer to # the same, then proceed if is_numeric_dtype(lk) and is_numeric_dtype(rk): if lk.dtype.kind == rk.dtype.kind: continue # check whether ints and floats elif is_integer_dtype(rk) and is_float_dtype(lk): if not (lk == lk.astype(rk.dtype))[~np.isnan(lk)].all(): warnings.warn( "You are merging on int and float " "columns where the float values " "are not equal to their int " "representation", UserWarning, ) continue elif is_float_dtype(rk) and is_integer_dtype(lk): if not (rk == rk.astype(lk.dtype))[~np.isnan(rk)].all(): warnings.warn( "You are merging on int and float " "columns where the float values " "are not equal to their int " "representation", UserWarning, ) continue # let's infer and see if we are ok elif lib.infer_dtype(lk, skipna=False) == lib.infer_dtype( rk, skipna=False ): continue # Check if we are trying to merge on obviously # incompatible dtypes GH 9780, GH 15800 # bool values are coerced to object elif (lk_is_object and is_bool_dtype(rk)) or ( is_bool_dtype(lk) and rk_is_object ): pass # object values are allowed to be merged elif (lk_is_object and is_numeric_dtype(rk)) or ( is_numeric_dtype(lk) and rk_is_object ): inferred_left = lib.infer_dtype(lk, skipna=False) inferred_right = lib.infer_dtype(rk, skipna=False) bool_types = ["integer", "mixed-integer", "boolean", "empty"] string_types = ["string", "unicode", "mixed", "bytes", "empty"] # inferred bool if inferred_left in bool_types and inferred_right in bool_types: pass # unless we are merging non-string-like with string-like elif ( inferred_left in string_types and inferred_right not in string_types ) or ( inferred_right in string_types and inferred_left not in string_types ): raise ValueError(msg) # datetimelikes must match exactly elif is_datetimelike(lk) and not is_datetimelike(rk): raise ValueError(msg) elif not is_datetimelike(lk) and is_datetimelike(rk): raise ValueError(msg) elif is_datetime64tz_dtype(lk) and not is_datetime64tz_dtype(rk): raise ValueError(msg) elif not is_datetime64tz_dtype(lk) and is_datetime64tz_dtype(rk): raise ValueError(msg) elif lk_is_object and rk_is_object: continue # Houston, we have a problem! # let's coerce to object if the dtypes aren't # categorical, otherwise coerce to the category # dtype. If we coerced categories to object, # then we would lose type information on some # columns, and end up trying to merge # incompatible dtypes. See GH 16900. if name in self.left.columns: typ = lk.categories.dtype if lk_is_cat else object self.left = self.left.assign(**{name: self.left[name].astype(typ)}) if name in self.right.columns: typ = rk.categories.dtype if rk_is_cat else object self.right = self.right.assign(**{name: self.right[name].astype(typ)}) def _validate_specification(self): # Hm, any way to make this logic less complicated?? if self.on is None and self.left_on is None and self.right_on is None: if self.left_index and self.right_index: self.left_on, self.right_on = (), () elif self.left_index: if self.right_on is None: raise MergeError("Must pass right_on or right_index=True") elif self.right_index: if self.left_on is None: raise MergeError("Must pass left_on or left_index=True") else: # use the common columns common_cols = self.left.columns.intersection(self.right.columns) if len(common_cols) == 0: raise MergeError( "No common columns to perform merge on. " "Merge options: left_on={lon}, right_on={ron}, " "left_index={lidx}, right_index={ridx}".format( lon=self.left_on, ron=self.right_on, lidx=self.left_index, ridx=self.right_index, ) ) if not common_cols.is_unique: raise MergeError( "Data columns not unique: {common!r}".format(common=common_cols) ) self.left_on = self.right_on = common_cols elif self.on is not None: if self.left_on is not None or self.right_on is not None: raise MergeError( 'Can only pass argument "on" OR "left_on" ' 'and "right_on", not a combination of both.' ) self.left_on = self.right_on = self.on elif self.left_on is not None: n = len(self.left_on) if self.right_index: if len(self.left_on) != self.right.index.nlevels: raise ValueError( "len(left_on) must equal the number " 'of levels in the index of "right"' ) self.right_on = [None] * n elif self.right_on is not None: n = len(self.right_on) if self.left_index: if len(self.right_on) != self.left.index.nlevels: raise ValueError( "len(right_on) must equal the number " 'of levels in the index of "left"' ) self.left_on = [None] * n if len(self.right_on) != len(self.left_on): raise ValueError("len(right_on) must equal len(left_on)") def _validate(self, validate): # Check uniqueness of each if self.left_index: left_unique = self.orig_left.index.is_unique else: left_unique = MultiIndex.from_arrays(self.left_join_keys).is_unique if self.right_index: right_unique = self.orig_right.index.is_unique else: right_unique = MultiIndex.from_arrays(self.right_join_keys).is_unique # Check data integrity if validate in ["one_to_one", "1:1"]: if not left_unique and not right_unique: raise MergeError( "Merge keys are not unique in either left" " or right dataset; not a one-to-one merge" ) elif not left_unique: raise MergeError( "Merge keys are not unique in left dataset;" " not a one-to-one merge" ) elif not right_unique: raise MergeError( "Merge keys are not unique in right dataset;" " not a one-to-one merge" ) elif validate in ["one_to_many", "1:m"]: if not left_unique: raise MergeError( "Merge keys are not unique in left dataset;" " not a one-to-many merge" ) elif validate in ["many_to_one", "m:1"]: if not right_unique: raise MergeError( "Merge keys are not unique in right dataset;" " not a many-to-one merge" ) elif validate in ["many_to_many", "m:m"]: pass else: raise ValueError("Not a valid argument for validate") def _get_join_indexers(left_keys, right_keys, sort=False, how="inner", **kwargs): """ Parameters ---------- left_keys: ndarray, Index, Series right_keys: ndarray, Index, Series sort: bool, default False how: string {'inner', 'outer', 'left', 'right'}, default 'inner' Returns ------- tuple of (left_indexer, right_indexer) indexers into the left_keys, right_keys """ assert len(left_keys) == len( right_keys ), "left_key and right_keys must be the same length" # bind `sort` arg. of _factorize_keys fkeys = partial(_factorize_keys, sort=sort) # get left & right join labels and num. of levels at each location llab, rlab, shape = map(list, zip(*map(fkeys, left_keys, right_keys))) # get flat i8 keys from label lists lkey, rkey = _get_join_keys(llab, rlab, shape, sort) # factorize keys to a dense i8 space # `count` is the num. of unique keys # set(lkey) | set(rkey) == range(count) lkey, rkey, count = fkeys(lkey, rkey) # preserve left frame order if how == 'left' and sort == False kwargs = copy.copy(kwargs) if how == "left": kwargs["sort"] = sort join_func = _join_functions[how] return join_func(lkey, rkey, count, **kwargs) def _restore_dropped_levels_multijoin( left, right, dropped_level_names, join_index, lindexer, rindexer ): """ *this is an internal non-public method* Returns the levels, labels and names of a multi-index to multi-index join. Depending on the type of join, this method restores the appropriate dropped levels of the joined multi-index. The method relies on lidx, rindexer which hold the index positions of left and right, where a join was feasible Parameters ---------- left : MultiIndex left index right : MultiIndex right index dropped_level_names : str array list of non-common level names join_index : MultiIndex the index of the join between the common levels of left and right lindexer : intp array left indexer rindexer : intp array right indexer Returns ------- levels : list of Index levels of combined multiindexes labels : intp array labels of combined multiindexes names : str array names of combined multiindexes """ def _convert_to_mulitindex(index): if isinstance(index, MultiIndex): return index else: return MultiIndex.from_arrays([index.values], names=[index.name]) # For multi-multi joins with one overlapping level, # the returned index if of type Index # Assure that join_index is of type MultiIndex # so that dropped levels can be appended join_index = _convert_to_mulitindex(join_index) join_levels = join_index.levels join_codes = join_index.codes join_names = join_index.names # lindexer and rindexer hold the indexes where the join occurred # for left and right respectively. If left/right is None then # the join occurred on all indices of left/right if lindexer is None: lindexer = range(left.size) if rindexer is None: rindexer = range(right.size) # Iterate through the levels that must be restored for dropped_level_name in dropped_level_names: if dropped_level_name in left.names: idx = left indexer = lindexer else: idx = right indexer = rindexer # The index of the level name to be restored name_idx = idx.names.index(dropped_level_name) restore_levels = idx.levels[name_idx] # Inject -1 in the codes list where a join was not possible # IOW indexer[i]=-1 codes = idx.codes[name_idx] restore_codes = algos.take_nd(codes, indexer, fill_value=-1) join_levels = join_levels + [restore_levels] join_codes = join_codes + [restore_codes] join_names = join_names + [dropped_level_name] return join_levels, join_codes, join_names class _OrderedMerge(_MergeOperation): _merge_type = "ordered_merge" def __init__( self, left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, axis=1, suffixes=("_x", "_y"), copy=True, fill_method=None, how="outer", ): self.fill_method = fill_method _MergeOperation.__init__( self, left, right, on=on, left_on=left_on, left_index=left_index, right_index=right_index, right_on=right_on, axis=axis, how=how, suffixes=suffixes, sort=True, # factorize sorts ) def get_result(self): join_index, left_indexer, right_indexer = self._get_join_info() # this is a bit kludgy ldata, rdata = self.left._data, self.right._data lsuf, rsuf = self.suffixes llabels, rlabels = _items_overlap_with_suffix( ldata.items, lsuf, rdata.items, rsuf ) if self.fill_method == "ffill": left_join_indexer = libjoin.ffill_indexer(left_indexer) right_join_indexer = libjoin.ffill_indexer(right_indexer) else: left_join_indexer = left_indexer right_join_indexer = right_indexer lindexers = {1: left_join_indexer} if left_join_indexer is not None else {} rindexers = {1: right_join_indexer} if right_join_indexer is not None else {} result_data = concatenate_block_managers( [(ldata, lindexers), (rdata, rindexers)], axes=[llabels.append(rlabels), join_index], concat_axis=0, copy=self.copy, ) typ = self.left._constructor result = typ(result_data).__finalize__(self, method=self._merge_type) self._maybe_add_join_keys(result, left_indexer, right_indexer) return result def _asof_function(direction): name = "asof_join_{dir}".format(dir=direction) return getattr(libjoin, name, None) def _asof_by_function(direction): name = "asof_join_{dir}_on_X_by_Y".format(dir=direction) return getattr(libjoin, name, None) _type_casters = { "int64_t": ensure_int64, "double": ensure_float64, "object": ensure_object, } def _get_cython_type_upcast(dtype): """ Upcast a dtype to 'int64_t', 'double', or 'object' """ if is_integer_dtype(dtype): return "int64_t" elif is_float_dtype(dtype): return "double" else: return "object" class _AsOfMerge(_OrderedMerge): _merge_type = "asof_merge" def __init__( self, left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, axis=1, suffixes=("_x", "_y"), copy=True, fill_method=None, how="asof", tolerance=None, allow_exact_matches=True, direction="backward", ): self.by = by self.left_by = left_by self.right_by = right_by self.tolerance = tolerance self.allow_exact_matches = allow_exact_matches self.direction = direction _OrderedMerge.__init__( self, left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, axis=axis, how=how, suffixes=suffixes, fill_method=fill_method, ) def _validate_specification(self): super()._validate_specification() # we only allow on to be a single item for on if len(self.left_on) != 1 and not self.left_index: raise MergeError("can only asof on a key for left") if len(self.right_on) != 1 and not self.right_index: raise MergeError("can only asof on a key for right") if self.left_index and isinstance(self.left.index, MultiIndex): raise MergeError("left can only have one index") if self.right_index and isinstance(self.right.index, MultiIndex): raise MergeError("right can only have one index") # set 'by' columns if self.by is not None: if self.left_by is not None or self.right_by is not None: raise MergeError("Can only pass by OR left_by and right_by") self.left_by = self.right_by = self.by if self.left_by is None and self.right_by is not None: raise MergeError("missing left_by") if self.left_by is not None and self.right_by is None: raise MergeError("missing right_by") # add 'by' to our key-list so we can have it in the # output as a key if self.left_by is not None: if not is_list_like(self.left_by): self.left_by = [self.left_by] if not is_list_like(self.right_by): self.right_by = [self.right_by] if len(self.left_by) != len(self.right_by): raise MergeError("left_by and right_by must be same length") self.left_on = self.left_by + list(self.left_on) self.right_on = self.right_by + list(self.right_on) # check 'direction' is valid if self.direction not in ["backward", "forward", "nearest"]: raise MergeError( "direction invalid: {direction}".format(direction=self.direction) ) @property def _asof_key(self): """ This is our asof key, the 'on' """ return self.left_on[-1] def _get_merge_keys(self): # note this function has side effects (left_join_keys, right_join_keys, join_names) = super()._get_merge_keys() # validate index types are the same for i, (lk, rk) in enumerate(zip(left_join_keys, right_join_keys)): if not is_dtype_equal(lk.dtype, rk.dtype): if is_categorical_dtype(lk.dtype) and is_categorical_dtype(rk.dtype): # The generic error message is confusing for categoricals. # # In this function, the join keys include both the original # ones of the merge_asof() call, and also the keys passed # to its by= argument. Unordered but equal categories # are not supported for the former, but will fail # later with a ValueError, so we don't *need* to check # for them here. msg = ( "incompatible merge keys [{i}] {lkdtype} and " "{rkdtype}, both sides category, but not equal ones".format( i=i, lkdtype=repr(lk.dtype), rkdtype=repr(rk.dtype) ) ) else: msg = ( "incompatible merge keys [{i}] {lkdtype} and " "{rkdtype}, must be the same type".format( i=i, lkdtype=repr(lk.dtype), rkdtype=repr(rk.dtype) ) ) raise MergeError(msg) # validate tolerance; datetime.timedelta or Timedelta if we have a DTI if self.tolerance is not None: if self.left_index: lt = self.left.index else: lt = left_join_keys[-1] msg = ( "incompatible tolerance {tolerance}, must be compat " "with type {lkdtype}".format( tolerance=type(self.tolerance), lkdtype=repr(lt.dtype) ) ) if is_datetimelike(lt): if not isinstance(self.tolerance, datetime.timedelta): raise MergeError(msg) if self.tolerance < Timedelta(0): raise MergeError("tolerance must be positive") elif is_int64_dtype(lt): if not is_integer(self.tolerance): raise MergeError(msg) if self.tolerance < 0: raise MergeError("tolerance must be positive") elif is_float_dtype(lt): if not is_number(self.tolerance): raise MergeError(msg) if self.tolerance < 0: raise MergeError("tolerance must be positive") else: raise MergeError("key must be integer, timestamp or float") # validate allow_exact_matches if not is_bool(self.allow_exact_matches): msg = "allow_exact_matches must be boolean, passed {passed}" raise MergeError(msg.format(passed=self.allow_exact_matches)) return left_join_keys, right_join_keys, join_names def _get_join_indexers(self): """ return the join indexers """ def flip(xs): """ unlike np.transpose, this returns an array of tuples """ xs = [ x if not is_extension_array_dtype(x) else x._ndarray_values for x in xs ] labels = list(string.ascii_lowercase[: len(xs)]) dtypes = [x.dtype for x in xs] labeled_dtypes = list(zip(labels, dtypes)) return np.array(list(zip(*xs)), labeled_dtypes) # values to compare left_values = ( self.left.index.values if self.left_index else self.left_join_keys[-1] ) right_values = ( self.right.index.values if self.right_index else self.right_join_keys[-1] ) tolerance = self.tolerance # we require sortedness and non-null values in the join keys msg_sorted = "{side} keys must be sorted" msg_missings = "Merge keys contain null values on {side} side" if not Index(left_values).is_monotonic: if isnull(left_values).any(): raise ValueError(msg_missings.format(side="left")) else: raise ValueError(msg_sorted.format(side="left")) if not Index(right_values).is_monotonic: if isnull(right_values).any(): raise ValueError(msg_missings.format(side="right")) else: raise ValueError(msg_sorted.format(side="right")) # initial type conversion as needed if needs_i8_conversion(left_values): left_values = left_values.view("i8") right_values = right_values.view("i8") if tolerance is not None: tolerance = Timedelta(tolerance) tolerance = tolerance.value # a "by" parameter requires special handling if self.left_by is not None: # remove 'on' parameter from values if one existed if self.left_index and self.right_index: left_by_values = self.left_join_keys right_by_values = self.right_join_keys else: left_by_values = self.left_join_keys[0:-1] right_by_values = self.right_join_keys[0:-1] # get tuple representation of values if more than one if len(left_by_values) == 1: left_by_values = left_by_values[0] right_by_values = right_by_values[0] else: left_by_values = flip(left_by_values) right_by_values = flip(right_by_values) # upcast 'by' parameter because HashTable is limited by_type = _get_cython_type_upcast(left_by_values.dtype) by_type_caster = _type_casters[by_type] left_by_values = by_type_caster(left_by_values) right_by_values = by_type_caster(right_by_values) # choose appropriate function by type func = _asof_by_function(self.direction) return func( left_values, right_values, left_by_values, right_by_values, self.allow_exact_matches, tolerance, ) else: # choose appropriate function by type func = _asof_function(self.direction) return func(left_values, right_values, self.allow_exact_matches, tolerance) def _get_multiindex_indexer(join_keys, index, sort): # bind `sort` argument fkeys = partial(_factorize_keys, sort=sort) # left & right join labels and num. of levels at each location rcodes, lcodes, shape = map(list, zip(*map(fkeys, index.levels, join_keys))) if sort: rcodes = list(map(np.take, rcodes, index.codes)) else: i8copy = lambda a: a.astype("i8", subok=False, copy=True) rcodes = list(map(i8copy, index.codes)) # fix right labels if there were any nulls for i in range(len(join_keys)): mask = index.codes[i] == -1 if mask.any(): # check if there already was any nulls at this location # if there was, it is factorized to `shape[i] - 1` a = join_keys[i][lcodes[i] == shape[i] - 1] if a.size == 0 or not a[0] != a[0]: shape[i] += 1 rcodes[i][mask] = shape[i] - 1 # get flat i8 join keys lkey, rkey = _get_join_keys(lcodes, rcodes, shape, sort) # factorize keys to a dense i8 space lkey, rkey, count = fkeys(lkey, rkey) return libjoin.left_outer_join(lkey, rkey, count, sort=sort) def _get_single_indexer(join_key, index, sort=False): left_key, right_key, count = _factorize_keys(join_key, index, sort=sort) left_indexer, right_indexer = libjoin.left_outer_join( ensure_int64(left_key), ensure_int64(right_key), count, sort=sort ) return left_indexer, right_indexer def _left_join_on_index(left_ax, right_ax, join_keys, sort=False): if len(join_keys) > 1: if not ( (isinstance(right_ax, MultiIndex) and len(join_keys) == right_ax.nlevels) ): raise AssertionError( "If more than one join key is given then " "'right_ax' must be a MultiIndex and the " "number of join keys must be the number of " "levels in right_ax" ) left_indexer, right_indexer = _get_multiindex_indexer( join_keys, right_ax, sort=sort ) else: jkey = join_keys[0] left_indexer, right_indexer = _get_single_indexer(jkey, right_ax, sort=sort) if sort or len(left_ax) != len(left_indexer): # if asked to sort or there are 1-to-many matches join_index = left_ax.take(left_indexer) return join_index, left_indexer, right_indexer # left frame preserves order & length of its index return left_ax, None, right_indexer def _right_outer_join(x, y, max_groups): right_indexer, left_indexer = libjoin.left_outer_join(y, x, max_groups) return left_indexer, right_indexer _join_functions = { "inner": libjoin.inner_join, "left": libjoin.left_outer_join, "right": _right_outer_join, "outer": libjoin.full_outer_join, } def _factorize_keys(lk, rk, sort=True): # Some pre-processing for non-ndarray lk / rk if is_datetime64tz_dtype(lk) and is_datetime64tz_dtype(rk): lk = getattr(lk, "_values", lk)._data rk = getattr(rk, "_values", rk)._data elif ( is_categorical_dtype(lk) and is_categorical_dtype(rk) and lk.is_dtype_equal(rk) ): if lk.categories.equals(rk.categories): # if we exactly match in categories, allow us to factorize on codes rk = rk.codes else: # Same categories in different orders -> recode rk = _recode_for_categories(rk.codes, rk.categories, lk.categories) lk = ensure_int64(lk.codes) rk = ensure_int64(rk) elif ( is_extension_array_dtype(lk.dtype) and is_extension_array_dtype(rk.dtype) and lk.dtype == rk.dtype ): lk, _ = lk._values_for_factorize() rk, _ = rk._values_for_factorize() if is_integer_dtype(lk) and is_integer_dtype(rk): # GH#23917 TODO: needs tests for case where lk is integer-dtype # and rk is datetime-dtype klass = libhashtable.Int64Factorizer lk = ensure_int64(com.values_from_object(lk)) rk = ensure_int64(com.values_from_object(rk)) elif issubclass(lk.dtype.type, (np.timedelta64, np.datetime64)) and issubclass( rk.dtype.type, (np.timedelta64, np.datetime64) ): # GH#23917 TODO: Needs tests for non-matching dtypes klass = libhashtable.Int64Factorizer lk = ensure_int64(com.values_from_object(lk)) rk = ensure_int64(com.values_from_object(rk)) else: klass = libhashtable.Factorizer lk = ensure_object(lk) rk = ensure_object(rk) rizer = klass(max(len(lk), len(rk))) llab = rizer.factorize(lk) rlab = rizer.factorize(rk) count = rizer.get_count() if sort: uniques = rizer.uniques.to_array() llab, rlab = _sort_labels(uniques, llab, rlab) # NA group lmask = llab == -1 lany = lmask.any() rmask = rlab == -1 rany = rmask.any() if lany or rany: if lany: np.putmask(llab, lmask, count) if rany: np.putmask(rlab, rmask, count) count += 1 return llab, rlab, count def _sort_labels(uniques, left, right): if not isinstance(uniques, np.ndarray): # tuplesafe uniques = Index(uniques).values llength = len(left) labels = np.concatenate([left, right]) _, new_labels = sorting.safe_sort(uniques, labels, na_sentinel=-1) new_labels = ensure_int64(new_labels) new_left, new_right = new_labels[:llength], new_labels[llength:] return new_left, new_right def _get_join_keys(llab, rlab, shape, sort): # how many levels can be done without overflow pred = lambda i: not is_int64_overflow_possible(shape[:i]) nlev = next(filter(pred, range(len(shape), 0, -1))) # get keys for the first `nlev` levels stride = np.prod(shape[1:nlev], dtype="i8") lkey = stride * llab[0].astype("i8", subok=False, copy=False) rkey = stride * rlab[0].astype("i8", subok=False, copy=False) for i in range(1, nlev): with np.errstate(divide="ignore"): stride //= shape[i] lkey += llab[i] * stride rkey += rlab[i] * stride if nlev == len(shape): # all done! return lkey, rkey # densify current keys to avoid overflow lkey, rkey, count = _factorize_keys(lkey, rkey, sort=sort) llab = [lkey] + llab[nlev:] rlab = [rkey] + rlab[nlev:] shape = [count] + shape[nlev:] return _get_join_keys(llab, rlab, shape, sort) def _should_fill(lname, rname): if not isinstance(lname, str) or not isinstance(rname, str): return True return lname == rname def _any(x): return x is not None and com.any_not_none(*x) def validate_operand(obj): if isinstance(obj, DataFrame): return obj elif isinstance(obj, Series): if obj.name is None: raise ValueError("Cannot merge a Series without a name") else: return obj.to_frame() else: raise TypeError( "Can only merge Series or DataFrame objects, " "a {obj} was passed".format(obj=type(obj)) ) def _items_overlap_with_suffix(left, lsuffix, right, rsuffix): """ If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """ to_rename = left.intersection(right) if len(to_rename) == 0: return left, right if not lsuffix and not rsuffix: raise ValueError( "columns overlap but no suffix specified: " "{rename}".format(rename=to_rename) ) def renamer(x, suffix): """ Rename the left and right indices. If there is overlap, and suffix is not None, add suffix, otherwise, leave it as-is. Parameters ---------- x : original column name suffix : str or None Returns ------- x : renamed column name """ if x in to_rename and suffix is not None: return "{x}{suffix}".format(x=x, suffix=suffix) return x lrenamer = partial(renamer, suffix=lsuffix) rrenamer = partial(renamer, suffix=rsuffix) return (_transform_index(left, lrenamer), _transform_index(right, rrenamer)) """ SQL-style merge routines """ import copy import datetime from functools import partial import string import warnings import numpy as np from pandas._libs import hashtable as libhashtable, lib import pandas._libs.join as libjoin from pandas.errors import MergeError from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.common import ( ensure_float64, ensure_int64, ensure_object, is_array_like, is_bool, is_bool_dtype, is_categorical_dtype, is_datetime64tz_dtype, is_datetimelike, is_dtype_equal, is_extension_array_dtype, is_float_dtype, is_integer, is_integer_dtype, is_list_like, is_number, is_numeric_dtype, is_object_dtype, needs_i8_conversion, ) from pandas.core.dtypes.missing import isnull, na_value_for_dtype from pandas import Categorical, DataFrame, Index, MultiIndex, Series, Timedelta import pandas.core.algorithms as algos from pandas.core.arrays.categorical import _recode_for_categories import pandas.core.common as com from pandas.core.frame import _merge_doc from pandas.core.internals import _transform_index, concatenate_block_managers import pandas.core.sorting as sorting from pandas.core.sorting import is_int64_overflow_possible @Substitution("\nleft : DataFrame") @Appender(_merge_doc, indents=0) def merge( left, right, how="inner", on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ): op = _MergeOperation( left, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator, validate=validate, ) return op.get_result() if __debug__: merge.__doc__ = _merge_doc % "\nleft : DataFrame" def _groupby_and_merge(by, on, left, right, _merge_pieces, check_duplicates=True): """ groupby & merge; we are always performing a left-by type operation Parameters ---------- by: field to group on: duplicates field left: left frame right: right frame _merge_pieces: function for merging check_duplicates: bool, default True should we check & clean duplicates """ pieces = [] if not isinstance(by, (list, tuple)): by = [by] lby = left.groupby(by, sort=False) # if we can groupby the rhs # then we can get vastly better perf try: # we will check & remove duplicates if indicated if check_duplicates: if on is None: on = [] elif not isinstance(on, (list, tuple)): on = [on] if right.duplicated(by + on).any(): right = right.drop_duplicates(by + on, keep="last") rby = right.groupby(by, sort=False) except KeyError: rby = None for key, lhs in lby: if rby is None: rhs = right else: try: rhs = right.take(rby.indices[key]) except KeyError: # key doesn't exist in left lcols = lhs.columns.tolist() cols = lcols + [r for r in right.columns if r not in set(lcols)] merged = lhs.reindex(columns=cols) merged.index = range(len(merged)) pieces.append(merged) continue merged = _merge_pieces(lhs, rhs) # make sure join keys are in the merged # TODO, should _merge_pieces do this? for k in by: try: if k in merged: merged[k] = key except KeyError: pass pieces.append(merged) # preserve the original order # if we have a missing piece this can be reset from pandas.core.reshape.concat import concat result = concat(pieces, ignore_index=True) result = result.reindex(columns=pieces[0].columns, copy=False) return result, lby def merge_ordered( left, right, on=None, left_on=None, right_on=None, left_by=None, right_by=None, fill_method=None, suffixes=("_x", "_y"), how="outer", ): """ Perform merge with optional filling/interpolation designed for ordered data like time series data. Optionally perform group-wise merge (see examples). Parameters ---------- left : DataFrame right : DataFrame on : label or list Field names to join on. Must be found in both DataFrames. left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs left_by : column name or list of column names Group left DataFrame by group columns and merge piece by piece with right DataFrame right_by : column name or list of column names Group right DataFrame by group columns and merge piece by piece with left DataFrame fill_method : {'ffill', None}, default None Interpolation method for data suffixes : Sequence, default is ("_x", "_y") A length-2 sequence where each element is optionally a string indicating the suffix to add to overlapping column names in `left` and `right` respectively. Pass a value of `None` instead of a string to indicate that the column name from `left` or `right` should be left as-is, with no suffix. At least one of the values must not be None. .. versionchanged:: 0.25.0 how : {'left', 'right', 'outer', 'inner'}, default 'outer' * left: use only keys from left frame (SQL: left outer join) * right: use only keys from right frame (SQL: right outer join) * outer: use union of keys from both frames (SQL: full outer join) * inner: use intersection of keys from both frames (SQL: inner join) Returns ------- merged : DataFrame The output type will the be same as 'left', if it is a subclass of DataFrame. See Also -------- merge merge_asof Examples -------- >>> A >>> B key lvalue group key rvalue 0 a 1 a 0 b 1 1 c 2 a 1 c 2 2 e 3 a 2 d 3 3 a 1 b 4 c 2 b 5 e 3 b >>> merge_ordered(A, B, fill_method='ffill', left_by='group') group key lvalue rvalue 0 a a 1 NaN 1 a b 1 1.0 2 a c 2 2.0 3 a d 2 3.0 4 a e 3 3.0 5 b a 1 NaN 6 b b 1 1.0 7 b c 2 2.0 8 b d 2 3.0 9 b e 3 3.0 """ def _merger(x, y): # perform the ordered merge operation op = _OrderedMerge( x, y, on=on, left_on=left_on, right_on=right_on, suffixes=suffixes, fill_method=fill_method, how=how, ) return op.get_result() if left_by is not None and right_by is not None: raise ValueError("Can only group either left or right frames") elif left_by is not None: result, _ = _groupby_and_merge( left_by, on, left, right, lambda x, y: _merger(x, y), check_duplicates=False ) elif right_by is not None: result, _ = _groupby_and_merge( right_by, on, right, left, lambda x, y: _merger(y, x), check_duplicates=False, ) else: result = _merger(left, right) return result def merge_asof( left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, suffixes=("_x", "_y"), tolerance=None, allow_exact_matches=True, direction="backward", ): """ Perform an asof merge. This is similar to a left-join except that we match on nearest key rather than equal keys. Both DataFrames must be sorted by the key. For each row in the left DataFrame: - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key. - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key. - A "nearest" search selects the row in the right DataFrame whose 'on' key is closest in absolute distance to the left's key. The default is "backward" and is compatible in versions below 0.20.0. The direction parameter was added in version 0.20.0 and introduces "forward" and "nearest". Optionally match on equivalent keys with 'by' before searching with 'on'. Parameters ---------- left : DataFrame right : DataFrame on : label Field name to join on. Must be found in both DataFrames. The data MUST be ordered. Furthermore this must be a numeric column, such as datetimelike, integer, or float. On or left_on/right_on must be given. left_on : label Field name to join on in left DataFrame. right_on : label Field name to join on in right DataFrame. left_index : bool Use the index of the left DataFrame as the join key. right_index : bool Use the index of the right DataFrame as the join key. by : column name or list of column names Match on these columns before performing merge operation. left_by : column name Field names to match on in the left DataFrame. right_by : column name Field names to match on in the right DataFrame. suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively. tolerance : int or Timedelta, optional, default None Select asof tolerance within this range; must be compatible with the merge index. allow_exact_matches : bool, default True - If True, allow matching with the same 'on' value (i.e. less-than-or-equal-to / greater-than-or-equal-to) - If False, don't match the same 'on' value (i.e., strictly less-than / strictly greater-than) direction : 'backward' (default), 'forward', or 'nearest' Whether to search for prior, subsequent, or closest matches. .. versionadded:: 0.20.0 Returns ------- merged : DataFrame See Also -------- merge merge_ordered Examples -------- >>> left = pd.DataFrame({'a': [1, 5, 10], 'left_val': ['a', 'b', 'c']}) >>> left a left_val 0 1 a 1 5 b 2 10 c >>> right = pd.DataFrame({'a': [1, 2, 3, 6, 7], ... 'right_val': [1, 2, 3, 6, 7]}) >>> right a right_val 0 1 1 1 2 2 2 3 3 3 6 6 4 7 7 >>> pd.merge_asof(left, right, on='a') a left_val right_val 0 1 a 1 1 5 b 3 2 10 c 7 >>> pd.merge_asof(left, right, on='a', allow_exact_matches=False) a left_val right_val 0 1 a NaN 1 5 b 3.0 2 10 c 7.0 >>> pd.merge_asof(left, right, on='a', direction='forward') a left_val right_val 0 1 a 1.0 1 5 b 6.0 2 10 c NaN >>> pd.merge_asof(left, right, on='a', direction='nearest') a left_val right_val 0 1 a 1 1 5 b 6 2 10 c 7 We can use indexed DataFrames as well. >>> left = pd.DataFrame({'left_val': ['a', 'b', 'c']}, index=[1, 5, 10]) >>> left left_val 1 a 5 b 10 c >>> right = pd.DataFrame({'right_val': [1, 2, 3, 6, 7]}, ... index=[1, 2, 3, 6, 7]) >>> right right_val 1 1 2 2 3 3 6 6 7 7 >>> pd.merge_asof(left, right, left_index=True, right_index=True) left_val right_val 1 a 1 5 b 3 10 c 7 Here is a real-world times-series example >>> quotes time ticker bid ask 0 2016-05-25 13:30:00.023 GOOG 720.50 720.93 1 2016-05-25 13:30:00.023 MSFT 51.95 51.96 2 2016-05-25 13:30:00.030 MSFT 51.97 51.98 3 2016-05-25 13:30:00.041 MSFT 51.99 52.00 4 2016-05-25 13:30:00.048 GOOG 720.50 720.93 5 2016-05-25 13:30:00.049 AAPL 97.99 98.01 6 2016-05-25 13:30:00.072 GOOG 720.50 720.88 7 2016-05-25 13:30:00.075 MSFT 52.01 52.03 >>> trades time ticker price quantity 0 2016-05-25 13:30:00.023 MSFT 51.95 75 1 2016-05-25 13:30:00.038 MSFT 51.95 155 2 2016-05-25 13:30:00.048 GOOG 720.77 100 3 2016-05-25 13:30:00.048 GOOG 720.92 100 4 2016-05-25 13:30:00.048 AAPL 98.00 100 By default we are taking the asof of the quotes >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker') time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 2ms between the quote time and the trade time >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('2ms')) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 51.95 51.96 1 2016-05-25 13:30:00.038 MSFT 51.95 155 NaN NaN 2 2016-05-25 13:30:00.048 GOOG 720.77 100 720.50 720.93 3 2016-05-25 13:30:00.048 GOOG 720.92 100 720.50 720.93 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN We only asof within 10ms between the quote time and the trade time and we exclude exact matches on time. However *prior* data will propagate forward >>> pd.merge_asof(trades, quotes, ... on='time', ... by='ticker', ... tolerance=pd.Timedelta('10ms'), ... allow_exact_matches=False) time ticker price quantity bid ask 0 2016-05-25 13:30:00.023 MSFT 51.95 75 NaN NaN 1 2016-05-25 13:30:00.038 MSFT 51.95 155 51.97 51.98 2 2016-05-25 13:30:00.048 GOOG 720.77 100 NaN NaN 3 2016-05-25 13:30:00.048 GOOG 720.92 100 NaN NaN 4 2016-05-25 13:30:00.048 AAPL 98.00 100 NaN NaN """ op = _AsOfMerge( left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, by=by, left_by=left_by, right_by=right_by, suffixes=suffixes, how="asof", tolerance=tolerance, allow_exact_matches=allow_exact_matches, direction=direction, ) return op.get_result() # TODO: transformations?? # TODO: only copy DataFrames when modification necessary class _MergeOperation: """ Perform a database (SQL) merge operation between two DataFrame objects using either columns as keys or their row indexes """ _merge_type = "merge" def __init__( self, left, right, how="inner", on=None, left_on=None, right_on=None, axis=1, left_index=False, right_index=False, sort=True, suffixes=("_x", "_y"), copy=True, indicator=False, validate=None, ): left = validate_operand(left) right = validate_operand(right) self.left = self.orig_left = left self.right = self.orig_right = right self.how = how self.axis = axis self.on = com.maybe_make_list(on) self.left_on = com.maybe_make_list(left_on) self.right_on = com.maybe_make_list(right_on) self.copy = copy self.suffixes = suffixes self.sort = sort self.left_index = left_index self.right_index = right_index self.indicator = indicator if isinstance(self.indicator, str): self.indicator_name = self.indicator elif isinstance(self.indicator, bool): self.indicator_name = "_merge" if self.indicator else None else: raise ValueError( "indicator option can only accept boolean or string arguments" ) if not is_bool(left_index): raise ValueError( "left_index parameter must be of type bool, not " "{left_index}".format(left_index=type(left_index)) ) if not is_bool(right_index): raise ValueError( "right_index parameter must be of type bool, not " "{right_index}".format(right_index=type(right_index)) ) # warn user when merging between different levels if left.columns.nlevels != right.columns.nlevels: msg = ( "merging between different levels can give an unintended " "result ({left} levels on the left, {right} on the right)" ).format(left=left.columns.nlevels, right=right.columns.nlevels) warnings.warn(msg, UserWarning) self._validate_specification() # note this function has side effects ( self.left_join_keys, self.right_join_keys, self.join_names, ) = self._get_merge_keys() # validate the merge keys dtypes. We may need to coerce # to avoid incompat dtypes self._maybe_coerce_merge_keys() # If argument passed to validate, # check if columns specified as unique # are in fact unique. if validate is not None: self._validate(validate) def get_result(self): if self.indicator: self.left, self.right = self._indicator_pre_merge(self.left, self.right) join_index, left_indexer, right_indexer = self._get_join_info() ldata, rdata = self.left._data, self.right._data lsuf, rsuf = self.suffixes llabels, rlabels = _items_overlap_with_suffix( ldata.items, lsuf, rdata.items, rsuf ) lindexers = {1: left_indexer} if left_indexer is not None else {} rindexers = {1: right_indexer} if right_indexer is not None else {} result_data = concatenate_block_managers( [(ldata, lindexers), (rdata, rindexers)], axes=[llabels.append(rlabels), join_index], concat_axis=0, copy=self.copy, ) typ = self.left._constructor result = typ(result_data).__finalize__(self, method=self._merge_type) if self.indicator: result = self._indicator_post_merge(result) self._maybe_add_join_keys(result, left_indexer, right_indexer) self._maybe_restore_index_levels(result) return result def _indicator_pre_merge(self, left, right): columns = left.columns.union(right.columns) for i in ["_left_indicator", "_right_indicator"]: if i in columns: raise ValueError( "Cannot use `indicator=True` option when " "data contains a column named {name}".format(name=i) ) if self.indicator_name in columns: raise ValueError( "Cannot use name of an existing column for indicator column" ) left = left.copy() right = right.copy() left["_left_indicator"] = 1 left["_left_indicator"] = left["_left_indicator"].astype("int8") right["_right_indicator"] = 2 right["_right_indicator"] = right["_right_indicator"].astype("int8") return left, right def _indicator_post_merge(self, result): result["_left_indicator"] = result["_left_indicator"].fillna(0) result["_right_indicator"] = result["_right_indicator"].fillna(0) result[self.indicator_name] = Categorical( (result["_left_indicator"] + result["_right_indicator"]), categories=[1, 2, 3], ) result[self.indicator_name] = result[self.indicator_name].cat.rename_categories( ["left_only", "right_only", "both"] ) result = result.drop(labels=["_left_indicator", "_right_indicator"], axis=1) return result def _maybe_restore_index_levels(self, result): """ Restore index levels specified as `on` parameters Here we check for cases where `self.left_on` and `self.right_on` pairs each reference an index level in their respective DataFrames. The joined columns corresponding to these pairs are then restored to the index of `result`. **Note:** This method has side effects. It modifies `result` in-place Parameters ---------- result: DataFrame merge result Returns ------- None """ names_to_restore = [] for name, left_key, right_key in zip( self.join_names, self.left_on, self.right_on ): if ( self.orig_left._is_level_reference(left_key) and self.orig_right._is_level_reference(right_key) and name not in result.index.names ): names_to_restore.append(name) if names_to_restore: result.set_index(names_to_restore, inplace=True) def _maybe_add_join_keys(self, result, left_indexer, right_indexer): left_has_missing = None right_has_missing = None keys = zip(self.join_names, self.left_on, self.right_on) for i, (name, lname, rname) in enumerate(keys): if not _should_fill(lname, rname): continue take_left, take_right = None, None if name in result: if left_indexer is not None and right_indexer is not None: if name in self.left: if left_has_missing is None: left_has_missing = (left_indexer == -1).any() if left_has_missing: take_right = self.right_join_keys[i] if not is_dtype_equal( result[name].dtype, self.left[name].dtype ): take_left = self.left[name]._values elif name in self.right: if right_has_missing is None: right_has_missing = (right_indexer == -1).any() if right_has_missing: take_left = self.left_join_keys[i] if not is_dtype_equal( result[name].dtype, self.right[name].dtype ): take_right = self.right[name]._values elif left_indexer is not None and is_array_like(self.left_join_keys[i]): take_left = self.left_join_keys[i] take_right = self.right_join_keys[i] if take_left is not None or take_right is not None: if take_left is None: lvals = result[name]._values else: lfill = na_value_for_dtype(take_left.dtype) lvals = algos.take_1d(take_left, left_indexer, fill_value=lfill) if take_right is None: rvals = result[name]._values else: rfill = na_value_for_dtype(take_right.dtype) rvals = algos.take_1d(take_right, right_indexer, fill_value=rfill) # if we have an all missing left_indexer # make sure to just use the right values mask = left_indexer == -1 if mask.all(): key_col = rvals else: key_col = Index(lvals).where(~mask, rvals) if result._is_label_reference(name): result[name] = key_col elif result._is_level_reference(name): if isinstance(result.index, MultiIndex): key_col.name = name idx_list = [ result.index.get_level_values(level_name) if level_name != name else key_col for level_name in result.index.names ] result.set_index(idx_list, inplace=True) else: result.index = Index(key_col, name=name) else: result.insert(i, name or "key_{i}".format(i=i), key_col) def _get_join_indexers(self): """ return the join indexers """ return _get_join_indexers( self.left_join_keys, self.right_join_keys, sort=self.sort, how=self.how ) def _get_join_info(self): left_ax = self.left._data.axes[self.axis] right_ax = self.right._data.axes[self.axis] if self.left_index and self.right_index and self.how != "asof": join_index, left_indexer, right_indexer = left_ax.join( right_ax, how=self.how, return_indexers=True, sort=self.sort ) elif self.right_index and self.how == "left": join_index, left_indexer, right_indexer = _left_join_on_index( left_ax, right_ax, self.left_join_keys, sort=self.sort ) elif self.left_index and self.how == "right": join_index, right_indexer, left_indexer = _left_join_on_index( right_ax, left_ax, self.right_join_keys, sort=self.sort ) else: (left_indexer, right_indexer) = self._get_join_indexers() if self.right_index: if len(self.left) > 0: join_index = self._create_join_index( self.left.index, self.right.index, left_indexer, right_indexer, how="right", ) else: join_index = self.right.index.take(right_indexer) left_indexer = np.array([-1] * len(join_index)) elif self.left_index: if len(self.right) > 0: join_index = self._create_join_index( self.right.index, self.left.index, right_indexer, left_indexer, how="left", ) else: join_index = self.left.index.take(left_indexer) right_indexer = np.array([-1] * len(join_index)) else: join_index = Index(np.arange(len(left_indexer))) if len(join_index) == 0: join_index = join_index.astype(object) return join_index, left_indexer, right_indexer def _create_join_index( self, index, other_index, indexer, other_indexer, how="left" ): """ Create a join index by rearranging one index to match another Parameters ---------- index: Index being rearranged other_index: Index used to supply values not found in index indexer: how to rearrange index how: replacement is only necessary if indexer based on other_index Returns ------- join_index """ if self.how in (how, "outer") and not isinstance(other_index, MultiIndex): # if final index requires values in other_index but not target # index, indexer may hold missing (-1) values, causing Index.take # to take the final value in target index. So, we set the last # element to be the desired fill value. We do not use allow_fill # and fill_value because it throws a ValueError on integer indices mask = indexer == -1 if np.any(mask): fill_value = na_value_for_dtype(index.dtype, compat=False) index = index.append(Index([fill_value])) return index.take(indexer) def _get_merge_keys(self): """ Note: has side effects (copy/delete key columns) Parameters ---------- left right on Returns ------- left_keys, right_keys """ left_keys = [] right_keys = [] join_names = [] right_drop = [] left_drop = [] left, right = self.left, self.right is_lkey = lambda x: is_array_like(x) and len(x) == len(left) is_rkey = lambda x: is_array_like(x) and len(x) == len(right) # Note that pd.merge_asof() has separate 'on' and 'by' parameters. A # user could, for example, request 'left_index' and 'left_by'. In a # regular pd.merge(), users cannot specify both 'left_index' and # 'left_on'. (Instead, users have a MultiIndex). That means the # self.left_on in this function is always empty in a pd.merge(), but # a pd.merge_asof(left_index=True, left_by=...) will result in a # self.left_on array with a None in the middle of it. This requires # a work-around as designated in the code below. # See _validate_specification() for where this happens. # ugh, spaghetti re #733 if _any(self.left_on) and _any(self.right_on): for lk, rk in zip(self.left_on, self.right_on): if is_lkey(lk): left_keys.append(lk) if is_rkey(rk): right_keys.append(rk) join_names.append(None) # what to do? else: if rk is not None: right_keys.append(right._get_label_or_level_values(rk)) join_names.append(rk) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index) join_names.append(right.index.name) else: if not is_rkey(rk): if rk is not None: right_keys.append(right._get_label_or_level_values(rk)) else: # work-around for merge_asof(right_index=True) right_keys.append(right.index) if lk is not None and lk == rk: # avoid key upcast in corner case (length-0) if len(left) > 0: right_drop.append(rk) else: left_drop.append(lk) else: right_keys.append(rk) if lk is not None: left_keys.append(left._get_label_or_level_values(lk)) join_names.append(lk) else: # work-around for merge_asof(left_index=True) left_keys.append(left.index) join_names.append(left.index.name) elif _any(self.left_on): for k in self.left_on: if is_lkey(k): left_keys.append(k) join_names.append(None) else: left_keys.append(left._get_label_or_level_values(k)) join_names.append(k) if isinstance(self.right.index, MultiIndex): right_keys = [ lev._values.take(lev_codes) for lev, lev_codes in zip( self.right.index.levels, self.right.index.codes ) ] else: right_keys = [self.right.index._values] elif _any(self.right_on): for k in self.right_on: if is_rkey(k): right_keys.append(k) join_names.append(None) else: right_keys.append(right._get_label_or_level_values(k)) join_names.append(k) if isinstance(self.left.index, MultiIndex): left_keys = [ lev._values.take(lev_codes) for lev, lev_codes in zip( self.left.index.levels, self.left.index.codes ) ] else: left_keys = [self.left.index.values] if left_drop: self.left = self.left._drop_labels_or_levels(left_drop) if right_drop: self.right = self.right._drop_labels_or_levels(right_drop) return left_keys, right_keys, join_names def _maybe_coerce_merge_keys(self): # we have valid mergees but we may have to further # coerce these if they are originally incompatible types # # for example if these are categorical, but are not dtype_equal # or if we have object and integer dtypes for lk, rk, name in zip( self.left_join_keys, self.right_join_keys, self.join_names ): if (len(lk) and not len(rk)) or (not len(lk) and len(rk)): continue lk_is_cat = is_categorical_dtype(lk) rk_is_cat = is_categorical_dtype(rk) lk_is_object = is_object_dtype(lk) rk_is_object = is_object_dtype(rk) # if either left or right is a categorical # then the must match exactly in categories & ordered if lk_is_cat and rk_is_cat: if lk.is_dtype_equal(rk): continue elif lk_is_cat or rk_is_cat: pass elif is_dtype_equal(lk.dtype, rk.dtype): continue msg = ( "You are trying to merge on {lk_dtype} and " "{rk_dtype} columns. If you wish to proceed " "you should use pd.concat".format(lk_dtype=lk.dtype, rk_dtype=rk.dtype) ) # if we are numeric, then allow differing # kinds to proceed, eg. int64 and int8, int and float # further if we are object, but we infer to # the same, then proceed if is_numeric_dtype(lk) and is_numeric_dtype(rk): if lk.dtype.kind == rk.dtype.kind: continue # check whether ints and floats elif is_integer_dtype(rk) and is_float_dtype(lk): if not (lk == lk.astype(rk.dtype))[~np.isnan(lk)].all(): warnings.warn( "You are merging on int and float " "columns where the float values " "are not equal to their int " "representation", UserWarning, ) continue elif is_float_dtype(rk) and is_integer_dtype(lk): if not (rk == rk.astype(lk.dtype))[~np.isnan(rk)].all(): warnings.warn( "You are merging on int and float " "columns where the float values " "are not equal to their int " "representation", UserWarning, ) continue # let's infer and see if we are ok elif lib.infer_dtype(lk, skipna=False) == lib.infer_dtype( rk, skipna=False ): continue # Check if we are trying to merge on obviously # incompatible dtypes GH 9780, GH 15800 # bool values are coerced to object elif (lk_is_object and is_bool_dtype(rk)) or ( is_bool_dtype(lk) and rk_is_object ): pass # object values are allowed to be merged elif (lk_is_object and is_numeric_dtype(rk)) or ( is_numeric_dtype(lk) and rk_is_object ): inferred_left = lib.infer_dtype(lk, skipna=False) inferred_right = lib.infer_dtype(rk, skipna=False) bool_types = ["integer", "mixed-integer", "boolean", "empty"] string_types = ["string", "unicode", "mixed", "bytes", "empty"] # inferred bool if inferred_left in bool_types and inferred_right in bool_types: pass # unless we are merging non-string-like with string-like elif ( inferred_left in string_types and inferred_right not in string_types ) or ( inferred_right in string_types and inferred_left not in string_types ): raise ValueError(msg) # datetimelikes must match exactly elif is_datetimelike(lk) and not is_datetimelike(rk): raise ValueError(msg) elif not is_datetimelike(lk) and is_datetimelike(rk): raise ValueError(msg) elif is_datetime64tz_dtype(lk) and not is_datetime64tz_dtype(rk): raise ValueError(msg) elif not is_datetime64tz_dtype(lk) and is_datetime64tz_dtype(rk): raise ValueError(msg) elif lk_is_object and rk_is_object: continue # Houston, we have a problem! # let's coerce to object if the dtypes aren't # categorical, otherwise coerce to the category # dtype. If we coerced categories to object, # then we would lose type information on some # columns, and end up trying to merge # incompatible dtypes. See GH 16900. if name in self.left.columns: typ = lk.categories.dtype if lk_is_cat else object self.left = self.left.assign(**{name: self.left[name].astype(typ)}) if name in self.right.columns: typ = rk.categories.dtype if rk_is_cat else object self.right = self.right.assign(**{name: self.right[name].astype(typ)}) def _validate_specification(self): # Hm, any way to make this logic less complicated?? if self.on is None and self.left_on is None and self.right_on is None: if self.left_index and self.right_index: self.left_on, self.right_on = (), () elif self.left_index: if self.right_on is None: raise MergeError("Must pass right_on or right_index=True") elif self.right_index: if self.left_on is None: raise MergeError("Must pass left_on or left_index=True") else: # use the common columns common_cols = self.left.columns.intersection(self.right.columns) if len(common_cols) == 0: raise MergeError( "No common columns to perform merge on. " "Merge options: left_on={lon}, right_on={ron}, " "left_index={lidx}, right_index={ridx}".format( lon=self.left_on, ron=self.right_on, lidx=self.left_index, ridx=self.right_index, ) ) if not common_cols.is_unique: raise MergeError( "Data columns not unique: {common!r}".format(common=common_cols) ) self.left_on = self.right_on = common_cols elif self.on is not None: if self.left_on is not None or self.right_on is not None: raise MergeError( 'Can only pass argument "on" OR "left_on" ' 'and "right_on", not a combination of both.' ) self.left_on = self.right_on = self.on elif self.left_on is not None: n = len(self.left_on) if self.right_index: if len(self.left_on) != self.right.index.nlevels: raise ValueError( "len(left_on) must equal the number " 'of levels in the index of "right"' ) self.right_on = [None] * n elif self.right_on is not None: n = len(self.right_on) if self.left_index: if len(self.right_on) != self.left.index.nlevels: raise ValueError( "len(right_on) must equal the number " 'of levels in the index of "left"' ) self.left_on = [None] * n if len(self.right_on) != len(self.left_on): raise ValueError("len(right_on) must equal len(left_on)") def _validate(self, validate): # Check uniqueness of each if self.left_index: left_unique = self.orig_left.index.is_unique else: left_unique = MultiIndex.from_arrays(self.left_join_keys).is_unique if self.right_index: right_unique = self.orig_right.index.is_unique else: right_unique = MultiIndex.from_arrays(self.right_join_keys).is_unique # Check data integrity if validate in ["one_to_one", "1:1"]: if not left_unique and not right_unique: raise MergeError( "Merge keys are not unique in either left" " or right dataset; not a one-to-one merge" ) elif not left_unique: raise MergeError( "Merge keys are not unique in left dataset;" " not a one-to-one merge" ) elif not right_unique: raise MergeError( "Merge keys are not unique in right dataset;" " not a one-to-one merge" ) elif validate in ["one_to_many", "1:m"]: if not left_unique: raise MergeError( "Merge keys are not unique in left dataset;" " not a one-to-many merge" ) elif validate in ["many_to_one", "m:1"]: if not right_unique: raise MergeError( "Merge keys are not unique in right dataset;" " not a many-to-one merge" ) elif validate in ["many_to_many", "m:m"]: pass else: raise ValueError("Not a valid argument for validate") def _get_join_indexers(left_keys, right_keys, sort=False, how="inner", **kwargs): """ Parameters ---------- left_keys: ndarray, Index, Series right_keys: ndarray, Index, Series sort: bool, default False how: string {'inner', 'outer', 'left', 'right'}, default 'inner' Returns ------- tuple of (left_indexer, right_indexer) indexers into the left_keys, right_keys """ assert len(left_keys) == len( right_keys ), "left_key and right_keys must be the same length" # bind `sort` arg. of _factorize_keys fkeys = partial(_factorize_keys, sort=sort) # get left & right join labels and num. of levels at each location llab, rlab, shape = map(list, zip(*map(fkeys, left_keys, right_keys))) # get flat i8 keys from label lists lkey, rkey = _get_join_keys(llab, rlab, shape, sort) # factorize keys to a dense i8 space # `count` is the num. of unique keys # set(lkey) | set(rkey) == range(count) lkey, rkey, count = fkeys(lkey, rkey) # preserve left frame order if how == 'left' and sort == False kwargs = copy.copy(kwargs) if how == "left": kwargs["sort"] = sort join_func = _join_functions[how] return join_func(lkey, rkey, count, **kwargs) def _restore_dropped_levels_multijoin( left, right, dropped_level_names, join_index, lindexer, rindexer ): """ *this is an internal non-public method* Returns the levels, labels and names of a multi-index to multi-index join. Depending on the type of join, this method restores the appropriate dropped levels of the joined multi-index. The method relies on lidx, rindexer which hold the index positions of left and right, where a join was feasible Parameters ---------- left : MultiIndex left index right : MultiIndex right index dropped_level_names : str array list of non-common level names join_index : MultiIndex the index of the join between the common levels of left and right lindexer : intp array left indexer rindexer : intp array right indexer Returns ------- levels : list of Index levels of combined multiindexes labels : intp array labels of combined multiindexes names : str array names of combined multiindexes """ def _convert_to_mulitindex(index): if isinstance(index, MultiIndex): return index else: return MultiIndex.from_arrays([index.values], names=[index.name]) # For multi-multi joins with one overlapping level, # the returned index if of type Index # Assure that join_index is of type MultiIndex # so that dropped levels can be appended join_index = _convert_to_mulitindex(join_index) join_levels = join_index.levels join_codes = join_index.codes join_names = join_index.names # lindexer and rindexer hold the indexes where the join occurred # for left and right respectively. If left/right is None then # the join occurred on all indices of left/right if lindexer is None: lindexer = range(left.size) if rindexer is None: rindexer = range(right.size) # Iterate through the levels that must be restored for dropped_level_name in dropped_level_names: if dropped_level_name in left.names: idx = left indexer = lindexer else: idx = right indexer = rindexer # The index of the level name to be restored name_idx = idx.names.index(dropped_level_name) restore_levels = idx.levels[name_idx] # Inject -1 in the codes list where a join was not possible # IOW indexer[i]=-1 codes = idx.codes[name_idx] restore_codes = algos.take_nd(codes, indexer, fill_value=-1) join_levels = join_levels + [restore_levels] join_codes = join_codes + [restore_codes] join_names = join_names + [dropped_level_name] return join_levels, join_codes, join_names class _OrderedMerge(_MergeOperation): _merge_type = "ordered_merge" def __init__( self, left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, axis=1, suffixes=("_x", "_y"), copy=True, fill_method=None, how="outer", ): self.fill_method = fill_method _MergeOperation.__init__( self, left, right, on=on, left_on=left_on, left_index=left_index, right_index=right_index, right_on=right_on, axis=axis, how=how, suffixes=suffixes, sort=True, # factorize sorts ) def get_result(self): join_index, left_indexer, right_indexer = self._get_join_info() # this is a bit kludgy ldata, rdata = self.left._data, self.right._data lsuf, rsuf = self.suffixes llabels, rlabels = _items_overlap_with_suffix( ldata.items, lsuf, rdata.items, rsuf ) if self.fill_method == "ffill": left_join_indexer = libjoin.ffill_indexer(left_indexer) right_join_indexer = libjoin.ffill_indexer(right_indexer) else: left_join_indexer = left_indexer right_join_indexer = right_indexer lindexers = {1: left_join_indexer} if left_join_indexer is not None else {} rindexers = {1: right_join_indexer} if right_join_indexer is not None else {} result_data = concatenate_block_managers( [(ldata, lindexers), (rdata, rindexers)], axes=[llabels.append(rlabels), join_index], concat_axis=0, copy=self.copy, ) typ = self.left._constructor result = typ(result_data).__finalize__(self, method=self._merge_type) self._maybe_add_join_keys(result, left_indexer, right_indexer) return result def _asof_function(direction): name = "asof_join_{dir}".format(dir=direction) return getattr(libjoin, name, None) def _asof_by_function(direction): name = "asof_join_{dir}_on_X_by_Y".format(dir=direction) return getattr(libjoin, name, None) _type_casters = { "int64_t": ensure_int64, "double": ensure_float64, "object": ensure_object, } def _get_cython_type_upcast(dtype): """ Upcast a dtype to 'int64_t', 'double', or 'object' """ if is_integer_dtype(dtype): return "int64_t" elif is_float_dtype(dtype): return "double" else: return "object" class _AsOfMerge(_OrderedMerge): _merge_type = "asof_merge" def __init__( self, left, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, by=None, left_by=None, right_by=None, axis=1, suffixes=("_x", "_y"), copy=True, fill_method=None, how="asof", tolerance=None, allow_exact_matches=True, direction="backward", ): self.by = by self.left_by = left_by self.right_by = right_by self.tolerance = tolerance self.allow_exact_matches = allow_exact_matches self.direction = direction _OrderedMerge.__init__( self, left, right, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, axis=axis, how=how, suffixes=suffixes, fill_method=fill_method, ) def _validate_specification(self): super()._validate_specification() # we only allow on to be a single item for on if len(self.left_on) != 1 and not self.left_index: raise MergeError("can only asof on a key for left") if len(self.right_on) != 1 and not self.right_index: raise MergeError("can only asof on a key for right") if self.left_index and isinstance(self.left.index, MultiIndex): raise MergeError("left can only have one index") if self.right_index and isinstance(self.right.index, MultiIndex): raise MergeError("right can only have one index") # set 'by' columns if self.by is not None: if self.left_by is not None or self.right_by is not None: raise MergeError("Can only pass by OR left_by and right_by") self.left_by = self.right_by = self.by if self.left_by is None and self.right_by is not None: raise MergeError("missing left_by") if self.left_by is not None and self.right_by is None: raise MergeError("missing right_by") # add 'by' to our key-list so we can have it in the # output as a key if self.left_by is not None: if not is_list_like(self.left_by): self.left_by = [self.left_by] if not is_list_like(self.right_by): self.right_by = [self.right_by] if len(self.left_by) != len(self.right_by): raise MergeError("left_by and right_by must be same length") self.left_on = self.left_by + list(self.left_on) self.right_on = self.right_by + list(self.right_on) # check 'direction' is valid if self.direction not in ["backward", "forward", "nearest"]: raise MergeError( "direction invalid: {direction}".format(direction=self.direction) ) @property def _asof_key(self): """ This is our asof key, the 'on' """ return self.left_on[-1] def _get_merge_keys(self): # note this function has side effects (left_join_keys, right_join_keys, join_names) = super()._get_merge_keys() # validate index types are the same for i, (lk, rk) in enumerate(zip(left_join_keys, right_join_keys)): if not is_dtype_equal(lk.dtype, rk.dtype): if is_categorical_dtype(lk.dtype) and is_categorical_dtype(rk.dtype): # The generic error message is confusing for categoricals. # # In this function, the join keys include both the original # ones of the merge_asof() call, and also the keys passed # to its by= argument. Unordered but equal categories # are not supported for the former, but will fail # later with a ValueError, so we don't *need* to check # for them here. msg = ( "incompatible merge keys [{i}] {lkdtype} and " "{rkdtype}, both sides category, but not equal ones".format( i=i, lkdtype=repr(lk.dtype), rkdtype=repr(rk.dtype) ) ) else: msg = ( "incompatible merge keys [{i}] {lkdtype} and " "{rkdtype}, must be the same type".format( i=i, lkdtype=repr(lk.dtype), rkdtype=repr(rk.dtype) ) ) raise MergeError(msg) # validate tolerance; datetime.timedelta or Timedelta if we have a DTI if self.tolerance is not None: if self.left_index: lt = self.left.index else: lt = left_join_keys[-1] msg = ( "incompatible tolerance {tolerance}, must be compat " "with type {lkdtype}".format( tolerance=type(self.tolerance), lkdtype=repr(lt.dtype) ) ) if is_datetimelike(lt): if not isinstance(self.tolerance, datetime.timedelta): raise MergeError(msg) if self.tolerance < Timedelta(0): raise MergeError("tolerance must be positive") elif is_integer_dtype(lt): if not is_integer(self.tolerance): raise MergeError(msg) if self.tolerance < 0: raise MergeError("tolerance must be positive") elif is_float_dtype(lt): if not is_number(self.tolerance): raise MergeError(msg) if self.tolerance < 0: raise MergeError("tolerance must be positive") else: raise MergeError("key must be integer, timestamp or float") # validate allow_exact_matches if not is_bool(self.allow_exact_matches): msg = "allow_exact_matches must be boolean, passed {passed}" raise MergeError(msg.format(passed=self.allow_exact_matches)) return left_join_keys, right_join_keys, join_names def _get_join_indexers(self): """ return the join indexers """ def flip(xs): """ unlike np.transpose, this returns an array of tuples """ xs = [ x if not is_extension_array_dtype(x) else x._ndarray_values for x in xs ] labels = list(string.ascii_lowercase[: len(xs)]) dtypes = [x.dtype for x in xs] labeled_dtypes = list(zip(labels, dtypes)) return np.array(list(zip(*xs)), labeled_dtypes) # values to compare left_values = ( self.left.index.values if self.left_index else self.left_join_keys[-1] ) right_values = ( self.right.index.values if self.right_index else self.right_join_keys[-1] ) tolerance = self.tolerance # we require sortedness and non-null values in the join keys msg_sorted = "{side} keys must be sorted" msg_missings = "Merge keys contain null values on {side} side" if not Index(left_values).is_monotonic: if isnull(left_values).any(): raise ValueError(msg_missings.format(side="left")) else: raise ValueError(msg_sorted.format(side="left")) if not Index(right_values).is_monotonic: if isnull(right_values).any(): raise ValueError(msg_missings.format(side="right")) else: raise ValueError(msg_sorted.format(side="right")) # initial type conversion as needed if needs_i8_conversion(left_values): left_values = left_values.view("i8") right_values = right_values.view("i8") if tolerance is not None: tolerance = Timedelta(tolerance) tolerance = tolerance.value # a "by" parameter requires special handling if self.left_by is not None: # remove 'on' parameter from values if one existed if self.left_index and self.right_index: left_by_values = self.left_join_keys right_by_values = self.right_join_keys else: left_by_values = self.left_join_keys[0:-1] right_by_values = self.right_join_keys[0:-1] # get tuple representation of values if more than one if len(left_by_values) == 1: left_by_values = left_by_values[0] right_by_values = right_by_values[0] else: left_by_values = flip(left_by_values) right_by_values = flip(right_by_values) # upcast 'by' parameter because HashTable is limited by_type = _get_cython_type_upcast(left_by_values.dtype) by_type_caster = _type_casters[by_type] left_by_values = by_type_caster(left_by_values) right_by_values = by_type_caster(right_by_values) # choose appropriate function by type func = _asof_by_function(self.direction) return func( left_values, right_values, left_by_values, right_by_values, self.allow_exact_matches, tolerance, ) else: # choose appropriate function by type func = _asof_function(self.direction) return func(left_values, right_values, self.allow_exact_matches, tolerance) def _get_multiindex_indexer(join_keys, index, sort): # bind `sort` argument fkeys = partial(_factorize_keys, sort=sort) # left & right join labels and num. of levels at each location rcodes, lcodes, shape = map(list, zip(*map(fkeys, index.levels, join_keys))) if sort: rcodes = list(map(np.take, rcodes, index.codes)) else: i8copy = lambda a: a.astype("i8", subok=False, copy=True) rcodes = list(map(i8copy, index.codes)) # fix right labels if there were any nulls for i in range(len(join_keys)): mask = index.codes[i] == -1 if mask.any(): # check if there already was any nulls at this location # if there was, it is factorized to `shape[i] - 1` a = join_keys[i][lcodes[i] == shape[i] - 1] if a.size == 0 or not a[0] != a[0]: shape[i] += 1 rcodes[i][mask] = shape[i] - 1 # get flat i8 join keys lkey, rkey = _get_join_keys(lcodes, rcodes, shape, sort) # factorize keys to a dense i8 space lkey, rkey, count = fkeys(lkey, rkey) return libjoin.left_outer_join(lkey, rkey, count, sort=sort) def _get_single_indexer(join_key, index, sort=False): left_key, right_key, count = _factorize_keys(join_key, index, sort=sort) left_indexer, right_indexer = libjoin.left_outer_join( ensure_int64(left_key), ensure_int64(right_key), count, sort=sort ) return left_indexer, right_indexer def _left_join_on_index(left_ax, right_ax, join_keys, sort=False): if len(join_keys) > 1: if not ( (isinstance(right_ax, MultiIndex) and len(join_keys) == right_ax.nlevels) ): raise AssertionError( "If more than one join key is given then " "'right_ax' must be a MultiIndex and the " "number of join keys must be the number of " "levels in right_ax" ) left_indexer, right_indexer = _get_multiindex_indexer( join_keys, right_ax, sort=sort ) else: jkey = join_keys[0] left_indexer, right_indexer = _get_single_indexer(jkey, right_ax, sort=sort) if sort or len(left_ax) != len(left_indexer): # if asked to sort or there are 1-to-many matches join_index = left_ax.take(left_indexer) return join_index, left_indexer, right_indexer # left frame preserves order & length of its index return left_ax, None, right_indexer def _right_outer_join(x, y, max_groups): right_indexer, left_indexer = libjoin.left_outer_join(y, x, max_groups) return left_indexer, right_indexer _join_functions = { "inner": libjoin.inner_join, "left": libjoin.left_outer_join, "right": _right_outer_join, "outer": libjoin.full_outer_join, } def _factorize_keys(lk, rk, sort=True): # Some pre-processing for non-ndarray lk / rk if is_datetime64tz_dtype(lk) and is_datetime64tz_dtype(rk): lk = getattr(lk, "_values", lk)._data rk = getattr(rk, "_values", rk)._data elif ( is_categorical_dtype(lk) and is_categorical_dtype(rk) and lk.is_dtype_equal(rk) ): if lk.categories.equals(rk.categories): # if we exactly match in categories, allow us to factorize on codes rk = rk.codes else: # Same categories in different orders -> recode rk = _recode_for_categories(rk.codes, rk.categories, lk.categories) lk = ensure_int64(lk.codes) rk = ensure_int64(rk) elif ( is_extension_array_dtype(lk.dtype) and is_extension_array_dtype(rk.dtype) and lk.dtype == rk.dtype ): lk, _ = lk._values_for_factorize() rk, _ = rk._values_for_factorize() if is_integer_dtype(lk) and is_integer_dtype(rk): # GH#23917 TODO: needs tests for case where lk is integer-dtype # and rk is datetime-dtype klass = libhashtable.Int64Factorizer lk = ensure_int64(com.values_from_object(lk)) rk = ensure_int64(com.values_from_object(rk)) elif issubclass(lk.dtype.type, (np.timedelta64, np.datetime64)) and issubclass( rk.dtype.type, (np.timedelta64, np.datetime64) ): # GH#23917 TODO: Needs tests for non-matching dtypes klass = libhashtable.Int64Factorizer lk = ensure_int64(com.values_from_object(lk)) rk = ensure_int64(com.values_from_object(rk)) else: klass = libhashtable.Factorizer lk = ensure_object(lk) rk = ensure_object(rk) rizer = klass(max(len(lk), len(rk))) llab = rizer.factorize(lk) rlab = rizer.factorize(rk) count = rizer.get_count() if sort: uniques = rizer.uniques.to_array() llab, rlab = _sort_labels(uniques, llab, rlab) # NA group lmask = llab == -1 lany = lmask.any() rmask = rlab == -1 rany = rmask.any() if lany or rany: if lany: np.putmask(llab, lmask, count) if rany: np.putmask(rlab, rmask, count) count += 1 return llab, rlab, count def _sort_labels(uniques, left, right): if not isinstance(uniques, np.ndarray): # tuplesafe uniques = Index(uniques).values llength = len(left) labels = np.concatenate([left, right]) _, new_labels = sorting.safe_sort(uniques, labels, na_sentinel=-1) new_labels = ensure_int64(new_labels) new_left, new_right = new_labels[:llength], new_labels[llength:] return new_left, new_right def _get_join_keys(llab, rlab, shape, sort): # how many levels can be done without overflow pred = lambda i: not is_int64_overflow_possible(shape[:i]) nlev = next(filter(pred, range(len(shape), 0, -1))) # get keys for the first `nlev` levels stride = np.prod(shape[1:nlev], dtype="i8") lkey = stride * llab[0].astype("i8", subok=False, copy=False) rkey = stride * rlab[0].astype("i8", subok=False, copy=False) for i in range(1, nlev): with np.errstate(divide="ignore"): stride //= shape[i] lkey += llab[i] * stride rkey += rlab[i] * stride if nlev == len(shape): # all done! return lkey, rkey # densify current keys to avoid overflow lkey, rkey, count = _factorize_keys(lkey, rkey, sort=sort) llab = [lkey] + llab[nlev:] rlab = [rkey] + rlab[nlev:] shape = [count] + shape[nlev:] return _get_join_keys(llab, rlab, shape, sort) def _should_fill(lname, rname): if not isinstance(lname, str) or not isinstance(rname, str): return True return lname == rname def _any(x): return x is not None and com.any_not_none(*x) def validate_operand(obj): if isinstance(obj, DataFrame): return obj elif isinstance(obj, Series): if obj.name is None: raise ValueError("Cannot merge a Series without a name") else: return obj.to_frame() else: raise TypeError( "Can only merge Series or DataFrame objects, " "a {obj} was passed".format(obj=type(obj)) ) def _items_overlap_with_suffix(left, lsuffix, right, rsuffix): """ If two indices overlap, add suffixes to overlapping entries. If corresponding suffix is empty, the entry is simply converted to string. """ to_rename = left.intersection(right) if len(to_rename) == 0: return left, right if not lsuffix and not rsuffix: raise ValueError( "columns overlap but no suffix specified: " "{rename}".format(rename=to_rename) ) def renamer(x, suffix): """ Rename the left and right indices. If there is overlap, and suffix is not None, add suffix, otherwise, leave it as-is. Parameters ---------- x : original column name suffix : str or None Returns ------- x : renamed column name """ if x in to_rename and suffix is not None: return "{x}{suffix}".format(x=x, suffix=suffix) return x lrenamer = partial(renamer, suffix=lsuffix) rrenamer = partial(renamer, suffix=rsuffix) return (_transform_index(left, lrenamer), _transform_index(right, rrenamer))
BugsInPy/BugsInPy/temp/projects/pandas/bug-136-fixed/pandas/pandas/core/reshape/merge.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-136-buggy/pandas/pandas/core/reshape/merge.py
pandas-bug-82
# TODO: Needs a better name; too many modules are already called "concat" from collections import defaultdict import copy import numpy as np from pandas._libs import internals as libinternals, tslibs from pandas.util._decorators import cache_readonly from pandas.core.dtypes.cast import maybe_promote from pandas.core.dtypes.common import ( _get_dtype, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_float_dtype, is_numeric_dtype, is_sparse, is_timedelta64_dtype, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algos def get_mgr_concatenation_plan(mgr, indexers): """ Construct concatenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindex shape , save for item axis which will be separate # for each block anyway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = len(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = algos.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = algos.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in libinternals.get_blkno_placements(blknos, group=False): assert placements.is_slice_like join_unit_indexers = indexers.copy() shape = list(mgr_shape) shape[0] = len(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexing = ( len(placements) == len(blk.mgr_locs) and # Fastpath detection of join unit not # needing to reindex its block: no ax0 # reindexing took place and block # placement was sequential before. ( ( ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1 ) or # Slow-ish detection: all indexer locs # are sequential (and length match is # checked above). (np.diff(ax0_blk_indexer) == 1).all() ) ) # Omit indexer if no item reindexing is required. if unit_no_ax0_reindexing: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.append((placements, unit)) return plan class JoinUnit: def __init__(self, block, shape, indexers=None): # Passing shape explicitly is required for cases when block is None. if indexers is None: indexers = {} self.block = block self.indexers = indexers self.shape = shape def __repr__(self) -> str: return f"{type(self).__name__}({repr(self.block)}, {self.indexers})" @cache_readonly def needs_filling(self): for indexer in self.indexers.values(): # FIXME: cache results of indexer == -1 checks. if (indexer == -1).any(): return True return False @cache_readonly def dtype(self): if self.block is None: raise AssertionError("Block is None, no dtype") if not self.needs_filling: return self.block.dtype else: return _get_dtype(maybe_promote(self.block.dtype, self.block.fill_value)[0]) @cache_readonly def is_na(self): if self.block is None: return True if not self.block._can_hold_na: return False # Usually it's enough to check but a small fraction of values to see if # a block is NOT null, chunks should help in such cases. 1000 value # was chosen rather arbitrarily. values = self.block.values if self.block.is_categorical: values_flat = values.categories elif is_sparse(self.block.values.dtype): return False elif self.block.is_extension: values_flat = values else: values_flat = values.ravel(order="K") total_len = values_flat.shape[0] chunk_len = max(total_len // 40, 1000) for i in range(0, total_len, chunk_len): if not isna(values_flat[i : i + chunk_len]).all(): return False return True def get_reindexed_values(self, empty_dtype, upcasted_na): if upcasted_na is None: # No upcasting is necessary fill_value = self.block.fill_value values = self.block.get_values() else: fill_value = upcasted_na if self.is_na: if getattr(self.block, "is_object", False): # we want to avoid filling with np.nan if we are # using None; we already know that we are all # nulls values = self.block.values.ravel(order="K") if len(values) and values[0] is None: fill_value = None if getattr(self.block, "is_datetimetz", False) or is_datetime64tz_dtype( empty_dtype ): if self.block is None: array = empty_dtype.construct_array_type() return array( np.full(self.shape[1], fill_value.value), dtype=empty_dtype ) elif getattr(self.block, "is_categorical", False): pass elif getattr(self.block, "is_extension", False): pass else: missing_arr = np.empty(self.shape, dtype=empty_dtype) missing_arr.fill(fill_value) return missing_arr if not self.indexers: if not self.block._can_consolidate: # preserve these for validation in concat_compat return self.block.values if self.block.is_bool and not self.block.is_categorical: # External code requested filling/upcasting, bool values must # be upcasted to object to avoid being upcasted to numeric. values = self.block.astype(np.object_).values elif self.block.is_extension: values = self.block.values else: # No dtype upcasting is done here, it will be performed during # concatenation itself. values = self.block.get_values() if not self.indexers: # If there's no indexing to be done, we want to signal outside # code that this array must be copied explicitly. This is done # by returning a view and checking `retval.base`. values = values.view() else: for ax, indexer in self.indexers.items(): values = algos.take_nd(values, indexer, axis=ax, fill_value=fill_value) return values def concatenate_join_units(join_units, concat_axis, copy): """ Concatenate values from several join units along selected axis. """ if concat_axis == 0 and len(join_units) > 1: # Concatenating join units along ax0 is handled in _merge_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = _get_empty_dtype_and_na(join_units) to_concat = [ ju.get_reindexed_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units ] if len(to_concat) == 1: # Only one block, nothing to concatenate. concat_values = to_concat[0] if copy: if isinstance(concat_values, np.ndarray): # non-reindexed (=not yet copied) arrays are made into a view # in JoinUnit.get_reindexed_values if concat_values.base is not None: concat_values = concat_values.copy() else: concat_values = concat_values.copy() else: concat_values = concat_compat(to_concat, axis=concat_axis) return concat_values def _get_empty_dtype_and_na(join_units): """ Return dtype and N/A values to use when concatenating specified units. Returned N/A value may be None which means there was no casting involved. Returns ------- dtype na """ if len(join_units) == 1: blk = join_units[0].block if blk is None: return np.float64, np.nan if _is_uniform_reindex(join_units): # FIXME: integrate property empty_dtype = join_units[0].block.dtype upcasted_na = join_units[0].block.fill_value return empty_dtype, upcasted_na has_none_blocks = False dtypes = [None] * len(join_units) for i, unit in enumerate(join_units): if unit.block is None: has_none_blocks = True else: dtypes[i] = unit.dtype upcast_classes = defaultdict(list) null_upcast_classes = defaultdict(list) for dtype, unit in zip(dtypes, join_units): if dtype is None: continue if is_categorical_dtype(dtype): upcast_cls = "category" elif is_datetime64tz_dtype(dtype): upcast_cls = "datetimetz" elif issubclass(dtype.type, np.bool_): upcast_cls = "bool" elif issubclass(dtype.type, np.object_): upcast_cls = "object" elif is_datetime64_dtype(dtype): upcast_cls = "datetime" elif is_timedelta64_dtype(dtype): upcast_cls = "timedelta" elif is_sparse(dtype): upcast_cls = dtype.subtype.name elif is_extension_array_dtype(dtype): upcast_cls = "object" elif is_float_dtype(dtype) or is_numeric_dtype(dtype): upcast_cls = dtype.name else: upcast_cls = "float" # Null blocks should not influence upcast class selection, unless there # are only null blocks, when same upcasting rules must be applied to # null upcast classes. if unit.is_na: null_upcast_classes[upcast_cls].append(dtype) else: upcast_classes[upcast_cls].append(dtype) if not upcast_classes: upcast_classes = null_upcast_classes # TODO: de-duplicate with maybe_promote? # create the result if "object" in upcast_classes: return np.dtype(np.object_), np.nan elif "bool" in upcast_classes: if has_none_blocks: return np.dtype(np.object_), np.nan else: return np.dtype(np.bool_), None elif "category" in upcast_classes: return np.dtype(np.object_), np.nan elif "datetimetz" in upcast_classes: # GH-25014. We use NaT instead of iNaT, since this eventually # ends up in DatetimeArray.take, which does not allow iNaT. dtype = upcast_classes["datetimetz"] return dtype[0], tslibs.NaT elif "datetime" in upcast_classes: return np.dtype("M8[ns]"), tslibs.iNaT elif "timedelta" in upcast_classes: return np.dtype("m8[ns]"), np.timedelta64("NaT", "ns") else: # pragma try: g = np.find_common_type(upcast_classes, []) except TypeError: # At least one is an ExtensionArray return np.dtype(np.object_), np.nan else: if is_float_dtype(g): return g, g.type(np.nan) elif is_numeric_dtype(g): if has_none_blocks: return np.float64, np.nan else: return g, None msg = "invalid dtype determination in get_concat_dtype" raise AssertionError(msg) def is_uniform_join_units(join_units): """ Check if the join units consist of blocks of uniform type that can be concatenated using Block.concat_same_type instead of the generic concatenate_join_units (which uses `concat_compat`). """ return ( # all blocks need to have the same type all(type(ju.block) is type(join_units[0].block) for ju in join_units) and # noqa # no blocks that would get missing values (can lead to type upcasts) # unless we're an extension dtype. all(not ju.is_na or ju.block.is_extension for ju in join_units) and # no blocks with indexers (as then the dimensions do not fit) all(not ju.indexers for ju in join_units) and # only use this path when there is something to concatenate len(join_units) > 1 ) def _is_uniform_reindex(join_units) -> bool: return ( # TODO: should this be ju.block._can_hold_na? all(ju.block and ju.block.is_extension for ju in join_units) and len({ju.block.dtype.name for ju in join_units}) == 1 ) def _trim_join_unit(join_unit, length): """ Reduce join_unit's shape along item axis to length. Extra items that didn't fit are returned as a separate block. """ if 0 not in join_unit.indexers: extra_indexers = join_unit.indexers if join_unit.block is None: extra_block = None else: extra_block = join_unit.block.getitem_block(slice(length, None)) join_unit.block = join_unit.block.getitem_block(slice(length)) else: extra_block = join_unit.block extra_indexers = copy.copy(join_unit.indexers) extra_indexers[0] = extra_indexers[0][length:] join_unit.indexers[0] = join_unit.indexers[0][:length] extra_shape = (join_unit.shape[0] - length,) + join_unit.shape[1:] join_unit.shape = (length,) + join_unit.shape[1:] return JoinUnit(block=extra_block, indexers=extra_indexers, shape=extra_shape) def combine_concat_plans(plans, concat_axis): """ Combine multiple concatenation plans into one. existing_plan is updated in-place. """ if len(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concat_axis == 0: offset = 0 for plan in plans: last_plc = None for plc, unit in plan: yield plc.add(offset), [unit] last_plc = plc if last_plc is not None: offset += last_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(map(iter, plans)) next_items = list(map(_next_or_none, plans)) while num_ended[0] != len(next_items): if num_ended[0] > 0: raise ValueError("Plan shapes are not aligned") placements, units = zip(*next_items) lengths = list(map(len, placements)) min_len, max_len = min(lengths), max(lengths) if min_len == max_len: yield placements[0], units next_items[:] = map(_next_or_none, plans) else: yielded_placement = None yielded_units = [None] * len(next_items) for i, (plc, unit) in enumerate(next_items): yielded_units[i] = unit if len(plc) > min_len: # _trim_join_unit updates unit in place, so only # placement needs to be sliced to skip min_len. next_items[i] = (plc[min_len:], _trim_join_unit(unit, min_len)) else: yielded_placement = plc next_items[i] = _next_or_none(plans[i]) yield yielded_placement, yielded_units # TODO: Needs a better name; too many modules are already called "concat" from collections import defaultdict import copy import numpy as np from pandas._libs import internals as libinternals, tslibs from pandas.util._decorators import cache_readonly from pandas.core.dtypes.cast import maybe_promote from pandas.core.dtypes.common import ( _get_dtype, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_extension_array_dtype, is_float_dtype, is_numeric_dtype, is_sparse, is_timedelta64_dtype, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.missing import isna import pandas.core.algorithms as algos def get_mgr_concatenation_plan(mgr, indexers): """ Construct concatenation plan for given block manager and indexers. Parameters ---------- mgr : BlockManager indexers : dict of {axis: indexer} Returns ------- plan : list of (BlockPlacement, JoinUnit) tuples """ # Calculate post-reindex shape , save for item axis which will be separate # for each block anyway. mgr_shape = list(mgr.shape) for ax, indexer in indexers.items(): mgr_shape[ax] = len(indexer) mgr_shape = tuple(mgr_shape) if 0 in indexers: ax0_indexer = indexers.pop(0) blknos = algos.take_1d(mgr._blknos, ax0_indexer, fill_value=-1) blklocs = algos.take_1d(mgr._blklocs, ax0_indexer, fill_value=-1) else: if mgr._is_single_block: blk = mgr.blocks[0] return [(blk.mgr_locs, JoinUnit(blk, mgr_shape, indexers))] ax0_indexer = None blknos = mgr._blknos blklocs = mgr._blklocs plan = [] for blkno, placements in libinternals.get_blkno_placements(blknos, group=False): assert placements.is_slice_like join_unit_indexers = indexers.copy() shape = list(mgr_shape) shape[0] = len(placements) shape = tuple(shape) if blkno == -1: unit = JoinUnit(None, shape) else: blk = mgr.blocks[blkno] ax0_blk_indexer = blklocs[placements.indexer] unit_no_ax0_reindexing = ( len(placements) == len(blk.mgr_locs) and # Fastpath detection of join unit not # needing to reindex its block: no ax0 # reindexing took place and block # placement was sequential before. ( ( ax0_indexer is None and blk.mgr_locs.is_slice_like and blk.mgr_locs.as_slice.step == 1 ) or # Slow-ish detection: all indexer locs # are sequential (and length match is # checked above). (np.diff(ax0_blk_indexer) == 1).all() ) ) # Omit indexer if no item reindexing is required. if unit_no_ax0_reindexing: join_unit_indexers.pop(0, None) else: join_unit_indexers[0] = ax0_blk_indexer unit = JoinUnit(blk, shape, join_unit_indexers) plan.append((placements, unit)) return plan class JoinUnit: def __init__(self, block, shape, indexers=None): # Passing shape explicitly is required for cases when block is None. if indexers is None: indexers = {} self.block = block self.indexers = indexers self.shape = shape def __repr__(self) -> str: return f"{type(self).__name__}({repr(self.block)}, {self.indexers})" @cache_readonly def needs_filling(self): for indexer in self.indexers.values(): # FIXME: cache results of indexer == -1 checks. if (indexer == -1).any(): return True return False @cache_readonly def dtype(self): if self.block is None: raise AssertionError("Block is None, no dtype") if not self.needs_filling: return self.block.dtype else: return _get_dtype(maybe_promote(self.block.dtype, self.block.fill_value)[0]) @cache_readonly def is_na(self): if self.block is None: return True if not self.block._can_hold_na: return False # Usually it's enough to check but a small fraction of values to see if # a block is NOT null, chunks should help in such cases. 1000 value # was chosen rather arbitrarily. values = self.block.values if self.block.is_categorical: values_flat = values.categories elif is_sparse(self.block.values.dtype): return False elif self.block.is_extension: values_flat = values else: values_flat = values.ravel(order="K") total_len = values_flat.shape[0] chunk_len = max(total_len // 40, 1000) for i in range(0, total_len, chunk_len): if not isna(values_flat[i : i + chunk_len]).all(): return False return True def get_reindexed_values(self, empty_dtype, upcasted_na): if upcasted_na is None: # No upcasting is necessary fill_value = self.block.fill_value values = self.block.get_values() else: fill_value = upcasted_na if self.is_na: if getattr(self.block, "is_object", False): # we want to avoid filling with np.nan if we are # using None; we already know that we are all # nulls values = self.block.values.ravel(order="K") if len(values) and values[0] is None: fill_value = None if getattr(self.block, "is_datetimetz", False) or is_datetime64tz_dtype( empty_dtype ): if self.block is None: array = empty_dtype.construct_array_type() return array( np.full(self.shape[1], fill_value.value), dtype=empty_dtype ) elif getattr(self.block, "is_categorical", False): pass elif getattr(self.block, "is_extension", False): pass else: missing_arr = np.empty(self.shape, dtype=empty_dtype) missing_arr.fill(fill_value) return missing_arr if not self.indexers: if not self.block._can_consolidate: # preserve these for validation in concat_compat return self.block.values if self.block.is_bool and not self.block.is_categorical: # External code requested filling/upcasting, bool values must # be upcasted to object to avoid being upcasted to numeric. values = self.block.astype(np.object_).values elif self.block.is_extension: values = self.block.values else: # No dtype upcasting is done here, it will be performed during # concatenation itself. values = self.block.get_values() if not self.indexers: # If there's no indexing to be done, we want to signal outside # code that this array must be copied explicitly. This is done # by returning a view and checking `retval.base`. values = values.view() else: for ax, indexer in self.indexers.items(): values = algos.take_nd(values, indexer, axis=ax, fill_value=fill_value) return values def concatenate_join_units(join_units, concat_axis, copy): """ Concatenate values from several join units along selected axis. """ if concat_axis == 0 and len(join_units) > 1: # Concatenating join units along ax0 is handled in _merge_blocks. raise AssertionError("Concatenating join units along axis0") empty_dtype, upcasted_na = _get_empty_dtype_and_na(join_units) to_concat = [ ju.get_reindexed_values(empty_dtype=empty_dtype, upcasted_na=upcasted_na) for ju in join_units ] if len(to_concat) == 1: # Only one block, nothing to concatenate. concat_values = to_concat[0] if copy: if isinstance(concat_values, np.ndarray): # non-reindexed (=not yet copied) arrays are made into a view # in JoinUnit.get_reindexed_values if concat_values.base is not None: concat_values = concat_values.copy() else: concat_values = concat_values.copy() else: concat_values = concat_compat(to_concat, axis=concat_axis) return concat_values def _get_empty_dtype_and_na(join_units): """ Return dtype and N/A values to use when concatenating specified units. Returned N/A value may be None which means there was no casting involved. Returns ------- dtype na """ if len(join_units) == 1: blk = join_units[0].block if blk is None: return np.float64, np.nan if _is_uniform_reindex(join_units): # FIXME: integrate property empty_dtype = join_units[0].block.dtype upcasted_na = join_units[0].block.fill_value return empty_dtype, upcasted_na has_none_blocks = False dtypes = [None] * len(join_units) for i, unit in enumerate(join_units): if unit.block is None: has_none_blocks = True else: dtypes[i] = unit.dtype upcast_classes = defaultdict(list) null_upcast_classes = defaultdict(list) for dtype, unit in zip(dtypes, join_units): if dtype is None: continue if is_categorical_dtype(dtype): upcast_cls = "category" elif is_datetime64tz_dtype(dtype): upcast_cls = "datetimetz" elif issubclass(dtype.type, np.bool_): upcast_cls = "bool" elif issubclass(dtype.type, np.object_): upcast_cls = "object" elif is_datetime64_dtype(dtype): upcast_cls = "datetime" elif is_timedelta64_dtype(dtype): upcast_cls = "timedelta" elif is_sparse(dtype): upcast_cls = dtype.subtype.name elif is_extension_array_dtype(dtype): upcast_cls = "object" elif is_float_dtype(dtype) or is_numeric_dtype(dtype): upcast_cls = dtype.name else: upcast_cls = "float" # Null blocks should not influence upcast class selection, unless there # are only null blocks, when same upcasting rules must be applied to # null upcast classes. if unit.is_na: null_upcast_classes[upcast_cls].append(dtype) else: upcast_classes[upcast_cls].append(dtype) if not upcast_classes: upcast_classes = null_upcast_classes # TODO: de-duplicate with maybe_promote? # create the result if "object" in upcast_classes: return np.dtype(np.object_), np.nan elif "bool" in upcast_classes: if has_none_blocks: return np.dtype(np.object_), np.nan else: return np.dtype(np.bool_), None elif "category" in upcast_classes: return np.dtype(np.object_), np.nan elif "datetimetz" in upcast_classes: # GH-25014. We use NaT instead of iNaT, since this eventually # ends up in DatetimeArray.take, which does not allow iNaT. dtype = upcast_classes["datetimetz"] return dtype[0], tslibs.NaT elif "datetime" in upcast_classes: return np.dtype("M8[ns]"), np.datetime64("NaT", "ns") elif "timedelta" in upcast_classes: return np.dtype("m8[ns]"), np.timedelta64("NaT", "ns") else: # pragma try: g = np.find_common_type(upcast_classes, []) except TypeError: # At least one is an ExtensionArray return np.dtype(np.object_), np.nan else: if is_float_dtype(g): return g, g.type(np.nan) elif is_numeric_dtype(g): if has_none_blocks: return np.float64, np.nan else: return g, None msg = "invalid dtype determination in get_concat_dtype" raise AssertionError(msg) def is_uniform_join_units(join_units): """ Check if the join units consist of blocks of uniform type that can be concatenated using Block.concat_same_type instead of the generic concatenate_join_units (which uses `concat_compat`). """ return ( # all blocks need to have the same type all(type(ju.block) is type(join_units[0].block) for ju in join_units) and # noqa # no blocks that would get missing values (can lead to type upcasts) # unless we're an extension dtype. all(not ju.is_na or ju.block.is_extension for ju in join_units) and # no blocks with indexers (as then the dimensions do not fit) all(not ju.indexers for ju in join_units) and # only use this path when there is something to concatenate len(join_units) > 1 ) def _is_uniform_reindex(join_units) -> bool: return ( # TODO: should this be ju.block._can_hold_na? all(ju.block and ju.block.is_extension for ju in join_units) and len({ju.block.dtype.name for ju in join_units}) == 1 ) def _trim_join_unit(join_unit, length): """ Reduce join_unit's shape along item axis to length. Extra items that didn't fit are returned as a separate block. """ if 0 not in join_unit.indexers: extra_indexers = join_unit.indexers if join_unit.block is None: extra_block = None else: extra_block = join_unit.block.getitem_block(slice(length, None)) join_unit.block = join_unit.block.getitem_block(slice(length)) else: extra_block = join_unit.block extra_indexers = copy.copy(join_unit.indexers) extra_indexers[0] = extra_indexers[0][length:] join_unit.indexers[0] = join_unit.indexers[0][:length] extra_shape = (join_unit.shape[0] - length,) + join_unit.shape[1:] join_unit.shape = (length,) + join_unit.shape[1:] return JoinUnit(block=extra_block, indexers=extra_indexers, shape=extra_shape) def combine_concat_plans(plans, concat_axis): """ Combine multiple concatenation plans into one. existing_plan is updated in-place. """ if len(plans) == 1: for p in plans[0]: yield p[0], [p[1]] elif concat_axis == 0: offset = 0 for plan in plans: last_plc = None for plc, unit in plan: yield plc.add(offset), [unit] last_plc = plc if last_plc is not None: offset += last_plc.as_slice.stop else: num_ended = [0] def _next_or_none(seq): retval = next(seq, None) if retval is None: num_ended[0] += 1 return retval plans = list(map(iter, plans)) next_items = list(map(_next_or_none, plans)) while num_ended[0] != len(next_items): if num_ended[0] > 0: raise ValueError("Plan shapes are not aligned") placements, units = zip(*next_items) lengths = list(map(len, placements)) min_len, max_len = min(lengths), max(lengths) if min_len == max_len: yield placements[0], units next_items[:] = map(_next_or_none, plans) else: yielded_placement = None yielded_units = [None] * len(next_items) for i, (plc, unit) in enumerate(next_items): yielded_units[i] = unit if len(plc) > min_len: # _trim_join_unit updates unit in place, so only # placement needs to be sliced to skip min_len. next_items[i] = (plc[min_len:], _trim_join_unit(unit, min_len)) else: yielded_placement = plc next_items[i] = _next_or_none(plans[i]) yield yielded_placement, yielded_units
BugsInPy/BugsInPy/temp/projects/pandas/bug-82-fixed/pandas/pandas/core/internals/concat.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-82-buggy/pandas/pandas/core/internals/concat.py
pandas-bug-19
from typing import TYPE_CHECKING, Hashable, List, Tuple, Union import numpy as np from pandas._libs.indexing import _NDFrameIndexerBase from pandas._libs.lib import item_from_zerodim from pandas.errors import AbstractMethodError from pandas.util._decorators import doc from pandas.core.dtypes.common import ( is_hashable, is_integer, is_iterator, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, is_sequence, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCDataFrame, ABCMultiIndex, ABCSeries from pandas.core.dtypes.missing import _infer_fill_value, isna import pandas.core.common as com from pandas.core.indexers import ( check_array_indexer, is_list_like_indexer, length_of_indexer, ) from pandas.core.indexes.api import Index, InvalidIndexError if TYPE_CHECKING: from pandas import DataFrame # noqa:F401 # "null slice" _NS = slice(None, None) # the public IndexSlicerMaker class _IndexSlice: """ Create an object to more easily perform multi-index slicing. See Also -------- MultiIndex.remove_unused_levels : New MultiIndex with no unused levels. Notes ----- See :ref:`Defined Levels <advanced.shown_levels>` for further info on slicing a MultiIndex. Examples -------- >>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']]) >>> columns = ['foo', 'bar'] >>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))), index=midx, columns=columns) Using the default slice command: >>> dfmi.loc[(slice(None), slice('B0', 'B1')), :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 Using the IndexSlice class for a more intuitive command: >>> idx = pd.IndexSlice >>> dfmi.loc[idx[:, 'B0':'B1'], :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 """ def __getitem__(self, arg): return arg IndexSlice = _IndexSlice() class IndexingError(Exception): pass class IndexingMixin: """ Mixin for adding .loc/.iloc/.at/.iat to Datafames and Series. """ @property def iloc(self) -> "_iLocIndexer": """ Purely integer-location based indexing for selection by position. ``.iloc[]`` is primarily integer position based (from ``0`` to ``length-1`` of the axis), but may also be used with a boolean array. Allowed inputs are: - An integer, e.g. ``5``. - A list or array of integers, e.g. ``[4, 3, 0]``. - A slice object with ints, e.g. ``1:7``. - A boolean array. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value. ``.iloc`` will raise ``IndexError`` if a requested indexer is out-of-bounds, except *slice* indexers which allow out-of-bounds indexing (this conforms with python/numpy *slice* semantics). See more at :ref:`Selection by Position <indexing.integer>`. See Also -------- DataFrame.iat : Fast integer location scalar accessor. DataFrame.loc : Purely label-location based indexer for selection by label. Series.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 **Indexing just the rows** With a scalar integer. >>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 With a list of integers. >>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'> >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 With a `slice` object. >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 With a boolean mask the same length as the index. >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 With a callable, useful in method chains. The `x` passed to the ``lambda`` is the DataFrame being sliced. This selects the rows whose index label even. >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 **Indexing both axes** You can mix the indexer types for the index and columns. Use ``:`` to select the entire axis. With scalar integers. >>> df.iloc[0, 1] 2 With lists of integers. >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 With `slice` objects. >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 With a boolean array whose length matches the columns. >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 With a callable function that expects the Series or DataFrame. >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000 """ return _iLocIndexer("iloc", self) @property def loc(self) -> "_LocIndexer": """ Access a group of rows and columns by label(s) or a boolean array. ``.loc[]`` is primarily label based, but may also be used with a boolean array. Allowed inputs are: - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index, and **never** as an integer position along the index). - A list or array of labels, e.g. ``['a', 'b', 'c']``. - A slice object with labels, e.g. ``'a':'f'``. .. warning:: Note that contrary to usual python slices, **both** the start and the stop are included - A boolean array of the same length as the axis being sliced, e.g. ``[True, False, True]``. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above) See more at :ref:`Selection by Label <indexing.label>` Raises ------ KeyError If any items are not found. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.iloc : Access group of rows and columns by integer position(s). DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Series.loc : Access group of values using labels. Examples -------- **Getting values** >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 Single label. Note this returns the row as a Series. >>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64 List of labels. Note using ``[[]]`` returns a DataFrame. >>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 Single label for row and column >>> df.loc['cobra', 'shield'] 2 Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64 Boolean list with the same length as the row axis >>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series >>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series with column labels specified >>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 Callable that returns a boolean Series >>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8 **Setting values** Set value for all items matching the list of labels >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50 Set value for an entire row >>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50 Set value for an entire column >>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50 Set value for rows matching callable condition >>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0 **Getting values on a DataFrame with an index that has integer labels** Another example using integers for the index >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8 Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8 **Getting values with a MultiIndex** A number of examples using a DataFrame with a MultiIndex >>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Single label. Note this returns a DataFrame with a single index. >>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4 Single index tuple. Note this returns a Series. >>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64 Single label for row and column. Similar to passing in a tuple, this returns a Series. >>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64 Single tuple. Note using ``[[]]`` returns a DataFrame. >>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4 Single tuple for the index with a single label for the column >>> df.loc[('cobra', 'mark i'), 'shield'] 2 Slice from index tuple to single label >>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Slice from index tuple to index tuple >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 """ return _LocIndexer("loc", self) @property def at(self) -> "_AtIndexer": """ Access a single value for a row/column label pair. Similar to ``loc``, in that both provide label-based lookups. Use ``at`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ KeyError If 'label' does not exist in DataFrame. See Also -------- DataFrame.iat : Access a single value for a row/column pair by integer position. DataFrame.loc : Access a group of rows and columns by label(s). Series.at : Access a single value using a label. Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 Get value at specified row/column pair >>> df.at[4, 'B'] 2 Set value at specified row/column pair >>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10 Get value within a Series >>> df.loc[5].at['B'] 4 """ return _AtIndexer("at", self) @property def iat(self) -> "_iAtIndexer": """ Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ IndexError When integer position is out of bounds. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s). Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] 1 Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] 10 Get value within a series >>> df.loc[0].iat[1] 2 """ return _iAtIndexer("iat", self) class _LocationIndexer(_NDFrameIndexerBase): _valid_types: str axis = None def __call__(self, axis=None): # we need to return a copy of ourselves new_self = type(self)(self.name, self.obj) if axis is not None: axis = self.obj._get_axis_number(axis) new_self.axis = axis return new_self def _get_setitem_indexer(self, key): """ Convert a potentially-label-based key into a positional indexer. """ if self.name == "loc": self._ensure_listlike_indexer(key) if self.axis is not None: return self._convert_tuple(key, is_setter=True) ax = self.obj._get_axis(0) if isinstance(ax, ABCMultiIndex) and self.name != "iloc": try: return ax.get_loc(key) except (TypeError, KeyError, InvalidIndexError): # TypeError e.g. passed a bool pass if isinstance(key, tuple): try: return self._convert_tuple(key, is_setter=True) except IndexingError: pass if isinstance(key, range): return list(key) try: return self._convert_to_indexer(key, axis=0, is_setter=True) except TypeError as e: # invalid indexer type vs 'other' indexing errors if "cannot do" in str(e): raise elif "unhashable type" in str(e): raise raise IndexingError(key) from e def _ensure_listlike_indexer(self, key, axis=None): """ Ensure that a list-like of column labels are all present by adding them if they do not already exist. Parameters ---------- key : list-like of column labels Target labels. axis : key axis if known """ column_axis = 1 # column only exists in 2-dimensional DataFrame if self.ndim != 2: return if isinstance(key, tuple): # key may be a tuple if we are .loc # in that case, set key to the column part of key key = key[column_axis] axis = column_axis if ( axis == column_axis and not isinstance(self.obj.columns, ABCMultiIndex) and is_list_like_indexer(key) and not com.is_bool_indexer(key) and all(is_hashable(k) for k in key) ): for k in key: if k not in self.obj: self.obj[k] = np.nan def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: key = com.apply_if_callable(key, self.obj) indexer = self._get_setitem_indexer(key) self._has_valid_setitem_indexer(key) iloc = self if self.name == "iloc" else self.obj.iloc iloc._setitem_with_indexer(indexer, value) def _validate_key(self, key, axis: int): """ Ensure that key is valid for current indexer. Parameters ---------- key : scalar, slice or list-like Key requested. axis : int Dimension on which the indexing is being made. Raises ------ TypeError If the key (or some element of it) has wrong type. IndexError If the key (or some element of it) is out of bounds. KeyError If the key was not found. """ raise AbstractMethodError(self) def _has_valid_tuple(self, key: Tuple): """ Check the key for valid keys across my indexer. """ for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") try: self._validate_key(k, i) except ValueError as err: raise ValueError( "Location based indexing can only have " f"[{self._valid_types}] types" ) from err def _is_nested_tuple_indexer(self, tup: Tuple) -> bool: """ Returns ------- bool """ if any(isinstance(ax, ABCMultiIndex) for ax in self.obj.axes): return any(is_nested_tuple(tup, ax) for ax in self.obj.axes) return False def _convert_tuple(self, key, is_setter: bool = False): keyidx = [] if self.axis is not None: axis = self.obj._get_axis_number(self.axis) for i in range(self.ndim): if i == axis: keyidx.append( self._convert_to_indexer(key, axis=axis, is_setter=is_setter) ) else: keyidx.append(slice(None)) else: for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") idx = self._convert_to_indexer(k, axis=i, is_setter=is_setter) keyidx.append(idx) return tuple(keyidx) def _getitem_tuple_same_dim(self, tup: Tuple): """ Index with indexers that should return an object of the same dimension as self.obj. This is only called after a failed call to _getitem_lowerdim. """ retval = self.obj for i, key in enumerate(tup): if com.is_null_slice(key): continue retval = getattr(retval, self.name)._getitem_axis(key, axis=i) # We should never have retval.ndim < self.ndim, as that should # be handled by the _getitem_lowerdim call above. assert retval.ndim == self.ndim return retval def _getitem_lowerdim(self, tup: Tuple): # we can directly get the axis result since the axis is specified if self.axis is not None: axis = self.obj._get_axis_number(self.axis) return self._getitem_axis(tup, axis=axis) # we may have a nested tuples indexer here if self._is_nested_tuple_indexer(tup): return self._getitem_nested_tuple(tup) # we maybe be using a tuple to represent multiple dimensions here ax0 = self.obj._get_axis(0) # ...but iloc should handle the tuple as simple integer-location # instead of checking it as multiindex representation (GH 13797) if isinstance(ax0, ABCMultiIndex) and self.name != "iloc": result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result if len(tup) > self.ndim: raise IndexingError("Too many indexers. handle elsewhere") for i, key in enumerate(tup): if is_label_like(key): # We don't need to check for tuples here because those are # caught by the _is_nested_tuple_indexer check above. section = self._getitem_axis(key, axis=i) # We should never have a scalar section here, because # _getitem_lowerdim is only called after a check for # is_scalar_access, which that would be. if section.ndim == self.ndim: # we're in the middle of slicing through a MultiIndex # revise the key wrt to `section` by inserting an _NS new_key = tup[:i] + (_NS,) + tup[i + 1 :] else: # Note: the section.ndim == self.ndim check above # rules out having DataFrame here, so we dont need to worry # about transposing. new_key = tup[:i] + tup[i + 1 :] if len(new_key) == 1: new_key = new_key[0] # Slices should return views, but calling iloc/loc with a null # slice returns a new object. if com.is_null_slice(new_key): return section # This is an elided recursive call to iloc/loc return getattr(section, self.name)[new_key] raise IndexingError("not applicable") def _getitem_nested_tuple(self, tup: Tuple): # we have a nested tuple so have at least 1 multi-index level # we should be able to match up the dimensionality here # we have too many indexers for our dim, but have at least 1 # multi-index dimension, try to see if we have something like # a tuple passed to a series with a multi-index if len(tup) > self.ndim: if self.name != "loc": # This should never be reached, but lets be explicit about it raise ValueError("Too many indices") result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result # this is a series with a multi-index specified a tuple of # selectors axis = self.axis or 0 return self._getitem_axis(tup, axis=axis) # handle the multi-axis by taking sections and reducing # this is iterative obj = self.obj axis = 0 for key in tup: if com.is_null_slice(key): axis += 1 continue current_ndim = obj.ndim obj = getattr(obj, self.name)._getitem_axis(key, axis=axis) axis += 1 # if we have a scalar, we are done if is_scalar(obj) or not hasattr(obj, "ndim"): break # has the dim of the obj changed? # GH 7199 if obj.ndim < current_ndim: axis -= 1 return obj def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if type(key) is tuple: key = tuple(com.apply_if_callable(x, self.obj) for x in key) if self._is_scalar_access(key): try: return self.obj._get_value(*key, takeable=self._takeable) except (KeyError, IndexError, AttributeError): # AttributeError for IntervalTree get_value pass return self._getitem_tuple(key) else: # we by definition only have the 0th axis axis = self.axis or 0 maybe_callable = com.apply_if_callable(key, self.obj) return self._getitem_axis(maybe_callable, axis=axis) def _is_scalar_access(self, key: Tuple): raise NotImplementedError() def _getitem_tuple(self, tup: Tuple): raise AbstractMethodError(self) def _getitem_axis(self, key, axis: int): raise NotImplementedError() def _has_valid_setitem_indexer(self, indexer) -> bool: raise AbstractMethodError(self) def _getbool_axis(self, key, axis: int): # caller is responsible for ensuring non-None axis labels = self.obj._get_axis(axis) key = check_bool_indexer(labels, key) inds = key.nonzero()[0] return self.obj._take_with_is_copy(inds, axis=axis) @doc(IndexingMixin.loc) class _LocIndexer(_LocationIndexer): _takeable: bool = False _valid_types = ( "labels (MUST BE IN THE INDEX), slices of labels (BOTH " "endpoints included! Can be slices of integers if the " "index is integers), listlike of labels, boolean" ) # ------------------------------------------------------------------- # Key Checks @doc(_LocationIndexer._validate_key) def _validate_key(self, key, axis: int): # valid for a collection of labels (we check their presence later) # slice of labels (where start-end in labels) # slice of integers (only if in the labels) # boolean pass def _has_valid_setitem_indexer(self, indexer) -> bool: return True def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_scalar(k): return False ax = self.obj.axes[i] if isinstance(ax, ABCMultiIndex): return False if isinstance(k, str) and ax._supports_partial_string_indexing: # partial string indexing, df.loc['2000', 'A'] # should not be considered scalar return False if not ax.is_unique: return False return True # ------------------------------------------------------------------- # MultiIndex Handling def _multi_take_opportunity(self, tup: Tuple) -> bool: """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed, must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- bool Whether the current indexing, can be passed through `_multi_take`. """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True def _multi_take(self, tup: Tuple): """ Create the indexers for the passed tuple of keys, and executes the take operation. This allows the take operation to be executed all at once, rather than once for each dimension. Improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- values: same type as the object being indexed """ # GH 836 d = { axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, self.obj._AXIS_ORDERS) } return self.obj._reindex_with_indexers(d, copy=True, allow_dups=True) # ------------------------------------------------------------------- def _getitem_iterable(self, key, axis: int): """ Index current object with an an iterable collection of keys. Parameters ---------- key : iterable Targeted labels. axis: int Dimension on which the indexing is being made. Raises ------ KeyError If no key was found. Will change in the future to raise if not all keys were found. Returns ------- scalar, DataFrame, or Series: indexed value(s). """ # we assume that not com.is_bool_indexer(key), as that is # handled before we get here. self._validate_key(key, axis) # A collection of keys keyarr, indexer = self._get_listlike_indexer(key, axis, raise_missing=False) return self.obj._reindex_with_indexers( {axis: [keyarr, indexer]}, copy=True, allow_dups=True ) def _getitem_tuple(self, tup: Tuple): try: return self._getitem_lowerdim(tup) except IndexingError: pass # no multi-index, so validate all of the indexers self._has_valid_tuple(tup) # ugly hack for GH #836 if self._multi_take_opportunity(tup): return self._multi_take(tup) return self._getitem_tuple_same_dim(tup) def _get_label(self, label, axis: int): # GH#5667 this will fail if the label is not present in the axis. return self.obj.xs(label, axis=axis) def _handle_lowerdim_multi_index_axis0(self, tup: Tuple): # we have an axis0 multi-index, handle or raise axis = self.axis or 0 try: # fast path for series or for tup devoid of slices return self._get_label(tup, axis=axis) except TypeError: # slices are unhashable pass except KeyError as ek: # raise KeyError if number of indexers match # else IndexingError will be raised if len(tup) <= self.obj.index.nlevels and len(tup) > self.ndim: raise ek return None def _getitem_axis(self, key, axis: int): key = item_from_zerodim(key) if is_iterator(key): key = list(key) labels = self.obj._get_axis(axis) key = labels._get_partial_string_timestamp_match_key(key) if isinstance(key, slice): self._validate_key(key, axis) return self._get_slice_axis(key, axis=axis) elif com.is_bool_indexer(key): return self._getbool_axis(key, axis=axis) elif is_list_like_indexer(key): # convert various list-like indexers # to a list of keys # we will use the *values* of the object # and NOT the index if its a PandasObject if isinstance(labels, ABCMultiIndex): if isinstance(key, (ABCSeries, np.ndarray)) and key.ndim <= 1: # Series, or 0,1 ndim ndarray # GH 14730 key = list(key) elif isinstance(key, ABCDataFrame): # GH 15438 raise NotImplementedError( "Indexing a MultiIndex with a " "DataFrame key is not " "implemented" ) elif hasattr(key, "ndim") and key.ndim > 1: raise NotImplementedError( "Indexing a MultiIndex with a " "multidimensional key is not " "implemented" ) if ( not isinstance(key, tuple) and len(key) and not isinstance(key[0], tuple) ): key = tuple([key]) # an iterable multi-selection if not (isinstance(key, tuple) and isinstance(labels, ABCMultiIndex)): if hasattr(key, "ndim") and key.ndim > 1: raise ValueError("Cannot index with multidimensional key") return self._getitem_iterable(key, axis=axis) # nested tuple slicing if is_nested_tuple(key, labels): locs = labels.get_locs(key) indexer = [slice(None)] * self.ndim indexer[axis] = locs return self.obj.iloc[tuple(indexer)] # fall thru to straight lookup self._validate_key(key, axis) return self._get_label(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): """ This is pretty simple as we just have to deal with labels. """ # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer( slice_obj.start, slice_obj.stop, slice_obj.step, kind="loc" ) if isinstance(indexer, slice): return self.obj._slice(indexer, axis=axis) else: # DatetimeIndex overrides Index.slice_indexer and may # return a DatetimeIndex instead of a slice object. return self.obj.take(indexer, axis=axis) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Convert indexing key into something we can use to do actual fancy indexing on a ndarray. Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ labels = self.obj._get_axis(axis) if isinstance(key, slice): return labels._convert_slice_indexer(key, kind="loc") # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(key) and not is_int_index if is_scalar(key) or isinstance(labels, ABCMultiIndex): # Otherwise get_loc will raise InvalidIndexError # if we are a label return me try: return labels.get_loc(key) except LookupError: if isinstance(key, tuple) and isinstance(labels, ABCMultiIndex): if len(key) == labels.nlevels: return {"key": key} raise except TypeError: pass except ValueError: if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition # always valid return {"key": key} if is_nested_tuple(key, labels): return labels.get_locs(key) elif is_list_like_indexer(key): if com.is_bool_indexer(key): key = check_bool_indexer(labels, key) (inds,) = key.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: return self._get_listlike_indexer(key, axis, raise_missing=True)[1] else: try: return labels.get_loc(key) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(key): return {"key": key} raise def _get_listlike_indexer(self, key, axis: int, raise_missing: bool = False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Targeted labels. axis: int Dimension on which the indexing is being made. raise_missing: bool, default False Whether to raise a KeyError if some labels were not found. Will be removed in the future, and then this method will always behave as if ``raise_missing=True``. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique). values : array-like Indexer for the return object, -1 denotes keys not found. """ ax = self.obj._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: indexer, keyarr = ax._convert_listlike_indexer(key) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer(key, indexer, axis, raise_missing=raise_missing) return ax[indexer], indexer if ax.is_unique and not getattr(ax, "is_overlapping", False): indexer = ax.get_indexer_for(key) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, axis, raise_missing=raise_missing) return keyarr, indexer def _validate_read_indexer( self, key, indexer, axis: int, raise_missing: bool = False ): """ Check that indexer can be used to return a result. e.g. at least one element was found, unless the list of keys was actually empty. Parameters ---------- key : list-like Targeted labels (only used to show correct error message). indexer: array-like of booleans Indices corresponding to the key, (with -1 indicating not found). axis: int Dimension on which the indexing is being made. raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. """ ax = self.obj._get_axis(axis) if len(key) == 0: return # Count missing values: missing = (indexer < 0).sum() if missing: if missing == len(indexer): axis_name = self.obj._get_axis_name(axis) raise KeyError(f"None of [{key}] are in the [{axis_name}]") # We (temporarily) allow for some missing keys with .loc, except in # some cases (e.g. setting) in which "raise_missing" will be False if raise_missing: not_found = list(set(key) - set(ax)) raise KeyError(f"{not_found} not in index") # we skip the warning on Categorical # as this check is actually done (check for # non-missing values), but a bit later in the # code, so we want to avoid warning & then # just raising if not ax.is_categorical(): raise KeyError( "Passing list-likes to .loc or [] with any missing labels " "is no longer supported, see " "https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" # noqa:E501 ) @doc(IndexingMixin.iloc) class _iLocIndexer(_LocationIndexer): _valid_types = ( "integer, integer slice (START point is INCLUDED, END " "point is EXCLUDED), listlike of integers, boolean array" ) _takeable = True # ------------------------------------------------------------------- # Key Checks def _validate_key(self, key, axis: int): if com.is_bool_indexer(key): if hasattr(key, "index") and isinstance(key.index, Index): if key.index.inferred_type == "integer": raise NotImplementedError( "iLocation based boolean " "indexing on an integer type " "is not available" ) raise ValueError( "iLocation based boolean indexing cannot use " "an indexable as a mask" ) return if isinstance(key, slice): return elif is_integer(key): self._validate_integer(key, axis) elif isinstance(key, tuple): # a tuple should already have been caught by this point # so don't treat a tuple as a valid indexer raise IndexingError("Too many indexers") elif is_list_like_indexer(key): arr = np.array(key) len_axis = len(self.obj._get_axis(axis)) # check that the key has a numeric dtype if not is_numeric_dtype(arr.dtype): raise IndexError(f".iloc requires numeric indexers, got {arr}") # check that the key does not exceed the maximum size of the index if len(arr) and (arr.max() >= len_axis or arr.min() < -len_axis): raise IndexError("positional indexers are out-of-bounds") else: raise ValueError(f"Can only index by location with a [{self._valid_types}]") def _has_valid_setitem_indexer(self, indexer) -> bool: """ Validate that a positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally. Returns ------- bool """ if isinstance(indexer, dict): raise IndexError("iloc cannot enlarge its target object") else: if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError("iloc cannot enlarge its target object") elif isinstance(i, dict): raise IndexError("iloc cannot enlarge its target object") return True def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for k in key: if not is_integer(k): return False return True def _validate_integer(self, key: int, axis: int) -> None: """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position. axis : int Desired axis. Raises ------ IndexError If 'key' is not a valid position in axis 'axis'. """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds") # ------------------------------------------------------------------- def _getitem_tuple(self, tup: Tuple): self._has_valid_tuple(tup) try: return self._getitem_lowerdim(tup) except IndexingError: pass return self._getitem_tuple_same_dim(tup) def _get_list_axis(self, key, axis: int): """ Return Series values by list or array of integers. Parameters ---------- key : list-like positional indexer axis : int Returns ------- Series object Notes ----- `axis` can only be zero. """ try: return self.obj._take_with_is_copy(key, axis=axis) except IndexError as err: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds") from err def _getitem_axis(self, key, axis: int): if isinstance(key, slice): return self._get_slice_axis(key, axis=axis) if isinstance(key, list): key = np.asarray(key) if com.is_bool_indexer(key): self._validate_key(key, axis) return self._getbool_axis(key, axis=axis) # a list of integers elif is_list_like_indexer(key): return self._get_list_axis(key, axis=axis) # a single integer else: key = item_from_zerodim(key) if not is_integer(key): raise TypeError("Cannot index by location index with a non-integer key") # validate the location self._validate_integer(key, axis) return self.obj._ixs(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) labels._validate_positional_slice(slice_obj) return self.obj._slice(slice_obj, axis=axis) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Much simpler as we only have to deal with our valid types. """ return key def _get_setitem_indexer(self, key): # GH#32257 Fall through to let numnpy do validation return key # ------------------------------------------------------------------- def _setitem_with_indexer(self, indexer, value): """ _setitem_with_indexer is for setting values on a Series/DataFrame using positional indexers. If the relevant keys are not present, the Series/DataFrame may be expanded. This method is currently broken when dealing with non-unique Indexes, since it goes from positional indexers back to labels when calling BlockManager methods, see GH#12991, GH#22046, GH#15686. """ # also has the side effect of consolidating in-place from pandas import Series info_axis = self.obj._info_axis_number # maybe partial set take_split_path = self.obj._is_mixed_type # if there is only one block/type, still have to take split path # unless the block is one-dimensional or it can hold the value if not take_split_path and self.obj._mgr.blocks: (blk,) = self.obj._mgr.blocks if 1 < blk.ndim: # in case of dict, keys are indices val = list(value.values()) if isinstance(value, dict) else value take_split_path = not blk._can_hold_element(val) # if we have any multi-indexes that have non-trivial slices # (not null slices) then we must take the split path, xref # GH 10360, GH 27841 if isinstance(indexer, tuple) and len(indexer) == len(self.obj.axes): for i, ax in zip(indexer, self.obj.axes): if isinstance(ax, ABCMultiIndex) and not ( is_integer(i) or com.is_null_slice(i) ): take_split_path = True break if isinstance(indexer, tuple): nindexer = [] for i, idx in enumerate(indexer): if isinstance(idx, dict): # reindex the axis to the new value # and set inplace key, _ = convert_missing_indexer(idx) # if this is the items axes, then take the main missing # path first # this correctly sets the dtype and avoids cache issues # essentially this separates out the block that is needed # to possibly be modified if self.ndim > 1 and i == info_axis: # add the new item, and set the value # must have all defined axes if we have a scalar # or a list-like on the non-info axes if we have a # list-like len_non_info_axes = ( len(_ax) for _i, _ax in enumerate(self.obj.axes) if _i != i ) if any(not l for l in len_non_info_axes): if not is_list_like_indexer(value): raise ValueError( "cannot set a frame with no " "defined index and a scalar" ) self.obj[key] = value return # add a new item with the dtype setup self.obj[key] = _infer_fill_value(value) new_indexer = convert_from_missing_indexer_tuple( indexer, self.obj.axes ) self._setitem_with_indexer(new_indexer, value) return # reindex the axis # make sure to clear the cache because we are # just replacing the block manager here # so the object is the same index = self.obj._get_axis(i) labels = index.insert(len(index), key) self.obj._mgr = self.obj.reindex(labels, axis=i)._mgr self.obj._maybe_update_cacher(clear=True) self.obj._is_copy = None nindexer.append(labels.get_loc(key)) else: nindexer.append(idx) indexer = tuple(nindexer) else: indexer, missing = convert_missing_indexer(indexer) if missing: self._setitem_with_indexer_missing(indexer, value) return # set item_labels = self.obj._get_axis(info_axis) # align and set the values if take_split_path: # Above we only set take_split_path to True for 2D cases assert self.ndim == 2 assert info_axis == 1 if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) if isinstance(value, ABCSeries): value = self._align_series(indexer, value) info_idx = indexer[info_axis] if is_integer(info_idx): info_idx = [info_idx] labels = item_labels[info_idx] # Ensure we have something we can iterate over ilocs = info_idx if isinstance(info_idx, slice): ri = Index(range(len(self.obj.columns))) ilocs = ri[info_idx] plane_indexer = indexer[:1] lplane_indexer = length_of_indexer(plane_indexer[0], self.obj.index) # lplane_indexer gives the expected length of obj[indexer[0]] if len(labels) == 1: # We can operate on a single column # require that we are setting the right number of values that # we are indexing if is_list_like_indexer(value) and 0 != lplane_indexer != len(value): # Exclude zero-len for e.g. boolean masking that is all-false raise ValueError( "cannot set using a multi-index " "selection indexer with a different " "length than the value" ) pi = plane_indexer[0] if lplane_indexer == 1 else plane_indexer def isetter(loc, v): # positional setting on column loc ser = self.obj._ixs(loc, axis=1) # perform the equivalent of a setitem on the info axis # as we have a null slice or a slice with full bounds # which means essentially reassign to the columns of a # multi-dim object # GH6149 (null slice), GH10408 (full bounds) if isinstance(pi, tuple) and all( com.is_null_slice(idx) or com.is_full_slice(idx, len(self.obj)) for idx in pi ): ser = v else: # set the item, possibly having a dtype change ser._consolidate_inplace() ser = ser.copy() ser._mgr = ser._mgr.setitem(indexer=pi, value=v) ser._maybe_update_cacher(clear=True) # reset the sliced object if unique self.obj._iset_item(loc, ser) # we need an iterable, with a ndim of at least 1 # eg. don't pass through np.array(0) if is_list_like_indexer(value) and getattr(value, "ndim", 1) > 0: # we have an equal len Frame if isinstance(value, ABCDataFrame): sub_indexer = list(indexer) multiindex_indexer = isinstance(labels, ABCMultiIndex) # TODO: we are implicitly assuming value.columns is unique for loc in ilocs: item = item_labels[loc] if item in value: sub_indexer[info_axis] = item v = self._align_series( tuple(sub_indexer), value[item], multiindex_indexer ) else: v = np.nan isetter(loc, v) # we have an equal len ndarray/convertible to our labels # hasattr first, to avoid coercing to ndarray without reason. # But we may be relying on the ndarray coercion to check ndim. # Why not just convert to an ndarray earlier on if needed? elif np.ndim(value) == 2: # note that this coerces the dtype if we are mixed # GH 7551 value = np.array(value, dtype=object) if len(ilocs) != value.shape[1]: raise ValueError( "Must have equal len keys and value " "when setting with an ndarray" ) for i, loc in enumerate(ilocs): # setting with a list, re-coerces isetter(loc, value[:, i].tolist()) elif ( len(labels) == 1 and lplane_indexer == len(value) and not is_scalar(plane_indexer[0]) ): # we have an equal len list/ndarray # We only get here with len(labels) == len(ilocs) == 1 isetter(ilocs[0], value) elif lplane_indexer == 0 and len(value) == len(self.obj.index): # We get here in one case via .loc with a all-False mask pass else: # per-label values if len(ilocs) != len(value): raise ValueError( "Must have equal len keys and value " "when setting with an iterable" ) for loc, v in zip(ilocs, value): isetter(loc, v) else: # scalar value for loc in ilocs: isetter(loc, value) else: if isinstance(indexer, tuple): # if we are setting on the info axis ONLY # set using those methods to avoid block-splitting # logic here if ( len(indexer) > info_axis and is_integer(indexer[info_axis]) and all( com.is_null_slice(idx) for i, idx in enumerate(indexer) if i != info_axis ) and item_labels.is_unique ): self.obj[item_labels[indexer[info_axis]]] = value return indexer = maybe_convert_ix(*indexer) if isinstance(value, (ABCSeries, dict)): # TODO(EA): ExtensionBlock.setitem this causes issues with # setting for extensionarrays that store dicts. Need to decide # if it's worth supporting that. value = self._align_series(indexer, Series(value)) elif isinstance(value, ABCDataFrame): value = self._align_frame(indexer, value) # check for chained assignment self.obj._check_is_chained_assignment_possible() # actually do the set self.obj._consolidate_inplace() self.obj._mgr = self.obj._mgr.setitem(indexer=indexer, value=value) self.obj._maybe_update_cacher(clear=True) def _setitem_with_indexer_missing(self, indexer, value): """ Insert new row(s) or column(s) into the Series or DataFrame. """ from pandas import Series # reindex the axis to the new value # and set inplace if self.ndim == 1: index = self.obj.index new_index = index.insert(len(index), indexer) # we have a coerced indexer, e.g. a float # that matches in an Int64Index, so # we will not create a duplicate index, rather # index to that element # e.g. 0.0 -> 0 # GH#12246 if index.is_unique: new_indexer = index.get_indexer([new_index[-1]]) if (new_indexer != -1).any(): return self._setitem_with_indexer(new_indexer, value) # this preserves dtype of the value new_values = Series([value])._values if len(self.obj._values): # GH#22717 handle casting compatibility that np.concatenate # does incorrectly new_values = concat_compat([self.obj._values, new_values]) self.obj._mgr = self.obj._constructor( new_values, index=new_index, name=self.obj.name )._mgr self.obj._maybe_update_cacher(clear=True) elif self.ndim == 2: if not len(self.obj.columns): # no columns and scalar raise ValueError("cannot set a frame with no defined columns") if isinstance(value, ABCSeries): # append a Series value = value.reindex(index=self.obj.columns, copy=True) value.name = indexer else: # a list-list if is_list_like_indexer(value): # must have conforming columns if len(value) != len(self.obj.columns): raise ValueError("cannot set a row with mismatched columns") value = Series(value, index=self.obj.columns, name=indexer) self.obj._mgr = self.obj.append(value)._mgr self.obj._maybe_update_cacher(clear=True) def _align_series(self, indexer, ser: ABCSeries, multiindex_indexer: bool = False): """ Parameters ---------- indexer : tuple, slice, scalar Indexer used to get the locations that will be set to `ser`. ser : pd.Series Values to assign to the locations specified by `indexer`. multiindex_indexer : boolean, optional Defaults to False. Should be set to True if `indexer` was from a `pd.MultiIndex`, to avoid unnecessary broadcasting. Returns ------- `np.array` of `ser` broadcast to the appropriate shape for assignment to the locations selected by `indexer` """ if isinstance(indexer, (slice, np.ndarray, list, Index)): indexer = tuple([indexer]) if isinstance(indexer, tuple): # flatten np.ndarray indexers def ravel(i): return i.ravel() if isinstance(i, np.ndarray) else i indexer = tuple(map(ravel, indexer)) aligners = [not com.is_null_slice(idx) for idx in indexer] sum_aligners = sum(aligners) single_aligner = sum_aligners == 1 is_frame = self.ndim == 2 obj = self.obj # are we a single alignable value on a non-primary # dim (e.g. panel: 1,2, or frame: 0) ? # hence need to align to a single axis dimension # rather that find all valid dims # frame if is_frame: single_aligner = single_aligner and aligners[0] # we have a frame, with multiple indexers on both axes; and a # series, so need to broadcast (see GH5206) if sum_aligners == self.ndim and all(is_sequence(_) for _ in indexer): ser = ser.reindex(obj.axes[0][indexer[0]], copy=True)._values # single indexer if len(indexer) > 1 and not multiindex_indexer: len_indexer = len(indexer[1]) ser = np.tile(ser, len_indexer).reshape(len_indexer, -1).T return ser for i, idx in enumerate(indexer): ax = obj.axes[i] # multiple aligners (or null slices) if is_sequence(idx) or isinstance(idx, slice): if single_aligner and com.is_null_slice(idx): continue new_ix = ax[idx] if not is_list_like_indexer(new_ix): new_ix = Index([new_ix]) else: new_ix = Index(new_ix) if ser.index.equals(new_ix) or not len(new_ix): return ser._values.copy() return ser.reindex(new_ix)._values # 2 dims elif single_aligner: # reindex along index ax = self.obj.axes[1] if ser.index.equals(ax) or not len(ax): return ser._values.copy() return ser.reindex(ax)._values elif is_scalar(indexer): ax = self.obj._get_axis(1) if ser.index.equals(ax): return ser._values.copy() return ser.reindex(ax)._values raise ValueError("Incompatible indexer with Series") def _align_frame(self, indexer, df: ABCDataFrame): is_frame = self.ndim == 2 if isinstance(indexer, tuple): idx, cols = None, None sindexers = [] for i, ix in enumerate(indexer): ax = self.obj.axes[i] if is_sequence(ix) or isinstance(ix, slice): if isinstance(ix, np.ndarray): ix = ix.ravel() if idx is None: idx = ax[ix] elif cols is None: cols = ax[ix] else: break else: sindexers.append(i) if idx is not None and cols is not None: if df.index.equals(idx) and df.columns.equals(cols): val = df.copy()._values else: val = df.reindex(idx, columns=cols)._values return val elif (isinstance(indexer, slice) or is_list_like_indexer(indexer)) and is_frame: ax = self.obj.index[indexer] if df.index.equals(ax): val = df.copy()._values else: # we have a multi-index and are trying to align # with a particular, level GH3738 if ( isinstance(ax, ABCMultiIndex) and isinstance(df.index, ABCMultiIndex) and ax.nlevels != df.index.nlevels ): raise TypeError( "cannot align on a multi-index with out " "specifying the join levels" ) val = df.reindex(index=ax)._values return val raise ValueError("Incompatible indexer with DataFrame") class _ScalarAccessIndexer(_NDFrameIndexerBase): """ Access scalars quickly. """ def _convert_key(self, key, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if not isinstance(key, tuple): # we could have a convertible item here (e.g. Timestamp) if not is_list_like_indexer(key): key = tuple([key]) else: raise ValueError("Invalid call for scalar access (getting)!") key = self._convert_key(key) return self.obj._get_value(*key, takeable=self._takeable) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: # scalar callable may return tuple key = com.apply_if_callable(key, self.obj) if not isinstance(key, tuple): key = _tuplify(self.ndim, key) if len(key) != self.ndim: raise ValueError("Not enough indexers for scalar access (setting)!") key = list(self._convert_key(key, is_setter=True)) self.obj._set_value(*key, value=value, takeable=self._takeable) @doc(IndexingMixin.at) class _AtIndexer(_ScalarAccessIndexer): _takeable = False def _convert_key(self, key, is_setter: bool = False): """ Require they keys to be the same type as the index. (so we don't fallback) """ # allow arbitrary setting if is_setter: return list(key) return key @property def _axes_are_unique(self) -> bool: # Only relevant for self.ndim == 2 assert self.ndim == 2 return self.obj.index.is_unique and self.obj.columns.is_unique def __getitem__(self, key): if self.ndim == 2 and not self._axes_are_unique: # GH#33041 fall back to .loc if not isinstance(key, tuple) or not all(is_scalar(x) for x in key): raise ValueError("Invalid call for scalar access (getting)!") return self.obj.loc[key] return super().__getitem__(key) def __setitem__(self, key, value): if self.ndim == 2 and not self._axes_are_unique: # GH#33041 fall back to .loc if not isinstance(key, tuple) or not all(is_scalar(x) for x in key): raise ValueError("Invalid call for scalar access (setting)!") self.obj.loc[key] = value return return super().__setitem__(key, value) @doc(IndexingMixin.iat) class _iAtIndexer(_ScalarAccessIndexer): _takeable = True def _convert_key(self, key, is_setter: bool = False): """ Require integer args. (and convert to label arguments) """ for a, i in zip(self.obj.axes, key): if not is_integer(i): raise ValueError("iAt based indexing can only have integer indexers") return key def _tuplify(ndim: int, loc: Hashable) -> Tuple[Union[Hashable, slice], ...]: """ Given an indexer for the first dimension, create an equivalent tuple for indexing over all dimensions. Parameters ---------- ndim : int loc : object Returns ------- tuple """ _tup: List[Union[Hashable, slice]] _tup = [slice(None, None) for _ in range(ndim)] _tup[0] = loc return tuple(_tup) def convert_to_index_sliceable(obj: "DataFrame", key): """ If we are index sliceable, then return my slicer, otherwise return None. """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind="getitem") elif isinstance(key, str): # we are an actual column if key in obj.columns: return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx._supports_partial_string_indexing: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None def check_bool_indexer(index: Index, key) -> np.ndarray: """ Check if key is a valid boolean indexer for an object with such index and perform reindexing or conversion if needed. This function assumes that is_bool_indexer(key) == True. Parameters ---------- index : Index Index of the object on which the indexing is done. key : list-like Boolean indexer to check. Returns ------- np.array Resulting key. Raises ------ IndexError If the key does not have the same length as index. IndexingError If the index of the key is unalignable to index. """ result = key if isinstance(key, ABCSeries) and not key.index.equals(index): result = result.reindex(index) mask = isna(result._values) if mask.any(): raise IndexingError( "Unalignable boolean Series provided as " "indexer (index of the boolean Series and of " "the indexed object do not match)." ) result = result.astype(bool)._values elif is_object_dtype(key): # key might be object-dtype bool, check_array_indexer needs bool array result = np.asarray(result, dtype=bool) result = check_array_indexer(index, result) else: result = check_array_indexer(index, result) return result def convert_missing_indexer(indexer): """ Reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer["key"] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False def convert_from_missing_indexer_tuple(indexer, axes): """ Create a filtered indexer that doesn't have any missing indexers. """ def get_indexer(_i, _idx): return axes[_i].get_loc(_idx["key"]) if isinstance(_idx, dict) else _idx return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer)) def maybe_convert_ix(*args): """ We likely want to take the cross-product. """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args def is_nested_tuple(tup, labels) -> bool: """ Returns ------- bool """ # check for a compatible nested tuple and multiindexes among the axes if not isinstance(tup, tuple): return False for k in tup: if is_list_like(k) or isinstance(k, slice): return isinstance(labels, ABCMultiIndex) return False def is_label_like(key) -> bool: """ Returns ------- bool """ # select a label or row return not isinstance(key, slice) and not is_list_like_indexer(key) def need_slice(obj) -> bool: """ Returns ------- bool """ return ( obj.start is not None or obj.stop is not None or (obj.step is not None and obj.step != 1) ) def _non_reducing_slice(slice_): """ Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = (ABCSeries, np.ndarray, Index, list, str) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part) -> bool: """ Returns ------- bool True if slice does *not* reduce, False if `part` is a tuple. """ # true when slice does *not* reduce, False when part is a tuple, # i.e. MultiIndex slice return (isinstance(part, slice) or is_list_like(part)) and not isinstance( part, tuple ) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_) def _maybe_numeric_slice(df, slice_, include_bool=False): """ Want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_ from typing import TYPE_CHECKING, Hashable, List, Tuple, Union import numpy as np from pandas._libs.indexing import _NDFrameIndexerBase from pandas._libs.lib import item_from_zerodim from pandas.errors import AbstractMethodError from pandas.util._decorators import doc from pandas.core.dtypes.common import ( is_hashable, is_integer, is_iterator, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, is_sequence, ) from pandas.core.dtypes.concat import concat_compat from pandas.core.dtypes.generic import ABCDataFrame, ABCMultiIndex, ABCSeries from pandas.core.dtypes.missing import _infer_fill_value, isna import pandas.core.common as com from pandas.core.indexers import ( check_array_indexer, is_list_like_indexer, length_of_indexer, ) from pandas.core.indexes.api import Index, InvalidIndexError if TYPE_CHECKING: from pandas import DataFrame # noqa:F401 # "null slice" _NS = slice(None, None) # the public IndexSlicerMaker class _IndexSlice: """ Create an object to more easily perform multi-index slicing. See Also -------- MultiIndex.remove_unused_levels : New MultiIndex with no unused levels. Notes ----- See :ref:`Defined Levels <advanced.shown_levels>` for further info on slicing a MultiIndex. Examples -------- >>> midx = pd.MultiIndex.from_product([['A0','A1'], ['B0','B1','B2','B3']]) >>> columns = ['foo', 'bar'] >>> dfmi = pd.DataFrame(np.arange(16).reshape((len(midx), len(columns))), index=midx, columns=columns) Using the default slice command: >>> dfmi.loc[(slice(None), slice('B0', 'B1')), :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 Using the IndexSlice class for a more intuitive command: >>> idx = pd.IndexSlice >>> dfmi.loc[idx[:, 'B0':'B1'], :] foo bar A0 B0 0 1 B1 2 3 A1 B0 8 9 B1 10 11 """ def __getitem__(self, arg): return arg IndexSlice = _IndexSlice() class IndexingError(Exception): pass class IndexingMixin: """ Mixin for adding .loc/.iloc/.at/.iat to Datafames and Series. """ @property def iloc(self) -> "_iLocIndexer": """ Purely integer-location based indexing for selection by position. ``.iloc[]`` is primarily integer position based (from ``0`` to ``length-1`` of the axis), but may also be used with a boolean array. Allowed inputs are: - An integer, e.g. ``5``. - A list or array of integers, e.g. ``[4, 3, 0]``. - A slice object with ints, e.g. ``1:7``. - A boolean array. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above). This is useful in method chains, when you don't have a reference to the calling object, but would like to base your selection on some value. ``.iloc`` will raise ``IndexError`` if a requested indexer is out-of-bounds, except *slice* indexers which allow out-of-bounds indexing (this conforms with python/numpy *slice* semantics). See more at :ref:`Selection by Position <indexing.integer>`. See Also -------- DataFrame.iat : Fast integer location scalar accessor. DataFrame.loc : Purely label-location based indexer for selection by label. Series.iloc : Purely integer-location based indexing for selection by position. Examples -------- >>> mydict = [{'a': 1, 'b': 2, 'c': 3, 'd': 4}, ... {'a': 100, 'b': 200, 'c': 300, 'd': 400}, ... {'a': 1000, 'b': 2000, 'c': 3000, 'd': 4000 }] >>> df = pd.DataFrame(mydict) >>> df a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 **Indexing just the rows** With a scalar integer. >>> type(df.iloc[0]) <class 'pandas.core.series.Series'> >>> df.iloc[0] a 1 b 2 c 3 d 4 Name: 0, dtype: int64 With a list of integers. >>> df.iloc[[0]] a b c d 0 1 2 3 4 >>> type(df.iloc[[0]]) <class 'pandas.core.frame.DataFrame'> >>> df.iloc[[0, 1]] a b c d 0 1 2 3 4 1 100 200 300 400 With a `slice` object. >>> df.iloc[:3] a b c d 0 1 2 3 4 1 100 200 300 400 2 1000 2000 3000 4000 With a boolean mask the same length as the index. >>> df.iloc[[True, False, True]] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 With a callable, useful in method chains. The `x` passed to the ``lambda`` is the DataFrame being sliced. This selects the rows whose index label even. >>> df.iloc[lambda x: x.index % 2 == 0] a b c d 0 1 2 3 4 2 1000 2000 3000 4000 **Indexing both axes** You can mix the indexer types for the index and columns. Use ``:`` to select the entire axis. With scalar integers. >>> df.iloc[0, 1] 2 With lists of integers. >>> df.iloc[[0, 2], [1, 3]] b d 0 2 4 2 2000 4000 With `slice` objects. >>> df.iloc[1:3, 0:3] a b c 1 100 200 300 2 1000 2000 3000 With a boolean array whose length matches the columns. >>> df.iloc[:, [True, False, True, False]] a c 0 1 3 1 100 300 2 1000 3000 With a callable function that expects the Series or DataFrame. >>> df.iloc[:, lambda df: [0, 2]] a c 0 1 3 1 100 300 2 1000 3000 """ return _iLocIndexer("iloc", self) @property def loc(self) -> "_LocIndexer": """ Access a group of rows and columns by label(s) or a boolean array. ``.loc[]`` is primarily label based, but may also be used with a boolean array. Allowed inputs are: - A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is interpreted as a *label* of the index, and **never** as an integer position along the index). - A list or array of labels, e.g. ``['a', 'b', 'c']``. - A slice object with labels, e.g. ``'a':'f'``. .. warning:: Note that contrary to usual python slices, **both** the start and the stop are included - A boolean array of the same length as the axis being sliced, e.g. ``[True, False, True]``. - A ``callable`` function with one argument (the calling Series or DataFrame) and that returns valid output for indexing (one of the above) See more at :ref:`Selection by Label <indexing.label>` Raises ------ KeyError If any items are not found. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.iloc : Access group of rows and columns by integer position(s). DataFrame.xs : Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. Series.loc : Access group of values using labels. Examples -------- **Getting values** >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=['cobra', 'viper', 'sidewinder'], ... columns=['max_speed', 'shield']) >>> df max_speed shield cobra 1 2 viper 4 5 sidewinder 7 8 Single label. Note this returns the row as a Series. >>> df.loc['viper'] max_speed 4 shield 5 Name: viper, dtype: int64 List of labels. Note using ``[[]]`` returns a DataFrame. >>> df.loc[['viper', 'sidewinder']] max_speed shield viper 4 5 sidewinder 7 8 Single label for row and column >>> df.loc['cobra', 'shield'] 2 Slice with labels for row and single label for column. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc['cobra':'viper', 'max_speed'] cobra 1 viper 4 Name: max_speed, dtype: int64 Boolean list with the same length as the row axis >>> df.loc[[False, False, True]] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series >>> df.loc[df['shield'] > 6] max_speed shield sidewinder 7 8 Conditional that returns a boolean Series with column labels specified >>> df.loc[df['shield'] > 6, ['max_speed']] max_speed sidewinder 7 Callable that returns a boolean Series >>> df.loc[lambda df: df['shield'] == 8] max_speed shield sidewinder 7 8 **Setting values** Set value for all items matching the list of labels >>> df.loc[['viper', 'sidewinder'], ['shield']] = 50 >>> df max_speed shield cobra 1 2 viper 4 50 sidewinder 7 50 Set value for an entire row >>> df.loc['cobra'] = 10 >>> df max_speed shield cobra 10 10 viper 4 50 sidewinder 7 50 Set value for an entire column >>> df.loc[:, 'max_speed'] = 30 >>> df max_speed shield cobra 30 10 viper 30 50 sidewinder 30 50 Set value for rows matching callable condition >>> df.loc[df['shield'] > 35] = 0 >>> df max_speed shield cobra 30 10 viper 0 0 sidewinder 0 0 **Getting values on a DataFrame with an index that has integer labels** Another example using integers for the index >>> df = pd.DataFrame([[1, 2], [4, 5], [7, 8]], ... index=[7, 8, 9], columns=['max_speed', 'shield']) >>> df max_speed shield 7 1 2 8 4 5 9 7 8 Slice with integer labels for rows. As mentioned above, note that both the start and stop of the slice are included. >>> df.loc[7:9] max_speed shield 7 1 2 8 4 5 9 7 8 **Getting values with a MultiIndex** A number of examples using a DataFrame with a MultiIndex >>> tuples = [ ... ('cobra', 'mark i'), ('cobra', 'mark ii'), ... ('sidewinder', 'mark i'), ('sidewinder', 'mark ii'), ... ('viper', 'mark ii'), ('viper', 'mark iii') ... ] >>> index = pd.MultiIndex.from_tuples(tuples) >>> values = [[12, 2], [0, 4], [10, 20], ... [1, 4], [7, 1], [16, 36]] >>> df = pd.DataFrame(values, columns=['max_speed', 'shield'], index=index) >>> df max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Single label. Note this returns a DataFrame with a single index. >>> df.loc['cobra'] max_speed shield mark i 12 2 mark ii 0 4 Single index tuple. Note this returns a Series. >>> df.loc[('cobra', 'mark ii')] max_speed 0 shield 4 Name: (cobra, mark ii), dtype: int64 Single label for row and column. Similar to passing in a tuple, this returns a Series. >>> df.loc['cobra', 'mark i'] max_speed 12 shield 2 Name: (cobra, mark i), dtype: int64 Single tuple. Note using ``[[]]`` returns a DataFrame. >>> df.loc[[('cobra', 'mark ii')]] max_speed shield cobra mark ii 0 4 Single tuple for the index with a single label for the column >>> df.loc[('cobra', 'mark i'), 'shield'] 2 Slice from index tuple to single label >>> df.loc[('cobra', 'mark i'):'viper'] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 mark iii 16 36 Slice from index tuple to index tuple >>> df.loc[('cobra', 'mark i'):('viper', 'mark ii')] max_speed shield cobra mark i 12 2 mark ii 0 4 sidewinder mark i 10 20 mark ii 1 4 viper mark ii 7 1 """ return _LocIndexer("loc", self) @property def at(self) -> "_AtIndexer": """ Access a single value for a row/column label pair. Similar to ``loc``, in that both provide label-based lookups. Use ``at`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ KeyError If 'label' does not exist in DataFrame. See Also -------- DataFrame.iat : Access a single value for a row/column pair by integer position. DataFrame.loc : Access a group of rows and columns by label(s). Series.at : Access a single value using a label. Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... index=[4, 5, 6], columns=['A', 'B', 'C']) >>> df A B C 4 0 2 3 5 0 4 1 6 10 20 30 Get value at specified row/column pair >>> df.at[4, 'B'] 2 Set value at specified row/column pair >>> df.at[4, 'B'] = 10 >>> df.at[4, 'B'] 10 Get value within a Series >>> df.loc[5].at['B'] 4 """ return _AtIndexer("at", self) @property def iat(self) -> "_iAtIndexer": """ Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ IndexError When integer position is out of bounds. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s). Examples -------- >>> df = pd.DataFrame([[0, 2, 3], [0, 4, 1], [10, 20, 30]], ... columns=['A', 'B', 'C']) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] 1 Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] 10 Get value within a series >>> df.loc[0].iat[1] 2 """ return _iAtIndexer("iat", self) class _LocationIndexer(_NDFrameIndexerBase): _valid_types: str axis = None def __call__(self, axis=None): # we need to return a copy of ourselves new_self = type(self)(self.name, self.obj) if axis is not None: axis = self.obj._get_axis_number(axis) new_self.axis = axis return new_self def _get_setitem_indexer(self, key): """ Convert a potentially-label-based key into a positional indexer. """ if self.name == "loc": self._ensure_listlike_indexer(key) if self.axis is not None: return self._convert_tuple(key, is_setter=True) ax = self.obj._get_axis(0) if isinstance(ax, ABCMultiIndex) and self.name != "iloc": try: return ax.get_loc(key) except (TypeError, KeyError, InvalidIndexError): # TypeError e.g. passed a bool pass if isinstance(key, tuple): try: return self._convert_tuple(key, is_setter=True) except IndexingError: pass if isinstance(key, range): return list(key) try: return self._convert_to_indexer(key, axis=0, is_setter=True) except TypeError as e: # invalid indexer type vs 'other' indexing errors if "cannot do" in str(e): raise elif "unhashable type" in str(e): raise raise IndexingError(key) from e def _ensure_listlike_indexer(self, key, axis=None): """ Ensure that a list-like of column labels are all present by adding them if they do not already exist. Parameters ---------- key : list-like of column labels Target labels. axis : key axis if known """ column_axis = 1 # column only exists in 2-dimensional DataFrame if self.ndim != 2: return if isinstance(key, tuple): # key may be a tuple if we are .loc # in that case, set key to the column part of key key = key[column_axis] axis = column_axis if ( axis == column_axis and not isinstance(self.obj.columns, ABCMultiIndex) and is_list_like_indexer(key) and not com.is_bool_indexer(key) and all(is_hashable(k) for k in key) ): for k in key: if k not in self.obj: self.obj[k] = np.nan def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: key = com.apply_if_callable(key, self.obj) indexer = self._get_setitem_indexer(key) self._has_valid_setitem_indexer(key) iloc = self if self.name == "iloc" else self.obj.iloc iloc._setitem_with_indexer(indexer, value) def _validate_key(self, key, axis: int): """ Ensure that key is valid for current indexer. Parameters ---------- key : scalar, slice or list-like Key requested. axis : int Dimension on which the indexing is being made. Raises ------ TypeError If the key (or some element of it) has wrong type. IndexError If the key (or some element of it) is out of bounds. KeyError If the key was not found. """ raise AbstractMethodError(self) def _has_valid_tuple(self, key: Tuple): """ Check the key for valid keys across my indexer. """ for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") try: self._validate_key(k, i) except ValueError as err: raise ValueError( "Location based indexing can only have " f"[{self._valid_types}] types" ) from err def _is_nested_tuple_indexer(self, tup: Tuple) -> bool: """ Returns ------- bool """ if any(isinstance(ax, ABCMultiIndex) for ax in self.obj.axes): return any(is_nested_tuple(tup, ax) for ax in self.obj.axes) return False def _convert_tuple(self, key, is_setter: bool = False): keyidx = [] if self.axis is not None: axis = self.obj._get_axis_number(self.axis) for i in range(self.ndim): if i == axis: keyidx.append( self._convert_to_indexer(key, axis=axis, is_setter=is_setter) ) else: keyidx.append(slice(None)) else: for i, k in enumerate(key): if i >= self.ndim: raise IndexingError("Too many indexers") idx = self._convert_to_indexer(k, axis=i, is_setter=is_setter) keyidx.append(idx) return tuple(keyidx) def _getitem_tuple_same_dim(self, tup: Tuple): """ Index with indexers that should return an object of the same dimension as self.obj. This is only called after a failed call to _getitem_lowerdim. """ retval = self.obj for i, key in enumerate(tup): if com.is_null_slice(key): continue retval = getattr(retval, self.name)._getitem_axis(key, axis=i) # We should never have retval.ndim < self.ndim, as that should # be handled by the _getitem_lowerdim call above. assert retval.ndim == self.ndim return retval def _getitem_lowerdim(self, tup: Tuple): # we can directly get the axis result since the axis is specified if self.axis is not None: axis = self.obj._get_axis_number(self.axis) return self._getitem_axis(tup, axis=axis) # we may have a nested tuples indexer here if self._is_nested_tuple_indexer(tup): return self._getitem_nested_tuple(tup) # we maybe be using a tuple to represent multiple dimensions here ax0 = self.obj._get_axis(0) # ...but iloc should handle the tuple as simple integer-location # instead of checking it as multiindex representation (GH 13797) if isinstance(ax0, ABCMultiIndex) and self.name != "iloc": result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result if len(tup) > self.ndim: raise IndexingError("Too many indexers. handle elsewhere") for i, key in enumerate(tup): if is_label_like(key): # We don't need to check for tuples here because those are # caught by the _is_nested_tuple_indexer check above. section = self._getitem_axis(key, axis=i) # We should never have a scalar section here, because # _getitem_lowerdim is only called after a check for # is_scalar_access, which that would be. if section.ndim == self.ndim: # we're in the middle of slicing through a MultiIndex # revise the key wrt to `section` by inserting an _NS new_key = tup[:i] + (_NS,) + tup[i + 1 :] else: # Note: the section.ndim == self.ndim check above # rules out having DataFrame here, so we dont need to worry # about transposing. new_key = tup[:i] + tup[i + 1 :] if len(new_key) == 1: new_key = new_key[0] # Slices should return views, but calling iloc/loc with a null # slice returns a new object. if com.is_null_slice(new_key): return section # This is an elided recursive call to iloc/loc return getattr(section, self.name)[new_key] raise IndexingError("not applicable") def _getitem_nested_tuple(self, tup: Tuple): # we have a nested tuple so have at least 1 multi-index level # we should be able to match up the dimensionality here # we have too many indexers for our dim, but have at least 1 # multi-index dimension, try to see if we have something like # a tuple passed to a series with a multi-index if len(tup) > self.ndim: if self.name != "loc": # This should never be reached, but lets be explicit about it raise ValueError("Too many indices") result = self._handle_lowerdim_multi_index_axis0(tup) if result is not None: return result # this is a series with a multi-index specified a tuple of # selectors axis = self.axis or 0 return self._getitem_axis(tup, axis=axis) # handle the multi-axis by taking sections and reducing # this is iterative obj = self.obj axis = 0 for key in tup: if com.is_null_slice(key): axis += 1 continue current_ndim = obj.ndim obj = getattr(obj, self.name)._getitem_axis(key, axis=axis) axis += 1 # if we have a scalar, we are done if is_scalar(obj) or not hasattr(obj, "ndim"): break # has the dim of the obj changed? # GH 7199 if obj.ndim < current_ndim: axis -= 1 return obj def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if type(key) is tuple: key = tuple(com.apply_if_callable(x, self.obj) for x in key) if self._is_scalar_access(key): try: return self.obj._get_value(*key, takeable=self._takeable) except (KeyError, IndexError, AttributeError): # AttributeError for IntervalTree get_value pass return self._getitem_tuple(key) else: # we by definition only have the 0th axis axis = self.axis or 0 maybe_callable = com.apply_if_callable(key, self.obj) return self._getitem_axis(maybe_callable, axis=axis) def _is_scalar_access(self, key: Tuple): raise NotImplementedError() def _getitem_tuple(self, tup: Tuple): raise AbstractMethodError(self) def _getitem_axis(self, key, axis: int): raise NotImplementedError() def _has_valid_setitem_indexer(self, indexer) -> bool: raise AbstractMethodError(self) def _getbool_axis(self, key, axis: int): # caller is responsible for ensuring non-None axis labels = self.obj._get_axis(axis) key = check_bool_indexer(labels, key) inds = key.nonzero()[0] return self.obj._take_with_is_copy(inds, axis=axis) @doc(IndexingMixin.loc) class _LocIndexer(_LocationIndexer): _takeable: bool = False _valid_types = ( "labels (MUST BE IN THE INDEX), slices of labels (BOTH " "endpoints included! Can be slices of integers if the " "index is integers), listlike of labels, boolean" ) # ------------------------------------------------------------------- # Key Checks @doc(_LocationIndexer._validate_key) def _validate_key(self, key, axis: int): # valid for a collection of labels (we check their presence later) # slice of labels (where start-end in labels) # slice of integers (only if in the labels) # boolean pass def _has_valid_setitem_indexer(self, indexer) -> bool: return True def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for i, k in enumerate(key): if not is_scalar(k): return False ax = self.obj.axes[i] if isinstance(ax, ABCMultiIndex): return False if isinstance(k, str) and ax._supports_partial_string_indexing: # partial string indexing, df.loc['2000', 'A'] # should not be considered scalar return False if not ax.is_unique: return False return True # ------------------------------------------------------------------- # MultiIndex Handling def _multi_take_opportunity(self, tup: Tuple) -> bool: """ Check whether there is the possibility to use ``_multi_take``. Currently the limit is that all axes being indexed, must be indexed with list-likes. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- bool Whether the current indexing, can be passed through `_multi_take`. """ if not all(is_list_like_indexer(x) for x in tup): return False # just too complicated if any(com.is_bool_indexer(x) for x in tup): return False return True def _multi_take(self, tup: Tuple): """ Create the indexers for the passed tuple of keys, and executes the take operation. This allows the take operation to be executed all at once, rather than once for each dimension. Improving efficiency. Parameters ---------- tup : tuple Tuple of indexers, one per axis. Returns ------- values: same type as the object being indexed """ # GH 836 d = { axis: self._get_listlike_indexer(key, axis) for (key, axis) in zip(tup, self.obj._AXIS_ORDERS) } return self.obj._reindex_with_indexers(d, copy=True, allow_dups=True) # ------------------------------------------------------------------- def _getitem_iterable(self, key, axis: int): """ Index current object with an an iterable collection of keys. Parameters ---------- key : iterable Targeted labels. axis: int Dimension on which the indexing is being made. Raises ------ KeyError If no key was found. Will change in the future to raise if not all keys were found. Returns ------- scalar, DataFrame, or Series: indexed value(s). """ # we assume that not com.is_bool_indexer(key), as that is # handled before we get here. self._validate_key(key, axis) # A collection of keys keyarr, indexer = self._get_listlike_indexer(key, axis, raise_missing=False) return self.obj._reindex_with_indexers( {axis: [keyarr, indexer]}, copy=True, allow_dups=True ) def _getitem_tuple(self, tup: Tuple): try: return self._getitem_lowerdim(tup) except IndexingError: pass # no multi-index, so validate all of the indexers self._has_valid_tuple(tup) # ugly hack for GH #836 if self._multi_take_opportunity(tup): return self._multi_take(tup) return self._getitem_tuple_same_dim(tup) def _get_label(self, label, axis: int): # GH#5667 this will fail if the label is not present in the axis. return self.obj.xs(label, axis=axis) def _handle_lowerdim_multi_index_axis0(self, tup: Tuple): # we have an axis0 multi-index, handle or raise axis = self.axis or 0 try: # fast path for series or for tup devoid of slices return self._get_label(tup, axis=axis) except TypeError: # slices are unhashable pass except KeyError as ek: # raise KeyError if number of indexers match # else IndexingError will be raised if len(tup) <= self.obj.index.nlevels and len(tup) > self.ndim: raise ek return None def _getitem_axis(self, key, axis: int): key = item_from_zerodim(key) if is_iterator(key): key = list(key) labels = self.obj._get_axis(axis) key = labels._get_partial_string_timestamp_match_key(key) if isinstance(key, slice): self._validate_key(key, axis) return self._get_slice_axis(key, axis=axis) elif com.is_bool_indexer(key): return self._getbool_axis(key, axis=axis) elif is_list_like_indexer(key): # an iterable multi-selection if not (isinstance(key, tuple) and isinstance(labels, ABCMultiIndex)): if hasattr(key, "ndim") and key.ndim > 1: raise ValueError("Cannot index with multidimensional key") return self._getitem_iterable(key, axis=axis) # nested tuple slicing if is_nested_tuple(key, labels): locs = labels.get_locs(key) indexer = [slice(None)] * self.ndim indexer[axis] = locs return self.obj.iloc[tuple(indexer)] # fall thru to straight lookup self._validate_key(key, axis) return self._get_label(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): """ This is pretty simple as we just have to deal with labels. """ # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) indexer = labels.slice_indexer( slice_obj.start, slice_obj.stop, slice_obj.step, kind="loc" ) if isinstance(indexer, slice): return self.obj._slice(indexer, axis=axis) else: # DatetimeIndex overrides Index.slice_indexer and may # return a DatetimeIndex instead of a slice object. return self.obj.take(indexer, axis=axis) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Convert indexing key into something we can use to do actual fancy indexing on a ndarray. Examples ix[:5] -> slice(0, 5) ix[[1,2,3]] -> [1,2,3] ix[['foo', 'bar', 'baz']] -> [i, j, k] (indices of foo, bar, baz) Going by Zen of Python? 'In the face of ambiguity, refuse the temptation to guess.' raise AmbiguousIndexError with integer labels? - No, prefer label-based indexing """ labels = self.obj._get_axis(axis) if isinstance(key, slice): return labels._convert_slice_indexer(key, kind="loc") # see if we are positional in nature is_int_index = labels.is_integer() is_int_positional = is_integer(key) and not is_int_index if is_scalar(key) or isinstance(labels, ABCMultiIndex): # Otherwise get_loc will raise InvalidIndexError # if we are a label return me try: return labels.get_loc(key) except LookupError: if isinstance(key, tuple) and isinstance(labels, ABCMultiIndex): if len(key) == labels.nlevels: return {"key": key} raise except TypeError: pass except ValueError: if not is_int_positional: raise # a positional if is_int_positional: # if we are setting and its not a valid location # its an insert which fails by definition # always valid return {"key": key} if is_nested_tuple(key, labels): return labels.get_locs(key) elif is_list_like_indexer(key): if com.is_bool_indexer(key): key = check_bool_indexer(labels, key) (inds,) = key.nonzero() return inds else: # When setting, missing keys are not allowed, even with .loc: return self._get_listlike_indexer(key, axis, raise_missing=True)[1] else: try: return labels.get_loc(key) except LookupError: # allow a not found key only if we are a setter if not is_list_like_indexer(key): return {"key": key} raise def _get_listlike_indexer(self, key, axis: int, raise_missing: bool = False): """ Transform a list-like of keys into a new index and an indexer. Parameters ---------- key : list-like Targeted labels. axis: int Dimension on which the indexing is being made. raise_missing: bool, default False Whether to raise a KeyError if some labels were not found. Will be removed in the future, and then this method will always behave as if ``raise_missing=True``. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. Returns ------- keyarr: Index New index (coinciding with 'key' if the axis is unique). values : array-like Indexer for the return object, -1 denotes keys not found. """ ax = self.obj._get_axis(axis) # Have the index compute an indexer or return None # if it cannot handle: indexer, keyarr = ax._convert_listlike_indexer(key) # We only act on all found values: if indexer is not None and (indexer != -1).all(): self._validate_read_indexer(key, indexer, axis, raise_missing=raise_missing) return ax[indexer], indexer if ax.is_unique and not getattr(ax, "is_overlapping", False): indexer = ax.get_indexer_for(key) keyarr = ax.reindex(keyarr)[0] else: keyarr, indexer, new_indexer = ax._reindex_non_unique(keyarr) self._validate_read_indexer(keyarr, indexer, axis, raise_missing=raise_missing) return keyarr, indexer def _validate_read_indexer( self, key, indexer, axis: int, raise_missing: bool = False ): """ Check that indexer can be used to return a result. e.g. at least one element was found, unless the list of keys was actually empty. Parameters ---------- key : list-like Targeted labels (only used to show correct error message). indexer: array-like of booleans Indices corresponding to the key, (with -1 indicating not found). axis: int Dimension on which the indexing is being made. raise_missing: bool Whether to raise a KeyError if some labels are not found. Will be removed in the future, and then this method will always behave as if raise_missing=True. Raises ------ KeyError If at least one key was requested but none was found, and raise_missing=True. """ ax = self.obj._get_axis(axis) if len(key) == 0: return # Count missing values: missing = (indexer < 0).sum() if missing: if missing == len(indexer): axis_name = self.obj._get_axis_name(axis) raise KeyError(f"None of [{key}] are in the [{axis_name}]") # We (temporarily) allow for some missing keys with .loc, except in # some cases (e.g. setting) in which "raise_missing" will be False if raise_missing: not_found = list(set(key) - set(ax)) raise KeyError(f"{not_found} not in index") # we skip the warning on Categorical # as this check is actually done (check for # non-missing values), but a bit later in the # code, so we want to avoid warning & then # just raising if not ax.is_categorical(): raise KeyError( "Passing list-likes to .loc or [] with any missing labels " "is no longer supported, see " "https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#deprecate-loc-reindex-listlike" # noqa:E501 ) @doc(IndexingMixin.iloc) class _iLocIndexer(_LocationIndexer): _valid_types = ( "integer, integer slice (START point is INCLUDED, END " "point is EXCLUDED), listlike of integers, boolean array" ) _takeable = True # ------------------------------------------------------------------- # Key Checks def _validate_key(self, key, axis: int): if com.is_bool_indexer(key): if hasattr(key, "index") and isinstance(key.index, Index): if key.index.inferred_type == "integer": raise NotImplementedError( "iLocation based boolean " "indexing on an integer type " "is not available" ) raise ValueError( "iLocation based boolean indexing cannot use " "an indexable as a mask" ) return if isinstance(key, slice): return elif is_integer(key): self._validate_integer(key, axis) elif isinstance(key, tuple): # a tuple should already have been caught by this point # so don't treat a tuple as a valid indexer raise IndexingError("Too many indexers") elif is_list_like_indexer(key): arr = np.array(key) len_axis = len(self.obj._get_axis(axis)) # check that the key has a numeric dtype if not is_numeric_dtype(arr.dtype): raise IndexError(f".iloc requires numeric indexers, got {arr}") # check that the key does not exceed the maximum size of the index if len(arr) and (arr.max() >= len_axis or arr.min() < -len_axis): raise IndexError("positional indexers are out-of-bounds") else: raise ValueError(f"Can only index by location with a [{self._valid_types}]") def _has_valid_setitem_indexer(self, indexer) -> bool: """ Validate that a positional indexer cannot enlarge its target will raise if needed, does not modify the indexer externally. Returns ------- bool """ if isinstance(indexer, dict): raise IndexError("iloc cannot enlarge its target object") else: if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) for ax, i in zip(self.obj.axes, indexer): if isinstance(i, slice): # should check the stop slice? pass elif is_list_like_indexer(i): # should check the elements? pass elif is_integer(i): if i >= len(ax): raise IndexError("iloc cannot enlarge its target object") elif isinstance(i, dict): raise IndexError("iloc cannot enlarge its target object") return True def _is_scalar_access(self, key: Tuple) -> bool: """ Returns ------- bool """ # this is a shortcut accessor to both .loc and .iloc # that provide the equivalent access of .at and .iat # a) avoid getting things via sections and (to minimize dtype changes) # b) provide a performant path if len(key) != self.ndim: return False for k in key: if not is_integer(k): return False return True def _validate_integer(self, key: int, axis: int) -> None: """ Check that 'key' is a valid position in the desired axis. Parameters ---------- key : int Requested position. axis : int Desired axis. Raises ------ IndexError If 'key' is not a valid position in axis 'axis'. """ len_axis = len(self.obj._get_axis(axis)) if key >= len_axis or key < -len_axis: raise IndexError("single positional indexer is out-of-bounds") # ------------------------------------------------------------------- def _getitem_tuple(self, tup: Tuple): self._has_valid_tuple(tup) try: return self._getitem_lowerdim(tup) except IndexingError: pass return self._getitem_tuple_same_dim(tup) def _get_list_axis(self, key, axis: int): """ Return Series values by list or array of integers. Parameters ---------- key : list-like positional indexer axis : int Returns ------- Series object Notes ----- `axis` can only be zero. """ try: return self.obj._take_with_is_copy(key, axis=axis) except IndexError as err: # re-raise with different error message raise IndexError("positional indexers are out-of-bounds") from err def _getitem_axis(self, key, axis: int): if isinstance(key, slice): return self._get_slice_axis(key, axis=axis) if isinstance(key, list): key = np.asarray(key) if com.is_bool_indexer(key): self._validate_key(key, axis) return self._getbool_axis(key, axis=axis) # a list of integers elif is_list_like_indexer(key): return self._get_list_axis(key, axis=axis) # a single integer else: key = item_from_zerodim(key) if not is_integer(key): raise TypeError("Cannot index by location index with a non-integer key") # validate the location self._validate_integer(key, axis) return self.obj._ixs(key, axis=axis) def _get_slice_axis(self, slice_obj: slice, axis: int): # caller is responsible for ensuring non-None axis obj = self.obj if not need_slice(slice_obj): return obj.copy(deep=False) labels = obj._get_axis(axis) labels._validate_positional_slice(slice_obj) return self.obj._slice(slice_obj, axis=axis) def _convert_to_indexer(self, key, axis: int, is_setter: bool = False): """ Much simpler as we only have to deal with our valid types. """ return key def _get_setitem_indexer(self, key): # GH#32257 Fall through to let numnpy do validation return key # ------------------------------------------------------------------- def _setitem_with_indexer(self, indexer, value): """ _setitem_with_indexer is for setting values on a Series/DataFrame using positional indexers. If the relevant keys are not present, the Series/DataFrame may be expanded. This method is currently broken when dealing with non-unique Indexes, since it goes from positional indexers back to labels when calling BlockManager methods, see GH#12991, GH#22046, GH#15686. """ # also has the side effect of consolidating in-place from pandas import Series info_axis = self.obj._info_axis_number # maybe partial set take_split_path = self.obj._is_mixed_type # if there is only one block/type, still have to take split path # unless the block is one-dimensional or it can hold the value if not take_split_path and self.obj._mgr.blocks: (blk,) = self.obj._mgr.blocks if 1 < blk.ndim: # in case of dict, keys are indices val = list(value.values()) if isinstance(value, dict) else value take_split_path = not blk._can_hold_element(val) # if we have any multi-indexes that have non-trivial slices # (not null slices) then we must take the split path, xref # GH 10360, GH 27841 if isinstance(indexer, tuple) and len(indexer) == len(self.obj.axes): for i, ax in zip(indexer, self.obj.axes): if isinstance(ax, ABCMultiIndex) and not ( is_integer(i) or com.is_null_slice(i) ): take_split_path = True break if isinstance(indexer, tuple): nindexer = [] for i, idx in enumerate(indexer): if isinstance(idx, dict): # reindex the axis to the new value # and set inplace key, _ = convert_missing_indexer(idx) # if this is the items axes, then take the main missing # path first # this correctly sets the dtype and avoids cache issues # essentially this separates out the block that is needed # to possibly be modified if self.ndim > 1 and i == info_axis: # add the new item, and set the value # must have all defined axes if we have a scalar # or a list-like on the non-info axes if we have a # list-like len_non_info_axes = ( len(_ax) for _i, _ax in enumerate(self.obj.axes) if _i != i ) if any(not l for l in len_non_info_axes): if not is_list_like_indexer(value): raise ValueError( "cannot set a frame with no " "defined index and a scalar" ) self.obj[key] = value return # add a new item with the dtype setup self.obj[key] = _infer_fill_value(value) new_indexer = convert_from_missing_indexer_tuple( indexer, self.obj.axes ) self._setitem_with_indexer(new_indexer, value) return # reindex the axis # make sure to clear the cache because we are # just replacing the block manager here # so the object is the same index = self.obj._get_axis(i) labels = index.insert(len(index), key) self.obj._mgr = self.obj.reindex(labels, axis=i)._mgr self.obj._maybe_update_cacher(clear=True) self.obj._is_copy = None nindexer.append(labels.get_loc(key)) else: nindexer.append(idx) indexer = tuple(nindexer) else: indexer, missing = convert_missing_indexer(indexer) if missing: self._setitem_with_indexer_missing(indexer, value) return # set item_labels = self.obj._get_axis(info_axis) # align and set the values if take_split_path: # Above we only set take_split_path to True for 2D cases assert self.ndim == 2 assert info_axis == 1 if not isinstance(indexer, tuple): indexer = _tuplify(self.ndim, indexer) if isinstance(value, ABCSeries): value = self._align_series(indexer, value) info_idx = indexer[info_axis] if is_integer(info_idx): info_idx = [info_idx] labels = item_labels[info_idx] # Ensure we have something we can iterate over ilocs = info_idx if isinstance(info_idx, slice): ri = Index(range(len(self.obj.columns))) ilocs = ri[info_idx] plane_indexer = indexer[:1] lplane_indexer = length_of_indexer(plane_indexer[0], self.obj.index) # lplane_indexer gives the expected length of obj[indexer[0]] if len(labels) == 1: # We can operate on a single column # require that we are setting the right number of values that # we are indexing if is_list_like_indexer(value) and 0 != lplane_indexer != len(value): # Exclude zero-len for e.g. boolean masking that is all-false raise ValueError( "cannot set using a multi-index " "selection indexer with a different " "length than the value" ) pi = plane_indexer[0] if lplane_indexer == 1 else plane_indexer def isetter(loc, v): # positional setting on column loc ser = self.obj._ixs(loc, axis=1) # perform the equivalent of a setitem on the info axis # as we have a null slice or a slice with full bounds # which means essentially reassign to the columns of a # multi-dim object # GH6149 (null slice), GH10408 (full bounds) if isinstance(pi, tuple) and all( com.is_null_slice(idx) or com.is_full_slice(idx, len(self.obj)) for idx in pi ): ser = v else: # set the item, possibly having a dtype change ser._consolidate_inplace() ser = ser.copy() ser._mgr = ser._mgr.setitem(indexer=pi, value=v) ser._maybe_update_cacher(clear=True) # reset the sliced object if unique self.obj._iset_item(loc, ser) # we need an iterable, with a ndim of at least 1 # eg. don't pass through np.array(0) if is_list_like_indexer(value) and getattr(value, "ndim", 1) > 0: # we have an equal len Frame if isinstance(value, ABCDataFrame): sub_indexer = list(indexer) multiindex_indexer = isinstance(labels, ABCMultiIndex) # TODO: we are implicitly assuming value.columns is unique for loc in ilocs: item = item_labels[loc] if item in value: sub_indexer[info_axis] = item v = self._align_series( tuple(sub_indexer), value[item], multiindex_indexer ) else: v = np.nan isetter(loc, v) # we have an equal len ndarray/convertible to our labels # hasattr first, to avoid coercing to ndarray without reason. # But we may be relying on the ndarray coercion to check ndim. # Why not just convert to an ndarray earlier on if needed? elif np.ndim(value) == 2: # note that this coerces the dtype if we are mixed # GH 7551 value = np.array(value, dtype=object) if len(ilocs) != value.shape[1]: raise ValueError( "Must have equal len keys and value " "when setting with an ndarray" ) for i, loc in enumerate(ilocs): # setting with a list, re-coerces isetter(loc, value[:, i].tolist()) elif ( len(labels) == 1 and lplane_indexer == len(value) and not is_scalar(plane_indexer[0]) ): # we have an equal len list/ndarray # We only get here with len(labels) == len(ilocs) == 1 isetter(ilocs[0], value) elif lplane_indexer == 0 and len(value) == len(self.obj.index): # We get here in one case via .loc with a all-False mask pass else: # per-label values if len(ilocs) != len(value): raise ValueError( "Must have equal len keys and value " "when setting with an iterable" ) for loc, v in zip(ilocs, value): isetter(loc, v) else: # scalar value for loc in ilocs: isetter(loc, value) else: if isinstance(indexer, tuple): # if we are setting on the info axis ONLY # set using those methods to avoid block-splitting # logic here if ( len(indexer) > info_axis and is_integer(indexer[info_axis]) and all( com.is_null_slice(idx) for i, idx in enumerate(indexer) if i != info_axis ) and item_labels.is_unique ): self.obj[item_labels[indexer[info_axis]]] = value return indexer = maybe_convert_ix(*indexer) if isinstance(value, (ABCSeries, dict)): # TODO(EA): ExtensionBlock.setitem this causes issues with # setting for extensionarrays that store dicts. Need to decide # if it's worth supporting that. value = self._align_series(indexer, Series(value)) elif isinstance(value, ABCDataFrame): value = self._align_frame(indexer, value) # check for chained assignment self.obj._check_is_chained_assignment_possible() # actually do the set self.obj._consolidate_inplace() self.obj._mgr = self.obj._mgr.setitem(indexer=indexer, value=value) self.obj._maybe_update_cacher(clear=True) def _setitem_with_indexer_missing(self, indexer, value): """ Insert new row(s) or column(s) into the Series or DataFrame. """ from pandas import Series # reindex the axis to the new value # and set inplace if self.ndim == 1: index = self.obj.index new_index = index.insert(len(index), indexer) # we have a coerced indexer, e.g. a float # that matches in an Int64Index, so # we will not create a duplicate index, rather # index to that element # e.g. 0.0 -> 0 # GH#12246 if index.is_unique: new_indexer = index.get_indexer([new_index[-1]]) if (new_indexer != -1).any(): return self._setitem_with_indexer(new_indexer, value) # this preserves dtype of the value new_values = Series([value])._values if len(self.obj._values): # GH#22717 handle casting compatibility that np.concatenate # does incorrectly new_values = concat_compat([self.obj._values, new_values]) self.obj._mgr = self.obj._constructor( new_values, index=new_index, name=self.obj.name )._mgr self.obj._maybe_update_cacher(clear=True) elif self.ndim == 2: if not len(self.obj.columns): # no columns and scalar raise ValueError("cannot set a frame with no defined columns") if isinstance(value, ABCSeries): # append a Series value = value.reindex(index=self.obj.columns, copy=True) value.name = indexer else: # a list-list if is_list_like_indexer(value): # must have conforming columns if len(value) != len(self.obj.columns): raise ValueError("cannot set a row with mismatched columns") value = Series(value, index=self.obj.columns, name=indexer) self.obj._mgr = self.obj.append(value)._mgr self.obj._maybe_update_cacher(clear=True) def _align_series(self, indexer, ser: ABCSeries, multiindex_indexer: bool = False): """ Parameters ---------- indexer : tuple, slice, scalar Indexer used to get the locations that will be set to `ser`. ser : pd.Series Values to assign to the locations specified by `indexer`. multiindex_indexer : boolean, optional Defaults to False. Should be set to True if `indexer` was from a `pd.MultiIndex`, to avoid unnecessary broadcasting. Returns ------- `np.array` of `ser` broadcast to the appropriate shape for assignment to the locations selected by `indexer` """ if isinstance(indexer, (slice, np.ndarray, list, Index)): indexer = tuple([indexer]) if isinstance(indexer, tuple): # flatten np.ndarray indexers def ravel(i): return i.ravel() if isinstance(i, np.ndarray) else i indexer = tuple(map(ravel, indexer)) aligners = [not com.is_null_slice(idx) for idx in indexer] sum_aligners = sum(aligners) single_aligner = sum_aligners == 1 is_frame = self.ndim == 2 obj = self.obj # are we a single alignable value on a non-primary # dim (e.g. panel: 1,2, or frame: 0) ? # hence need to align to a single axis dimension # rather that find all valid dims # frame if is_frame: single_aligner = single_aligner and aligners[0] # we have a frame, with multiple indexers on both axes; and a # series, so need to broadcast (see GH5206) if sum_aligners == self.ndim and all(is_sequence(_) for _ in indexer): ser = ser.reindex(obj.axes[0][indexer[0]], copy=True)._values # single indexer if len(indexer) > 1 and not multiindex_indexer: len_indexer = len(indexer[1]) ser = np.tile(ser, len_indexer).reshape(len_indexer, -1).T return ser for i, idx in enumerate(indexer): ax = obj.axes[i] # multiple aligners (or null slices) if is_sequence(idx) or isinstance(idx, slice): if single_aligner and com.is_null_slice(idx): continue new_ix = ax[idx] if not is_list_like_indexer(new_ix): new_ix = Index([new_ix]) else: new_ix = Index(new_ix) if ser.index.equals(new_ix) or not len(new_ix): return ser._values.copy() return ser.reindex(new_ix)._values # 2 dims elif single_aligner: # reindex along index ax = self.obj.axes[1] if ser.index.equals(ax) or not len(ax): return ser._values.copy() return ser.reindex(ax)._values elif is_scalar(indexer): ax = self.obj._get_axis(1) if ser.index.equals(ax): return ser._values.copy() return ser.reindex(ax)._values raise ValueError("Incompatible indexer with Series") def _align_frame(self, indexer, df: ABCDataFrame): is_frame = self.ndim == 2 if isinstance(indexer, tuple): idx, cols = None, None sindexers = [] for i, ix in enumerate(indexer): ax = self.obj.axes[i] if is_sequence(ix) or isinstance(ix, slice): if isinstance(ix, np.ndarray): ix = ix.ravel() if idx is None: idx = ax[ix] elif cols is None: cols = ax[ix] else: break else: sindexers.append(i) if idx is not None and cols is not None: if df.index.equals(idx) and df.columns.equals(cols): val = df.copy()._values else: val = df.reindex(idx, columns=cols)._values return val elif (isinstance(indexer, slice) or is_list_like_indexer(indexer)) and is_frame: ax = self.obj.index[indexer] if df.index.equals(ax): val = df.copy()._values else: # we have a multi-index and are trying to align # with a particular, level GH3738 if ( isinstance(ax, ABCMultiIndex) and isinstance(df.index, ABCMultiIndex) and ax.nlevels != df.index.nlevels ): raise TypeError( "cannot align on a multi-index with out " "specifying the join levels" ) val = df.reindex(index=ax)._values return val raise ValueError("Incompatible indexer with DataFrame") class _ScalarAccessIndexer(_NDFrameIndexerBase): """ Access scalars quickly. """ def _convert_key(self, key, is_setter: bool = False): raise AbstractMethodError(self) def __getitem__(self, key): if not isinstance(key, tuple): # we could have a convertible item here (e.g. Timestamp) if not is_list_like_indexer(key): key = tuple([key]) else: raise ValueError("Invalid call for scalar access (getting)!") key = self._convert_key(key) return self.obj._get_value(*key, takeable=self._takeable) def __setitem__(self, key, value): if isinstance(key, tuple): key = tuple(com.apply_if_callable(x, self.obj) for x in key) else: # scalar callable may return tuple key = com.apply_if_callable(key, self.obj) if not isinstance(key, tuple): key = _tuplify(self.ndim, key) if len(key) != self.ndim: raise ValueError("Not enough indexers for scalar access (setting)!") key = list(self._convert_key(key, is_setter=True)) self.obj._set_value(*key, value=value, takeable=self._takeable) @doc(IndexingMixin.at) class _AtIndexer(_ScalarAccessIndexer): _takeable = False def _convert_key(self, key, is_setter: bool = False): """ Require they keys to be the same type as the index. (so we don't fallback) """ # allow arbitrary setting if is_setter: return list(key) return key @property def _axes_are_unique(self) -> bool: # Only relevant for self.ndim == 2 assert self.ndim == 2 return self.obj.index.is_unique and self.obj.columns.is_unique def __getitem__(self, key): if self.ndim == 2 and not self._axes_are_unique: # GH#33041 fall back to .loc if not isinstance(key, tuple) or not all(is_scalar(x) for x in key): raise ValueError("Invalid call for scalar access (getting)!") return self.obj.loc[key] return super().__getitem__(key) def __setitem__(self, key, value): if self.ndim == 2 and not self._axes_are_unique: # GH#33041 fall back to .loc if not isinstance(key, tuple) or not all(is_scalar(x) for x in key): raise ValueError("Invalid call for scalar access (setting)!") self.obj.loc[key] = value return return super().__setitem__(key, value) @doc(IndexingMixin.iat) class _iAtIndexer(_ScalarAccessIndexer): _takeable = True def _convert_key(self, key, is_setter: bool = False): """ Require integer args. (and convert to label arguments) """ for a, i in zip(self.obj.axes, key): if not is_integer(i): raise ValueError("iAt based indexing can only have integer indexers") return key def _tuplify(ndim: int, loc: Hashable) -> Tuple[Union[Hashable, slice], ...]: """ Given an indexer for the first dimension, create an equivalent tuple for indexing over all dimensions. Parameters ---------- ndim : int loc : object Returns ------- tuple """ _tup: List[Union[Hashable, slice]] _tup = [slice(None, None) for _ in range(ndim)] _tup[0] = loc return tuple(_tup) def convert_to_index_sliceable(obj: "DataFrame", key): """ If we are index sliceable, then return my slicer, otherwise return None. """ idx = obj.index if isinstance(key, slice): return idx._convert_slice_indexer(key, kind="getitem") elif isinstance(key, str): # we are an actual column if key in obj.columns: return None # We might have a datetimelike string that we can translate to a # slice here via partial string indexing if idx._supports_partial_string_indexing: try: return idx._get_string_slice(key) except (KeyError, ValueError, NotImplementedError): return None return None def check_bool_indexer(index: Index, key) -> np.ndarray: """ Check if key is a valid boolean indexer for an object with such index and perform reindexing or conversion if needed. This function assumes that is_bool_indexer(key) == True. Parameters ---------- index : Index Index of the object on which the indexing is done. key : list-like Boolean indexer to check. Returns ------- np.array Resulting key. Raises ------ IndexError If the key does not have the same length as index. IndexingError If the index of the key is unalignable to index. """ result = key if isinstance(key, ABCSeries) and not key.index.equals(index): result = result.reindex(index) mask = isna(result._values) if mask.any(): raise IndexingError( "Unalignable boolean Series provided as " "indexer (index of the boolean Series and of " "the indexed object do not match)." ) result = result.astype(bool)._values elif is_object_dtype(key): # key might be object-dtype bool, check_array_indexer needs bool array result = np.asarray(result, dtype=bool) result = check_array_indexer(index, result) else: result = check_array_indexer(index, result) return result def convert_missing_indexer(indexer): """ Reverse convert a missing indexer, which is a dict return the scalar indexer and a boolean indicating if we converted """ if isinstance(indexer, dict): # a missing key (but not a tuple indexer) indexer = indexer["key"] if isinstance(indexer, bool): raise KeyError("cannot use a single bool to index into setitem") return indexer, True return indexer, False def convert_from_missing_indexer_tuple(indexer, axes): """ Create a filtered indexer that doesn't have any missing indexers. """ def get_indexer(_i, _idx): return axes[_i].get_loc(_idx["key"]) if isinstance(_idx, dict) else _idx return tuple(get_indexer(_i, _idx) for _i, _idx in enumerate(indexer)) def maybe_convert_ix(*args): """ We likely want to take the cross-product. """ ixify = True for arg in args: if not isinstance(arg, (np.ndarray, list, ABCSeries, Index)): ixify = False if ixify: return np.ix_(*args) else: return args def is_nested_tuple(tup, labels) -> bool: """ Returns ------- bool """ # check for a compatible nested tuple and multiindexes among the axes if not isinstance(tup, tuple): return False for k in tup: if is_list_like(k) or isinstance(k, slice): return isinstance(labels, ABCMultiIndex) return False def is_label_like(key) -> bool: """ Returns ------- bool """ # select a label or row return not isinstance(key, slice) and not is_list_like_indexer(key) def need_slice(obj) -> bool: """ Returns ------- bool """ return ( obj.start is not None or obj.stop is not None or (obj.step is not None and obj.step != 1) ) def _non_reducing_slice(slice_): """ Ensurse that a slice doesn't reduce to a Series or Scalar. Any user-paseed `subset` should have this called on it to make sure we're always working with DataFrames. """ # default to column slice, like DataFrame # ['A', 'B'] -> IndexSlices[:, ['A', 'B']] kinds = (ABCSeries, np.ndarray, Index, list, str) if isinstance(slice_, kinds): slice_ = IndexSlice[:, slice_] def pred(part) -> bool: """ Returns ------- bool True if slice does *not* reduce, False if `part` is a tuple. """ # true when slice does *not* reduce, False when part is a tuple, # i.e. MultiIndex slice return (isinstance(part, slice) or is_list_like(part)) and not isinstance( part, tuple ) if not is_list_like(slice_): if not isinstance(slice_, slice): # a 1-d slice, like df.loc[1] slice_ = [[slice_]] else: # slice(a, b, c) slice_ = [slice_] # to tuplize later else: slice_ = [part if pred(part) else [part] for part in slice_] return tuple(slice_) def _maybe_numeric_slice(df, slice_, include_bool=False): """ Want nice defaults for background_gradient that don't break with non-numeric data. But if slice_ is passed go with that. """ if slice_ is None: dtypes = [np.number] if include_bool: dtypes.append(bool) slice_ = IndexSlice[:, df.select_dtypes(include=dtypes).columns] return slice_
BugsInPy/BugsInPy/temp/projects/pandas/bug-19-fixed/pandas/pandas/core/indexing.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-19-buggy/pandas/pandas/core/indexing.py
pandas-bug-152
""" Data structure for 1-dimensional cross-sectional and time series data """ from collections import OrderedDict from io import StringIO from shutil import get_terminal_size from textwrap import dedent from typing import Any, Callable import warnings import numpy as np from pandas._config import get_option from pandas._libs import index as libindex, lib, reshape, tslibs from pandas.compat import PY36 from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, deprecate from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.common import ( _is_unorderable_exception, ensure_platform_int, is_bool, is_categorical, is_categorical_dtype, is_datetime64_dtype, is_datetimelike, is_dict_like, is_extension_array_dtype, is_extension_type, is_hashable, is_integer, is_iterator, is_list_like, is_object_dtype, is_scalar, is_string_like, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCSeries, ABCSparseArray, ABCSparseSeries, ) from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, notna, remove_na_arraylike, ) import pandas as pd from pandas.core import algorithms, base, generic, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray, SparseArray from pandas.core.arrays.categorical import Categorical, CategoricalAccessor from pandas.core.arrays.sparse import SparseAccessor import pandas.core.common as com from pandas.core.construction import extract_array, sanitize_array from pandas.core.index import ( Float64Index, Index, InvalidIndexError, MultiIndex, ensure_index, ) from pandas.core.indexers import maybe_convert_indices from pandas.core.indexes.accessors import CombinedDatetimelikeProperties import pandas.core.indexes.base as ibase from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core.indexing import check_bool_indexer from pandas.core.internals import SingleBlockManager from pandas.core.strings import StringMethods from pandas.core.tools.datetimes import to_datetime import pandas.io.formats.format as fmt import pandas.plotting __all__ = ["Series"] _shared_doc_kwargs = dict( axes="index", klass="Series", axes_single_arg="{0 or 'index'}", axis="""axis : {0 or 'index'} Parameter needed for compatibility with DataFrame.""", inplace="""inplace : boolean, default False If True, performs operation inplace and returns None.""", unique="np.ndarray", duplicated="Series", optional_by="", optional_mapper="", optional_labels="", optional_axis="", versionadded_to_excel="\n .. versionadded:: 0.20.0\n", ) # see gh-16971 def remove_na(arr): """ Remove null values from array like structure. .. deprecated:: 0.21.0 Use s[s.notnull()] instead. """ warnings.warn( "remove_na is deprecated and is a private function. Do not use.", FutureWarning, stacklevel=2, ) return remove_na_arraylike(arr) def _coerce_method(converter): """ Install the scalar coercion methods. """ def wrapper(self): if len(self) == 1: return converter(self.iloc[0]) raise TypeError("cannot convert the series to {0}".format(str(converter))) wrapper.__name__ = "__{name}__".format(name=converter.__name__) return wrapper # ---------------------------------------------------------------------- # Series class class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). Operations between Series (+, -, /, *, **) align values based on their associated index values-- they need not be the same length. The result index will be the sorted union of the two indexes. Parameters ---------- data : array-like, Iterable, dict, or scalar value Contains data stored in Series. .. versionchanged:: 0.23.0 If data is a dict, argument order is maintained for Python 3.6 and later. index : array-like or Index (1d) Values must be hashable and have the same length as `data`. Non-unique index values are allowed. Will default to RangeIndex (0, 1, 2, ..., n) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : str, numpy.dtype, or ExtensionDtype, optional Data type for the output Series. If not specified, this will be inferred from `data`. See the :ref:`user guide <basics.dtypes>` for more usages. copy : bool, default False Copy input data. """ _metadata = ["name"] _accessors = {"dt", "cat", "str", "sparse"} # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = generic.NDFrame._deprecations | frozenset( ["asobject", "reshape", "valid", "tolist"] ) # Override cache_readonly bc Series is mutable hasnans = property( base.IndexOpsMixin.hasnans.func, doc=base.IndexOpsMixin.hasnans.__doc__ ) _data = None # type: SingleBlockManager # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index=None, dtype=None, name=None, copy=False, fastpath=False ): # we are called internally, so short-circuit if fastpath: # data is an ndarray, index is defined if not isinstance(data, SingleBlockManager): data = SingleBlockManager(data, index, fastpath=True) if copy: data = data.copy() if index is None: index = data.index else: if index is not None: index = ensure_index(index) if data is None: data = {} if dtype is not None: # GH 26336: explicitly handle 'category' to avoid warning # TODO: Remove after CategoricalDtype defaults to ordered=False if ( isinstance(dtype, str) and dtype == "category" and is_categorical(data) ): dtype = data.dtype dtype = self._validate_dtype(dtype) if isinstance(data, MultiIndex): raise NotImplementedError( "initializing a Series from a MultiIndex is not supported" ) elif isinstance(data, Index): if name is None: name = data.name if dtype is not None: # astype copies data = data.astype(dtype) else: # need to copy to avoid aliasing issues data = data._values.copy() if isinstance(data, ABCDatetimeIndex) and data.tz is not None: # GH#24096 need copy to be deep for datetime64tz case # TODO: See if we can avoid these copies data = data._values.copy(deep=True) copy = False elif isinstance(data, np.ndarray): pass elif isinstance(data, (ABCSeries, ABCSparseSeries)): if name is None: name = data.name if index is None: index = data.index else: data = data.reindex(index, copy=copy) data = data._data elif isinstance(data, dict): data, index = self._init_dict(data, index, dtype) dtype = None copy = False elif isinstance(data, SingleBlockManager): if index is None: index = data.index elif not data.index.equals(index) or copy: # GH#19275 SingleBlockManager input should only be called # internally raise AssertionError( "Cannot pass both SingleBlockManager " "`data` argument and a different " "`index` argument. `copy` must " "be False." ) elif is_extension_array_dtype(data): pass elif isinstance(data, (set, frozenset)): raise TypeError( "{0!r} type is unordered".format(data.__class__.__name__) ) elif isinstance(data, ABCSparseArray): # handle sparse passed here (and force conversion) data = data.to_dense() else: data = com.maybe_iterable_to_list(data) if index is None: if not is_list_like(data): data = [data] index = ibase.default_index(len(data)) elif is_list_like(data): # a scalar numpy array is list-like but doesn't # have a proper length try: if len(index) != len(data): raise ValueError( "Length of passed values is {val}, " "index implies {ind}".format(val=len(data), ind=len(index)) ) except TypeError: pass # create/copy the manager if isinstance(data, SingleBlockManager): if dtype is not None: data = data.astype(dtype=dtype, errors="ignore", copy=copy) elif copy: data = data.copy() else: data = sanitize_array(data, index, dtype, copy, raise_cast_failure=True) data = SingleBlockManager(data, index, fastpath=True) generic.NDFrame.__init__(self, data, fastpath=True) self.name = name self._set_axis(0, index, fastpath=True) def _init_dict(self, data, index=None, dtype=None): """ Derive the "_data" and "index" attributes of a new Series from a dictionary input. Parameters ---------- data : dict or dict-like Data used to populate the new Series index : Index or index-like, default None index for the new Series: if None, use dict keys dtype : dtype, default None dtype for the new Series: if None, infer from data Returns ------- _data : BlockManager for the new Series index : index for the new Series """ # Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')] # raises KeyError), so we iterate the entire dict, and align if data: keys, values = zip(*data.items()) values = list(values) elif index is not None: # fastpath for Series(data=None). Just use broadcasting a scalar # instead of reindexing. values = na_value_for_dtype(dtype) keys = index else: keys, values = [], [] # Input is now list-like, so rely on "standard" construction: s = Series(values, index=keys, dtype=dtype) # Now we just make sure the order is respected, if any if data and index is not None: s = s.reindex(index, copy=False) elif not PY36 and not isinstance(data, OrderedDict) and data: # Need the `and data` to avoid sorting Series(None, index=[...]) # since that isn't really dict-like try: s = s.sort_index() except TypeError: pass return s._data, s.index @classmethod def from_array( cls, arr, index=None, name=None, dtype=None, copy=False, fastpath=False ): """ Construct Series from array. .. deprecated:: 0.23.0 Use pd.Series(..) constructor instead. Returns ------- Series Constructed Series. """ warnings.warn( "'from_array' is deprecated and will be removed in a " "future version. Please use the pd.Series(..) " "constructor instead.", FutureWarning, stacklevel=2, ) if isinstance(arr, ABCSparseArray): from pandas.core.sparse.series import SparseSeries cls = SparseSeries return cls( arr, index=index, name=name, dtype=dtype, copy=copy, fastpath=fastpath ) # ---------------------------------------------------------------------- @property def _constructor(self): return Series @property def _constructor_expanddim(self): from pandas.core.frame import DataFrame return DataFrame # types @property def _can_hold_na(self): return self._data._can_hold_na _index = None def _set_axis(self, axis, labels, fastpath=False): """ Override generic, we want to set the _typ here. """ if not fastpath: labels = ensure_index(labels) is_all_dates = labels.is_all_dates if is_all_dates: if not isinstance(labels, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): try: labels = DatetimeIndex(labels) # need to set here because we changed the index if fastpath: self._data.set_axis(axis, labels) except (tslibs.OutOfBoundsDatetime, ValueError): # labels may exceeds datetime bounds, # or not be a DatetimeIndex pass self._set_subtyp(is_all_dates) object.__setattr__(self, "_index", labels) if not fastpath: self._data.set_axis(axis, labels) def _set_subtyp(self, is_all_dates): if is_all_dates: object.__setattr__(self, "_subtyp", "time_series") else: object.__setattr__(self, "_subtyp", "series") def _update_inplace(self, result, **kwargs): # we want to call the generic version and not the IndexOpsMixin return generic.NDFrame._update_inplace(self, result, **kwargs) @property def name(self): """ Return name of the Series. """ return self._name @name.setter def name(self, value): if value is not None and not is_hashable(value): raise TypeError("Series.name must be a hashable type") object.__setattr__(self, "_name", value) # ndarray compatibility @property def dtype(self): """ Return the dtype object of the underlying data. """ return self._data.dtype @property def dtypes(self): """ Return the dtype object of the underlying data. """ return self._data.dtype @property def ftype(self): """ Return if the data is sparse|dense. .. deprecated:: 0.25.0 Use :func:`dtype` instead. """ warnings.warn( "Series.ftype is deprecated and will " "be removed in a future version. " "Use Series.dtype instead.", FutureWarning, stacklevel=2, ) return self._data.ftype @property def ftypes(self): """ Return if the data is sparse|dense. .. deprecated:: 0.25.0 Use :func:`dtypes` instead. """ warnings.warn( "Series.ftypes is deprecated and will " "be removed in a future version. " "Use Series.dtype instead.", FutureWarning, stacklevel=2, ) return self._data.ftype @property def values(self): """ Return Series as ndarray or ndarray-like depending on the dtype. .. warning:: We recommend using :attr:`Series.array` or :meth:`Series.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- numpy.ndarray or ndarray-like See Also -------- Series.array : Reference to the underlying data. Series.to_numpy : A NumPy array representing the underlying data. Examples -------- >>> pd.Series([1, 2, 3]).values array([1, 2, 3]) >>> pd.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object) >>> pd.Series(list('aabc')).astype('category').values [a, a, b, c] Categories (3, object): [a, b, c] Timezone aware datetime data is converted to UTC: >>> pd.Series(pd.date_range('20130101', periods=3, ... tz='US/Eastern')).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]') """ return self._data.external_values() @property def _values(self): """ Return the internal repr of this data. """ return self._data.internal_values() def get_values(self): """ Same as values (but handles sparseness conversions); is a view. .. deprecated:: 0.25.0 Use :meth:`Series.to_numpy` or :attr:`Series.array` instead. Returns ------- numpy.ndarray Data of the Series. """ warnings.warn( "The 'get_values' method is deprecated and will be removed in a " "future version. Use '.to_numpy()' or '.array' instead.", FutureWarning, stacklevel=2, ) return self._internal_get_values() def _internal_get_values(self): return self._data.get_values() @property def asobject(self): """ Return object Series which contains boxed values. .. deprecated:: 0.23.0 Use ``astype(object)`` instead. *this is an internal non-public method* """ warnings.warn( "'asobject' is deprecated. Use 'astype(object)' instead", FutureWarning, stacklevel=2, ) return self.astype(object).values # ops def ravel(self, order="C"): """ Return the flattened underlying data as an ndarray. Returns ------- numpy.ndarray or ndarray-like Flattened data of the Series. See Also -------- numpy.ndarray.ravel """ return self._values.ravel(order=order) def compress(self, condition, *args, **kwargs): """ Return selected slices of an array along given axis as a Series. .. deprecated:: 0.24.0 Returns ------- Series Series without the slices for which condition is false. See Also -------- numpy.ndarray.compress """ msg = ( "Series.compress(condition) is deprecated. " "Use 'Series[condition]' or " "'np.asarray(series).compress(condition)' instead." ) warnings.warn(msg, FutureWarning, stacklevel=2) nv.validate_compress(args, kwargs) return self[condition] def nonzero(self): """ Return the *integer* indices of the elements that are non-zero. .. deprecated:: 0.24.0 Please use .to_numpy().nonzero() as a replacement. This method is equivalent to calling `numpy.nonzero` on the series data. For compatibility with NumPy, the return value is the same (a tuple with an array of indices for each dimension), but it will always be a one-item tuple because series only have one dimension. Returns ------- numpy.ndarray Indices of elements that are non-zero. See Also -------- numpy.nonzero Examples -------- >>> s = pd.Series([0, 3, 0, 4]) >>> s.nonzero() (array([1, 3]),) >>> s.iloc[s.nonzero()[0]] 1 3 3 4 dtype: int64 # same return although index of s is different >>> s = pd.Series([0, 3, 0, 4], index=['a', 'b', 'c', 'd']) >>> s.nonzero() (array([1, 3]),) >>> s.iloc[s.nonzero()[0]] b 3 d 4 dtype: int64 """ msg = ( "Series.nonzero() is deprecated " "and will be removed in a future version." "Use Series.to_numpy().nonzero() instead" ) warnings.warn(msg, FutureWarning, stacklevel=2) return self._values.nonzero() def put(self, *args, **kwargs): """ Apply the `put` method to its `values` attribute if it has one. .. deprecated:: 0.25.0 See Also -------- numpy.ndarray.put """ warnings.warn( "`put` has been deprecated and will be removed in a future version.", FutureWarning, stacklevel=2, ) self._values.put(*args, **kwargs) def __len__(self): """ Return the length of the Series. """ return len(self._data) def view(self, dtype=None): """ Create a new view of the Series. This function will return a new Series with a view of the same underlying values in memory, optionally reinterpreted with a new data type. The new data type must preserve the same size in bytes as to not cause index misalignment. Parameters ---------- dtype : data type Data type object or one of their string representations. Returns ------- Series A new Series object as a view of the same data in memory. See Also -------- numpy.ndarray.view : Equivalent numpy function to create a new view of the same data in memory. Notes ----- Series are instantiated with ``dtype=float64`` by default. While ``numpy.ndarray.view()`` will return a view with the same data type as the original array, ``Series.view()`` (without specified dtype) will try using ``float64`` and may fail if the original data type size in bytes is not the same. Examples -------- >>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8') >>> s 0 -2 1 -1 2 0 3 1 4 2 dtype: int8 The 8 bit signed integer representation of `-1` is `0b11111111`, but the same bytes represent 255 if read as an 8 bit unsigned integer: >>> us = s.view('uint8') >>> us 0 254 1 255 2 0 3 1 4 2 dtype: uint8 The views share the same underlying values: >>> us[0] = 128 >>> s 0 -128 1 -1 2 0 3 1 4 2 dtype: int8 """ return self._constructor( self._values.view(dtype), index=self.index ).__finalize__(self) # ---------------------------------------------------------------------- # NDArray Compat _HANDLED_TYPES = (Index, ExtensionArray, np.ndarray) def __array_ufunc__( self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any ): # TODO: handle DataFrame cls = type(self) # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # Determine if we should defer. no_defer = (np.ndarray.__array_ufunc__, cls.__array_ufunc__) for item in inputs: higher_priority = ( hasattr(item, "__array_priority__") and item.__array_priority__ > self.__array_priority__ ) has_array_ufunc = ( hasattr(item, "__array_ufunc__") and type(item).__array_ufunc__ not in no_defer and not isinstance(item, self._HANDLED_TYPES) ) if higher_priority or has_array_ufunc: return NotImplemented # align all the inputs. names = [getattr(x, "name") for x in inputs if hasattr(x, "name")] types = tuple(type(x) for x in inputs) # TODO: dataframe alignable = [x for x, t in zip(inputs, types) if issubclass(t, Series)] if len(alignable) > 1: # This triggers alignment. # At the moment, there aren't any ufuncs with more than two inputs # so this ends up just being x1.index | x2.index, but we write # it to handle *args. index = alignable[0].index for s in alignable[1:]: index |= s.index inputs = tuple( x.reindex(index) if issubclass(t, Series) else x for x, t in zip(inputs, types) ) else: index = self.index inputs = tuple(extract_array(x, extract_numpy=True) for x in inputs) result = getattr(ufunc, method)(*inputs, **kwargs) if len(set(names)) == 1: # we require names to be hashable, right? name = names[0] # type: Any else: name = None def construct_return(result): if lib.is_scalar(result): return result elif result.ndim > 1: # e.g. np.subtract.outer if method == "outer": msg = ( "outer method for ufunc {} is not implemented on " "pandas objects. Returning an ndarray, but in the " "future this will raise a 'NotImplementedError'. " "Consider explicitly converting the Series " "to an array with '.array' first." ) warnings.warn(msg.format(ufunc), FutureWarning, stacklevel=3) return result return self._constructor(result, index=index, name=name, copy=False) if type(result) is tuple: # multiple return values return tuple(construct_return(x) for x in result) elif method == "at": # no return value return None else: return construct_return(result) def __array__(self, dtype=None): """ Return the values as a NumPy array. Users should not call this directly. Rather, it is invoked by :func:`numpy.array` and :func:`numpy.asarray`. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to use for the resulting NumPy array. By default, the dtype is inferred from the data. Returns ------- numpy.ndarray The values in the series converted to a :class:`numpy.ndarary` with the specified `dtype`. See Also -------- array : Create a new array from data. Series.array : Zero-copy view to the array backing the Series. Series.to_numpy : Series method for similar behavior. Examples -------- >>> ser = pd.Series([1, 2, 3]) >>> np.asarray(ser) array([1, 2, 3]) For timezone-aware data, the timezones may be retained with ``dtype='object'`` >>> tzser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> np.asarray(tzser, dtype="object") array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or the values may be localized to UTC and the tzinfo discared with ``dtype='datetime64[ns]'`` >>> np.asarray(tzser, dtype="datetime64[ns]") # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', ...], dtype='datetime64[ns]') """ if ( dtype is None and isinstance(self.array, ABCDatetimeArray) and getattr(self.dtype, "tz", None) ): msg = ( "Converting timezone-aware DatetimeArray to timezone-naive " "ndarray with 'datetime64[ns]' dtype. In the future, this " "will return an ndarray with 'object' dtype where each " "element is a 'pandas.Timestamp' with the correct 'tz'.\n\t" "To accept the future behavior, pass 'dtype=object'.\n\t" "To keep the old behavior, pass 'dtype=\"datetime64[ns]\"'." ) warnings.warn(msg, FutureWarning, stacklevel=3) dtype = "M8[ns]" return np.asarray(self.array, dtype) # ---------------------------------------------------------------------- # Unary Methods @property def real(self): """ Return the real value of vector. .. deprecated:: 0.25.0 """ warnings.warn( "`real` is deprecated and will be removed in a future version. " "To eliminate this warning for a Series `ser`, use " "`np.real(ser.to_numpy())` or `ser.to_numpy().real`.", FutureWarning, stacklevel=2, ) return self.values.real @real.setter def real(self, v): self.values.real = v @property def imag(self): """ Return imag value of vector. .. deprecated:: 0.25.0 """ warnings.warn( "`imag` is deprecated and will be removed in a future version. " "To eliminate this warning for a Series `ser`, use " "`np.imag(ser.to_numpy())` or `ser.to_numpy().imag`.", FutureWarning, stacklevel=2, ) return self.values.imag @imag.setter def imag(self, v): self.values.imag = v # coercion __float__ = _coerce_method(float) __long__ = _coerce_method(int) __int__ = _coerce_method(int) # ---------------------------------------------------------------------- def _unpickle_series_compat(self, state): if isinstance(state, dict): self._data = state["_data"] self.name = state["name"] self.index = self._data.index elif isinstance(state, tuple): # < 0.12 series pickle nd_state, own_state = state # recreate the ndarray data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) # backwards compat index, name = own_state[0], None if len(own_state) > 1: name = own_state[1] # recreate self._data = SingleBlockManager(data, index, fastpath=True) self._index = index self.name = name else: raise Exception("cannot unpickle legacy formats -> [%s]" % state) # indexers @property def axes(self): """ Return a list of the row axis labels. """ return [self.index] # ---------------------------------------------------------------------- # Indexing Methods @Appender(generic.NDFrame.take.__doc__) def take(self, indices, axis=0, is_copy=False, **kwargs): nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) new_index = self.index.take(indices) if is_categorical_dtype(self): # https://github.com/pandas-dev/pandas/issues/20664 # TODO: remove when the default Categorical.take behavior changes indices = maybe_convert_indices(indices, len(self._get_axis(axis))) kwargs = {"allow_fill": False} else: kwargs = {} new_values = self._values.take(indices, **kwargs) result = self._constructor( new_values, index=new_index, fastpath=True ).__finalize__(self) # Maybe set copy if we didn't actually change the index. if is_copy: if not result._get_axis(axis).equals(self._get_axis(axis)): result._set_is_copy(self) return result def _ixs(self, i: int, axis: int = 0): """ Return the i-th value or values in the Series by location. Parameters ---------- i : int Returns ------- scalar (int) or Series (slice, sequence) """ # dispatch to the values if we need values = self._values if isinstance(values, np.ndarray): return libindex.get_value_at(values, i) else: return values[i] def _slice(self, slobj: slice, axis: int = 0, kind=None): slobj = self.index._convert_slice_indexer(slobj, kind=kind or "getitem") return self._get_values(slobj) def __getitem__(self, key): key = com.apply_if_callable(key, self) try: result = self.index.get_value(self, key) if not is_scalar(result): if is_list_like(result) and not isinstance(result, Series): # we need to box if loc of the key isn't scalar here # otherwise have inline ndarray/lists try: if not is_scalar(self.index.get_loc(key)): result = self._constructor( result, index=[key] * len(result), dtype=self.dtype ).__finalize__(self) except KeyError: pass return result except InvalidIndexError: pass except (KeyError, ValueError): if isinstance(key, tuple) and isinstance(self.index, MultiIndex): # kludge pass elif key is Ellipsis: return self elif com.is_bool_indexer(key): pass else: # we can try to coerce the indexer (or this will raise) new_key = self.index._convert_scalar_indexer(key, kind="getitem") if type(new_key) != type(key): return self.__getitem__(new_key) raise if is_iterator(key): key = list(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) return self._get_with(key) def _get_with(self, key): # other: fancy integer or otherwise if isinstance(key, slice): return self._slice(key) elif isinstance(key, ABCDataFrame): raise TypeError( "Indexing a Series with DataFrame is not " "supported, use the appropriate DataFrame column" ) elif isinstance(key, tuple): try: return self._get_values_tuple(key) except Exception: if len(key) == 1: key = key[0] if isinstance(key, slice): return self._get_values(key) raise if not isinstance(key, (list, np.ndarray, Series, Index)): key = list(key) if isinstance(key, Index): key_type = key.inferred_type else: key_type = lib.infer_dtype(key, skipna=False) if key_type == "integer": if self.index.is_integer() or self.index.is_floating(): return self.loc[key] else: return self._get_values(key) elif key_type == "boolean": return self._get_values(key) if isinstance(key, (list, tuple)): # TODO: de-dup with tuple case handled above? # handle the dup indexing case GH#4246 if len(key) == 1 and isinstance(key[0], slice): # [slice(0, 5, None)] will break if you convert to ndarray, # e.g. as requested by np.median # FIXME: hack return self._get_values(key) return self.loc[key] return self.reindex(key) def _get_values_tuple(self, key): # mpl hackaround if com.any_none(*key): return self._get_values(key) if not isinstance(self.index, MultiIndex): raise ValueError("Can only tuple-index with a MultiIndex") # If key is contained, would have returned by now indexer, new_index = self.index.get_loc_level(key) return self._constructor(self._values[indexer], index=new_index).__finalize__( self ) def _get_values(self, indexer): try: return self._constructor( self._data.get_slice(indexer), fastpath=True ).__finalize__(self) except Exception: return self._values[indexer] def _get_value(self, label, takeable: bool = False): """ Quickly retrieve single value at passed index label. Parameters ---------- label : object takeable : interpret the index as indexers, default False Returns ------- scalar value """ if takeable: return com.maybe_box_datetimelike(self._values[label]) return self.index.get_value(self._values, label) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) cacher_needs_updating = self._check_is_chained_assignment_possible() try: self._set_with_engine(key, value) except com.SettingWithCopyError: raise except (KeyError, ValueError): values = self._values if is_integer(key) and not self.index.inferred_type == "integer": values[key] = value elif key is Ellipsis: self[:] = value else: self.loc[key] = value except TypeError as e: if isinstance(key, tuple) and not isinstance(self.index, MultiIndex): raise ValueError("Can only tuple-index with a MultiIndex") # python 3 type errors should be raised if _is_unorderable_exception(e): raise IndexError(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) try: self._where(~key, value, inplace=True) return except InvalidIndexError: pass self._set_with(key, value) if cacher_needs_updating: self._maybe_update_cacher() def _set_with_engine(self, key, value): values = self._values if is_extension_array_dtype(values.dtype): # The cython indexing engine does not support ExtensionArrays. values[self.index.get_loc(key)] = value return try: self.index._engine.set_value(values, key, value) return except KeyError: values[self.index.get_loc(key)] = value return def _set_with(self, key, value): # other: fancy integer or otherwise if isinstance(key, slice): indexer = self.index._convert_slice_indexer(key, kind="getitem") return self._set_values(indexer, value) elif is_scalar(key) and not is_integer(key) and key not in self.index: # GH#12862 adding an new key to the Series # Note: have to exclude integers because that is ambiguously # position-based self.loc[key] = value return else: if isinstance(key, tuple): try: self._set_values(key, value) except Exception: pass if is_scalar(key): key = [key] elif not isinstance(key, (list, Series, np.ndarray)): try: key = list(key) except Exception: key = [key] if isinstance(key, Index): key_type = key.inferred_type key = key._values else: key_type = lib.infer_dtype(key, skipna=False) if key_type == "integer": if self.index.inferred_type == "integer": self._set_labels(key, value) else: return self._set_values(key, value) elif key_type == "boolean": self._set_values(key.astype(np.bool_), value) else: self._set_labels(key, value) def _set_labels(self, key, value): key = com.asarray_tuplesafe(key) indexer = self.index.get_indexer(key) mask = indexer == -1 if mask.any(): raise ValueError("%s not contained in the index" % str(key[mask])) self._set_values(indexer, value) def _set_values(self, key, value): if isinstance(key, Series): key = key._values self._data = self._data.setitem(indexer=key, value=value) self._maybe_update_cacher() def _set_value(self, label, value, takeable: bool = False): """ Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index. Parameters ---------- label : object Partial indexing with MultiIndex not allowed value : object Scalar value takeable : interpret the index as indexers, default False Returns ------- Series If label is contained, will be reference to calling Series, otherwise a new object. """ try: if takeable: self._values[label] = value else: self.index._engine.set_value(self._values, label, value) except (KeyError, TypeError): # set using a non-recursive method self.loc[label] = value return self # ---------------------------------------------------------------------- # Unsorted @property def _is_mixed_type(self): return False def repeat(self, repeats, axis=None): """ Repeat elements of a Series. Returns a new Series where each element of the current Series is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty Series. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- Series Newly created Series with repeated elements. See Also -------- Index.repeat : Equivalent function for Index. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object >>> s.repeat(2) 0 a 0 a 1 b 1 b 2 c 2 c dtype: object >>> s.repeat([1, 2, 3]) 0 a 1 b 1 b 2 c 2 c 2 c dtype: object """ nv.validate_repeat(tuple(), dict(axis=axis)) new_index = self.index.repeat(repeats) new_values = self._values.repeat(repeats) return self._constructor(new_values, index=new_index).__finalize__(self) def reset_index(self, level=None, drop=False, name=None, inplace=False): """ Generate a new DataFrame or Series with the index reset. This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation. Parameters ---------- level : int, str, tuple, or list, default optional For a Series with a MultiIndex, only remove the specified levels from the index. Removes all levels by default. drop : bool, default False Just reset the index, without inserting it as a column in the new DataFrame. name : object, optional The name to use for the column containing the original Series values. Uses ``self.name`` by default. This argument is ignored when `drop` is True. inplace : bool, default False Modify the Series in place (do not create a new object). Returns ------- Series or DataFrame When `drop` is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When `drop` is True, a `Series` is returned. In either case, if ``inplace=True``, no value is returned. See Also -------- DataFrame.reset_index: Analogous function for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4], name='foo', ... index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) Generate a DataFrame with default index. >>> s.reset_index() idx foo 0 a 1 1 b 2 2 c 3 3 d 4 To specify the name of the new column use `name`. >>> s.reset_index(name='values') idx values 0 a 1 1 b 2 2 c 3 3 d 4 To generate a new Series with the default set `drop` to True. >>> s.reset_index(drop=True) 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 To update the Series in place, without generating a new one set `inplace` to True. Note that it also requires ``drop=True``. >>> s.reset_index(inplace=True, drop=True) >>> s 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 The `level` parameter is interesting for Series with a multi-level index. >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']), ... np.array(['one', 'two', 'one', 'two'])] >>> s2 = pd.Series( ... range(4), name='foo', ... index=pd.MultiIndex.from_arrays(arrays, ... names=['a', 'b'])) To remove a specific level from the Index, use `level`. >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3 If `level` is not set, all levels are removed from the Index. >>> s2.reset_index() a b foo 0 bar one 0 1 bar two 1 2 baz one 2 3 baz two 3 """ inplace = validate_bool_kwarg(inplace, "inplace") if drop: new_index = ibase.default_index(len(self)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if inplace: self.index = new_index # set name if it was passed, otherwise, keep the previous name self.name = name or self.name else: return self._constructor( self._values.copy(), index=new_index ).__finalize__(self) elif inplace: raise TypeError( "Cannot reset_index inplace on a Series to create a DataFrame" ) else: df = self.to_frame(name) return df.reset_index(level=level, drop=drop) # ---------------------------------------------------------------------- # Rendering Methods def __repr__(self): """ Return a string representation for a particular Series. """ buf = StringIO("") width, height = get_terminal_size() max_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.max_rows") ) min_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.min_rows") ) show_dimensions = get_option("display.show_dimensions") self.to_string( buf=buf, name=self.name, dtype=self.dtype, min_rows=min_rows, max_rows=max_rows, length=show_dimensions, ) result = buf.getvalue() return result def to_string( self, buf=None, na_rep="NaN", float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None, min_rows=None, ): """ Render a string representation of the Series. Parameters ---------- buf : StringIO-like, optional Buffer to write to. na_rep : str, optional String representation of NaN to use, default 'NaN'. float_format : one-parameter function, optional Formatter function to apply to columns' elements if they are floats, default None. header : bool, default True Add the Series header (index name). index : bool, optional Add index (row) labels, default True. length : bool, default False Add the Series length. dtype : bool, default False Add the Series dtype. name : bool, default False Add the Series name if not None. max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. min_rows : int, optional The number of rows to display in a truncated repr (when number of rows is above `max_rows`). Returns ------- str or None String representation of Series if ``buf=None``, otherwise None. """ formatter = fmt.SeriesFormatter( self, name=name, length=length, header=header, index=index, dtype=dtype, na_rep=na_rep, float_format=float_format, min_rows=min_rows, max_rows=max_rows, ) result = formatter.to_string() # catch contract violations if not isinstance(result, str): raise AssertionError( "result must be of type unicode, type" " of result is {0!r}" "".format(result.__class__.__name__) ) if buf is None: return result else: try: buf.write(result) except AttributeError: with open(buf, "w") as f: f.write(result) # ---------------------------------------------------------------------- def items(self): """ Lazily iterate over (index, value) tuples. This method returns an iterable tuple (index, value). This is convenient if you want to create a lazy iterator. Returns ------- iterable Iterable of tuples containing the (index, value) pairs from a Series. See Also -------- DataFrame.items : Iterate over (column name, Series) pairs. DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. Examples -------- >>> s = pd.Series(['A', 'B', 'C']) >>> for index, value in s.items(): ... print("Index : {}, Value : {}".format(index, value)) Index : 0, Value : A Index : 1, Value : B Index : 2, Value : C """ return zip(iter(self.index), iter(self)) @Appender(items.__doc__) def iteritems(self): return self.items() # ---------------------------------------------------------------------- # Misc public methods def keys(self): """ Return alias for index. Returns ------- Index Index of the Series. """ return self.index def to_dict(self, into=dict): """ Convert Series to {label -> value} dict or dict-like object. Parameters ---------- into : class, default dict The collections.abc.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- collections.abc.Mapping Key-value representation of Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_dict() {0: 1, 1: 2, 2: 3, 3: 4} >>> from collections import OrderedDict, defaultdict >>> s.to_dict(OrderedDict) OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)]) >>> dd = defaultdict(list) >>> s.to_dict(dd) defaultdict(<class 'list'>, {0: 1, 1: 2, 2: 3, 3: 4}) """ # GH16122 into_c = com.standardize_mapping(into) return into_c(self.items()) def to_frame(self, name=None): """ Convert Series to DataFrame. Parameters ---------- name : object, default None The passed name should substitute for the series name (if it has one). Returns ------- DataFrame DataFrame representation of Series. Examples -------- >>> s = pd.Series(["a", "b", "c"], ... name="vals") >>> s.to_frame() vals 0 a 1 b 2 c """ if name is None: df = self._constructor_expanddim(self) else: df = self._constructor_expanddim({name: self}) return df def to_sparse(self, kind="block", fill_value=None): """ Convert Series to SparseSeries. .. deprecated:: 0.25.0 Parameters ---------- kind : {'block', 'integer'}, default 'block' fill_value : float, defaults to NaN (missing) Value to use for filling NaN values. Returns ------- SparseSeries Sparse representation of the Series. """ warnings.warn( "Series.to_sparse is deprecated and will be removed in a future version", FutureWarning, stacklevel=2, ) from pandas.core.sparse.series import SparseSeries values = SparseArray(self, kind=kind, fill_value=fill_value) with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="SparseSeries") return SparseSeries(values, index=self.index, name=self.name).__finalize__( self ) def _set_name(self, name, inplace=False): """ Set the Series name. Parameters ---------- name : str inplace : bool whether to modify `self` directly or return a copy """ inplace = validate_bool_kwarg(inplace, "inplace") ser = self if inplace else self.copy() ser.name = name return ser # ---------------------------------------------------------------------- # Statistics, overridden ndarray methods # TODO: integrate bottleneck def count(self, level=None): """ Return number of non-NA/null observations in the Series. Parameters ---------- level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series. Returns ------- int or Series (if level specified) Number of non-null values in the Series. Examples -------- >>> s = pd.Series([0.0, 1.0, np.nan]) >>> s.count() 2 """ if level is None: return notna(self.array).sum() if isinstance(level, str): level = self.index._get_level_number(level) lev = self.index.levels[level] level_codes = np.array(self.index.codes[level], subok=False, copy=True) mask = level_codes == -1 if mask.any(): level_codes[mask] = cnt = len(lev) lev = lev.insert(cnt, lev._na_value) obs = level_codes[notna(self.values)] out = np.bincount(obs, minlength=len(lev) or None) return self._constructor(out, index=lev, dtype="int64").__finalize__(self) def mode(self, dropna=True): """ Return the mode(s) of the dataset. Always returns Series even if only one value is returned. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- Series Modes of the Series in sorted order. """ # TODO: Add option for bins like value_counts() return algorithms.mode(self, dropna=dropna) def unique(self): """ Return unique values of Series object. Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort. Returns ------- ndarray or ExtensionArray The unique values returned as a NumPy array. See Notes. See Also -------- unique : Top-level unique method for any 1-d array-like object. Index.unique : Return Index with unique values from an Index object. Notes ----- Returns the unique values as a NumPy array. In case of an extension-array backed Series, a new :class:`~api.extensions.ExtensionArray` of that type with just the unique values is returned. This includes * Categorical * Period * Datetime with Timezone * Interval * Sparse * IntegerNA See Examples section. Examples -------- >>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3]) >>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] An unordered Categorical will return categories in the order of appearance. >>> pd.Series(pd.Categorical(list('baabc'))).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() [b, a, c] Categories (3, object): [a < b < c] """ result = super().unique() return result def drop_duplicates(self, keep="first", inplace=False): """ Return Series with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : bool, default ``False`` If ``True``, performs operation inplace and returns None. Returns ------- Series Series with duplicates dropped. See Also -------- Index.drop_duplicates : Equivalent method on Index. DataFrame.drop_duplicates : Equivalent method on DataFrame. Series.duplicated : Related method on Series, indicating duplicate Series values. Examples -------- Generate a Series with duplicated entries. >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the 'keep' parameter, the selection behaviour of duplicated values can be changed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value 'last' for parameter 'keep' keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value ``False`` for parameter 'keep' discards all sets of duplicated entries. Setting the value of 'inplace' to ``True`` performs the operation inplace and returns ``None``. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object """ return super().drop_duplicates(keep=keep, inplace=inplace) def duplicated(self, keep="first"): """ Indicate duplicate Series values. Duplicated values are indicated as ``True`` values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- Series Series indicating whether each value has occurred in the preceding values. See Also -------- Index.duplicated : Equivalent method on pandas.Index. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Series.drop_duplicates : Remove duplicate values from Series. Examples -------- By default, for each set of duplicated values, the first occurrence is set on False and all others on True: >>> animals = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> animals.duplicated() 0 False 1 False 2 True 3 False 4 True dtype: bool which is equivalent to >>> animals.duplicated(keep='first') 0 False 1 False 2 True 3 False 4 True dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> animals.duplicated(keep='last') 0 True 1 False 2 True 3 False 4 False dtype: bool By setting keep on ``False``, all duplicates are True: >>> animals.duplicated(keep=False) 0 True 1 False 2 True 3 False 4 True dtype: bool """ return super().duplicated(keep=keep) def idxmin(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the minimum value. If multiple values equal the minimum, the first row label with that value is returned. Parameters ---------- skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. axis : int, default 0 For compatibility with DataFrame.idxmin. Redundant for application on Series. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the minimum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmin : Return indices of the minimum values along the given axis. DataFrame.idxmin : Return index of first occurrence of minimum over requested axis. Series.idxmax : Return index *label* of the first occurrence of maximum of values. Notes ----- This method is the Series version of ``ndarray.argmin``. This method returns the label of the minimum, while ``ndarray.argmin`` returns the position. To get the position, use ``series.values.argmin()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 1], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 1.0 dtype: float64 >>> s.idxmin() 'A' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmin(skipna=False) nan """ skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs) i = nanops.nanargmin(com.values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i] def idxmax(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the maximum value. If multiple values equal the maximum, the first row label with that value is returned. Parameters ---------- skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. axis : int, default 0 For compatibility with DataFrame.idxmax. Redundant for application on Series. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the maximum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmax : Return indices of the maximum values along the given axis. DataFrame.idxmax : Return index of first occurrence of maximum over requested axis. Series.idxmin : Return index *label* of the first occurrence of minimum of values. Notes ----- This method is the Series version of ``ndarray.argmax``. This method returns the label of the maximum, while ``ndarray.argmax`` returns the position. To get the position, use ``series.values.argmax()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64 >>> s.idxmax() 'C' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmax(skipna=False) nan """ skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs) i = nanops.nanargmax(com.values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i] # ndarray compat argmin = deprecate( "argmin", idxmin, "0.21.0", msg=dedent( """ The current behaviour of 'Series.argmin' is deprecated, use 'idxmin' instead. The behavior of 'argmin' will be corrected to return the positional minimum in the future. For now, use 'series.values.argmin' or 'np.argmin(np.array(values))' to get the position of the minimum row.""" ), ) argmax = deprecate( "argmax", idxmax, "0.21.0", msg=dedent( """ The current behaviour of 'Series.argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax' will be corrected to return the positional maximum in the future. For now, use 'series.values.argmax' or 'np.argmax(np.array(values))' to get the position of the maximum row.""" ), ) def round(self, decimals=0, *args, **kwargs): """ Round each value in a Series to the given number of decimals. Parameters ---------- decimals : int Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. Returns ------- Series Rounded values of the Series. See Also -------- numpy.around : Round values of an np.array. DataFrame.round : Round values of a DataFrame. Examples -------- >>> s = pd.Series([0.1, 1.3, 2.7]) >>> s.round() 0 0.0 1 1.0 2 3.0 dtype: float64 """ nv.validate_round(args, kwargs) result = com.values_from_object(self).round(decimals) result = self._constructor(result, index=self.index).__finalize__(self) return result def quantile(self, q=0.5, interpolation="linear"): """ Return value at the given quantile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- float or Series If ``q`` is an array, a Series will be returned where the index is ``q`` and the values are the quantiles, otherwise a float will be returned. See Also -------- core.window.Rolling.quantile numpy.percentile Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 """ self._check_percentile(q) # We dispatch to DataFrame so that core.internals only has to worry # about 2D cases. df = self.to_frame() result = df.quantile(q=q, interpolation=interpolation, numeric_only=False) if result.ndim == 2: result = result.iloc[:, 0] if is_list_like(q): result.name = self.name return self._constructor(result, index=Float64Index(q), name=self.name) else: # scalar return result.iloc[0] def corr(self, other, method="pearson", min_periods=None): """ Compute correlation with `other` Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the correlation. method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Correlation with other. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> s1 = pd.Series([.2, .0, .6, .2]) >>> s2 = pd.Series([.3, .6, .0, .1]) >>> s1.corr(s2, method=histogram_intersection) 0.3 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan if method in ["pearson", "spearman", "kendall"] or callable(method): return nanops.nancorr( this.values, other.values, method=method, min_periods=min_periods ) raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " "'{method}' was supplied".format(method=method) ) def cov(self, other, min_periods=None): """ Compute covariance with Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the covariance. min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Covariance between Series and other normalized by N-1 (unbiased estimator). Examples -------- >>> s1 = pd.Series([0.90010907, 0.13484424, 0.62036035]) >>> s2 = pd.Series([0.12528585, 0.26962463, 0.51111198]) >>> s1.cov(s2) -0.01685762652715874 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan return nanops.nancov(this.values, other.values, min_periods=min_periods) def diff(self, periods=1): """ First discrete difference of element. Calculates the difference of a Series element compared with another element in the Series (default is element in previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. Returns ------- Series First differences of the Series. See Also -------- Series.pct_change: Percent change over given number of periods. Series.shift: Shift index by desired number of periods with an optional time freq. DataFrame.diff: First discrete difference of object. Examples -------- Difference with previous row >>> s = pd.Series([1, 1, 2, 3, 5, 8]) >>> s.diff() 0 NaN 1 0.0 2 1.0 3 1.0 4 2.0 5 3.0 dtype: float64 Difference with 3rd previous row >>> s.diff(periods=3) 0 NaN 1 NaN 2 NaN 3 2.0 4 4.0 5 6.0 dtype: float64 Difference with following row >>> s.diff(periods=-1) 0 0.0 1 -1.0 2 -1.0 3 -2.0 4 -3.0 5 NaN dtype: float64 """ result = algorithms.diff(com.values_from_object(self), periods) return self._constructor(result, index=self.index).__finalize__(self) def autocorr(self, lag=1): """ Compute the lag-N autocorrelation. This method computes the Pearson correlation between the Series and its shifted self. Parameters ---------- lag : int, default 1 Number of lags to apply before performing autocorrelation. Returns ------- float The Pearson correlation between self and self.shift(lag). See Also -------- Series.corr : Compute the correlation between two Series. Series.shift : Shift index by desired number of periods. DataFrame.corr : Compute pairwise correlation of columns. DataFrame.corrwith : Compute pairwise correlation between rows or columns of two DataFrame objects. Notes ----- If the Pearson correlation is not well defined return 'NaN'. Examples -------- >>> s = pd.Series([0.25, 0.5, 0.2, -0.05]) >>> s.autocorr() # doctest: +ELLIPSIS 0.10355... >>> s.autocorr(lag=2) # doctest: +ELLIPSIS -0.99999... If the Pearson correlation is not well defined, then 'NaN' is returned. >>> s = pd.Series([1, 0, 0, 0]) >>> s.autocorr() nan """ return self.corr(self.shift(lag)) def dot(self, other): """ Compute the dot product between the Series and the columns of other. This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array. It can also be called using `self @ other` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the dot product with its columns. Returns ------- scalar, Series or numpy.ndarray Return the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array. See Also -------- DataFrame.dot: Compute the matrix product with the DataFrame. Series.mul: Multiplication of series and other, element-wise. Notes ----- The Series and other has to share the same index if other is a Series or a DataFrame. Examples -------- >>> s = pd.Series([0, 1, 2, 3]) >>> other = pd.Series([-1, 2, -3, 4]) >>> s.dot(other) 8 >>> s @ other 8 >>> df = pd.DataFrame([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(df) 0 24 1 14 dtype: int64 >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(arr) array([24, 14]) """ if isinstance(other, (Series, ABCDataFrame)): common = self.index.union(other.index) if len(common) > len(self.index) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(index=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: lvals = self.values rvals = np.asarray(other) if lvals.shape[0] != rvals.shape[0]: raise Exception( "Dot product shape mismatch, %s vs %s" % (lvals.shape, rvals.shape) ) if isinstance(other, ABCDataFrame): return self._constructor( np.dot(lvals, rvals), index=other.columns ).__finalize__(self) elif isinstance(other, Series): return np.dot(lvals, rvals) elif isinstance(rvals, np.ndarray): return np.dot(lvals, rvals) else: # pragma: no cover raise TypeError("unsupported type: %s" % type(other)) def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(np.transpose(other)) @Substitution(klass="Series") @Appender(base._shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): return algorithms.searchsorted(self._values, value, side=side, sorter=sorter) # ------------------------------------------------------------------- # Combination def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, do not use the index labels. verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """ from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] + to_append else: to_concat = [self, to_append] return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity ) def _binop(self, other, func, level=None, fill_value=None): """ Perform generic binary operation with optional fill value. Parameters ---------- other : Series func : binary operator fill_value : float or object Value to substitute for NA/null values. If both Series are NA in a location, the result will be NA regardless of the passed fill value level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level Returns ------- Series """ if not isinstance(other, Series): raise AssertionError("Other operand must be Series") new_index = self.index this = self if not self.index.equals(other.index): this, other = self.align(other, level=level, join="outer", copy=False) new_index = this.index this_vals, other_vals = ops.fill_binop(this.values, other.values, fill_value) with np.errstate(all="ignore"): result = func(this_vals, other_vals) name = ops.get_op_result_name(self, other) if func.__name__ in ["divmod", "rdivmod"]: ret = ops._construct_divmod_result(self, result, new_index, name) else: ret = ops._construct_result(self, result, new_index, name) return ret def combine(self, other, func, fill_value=None): """ Combine the Series with a Series or scalar according to `func`. Combine the Series and `other` using `func` to perform elementwise selection for combined Series. `fill_value` is assumed when value is missing at some index from one of the two objects being combined. Parameters ---------- other : Series or scalar The value(s) to be combined with the `Series`. func : function Function that takes two scalars as inputs and returns an element. fill_value : scalar, optional The value to assume when an index is missing from one Series or the other. The default specifies to use the appropriate NaN value for the underlying dtype of the Series. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine_first : Combine Series values, choosing the calling Series' values first. Examples -------- Consider 2 Datasets ``s1`` and ``s2`` containing highest clocked speeds of different birds. >>> s1 = pd.Series({'falcon': 330.0, 'eagle': 160.0}) >>> s1 falcon 330.0 eagle 160.0 dtype: float64 >>> s2 = pd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0}) >>> s2 falcon 345.0 eagle 200.0 duck 30.0 dtype: float64 Now, to combine the two datasets and view the highest speeds of the birds across the two datasets >>> s1.combine(s2, max) duck NaN eagle 200.0 falcon 345.0 dtype: float64 In the previous example, the resulting value for duck is missing, because the maximum of a NaN and a float is a NaN. So, in the example, we set ``fill_value=0``, so the maximum value returned will be the value from some dataset. >>> s1.combine(s2, max, fill_value=0) duck 30.0 eagle 200.0 falcon 345.0 dtype: float64 """ if fill_value is None: fill_value = na_value_for_dtype(self.dtype, compat=False) if isinstance(other, Series): # If other is a Series, result is based on union of Series, # so do this element by element new_index = self.index.union(other.index) new_name = ops.get_op_result_name(self, other) new_values = [] for idx in new_index: lv = self.get(idx, fill_value) rv = other.get(idx, fill_value) with np.errstate(all="ignore"): new_values.append(func(lv, rv)) else: # Assume that other is a scalar, so apply the function for # each element in the Series new_index = self.index with np.errstate(all="ignore"): new_values = [func(lv, other) for lv in self._values] new_name = self.name if is_categorical_dtype(self.values): pass elif is_extension_array_dtype(self.values): # The function can return something of any type, so check # if the type is compatible with the calling EA. try: new_values = self._values._from_sequence(new_values) except Exception: # https://github.com/pandas-dev/pandas/issues/22850 # pandas has no control over what 3rd-party ExtensionArrays # do in _values_from_sequence. We still want ops to work # though, so we catch any regular Exception. pass return self._constructor(new_values, index=new_index, name=new_name) def combine_first(self, other): """ Combine Series values, choosing the calling Series's values first. Parameters ---------- other : Series The value(s) to be combined with the `Series`. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine : Perform elementwise operation on two Series using a given function. Notes ----- Result index will be the union of the two indexes. Examples -------- >>> s1 = pd.Series([1, np.nan]) >>> s2 = pd.Series([3, 4]) >>> s1.combine_first(s2) 0 1.0 1 4.0 dtype: float64 """ new_index = self.index.union(other.index) this = self.reindex(new_index, copy=False) other = other.reindex(new_index, copy=False) if is_datetimelike(this) and not is_datetimelike(other): other = to_datetime(other) return this.where(notna(this), other) def update(self, other): """ Modify Series in place using non-NA values from passed Series. Aligns on index. Parameters ---------- other : Series Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = pd.Series(['a', 'b', 'c']) >>> s.update(pd.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If ``other`` contains NaNs the corresponding values are not updated in the original Series. >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, np.nan, 6])) >>> s 0 4 1 2 2 6 dtype: int64 """ other = other.reindex_like(self) mask = notna(other) self._data = self._data.putmask(mask=mask, new=other, inplace=True) self._maybe_update_cacher() # ---------------------------------------------------------------------- # Reindexing, sorting def sort_values( self, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ): """ Sort by the values. Sort a Series in ascending or descending order by some criterion. Parameters ---------- axis : {0 or 'index'}, default 0 Axis to direct sorting. The value 'index' is accepted for compatibility with DataFrame.sort_values. ascending : bool, default True If True, sort values in ascending order, otherwise descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. na_position : {'first' or 'last'}, default 'last' Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Returns ------- Series Series ordered by values. See Also -------- Series.sort_index : Sort by the Series indices. DataFrame.sort_values : Sort DataFrame by the values along either axis. DataFrame.sort_index : Sort DataFrame by indices. Examples -------- >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 Sort values ascending order (default behaviour) >>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64 Sort values descending order >>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values inplace >>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values putting NAs first >>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64 Sort a series of strings >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object >>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) # GH 5856/5853 if inplace and self._is_cached: raise ValueError( "This Series is a view of some other array, to " "sort in-place you must create a copy" ) def _try_kind_sort(arr): # easier to ask forgiveness than permission try: # if kind==mergesort, it can fail for object dtype return arr.argsort(kind=kind) except TypeError: # stable sort not available for object dtype # uses the argsort default quicksort return arr.argsort(kind="quicksort") arr = self._values sortedIdx = np.empty(len(self), dtype=np.int32) bad = isna(arr) good = ~bad idx = ibase.default_index(len(self)) argsorted = _try_kind_sort(arr[good]) if is_list_like(ascending): if len(ascending) != 1: raise ValueError( "Length of ascending (%d) must be 1 " "for Series" % (len(ascending)) ) ascending = ascending[0] if not is_bool(ascending): raise ValueError("ascending must be boolean") if not ascending: argsorted = argsorted[::-1] if na_position == "last": n = good.sum() sortedIdx[:n] = idx[good][argsorted] sortedIdx[n:] = idx[bad] elif na_position == "first": n = bad.sum() sortedIdx[n:] = idx[good][argsorted] sortedIdx[:n] = idx[bad] else: raise ValueError("invalid na_position: {!r}".format(na_position)) result = self._constructor(arr[sortedIdx], index=self.index[sortedIdx]) if inplace: self._update_inplace(result) else: return result.__finalize__(self) def sort_index( self, axis=0, level=None, ascending=True, inplace=False, kind="quicksort", na_position="last", sort_remaining=True, ): """ Sort Series by index labels. Returns a new Series sorted by label if `inplace` argument is ``False``, otherwise updates the original series and returns None. Parameters ---------- axis : int, default 0 Axis to direct sorting. This can only be 0 for Series. level : int, optional If not None, sort on values in specified index level(s). ascending : bool, default true Sort ascending vs. descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. Returns ------- Series The original Series sorted by the labels. See Also -------- DataFrame.sort_index: Sort DataFrame by the index. DataFrame.sort_values: Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4]) >>> s.sort_index() 1 c 2 b 3 a 4 d dtype: object Sort Descending >>> s.sort_index(ascending=False) 4 d 3 a 2 b 1 c dtype: object Sort Inplace >>> s.sort_index(inplace=True) >>> s 1 c 2 b 3 a 4 d dtype: object By default NaNs are put at the end, but use `na_position` to place them at the beginning >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan]) >>> s.sort_index(na_position='first') NaN d 1.0 c 2.0 b 3.0 a dtype: object Specify index level to sort >>> arrays = [np.array(['qux', 'qux', 'foo', 'foo', ... 'baz', 'baz', 'bar', 'bar']), ... np.array(['two', 'one', 'two', 'one', ... 'two', 'one', 'two', 'one'])] >>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays) >>> s.sort_index(level=1) bar one 8 baz one 6 foo one 4 qux one 2 bar two 7 baz two 5 foo two 3 qux two 1 dtype: int64 Does not sort by remaining levels when sorting by levels >>> s.sort_index(level=1, sort_remaining=False) qux one 2 foo one 4 baz one 6 bar one 8 qux two 1 foo two 3 baz two 5 bar two 7 dtype: int64 """ # TODO: this can be combined with DataFrame.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) index = self.index if level is not None: new_index, indexer = index.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(index, MultiIndex): from pandas.core.sorting import lexsort_indexer labels = index._sort_levels_monotonic() indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and index.is_monotonic_increasing) or ( not ascending and index.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( index, kind=kind, ascending=ascending, na_position=na_position ) indexer = ensure_platform_int(indexer) new_index = index.take(indexer) new_index = new_index._sort_levels_monotonic() new_values = self._values.take(indexer) result = self._constructor(new_values, index=new_index) if inplace: self._update_inplace(result) else: return result.__finalize__(self) def argsort(self, axis=0, kind="quicksort", order=None): """ Override ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values. Parameters ---------- axis : int Has no effect but is accepted for compatibility with numpy. kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See np.sort for more information. 'mergesort' is the only stable algorithm order : None Has no effect but is accepted for compatibility with numpy. Returns ------- Series Positions of values within the sort order with -1 indicating nan values. See Also -------- numpy.ndarray.argsort """ values = self._values mask = isna(values) if mask.any(): result = Series(-1, index=self.index, name=self.name, dtype="int64") notmask = ~mask result[notmask] = np.argsort(values[notmask], kind=kind) return self._constructor(result, index=self.index).__finalize__(self) else: return self._constructor( np.argsort(values, kind=kind), index=self.index, dtype="int64" ).__finalize__(self) def nlargest(self, n=5, keep="first"): """ Return the largest `n` elements. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. See Also -------- Series.nsmallest: Get the `n` smallest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest() def nsmallest(self, n=5, keep="first"): """ Return the smallest `n` elements. Parameters ---------- n : int, default 5 Return this many ascending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` smallest values in the Series, sorted in increasing order. See Also -------- Series.nlargest: Get the `n` largest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Brunei": 434000, "Malta": 434000, ... "Maldives": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Brunei 434000 Malta 434000 Maldives 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` smallest elements where ``n=5`` by default. >>> s.nsmallest() Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 Iceland 337000 dtype: int64 The `n` smallest elements where ``n=3``. Default `keep` value is 'first' so Nauru and Tuvalu will be kept. >>> s.nsmallest(3) Monserat 5200 Nauru 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` and keeping the last duplicates. Anguilla and Tuvalu will be kept since they are the last with value 11300 based on the index order. >>> s.nsmallest(3, keep='last') Monserat 5200 Anguilla 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` with all duplicates kept. Note that the returned Series has four elements due to the three duplicates. >>> s.nsmallest(3, keep='all') Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest() def swaplevel(self, i=-2, j=-1, copy=True): """ Swap levels i and j in a :class:`MultiIndex`. Default is to swap the two innermost levels of the index. Parameters ---------- i, j : int, str (can be mixed) Level of index to be swapped. Can pass level name as string. copy : bool, default True Whether to copy underlying data. Returns ------- Series Series with levels swapped in MultiIndex. """ new_index = self.index.swaplevel(i, j) return self._constructor(self._values, index=new_index, copy=copy).__finalize__( self ) def reorder_levels(self, order): """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int representing new level order (reference level by number or key) Returns ------- type of caller (new object) """ if not isinstance(self.index, MultiIndex): # pragma: no cover raise Exception("Can only reorder levels on a hierarchical axis.") result = self.copy() result.index = result.index.reorder_levels(order) return result def explode(self) -> "Series": """ Transform each element of a list-like to a row, replicating the index values. .. versionadded:: 0.25.0 Returns ------- Series Exploded lists to rows; index will be duplicated for these rows. See Also -------- Series.str.split : Split string values on specified separator. Series.unstack : Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. DataFrame.melt : Unpivot a DataFrame from wide format to long format. DataFrame.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> s = pd.Series([[1, 2, 3], 'foo', [], [3, 4]]) >>> s 0 [1, 2, 3] 1 foo 2 [] 3 [3, 4] dtype: object >>> s.explode() 0 1 0 2 0 3 1 foo 2 NaN 3 3 3 4 dtype: object """ if not len(self) or not is_object_dtype(self): return self.copy() values, counts = reshape.explode(np.asarray(self.array)) result = Series(values, index=self.index.repeat(counts), name=self.name) return result def unstack(self, level=-1, fill_value=None): """ Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted. Parameters ---------- level : int, str, or list of these, default last level Level(s) to unstack, can pass level name. fill_value : scalar value, default None Value to use when replacing NaN values. Returns ------- DataFrame Unstacked Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4], ... index=pd.MultiIndex.from_product([['one', 'two'], ... ['a', 'b']])) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) # ---------------------------------------------------------------------- # function application def map(self, arg, na_action=None): """ Map values of Series according to input correspondence. Used for substituting each value in a Series with another value, that may be derived from a function, a ``dict`` or a :class:`Series`. Parameters ---------- arg : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to the mapping correspondence. Returns ------- Series Same index as caller. See Also -------- Series.apply : For applying more complex functions on a Series. DataFrame.apply : Apply a function row-/column-wise. DataFrame.applymap : Apply a function elementwise on a whole DataFrame. Notes ----- When ``arg`` is a dictionary, values in Series that are not in the dictionary (as keys) are converted to ``NaN``. However, if the dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e. provides a method for default values), then this default is used rather than ``NaN``. Examples -------- >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object ``map`` accepts a ``dict`` or a ``Series``. Values that are not found in the ``dict`` are converted to ``NaN``, unless the dict has a default value (e.g. ``defaultdict``): >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object It also accepts a function: >>> s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object To avoid applying the function to missing values (and keep them as ``NaN``) ``na_action='ignore'`` can be used: >>> s.map('I am a {}'.format, na_action='ignore') 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object """ new_values = super()._map_values(arg, na_action=na_action) return self._constructor(new_values, index=self.index).__finalize__(self) def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ return self _agg_see_also_doc = dedent( """ See Also -------- Series.apply : Invoke function on a Series. Series.transform : Transform function producing a Series with like indexes. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs ) @Appender(generic._shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) result, how = self._aggregate(func, *args, **kwargs) if result is None: # we can be called from an inner function which # passes this meta-data kwargs.pop("_axis", None) kwargs.pop("_level", None) # try a regular apply, this evaluates lambdas # row-by-row; however if the lambda is expected a Series # expression, e.g.: lambda x: x-x.quantile(0.25) # this will fail, so we can try a vectorized evaluation # we cannot FIRST try the vectorized evaluation, because # then .agg and .apply would have different semantics if the # operation is actually defined on the Series, e.g. str try: result = self.apply(func, *args, **kwargs) except (ValueError, AttributeError, TypeError): result = func(self, *args, **kwargs) return result agg = aggregate @Appender(generic._shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) return super().transform(func, *args, **kwargs) def apply(self, func, convert_dtype=True, args=(), **kwds): """ Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values. Parameters ---------- func : function Python function or NumPy ufunc to apply. convert_dtype : bool, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. args : tuple Positional arguments passed to func after the series value. **kwds Additional keyword arguments passed to func. Returns ------- Series or DataFrame If func returns a Series object the result will be a DataFrame. See Also -------- Series.map: For element-wise operations. Series.agg: Only perform aggregating type operations. Series.transform: Only perform transforming type operations. Examples -------- Create a series with typical summer temperatures for each city. >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply()``. >>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply()``. >>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64 """ if len(self) == 0: return self._constructor(dtype=self.dtype, index=self.index).__finalize__( self ) # dispatch to agg if isinstance(func, (list, dict)): return self.aggregate(func, *args, **kwds) # if we are a string, try to dispatch if isinstance(func, str): return self._try_aggregate_string_function(func, *args, **kwds) # handle ufuncs and lambdas if kwds or args and not isinstance(func, np.ufunc): def f(x): return func(x, *args, **kwds) else: f = func with np.errstate(all="ignore"): if isinstance(f, np.ufunc): return f(self) # row-wise access if is_extension_type(self.dtype): mapped = self._values.map(f) else: values = self.astype(object).values mapped = lib.map_infer(values, f, convert=convert_dtype) if len(mapped) and isinstance(mapped[0], Series): # GH 25959 use pd.array instead of tolist # so extension arrays can be used return self._constructor_expanddim(pd.array(mapped), index=self.index) else: return self._constructor(mapped, index=self.index).__finalize__(self) def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): """ Perform a reduction operation. If we have an ndarray as a value, then simply perform the operation, otherwise delegate to the object. """ delegate = self._values if axis is not None: self._get_axis_number(axis) if isinstance(delegate, Categorical): # TODO deprecate numeric_only argument for Categorical and use # skipna as well, see GH25303 return delegate._reduce(name, numeric_only=numeric_only, **kwds) elif isinstance(delegate, ExtensionArray): # dispatch to ExtensionArray interface return delegate._reduce(name, skipna=skipna, **kwds) elif is_datetime64_dtype(delegate): # use DatetimeIndex implementation to handle skipna correctly delegate = DatetimeIndex(delegate) elif is_timedelta64_dtype(delegate) and hasattr(TimedeltaIndex, name): # use TimedeltaIndex to handle skipna correctly # TODO: remove hasattr check after TimedeltaIndex has `std` method delegate = TimedeltaIndex(delegate) # dispatch to numpy arrays elif isinstance(delegate, np.ndarray): if numeric_only: raise NotImplementedError( "Series.{0} does not implement numeric_only.".format(name) ) with np.errstate(all="ignore"): return op(delegate, skipna=skipna, **kwds) # TODO(EA) dispatch to Index # remove once all internals extension types are # moved to ExtensionArrays return delegate._reduce( op=op, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only, filter_type=filter_type, **kwds ) def _reindex_indexer(self, new_index, indexer, copy): if indexer is None: if copy: return self.copy() return self new_values = algorithms.take_1d( self._values, indexer, allow_fill=True, fill_value=None ) return self._constructor(new_values, index=new_index) def _needs_reindex_multi(self, axes, method, level): """ Check if we do need a multi reindex; this is for compat with higher dims. """ return False @Appender(generic._shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) def rename(self, index=None, **kwargs): """ Alter Series index labels or name. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- index : scalar, hashable sequence, dict-like or function, optional dict-like or functions are transformations to apply to the index. Scalar or hashable sequence-like will alter the ``Series.name`` attribute. copy : bool, default True Whether to copy underlying data. inplace : bool, default False Whether to return a new Series. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. Returns ------- Series Series with index labels or name altered. See Also -------- Series.rename_axis : Set the name of the axis. Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 """ kwargs["inplace"] = validate_bool_kwarg(kwargs.get("inplace", False), "inplace") if callable(index) or is_dict_like(index): return super().rename(index=index, **kwargs) else: return self._set_name(index, inplace=kwargs.get("inplace")) @Substitution(**_shared_doc_kwargs) @Appender(generic.NDFrame.reindex.__doc__) def reindex(self, index=None, **kwargs): return super().reindex(index=index, **kwargs) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """ Return Series with specified index labels removed. Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index labels to drop. axis : 0, default 0 Redundant for application on Series. index, columns : None Redundant for application on Series, but index can be used instead of labels. .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level for which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- Series Series with specified index labels removed. Raises ------ KeyError If none of the labels are found in the index. See Also -------- Series.reindex : Return only specified index labels of Series. Series.dropna : Return series without null values. Series.drop_duplicates : Return Series with duplicate values removed. DataFrame.drop : Drop specified labels from rows or columns. Examples -------- >>> s = pd.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: int64 Drop labels B en C >>> s.drop(labels=['B', 'C']) A 0 dtype: int64 Drop 2nd level label in MultiIndex Series >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s lama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64 >>> s.drop(labels='weight', level=1) lama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @Substitution(**_shared_doc_kwargs) @Appender(generic.NDFrame.fillna.__doc__) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs ): return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, **kwargs ) @Appender(generic._shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @Appender(generic._shared_docs["shift"] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None): return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def memory_usage(self, index=True, deep=False): """ Return the memory usage of the Series. The memory usage can optionally include the contribution of the index and of elements of `object` dtype. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the Series index. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned value. Returns ------- int Bytes of memory consumed. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. DataFrame.memory_usage : Bytes consumed by a DataFrame. Examples -------- >>> s = pd.Series(range(3)) >>> s.memory_usage() 152 Not including the index gives the size of the rest of the data, which is necessarily smaller: >>> s.memory_usage(index=False) 24 The memory footprint of `object` values is ignored by default: >>> s = pd.Series(["a", "b"]) >>> s.values array(['a', 'b'], dtype=object) >>> s.memory_usage() 144 >>> s.memory_usage(deep=True) 260 """ v = super().memory_usage(deep=deep) if index: v += self.index.memory_usage(deep=deep) return v def isin(self, values): """ Check whether `values` are contained in Series. Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- Series Series of booleans indicating if each element is in values. Raises ------ TypeError * If `values` is a string See Also -------- DataFrame.isin : Equivalent method on DataFrame. Examples -------- >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool """ result = algorithms.isin(self, values) return self._constructor(result, index=self.index).__finalize__(self) def between(self, left, right, inclusive=True): """ Return boolean Series equivalent to left <= series <= right. This function returns a boolean vector containing `True` wherever the corresponding Series element is between the boundary values `left` and `right`. NA values are treated as `False`. Parameters ---------- left : scalar Left boundary. right : scalar Right boundary. inclusive : bool, default True Include boundaries. Returns ------- Series Series representing whether each element is between left and right (inclusive). See Also -------- Series.gt : Greater than of series and other. Series.lt : Less than of series and other. Notes ----- This function is equivalent to ``(left <= ser) & (ser <= right)`` Examples -------- >>> s = pd.Series([2, 0, 4, 8, np.nan]) Boundary values are included by default: >>> s.between(1, 4) 0 True 1 False 2 True 3 False 4 False dtype: bool With `inclusive` set to ``False`` boundary values are excluded: >>> s.between(1, 4, inclusive=False) 0 True 1 False 2 False 3 False 4 False dtype: bool `left` and `right` can be any scalar value: >>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve']) >>> s.between('Anna', 'Daniel') 0 False 1 True 2 True 3 False dtype: bool """ if inclusive: lmask = self >= left rmask = self <= right else: lmask = self > left rmask = self < right return lmask & rmask @Appender(generic.NDFrame.to_csv.__doc__) def to_csv(self, *args, **kwargs): names = [ "path_or_buf", "sep", "na_rep", "float_format", "columns", "header", "index", "index_label", "mode", "encoding", "compression", "quoting", "quotechar", "line_terminator", "chunksize", "date_format", "doublequote", "escapechar", "decimal", ] old_names = [ "path_or_buf", "index", "sep", "na_rep", "float_format", "header", "index_label", "mode", "encoding", "compression", "date_format", "decimal", ] if "path" in kwargs: warnings.warn( "The signature of `Series.to_csv` was aligned " "to that of `DataFrame.to_csv`, and argument " "'path' will be renamed to 'path_or_buf'.", FutureWarning, stacklevel=2, ) kwargs["path_or_buf"] = kwargs.pop("path") if len(args) > 1: # Either "index" (old signature) or "sep" (new signature) is being # passed as second argument (while the first is the same) maybe_sep = args[1] if not (is_string_like(maybe_sep) and len(maybe_sep) == 1): # old signature warnings.warn( "The signature of `Series.to_csv` was aligned " "to that of `DataFrame.to_csv`. Note that the " "order of arguments changed, and the new one " "has 'sep' in first place, for which \"{}\" is " "not a valid value. The old order will cease to " "be supported in a future version. Please refer " "to the documentation for `DataFrame.to_csv` " "when updating your function " "calls.".format(maybe_sep), FutureWarning, stacklevel=2, ) names = old_names pos_args = dict(zip(names[: len(args)], args)) for key in pos_args: if key in kwargs: raise ValueError( "Argument given by name ('{}') and position " "({})".format(key, names.index(key)) ) kwargs[key] = pos_args[key] if kwargs.get("header", None) is None: warnings.warn( "The signature of `Series.to_csv` was aligned " "to that of `DataFrame.to_csv`, and argument " "'header' will change its default value from False " "to True: please pass an explicit value to suppress " "this warning.", FutureWarning, stacklevel=2, ) kwargs["header"] = False # Backwards compatibility. return self.to_frame().to_csv(**kwargs) @Appender(generic._shared_docs["isna"] % _shared_doc_kwargs) def isna(self): return super().isna() @Appender(generic._shared_docs["isna"] % _shared_doc_kwargs) def isnull(self): return super().isnull() @Appender(generic._shared_docs["notna"] % _shared_doc_kwargs) def notna(self): return super().notna() @Appender(generic._shared_docs["notna"] % _shared_doc_kwargs) def notnull(self): return super().notnull() def dropna(self, axis=0, inplace=False, **kwargs): """ Return a new Series with missing values removed. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index'}, default 0 There is only one axis to drop values from. inplace : bool, default False If True, do operation inplace and return None. **kwargs Not in use. Returns ------- Series Series with NA entries dropped from it. See Also -------- Series.isna: Indicate missing values. Series.notna : Indicate existing (non-missing) values. Series.fillna : Replace missing values. DataFrame.dropna : Drop rows or columns which contain NA values. Index.dropna : Drop missing indices. Examples -------- >>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 Drop NA values from a Series. >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 Keep the Series with valid entries in the same variable. >>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64 Empty strings are not considered NA values. ``None`` is considered an NA value. >>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") kwargs.pop("how", None) if kwargs: raise TypeError( "dropna() got an unexpected keyword " 'argument "{0}"'.format(list(kwargs.keys())[0]) ) # Validate the axis parameter self._get_axis_number(axis or 0) if self._can_hold_na: result = remove_na_arraylike(self) if inplace: self._update_inplace(result) else: return result else: if inplace: # do nothing pass else: return self.copy() def valid(self, inplace=False, **kwargs): """ Return Series without null values. .. deprecated:: 0.23.0 Use :meth:`Series.dropna` instead. Returns ------- Series Series without null values. """ warnings.warn( "Method .valid will be removed in a future version. " "Use .dropna instead.", FutureWarning, stacklevel=2, ) return self.dropna(inplace=inplace, **kwargs) # ---------------------------------------------------------------------- # Time series-oriented methods def to_timestamp(self, freq=None, how="start", copy=True): """ Cast to DatetimeIndex of Timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. copy : bool, default True Whether or not to return a copy. Returns ------- Series with DatetimeIndex """ new_values = self._values if copy: new_values = new_values.copy() new_index = self.index.to_timestamp(freq=freq, how=how) return self._constructor(new_values, index=new_index).__finalize__(self) def to_period(self, freq=None, copy=True): """ Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default None Frequency associated with the PeriodIndex. copy : bool, default True Whether or not to return a copy. Returns ------- Series Series with index converted to PeriodIndex. """ new_values = self._values if copy: new_values = new_values.copy() new_index = self.index.to_period(freq=freq) return self._constructor(new_values, index=new_index).__finalize__(self) # ---------------------------------------------------------------------- # Accessor Methods # ---------------------------------------------------------------------- str = CachedAccessor("str", StringMethods) dt = CachedAccessor("dt", CombinedDatetimelikeProperties) cat = CachedAccessor("cat", CategoricalAccessor) plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) sparse = CachedAccessor("sparse", SparseAccessor) # ---------------------------------------------------------------------- # Add plotting methods to Series hist = pandas.plotting.hist_series Series._setup_axes( ["index"], info_axis=0, stat_axis=0, aliases={"rows": 0}, docs={"index": "The index (axis labels) of the Series."}, ) Series._add_numeric_operations() Series._add_series_only_operations() Series._add_series_or_dataframe_operations() # Add arithmetic! ops.add_flex_arithmetic_methods(Series) ops.add_special_arithmetic_methods(Series) """ Data structure for 1-dimensional cross-sectional and time series data """ from collections import OrderedDict from io import StringIO from shutil import get_terminal_size from textwrap import dedent from typing import Any, Callable import warnings import numpy as np from pandas._config import get_option from pandas._libs import index as libindex, lib, reshape, tslibs from pandas.compat import PY36 from pandas.compat.numpy import function as nv from pandas.util._decorators import Appender, Substitution, deprecate from pandas.util._validators import validate_bool_kwarg from pandas.core.dtypes.common import ( _is_unorderable_exception, ensure_platform_int, is_bool, is_categorical, is_categorical_dtype, is_datetime64_dtype, is_datetimelike, is_dict_like, is_extension_array_dtype, is_extension_type, is_hashable, is_integer, is_iterator, is_list_like, is_object_dtype, is_scalar, is_string_like, is_timedelta64_dtype, ) from pandas.core.dtypes.generic import ( ABCDataFrame, ABCDatetimeArray, ABCDatetimeIndex, ABCSeries, ABCSparseArray, ABCSparseSeries, ) from pandas.core.dtypes.missing import ( isna, na_value_for_dtype, notna, remove_na_arraylike, ) import pandas as pd from pandas.core import algorithms, base, generic, nanops, ops from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray, SparseArray from pandas.core.arrays.categorical import Categorical, CategoricalAccessor from pandas.core.arrays.sparse import SparseAccessor import pandas.core.common as com from pandas.core.construction import extract_array, sanitize_array from pandas.core.index import ( Float64Index, Index, InvalidIndexError, MultiIndex, ensure_index, ) from pandas.core.indexers import maybe_convert_indices from pandas.core.indexes.accessors import CombinedDatetimelikeProperties import pandas.core.indexes.base as ibase from pandas.core.indexes.datetimes import DatetimeIndex from pandas.core.indexes.period import PeriodIndex from pandas.core.indexes.timedeltas import TimedeltaIndex from pandas.core.indexing import check_bool_indexer from pandas.core.internals import SingleBlockManager from pandas.core.strings import StringMethods from pandas.core.tools.datetimes import to_datetime import pandas.io.formats.format as fmt import pandas.plotting __all__ = ["Series"] _shared_doc_kwargs = dict( axes="index", klass="Series", axes_single_arg="{0 or 'index'}", axis="""axis : {0 or 'index'} Parameter needed for compatibility with DataFrame.""", inplace="""inplace : boolean, default False If True, performs operation inplace and returns None.""", unique="np.ndarray", duplicated="Series", optional_by="", optional_mapper="", optional_labels="", optional_axis="", versionadded_to_excel="\n .. versionadded:: 0.20.0\n", ) # see gh-16971 def remove_na(arr): """ Remove null values from array like structure. .. deprecated:: 0.21.0 Use s[s.notnull()] instead. """ warnings.warn( "remove_na is deprecated and is a private function. Do not use.", FutureWarning, stacklevel=2, ) return remove_na_arraylike(arr) def _coerce_method(converter): """ Install the scalar coercion methods. """ def wrapper(self): if len(self) == 1: return converter(self.iloc[0]) raise TypeError("cannot convert the series to {0}".format(str(converter))) wrapper.__name__ = "__{name}__".format(name=converter.__name__) return wrapper # ---------------------------------------------------------------------- # Series class class Series(base.IndexOpsMixin, generic.NDFrame): """ One-dimensional ndarray with axis labels (including time series). Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN). Operations between Series (+, -, /, *, **) align values based on their associated index values-- they need not be the same length. The result index will be the sorted union of the two indexes. Parameters ---------- data : array-like, Iterable, dict, or scalar value Contains data stored in Series. .. versionchanged:: 0.23.0 If data is a dict, argument order is maintained for Python 3.6 and later. index : array-like or Index (1d) Values must be hashable and have the same length as `data`. Non-unique index values are allowed. Will default to RangeIndex (0, 1, 2, ..., n) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : str, numpy.dtype, or ExtensionDtype, optional Data type for the output Series. If not specified, this will be inferred from `data`. See the :ref:`user guide <basics.dtypes>` for more usages. copy : bool, default False Copy input data. """ _metadata = ["name"] _accessors = {"dt", "cat", "str", "sparse"} # tolist is not actually deprecated, just suppressed in the __dir__ _deprecations = generic.NDFrame._deprecations | frozenset( ["asobject", "reshape", "valid", "tolist"] ) # Override cache_readonly bc Series is mutable hasnans = property( base.IndexOpsMixin.hasnans.func, doc=base.IndexOpsMixin.hasnans.__doc__ ) _data = None # type: SingleBlockManager # ---------------------------------------------------------------------- # Constructors def __init__( self, data=None, index=None, dtype=None, name=None, copy=False, fastpath=False ): # we are called internally, so short-circuit if fastpath: # data is an ndarray, index is defined if not isinstance(data, SingleBlockManager): data = SingleBlockManager(data, index, fastpath=True) if copy: data = data.copy() if index is None: index = data.index else: if index is not None: index = ensure_index(index) if data is None: data = {} if dtype is not None: # GH 26336: explicitly handle 'category' to avoid warning # TODO: Remove after CategoricalDtype defaults to ordered=False if ( isinstance(dtype, str) and dtype == "category" and is_categorical(data) ): dtype = data.dtype dtype = self._validate_dtype(dtype) if isinstance(data, MultiIndex): raise NotImplementedError( "initializing a Series from a MultiIndex is not supported" ) elif isinstance(data, Index): if name is None: name = data.name if dtype is not None: # astype copies data = data.astype(dtype) else: # need to copy to avoid aliasing issues data = data._values.copy() if isinstance(data, ABCDatetimeIndex) and data.tz is not None: # GH#24096 need copy to be deep for datetime64tz case # TODO: See if we can avoid these copies data = data._values.copy(deep=True) copy = False elif isinstance(data, np.ndarray): pass elif isinstance(data, (ABCSeries, ABCSparseSeries)): if name is None: name = data.name if index is None: index = data.index else: data = data.reindex(index, copy=copy) data = data._data elif isinstance(data, dict): data, index = self._init_dict(data, index, dtype) dtype = None copy = False elif isinstance(data, SingleBlockManager): if index is None: index = data.index elif not data.index.equals(index) or copy: # GH#19275 SingleBlockManager input should only be called # internally raise AssertionError( "Cannot pass both SingleBlockManager " "`data` argument and a different " "`index` argument. `copy` must " "be False." ) elif is_extension_array_dtype(data): pass elif isinstance(data, (set, frozenset)): raise TypeError( "{0!r} type is unordered".format(data.__class__.__name__) ) elif isinstance(data, ABCSparseArray): # handle sparse passed here (and force conversion) data = data.to_dense() else: data = com.maybe_iterable_to_list(data) if index is None: if not is_list_like(data): data = [data] index = ibase.default_index(len(data)) elif is_list_like(data): # a scalar numpy array is list-like but doesn't # have a proper length try: if len(index) != len(data): raise ValueError( "Length of passed values is {val}, " "index implies {ind}".format(val=len(data), ind=len(index)) ) except TypeError: pass # create/copy the manager if isinstance(data, SingleBlockManager): if dtype is not None: data = data.astype(dtype=dtype, errors="ignore", copy=copy) elif copy: data = data.copy() else: data = sanitize_array(data, index, dtype, copy, raise_cast_failure=True) data = SingleBlockManager(data, index, fastpath=True) generic.NDFrame.__init__(self, data, fastpath=True) self.name = name self._set_axis(0, index, fastpath=True) def _init_dict(self, data, index=None, dtype=None): """ Derive the "_data" and "index" attributes of a new Series from a dictionary input. Parameters ---------- data : dict or dict-like Data used to populate the new Series index : Index or index-like, default None index for the new Series: if None, use dict keys dtype : dtype, default None dtype for the new Series: if None, infer from data Returns ------- _data : BlockManager for the new Series index : index for the new Series """ # Looking for NaN in dict doesn't work ({np.nan : 1}[float('nan')] # raises KeyError), so we iterate the entire dict, and align if data: keys, values = zip(*data.items()) values = list(values) elif index is not None: # fastpath for Series(data=None). Just use broadcasting a scalar # instead of reindexing. values = na_value_for_dtype(dtype) keys = index else: keys, values = [], [] # Input is now list-like, so rely on "standard" construction: s = Series(values, index=keys, dtype=dtype) # Now we just make sure the order is respected, if any if data and index is not None: s = s.reindex(index, copy=False) elif not PY36 and not isinstance(data, OrderedDict) and data: # Need the `and data` to avoid sorting Series(None, index=[...]) # since that isn't really dict-like try: s = s.sort_index() except TypeError: pass return s._data, s.index @classmethod def from_array( cls, arr, index=None, name=None, dtype=None, copy=False, fastpath=False ): """ Construct Series from array. .. deprecated:: 0.23.0 Use pd.Series(..) constructor instead. Returns ------- Series Constructed Series. """ warnings.warn( "'from_array' is deprecated and will be removed in a " "future version. Please use the pd.Series(..) " "constructor instead.", FutureWarning, stacklevel=2, ) if isinstance(arr, ABCSparseArray): from pandas.core.sparse.series import SparseSeries cls = SparseSeries return cls( arr, index=index, name=name, dtype=dtype, copy=copy, fastpath=fastpath ) # ---------------------------------------------------------------------- @property def _constructor(self): return Series @property def _constructor_expanddim(self): from pandas.core.frame import DataFrame return DataFrame # types @property def _can_hold_na(self): return self._data._can_hold_na _index = None def _set_axis(self, axis, labels, fastpath=False): """ Override generic, we want to set the _typ here. """ if not fastpath: labels = ensure_index(labels) is_all_dates = labels.is_all_dates if is_all_dates: if not isinstance(labels, (DatetimeIndex, PeriodIndex, TimedeltaIndex)): try: labels = DatetimeIndex(labels) # need to set here because we changed the index if fastpath: self._data.set_axis(axis, labels) except (tslibs.OutOfBoundsDatetime, ValueError): # labels may exceeds datetime bounds, # or not be a DatetimeIndex pass self._set_subtyp(is_all_dates) object.__setattr__(self, "_index", labels) if not fastpath: self._data.set_axis(axis, labels) def _set_subtyp(self, is_all_dates): if is_all_dates: object.__setattr__(self, "_subtyp", "time_series") else: object.__setattr__(self, "_subtyp", "series") def _update_inplace(self, result, **kwargs): # we want to call the generic version and not the IndexOpsMixin return generic.NDFrame._update_inplace(self, result, **kwargs) @property def name(self): """ Return name of the Series. """ return self._name @name.setter def name(self, value): if value is not None and not is_hashable(value): raise TypeError("Series.name must be a hashable type") object.__setattr__(self, "_name", value) # ndarray compatibility @property def dtype(self): """ Return the dtype object of the underlying data. """ return self._data.dtype @property def dtypes(self): """ Return the dtype object of the underlying data. """ return self._data.dtype @property def ftype(self): """ Return if the data is sparse|dense. .. deprecated:: 0.25.0 Use :func:`dtype` instead. """ warnings.warn( "Series.ftype is deprecated and will " "be removed in a future version. " "Use Series.dtype instead.", FutureWarning, stacklevel=2, ) return self._data.ftype @property def ftypes(self): """ Return if the data is sparse|dense. .. deprecated:: 0.25.0 Use :func:`dtypes` instead. """ warnings.warn( "Series.ftypes is deprecated and will " "be removed in a future version. " "Use Series.dtype instead.", FutureWarning, stacklevel=2, ) return self._data.ftype @property def values(self): """ Return Series as ndarray or ndarray-like depending on the dtype. .. warning:: We recommend using :attr:`Series.array` or :meth:`Series.to_numpy`, depending on whether you need a reference to the underlying data or a NumPy array. Returns ------- numpy.ndarray or ndarray-like See Also -------- Series.array : Reference to the underlying data. Series.to_numpy : A NumPy array representing the underlying data. Examples -------- >>> pd.Series([1, 2, 3]).values array([1, 2, 3]) >>> pd.Series(list('aabc')).values array(['a', 'a', 'b', 'c'], dtype=object) >>> pd.Series(list('aabc')).astype('category').values [a, a, b, c] Categories (3, object): [a, b, c] Timezone aware datetime data is converted to UTC: >>> pd.Series(pd.date_range('20130101', periods=3, ... tz='US/Eastern')).values array(['2013-01-01T05:00:00.000000000', '2013-01-02T05:00:00.000000000', '2013-01-03T05:00:00.000000000'], dtype='datetime64[ns]') """ return self._data.external_values() @property def _values(self): """ Return the internal repr of this data. """ return self._data.internal_values() def get_values(self): """ Same as values (but handles sparseness conversions); is a view. .. deprecated:: 0.25.0 Use :meth:`Series.to_numpy` or :attr:`Series.array` instead. Returns ------- numpy.ndarray Data of the Series. """ warnings.warn( "The 'get_values' method is deprecated and will be removed in a " "future version. Use '.to_numpy()' or '.array' instead.", FutureWarning, stacklevel=2, ) return self._internal_get_values() def _internal_get_values(self): return self._data.get_values() @property def asobject(self): """ Return object Series which contains boxed values. .. deprecated:: 0.23.0 Use ``astype(object)`` instead. *this is an internal non-public method* """ warnings.warn( "'asobject' is deprecated. Use 'astype(object)' instead", FutureWarning, stacklevel=2, ) return self.astype(object).values # ops def ravel(self, order="C"): """ Return the flattened underlying data as an ndarray. Returns ------- numpy.ndarray or ndarray-like Flattened data of the Series. See Also -------- numpy.ndarray.ravel """ return self._values.ravel(order=order) def compress(self, condition, *args, **kwargs): """ Return selected slices of an array along given axis as a Series. .. deprecated:: 0.24.0 Returns ------- Series Series without the slices for which condition is false. See Also -------- numpy.ndarray.compress """ msg = ( "Series.compress(condition) is deprecated. " "Use 'Series[condition]' or " "'np.asarray(series).compress(condition)' instead." ) warnings.warn(msg, FutureWarning, stacklevel=2) nv.validate_compress(args, kwargs) return self[condition] def nonzero(self): """ Return the *integer* indices of the elements that are non-zero. .. deprecated:: 0.24.0 Please use .to_numpy().nonzero() as a replacement. This method is equivalent to calling `numpy.nonzero` on the series data. For compatibility with NumPy, the return value is the same (a tuple with an array of indices for each dimension), but it will always be a one-item tuple because series only have one dimension. Returns ------- numpy.ndarray Indices of elements that are non-zero. See Also -------- numpy.nonzero Examples -------- >>> s = pd.Series([0, 3, 0, 4]) >>> s.nonzero() (array([1, 3]),) >>> s.iloc[s.nonzero()[0]] 1 3 3 4 dtype: int64 # same return although index of s is different >>> s = pd.Series([0, 3, 0, 4], index=['a', 'b', 'c', 'd']) >>> s.nonzero() (array([1, 3]),) >>> s.iloc[s.nonzero()[0]] b 3 d 4 dtype: int64 """ msg = ( "Series.nonzero() is deprecated " "and will be removed in a future version." "Use Series.to_numpy().nonzero() instead" ) warnings.warn(msg, FutureWarning, stacklevel=2) return self._values.nonzero() def put(self, *args, **kwargs): """ Apply the `put` method to its `values` attribute if it has one. .. deprecated:: 0.25.0 See Also -------- numpy.ndarray.put """ warnings.warn( "`put` has been deprecated and will be removed in a future version.", FutureWarning, stacklevel=2, ) self._values.put(*args, **kwargs) def __len__(self): """ Return the length of the Series. """ return len(self._data) def view(self, dtype=None): """ Create a new view of the Series. This function will return a new Series with a view of the same underlying values in memory, optionally reinterpreted with a new data type. The new data type must preserve the same size in bytes as to not cause index misalignment. Parameters ---------- dtype : data type Data type object or one of their string representations. Returns ------- Series A new Series object as a view of the same data in memory. See Also -------- numpy.ndarray.view : Equivalent numpy function to create a new view of the same data in memory. Notes ----- Series are instantiated with ``dtype=float64`` by default. While ``numpy.ndarray.view()`` will return a view with the same data type as the original array, ``Series.view()`` (without specified dtype) will try using ``float64`` and may fail if the original data type size in bytes is not the same. Examples -------- >>> s = pd.Series([-2, -1, 0, 1, 2], dtype='int8') >>> s 0 -2 1 -1 2 0 3 1 4 2 dtype: int8 The 8 bit signed integer representation of `-1` is `0b11111111`, but the same bytes represent 255 if read as an 8 bit unsigned integer: >>> us = s.view('uint8') >>> us 0 254 1 255 2 0 3 1 4 2 dtype: uint8 The views share the same underlying values: >>> us[0] = 128 >>> s 0 -128 1 -1 2 0 3 1 4 2 dtype: int8 """ return self._constructor( self._values.view(dtype), index=self.index ).__finalize__(self) # ---------------------------------------------------------------------- # NDArray Compat _HANDLED_TYPES = (Index, ExtensionArray, np.ndarray) def __array_ufunc__( self, ufunc: Callable, method: str, *inputs: Any, **kwargs: Any ): # TODO: handle DataFrame cls = type(self) # for binary ops, use our custom dunder methods result = ops.maybe_dispatch_ufunc_to_dunder_op( self, ufunc, method, *inputs, **kwargs ) if result is not NotImplemented: return result # Determine if we should defer. no_defer = (np.ndarray.__array_ufunc__, cls.__array_ufunc__) for item in inputs: higher_priority = ( hasattr(item, "__array_priority__") and item.__array_priority__ > self.__array_priority__ ) has_array_ufunc = ( hasattr(item, "__array_ufunc__") and type(item).__array_ufunc__ not in no_defer and not isinstance(item, self._HANDLED_TYPES) ) if higher_priority or has_array_ufunc: return NotImplemented # align all the inputs. names = [getattr(x, "name") for x in inputs if hasattr(x, "name")] types = tuple(type(x) for x in inputs) # TODO: dataframe alignable = [x for x, t in zip(inputs, types) if issubclass(t, Series)] if len(alignable) > 1: # This triggers alignment. # At the moment, there aren't any ufuncs with more than two inputs # so this ends up just being x1.index | x2.index, but we write # it to handle *args. index = alignable[0].index for s in alignable[1:]: index |= s.index inputs = tuple( x.reindex(index) if issubclass(t, Series) else x for x, t in zip(inputs, types) ) else: index = self.index inputs = tuple(extract_array(x, extract_numpy=True) for x in inputs) result = getattr(ufunc, method)(*inputs, **kwargs) if len(set(names)) == 1: # we require names to be hashable, right? name = names[0] # type: Any else: name = None def construct_return(result): if lib.is_scalar(result): return result elif result.ndim > 1: # e.g. np.subtract.outer if method == "outer": msg = ( "outer method for ufunc {} is not implemented on " "pandas objects. Returning an ndarray, but in the " "future this will raise a 'NotImplementedError'. " "Consider explicitly converting the Series " "to an array with '.array' first." ) warnings.warn(msg.format(ufunc), FutureWarning, stacklevel=3) return result return self._constructor(result, index=index, name=name, copy=False) if type(result) is tuple: # multiple return values return tuple(construct_return(x) for x in result) elif method == "at": # no return value return None else: return construct_return(result) def __array__(self, dtype=None): """ Return the values as a NumPy array. Users should not call this directly. Rather, it is invoked by :func:`numpy.array` and :func:`numpy.asarray`. Parameters ---------- dtype : str or numpy.dtype, optional The dtype to use for the resulting NumPy array. By default, the dtype is inferred from the data. Returns ------- numpy.ndarray The values in the series converted to a :class:`numpy.ndarary` with the specified `dtype`. See Also -------- array : Create a new array from data. Series.array : Zero-copy view to the array backing the Series. Series.to_numpy : Series method for similar behavior. Examples -------- >>> ser = pd.Series([1, 2, 3]) >>> np.asarray(ser) array([1, 2, 3]) For timezone-aware data, the timezones may be retained with ``dtype='object'`` >>> tzser = pd.Series(pd.date_range('2000', periods=2, tz="CET")) >>> np.asarray(tzser, dtype="object") array([Timestamp('2000-01-01 00:00:00+0100', tz='CET', freq='D'), Timestamp('2000-01-02 00:00:00+0100', tz='CET', freq='D')], dtype=object) Or the values may be localized to UTC and the tzinfo discared with ``dtype='datetime64[ns]'`` >>> np.asarray(tzser, dtype="datetime64[ns]") # doctest: +ELLIPSIS array(['1999-12-31T23:00:00.000000000', ...], dtype='datetime64[ns]') """ if ( dtype is None and isinstance(self.array, ABCDatetimeArray) and getattr(self.dtype, "tz", None) ): msg = ( "Converting timezone-aware DatetimeArray to timezone-naive " "ndarray with 'datetime64[ns]' dtype. In the future, this " "will return an ndarray with 'object' dtype where each " "element is a 'pandas.Timestamp' with the correct 'tz'.\n\t" "To accept the future behavior, pass 'dtype=object'.\n\t" "To keep the old behavior, pass 'dtype=\"datetime64[ns]\"'." ) warnings.warn(msg, FutureWarning, stacklevel=3) dtype = "M8[ns]" return np.asarray(self.array, dtype) # ---------------------------------------------------------------------- # Unary Methods @property def real(self): """ Return the real value of vector. .. deprecated:: 0.25.0 """ warnings.warn( "`real` is deprecated and will be removed in a future version. " "To eliminate this warning for a Series `ser`, use " "`np.real(ser.to_numpy())` or `ser.to_numpy().real`.", FutureWarning, stacklevel=2, ) return self.values.real @real.setter def real(self, v): self.values.real = v @property def imag(self): """ Return imag value of vector. .. deprecated:: 0.25.0 """ warnings.warn( "`imag` is deprecated and will be removed in a future version. " "To eliminate this warning for a Series `ser`, use " "`np.imag(ser.to_numpy())` or `ser.to_numpy().imag`.", FutureWarning, stacklevel=2, ) return self.values.imag @imag.setter def imag(self, v): self.values.imag = v # coercion __float__ = _coerce_method(float) __long__ = _coerce_method(int) __int__ = _coerce_method(int) # ---------------------------------------------------------------------- def _unpickle_series_compat(self, state): if isinstance(state, dict): self._data = state["_data"] self.name = state["name"] self.index = self._data.index elif isinstance(state, tuple): # < 0.12 series pickle nd_state, own_state = state # recreate the ndarray data = np.empty(nd_state[1], dtype=nd_state[2]) np.ndarray.__setstate__(data, nd_state) # backwards compat index, name = own_state[0], None if len(own_state) > 1: name = own_state[1] # recreate self._data = SingleBlockManager(data, index, fastpath=True) self._index = index self.name = name else: raise Exception("cannot unpickle legacy formats -> [%s]" % state) # indexers @property def axes(self): """ Return a list of the row axis labels. """ return [self.index] # ---------------------------------------------------------------------- # Indexing Methods @Appender(generic.NDFrame.take.__doc__) def take(self, indices, axis=0, is_copy=False, **kwargs): nv.validate_take(tuple(), kwargs) indices = ensure_platform_int(indices) new_index = self.index.take(indices) if is_categorical_dtype(self): # https://github.com/pandas-dev/pandas/issues/20664 # TODO: remove when the default Categorical.take behavior changes indices = maybe_convert_indices(indices, len(self._get_axis(axis))) kwargs = {"allow_fill": False} else: kwargs = {} new_values = self._values.take(indices, **kwargs) result = self._constructor( new_values, index=new_index, fastpath=True ).__finalize__(self) # Maybe set copy if we didn't actually change the index. if is_copy: if not result._get_axis(axis).equals(self._get_axis(axis)): result._set_is_copy(self) return result def _ixs(self, i: int, axis: int = 0): """ Return the i-th value or values in the Series by location. Parameters ---------- i : int Returns ------- scalar (int) or Series (slice, sequence) """ # dispatch to the values if we need values = self._values if isinstance(values, np.ndarray): return libindex.get_value_at(values, i) else: return values[i] def _slice(self, slobj: slice, axis: int = 0, kind=None): slobj = self.index._convert_slice_indexer(slobj, kind=kind or "getitem") return self._get_values(slobj) def __getitem__(self, key): key = com.apply_if_callable(key, self) try: result = self.index.get_value(self, key) if not is_scalar(result): if is_list_like(result) and not isinstance(result, Series): # we need to box if loc of the key isn't scalar here # otherwise have inline ndarray/lists try: if not is_scalar(self.index.get_loc(key)): result = self._constructor( result, index=[key] * len(result), dtype=self.dtype ).__finalize__(self) except KeyError: pass return result except InvalidIndexError: pass except (KeyError, ValueError): if isinstance(key, tuple) and isinstance(self.index, MultiIndex): # kludge pass elif key is Ellipsis: return self elif com.is_bool_indexer(key): pass else: # we can try to coerce the indexer (or this will raise) new_key = self.index._convert_scalar_indexer(key, kind="getitem") if type(new_key) != type(key): return self.__getitem__(new_key) raise if is_iterator(key): key = list(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) return self._get_with(key) def _get_with(self, key): # other: fancy integer or otherwise if isinstance(key, slice): return self._slice(key) elif isinstance(key, ABCDataFrame): raise TypeError( "Indexing a Series with DataFrame is not " "supported, use the appropriate DataFrame column" ) elif isinstance(key, tuple): try: return self._get_values_tuple(key) except Exception: if len(key) == 1: key = key[0] if isinstance(key, slice): return self._get_values(key) raise if not isinstance(key, (list, np.ndarray, Series, Index)): key = list(key) if isinstance(key, Index): key_type = key.inferred_type else: key_type = lib.infer_dtype(key, skipna=False) if key_type == "integer": if self.index.is_integer() or self.index.is_floating(): return self.loc[key] else: return self._get_values(key) elif key_type == "boolean": return self._get_values(key) if isinstance(key, (list, tuple)): # TODO: de-dup with tuple case handled above? # handle the dup indexing case GH#4246 if len(key) == 1 and isinstance(key[0], slice): # [slice(0, 5, None)] will break if you convert to ndarray, # e.g. as requested by np.median # FIXME: hack return self._get_values(key) return self.loc[key] return self.reindex(key) def _get_values_tuple(self, key): # mpl hackaround if com.any_none(*key): return self._get_values(key) if not isinstance(self.index, MultiIndex): raise ValueError("Can only tuple-index with a MultiIndex") # If key is contained, would have returned by now indexer, new_index = self.index.get_loc_level(key) return self._constructor(self._values[indexer], index=new_index).__finalize__( self ) def _get_values(self, indexer): try: return self._constructor( self._data.get_slice(indexer), fastpath=True ).__finalize__(self) except Exception: return self._values[indexer] def _get_value(self, label, takeable: bool = False): """ Quickly retrieve single value at passed index label. Parameters ---------- label : object takeable : interpret the index as indexers, default False Returns ------- scalar value """ if takeable: return com.maybe_box_datetimelike(self._values[label]) return self.index.get_value(self._values, label) def __setitem__(self, key, value): key = com.apply_if_callable(key, self) cacher_needs_updating = self._check_is_chained_assignment_possible() try: self._set_with_engine(key, value) except com.SettingWithCopyError: raise except (KeyError, ValueError): values = self._values if is_integer(key) and not self.index.inferred_type == "integer": values[key] = value elif key is Ellipsis: self[:] = value else: self.loc[key] = value except TypeError as e: if isinstance(key, tuple) and not isinstance(self.index, MultiIndex): raise ValueError("Can only tuple-index with a MultiIndex") # python 3 type errors should be raised if _is_unorderable_exception(e): raise IndexError(key) if com.is_bool_indexer(key): key = check_bool_indexer(self.index, key) try: self._where(~key, value, inplace=True) return except InvalidIndexError: pass self._set_with(key, value) if cacher_needs_updating: self._maybe_update_cacher() def _set_with_engine(self, key, value): values = self._values if is_extension_array_dtype(values.dtype): # The cython indexing engine does not support ExtensionArrays. values[self.index.get_loc(key)] = value return try: self.index._engine.set_value(values, key, value) return except KeyError: values[self.index.get_loc(key)] = value return def _set_with(self, key, value): # other: fancy integer or otherwise if isinstance(key, slice): indexer = self.index._convert_slice_indexer(key, kind="getitem") return self._set_values(indexer, value) elif is_scalar(key) and not is_integer(key) and key not in self.index: # GH#12862 adding an new key to the Series # Note: have to exclude integers because that is ambiguously # position-based self.loc[key] = value return else: if isinstance(key, tuple): try: self._set_values(key, value) except Exception: pass if is_scalar(key): key = [key] elif not isinstance(key, (list, Series, np.ndarray)): try: key = list(key) except Exception: key = [key] if isinstance(key, Index): key_type = key.inferred_type key = key._values else: key_type = lib.infer_dtype(key, skipna=False) if key_type == "integer": if self.index.inferred_type == "integer": self._set_labels(key, value) else: return self._set_values(key, value) elif key_type == "boolean": self._set_values(key.astype(np.bool_), value) else: self._set_labels(key, value) def _set_labels(self, key, value): key = com.asarray_tuplesafe(key) indexer = self.index.get_indexer(key) mask = indexer == -1 if mask.any(): raise ValueError("%s not contained in the index" % str(key[mask])) self._set_values(indexer, value) def _set_values(self, key, value): if isinstance(key, Series): key = key._values self._data = self._data.setitem(indexer=key, value=value) self._maybe_update_cacher() def _set_value(self, label, value, takeable: bool = False): """ Quickly set single value at passed label. If label is not contained, a new object is created with the label placed at the end of the result index. Parameters ---------- label : object Partial indexing with MultiIndex not allowed value : object Scalar value takeable : interpret the index as indexers, default False Returns ------- Series If label is contained, will be reference to calling Series, otherwise a new object. """ try: if takeable: self._values[label] = value else: self.index._engine.set_value(self._values, label, value) except (KeyError, TypeError): # set using a non-recursive method self.loc[label] = value return self # ---------------------------------------------------------------------- # Unsorted @property def _is_mixed_type(self): return False def repeat(self, repeats, axis=None): """ Repeat elements of a Series. Returns a new Series where each element of the current Series is repeated consecutively a given number of times. Parameters ---------- repeats : int or array of ints The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty Series. axis : None Must be ``None``. Has no effect but is accepted for compatibility with numpy. Returns ------- Series Newly created Series with repeated elements. See Also -------- Index.repeat : Equivalent function for Index. numpy.repeat : Similar method for :class:`numpy.ndarray`. Examples -------- >>> s = pd.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object >>> s.repeat(2) 0 a 0 a 1 b 1 b 2 c 2 c dtype: object >>> s.repeat([1, 2, 3]) 0 a 1 b 1 b 2 c 2 c 2 c dtype: object """ nv.validate_repeat(tuple(), dict(axis=axis)) new_index = self.index.repeat(repeats) new_values = self._values.repeat(repeats) return self._constructor(new_values, index=new_index).__finalize__(self) def reset_index(self, level=None, drop=False, name=None, inplace=False): """ Generate a new DataFrame or Series with the index reset. This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation. Parameters ---------- level : int, str, tuple, or list, default optional For a Series with a MultiIndex, only remove the specified levels from the index. Removes all levels by default. drop : bool, default False Just reset the index, without inserting it as a column in the new DataFrame. name : object, optional The name to use for the column containing the original Series values. Uses ``self.name`` by default. This argument is ignored when `drop` is True. inplace : bool, default False Modify the Series in place (do not create a new object). Returns ------- Series or DataFrame When `drop` is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When `drop` is True, a `Series` is returned. In either case, if ``inplace=True``, no value is returned. See Also -------- DataFrame.reset_index: Analogous function for DataFrame. Examples -------- >>> s = pd.Series([1, 2, 3, 4], name='foo', ... index=pd.Index(['a', 'b', 'c', 'd'], name='idx')) Generate a DataFrame with default index. >>> s.reset_index() idx foo 0 a 1 1 b 2 2 c 3 3 d 4 To specify the name of the new column use `name`. >>> s.reset_index(name='values') idx values 0 a 1 1 b 2 2 c 3 3 d 4 To generate a new Series with the default set `drop` to True. >>> s.reset_index(drop=True) 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 To update the Series in place, without generating a new one set `inplace` to True. Note that it also requires ``drop=True``. >>> s.reset_index(inplace=True, drop=True) >>> s 0 1 1 2 2 3 3 4 Name: foo, dtype: int64 The `level` parameter is interesting for Series with a multi-level index. >>> arrays = [np.array(['bar', 'bar', 'baz', 'baz']), ... np.array(['one', 'two', 'one', 'two'])] >>> s2 = pd.Series( ... range(4), name='foo', ... index=pd.MultiIndex.from_arrays(arrays, ... names=['a', 'b'])) To remove a specific level from the Index, use `level`. >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3 If `level` is not set, all levels are removed from the Index. >>> s2.reset_index() a b foo 0 bar one 0 1 bar two 1 2 baz one 2 3 baz two 3 """ inplace = validate_bool_kwarg(inplace, "inplace") if drop: new_index = ibase.default_index(len(self)) if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < self.index.nlevels: new_index = self.index.droplevel(level) if inplace: self.index = new_index # set name if it was passed, otherwise, keep the previous name self.name = name or self.name else: return self._constructor( self._values.copy(), index=new_index ).__finalize__(self) elif inplace: raise TypeError( "Cannot reset_index inplace on a Series to create a DataFrame" ) else: df = self.to_frame(name) return df.reset_index(level=level, drop=drop) # ---------------------------------------------------------------------- # Rendering Methods def __repr__(self): """ Return a string representation for a particular Series. """ buf = StringIO("") width, height = get_terminal_size() max_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.max_rows") ) min_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.min_rows") ) show_dimensions = get_option("display.show_dimensions") self.to_string( buf=buf, name=self.name, dtype=self.dtype, min_rows=min_rows, max_rows=max_rows, length=show_dimensions, ) result = buf.getvalue() return result def to_string( self, buf=None, na_rep="NaN", float_format=None, header=True, index=True, length=False, dtype=False, name=False, max_rows=None, min_rows=None, ): """ Render a string representation of the Series. Parameters ---------- buf : StringIO-like, optional Buffer to write to. na_rep : str, optional String representation of NaN to use, default 'NaN'. float_format : one-parameter function, optional Formatter function to apply to columns' elements if they are floats, default None. header : bool, default True Add the Series header (index name). index : bool, optional Add index (row) labels, default True. length : bool, default False Add the Series length. dtype : bool, default False Add the Series dtype. name : bool, default False Add the Series name if not None. max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. min_rows : int, optional The number of rows to display in a truncated repr (when number of rows is above `max_rows`). Returns ------- str or None String representation of Series if ``buf=None``, otherwise None. """ formatter = fmt.SeriesFormatter( self, name=name, length=length, header=header, index=index, dtype=dtype, na_rep=na_rep, float_format=float_format, min_rows=min_rows, max_rows=max_rows, ) result = formatter.to_string() # catch contract violations if not isinstance(result, str): raise AssertionError( "result must be of type unicode, type" " of result is {0!r}" "".format(result.__class__.__name__) ) if buf is None: return result else: try: buf.write(result) except AttributeError: with open(buf, "w") as f: f.write(result) # ---------------------------------------------------------------------- def items(self): """ Lazily iterate over (index, value) tuples. This method returns an iterable tuple (index, value). This is convenient if you want to create a lazy iterator. Returns ------- iterable Iterable of tuples containing the (index, value) pairs from a Series. See Also -------- DataFrame.items : Iterate over (column name, Series) pairs. DataFrame.iterrows : Iterate over DataFrame rows as (index, Series) pairs. Examples -------- >>> s = pd.Series(['A', 'B', 'C']) >>> for index, value in s.items(): ... print("Index : {}, Value : {}".format(index, value)) Index : 0, Value : A Index : 1, Value : B Index : 2, Value : C """ return zip(iter(self.index), iter(self)) @Appender(items.__doc__) def iteritems(self): return self.items() # ---------------------------------------------------------------------- # Misc public methods def keys(self): """ Return alias for index. Returns ------- Index Index of the Series. """ return self.index def to_dict(self, into=dict): """ Convert Series to {label -> value} dict or dict-like object. Parameters ---------- into : class, default dict The collections.abc.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. .. versionadded:: 0.21.0 Returns ------- collections.abc.Mapping Key-value representation of Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.to_dict() {0: 1, 1: 2, 2: 3, 3: 4} >>> from collections import OrderedDict, defaultdict >>> s.to_dict(OrderedDict) OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)]) >>> dd = defaultdict(list) >>> s.to_dict(dd) defaultdict(<class 'list'>, {0: 1, 1: 2, 2: 3, 3: 4}) """ # GH16122 into_c = com.standardize_mapping(into) return into_c(self.items()) def to_frame(self, name=None): """ Convert Series to DataFrame. Parameters ---------- name : object, default None The passed name should substitute for the series name (if it has one). Returns ------- DataFrame DataFrame representation of Series. Examples -------- >>> s = pd.Series(["a", "b", "c"], ... name="vals") >>> s.to_frame() vals 0 a 1 b 2 c """ if name is None: df = self._constructor_expanddim(self) else: df = self._constructor_expanddim({name: self}) return df def to_sparse(self, kind="block", fill_value=None): """ Convert Series to SparseSeries. .. deprecated:: 0.25.0 Parameters ---------- kind : {'block', 'integer'}, default 'block' fill_value : float, defaults to NaN (missing) Value to use for filling NaN values. Returns ------- SparseSeries Sparse representation of the Series. """ warnings.warn( "Series.to_sparse is deprecated and will be removed in a future version", FutureWarning, stacklevel=2, ) from pandas.core.sparse.series import SparseSeries values = SparseArray(self, kind=kind, fill_value=fill_value) with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="SparseSeries") return SparseSeries(values, index=self.index, name=self.name).__finalize__( self ) def _set_name(self, name, inplace=False): """ Set the Series name. Parameters ---------- name : str inplace : bool whether to modify `self` directly or return a copy """ inplace = validate_bool_kwarg(inplace, "inplace") ser = self if inplace else self.copy() ser.name = name return ser # ---------------------------------------------------------------------- # Statistics, overridden ndarray methods # TODO: integrate bottleneck def count(self, level=None): """ Return number of non-NA/null observations in the Series. Parameters ---------- level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series. Returns ------- int or Series (if level specified) Number of non-null values in the Series. Examples -------- >>> s = pd.Series([0.0, 1.0, np.nan]) >>> s.count() 2 """ if level is None: return notna(self.array).sum() if isinstance(level, str): level = self.index._get_level_number(level) lev = self.index.levels[level] level_codes = np.array(self.index.codes[level], subok=False, copy=True) mask = level_codes == -1 if mask.any(): level_codes[mask] = cnt = len(lev) lev = lev.insert(cnt, lev._na_value) obs = level_codes[notna(self.values)] out = np.bincount(obs, minlength=len(lev) or None) return self._constructor(out, index=lev, dtype="int64").__finalize__(self) def mode(self, dropna=True): """ Return the mode(s) of the dataset. Always returns Series even if only one value is returned. Parameters ---------- dropna : bool, default True Don't consider counts of NaN/NaT. .. versionadded:: 0.24.0 Returns ------- Series Modes of the Series in sorted order. """ # TODO: Add option for bins like value_counts() return algorithms.mode(self, dropna=dropna) def unique(self): """ Return unique values of Series object. Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort. Returns ------- ndarray or ExtensionArray The unique values returned as a NumPy array. See Notes. See Also -------- unique : Top-level unique method for any 1-d array-like object. Index.unique : Return Index with unique values from an Index object. Notes ----- Returns the unique values as a NumPy array. In case of an extension-array backed Series, a new :class:`~api.extensions.ExtensionArray` of that type with just the unique values is returned. This includes * Categorical * Period * Datetime with Timezone * Interval * Sparse * IntegerNA See Examples section. Examples -------- >>> pd.Series([2, 1, 3, 3], name='A').unique() array([2, 1, 3]) >>> pd.Series([pd.Timestamp('2016-01-01') for _ in range(3)]).unique() array(['2016-01-01T00:00:00.000000000'], dtype='datetime64[ns]') >>> pd.Series([pd.Timestamp('2016-01-01', tz='US/Eastern') ... for _ in range(3)]).unique() <DatetimeArray> ['2016-01-01 00:00:00-05:00'] Length: 1, dtype: datetime64[ns, US/Eastern] An unordered Categorical will return categories in the order of appearance. >>> pd.Series(pd.Categorical(list('baabc'))).unique() [b, a, c] Categories (3, object): [b, a, c] An ordered Categorical preserves the category ordering. >>> pd.Series(pd.Categorical(list('baabc'), categories=list('abc'), ... ordered=True)).unique() [b, a, c] Categories (3, object): [a < b < c] """ result = super().unique() return result def drop_duplicates(self, keep="first", inplace=False): """ Return Series with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : bool, default ``False`` If ``True``, performs operation inplace and returns None. Returns ------- Series Series with duplicates dropped. See Also -------- Index.drop_duplicates : Equivalent method on Index. DataFrame.drop_duplicates : Equivalent method on DataFrame. Series.duplicated : Related method on Series, indicating duplicate Series values. Examples -------- Generate a Series with duplicated entries. >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the 'keep' parameter, the selection behaviour of duplicated values can be changed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value 'last' for parameter 'keep' keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value ``False`` for parameter 'keep' discards all sets of duplicated entries. Setting the value of 'inplace' to ``True`` performs the operation inplace and returns ``None``. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object """ return super().drop_duplicates(keep=keep, inplace=inplace) def duplicated(self, keep="first"): """ Indicate duplicate Series values. Duplicated values are indicated as ``True`` values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' - 'first' : Mark duplicates as ``True`` except for the first occurrence. - 'last' : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- Series Series indicating whether each value has occurred in the preceding values. See Also -------- Index.duplicated : Equivalent method on pandas.Index. DataFrame.duplicated : Equivalent method on pandas.DataFrame. Series.drop_duplicates : Remove duplicate values from Series. Examples -------- By default, for each set of duplicated values, the first occurrence is set on False and all others on True: >>> animals = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> animals.duplicated() 0 False 1 False 2 True 3 False 4 True dtype: bool which is equivalent to >>> animals.duplicated(keep='first') 0 False 1 False 2 True 3 False 4 True dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> animals.duplicated(keep='last') 0 True 1 False 2 True 3 False 4 False dtype: bool By setting keep on ``False``, all duplicates are True: >>> animals.duplicated(keep=False) 0 True 1 False 2 True 3 False 4 True dtype: bool """ return super().duplicated(keep=keep) def idxmin(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the minimum value. If multiple values equal the minimum, the first row label with that value is returned. Parameters ---------- skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. axis : int, default 0 For compatibility with DataFrame.idxmin. Redundant for application on Series. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the minimum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmin : Return indices of the minimum values along the given axis. DataFrame.idxmin : Return index of first occurrence of minimum over requested axis. Series.idxmax : Return index *label* of the first occurrence of maximum of values. Notes ----- This method is the Series version of ``ndarray.argmin``. This method returns the label of the minimum, while ``ndarray.argmin`` returns the position. To get the position, use ``series.values.argmin()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 1], ... index=['A', 'B', 'C', 'D']) >>> s A 1.0 B NaN C 4.0 D 1.0 dtype: float64 >>> s.idxmin() 'A' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmin(skipna=False) nan """ skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs) i = nanops.nanargmin(com.values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i] def idxmax(self, axis=0, skipna=True, *args, **kwargs): """ Return the row label of the maximum value. If multiple values equal the maximum, the first row label with that value is returned. Parameters ---------- skipna : bool, default True Exclude NA/null values. If the entire Series is NA, the result will be NA. axis : int, default 0 For compatibility with DataFrame.idxmax. Redundant for application on Series. *args, **kwargs Additional keywords have no effect but might be accepted for compatibility with NumPy. Returns ------- Index Label of the maximum value. Raises ------ ValueError If the Series is empty. See Also -------- numpy.argmax : Return indices of the maximum values along the given axis. DataFrame.idxmax : Return index of first occurrence of maximum over requested axis. Series.idxmin : Return index *label* of the first occurrence of minimum of values. Notes ----- This method is the Series version of ``ndarray.argmax``. This method returns the label of the maximum, while ``ndarray.argmax`` returns the position. To get the position, use ``series.values.argmax()``. Examples -------- >>> s = pd.Series(data=[1, None, 4, 3, 4], ... index=['A', 'B', 'C', 'D', 'E']) >>> s A 1.0 B NaN C 4.0 D 3.0 E 4.0 dtype: float64 >>> s.idxmax() 'C' If `skipna` is False and there is an NA value in the data, the function returns ``nan``. >>> s.idxmax(skipna=False) nan """ skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs) i = nanops.nanargmax(com.values_from_object(self), skipna=skipna) if i == -1: return np.nan return self.index[i] # ndarray compat argmin = deprecate( "argmin", idxmin, "0.21.0", msg=dedent( """ The current behaviour of 'Series.argmin' is deprecated, use 'idxmin' instead. The behavior of 'argmin' will be corrected to return the positional minimum in the future. For now, use 'series.values.argmin' or 'np.argmin(np.array(values))' to get the position of the minimum row.""" ), ) argmax = deprecate( "argmax", idxmax, "0.21.0", msg=dedent( """ The current behaviour of 'Series.argmax' is deprecated, use 'idxmax' instead. The behavior of 'argmax' will be corrected to return the positional maximum in the future. For now, use 'series.values.argmax' or 'np.argmax(np.array(values))' to get the position of the maximum row.""" ), ) def round(self, decimals=0, *args, **kwargs): """ Round each value in a Series to the given number of decimals. Parameters ---------- decimals : int Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. Returns ------- Series Rounded values of the Series. See Also -------- numpy.around : Round values of an np.array. DataFrame.round : Round values of a DataFrame. Examples -------- >>> s = pd.Series([0.1, 1.3, 2.7]) >>> s.round() 0 0.0 1 1.0 2 3.0 dtype: float64 """ nv.validate_round(args, kwargs) result = com.values_from_object(self).round(decimals) result = self._constructor(result, index=self.index).__finalize__(self) return result def quantile(self, q=0.5, interpolation="linear"): """ Return value at the given quantile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- float or Series If ``q`` is an array, a Series will be returned where the index is ``q`` and the values are the quantiles, otherwise a float will be returned. See Also -------- core.window.Rolling.quantile numpy.percentile Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s.quantile(.5) 2.5 >>> s.quantile([.25, .5, .75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 """ self._check_percentile(q) # We dispatch to DataFrame so that core.internals only has to worry # about 2D cases. df = self.to_frame() result = df.quantile(q=q, interpolation=interpolation, numeric_only=False) if result.ndim == 2: result = result.iloc[:, 0] if is_list_like(q): result.name = self.name return self._constructor(result, index=Float64Index(q), name=self.name) else: # scalar return result.iloc[0] def corr(self, other, method="pearson", min_periods=None): """ Compute correlation with `other` Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the correlation. method : {'pearson', 'kendall', 'spearman'} or callable * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation * callable: callable with input two 1d ndarrays and returning a float. Note that the returned matrix from corr will have 1 along the diagonals and will be symmetric regardless of the callable's behavior .. versionadded:: 0.24.0 min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Correlation with other. Examples -------- >>> def histogram_intersection(a, b): ... v = np.minimum(a, b).sum().round(decimals=1) ... return v >>> s1 = pd.Series([.2, .0, .6, .2]) >>> s2 = pd.Series([.3, .6, .0, .1]) >>> s1.corr(s2, method=histogram_intersection) 0.3 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan if method in ["pearson", "spearman", "kendall"] or callable(method): return nanops.nancorr( this.values, other.values, method=method, min_periods=min_periods ) raise ValueError( "method must be either 'pearson', " "'spearman', 'kendall', or a callable, " "'{method}' was supplied".format(method=method) ) def cov(self, other, min_periods=None): """ Compute covariance with Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the covariance. min_periods : int, optional Minimum number of observations needed to have a valid result. Returns ------- float Covariance between Series and other normalized by N-1 (unbiased estimator). Examples -------- >>> s1 = pd.Series([0.90010907, 0.13484424, 0.62036035]) >>> s2 = pd.Series([0.12528585, 0.26962463, 0.51111198]) >>> s1.cov(s2) -0.01685762652715874 """ this, other = self.align(other, join="inner", copy=False) if len(this) == 0: return np.nan return nanops.nancov(this.values, other.values, min_periods=min_periods) def diff(self, periods=1): """ First discrete difference of element. Calculates the difference of a Series element compared with another element in the Series (default is element in previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. Returns ------- Series First differences of the Series. See Also -------- Series.pct_change: Percent change over given number of periods. Series.shift: Shift index by desired number of periods with an optional time freq. DataFrame.diff: First discrete difference of object. Examples -------- Difference with previous row >>> s = pd.Series([1, 1, 2, 3, 5, 8]) >>> s.diff() 0 NaN 1 0.0 2 1.0 3 1.0 4 2.0 5 3.0 dtype: float64 Difference with 3rd previous row >>> s.diff(periods=3) 0 NaN 1 NaN 2 NaN 3 2.0 4 4.0 5 6.0 dtype: float64 Difference with following row >>> s.diff(periods=-1) 0 0.0 1 -1.0 2 -1.0 3 -2.0 4 -3.0 5 NaN dtype: float64 """ result = algorithms.diff(com.values_from_object(self), periods) return self._constructor(result, index=self.index).__finalize__(self) def autocorr(self, lag=1): """ Compute the lag-N autocorrelation. This method computes the Pearson correlation between the Series and its shifted self. Parameters ---------- lag : int, default 1 Number of lags to apply before performing autocorrelation. Returns ------- float The Pearson correlation between self and self.shift(lag). See Also -------- Series.corr : Compute the correlation between two Series. Series.shift : Shift index by desired number of periods. DataFrame.corr : Compute pairwise correlation of columns. DataFrame.corrwith : Compute pairwise correlation between rows or columns of two DataFrame objects. Notes ----- If the Pearson correlation is not well defined return 'NaN'. Examples -------- >>> s = pd.Series([0.25, 0.5, 0.2, -0.05]) >>> s.autocorr() # doctest: +ELLIPSIS 0.10355... >>> s.autocorr(lag=2) # doctest: +ELLIPSIS -0.99999... If the Pearson correlation is not well defined, then 'NaN' is returned. >>> s = pd.Series([1, 0, 0, 0]) >>> s.autocorr() nan """ return self.corr(self.shift(lag)) def dot(self, other): """ Compute the dot product between the Series and the columns of other. This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array. It can also be called using `self @ other` in Python >= 3.5. Parameters ---------- other : Series, DataFrame or array-like The other object to compute the dot product with its columns. Returns ------- scalar, Series or numpy.ndarray Return the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array. See Also -------- DataFrame.dot: Compute the matrix product with the DataFrame. Series.mul: Multiplication of series and other, element-wise. Notes ----- The Series and other has to share the same index if other is a Series or a DataFrame. Examples -------- >>> s = pd.Series([0, 1, 2, 3]) >>> other = pd.Series([-1, 2, -3, 4]) >>> s.dot(other) 8 >>> s @ other 8 >>> df = pd.DataFrame([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(df) 0 24 1 14 dtype: int64 >>> arr = np.array([[0, 1], [-2, 3], [4, -5], [6, 7]]) >>> s.dot(arr) array([24, 14]) """ if isinstance(other, (Series, ABCDataFrame)): common = self.index.union(other.index) if len(common) > len(self.index) or len(common) > len(other.index): raise ValueError("matrices are not aligned") left = self.reindex(index=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: lvals = self.values rvals = np.asarray(other) if lvals.shape[0] != rvals.shape[0]: raise Exception( "Dot product shape mismatch, %s vs %s" % (lvals.shape, rvals.shape) ) if isinstance(other, ABCDataFrame): return self._constructor( np.dot(lvals, rvals), index=other.columns ).__finalize__(self) elif isinstance(other, Series): return np.dot(lvals, rvals) elif isinstance(rvals, np.ndarray): return np.dot(lvals, rvals) else: # pragma: no cover raise TypeError("unsupported type: %s" % type(other)) def __matmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(other) def __rmatmul__(self, other): """ Matrix multiplication using binary `@` operator in Python>=3.5. """ return self.dot(np.transpose(other)) @Substitution(klass="Series") @Appender(base._shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): return algorithms.searchsorted(self._values, value, side=side, sorter=sorter) # ------------------------------------------------------------------- # Combination def append(self, to_append, ignore_index=False, verify_integrity=False): """ Concatenate two or more Series. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : bool, default False If True, do not use the index labels. verify_integrity : bool, default False If True, raise Exception on creating index with duplicates. Returns ------- Series Concatenated Series. See Also -------- concat : General function to concatenate DataFrame or Series objects. Notes ----- Iteratively appending to a Series can be more computationally intensive than a single concatenate. A better solution is to append values to a list and then concatenate the list with the original Series all at once. Examples -------- >>> s1 = pd.Series([1, 2, 3]) >>> s2 = pd.Series([4, 5, 6]) >>> s3 = pd.Series([4, 5, 6], index=[3, 4, 5]) >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `verify_integrity` set to True: >>> s1.append(s2, verify_integrity=True) Traceback (most recent call last): ... ValueError: Indexes have overlapping values: [0, 1, 2] """ from pandas.core.reshape.concat import concat if isinstance(to_append, (list, tuple)): to_concat = [self] to_concat.extend(to_append) else: to_concat = [self, to_append] return concat( to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity ) def _binop(self, other, func, level=None, fill_value=None): """ Perform generic binary operation with optional fill value. Parameters ---------- other : Series func : binary operator fill_value : float or object Value to substitute for NA/null values. If both Series are NA in a location, the result will be NA regardless of the passed fill value level : int or level name, default None Broadcast across a level, matching Index values on the passed MultiIndex level Returns ------- Series """ if not isinstance(other, Series): raise AssertionError("Other operand must be Series") new_index = self.index this = self if not self.index.equals(other.index): this, other = self.align(other, level=level, join="outer", copy=False) new_index = this.index this_vals, other_vals = ops.fill_binop(this.values, other.values, fill_value) with np.errstate(all="ignore"): result = func(this_vals, other_vals) name = ops.get_op_result_name(self, other) if func.__name__ in ["divmod", "rdivmod"]: ret = ops._construct_divmod_result(self, result, new_index, name) else: ret = ops._construct_result(self, result, new_index, name) return ret def combine(self, other, func, fill_value=None): """ Combine the Series with a Series or scalar according to `func`. Combine the Series and `other` using `func` to perform elementwise selection for combined Series. `fill_value` is assumed when value is missing at some index from one of the two objects being combined. Parameters ---------- other : Series or scalar The value(s) to be combined with the `Series`. func : function Function that takes two scalars as inputs and returns an element. fill_value : scalar, optional The value to assume when an index is missing from one Series or the other. The default specifies to use the appropriate NaN value for the underlying dtype of the Series. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine_first : Combine Series values, choosing the calling Series' values first. Examples -------- Consider 2 Datasets ``s1`` and ``s2`` containing highest clocked speeds of different birds. >>> s1 = pd.Series({'falcon': 330.0, 'eagle': 160.0}) >>> s1 falcon 330.0 eagle 160.0 dtype: float64 >>> s2 = pd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0}) >>> s2 falcon 345.0 eagle 200.0 duck 30.0 dtype: float64 Now, to combine the two datasets and view the highest speeds of the birds across the two datasets >>> s1.combine(s2, max) duck NaN eagle 200.0 falcon 345.0 dtype: float64 In the previous example, the resulting value for duck is missing, because the maximum of a NaN and a float is a NaN. So, in the example, we set ``fill_value=0``, so the maximum value returned will be the value from some dataset. >>> s1.combine(s2, max, fill_value=0) duck 30.0 eagle 200.0 falcon 345.0 dtype: float64 """ if fill_value is None: fill_value = na_value_for_dtype(self.dtype, compat=False) if isinstance(other, Series): # If other is a Series, result is based on union of Series, # so do this element by element new_index = self.index.union(other.index) new_name = ops.get_op_result_name(self, other) new_values = [] for idx in new_index: lv = self.get(idx, fill_value) rv = other.get(idx, fill_value) with np.errstate(all="ignore"): new_values.append(func(lv, rv)) else: # Assume that other is a scalar, so apply the function for # each element in the Series new_index = self.index with np.errstate(all="ignore"): new_values = [func(lv, other) for lv in self._values] new_name = self.name if is_categorical_dtype(self.values): pass elif is_extension_array_dtype(self.values): # The function can return something of any type, so check # if the type is compatible with the calling EA. try: new_values = self._values._from_sequence(new_values) except Exception: # https://github.com/pandas-dev/pandas/issues/22850 # pandas has no control over what 3rd-party ExtensionArrays # do in _values_from_sequence. We still want ops to work # though, so we catch any regular Exception. pass return self._constructor(new_values, index=new_index, name=new_name) def combine_first(self, other): """ Combine Series values, choosing the calling Series's values first. Parameters ---------- other : Series The value(s) to be combined with the `Series`. Returns ------- Series The result of combining the Series with the other object. See Also -------- Series.combine : Perform elementwise operation on two Series using a given function. Notes ----- Result index will be the union of the two indexes. Examples -------- >>> s1 = pd.Series([1, np.nan]) >>> s2 = pd.Series([3, 4]) >>> s1.combine_first(s2) 0 1.0 1 4.0 dtype: float64 """ new_index = self.index.union(other.index) this = self.reindex(new_index, copy=False) other = other.reindex(new_index, copy=False) if is_datetimelike(this) and not is_datetimelike(other): other = to_datetime(other) return this.where(notna(this), other) def update(self, other): """ Modify Series in place using non-NA values from passed Series. Aligns on index. Parameters ---------- other : Series Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = pd.Series(['a', 'b', 'c']) >>> s.update(pd.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If ``other`` contains NaNs the corresponding values are not updated in the original Series. >>> s = pd.Series([1, 2, 3]) >>> s.update(pd.Series([4, np.nan, 6])) >>> s 0 4 1 2 2 6 dtype: int64 """ other = other.reindex_like(self) mask = notna(other) self._data = self._data.putmask(mask=mask, new=other, inplace=True) self._maybe_update_cacher() # ---------------------------------------------------------------------- # Reindexing, sorting def sort_values( self, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ): """ Sort by the values. Sort a Series in ascending or descending order by some criterion. Parameters ---------- axis : {0 or 'index'}, default 0 Axis to direct sorting. The value 'index' is accepted for compatibility with DataFrame.sort_values. ascending : bool, default True If True, sort values in ascending order, otherwise descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort' or 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. na_position : {'first' or 'last'}, default 'last' Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Returns ------- Series Series ordered by values. See Also -------- Series.sort_index : Sort by the Series indices. DataFrame.sort_values : Sort DataFrame by the values along either axis. DataFrame.sort_index : Sort DataFrame by indices. Examples -------- >>> s = pd.Series([np.nan, 1, 3, 10, 5]) >>> s 0 NaN 1 1.0 2 3.0 3 10.0 4 5.0 dtype: float64 Sort values ascending order (default behaviour) >>> s.sort_values(ascending=True) 1 1.0 2 3.0 4 5.0 3 10.0 0 NaN dtype: float64 Sort values descending order >>> s.sort_values(ascending=False) 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values inplace >>> s.sort_values(ascending=False, inplace=True) >>> s 3 10.0 4 5.0 2 3.0 1 1.0 0 NaN dtype: float64 Sort values putting NAs first >>> s.sort_values(na_position='first') 0 NaN 1 1.0 2 3.0 4 5.0 3 10.0 dtype: float64 Sort a series of strings >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) >>> s 0 z 1 b 2 d 3 a 4 c dtype: object >>> s.sort_values() 3 a 1 b 4 c 2 d 0 z dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) # GH 5856/5853 if inplace and self._is_cached: raise ValueError( "This Series is a view of some other array, to " "sort in-place you must create a copy" ) def _try_kind_sort(arr): # easier to ask forgiveness than permission try: # if kind==mergesort, it can fail for object dtype return arr.argsort(kind=kind) except TypeError: # stable sort not available for object dtype # uses the argsort default quicksort return arr.argsort(kind="quicksort") arr = self._values sortedIdx = np.empty(len(self), dtype=np.int32) bad = isna(arr) good = ~bad idx = ibase.default_index(len(self)) argsorted = _try_kind_sort(arr[good]) if is_list_like(ascending): if len(ascending) != 1: raise ValueError( "Length of ascending (%d) must be 1 " "for Series" % (len(ascending)) ) ascending = ascending[0] if not is_bool(ascending): raise ValueError("ascending must be boolean") if not ascending: argsorted = argsorted[::-1] if na_position == "last": n = good.sum() sortedIdx[:n] = idx[good][argsorted] sortedIdx[n:] = idx[bad] elif na_position == "first": n = bad.sum() sortedIdx[n:] = idx[good][argsorted] sortedIdx[:n] = idx[bad] else: raise ValueError("invalid na_position: {!r}".format(na_position)) result = self._constructor(arr[sortedIdx], index=self.index[sortedIdx]) if inplace: self._update_inplace(result) else: return result.__finalize__(self) def sort_index( self, axis=0, level=None, ascending=True, inplace=False, kind="quicksort", na_position="last", sort_remaining=True, ): """ Sort Series by index labels. Returns a new Series sorted by label if `inplace` argument is ``False``, otherwise updates the original series and returns None. Parameters ---------- axis : int, default 0 Axis to direct sorting. This can only be 0 for Series. level : int, optional If not None, sort on values in specified index level(s). ascending : bool, default true Sort ascending vs. descending. inplace : bool, default False If True, perform operation in-place. kind : {'quicksort', 'mergesort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See also :func:`numpy.sort` for more information. 'mergesort' is the only stable algorithm. For DataFrames, this option is only applied when sorting on a single column or label. na_position : {'first', 'last'}, default 'last' If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Not implemented for MultiIndex. sort_remaining : bool, default True If True and sorting by level and index is multilevel, sort by other levels too (in order) after sorting by specified level. Returns ------- Series The original Series sorted by the labels. See Also -------- DataFrame.sort_index: Sort DataFrame by the index. DataFrame.sort_values: Sort DataFrame by the value. Series.sort_values : Sort Series by the value. Examples -------- >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4]) >>> s.sort_index() 1 c 2 b 3 a 4 d dtype: object Sort Descending >>> s.sort_index(ascending=False) 4 d 3 a 2 b 1 c dtype: object Sort Inplace >>> s.sort_index(inplace=True) >>> s 1 c 2 b 3 a 4 d dtype: object By default NaNs are put at the end, but use `na_position` to place them at the beginning >>> s = pd.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, np.nan]) >>> s.sort_index(na_position='first') NaN d 1.0 c 2.0 b 3.0 a dtype: object Specify index level to sort >>> arrays = [np.array(['qux', 'qux', 'foo', 'foo', ... 'baz', 'baz', 'bar', 'bar']), ... np.array(['two', 'one', 'two', 'one', ... 'two', 'one', 'two', 'one'])] >>> s = pd.Series([1, 2, 3, 4, 5, 6, 7, 8], index=arrays) >>> s.sort_index(level=1) bar one 8 baz one 6 foo one 4 qux one 2 bar two 7 baz two 5 foo two 3 qux two 1 dtype: int64 Does not sort by remaining levels when sorting by levels >>> s.sort_index(level=1, sort_remaining=False) qux one 2 foo one 4 baz one 6 bar one 8 qux two 1 foo two 3 baz two 5 bar two 7 dtype: int64 """ # TODO: this can be combined with DataFrame.sort_index impl as # almost identical inplace = validate_bool_kwarg(inplace, "inplace") # Validate the axis parameter self._get_axis_number(axis) index = self.index if level is not None: new_index, indexer = index.sortlevel( level, ascending=ascending, sort_remaining=sort_remaining ) elif isinstance(index, MultiIndex): from pandas.core.sorting import lexsort_indexer labels = index._sort_levels_monotonic() indexer = lexsort_indexer( labels._get_codes_for_sorting(), orders=ascending, na_position=na_position, ) else: from pandas.core.sorting import nargsort # Check monotonic-ness before sort an index # GH11080 if (ascending and index.is_monotonic_increasing) or ( not ascending and index.is_monotonic_decreasing ): if inplace: return else: return self.copy() indexer = nargsort( index, kind=kind, ascending=ascending, na_position=na_position ) indexer = ensure_platform_int(indexer) new_index = index.take(indexer) new_index = new_index._sort_levels_monotonic() new_values = self._values.take(indexer) result = self._constructor(new_values, index=new_index) if inplace: self._update_inplace(result) else: return result.__finalize__(self) def argsort(self, axis=0, kind="quicksort", order=None): """ Override ndarray.argsort. Argsorts the value, omitting NA/null values, and places the result in the same locations as the non-NA values. Parameters ---------- axis : int Has no effect but is accepted for compatibility with numpy. kind : {'mergesort', 'quicksort', 'heapsort'}, default 'quicksort' Choice of sorting algorithm. See np.sort for more information. 'mergesort' is the only stable algorithm order : None Has no effect but is accepted for compatibility with numpy. Returns ------- Series Positions of values within the sort order with -1 indicating nan values. See Also -------- numpy.ndarray.argsort """ values = self._values mask = isna(values) if mask.any(): result = Series(-1, index=self.index, name=self.name, dtype="int64") notmask = ~mask result[notmask] = np.argsort(values[notmask], kind=kind) return self._constructor(result, index=self.index).__finalize__(self) else: return self._constructor( np.argsort(values, kind=kind), index=self.index, dtype="int64" ).__finalize__(self) def nlargest(self, n=5, keep="first"): """ Return the largest `n` elements. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. See Also -------- Series.nsmallest: Get the `n` smallest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values(ascending=False).head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` largest elements where ``n=5`` by default. >>> s.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3``. Default `keep` value is 'first' so Malta will be kept. >>> s.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 The `n` largest elements where ``n=3`` and keeping the last duplicates. Brunei will be kept since it is the last with value 434000 based on the index order. >>> s.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 The `n` largest elements where ``n=3`` with all duplicates kept. Note that the returned Series has five elements due to the three duplicates. >>> s.nlargest(3, keep='all') France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nlargest() def nsmallest(self, n=5, keep="first"): """ Return the smallest `n` elements. Parameters ---------- n : int, default 5 Return this many ascending sorted values. keep : {'first', 'last', 'all'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. - ``all`` : keep all occurrences. This can result in a Series of size larger than `n`. Returns ------- Series The `n` smallest values in the Series, sorted in increasing order. See Also -------- Series.nlargest: Get the `n` largest elements. Series.sort_values: Sort Series by values. Series.head: Return the first `n` rows. Notes ----- Faster than ``.sort_values().head(n)`` for small `n` relative to the size of the ``Series`` object. Examples -------- >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Brunei": 434000, "Malta": 434000, ... "Maldives": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Monserat": 5200} >>> s = pd.Series(countries_population) >>> s Italy 59000000 France 65000000 Brunei 434000 Malta 434000 Maldives 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Monserat 5200 dtype: int64 The `n` smallest elements where ``n=5`` by default. >>> s.nsmallest() Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 Iceland 337000 dtype: int64 The `n` smallest elements where ``n=3``. Default `keep` value is 'first' so Nauru and Tuvalu will be kept. >>> s.nsmallest(3) Monserat 5200 Nauru 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` and keeping the last duplicates. Anguilla and Tuvalu will be kept since they are the last with value 11300 based on the index order. >>> s.nsmallest(3, keep='last') Monserat 5200 Anguilla 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` with all duplicates kept. Note that the returned Series has four elements due to the three duplicates. >>> s.nsmallest(3, keep='all') Monserat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 dtype: int64 """ return algorithms.SelectNSeries(self, n=n, keep=keep).nsmallest() def swaplevel(self, i=-2, j=-1, copy=True): """ Swap levels i and j in a :class:`MultiIndex`. Default is to swap the two innermost levels of the index. Parameters ---------- i, j : int, str (can be mixed) Level of index to be swapped. Can pass level name as string. copy : bool, default True Whether to copy underlying data. Returns ------- Series Series with levels swapped in MultiIndex. """ new_index = self.index.swaplevel(i, j) return self._constructor(self._values, index=new_index, copy=copy).__finalize__( self ) def reorder_levels(self, order): """ Rearrange index levels using input order. May not drop or duplicate levels. Parameters ---------- order : list of int representing new level order (reference level by number or key) Returns ------- type of caller (new object) """ if not isinstance(self.index, MultiIndex): # pragma: no cover raise Exception("Can only reorder levels on a hierarchical axis.") result = self.copy() result.index = result.index.reorder_levels(order) return result def explode(self) -> "Series": """ Transform each element of a list-like to a row, replicating the index values. .. versionadded:: 0.25.0 Returns ------- Series Exploded lists to rows; index will be duplicated for these rows. See Also -------- Series.str.split : Split string values on specified separator. Series.unstack : Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. DataFrame.melt : Unpivot a DataFrame from wide format to long format. DataFrame.explode : Explode a DataFrame from list-like columns to long format. Notes ----- This routine will explode list-likes including lists, tuples, Series, and np.ndarray. The result dtype of the subset rows will be object. Scalars will be returned unchanged. Empty list-likes will result in a np.nan for that row. Examples -------- >>> s = pd.Series([[1, 2, 3], 'foo', [], [3, 4]]) >>> s 0 [1, 2, 3] 1 foo 2 [] 3 [3, 4] dtype: object >>> s.explode() 0 1 0 2 0 3 1 foo 2 NaN 3 3 3 4 dtype: object """ if not len(self) or not is_object_dtype(self): return self.copy() values, counts = reshape.explode(np.asarray(self.array)) result = Series(values, index=self.index.repeat(counts), name=self.name) return result def unstack(self, level=-1, fill_value=None): """ Unstack, a.k.a. pivot, Series with MultiIndex to produce DataFrame. The level involved will automatically get sorted. Parameters ---------- level : int, str, or list of these, default last level Level(s) to unstack, can pass level name. fill_value : scalar value, default None Value to use when replacing NaN values. Returns ------- DataFrame Unstacked Series. Examples -------- >>> s = pd.Series([1, 2, 3, 4], ... index=pd.MultiIndex.from_product([['one', 'two'], ... ['a', 'b']])) >>> s one a 1 b 2 two a 3 b 4 dtype: int64 >>> s.unstack(level=-1) a b one 1 2 two 3 4 >>> s.unstack(level=0) one two a 1 3 b 2 4 """ from pandas.core.reshape.reshape import unstack return unstack(self, level, fill_value) # ---------------------------------------------------------------------- # function application def map(self, arg, na_action=None): """ Map values of Series according to input correspondence. Used for substituting each value in a Series with another value, that may be derived from a function, a ``dict`` or a :class:`Series`. Parameters ---------- arg : function, dict, or Series Mapping correspondence. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to the mapping correspondence. Returns ------- Series Same index as caller. See Also -------- Series.apply : For applying more complex functions on a Series. DataFrame.apply : Apply a function row-/column-wise. DataFrame.applymap : Apply a function elementwise on a whole DataFrame. Notes ----- When ``arg`` is a dictionary, values in Series that are not in the dictionary (as keys) are converted to ``NaN``. However, if the dictionary is a ``dict`` subclass that defines ``__missing__`` (i.e. provides a method for default values), then this default is used rather than ``NaN``. Examples -------- >>> s = pd.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 NaN 3 rabbit dtype: object ``map`` accepts a ``dict`` or a ``Series``. Values that are not found in the ``dict`` are converted to ``NaN``, unless the dict has a default value (e.g. ``defaultdict``): >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 NaN 3 NaN dtype: object It also accepts a function: >>> s.map('I am a {}'.format) 0 I am a cat 1 I am a dog 2 I am a nan 3 I am a rabbit dtype: object To avoid applying the function to missing values (and keep them as ``NaN``) ``na_action='ignore'`` can be used: >>> s.map('I am a {}'.format, na_action='ignore') 0 I am a cat 1 I am a dog 2 NaN 3 I am a rabbit dtype: object """ new_values = super()._map_values(arg, na_action=na_action) return self._constructor(new_values, index=self.index).__finalize__(self) def _gotitem(self, key, ndim, subset=None): """ Sub-classes to define. Return a sliced object. Parameters ---------- key : string / list of selections ndim : 1,2 requested ndim of result subset : object, default None subset to act on """ return self _agg_see_also_doc = dedent( """ See Also -------- Series.apply : Invoke function on a Series. Series.transform : Transform function producing a Series with like indexes. """ ) _agg_examples_doc = dedent( """ Examples -------- >>> s = pd.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.agg('min') 1 >>> s.agg(['min', 'max']) min 1 max 4 dtype: int64 """ ) @Substitution( see_also=_agg_see_also_doc, examples=_agg_examples_doc, versionadded="\n.. versionadded:: 0.20.0\n", **_shared_doc_kwargs ) @Appender(generic._shared_docs["aggregate"]) def aggregate(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) result, how = self._aggregate(func, *args, **kwargs) if result is None: # we can be called from an inner function which # passes this meta-data kwargs.pop("_axis", None) kwargs.pop("_level", None) # try a regular apply, this evaluates lambdas # row-by-row; however if the lambda is expected a Series # expression, e.g.: lambda x: x-x.quantile(0.25) # this will fail, so we can try a vectorized evaluation # we cannot FIRST try the vectorized evaluation, because # then .agg and .apply would have different semantics if the # operation is actually defined on the Series, e.g. str try: result = self.apply(func, *args, **kwargs) except (ValueError, AttributeError, TypeError): result = func(self, *args, **kwargs) return result agg = aggregate @Appender(generic._shared_docs["transform"] % _shared_doc_kwargs) def transform(self, func, axis=0, *args, **kwargs): # Validate the axis parameter self._get_axis_number(axis) return super().transform(func, *args, **kwargs) def apply(self, func, convert_dtype=True, args=(), **kwds): """ Invoke function on values of Series. Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values. Parameters ---------- func : function Python function or NumPy ufunc to apply. convert_dtype : bool, default True Try to find better dtype for elementwise function results. If False, leave as dtype=object. args : tuple Positional arguments passed to func after the series value. **kwds Additional keyword arguments passed to func. Returns ------- Series or DataFrame If func returns a Series object the result will be a DataFrame. See Also -------- Series.map: For element-wise operations. Series.agg: Only perform aggregating type operations. Series.transform: Only perform transforming type operations. Examples -------- Create a series with typical summer temperatures for each city. >>> s = pd.Series([20, 21, 12], ... index=['London', 'New York', 'Helsinki']) >>> s London 20 New York 21 Helsinki 12 dtype: int64 Square the values by defining a function and passing it as an argument to ``apply()``. >>> def square(x): ... return x ** 2 >>> s.apply(square) London 400 New York 441 Helsinki 144 dtype: int64 Square the values by passing an anonymous function as an argument to ``apply()``. >>> s.apply(lambda x: x ** 2) London 400 New York 441 Helsinki 144 dtype: int64 Define a custom function that needs additional positional arguments and pass these additional arguments using the ``args`` keyword. >>> def subtract_custom_value(x, custom_value): ... return x - custom_value >>> s.apply(subtract_custom_value, args=(5,)) London 15 New York 16 Helsinki 7 dtype: int64 Define a custom function that takes keyword arguments and pass these arguments to ``apply``. >>> def add_custom_values(x, **kwargs): ... for month in kwargs: ... x += kwargs[month] ... return x >>> s.apply(add_custom_values, june=30, july=20, august=25) London 95 New York 96 Helsinki 87 dtype: int64 Use a function from the Numpy library. >>> s.apply(np.log) London 2.995732 New York 3.044522 Helsinki 2.484907 dtype: float64 """ if len(self) == 0: return self._constructor(dtype=self.dtype, index=self.index).__finalize__( self ) # dispatch to agg if isinstance(func, (list, dict)): return self.aggregate(func, *args, **kwds) # if we are a string, try to dispatch if isinstance(func, str): return self._try_aggregate_string_function(func, *args, **kwds) # handle ufuncs and lambdas if kwds or args and not isinstance(func, np.ufunc): def f(x): return func(x, *args, **kwds) else: f = func with np.errstate(all="ignore"): if isinstance(f, np.ufunc): return f(self) # row-wise access if is_extension_type(self.dtype): mapped = self._values.map(f) else: values = self.astype(object).values mapped = lib.map_infer(values, f, convert=convert_dtype) if len(mapped) and isinstance(mapped[0], Series): # GH 25959 use pd.array instead of tolist # so extension arrays can be used return self._constructor_expanddim(pd.array(mapped), index=self.index) else: return self._constructor(mapped, index=self.index).__finalize__(self) def _reduce( self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds ): """ Perform a reduction operation. If we have an ndarray as a value, then simply perform the operation, otherwise delegate to the object. """ delegate = self._values if axis is not None: self._get_axis_number(axis) if isinstance(delegate, Categorical): # TODO deprecate numeric_only argument for Categorical and use # skipna as well, see GH25303 return delegate._reduce(name, numeric_only=numeric_only, **kwds) elif isinstance(delegate, ExtensionArray): # dispatch to ExtensionArray interface return delegate._reduce(name, skipna=skipna, **kwds) elif is_datetime64_dtype(delegate): # use DatetimeIndex implementation to handle skipna correctly delegate = DatetimeIndex(delegate) elif is_timedelta64_dtype(delegate) and hasattr(TimedeltaIndex, name): # use TimedeltaIndex to handle skipna correctly # TODO: remove hasattr check after TimedeltaIndex has `std` method delegate = TimedeltaIndex(delegate) # dispatch to numpy arrays elif isinstance(delegate, np.ndarray): if numeric_only: raise NotImplementedError( "Series.{0} does not implement numeric_only.".format(name) ) with np.errstate(all="ignore"): return op(delegate, skipna=skipna, **kwds) # TODO(EA) dispatch to Index # remove once all internals extension types are # moved to ExtensionArrays return delegate._reduce( op=op, name=name, axis=axis, skipna=skipna, numeric_only=numeric_only, filter_type=filter_type, **kwds ) def _reindex_indexer(self, new_index, indexer, copy): if indexer is None: if copy: return self.copy() return self new_values = algorithms.take_1d( self._values, indexer, allow_fill=True, fill_value=None ) return self._constructor(new_values, index=new_index) def _needs_reindex_multi(self, axes, method, level): """ Check if we do need a multi reindex; this is for compat with higher dims. """ return False @Appender(generic._shared_docs["align"] % _shared_doc_kwargs) def align( self, other, join="outer", axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None, ): return super().align( other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis, ) def rename(self, index=None, **kwargs): """ Alter Series index labels or name. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. Alternatively, change ``Series.name`` with a scalar value. See the :ref:`user guide <basics.rename>` for more. Parameters ---------- index : scalar, hashable sequence, dict-like or function, optional dict-like or functions are transformations to apply to the index. Scalar or hashable sequence-like will alter the ``Series.name`` attribute. copy : bool, default True Whether to copy underlying data. inplace : bool, default False Whether to return a new Series. If True then value of copy is ignored. level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. Returns ------- Series Series with index labels or name altered. See Also -------- Series.rename_axis : Set the name of the axis. Examples -------- >>> s = pd.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.rename("my_name") # scalar, changes Series.name 0 1 1 2 2 3 Name: my_name, dtype: int64 >>> s.rename(lambda x: x ** 2) # function, changes labels 0 1 1 2 4 3 dtype: int64 >>> s.rename({1: 3, 2: 5}) # mapping, changes labels 0 1 3 2 5 3 dtype: int64 """ kwargs["inplace"] = validate_bool_kwarg(kwargs.get("inplace", False), "inplace") if callable(index) or is_dict_like(index): return super().rename(index=index, **kwargs) else: return self._set_name(index, inplace=kwargs.get("inplace")) @Substitution(**_shared_doc_kwargs) @Appender(generic.NDFrame.reindex.__doc__) def reindex(self, index=None, **kwargs): return super().reindex(index=index, **kwargs) def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): """ Return Series with specified index labels removed. Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level. Parameters ---------- labels : single label or list-like Index labels to drop. axis : 0, default 0 Redundant for application on Series. index, columns : None Redundant for application on Series, but index can be used instead of labels. .. versionadded:: 0.21.0 level : int or level name, optional For MultiIndex, level for which the labels will be removed. inplace : bool, default False If True, do operation inplace and return None. errors : {'ignore', 'raise'}, default 'raise' If 'ignore', suppress error and only existing labels are dropped. Returns ------- Series Series with specified index labels removed. Raises ------ KeyError If none of the labels are found in the index. See Also -------- Series.reindex : Return only specified index labels of Series. Series.dropna : Return series without null values. Series.drop_duplicates : Return Series with duplicate values removed. DataFrame.drop : Drop specified labels from rows or columns. Examples -------- >>> s = pd.Series(data=np.arange(3), index=['A', 'B', 'C']) >>> s A 0 B 1 C 2 dtype: int64 Drop labels B en C >>> s.drop(labels=['B', 'C']) A 0 dtype: int64 Drop 2nd level label in MultiIndex Series >>> midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> s = pd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3], ... index=midx) >>> s lama speed 45.0 weight 200.0 length 1.2 cow speed 30.0 weight 250.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 dtype: float64 >>> s.drop(labels='weight', level=1) lama speed 45.0 length 1.2 cow speed 30.0 length 1.5 falcon speed 320.0 length 0.3 dtype: float64 """ return super().drop( labels=labels, axis=axis, index=index, columns=columns, level=level, inplace=inplace, errors=errors, ) @Substitution(**_shared_doc_kwargs) @Appender(generic.NDFrame.fillna.__doc__) def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs ): return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, **kwargs ) @Appender(generic._shared_docs["replace"] % _shared_doc_kwargs) def replace( self, to_replace=None, value=None, inplace=False, limit=None, regex=False, method="pad", ): return super().replace( to_replace=to_replace, value=value, inplace=inplace, limit=limit, regex=regex, method=method, ) @Appender(generic._shared_docs["shift"] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0, fill_value=None): return super().shift( periods=periods, freq=freq, axis=axis, fill_value=fill_value ) def memory_usage(self, index=True, deep=False): """ Return the memory usage of the Series. The memory usage can optionally include the contribution of the index and of elements of `object` dtype. Parameters ---------- index : bool, default True Specifies whether to include the memory usage of the Series index. deep : bool, default False If True, introspect the data deeply by interrogating `object` dtypes for system-level memory consumption, and include it in the returned value. Returns ------- int Bytes of memory consumed. See Also -------- numpy.ndarray.nbytes : Total bytes consumed by the elements of the array. DataFrame.memory_usage : Bytes consumed by a DataFrame. Examples -------- >>> s = pd.Series(range(3)) >>> s.memory_usage() 152 Not including the index gives the size of the rest of the data, which is necessarily smaller: >>> s.memory_usage(index=False) 24 The memory footprint of `object` values is ignored by default: >>> s = pd.Series(["a", "b"]) >>> s.values array(['a', 'b'], dtype=object) >>> s.memory_usage() 144 >>> s.memory_usage(deep=True) 260 """ v = super().memory_usage(deep=deep) if index: v += self.index.memory_usage(deep=deep) return v def isin(self, values): """ Check whether `values` are contained in Series. Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of `values` exactly. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a ``TypeError``. Instead, turn a single string into a list of one element. Returns ------- Series Series of booleans indicating if each element is in values. Raises ------ TypeError * If `values` is a string See Also -------- DataFrame.isin : Equivalent method on DataFrame. Examples -------- >>> s = pd.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool """ result = algorithms.isin(self, values) return self._constructor(result, index=self.index).__finalize__(self) def between(self, left, right, inclusive=True): """ Return boolean Series equivalent to left <= series <= right. This function returns a boolean vector containing `True` wherever the corresponding Series element is between the boundary values `left` and `right`. NA values are treated as `False`. Parameters ---------- left : scalar Left boundary. right : scalar Right boundary. inclusive : bool, default True Include boundaries. Returns ------- Series Series representing whether each element is between left and right (inclusive). See Also -------- Series.gt : Greater than of series and other. Series.lt : Less than of series and other. Notes ----- This function is equivalent to ``(left <= ser) & (ser <= right)`` Examples -------- >>> s = pd.Series([2, 0, 4, 8, np.nan]) Boundary values are included by default: >>> s.between(1, 4) 0 True 1 False 2 True 3 False 4 False dtype: bool With `inclusive` set to ``False`` boundary values are excluded: >>> s.between(1, 4, inclusive=False) 0 True 1 False 2 False 3 False 4 False dtype: bool `left` and `right` can be any scalar value: >>> s = pd.Series(['Alice', 'Bob', 'Carol', 'Eve']) >>> s.between('Anna', 'Daniel') 0 False 1 True 2 True 3 False dtype: bool """ if inclusive: lmask = self >= left rmask = self <= right else: lmask = self > left rmask = self < right return lmask & rmask @Appender(generic.NDFrame.to_csv.__doc__) def to_csv(self, *args, **kwargs): names = [ "path_or_buf", "sep", "na_rep", "float_format", "columns", "header", "index", "index_label", "mode", "encoding", "compression", "quoting", "quotechar", "line_terminator", "chunksize", "date_format", "doublequote", "escapechar", "decimal", ] old_names = [ "path_or_buf", "index", "sep", "na_rep", "float_format", "header", "index_label", "mode", "encoding", "compression", "date_format", "decimal", ] if "path" in kwargs: warnings.warn( "The signature of `Series.to_csv` was aligned " "to that of `DataFrame.to_csv`, and argument " "'path' will be renamed to 'path_or_buf'.", FutureWarning, stacklevel=2, ) kwargs["path_or_buf"] = kwargs.pop("path") if len(args) > 1: # Either "index" (old signature) or "sep" (new signature) is being # passed as second argument (while the first is the same) maybe_sep = args[1] if not (is_string_like(maybe_sep) and len(maybe_sep) == 1): # old signature warnings.warn( "The signature of `Series.to_csv` was aligned " "to that of `DataFrame.to_csv`. Note that the " "order of arguments changed, and the new one " "has 'sep' in first place, for which \"{}\" is " "not a valid value. The old order will cease to " "be supported in a future version. Please refer " "to the documentation for `DataFrame.to_csv` " "when updating your function " "calls.".format(maybe_sep), FutureWarning, stacklevel=2, ) names = old_names pos_args = dict(zip(names[: len(args)], args)) for key in pos_args: if key in kwargs: raise ValueError( "Argument given by name ('{}') and position " "({})".format(key, names.index(key)) ) kwargs[key] = pos_args[key] if kwargs.get("header", None) is None: warnings.warn( "The signature of `Series.to_csv` was aligned " "to that of `DataFrame.to_csv`, and argument " "'header' will change its default value from False " "to True: please pass an explicit value to suppress " "this warning.", FutureWarning, stacklevel=2, ) kwargs["header"] = False # Backwards compatibility. return self.to_frame().to_csv(**kwargs) @Appender(generic._shared_docs["isna"] % _shared_doc_kwargs) def isna(self): return super().isna() @Appender(generic._shared_docs["isna"] % _shared_doc_kwargs) def isnull(self): return super().isnull() @Appender(generic._shared_docs["notna"] % _shared_doc_kwargs) def notna(self): return super().notna() @Appender(generic._shared_docs["notna"] % _shared_doc_kwargs) def notnull(self): return super().notnull() def dropna(self, axis=0, inplace=False, **kwargs): """ Return a new Series with missing values removed. See the :ref:`User Guide <missing_data>` for more on which values are considered missing, and how to work with missing data. Parameters ---------- axis : {0 or 'index'}, default 0 There is only one axis to drop values from. inplace : bool, default False If True, do operation inplace and return None. **kwargs Not in use. Returns ------- Series Series with NA entries dropped from it. See Also -------- Series.isna: Indicate missing values. Series.notna : Indicate existing (non-missing) values. Series.fillna : Replace missing values. DataFrame.dropna : Drop rows or columns which contain NA values. Index.dropna : Drop missing indices. Examples -------- >>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64 Drop NA values from a Series. >>> ser.dropna() 0 1.0 1 2.0 dtype: float64 Keep the Series with valid entries in the same variable. >>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64 Empty strings are not considered NA values. ``None`` is considered an NA value. >>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object """ inplace = validate_bool_kwarg(inplace, "inplace") kwargs.pop("how", None) if kwargs: raise TypeError( "dropna() got an unexpected keyword " 'argument "{0}"'.format(list(kwargs.keys())[0]) ) # Validate the axis parameter self._get_axis_number(axis or 0) if self._can_hold_na: result = remove_na_arraylike(self) if inplace: self._update_inplace(result) else: return result else: if inplace: # do nothing pass else: return self.copy() def valid(self, inplace=False, **kwargs): """ Return Series without null values. .. deprecated:: 0.23.0 Use :meth:`Series.dropna` instead. Returns ------- Series Series without null values. """ warnings.warn( "Method .valid will be removed in a future version. " "Use .dropna instead.", FutureWarning, stacklevel=2, ) return self.dropna(inplace=inplace, **kwargs) # ---------------------------------------------------------------------- # Time series-oriented methods def to_timestamp(self, freq=None, how="start", copy=True): """ Cast to DatetimeIndex of Timestamps, at *beginning* of period. Parameters ---------- freq : str, default frequency of PeriodIndex Desired frequency. how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end. copy : bool, default True Whether or not to return a copy. Returns ------- Series with DatetimeIndex """ new_values = self._values if copy: new_values = new_values.copy() new_index = self.index.to_timestamp(freq=freq, how=how) return self._constructor(new_values, index=new_index).__finalize__(self) def to_period(self, freq=None, copy=True): """ Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). Parameters ---------- freq : str, default None Frequency associated with the PeriodIndex. copy : bool, default True Whether or not to return a copy. Returns ------- Series Series with index converted to PeriodIndex. """ new_values = self._values if copy: new_values = new_values.copy() new_index = self.index.to_period(freq=freq) return self._constructor(new_values, index=new_index).__finalize__(self) # ---------------------------------------------------------------------- # Accessor Methods # ---------------------------------------------------------------------- str = CachedAccessor("str", StringMethods) dt = CachedAccessor("dt", CombinedDatetimelikeProperties) cat = CachedAccessor("cat", CategoricalAccessor) plot = CachedAccessor("plot", pandas.plotting.PlotAccessor) sparse = CachedAccessor("sparse", SparseAccessor) # ---------------------------------------------------------------------- # Add plotting methods to Series hist = pandas.plotting.hist_series Series._setup_axes( ["index"], info_axis=0, stat_axis=0, aliases={"rows": 0}, docs={"index": "The index (axis labels) of the Series."}, ) Series._add_numeric_operations() Series._add_series_only_operations() Series._add_series_or_dataframe_operations() # Add arithmetic! ops.add_flex_arithmetic_methods(Series) ops.add_special_arithmetic_methods(Series)
BugsInPy/BugsInPy/temp/projects/pandas/bug-152-fixed/pandas/pandas/core/series.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-152-buggy/pandas/pandas/core/series.py
pandas-bug-37
import operator from typing import TYPE_CHECKING, Type, Union import numpy as np from pandas._libs import lib, missing as libmissing from pandas.core.dtypes.base import ExtensionDtype from pandas.core.dtypes.common import pandas_dtype from pandas.core.dtypes.dtypes import register_extension_dtype from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_array_like from pandas import compat from pandas.core import ops from pandas.core.arrays import PandasArray from pandas.core.construction import extract_array from pandas.core.indexers import check_array_indexer from pandas.core.missing import isna if TYPE_CHECKING: import pyarrow # noqa: F401 @register_extension_dtype class StringDtype(ExtensionDtype): """ Extension dtype for string data. .. versionadded:: 1.0.0 .. warning:: StringDtype is considered experimental. The implementation and parts of the API may change without warning. In particular, StringDtype.na_value may change to no longer be ``numpy.nan``. Attributes ---------- None Methods ------- None Examples -------- >>> pd.StringDtype() StringDtype """ name = "string" #: StringDtype.na_value uses pandas.NA na_value = libmissing.NA @property def type(self) -> Type[str]: return str @classmethod def construct_array_type(cls) -> Type["StringArray"]: """ Return the array type associated with this dtype. Returns ------- type """ return StringArray def __repr__(self) -> str: return "StringDtype" def __from_arrow__( self, array: Union["pyarrow.Array", "pyarrow.ChunkedArray"] ) -> "StringArray": """ Construct StringArray from pyarrow Array/ChunkedArray. """ import pyarrow # noqa: F811 if isinstance(array, pyarrow.Array): chunks = [array] else: # pyarrow.ChunkedArray chunks = array.chunks results = [] for arr in chunks: # using _from_sequence to ensure None is converted to NA str_arr = StringArray._from_sequence(np.array(arr)) results.append(str_arr) return StringArray._concat_same_type(results) class StringArray(PandasArray): """ Extension array for string data. .. versionadded:: 1.0.0 .. warning:: StringArray is considered experimental. The implementation and parts of the API may change without warning. Parameters ---------- values : array-like The array of data. .. warning:: Currently, this expects an object-dtype ndarray where the elements are Python strings or :attr:`pandas.NA`. This may change without warning in the future. Use :meth:`pandas.array` with ``dtype="string"`` for a stable way of creating a `StringArray` from any sequence. copy : bool, default False Whether to copy the array of data. Attributes ---------- None Methods ------- None See Also -------- array The recommended function for creating a StringArray. Series.str The string methods are available on Series backed by a StringArray. Notes ----- StringArray returns a BooleanArray for comparison methods. Examples -------- >>> pd.array(['This is', 'some text', None, 'data.'], dtype="string") <StringArray> ['This is', 'some text', <NA>, 'data.'] Length: 4, dtype: string Unlike ``object`` dtype arrays, ``StringArray`` doesn't allow non-string values. >>> pd.array(['1', 1], dtype="string") Traceback (most recent call last): ... ValueError: StringArray requires an object-dtype ndarray of strings. For comparison methods, this returns a :class:`pandas.BooleanArray` >>> pd.array(["a", None, "c"], dtype="string") == "a" <BooleanArray> [True, <NA>, False] Length: 3, dtype: boolean """ # undo the PandasArray hack _typ = "extension" def __init__(self, values, copy=False): values = extract_array(values) skip_validation = isinstance(values, type(self)) super().__init__(values, copy=copy) self._dtype = StringDtype() if not skip_validation: self._validate() def _validate(self): """Validate that we only store NA or strings.""" if len(self._ndarray) and not lib.is_string_array(self._ndarray, skipna=True): raise ValueError("StringArray requires a sequence of strings or pandas.NA") if self._ndarray.dtype != "object": raise ValueError( "StringArray requires a sequence of strings or pandas.NA. Got " f"'{self._ndarray.dtype}' dtype instead." ) @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): if dtype: assert dtype == "string" result = np.asarray(scalars, dtype="object") if copy and result is scalars: result = result.copy() # Standardize all missing-like values to NA # TODO: it would be nice to do this in _validate / lib.is_string_array # We are already doing a scan over the values there. na_values = isna(result) if na_values.any(): if result is scalars: # force a copy now, if we haven't already result = result.copy() result[na_values] = StringDtype.na_value return cls(result) @classmethod def _from_sequence_of_strings(cls, strings, dtype=None, copy=False): return cls._from_sequence(strings, dtype=dtype, copy=copy) def __arrow_array__(self, type=None): """ Convert myself into a pyarrow Array. """ import pyarrow as pa if type is None: type = pa.string() values = self._ndarray.copy() values[self.isna()] = None return pa.array(values, type=type, from_pandas=True) def _values_for_factorize(self): arr = self._ndarray.copy() mask = self.isna() arr[mask] = -1 return arr, -1 def __setitem__(self, key, value): value = extract_array(value, extract_numpy=True) if isinstance(value, type(self)): # extract_array doesn't extract PandasArray subclasses value = value._ndarray key = check_array_indexer(self, key) scalar_key = lib.is_scalar(key) scalar_value = lib.is_scalar(value) if scalar_key and not scalar_value: raise ValueError("setting an array element with a sequence.") # validate new items if scalar_value: if isna(value): value = StringDtype.na_value elif not isinstance(value, str): raise ValueError( f"Cannot set non-string value '{value}' into a StringArray." ) else: if not is_array_like(value): value = np.asarray(value, dtype=object) if len(value) and not lib.is_string_array(value, skipna=True): raise ValueError("Must provide strings.") super().__setitem__(key, value) def fillna(self, value=None, method=None, limit=None): # TODO: validate dtype return super().fillna(value, method, limit) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if isinstance(dtype, StringDtype): if copy: return self.copy() return self return super().astype(dtype, copy) def _reduce(self, name, skipna=True, **kwargs): raise TypeError(f"Cannot perform reduction '{name}' with string dtype") def value_counts(self, dropna=False): from pandas import value_counts return value_counts(self._ndarray, dropna=dropna).astype("Int64") # Override parent because we have different return types. @classmethod def _create_arithmetic_method(cls, op): # Note: this handles both arithmetic and comparison methods. def method(self, other): from pandas.arrays import BooleanArray assert op.__name__ in ops.ARITHMETIC_BINOPS | ops.COMPARISON_BINOPS if isinstance(other, (ABCIndexClass, ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, cls): other = other._ndarray mask = isna(self) | isna(other) valid = ~mask if not lib.is_scalar(other): if len(other) != len(self): # prevent improper broadcasting when other is 2D raise ValueError( f"Lengths of operands do not match: {len(self)} != {len(other)}" ) other = np.asarray(other) other = other[valid] if op.__name__ in ops.ARITHMETIC_BINOPS: result = np.empty_like(self._ndarray, dtype="object") result[mask] = StringDtype.na_value result[valid] = op(self._ndarray[valid], other) return StringArray(result) else: # logical result = np.zeros(len(self._ndarray), dtype="bool") result[valid] = op(self._ndarray[valid], other) return BooleanArray(result, mask) return compat.set_function_name(method, f"__{op.__name__}__", cls) @classmethod def _add_arithmetic_ops(cls): cls.__add__ = cls._create_arithmetic_method(operator.add) cls.__radd__ = cls._create_arithmetic_method(ops.radd) cls.__mul__ = cls._create_arithmetic_method(operator.mul) cls.__rmul__ = cls._create_arithmetic_method(ops.rmul) _create_comparison_method = _create_arithmetic_method StringArray._add_arithmetic_ops() StringArray._add_comparison_ops() import operator from typing import TYPE_CHECKING, Type, Union import numpy as np from pandas._libs import lib, missing as libmissing from pandas.core.dtypes.base import ExtensionDtype from pandas.core.dtypes.common import pandas_dtype from pandas.core.dtypes.dtypes import register_extension_dtype from pandas.core.dtypes.generic import ABCDataFrame, ABCIndexClass, ABCSeries from pandas.core.dtypes.inference import is_array_like from pandas import compat from pandas.core import ops from pandas.core.arrays import IntegerArray, PandasArray from pandas.core.arrays.integer import _IntegerDtype from pandas.core.construction import extract_array from pandas.core.indexers import check_array_indexer from pandas.core.missing import isna if TYPE_CHECKING: import pyarrow # noqa: F401 @register_extension_dtype class StringDtype(ExtensionDtype): """ Extension dtype for string data. .. versionadded:: 1.0.0 .. warning:: StringDtype is considered experimental. The implementation and parts of the API may change without warning. In particular, StringDtype.na_value may change to no longer be ``numpy.nan``. Attributes ---------- None Methods ------- None Examples -------- >>> pd.StringDtype() StringDtype """ name = "string" #: StringDtype.na_value uses pandas.NA na_value = libmissing.NA @property def type(self) -> Type[str]: return str @classmethod def construct_array_type(cls) -> Type["StringArray"]: """ Return the array type associated with this dtype. Returns ------- type """ return StringArray def __repr__(self) -> str: return "StringDtype" def __from_arrow__( self, array: Union["pyarrow.Array", "pyarrow.ChunkedArray"] ) -> "StringArray": """ Construct StringArray from pyarrow Array/ChunkedArray. """ import pyarrow # noqa: F811 if isinstance(array, pyarrow.Array): chunks = [array] else: # pyarrow.ChunkedArray chunks = array.chunks results = [] for arr in chunks: # using _from_sequence to ensure None is converted to NA str_arr = StringArray._from_sequence(np.array(arr)) results.append(str_arr) return StringArray._concat_same_type(results) class StringArray(PandasArray): """ Extension array for string data. .. versionadded:: 1.0.0 .. warning:: StringArray is considered experimental. The implementation and parts of the API may change without warning. Parameters ---------- values : array-like The array of data. .. warning:: Currently, this expects an object-dtype ndarray where the elements are Python strings or :attr:`pandas.NA`. This may change without warning in the future. Use :meth:`pandas.array` with ``dtype="string"`` for a stable way of creating a `StringArray` from any sequence. copy : bool, default False Whether to copy the array of data. Attributes ---------- None Methods ------- None See Also -------- array The recommended function for creating a StringArray. Series.str The string methods are available on Series backed by a StringArray. Notes ----- StringArray returns a BooleanArray for comparison methods. Examples -------- >>> pd.array(['This is', 'some text', None, 'data.'], dtype="string") <StringArray> ['This is', 'some text', <NA>, 'data.'] Length: 4, dtype: string Unlike ``object`` dtype arrays, ``StringArray`` doesn't allow non-string values. >>> pd.array(['1', 1], dtype="string") Traceback (most recent call last): ... ValueError: StringArray requires an object-dtype ndarray of strings. For comparison methods, this returns a :class:`pandas.BooleanArray` >>> pd.array(["a", None, "c"], dtype="string") == "a" <BooleanArray> [True, <NA>, False] Length: 3, dtype: boolean """ # undo the PandasArray hack _typ = "extension" def __init__(self, values, copy=False): values = extract_array(values) skip_validation = isinstance(values, type(self)) super().__init__(values, copy=copy) self._dtype = StringDtype() if not skip_validation: self._validate() def _validate(self): """Validate that we only store NA or strings.""" if len(self._ndarray) and not lib.is_string_array(self._ndarray, skipna=True): raise ValueError("StringArray requires a sequence of strings or pandas.NA") if self._ndarray.dtype != "object": raise ValueError( "StringArray requires a sequence of strings or pandas.NA. Got " f"'{self._ndarray.dtype}' dtype instead." ) @classmethod def _from_sequence(cls, scalars, dtype=None, copy=False): if dtype: assert dtype == "string" result = np.asarray(scalars, dtype="object") if copy and result is scalars: result = result.copy() # Standardize all missing-like values to NA # TODO: it would be nice to do this in _validate / lib.is_string_array # We are already doing a scan over the values there. na_values = isna(result) if na_values.any(): if result is scalars: # force a copy now, if we haven't already result = result.copy() result[na_values] = StringDtype.na_value return cls(result) @classmethod def _from_sequence_of_strings(cls, strings, dtype=None, copy=False): return cls._from_sequence(strings, dtype=dtype, copy=copy) def __arrow_array__(self, type=None): """ Convert myself into a pyarrow Array. """ import pyarrow as pa if type is None: type = pa.string() values = self._ndarray.copy() values[self.isna()] = None return pa.array(values, type=type, from_pandas=True) def _values_for_factorize(self): arr = self._ndarray.copy() mask = self.isna() arr[mask] = -1 return arr, -1 def __setitem__(self, key, value): value = extract_array(value, extract_numpy=True) if isinstance(value, type(self)): # extract_array doesn't extract PandasArray subclasses value = value._ndarray key = check_array_indexer(self, key) scalar_key = lib.is_scalar(key) scalar_value = lib.is_scalar(value) if scalar_key and not scalar_value: raise ValueError("setting an array element with a sequence.") # validate new items if scalar_value: if isna(value): value = StringDtype.na_value elif not isinstance(value, str): raise ValueError( f"Cannot set non-string value '{value}' into a StringArray." ) else: if not is_array_like(value): value = np.asarray(value, dtype=object) if len(value) and not lib.is_string_array(value, skipna=True): raise ValueError("Must provide strings.") super().__setitem__(key, value) def fillna(self, value=None, method=None, limit=None): # TODO: validate dtype return super().fillna(value, method, limit) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if isinstance(dtype, StringDtype): if copy: return self.copy() return self elif isinstance(dtype, _IntegerDtype): arr = self._ndarray.copy() mask = self.isna() arr[mask] = 0 values = arr.astype(dtype.numpy_dtype) return IntegerArray(values, mask, copy=False) return super().astype(dtype, copy) def _reduce(self, name, skipna=True, **kwargs): raise TypeError(f"Cannot perform reduction '{name}' with string dtype") def value_counts(self, dropna=False): from pandas import value_counts return value_counts(self._ndarray, dropna=dropna).astype("Int64") # Override parent because we have different return types. @classmethod def _create_arithmetic_method(cls, op): # Note: this handles both arithmetic and comparison methods. def method(self, other): from pandas.arrays import BooleanArray assert op.__name__ in ops.ARITHMETIC_BINOPS | ops.COMPARISON_BINOPS if isinstance(other, (ABCIndexClass, ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, cls): other = other._ndarray mask = isna(self) | isna(other) valid = ~mask if not lib.is_scalar(other): if len(other) != len(self): # prevent improper broadcasting when other is 2D raise ValueError( f"Lengths of operands do not match: {len(self)} != {len(other)}" ) other = np.asarray(other) other = other[valid] if op.__name__ in ops.ARITHMETIC_BINOPS: result = np.empty_like(self._ndarray, dtype="object") result[mask] = StringDtype.na_value result[valid] = op(self._ndarray[valid], other) return StringArray(result) else: # logical result = np.zeros(len(self._ndarray), dtype="bool") result[valid] = op(self._ndarray[valid], other) return BooleanArray(result, mask) return compat.set_function_name(method, f"__{op.__name__}__", cls) @classmethod def _add_arithmetic_ops(cls): cls.__add__ = cls._create_arithmetic_method(operator.add) cls.__radd__ = cls._create_arithmetic_method(ops.radd) cls.__mul__ = cls._create_arithmetic_method(operator.mul) cls.__rmul__ = cls._create_arithmetic_method(ops.rmul) _create_comparison_method = _create_arithmetic_method StringArray._add_arithmetic_ops() StringArray._add_comparison_ops()
BugsInPy/BugsInPy/temp/projects/pandas/bug-37-fixed/pandas/pandas/core/arrays/string_.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-37-buggy/pandas/pandas/core/arrays/string_.py
pandas-bug-10
BugsInPy/BugsInPy/temp/projects/pandas/bug-10-fixed/pandas/pandas/core/internals/blocks.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-10-buggy/pandas/pandas/core/internals/blocks.py
pandas-bug-23
BugsInPy/BugsInPy/temp/projects/pandas/bug-23-fixed/pandas/pandas/core/indexes/datetimelike.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-23-buggy/pandas/pandas/core/indexes/datetimelike.py
pandas-bug-151
BugsInPy/BugsInPy/temp/projects/pandas/bug-151-fixed/pandas/pandas/core/arrays/numpy_.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-151-buggy/pandas/pandas/core/arrays/numpy_.py
pandas-bug-112
BugsInPy/BugsInPy/temp/projects/pandas/bug-112-fixed/pandas/pandas/core/indexes/interval.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-112-buggy/pandas/pandas/core/indexes/interval.py
pandas-bug-1
BugsInPy/BugsInPy/temp/projects/pandas/bug-1-fixed/pandas/pandas/core/dtypes/common.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-1-buggy/pandas/pandas/core/dtypes/common.py
pandas-bug-54
BugsInPy/BugsInPy/temp/projects/pandas/bug-54-fixed/pandas/pandas/core/dtypes/dtypes.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-54-buggy/pandas/pandas/core/dtypes/dtypes.py
pandas-bug-7
BugsInPy/BugsInPy/temp/projects/pandas/bug-7-fixed/pandas/pandas/core/indexes/base.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-7-buggy/pandas/pandas/core/indexes/base.py
pandas-bug-91
BugsInPy/BugsInPy/temp/projects/pandas/bug-91-fixed/pandas/pandas/core/indexes/timedeltas.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-91-buggy/pandas/pandas/core/indexes/timedeltas.py
pandas-bug-61
BugsInPy/BugsInPy/temp/projects/pandas/bug-61-fixed/pandas/pandas/core/series.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-61-buggy/pandas/pandas/core/series.py
pandas-bug-155
BugsInPy/BugsInPy/temp/projects/pandas/bug-155-fixed/pandas/pandas/core/window/rolling.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-155-buggy/pandas/pandas/core/window/rolling.py
pandas-bug-73
BugsInPy/BugsInPy/temp/projects/pandas/bug-73-fixed/pandas/pandas/core/frame.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-73-buggy/pandas/pandas/core/frame.py
pandas-bug-114
BugsInPy/BugsInPy/temp/projects/pandas/bug-114-fixed/pandas/pandas/core/indexes/base.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-114-buggy/pandas/pandas/core/indexes/base.py
pandas-bug-43
BugsInPy/BugsInPy/temp/projects/pandas/bug-43-fixed/pandas/pandas/core/ops/__init__.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-43-buggy/pandas/pandas/core/ops/__init__.py
pandas-bug-18
BugsInPy/BugsInPy/temp/projects/pandas/bug-18-fixed/pandas/pandas/core/window/common.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-18-buggy/pandas/pandas/core/window/common.py
pandas-bug-13
BugsInPy/BugsInPy/temp/projects/pandas/bug-13-fixed/pandas/pandas/core/dtypes/missing.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-13-buggy/pandas/pandas/core/dtypes/missing.py
pandas-bug-130
BugsInPy/BugsInPy/temp/projects/pandas/bug-130-fixed/pandas/pandas/core/groupby/ops.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-130-buggy/pandas/pandas/core/groupby/ops.py
pandas-bug-131
BugsInPy/BugsInPy/temp/projects/pandas/bug-131-fixed/pandas/pandas/core/indexes/accessors.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-131-buggy/pandas/pandas/core/indexes/accessors.py
pandas-bug-89
BugsInPy/BugsInPy/temp/projects/pandas/bug-89-fixed/pandas/pandas/core/reshape/reshape.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-89-buggy/pandas/pandas/core/reshape/reshape.py
pandas-bug-166
BugsInPy/BugsInPy/temp/projects/pandas/bug-166-fixed/pandas/pandas/core/frame.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-166-buggy/pandas/pandas/core/frame.py
pandas-bug-62
BugsInPy/BugsInPy/temp/projects/pandas/bug-62-fixed/pandas/pandas/core/internals/blocks.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-62-buggy/pandas/pandas/core/internals/blocks.py
pandas-bug-92
BugsInPy/BugsInPy/temp/projects/pandas/bug-92-fixed/pandas/pandas/core/generic.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-92-buggy/pandas/pandas/core/generic.py
pandas-bug-88
BugsInPy/BugsInPy/temp/projects/pandas/bug-88-fixed/pandas/pandas/core/reshape/pivot.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-88-buggy/pandas/pandas/core/reshape/pivot.py
pandas-bug-48
BugsInPy/BugsInPy/temp/projects/pandas/bug-48-fixed/pandas/pandas/core/groupby/generic.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-48-buggy/pandas/pandas/core/groupby/generic.py
pandas-bug-20
BugsInPy/BugsInPy/temp/projects/pandas/bug-20-fixed/pandas/pandas/tseries/offsets.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-20-buggy/pandas/pandas/tseries/offsets.py
pandas-bug-132
BugsInPy/BugsInPy/temp/projects/pandas/bug-132-fixed/pandas/pandas/core/nanops.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-132-buggy/pandas/pandas/core/nanops.py
pandas-bug-101
BugsInPy/BugsInPy/temp/projects/pandas/bug-101-fixed/pandas/pandas/core/dtypes/cast.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-101-buggy/pandas/pandas/core/dtypes/cast.py
pandas-bug-143
BugsInPy/BugsInPy/temp/projects/pandas/bug-143-fixed/pandas/pandas/core/indexes/range.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-143-buggy/pandas/pandas/core/indexes/range.py
pandas-bug-168
BugsInPy/BugsInPy/temp/projects/pandas/bug-168-fixed/pandas/pandas/core/groupby/grouper.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-168-buggy/pandas/pandas/core/groupby/grouper.py
pandas-bug-93
BugsInPy/BugsInPy/temp/projects/pandas/bug-93-fixed/pandas/pandas/core/arrays/datetimelike.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-93-buggy/pandas/pandas/core/arrays/datetimelike.py
pandas-bug-2
BugsInPy/BugsInPy/temp/projects/pandas/bug-2-fixed/pandas/pandas/core/indexing.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-2-buggy/pandas/pandas/core/indexing.py
pandas-bug-156
BugsInPy/BugsInPy/temp/projects/pandas/bug-156-fixed/pandas/pandas/core/sparse/frame.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-156-buggy/pandas/pandas/core/sparse/frame.py
pandas-bug-25
BugsInPy/BugsInPy/temp/projects/pandas/bug-25-fixed/pandas/pandas/core/arrays/datetimes.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-25-buggy/pandas/pandas/core/arrays/datetimes.py
pandas-bug-49
BugsInPy/BugsInPy/temp/projects/pandas/bug-49-fixed/pandas/pandas/core/strings.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-49-buggy/pandas/pandas/core/strings.py
pandas-bug-68
BugsInPy/BugsInPy/temp/projects/pandas/bug-68-fixed/pandas/pandas/core/arrays/interval.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-68-buggy/pandas/pandas/core/arrays/interval.py
pandas-bug-107
BugsInPy/BugsInPy/temp/projects/pandas/bug-107-fixed/pandas/pandas/core/frame.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-107-buggy/pandas/pandas/core/frame.py
pandas-bug-4
BugsInPy/BugsInPy/temp/projects/pandas/bug-4-fixed/pandas/pandas/core/indexes/base.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-4-buggy/pandas/pandas/core/indexes/base.py
pandas-bug-87
BugsInPy/BugsInPy/temp/projects/pandas/bug-87-fixed/pandas/pandas/core/reshape/pivot.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-87-buggy/pandas/pandas/core/reshape/pivot.py
pandas-bug-59
BugsInPy/BugsInPy/temp/projects/pandas/bug-59-fixed/pandas/pandas/core/window/rolling.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-59-buggy/pandas/pandas/core/window/rolling.py
pandas-bug-38
BugsInPy/BugsInPy/temp/projects/pandas/bug-38-fixed/pandas/pandas/core/reshape/reshape.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-38-buggy/pandas/pandas/core/reshape/reshape.py
pandas-bug-52
BugsInPy/BugsInPy/temp/projects/pandas/bug-52-fixed/pandas/pandas/core/groupby/generic.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-52-buggy/pandas/pandas/core/groupby/generic.py
pandas-bug-127
BugsInPy/BugsInPy/temp/projects/pandas/bug-127-fixed/pandas/pandas/core/generic.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-127-buggy/pandas/pandas/core/generic.py
pandas-bug-164
BugsInPy/BugsInPy/temp/projects/pandas/bug-164-fixed/pandas/pandas/core/tools/datetimes.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-164-buggy/pandas/pandas/core/tools/datetimes.py
pandas-bug-167
BugsInPy/BugsInPy/temp/projects/pandas/bug-167-fixed/pandas/pandas/core/indexes/base.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-167-buggy/pandas/pandas/core/indexes/base.py
pandas-bug-72
BugsInPy/BugsInPy/temp/projects/pandas/bug-72-fixed/pandas/pandas/core/internals/blocks.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-72-buggy/pandas/pandas/core/internals/blocks.py
pandas-bug-138
BugsInPy/BugsInPy/temp/projects/pandas/bug-138-fixed/pandas/pandas/core/reshape/tile.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-138-buggy/pandas/pandas/core/reshape/tile.py
pandas-bug-90
BugsInPy/BugsInPy/temp/projects/pandas/bug-90-fixed/pandas/pandas/_testing.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-90-buggy/pandas/pandas/_testing.py
pandas-bug-153
BugsInPy/BugsInPy/temp/projects/pandas/bug-153-fixed/pandas/pandas/core/internals/blocks.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-153-buggy/pandas/pandas/core/internals/blocks.py
pandas-bug-65
BugsInPy/BugsInPy/temp/projects/pandas/bug-65-fixed/pandas/pandas/io/common.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-65-buggy/pandas/pandas/io/common.py
pandas-bug-36
BugsInPy/BugsInPy/temp/projects/pandas/bug-36-fixed/pandas/pandas/core/dtypes/missing.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-36-buggy/pandas/pandas/core/dtypes/missing.py
pandas-bug-159
BugsInPy/BugsInPy/temp/projects/pandas/bug-159-fixed/pandas/pandas/core/frame.py,BugsInPy/BugsInPy/temp/projects/pandas/bug-159-buggy/pandas/pandas/core/frame.py