|
--- |
|
license: apache-2.0 |
|
language: |
|
- ind |
|
pretty_name: "Twitter Indonesia Sarcastic" |
|
--- |
|
|
|
# Twitter Indonesia Sarcastic |
|
|
|
Twitter Indonesia Sarcastic is a dataset intended for sarcasm detection in the Indonesian language. This dataset is introduced in [Khotijah et al. (2020)](https://dl.acm.org/doi/10.1145/3406601.3406624), whereby Indonesian tweets are collected and labeled as either sarcastic or non-sarcastic. We took the [raw data](https://github.com/skhotijah/using-lstm-for-context-based-approach-of-sarcasm-detection-in-twitter/blob/main/dataset/Indonesia/imbalanced.csv), and performed several cleaning procedures such as: sentence order re-reversal, deduplication with minHash LSH, PII masking to remove usernames, hashtags, emails, URLs, and finally a random sampling to limit the non-sarcastic comments. Following [SemEval-2022 Task 6: iSarcasmEval](https://aclanthology.org/2022.semeval-1.111/), we used a 1:3 ratio to balance sarcastic with non-sarcastic comments. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
```py |
|
{ |
|
'tweet': 'Terima kasih bapak <username> telah mengendalikan banjir dengan baik sehingga Jakarta saat ini tidak ada lagi yang tidak banjir.. Semua sudah merata.. ?????? <hashtag>', |
|
'label': 1 |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
- `tweet`: PII-masked Twitter tweet content. |
|
- `label`: `0` for non-sarcastic, `1` for sarcastic. |
|
|
|
### Data Splits |
|
|
|
| Split | #sarcastic | #non sarcastic | #total | |
|
| --------------------------- | :--------: | :------------: | :----: | |
|
| `train` | 470 | 1408 | 1878 | |
|
| `test` | 134 | 404 | 538 | |
|
| `validation` | 67 | 201 | 268 | |
|
| Total (cleaned; balanced) | 671 | 2013 | 2684 | |
|
| Total (cleaned; unbalanced) | 671 | 12190 | 12861 | |
|
| Total (raw) | 4350 | 13368 | 17718 | |
|
|
|
### Dataset Directory |
|
|
|
```sh |
|
twitter_indonesia_sarcastic |
|
βββ README.md |
|
βββ data # re-balanced dataset |
|
βΒ Β βββ test.csv |
|
βΒ Β βββ train.csv |
|
βΒ Β βββ validation.csv |
|
βββ raw_data |
|
βββ khotijah.csv # raw dataset |
|
βββ khotijah_cleaned.csv # cleaned dataset |
|
``` |
|
|
|
## Authors |
|
|
|
Twitter Indonesia Sarcastic is prepared by: |
|
|
|
<a href="https://github.com/w11wo"> |
|
<img src="https://github.com/w11wo.png" alt="GitHub Profile" style="border-radius: 50%;width: 64px;border: solid 1px #fff;margin:0 4px;"> |
|
</a> |
|
|
|
## References |
|
|
|
```bibtex |
|
@inproceedings{10.1145/3406601.3406624, |
|
author = {Khotijah, Siti and Tirtawangsa, Jimmy and Suryani, Arie A.}, |
|
title = {Using LSTM for Context Based Approach of Sarcasm Detection in Twitter}, |
|
year = {2020}, |
|
isbn = {9781450377591}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
url = {https://doi.org/10.1145/3406601.3406624}, |
|
doi = {10.1145/3406601.3406624}, |
|
booktitle = {Proceedings of the 11th International Conference on Advances in Information Technology}, |
|
articleno = {19}, |
|
numpages = {7}, |
|
keywords = {context, Sarcasm detection, paragraph2vec, lstm, deep learning}, |
|
location = {, Bangkok, Thailand, }, |
|
series = {IAIT '20} |
|
} |
|
|
|
@inproceedings{abu-farha-etal-2022-semeval, |
|
title = "{S}em{E}val-2022 Task 6: i{S}arcasm{E}val, Intended Sarcasm Detection in {E}nglish and {A}rabic", |
|
author = "Abu Farha, Ibrahim and |
|
Oprea, Silviu Vlad and |
|
Wilson, Steven and |
|
Magdy, Walid", |
|
editor = "Emerson, Guy and |
|
Schluter, Natalie and |
|
Stanovsky, Gabriel and |
|
Kumar, Ritesh and |
|
Palmer, Alexis and |
|
Schneider, Nathan and |
|
Singh, Siddharth and |
|
Ratan, Shyam", |
|
booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)", |
|
month = jul, |
|
year = "2022", |
|
address = "Seattle, United States", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.semeval-1.111", |
|
doi = "10.18653/v1/2022.semeval-1.111", |
|
pages = "802--814", |
|
} |
|
``` |