Datasets:

Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
File size: 4,253 Bytes
97b133f
 
6ba8b50
 
 
 
 
 
 
 
 
 
 
 
 
5ca7c0a
 
6ba8b50
 
5ca7c0a
b48945e
 
 
 
 
 
 
 
 
d8830ba
adbda47
 
 
 
6ba8b50
97b133f
 
 
 
 
 
 
 
 
 
e6f30bf
a81c2fc
97b133f
a81c2fc
 
97b133f
6ba8b50
 
5ca7c0a
 
b48945e
 
d8830ba
 
97b133f
 
e6f30bf
 
97b133f
114d4d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d32a5dd
 
 
 
 
 
 
 
 
 
 
114d4d9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
dataset_info:
- config_name: corpus
  features:
  - name: corpus-id
    dtype: int64
  - name: image
    dtype: image
  - name: pdf_url
    dtype: string
  - name: company
    dtype: string
  - name: date
    dtype: string
  splits:
  - name: test
    num_bytes: 842829685.81
    num_examples: 1538
  download_size: 761076653
  dataset_size: 842829685.81
- config_name: qrels
  features:
  - name: query-id
    dtype: int64
  - name: corpus-id
    dtype: int64
  - name: score
    dtype: int64
  splits:
  - name: test
    num_bytes: 3072
    num_examples: 128
  download_size: 2521
  dataset_size: 3072
- config_name: queries
  features:
  - name: query-id
    dtype: int64
  - name: query
    dtype: string
  - name: source_type
    sequence: string
  - name: answer
    dtype: string
  splits:
  - name: test
    num_bytes: 35047
    num_examples: 52
  download_size: 23714
  dataset_size: 35047
configs:
- config_name: corpus
  data_files:
  - split: test
    path: corpus/test-*
- config_name: qrels
  data_files:
  - split: test
    path: qrels/test-*
- config_name: queries
  data_files:
  - split: test
    path: queries/test-*
---

# Vidore Benchmark 2 - ESG Human Labeled

This dataset is part of the "Vidore Benchmark 2" collection, designed for evaluating visual retrieval applications. It focuses on the theme of **ESG reports from the fast food industry**.

## Dataset Summary

Each query is in english.

This dataset provides a focused benchmark for visual retrieval tasks related to ESG reports for the fast food industry. It includes a curated set of documents, queries, relevance judgments (qrels), and page images.
This dataset was fully labelled by hand, has no overlap of queries with its synthetic counterpart (available [here](https://huggingface.co/datasets/vidore/synthetic_rse_restaurant_filtered_v1.0))

*   **Number of Documents:** 27
*   **Number of Queries:** 52
*   **Number of Pages:** 1538
*   **Number of Relevance Judgments (qrels):** 128
*   **Average Number of Pages per Query:** 2.5

## Dataset Structure (Hugging Face Datasets)
The dataset is structured into the following columns:

*   **`corpus`**: Contains page-level information:
    *   `"image"`:  The image of the page (a PIL Image object).
    *   `"corpus-id"`: A unique identifier for this specific page within the corpus.
*   **`queries`**: Contains query information:
    *   `"query-id"`: A unique identifier for the query.
    *   `"query"`: The text of the query.
*   **`qrels`**: Contains relevance judgments:
    *   `"corpus-id"`: The ID of the relevant page.
    *   `"query-id"`: The ID of the query.
    *   `"answer"`: Answer relevant to the query AND the page.
    *   `"score"`: The relevance score.


## Usage

This dataset is designed for evaluating the performance of visual retrieval systems, particularly those focused on document image understanding.

**Example Evaluation with ColPali (CLI):**

Here's a code snippet demonstrating how to evaluate the ColPali model on this dataset using the `vidore-benchmark` command-line tool.

1.  **Install the `vidore-benchmark` package:**

    ```bash
    pip install vidore-benchmark datasets
    ```

2.  **Run the evaluation:**

    ```bash
    vidore-benchmark evaluate-retriever \
        --model-class colpali \
        --model-name vidore/colpali-v1.3 \
        --dataset-name vidore/restaurant_esg_reports_beir \
        --dataset-format beir \
        --split test
    ```
    
For more details on using `vidore-benchmark`, refer to the official documentation: [https://github.com/illuin-tech/vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark)

## Citation

If you use this dataset in your research or work, please cite:

```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
  title={ColPali: Efficient Document Retrieval with Vision Language Models}, 
  author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
  year={2024},
  eprint={2407.01449},
  archivePrefix={arXiv},
  primaryClass={cs.IR},
  url={https://arxiv.org/abs/2407.01449}, 
}
```

## Acknowledgments

This work is partially supported by [ILLUIN Technology](https://www.illuin.tech/), and by a grant from ANRT France.