QuentinJG commited on
Commit
114d4d9
·
verified ·
1 Parent(s): d8830ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md CHANGED
@@ -62,3 +62,77 @@ configs:
62
  - split: test
63
  path: queries/test-*
64
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  - split: test
63
  path: queries/test-*
64
  ---
65
+
66
+ # Vidore Benchmark 2 - ESG Human Labeled
67
+
68
+ This dataset is part of the "Vidore Benchmark 2" collection, designed for evaluating visual retrieval applications. It focuses on the theme of **ESG reports from the fast food industry**.
69
+
70
+ ## Dataset Summary
71
+
72
+ Each query is in english.
73
+
74
+ This dataset provides a focused benchmark for visual retrieval tasks related to ESG reports for the fast food industry. It includes a curated set of documents, queries, relevance judgments (qrels), and page images.
75
+ This dataset was fully labelled by hand, has no overlap of queries with its synthetic counterpart (available [here](https://huggingface.co/datasets/vidore/synthetic_rse_restaurant_filtered_v1.0))
76
+
77
+ * **Number of Documents:** 27
78
+ * **Number of Queries:** 52
79
+ * **Number of Pages:** 1538
80
+ * **Number of Relevance Judgments (qrels):** 128
81
+ * **Average Number of Pages per Query:** 2.5
82
+
83
+ ## Dataset Structure (Hugging Face Datasets)
84
+ The dataset is structured into the following columns:
85
+
86
+ * **`corpus`**: Contains page-level information:
87
+ * `"image"`: The image of the page (a PIL Image object).
88
+ * `"corpus-id"`: A unique identifier for this specific page within the corpus.
89
+ * **`queries`**: Contains query information:
90
+ * `"query-id"`: A unique identifier for the query.
91
+ * `"query"`: The text of the query.
92
+ * **`qrels`**: Contains relevance judgments:
93
+ * `"corpus-id"`: The ID of the relevant page.
94
+ * `"query-id"`: The ID of the query.
95
+ * `"answer"`: Answer relevant to the query AND the page.
96
+ * `"score"`: The relevance score.
97
+
98
+
99
+ ## Usage
100
+
101
+ This dataset is designed for evaluating the performance of visual retrieval systems, particularly those focused on document image understanding.
102
+
103
+ **Example Evaluation with ColPali (CLI):**
104
+
105
+ Here's a code snippet demonstrating how to evaluate the ColPali model on this dataset using the `vidore-benchmark` command-line tool.
106
+
107
+ 1. **Install the `vidore-benchmark` package:**
108
+
109
+ ```bash
110
+ pip install vidore-benchmark datasets
111
+ ```
112
+
113
+ 2. **Run the evaluation:**
114
+
115
+ ```bash
116
+ vidore-benchmark evaluate-retriever \
117
+ --model-class colpali \
118
+ --model-name vidore/colpali-v1.3 \
119
+ --dataset-name vidore/restaurant_esg_reports_beir \
120
+ --dataset-format beir \
121
+ --split test
122
+ ```
123
+
124
+ For more details on using `vidore-benchmark`, refer to the official documentation: [https://github.com/illuin-tech/vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark)
125
+
126
+ ## Citation
127
+
128
+ If you use this dataset in your research or work, please cite:
129
+
130
+ #INSERT CITATION
131
+
132
+ ## License
133
+
134
+ #INSERT LICENSE
135
+
136
+ ## Acknowledgments
137
+
138
+ This work is partially supported by [ILLUIN Technology](https://www.illuin.tech/), and by a grant from ANRT France.