Dataset Viewer
Auto-converted to Parquet
audio
audio
Generative Model
string
Source Speaker_ID
float64
Target Speaker ID
int64
Gender
string
Source Reference Audio
string
Target Reference Audio
string
TTS Transcript
string
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931085849-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931085926-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931504864-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930755309-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931085858-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932343012-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931085876-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931505033-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930996898-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930894296-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930442131-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930894311-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932408257-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931170332-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930520313-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931170280-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930996912-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931014228-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931085894-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932343051-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931170334-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931504715-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931170306-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932409278-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930696038-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930844143-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931504869-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930442082-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930696071-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930696044-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931085922-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424933186073-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931504748-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932409306-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930520375-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932342253-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424933186025-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930755301-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931504761-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930520331-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930996868-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930996833-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932408339-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931085935-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931504670-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930894352-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932343013-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424933186121-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930520297-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930520303-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931170325-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930996921-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930996858-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932343086-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424930755373-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931085867-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424931085869-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932342288-1037-f.wav
null
freevc24
1,005
1,037
Female
844424932377082-1005-f.wav
844424932342260-1037-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930919809-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930635129-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932386812-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930919766-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930935328-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932327380-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932447896-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930919774-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930522892-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932426002-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932424865-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930935390-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932389518-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932447918-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932443332-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932443291-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930460585-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930927210-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930885921-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930460572-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932426874-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930635105-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930927135-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930935405-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930885970-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424931037892-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932443288-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930885927-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932327386-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932392990-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932387689-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930522855-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930697796-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932443338-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932442288-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930522829-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930635186-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932392969-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424930661695-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932426872-1175-f.wav
null
freevc24
1,005
1,175
Female
844424932359877-1005-f.wav
844424932425969-1175-f.wav
null
End of preview. Expand in Data Studio

IndicSynth

A Large-Scale Multilingual Synthetic Speech Dataset for Low-Resource Indian Languages

πŸ† Outstanding Paper Award, ACL 2025


🧠 Overview

IndicSynth is a novel multilingual synthetic speech dataset designed to advance multilingual audio deepfake detection (ADD) and anti-spoofing research. It covers 12 low-resource Indian languages and provides both mimicry and diversity subsets.

  • 4,000+ hours of synthetic audio
  • 12 languages: Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Odia, Punjabi, Sanskrit, Tamil, Telugu, Urdu
  • Useful for ADD, speaker verification (SV), and bias studies

πŸ“‚ Dataset Structure

Each language folder contains:

  
IndicSynth/
β”œβ”€β”€ Bengali/
β”‚ β”œβ”€β”€ audio/ # All .wav files (synthetic clips)
β”‚ └── metadata.csv # Metadata for all synthetic clips
β”œβ”€β”€ Gujarati/
β”‚ β”œβ”€β”€ audio/
β”‚ └── metadata.csv

Each 'metadata.csv' includes:

  • Generative Model (xtts_v2 / vits / freevc24)
  • Speaker IDs
  • Gender
  • Transcript (if applicable)
  • File path to synthetic audio

πŸ“ Note on Transcripts in Metadata: The transcripts included in the metadata.csv files represent the intended text prompts used during synthetic speech generation via TTS models. We provide these transcripts to enable future explorations, but do not guarantee perfect alignment with the generated audio. If you intend to use IndicSynth for speech-to-text or similar tasks, we strongly recommend conducting careful human evaluation with proficient native speakers of the respective languages.


βš™οΈ IndicSynth Generation?

Synthetic data was generated using:

Model Type Transcript Fine-Tuned
xtts_v2 TTS Yes Yes (for 10 languages)
vits TTS Yes No
freevc24 VC No No
  • Mimicry subset: For anti-spoofing research
  • Diversity subset: Contains diverse set of realistic synthetic voices for multilingual audio deepfake detection research

For more details, please see the Table 1 and Section 3 of our paper: https://aclanthology.org/2025.acl-long.1070.pdf


πŸ“¦ Access the Dataset

You can load data in a specific target language using the following code:


import os
import soundfile as sf
from datasets import load_dataset
from tqdm import tqdm
import pandas as pd

language = "Hindi" # Specify the target language here

# Load Dataset
dataset = load_dataset("vdivyasharma/IndicSynth", name=language, split="train") 

# Create target directory structure
output_dir = language
audio_dir = os.path.join(output_dir, "audio")
os.makedirs(audio_dir, exist_ok=True)

# Store metadata rows here
metadata_rows = []

# Loop through dataset and save each clip
for example in tqdm(dataset):
    audio_array = example["audio"]["array"]
    sampling_rate = example["audio"]["sampling_rate"]
    
    # Get filename
    original_name = example.get("file") or example.get("path") or example["audio"]["path"].split("/")[-1]
    
    # Save audio to audio/ subfolder
    audio_path = os.path.join("audio", original_name)  # relative path for metadata
    sf.write(os.path.join(output_dir, audio_path), audio_array, sampling_rate)
    
    # Store metadata row
    row = {k: v for k, v in example.items() if k != "audio"}
    row["file_name"] = audio_path
    metadata_rows.append(row)

# Save metadata to CSV
df = pd.DataFrame(metadata_rows)
df.to_csv(os.path.join(output_dir, "metadata.csv"), index=False)

License

IndicSynth is released under the CC BY-NC 4.0 License.
It is intended for non-commercial, academic research only.

Citation

If you use IndicSynth, please cite the following papers:
@inproceedings{sharma-etal-2025-indicsynth,
    title = "{I}ndic{S}ynth: A Large-Scale Multilingual Synthetic Speech Dataset for Low-Resource {I}ndian Languages",
    author = "Sharma, Divya V  and
      Ekbote, Vijval  and
      Gupta, Anubha",
    editor = "Che, Wanxiang  and
      Nabende, Joyce  and
      Shutova, Ekaterina  and
      Pilehvar, Mohammad Taher",
    booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2025",
    address = "Vienna, Austria",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2025.acl-long.1070/",
    pages = "22037--22060",
    ISBN = "979-8-89176-251-0"
}
@article{IndicSuperb,
author = {Javed, Tahir and Bhogale, Kaushal and Raman, Abhigyan and Kumar, Pratyush and Kunchukuttan, Anoop and Khapra, Mitesh},
year = {2023},
month = {06},
pages = {12942-12950},
title = {IndicSUPERB: A Speech Processing Universal Performance Benchmark for Indian Languages},
volume = {37},
journal = {Proceedings of the AAAI Conference on Artificial Intelligence},
doi = {10.1609/aaai.v37i11.26521}
}

πŸ’¬ Contact

For questions or feedback, please feel free to reach out at [email protected].

πŸ™ Acknowledgments

  • 🌍 ACL Diversity & Inclusion Subsidy for enabling in-person presentation at ACL 2025
  • 🀝 HuggingFace for dataset hosting support
  • πŸŽ“SBILab and Infosys Centre for Artificial Intelligence (CAI) at IIIT-Delhi for their support
Downloads last month
1,084