openai-oss / README.md
davanstrien's picture
davanstrien HF Staff
Add HF Jobs getting started guide and update documentation links
e4dd652
---
viewer: false
tags:
- uv-script
- synthetic-data
- openai-oss
---
# πŸš€ OpenAI GPT OSS Models - Simple Generation Script
Generate synthetic datasets using OpenAI's GPT OSS models with transparent reasoning. Works on HuggingFace Jobs with L4 GPUs!
## βœ… Tested & Working
Successfully tested on HF Jobs with `l4x4` flavor (4x L4 GPUs = 96GB total memory).
## πŸš€ Getting Started with HF Jobs
### First-time Setup (2 minutes)
1. **Install HuggingFace CLI**:
```bash
pip install huggingface-hub
```
2. **Login to HuggingFace**:
```bash
huggingface-cli login
```
(Enter your HF token when prompted - get one at https://huggingface.co/settings/tokens)
3. **Run the script on HF Jobs**:
```bash
hf jobs uv run --flavor l4x4 --secrets HF_TOKEN=hf_*** \
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_minimal.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset YOUR_USERNAME/gpt-oss-test \
--prompt-column question \
--max-samples 2
```
That's it! Your job will run on HuggingFace's GPUs and the output dataset will appear in your HF account.
## 🌟 Quick Start
```bash
# Run on HF Jobs (tested and working)
hf jobs uv run --flavor l4x4 --secrets HF_TOKEN=hf_*** \
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_minimal.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset username/gpt-oss-haiku \
--prompt-column question \
--max-samples 2 \
--reasoning-effort high
```
## πŸ“‹ Script Options
| Option | Description | Default |
| -------------------- | -------------------------------- | -------------------------- |
| `--input-dataset` | HuggingFace dataset to process | Required |
| `--output-dataset` | Output dataset name | Required |
| `--prompt-column` | Column containing prompts | `prompt` |
| `--model-id` | Model to use | `openai/gpt-oss-20b` |
| `--max-samples` | Limit samples to process | None (all) |
| `--max-new-tokens` | Max tokens to generate | Auto-scales: 512/1024/2048 |
| `--reasoning-effort` | Reasoning depth: low/medium/high | `medium` |
| `--temperature` | Sampling temperature | `1.0` |
| `--top-p` | Top-p sampling | `1.0` |
**Note**: `max-new-tokens` auto-scales based on `reasoning-effort` if not set:
- `low`: 512 tokens
- `medium`: 1024 tokens
- `high`: 2048 tokens (prevents truncation of detailed reasoning)
## πŸ’‘ What You Get
The output dataset contains:
- `prompt`: Original prompt from input dataset
- `raw_output`: Full model response with channel markers
- `model`: Model ID used
- `reasoning_effort`: The reasoning level used
### Understanding the Output
The raw output contains special channel markers:
- `<|channel|>analysis<|message|>` - Chain of thought reasoning
- `<|channel|>final<|message|>` - The actual response
Example raw output structure:
```
<|channel|>analysis<|message|>
[Reasoning about the task...]
<|channel|>final<|message|>
[Actual haiku or response]
```
## 🎯 Examples
### Test with Different Reasoning Levels
**High reasoning (most detailed):**
```bash
hf jobs uv run --flavor l4x4 --secrets HF_TOKEN=hf_*** \
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_minimal.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset username/haiku-high \
--prompt-column question \
--reasoning-effort high \
--max-samples 5
```
**Low reasoning (fastest):**
```bash
hf jobs uv run --flavor l4x4 --secrets HF_TOKEN=hf_*** \
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_minimal.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset username/haiku-low \
--prompt-column question \
--reasoning-effort low \
--max-samples 10
```
## πŸ–₯️ GPU Requirements
| Model | Memory Required | Recommended Flavor |
| ---------------------- | --------------- | ---------------------- |
| **openai/gpt-oss-20b** | ~40GB | `l4x4` (4x24GB = 96GB) |
**Note**: The 20B model automatically dequantizes from MXFP4 to bf16 on non-Hopper GPUs, requiring more memory than the quantized size.
### Reasoning Effort
The `reasoning_effort` parameter controls how much chain-of-thought reasoning the model generates:
- `low`: Quick responses with minimal reasoning
- `medium`: Balanced reasoning (default)
- `high`: Detailed step-by-step reasoning
### Sampling Parameters
OpenAI recommends `temperature=1.0` and `top_p=1.0` as defaults for GPT OSS models:
- These settings provide good diversity without compromising quality
- The model was trained to work well with these parameters
- Adjust only if you need specific behavior (e.g., lower temperature for more deterministic output)
## πŸ“š Resources
- [OpenAI GPT OSS Model Collection](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) - Both 20B and 120B models
- [Model: openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b)
- [HF Jobs Documentation](https://huggingface.co/docs/huggingface_hub/guides/jobs) - Complete guide to running jobs on HuggingFace
- [HF CLI Guide](https://huggingface.co/docs/huggingface_hub/guides/cli) - HuggingFace CLI installation and usage
- [Dataset: davanstrien/haiku_dpo](https://huggingface.co/datasets/davanstrien/haiku_dpo)
---
_Last tested: 2025-01-06 on HF Jobs with l4x4 flavor_