File size: 9,147 Bytes
bb33774 10ec4e7 bb33774 10ec4e7 bb33774 50a87a3 bb33774 b4c35f6 bb33774 f5e30d5 bb33774 f5e30d5 7e3ee8a f5e30d5 50a87a3 f5e30d5 bb33774 10ec4e7 bb33774 10ec4e7 f5e30d5 10ec4e7 a4ee9cd db35e01 a4ee9cd db35e01 a4ee9cd bb33774 f5e30d5 db35e01 f5e30d5 bb33774 10ec4e7 bb33774 10ec4e7 bb33774 10ec4e7 bb33774 10ec4e7 bb33774 10ec4e7 bb33774 10ec4e7 bb33774 a4ee9cd 10ec4e7 bb33774 10ec4e7 bb33774 f5e30d5 b4c35f6 bb33774 10ec4e7 bb33774 10ec4e7 bb33774 10ec4e7 a4ee9cd bb33774 db35e01 a4ee9cd db35e01 bb33774 10ec4e7 db35e01 bb33774 10ec4e7 bb33774 db35e01 bb33774 10ec4e7 bb33774 10ec4e7 bb33774 10ec4e7 bb33774 10ec4e7 a4ee9cd 10ec4e7 bb33774 a4ee9cd bb33774 10ec4e7 bb33774 b4c35f6 f5e30d5 10ec4e7 bb33774 a4ee9cd 10ec4e7 bb33774 10ec4e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "torch",
# "transformers>=4.55.0",
# "datasets",
# "hf-xet >= 1.1.7",
# "huggingface-hub[hf_transfer]",
# "accelerate",
# ]
# ///
"""
Minimal GPT OSS generation script for HF Jobs.
Based on official HuggingFace blog recommendations.
Works on regular GPUs (L4, A10G, A100) without Flash Attention 3.
Usage:
# Quick local test
uv run gpt_oss_minimal.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset username/haiku-raw \
--prompt-column question \
--max-samples 2
# HF Jobs execution (L4x4 for proper memory)
hf jobs uv run --flavor l4x4 --secrets HF_TOKEN=hf_*** \
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_minimal.py \
--input-dataset davanstrien/haiku_dpo \
--output-dataset username/haiku-raw \
--prompt-column question
"""
import argparse
import os
import sys
from datetime import datetime
import torch
from datasets import Dataset, load_dataset
from huggingface_hub import DatasetCard, get_token, login
from transformers import AutoModelForCausalLM, AutoTokenizer
# Enable fast downloads
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
def create_dataset_card(
input_dataset: str,
model_id: str,
num_examples: int,
reasoning_effort: str,
generation_time: str,
) -> str:
"""Create a minimal dataset card."""
return f"""---
tags:
- synthetic
- gpt-oss
- reasoning
---
# GPT OSS Generated Responses
This dataset was generated using OpenAI's GPT OSS model with reasoning channels.
## Generation Details
- **Source Dataset**: [{input_dataset}](https://huggingface.co/datasets/{input_dataset})
- **Model**: [{model_id}](https://huggingface.co/{model_id})
- **Model Collection**: [OpenAI GPT OSS Models](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4)
- **Number of Examples**: {num_examples:,}
- **Reasoning Effort**: {reasoning_effort}
- **Generation Date**: {generation_time}
## Dataset Structure
Each example contains:
- `prompt`: Original prompt from source dataset
- `raw_output`: Full model response with channel markers
- `model`: Model identifier
- `reasoning_effort`: Reasoning level used
## Usage
To extract the final response, look for text after `<|channel|>final<|message|>` in the raw_output.
Generated using [uv-scripts/openai-oss](https://huggingface.co/datasets/uv-scripts/openai-oss).
"""
def main():
parser = argparse.ArgumentParser(
description="Minimal GPT OSS generation for HF Jobs"
)
parser.add_argument(
"--input-dataset", required=True, help="Input dataset on HF Hub"
)
parser.add_argument(
"--output-dataset", required=True, help="Output dataset on HF Hub"
)
parser.add_argument(
"--prompt-column", default="prompt", help="Column containing prompts"
)
parser.add_argument("--model-id", default="openai/gpt-oss-20b", help="Model to use")
parser.add_argument("--max-samples", type=int, help="Limit number of samples")
parser.add_argument(
"--max-new-tokens",
type=int,
help="Max tokens to generate (auto-scales with reasoning effort if not set)",
)
parser.add_argument(
"--reasoning-effort",
choices=["low", "medium", "high"],
default="medium",
help="Reasoning effort level (default: medium)",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="Sampling temperature (default: 1.0)",
)
parser.add_argument(
"--top-p",
type=float,
default=1.0,
help="Top-p sampling (default: 1.0)",
)
args = parser.parse_args()
# Auto-scale max_new_tokens based on reasoning effort if not explicitly set
if args.max_new_tokens is None:
if args.reasoning_effort == "high":
args.max_new_tokens = 2048 # More tokens for detailed reasoning
elif args.reasoning_effort == "medium":
args.max_new_tokens = 1024
else: # low
args.max_new_tokens = 512
print(
f"Auto-set max_new_tokens={args.max_new_tokens} based on reasoning_effort={args.reasoning_effort}"
)
# Check GPU availability
if not torch.cuda.is_available():
print(
"ERROR: GPU required. Use HF Jobs with --flavor a10g-small or run on GPU machine"
)
sys.exit(1)
print(f"GPU: {torch.cuda.get_device_name(0)}")
print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
# Authenticate
token = os.environ.get("HF_TOKEN") or get_token()
if not token:
print(
"ERROR: HF_TOKEN required. Set HF_TOKEN env var or run: huggingface-cli login"
)
sys.exit(1)
login(token=token, add_to_git_credential=False)
# Load tokenizer (following official blog)
print(f"Loading tokenizer: {args.model_id}")
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
# Load model (without Flash Attention 3 for compatibility)
print(f"Loading model: {args.model_id}")
print("Note: MXFP4 will auto-dequantize to bf16 on non-Hopper GPUs")
model = AutoModelForCausalLM.from_pretrained(
args.model_id,
device_map="auto",
torch_dtype="auto", # Let transformers choose optimal dtype
# NOT using: attn_implementation="kernels-community/vllm-flash-attn3"
# as it requires H100/H200 GPUs
)
print("Model loaded successfully")
# Load dataset
print(f"Loading dataset: {args.input_dataset}")
dataset = load_dataset(args.input_dataset, split="train")
if args.prompt_column not in dataset.column_names:
print(f"ERROR: Column '{args.prompt_column}' not found")
print(f"Available columns: {dataset.column_names}")
sys.exit(1)
# if args.random_sample:
# dataset.shuffle()
# print(f"Random sampling enabled. Using {args.max_samples} samples.")
# Limit samples if requested
if args.max_samples:
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
print(f"Processing {len(dataset)} examples")
# Process each example
results = []
generation_start_time = datetime.now().isoformat()
for i, example in enumerate(dataset):
print(f"[{i + 1}/{len(dataset)}] Processing...")
prompt_text = example[args.prompt_column]
# Create messages (user message only, as per official examples)
messages = [{"role": "user", "content": prompt_text}]
# Apply chat template with reasoning_effort parameter
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt",
return_dict=True,
reasoning_effort=args.reasoning_effort, # "low", "medium", or "high"
).to(model.device)
# Generate with user-specified or default parameters
with torch.no_grad():
generated = model.generate(
**inputs,
max_new_tokens=args.max_new_tokens,
do_sample=True,
temperature=args.temperature,
top_p=args.top_p,
)
# Decode only the generated part (excluding input)
response = tokenizer.decode(
generated[0][inputs["input_ids"].shape[-1] :],
skip_special_tokens=False, # Keep channel markers
)
# Store raw output with channel markers
results.append(
{
"prompt": prompt_text,
"raw_output": response,
"model": args.model_id,
"reasoning_effort": args.reasoning_effort,
}
)
# Show preview of output structure
if i == 0:
print("Sample output preview (first 200 chars):")
print(response[:200])
print("...")
# Create and push dataset
print("\nCreating output dataset...")
output_dataset = Dataset.from_list(results)
print(f"Pushing to {args.output_dataset}...")
output_dataset.push_to_hub(args.output_dataset, token=token)
# Create and push dataset card
print("Creating dataset card...")
card_content = create_dataset_card(
input_dataset=args.input_dataset,
model_id=args.model_id,
num_examples=len(results),
reasoning_effort=args.reasoning_effort,
generation_time=generation_start_time,
)
card = DatasetCard(card_content)
card.push_to_hub(args.output_dataset, token=token)
print(f"\n✅ Complete!")
print(f"Dataset: https://huggingface.co/datasets/{args.output_dataset}")
print(f"\nOutput format:")
print("- prompt: Original prompt")
print("- raw_output: Full model response with channel markers")
print("- model: Model ID used")
print(f"- reasoning_effort: {args.reasoning_effort}")
print(
"\nTo extract final response, look for text after '<|channel|>final<|message|>'"
)
if __name__ == "__main__":
main()
|