davanstrien HF Staff commited on
Commit
10ec4e7
·
1 Parent(s): 89351df

Update dependencies

Browse files
Files changed (1) hide show
  1. gpt_oss_minimal.py +55 -41
gpt_oss_minimal.py CHANGED
@@ -2,8 +2,9 @@
2
  # requires-python = ">=3.10"
3
  # dependencies = [
4
  # "torch",
5
- # "transformers>=4.45.0",
6
  # "datasets",
 
7
  # "huggingface-hub[hf_transfer]",
8
  # "accelerate",
9
  # ]
@@ -44,38 +45,52 @@ os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
44
 
45
 
46
  def main():
47
- parser = argparse.ArgumentParser(description="Minimal GPT OSS generation for HF Jobs")
48
- parser.add_argument("--input-dataset", required=True, help="Input dataset on HF Hub")
49
- parser.add_argument("--output-dataset", required=True, help="Output dataset on HF Hub")
50
- parser.add_argument("--prompt-column", default="prompt", help="Column containing prompts")
 
 
 
 
 
 
 
 
51
  parser.add_argument("--model-id", default="openai/gpt-oss-20b", help="Model to use")
52
  parser.add_argument("--max-samples", type=int, help="Limit number of samples")
53
- parser.add_argument("--max-new-tokens", type=int, default=1024, help="Max tokens to generate")
 
 
54
  args = parser.parse_args()
55
 
56
  # Check GPU availability
57
  if not torch.cuda.is_available():
58
- print("ERROR: GPU required. Use HF Jobs with --flavor a10g-small or run on GPU machine")
 
 
59
  sys.exit(1)
60
-
61
  print(f"GPU: {torch.cuda.get_device_name(0)}")
62
  print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
63
 
64
  # Authenticate
65
  token = os.environ.get("HF_TOKEN") or get_token()
66
  if not token:
67
- print("ERROR: HF_TOKEN required. Set HF_TOKEN env var or run: huggingface-cli login")
 
 
68
  sys.exit(1)
69
  login(token=token, add_to_git_credential=False)
70
 
71
  # Load tokenizer (following official blog)
72
  print(f"Loading tokenizer: {args.model_id}")
73
  tokenizer = AutoTokenizer.from_pretrained(args.model_id)
74
-
75
  # Load model (without Flash Attention 3 for compatibility)
76
  print(f"Loading model: {args.model_id}")
77
  print("Note: MXFP4 will auto-dequantize to bf16 on non-Hopper GPUs")
78
-
79
  model = AutoModelForCausalLM.from_pretrained(
80
  args.model_id,
81
  device_map="auto",
@@ -88,60 +103,57 @@ def main():
88
  # Load dataset
89
  print(f"Loading dataset: {args.input_dataset}")
90
  dataset = load_dataset(args.input_dataset, split="train")
91
-
92
  if args.prompt_column not in dataset.column_names:
93
  print(f"ERROR: Column '{args.prompt_column}' not found")
94
  print(f"Available columns: {dataset.column_names}")
95
  sys.exit(1)
96
-
97
  # Limit samples if requested
98
  if args.max_samples:
99
  dataset = dataset.select(range(min(args.max_samples, len(dataset))))
100
-
101
  print(f"Processing {len(dataset)} examples")
102
 
103
  # Process each example
104
  results = []
105
  for i, example in enumerate(dataset):
106
- print(f"[{i+1}/{len(dataset)}] Processing...")
107
-
108
  prompt_text = example[args.prompt_column]
109
-
110
  # Create messages (user message only, as per official examples)
111
- messages = [
112
- {"role": "user", "content": prompt_text}
113
- ]
114
-
115
  # Apply chat template (following official blog)
116
  inputs = tokenizer.apply_chat_template(
117
- messages,
118
- add_generation_prompt=True,
119
- return_tensors="pt",
120
- return_dict=True
121
  ).to(model.device)
122
-
123
  # Generate
124
  with torch.no_grad():
125
  generated = model.generate(
126
- **inputs,
127
  max_new_tokens=args.max_new_tokens,
128
  do_sample=True,
129
  temperature=0.7,
130
  )
131
-
132
  # Decode only the generated part (excluding input)
133
  response = tokenizer.decode(
134
- generated[0][inputs["input_ids"].shape[-1]:],
135
- skip_special_tokens=False # Keep channel markers
136
  )
137
-
138
  # Store raw output with channel markers
139
- results.append({
140
- "prompt": prompt_text,
141
- "raw_output": response,
142
- "model": args.model_id,
143
- })
144
-
 
 
145
  # Show preview of output structure
146
  if i == 0:
147
  print(f"Sample output preview (first 200 chars):")
@@ -151,18 +163,20 @@ def main():
151
  # Create and push dataset
152
  print("\nCreating output dataset...")
153
  output_dataset = Dataset.from_list(results)
154
-
155
  print(f"Pushing to {args.output_dataset}...")
156
  output_dataset.push_to_hub(args.output_dataset, token=token)
157
-
158
  print(f"\n✅ Complete!")
159
  print(f"Dataset: https://huggingface.co/datasets/{args.output_dataset}")
160
  print(f"\nOutput format:")
161
  print("- prompt: Original prompt")
162
  print("- raw_output: Full model response with channel markers")
163
  print("- model: Model ID used")
164
- print("\nTo extract final response, look for text after '<|channel|>final<|message|>'")
 
 
165
 
166
 
167
  if __name__ == "__main__":
168
- main()
 
2
  # requires-python = ">=3.10"
3
  # dependencies = [
4
  # "torch",
5
+ # "transformers>=4.55.0",
6
  # "datasets",
7
+ # "hf-xet >= 1.1.7",
8
  # "huggingface-hub[hf_transfer]",
9
  # "accelerate",
10
  # ]
 
45
 
46
 
47
  def main():
48
+ parser = argparse.ArgumentParser(
49
+ description="Minimal GPT OSS generation for HF Jobs"
50
+ )
51
+ parser.add_argument(
52
+ "--input-dataset", required=True, help="Input dataset on HF Hub"
53
+ )
54
+ parser.add_argument(
55
+ "--output-dataset", required=True, help="Output dataset on HF Hub"
56
+ )
57
+ parser.add_argument(
58
+ "--prompt-column", default="prompt", help="Column containing prompts"
59
+ )
60
  parser.add_argument("--model-id", default="openai/gpt-oss-20b", help="Model to use")
61
  parser.add_argument("--max-samples", type=int, help="Limit number of samples")
62
+ parser.add_argument(
63
+ "--max-new-tokens", type=int, default=1024, help="Max tokens to generate"
64
+ )
65
  args = parser.parse_args()
66
 
67
  # Check GPU availability
68
  if not torch.cuda.is_available():
69
+ print(
70
+ "ERROR: GPU required. Use HF Jobs with --flavor a10g-small or run on GPU machine"
71
+ )
72
  sys.exit(1)
73
+
74
  print(f"GPU: {torch.cuda.get_device_name(0)}")
75
  print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f}GB")
76
 
77
  # Authenticate
78
  token = os.environ.get("HF_TOKEN") or get_token()
79
  if not token:
80
+ print(
81
+ "ERROR: HF_TOKEN required. Set HF_TOKEN env var or run: huggingface-cli login"
82
+ )
83
  sys.exit(1)
84
  login(token=token, add_to_git_credential=False)
85
 
86
  # Load tokenizer (following official blog)
87
  print(f"Loading tokenizer: {args.model_id}")
88
  tokenizer = AutoTokenizer.from_pretrained(args.model_id)
89
+
90
  # Load model (without Flash Attention 3 for compatibility)
91
  print(f"Loading model: {args.model_id}")
92
  print("Note: MXFP4 will auto-dequantize to bf16 on non-Hopper GPUs")
93
+
94
  model = AutoModelForCausalLM.from_pretrained(
95
  args.model_id,
96
  device_map="auto",
 
103
  # Load dataset
104
  print(f"Loading dataset: {args.input_dataset}")
105
  dataset = load_dataset(args.input_dataset, split="train")
106
+
107
  if args.prompt_column not in dataset.column_names:
108
  print(f"ERROR: Column '{args.prompt_column}' not found")
109
  print(f"Available columns: {dataset.column_names}")
110
  sys.exit(1)
111
+
112
  # Limit samples if requested
113
  if args.max_samples:
114
  dataset = dataset.select(range(min(args.max_samples, len(dataset))))
115
+
116
  print(f"Processing {len(dataset)} examples")
117
 
118
  # Process each example
119
  results = []
120
  for i, example in enumerate(dataset):
121
+ print(f"[{i + 1}/{len(dataset)}] Processing...")
122
+
123
  prompt_text = example[args.prompt_column]
124
+
125
  # Create messages (user message only, as per official examples)
126
+ messages = [{"role": "user", "content": prompt_text}]
127
+
 
 
128
  # Apply chat template (following official blog)
129
  inputs = tokenizer.apply_chat_template(
130
+ messages, add_generation_prompt=True, return_tensors="pt", return_dict=True
 
 
 
131
  ).to(model.device)
132
+
133
  # Generate
134
  with torch.no_grad():
135
  generated = model.generate(
136
+ **inputs,
137
  max_new_tokens=args.max_new_tokens,
138
  do_sample=True,
139
  temperature=0.7,
140
  )
141
+
142
  # Decode only the generated part (excluding input)
143
  response = tokenizer.decode(
144
+ generated[0][inputs["input_ids"].shape[-1] :],
145
+ skip_special_tokens=False, # Keep channel markers
146
  )
147
+
148
  # Store raw output with channel markers
149
+ results.append(
150
+ {
151
+ "prompt": prompt_text,
152
+ "raw_output": response,
153
+ "model": args.model_id,
154
+ }
155
+ )
156
+
157
  # Show preview of output structure
158
  if i == 0:
159
  print(f"Sample output preview (first 200 chars):")
 
163
  # Create and push dataset
164
  print("\nCreating output dataset...")
165
  output_dataset = Dataset.from_list(results)
166
+
167
  print(f"Pushing to {args.output_dataset}...")
168
  output_dataset.push_to_hub(args.output_dataset, token=token)
169
+
170
  print(f"\n✅ Complete!")
171
  print(f"Dataset: https://huggingface.co/datasets/{args.output_dataset}")
172
  print(f"\nOutput format:")
173
  print("- prompt: Original prompt")
174
  print("- raw_output: Full model response with channel markers")
175
  print("- model: Model ID used")
176
+ print(
177
+ "\nTo extract final response, look for text after '<|channel|>final<|message|>'"
178
+ )
179
 
180
 
181
  if __name__ == "__main__":
182
+ main()