davanstrien
HF Staff
Update README.md to enhance model description and add advanced example for ArXiv ML trends analysis
5c4f2fd
| viewer: false | |
| tags: [uv-script, classification, vllm, structured-outputs, gpu-required] | |
| # Dataset Classification with vLLM | |
| Efficient text classification for Hugging Face datasets using vLLM with structured outputs. This script provides GPU-accelerated classification with guaranteed valid outputs through guided decoding. | |
| ## π Quick Start | |
| ```bash | |
| # Classify IMDB reviews | |
| uv run classify-dataset.py \ | |
| --input-dataset stanfordnlp/imdb \ | |
| --column text \ | |
| --labels "positive,negative" \ | |
| --output-dataset user/imdb-classified | |
| ``` | |
| That's it! No installation, no setup - just `uv run`. | |
| ## π Requirements | |
| - **GPU Required**: This script uses vLLM for efficient inference | |
| - Python 3.10+ | |
| - UV (will handle all dependencies automatically) | |
| - vLLM >= 0.6.6 (for guided decoding support) | |
| ## π― Features | |
| - **Guaranteed valid outputs** using vLLM's guided decoding with outlines | |
| - **Zero-shot classification** with structured generation | |
| - **GPU-optimized** with vLLM's automatic batching for maximum efficiency | |
| - **Default model**: HuggingFaceTB/SmolLM3-3B (fast 3B model, easily changeable) | |
| - **Robust text handling** with preprocessing and validation | |
| - **Three prompt styles** for different use cases | |
| - **Automatic progress tracking** and detailed statistics | |
| - **Direct Hub integration** - read and write datasets seamlessly | |
| ## π» Usage | |
| ### Basic Classification | |
| ```bash | |
| uv run classify-dataset.py \ | |
| --input-dataset <dataset-id> \ | |
| --column <text-column> \ | |
| --labels <comma-separated-labels> \ | |
| --output-dataset <output-id> | |
| ``` | |
| ### Arguments | |
| **Required:** | |
| - `--input-dataset`: Hugging Face dataset ID (e.g., `stanfordnlp/imdb`, `user/my-dataset`) | |
| - `--column`: Name of the text column to classify | |
| - `--labels`: Comma-separated classification labels (e.g., `"spam,ham"`) | |
| - `--output-dataset`: Where to save the classified dataset | |
| **Optional:** | |
| - `--model`: Model to use (default: **`HuggingFaceTB/SmolLM3-3B`** - a fast 3B parameter model) | |
| - `--prompt-style`: Choose from `simple`, `detailed`, or `reasoning` (default: `simple`) | |
| - `--split`: Dataset split to process (default: `train`) | |
| - `--max-samples`: Limit samples for testing | |
| - `--temperature`: Generation temperature (default: 0.1) | |
| - `--guided-backend`: Backend for guided decoding (default: `outlines`) | |
| - `--hf-token`: Hugging Face token (or use `HF_TOKEN` env var) | |
| ### Prompt Styles | |
| - **simple**: Direct classification prompt | |
| - **detailed**: Emphasizes exact category matching | |
| - **reasoning**: Includes brief analysis before classification | |
| All styles benefit from structured output guarantees - the model can only output valid labels! | |
| ## π Examples | |
| ### Sentiment Analysis | |
| ```bash | |
| uv run classify-dataset.py \ | |
| --input-dataset stanfordnlp/imdb \ | |
| --column text \ | |
| --labels "positive,negative" \ | |
| --output-dataset user/imdb-sentiment | |
| ``` | |
| ### Support Ticket Classification | |
| ```bash | |
| uv run classify-dataset.py \ | |
| --input-dataset user/support-tickets \ | |
| --column content \ | |
| --labels "bug,feature_request,question,other" \ | |
| --output-dataset user/tickets-classified \ | |
| --prompt-style reasoning | |
| ``` | |
| ### News Categorization | |
| ```bash | |
| uv run classify-dataset.py \ | |
| --input-dataset ag_news \ | |
| --column text \ | |
| --labels "world,sports,business,tech" \ | |
| --output-dataset user/ag-news-categorized \ | |
| --model meta-llama/Llama-3.2-3B-Instruct | |
| ``` | |
| ## π Running on HF Jobs | |
| This script is optimized for [Hugging Face Jobs](https://huggingface.co/docs/hub/spaces-gpu-jobs) (requires Pro subscription or Team/Enterprise organization): | |
| ````bash | |
| # Run on L4 GPU with vLLM image | |
| hf jobs uv run \ | |
| --flavor l4x1 \ | |
| --image vllm/vllm-openai:latest \ | |
| https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset.py \ | |
| --input-dataset stanfordnlp/imdb \ | |
| --column text \ | |
| --labels "positive,negative" \ | |
| --output-dataset user/imdb-classified | |
| ### GPU Flavors | |
| - `t4-small`: Budget option for smaller models | |
| - `l4x1`: Good balance for 7B models | |
| - `a10g-small`: Fast inference for 3B models | |
| - `a10g-large`: More memory for larger models | |
| - `a100-large`: Maximum performance | |
| ## π§ Advanced Usage | |
| ### Using Different Models | |
| By default, this script uses **HuggingFaceTB/SmolLM3-3B** - a fast, efficient 3B parameter model that's perfect for most classification tasks. You can easily use any other instruction-tuned model: | |
| ```bash | |
| # Larger model for complex classification | |
| uv run classify-dataset.py \ | |
| --input-dataset user/legal-docs \ | |
| --column text \ | |
| --labels "contract,patent,brief,memo,other" \ | |
| --output-dataset user/legal-classified \ | |
| --model Qwen/Qwen2.5-7B-Instruct | |
| ```` | |
| ### Large Datasets | |
| vLLM automatically handles batching for optimal performance. For very large datasets, it will process efficiently without manual intervention: | |
| ```bash | |
| uv run classify-dataset.py \ | |
| --input-dataset user/huge-dataset \ | |
| --column text \ | |
| --labels "A,B,C" \ | |
| --output-dataset user/huge-classified | |
| ``` | |
| ## π Performance | |
| - **SmolLM3-3B (default)**: ~50-100 texts/second on A10 | |
| - **7B models**: ~20-50 texts/second on A10 | |
| - vLLM automatically optimizes batching for best throughput | |
| ## π€ How It Works | |
| 1. **vLLM**: Provides efficient GPU batch inference | |
| 2. **Guided Decoding**: Uses outlines to guarantee valid label outputs | |
| 3. **Structured Generation**: Constrains model outputs to exact label choices | |
| 4. **UV**: Handles all dependencies automatically | |
| The script loads your dataset, preprocesses texts, classifies each one using guided decoding to ensure only valid labels are generated, then saves the results as a new column in the output dataset. | |
| ## π Troubleshooting | |
| ### CUDA Not Available | |
| This script requires a GPU. Run it on: | |
| - A machine with NVIDIA GPU | |
| - HF Jobs (recommended) | |
| - Cloud GPU instances | |
| ### Out of Memory | |
| - Use a smaller model | |
| - Use a larger GPU (e.g., a100-large) | |
| ### Invalid/Skipped Texts | |
| - Texts shorter than 3 characters are skipped | |
| - Empty or None values are marked as invalid | |
| - Very long texts are truncated to 4000 characters | |
| ### Classification Quality | |
| - With guided decoding, outputs are guaranteed to be valid labels | |
| - For better results, use clear and distinct label names | |
| - Try the `reasoning` prompt style for complex classifications | |
| - Use a larger model for nuanced tasks | |
| ### vLLM Version Issues | |
| If you see `ImportError: cannot import name 'GuidedDecodingParams'`: | |
| - Your vLLM version is too old (requires >= 0.6.6) | |
| - The script specifies the correct version in its dependencies | |
| - UV should automatically install the correct version | |
| ## π¬ Advanced Example: ArXiv ML Trends Analysis | |
| For a more complex real-world example, we provide scripts to analyze ML research trends from ArXiv papers: | |
| ### Step 1: Prepare the Dataset | |
| ```bash | |
| # Filter and prepare ArXiv CS papers from 2024 | |
| uv run prepare_arxiv_2024.py | |
| ``` | |
| This creates a filtered dataset of CS papers with combined title+abstract text. | |
| ### Step 2: Run Classification with Python API | |
| ```bash | |
| # Use HF Jobs Python API to classify papers | |
| uv run run_arxiv_classification.py | |
| ``` | |
| This script demonstrates: | |
| - Using `run_uv_job()` from the Python API | |
| - Classifying into modern ML trends (reasoning, agents, multimodal, robotics, etc.) | |
| - Handling authentication and job monitoring | |
| The classification categories include: | |
| - `reasoning_systems`: Chain-of-thought, reasoning, problem solving | |
| - `agents_autonomous`: Agents, tool use, autonomous systems | |
| - `multimodal_models`: Vision-language, audio, multi-modal | |
| - `robotics_embodied`: Robotics, embodied AI, manipulation | |
| - `efficient_inference`: Quantization, distillation, edge deployment | |
| - `alignment_safety`: RLHF, alignment, safety, interpretability | |
| - `generative_models`: Diffusion, generation, synthesis | |
| - `foundational_other`: Other foundational ML/AI research | |
| ## π License | |
| This script is provided as-is for use with the UV Scripts organization. | |