classification / README.md
davanstrien's picture
davanstrien HF Staff
Update README.md to enhance model description and add advanced example for ArXiv ML trends analysis
5c4f2fd
|
raw
history blame
7.84 kB
---
viewer: false
tags: [uv-script, classification, vllm, structured-outputs, gpu-required]
---
# Dataset Classification with vLLM
Efficient text classification for Hugging Face datasets using vLLM with structured outputs. This script provides GPU-accelerated classification with guaranteed valid outputs through guided decoding.
## πŸš€ Quick Start
```bash
# Classify IMDB reviews
uv run classify-dataset.py \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--output-dataset user/imdb-classified
```
That's it! No installation, no setup - just `uv run`.
## πŸ“‹ Requirements
- **GPU Required**: This script uses vLLM for efficient inference
- Python 3.10+
- UV (will handle all dependencies automatically)
- vLLM >= 0.6.6 (for guided decoding support)
## 🎯 Features
- **Guaranteed valid outputs** using vLLM's guided decoding with outlines
- **Zero-shot classification** with structured generation
- **GPU-optimized** with vLLM's automatic batching for maximum efficiency
- **Default model**: HuggingFaceTB/SmolLM3-3B (fast 3B model, easily changeable)
- **Robust text handling** with preprocessing and validation
- **Three prompt styles** for different use cases
- **Automatic progress tracking** and detailed statistics
- **Direct Hub integration** - read and write datasets seamlessly
## πŸ’» Usage
### Basic Classification
```bash
uv run classify-dataset.py \
--input-dataset <dataset-id> \
--column <text-column> \
--labels <comma-separated-labels> \
--output-dataset <output-id>
```
### Arguments
**Required:**
- `--input-dataset`: Hugging Face dataset ID (e.g., `stanfordnlp/imdb`, `user/my-dataset`)
- `--column`: Name of the text column to classify
- `--labels`: Comma-separated classification labels (e.g., `"spam,ham"`)
- `--output-dataset`: Where to save the classified dataset
**Optional:**
- `--model`: Model to use (default: **`HuggingFaceTB/SmolLM3-3B`** - a fast 3B parameter model)
- `--prompt-style`: Choose from `simple`, `detailed`, or `reasoning` (default: `simple`)
- `--split`: Dataset split to process (default: `train`)
- `--max-samples`: Limit samples for testing
- `--temperature`: Generation temperature (default: 0.1)
- `--guided-backend`: Backend for guided decoding (default: `outlines`)
- `--hf-token`: Hugging Face token (or use `HF_TOKEN` env var)
### Prompt Styles
- **simple**: Direct classification prompt
- **detailed**: Emphasizes exact category matching
- **reasoning**: Includes brief analysis before classification
All styles benefit from structured output guarantees - the model can only output valid labels!
## πŸ“Š Examples
### Sentiment Analysis
```bash
uv run classify-dataset.py \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--output-dataset user/imdb-sentiment
```
### Support Ticket Classification
```bash
uv run classify-dataset.py \
--input-dataset user/support-tickets \
--column content \
--labels "bug,feature_request,question,other" \
--output-dataset user/tickets-classified \
--prompt-style reasoning
```
### News Categorization
```bash
uv run classify-dataset.py \
--input-dataset ag_news \
--column text \
--labels "world,sports,business,tech" \
--output-dataset user/ag-news-categorized \
--model meta-llama/Llama-3.2-3B-Instruct
```
## πŸš€ Running on HF Jobs
This script is optimized for [Hugging Face Jobs](https://huggingface.co/docs/hub/spaces-gpu-jobs) (requires Pro subscription or Team/Enterprise organization):
````bash
# Run on L4 GPU with vLLM image
hf jobs uv run \
--flavor l4x1 \
--image vllm/vllm-openai:latest \
https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset.py \
--input-dataset stanfordnlp/imdb \
--column text \
--labels "positive,negative" \
--output-dataset user/imdb-classified
### GPU Flavors
- `t4-small`: Budget option for smaller models
- `l4x1`: Good balance for 7B models
- `a10g-small`: Fast inference for 3B models
- `a10g-large`: More memory for larger models
- `a100-large`: Maximum performance
## πŸ”§ Advanced Usage
### Using Different Models
By default, this script uses **HuggingFaceTB/SmolLM3-3B** - a fast, efficient 3B parameter model that's perfect for most classification tasks. You can easily use any other instruction-tuned model:
```bash
# Larger model for complex classification
uv run classify-dataset.py \
--input-dataset user/legal-docs \
--column text \
--labels "contract,patent,brief,memo,other" \
--output-dataset user/legal-classified \
--model Qwen/Qwen2.5-7B-Instruct
````
### Large Datasets
vLLM automatically handles batching for optimal performance. For very large datasets, it will process efficiently without manual intervention:
```bash
uv run classify-dataset.py \
--input-dataset user/huge-dataset \
--column text \
--labels "A,B,C" \
--output-dataset user/huge-classified
```
## πŸ“ˆ Performance
- **SmolLM3-3B (default)**: ~50-100 texts/second on A10
- **7B models**: ~20-50 texts/second on A10
- vLLM automatically optimizes batching for best throughput
## 🀝 How It Works
1. **vLLM**: Provides efficient GPU batch inference
2. **Guided Decoding**: Uses outlines to guarantee valid label outputs
3. **Structured Generation**: Constrains model outputs to exact label choices
4. **UV**: Handles all dependencies automatically
The script loads your dataset, preprocesses texts, classifies each one using guided decoding to ensure only valid labels are generated, then saves the results as a new column in the output dataset.
## πŸ› Troubleshooting
### CUDA Not Available
This script requires a GPU. Run it on:
- A machine with NVIDIA GPU
- HF Jobs (recommended)
- Cloud GPU instances
### Out of Memory
- Use a smaller model
- Use a larger GPU (e.g., a100-large)
### Invalid/Skipped Texts
- Texts shorter than 3 characters are skipped
- Empty or None values are marked as invalid
- Very long texts are truncated to 4000 characters
### Classification Quality
- With guided decoding, outputs are guaranteed to be valid labels
- For better results, use clear and distinct label names
- Try the `reasoning` prompt style for complex classifications
- Use a larger model for nuanced tasks
### vLLM Version Issues
If you see `ImportError: cannot import name 'GuidedDecodingParams'`:
- Your vLLM version is too old (requires >= 0.6.6)
- The script specifies the correct version in its dependencies
- UV should automatically install the correct version
## πŸ”¬ Advanced Example: ArXiv ML Trends Analysis
For a more complex real-world example, we provide scripts to analyze ML research trends from ArXiv papers:
### Step 1: Prepare the Dataset
```bash
# Filter and prepare ArXiv CS papers from 2024
uv run prepare_arxiv_2024.py
```
This creates a filtered dataset of CS papers with combined title+abstract text.
### Step 2: Run Classification with Python API
```bash
# Use HF Jobs Python API to classify papers
uv run run_arxiv_classification.py
```
This script demonstrates:
- Using `run_uv_job()` from the Python API
- Classifying into modern ML trends (reasoning, agents, multimodal, robotics, etc.)
- Handling authentication and job monitoring
The classification categories include:
- `reasoning_systems`: Chain-of-thought, reasoning, problem solving
- `agents_autonomous`: Agents, tool use, autonomous systems
- `multimodal_models`: Vision-language, audio, multi-modal
- `robotics_embodied`: Robotics, embodied AI, manipulation
- `efficient_inference`: Quantization, distillation, edge deployment
- `alignment_safety`: RLHF, alignment, safety, interpretability
- `generative_models`: Diffusion, generation, synthesis
- `foundational_other`: Other foundational ML/AI research
## πŸ“ License
This script is provided as-is for use with the UV Scripts organization.