Dataset Viewer
Auto-converted to Parquet
size
dict
objects
list
{ "height": 1360, "width": 1360 }
[ { "geometryType": "polygon", "labelerLogin": "labeler01", "classTitle": "Petrifications", "points": { "exterior": [ [ 453, 143 ], [ 456, 157 ], [ 470, 163 ], [ 467, 148 ], [ 467, 138 ], [ 460, 137 ] ], "interior": [] } } ]
{ "height": 1524, "width": 1524 }
[ { "geometryType": "polygon", "labelerLogin": "labeler01", "classTitle": "Infiltration/Consolidation", "points": { "exterior": [ [ 586, 955 ], [ 708, 952 ], [ 711, 952 ], [ 756, 845 ], [ 753, 503 ], [ 697, 375 ], [ 679, 357 ], [ 646, 354 ], [ 610, 354 ], [ 533, 417 ], [ 461, 488 ], [ 414, 572 ], [ 345, 738 ], [ 348, 851 ], [ 384, 896 ], [ 479, 938 ], [ 586, 955 ] ], "interior": [] } }, { "geometryType": "polygon", "labelerLogin": "labeler01", "classTitle": "Infiltration/Consolidation", "points": { "exterior": [ [ 1197, 988 ], [ 1211, 988 ], [ 1277, 944 ], [ 1283, 935 ], [ 1298, 887 ], [ 1298, 860 ], [ 1271, 664 ], [ 1229, 589 ], [ 1158, 536 ], [ 1063, 512 ], [ 1036, 512 ], [ 1003, 521 ], [ 955, 557 ], [ 955, 589 ], [ 955, 664 ], [ 961, 720 ], [ 1006, 896 ], [ 1024, 911 ], [ 1095, 970 ], [ 1197, 988 ] ], "interior": [] } } ]
{ "height": 1360, "width": 1360 }
[ { "geometryType": "polygon", "labelerLogin": "labeler01", "classTitle": "Nodule/mass", "points": { "exterior": [ [ 941, 269 ], [ 934, 278 ], [ 932, 287 ], [ 932, 297 ], [ 932, 304 ], [ 938, 309 ], [ 947, 310 ], [ 957, 306 ], [ 961, 298 ], [ 964, 289 ], [ 964, 283 ], [ 961, 275 ], [ 956, 269 ], [ 950, 268 ] ], "interior": [] } } ]
{ "height": 1360, "width": 1360 }
[ { "geometryType": "polygon", "labelerLogin": "labeler01", "classTitle": "Fibrosis", "points": { "exterior": [ [ 878, 566 ], [ 913, 552 ], [ 941, 563 ], [ 976, 583 ], [ 1001, 575 ], [ 973, 558 ], [ 948, 545 ], [ 904, 540 ], [ 869, 542 ] ], "interior": [] } }, { "geometryType": "polygon", "labelerLogin": "labeler01", "classTitle": "Fibrosis", "points": { "exterior": [ [ 965, 478 ], [ 1020, 465 ], [ 1057, 458 ], [ 1091, 429 ], [ 955, 462 ] ], "interior": [] } } ]
{ "height": 1360, "width": 1360 }
[ { "geometryType": "polygon", "labelerLogin": "labeler01", "classTitle": "Infiltration/Consolidation", "points": { "exterior": [ [ 583, 689 ], [ 522, 736 ], [ 488, 734 ], [ 454, 752 ], [ 401, 776 ], [ 396, 841 ], [ 456, 889 ], [ 517, 904 ], [ 580, 908 ], [ 641, 866 ], [ 653, 778 ], [ 653, 720 ] ], "interior": [] } } ]

Chest Xray with labels - 443 files

Dataset comprises 443 files from 150 medical studies, each annotated with 13 data tags and detailed text conclusions by radiologists.Designed for diagnostic imaging research, the dataset supports tasks like detecting pleural effusions, evaluating lung tissues, and interpreting chest radiographs. - Get the data

Dataset characteristics:

Characteristic Data
Description Chest X-ray to recognize pathologies
Data Types DICOM
Markup Segmentation of pathologies
Tasks Pathology recognition, computer vision
Total Number of Files 443
Number of Studies 150
Labeling Nodule/mass, Dissemination, Annular shadows, Petrifications,
Pleural effusion, Pneumothorax, Rib fractures,
Healed rib fracture, Atelectasis, Enlarged mediastinum,
Hilar enlargement, Infiltration/Consolidation, Fibrosis
Gender Male, Female
Age Range 25 – 70 years

πŸ“Š Sample dataset available! For full access, contact us to discuss purchase terms.

Dataset structure

  • annotations - annotations files for each studies
  • dicoms - dicom files
  • chest_x-ray - metadata for the data

🧩 Like the dataset but need different data? We can collect a custom dataset just for you - learn more about our data collection services here

Similar Datasets:

  1. Chest CT Segmentation Dataset
  2. CT scan chest
  3. X-ray of upper-extremity joints

🌐 UniData - your trusted data partner. Unique, accurate, thoroughly collected and annotated data designed to fuel your AI/ML success.

Downloads last month
129