Dataset Viewer
size
dict | objects
list |
---|---|
{
"height": 1360,
"width": 1360
}
|
[
{
"geometryType": "polygon",
"labelerLogin": "labeler01",
"classTitle": "Petrifications",
"points": {
"exterior": [
[
453,
143
],
[
456,
157
],
[
470,
163
],
[
467,
148
],
[
467,
138
],
[
460,
137
]
],
"interior": []
}
}
] |
{
"height": 1524,
"width": 1524
}
|
[
{
"geometryType": "polygon",
"labelerLogin": "labeler01",
"classTitle": "Infiltration/Consolidation",
"points": {
"exterior": [
[
586,
955
],
[
708,
952
],
[
711,
952
],
[
756,
845
],
[
753,
503
],
[
697,
375
],
[
679,
357
],
[
646,
354
],
[
610,
354
],
[
533,
417
],
[
461,
488
],
[
414,
572
],
[
345,
738
],
[
348,
851
],
[
384,
896
],
[
479,
938
],
[
586,
955
]
],
"interior": []
}
},
{
"geometryType": "polygon",
"labelerLogin": "labeler01",
"classTitle": "Infiltration/Consolidation",
"points": {
"exterior": [
[
1197,
988
],
[
1211,
988
],
[
1277,
944
],
[
1283,
935
],
[
1298,
887
],
[
1298,
860
],
[
1271,
664
],
[
1229,
589
],
[
1158,
536
],
[
1063,
512
],
[
1036,
512
],
[
1003,
521
],
[
955,
557
],
[
955,
589
],
[
955,
664
],
[
961,
720
],
[
1006,
896
],
[
1024,
911
],
[
1095,
970
],
[
1197,
988
]
],
"interior": []
}
}
] |
{
"height": 1360,
"width": 1360
}
|
[
{
"geometryType": "polygon",
"labelerLogin": "labeler01",
"classTitle": "Nodule/mass",
"points": {
"exterior": [
[
941,
269
],
[
934,
278
],
[
932,
287
],
[
932,
297
],
[
932,
304
],
[
938,
309
],
[
947,
310
],
[
957,
306
],
[
961,
298
],
[
964,
289
],
[
964,
283
],
[
961,
275
],
[
956,
269
],
[
950,
268
]
],
"interior": []
}
}
] |
{
"height": 1360,
"width": 1360
}
|
[
{
"geometryType": "polygon",
"labelerLogin": "labeler01",
"classTitle": "Fibrosis",
"points": {
"exterior": [
[
878,
566
],
[
913,
552
],
[
941,
563
],
[
976,
583
],
[
1001,
575
],
[
973,
558
],
[
948,
545
],
[
904,
540
],
[
869,
542
]
],
"interior": []
}
},
{
"geometryType": "polygon",
"labelerLogin": "labeler01",
"classTitle": "Fibrosis",
"points": {
"exterior": [
[
965,
478
],
[
1020,
465
],
[
1057,
458
],
[
1091,
429
],
[
955,
462
]
],
"interior": []
}
}
] |
{
"height": 1360,
"width": 1360
}
|
[
{
"geometryType": "polygon",
"labelerLogin": "labeler01",
"classTitle": "Infiltration/Consolidation",
"points": {
"exterior": [
[
583,
689
],
[
522,
736
],
[
488,
734
],
[
454,
752
],
[
401,
776
],
[
396,
841
],
[
456,
889
],
[
517,
904
],
[
580,
908
],
[
641,
866
],
[
653,
778
],
[
653,
720
]
],
"interior": []
}
}
] |
Chest Xray with labels - 443 files
Dataset comprises 443 files from 150 medical studies, each annotated with 13 data tags and detailed text conclusions by radiologists.Designed for diagnostic imaging research, the dataset supports tasks like detecting pleural effusions, evaluating lung tissues, and interpreting chest radiographs. - Get the data
Dataset characteristics:
Characteristic | Data |
---|---|
Description | Chest X-ray to recognize pathologies |
Data Types | DICOM |
Markup | Segmentation of pathologies |
Tasks | Pathology recognition, computer vision |
Total Number of Files | 443 |
Number of Studies | 150 |
Labeling | Nodule/mass , Dissemination , Annular shadows , Petrifications ,Pleural effusion , Pneumothorax , Rib fractures ,Healed rib fracture , Atelectasis , Enlarged mediastinum ,Hilar enlargement , Infiltration/Consolidation , Fibrosis |
Gender | Male, Female |
Age Range | 25 β 70 years |
π Sample dataset available! For full access, contact us to discuss purchase terms.
Dataset structure
- annotations - annotations files for each studies
- dicoms - dicom files
- chest_x-ray - metadata for the data
π§© Like the dataset but need different data? We can collect a custom dataset just for you - learn more about our data collection services here
Similar Datasets:
π UniData - your trusted data partner. Unique, accurate, thoroughly collected and annotated data designed to fuel your AI/ML success.
- Downloads last month
- 129