index
int64 1
9.5k
| qid
int64 1
501
| varid
int64 1
10
| question
stringlengths 23
422
| image
stringlengths 1.5k
833k
| answer
stringlengths 1
19
| answer_type
stringclasses 3
values | subject
stringclasses 9
values | knowledge_level
stringclasses 3
values |
---|---|---|---|---|---|---|---|---|
9,492 | 492 | 10 | x and y are the solutions of the above equations. What is the sum of x and y? | iVBORw0KGgoAAAANSUhEUgAAAZAAAADICAIAAABJdyC1AAAcjUlEQVR4nO3daVhTV8IH8EsSCC1bEQXBkZGqoDTSClUHpWIFtwd0tC5TFRRGZ1ywtLVTtY/STbQKLqNMHbVinyraOlN3qVrbDo51lEVtxYUGCyhoRTbZE0LC++HMnOe+IbmE7Mf+f59O7j25OfcQ/rnLufc6dHR0cAAALBDZugEAAIZCYAEAMxBYAMAMBBYAMAOBBQDMQGABADMQWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMAMBBYAMAOBBQDMQGABADMQWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMAMiwdWYmKig4ND7969Dayv0WhOnDjxhz/8ISAg4Omnn3Z3dw8ODo6Pjz937lxHR4dFm8qixsbGHTt2vPLKKwEBAW5ubs7Ozn369ImMjHzvvffKysps3To79fDhw23btkVFRfXr18/Z2dnNzS0oKGj+/Pnnzp0z5O3oc1vqsKTLly+LxWKO43x8fAypX1JSEh4erq+pUVFRFRUVFm0wW3bt2uXh4aGvuyQSybJlyxQKha2baUfUanV6erqrq6u+ThszZsy9e/cEloA+ty0LBlZdXd2AAQPIH9KQwLpz546fn59wvPr5+SGziKSkJOG+IkaOHNnc3GzrxtqF9vb2uXPndtlj/v7+d+/e1bkE9LnNWSqwFArF2LFj6Z+wy8BSKpUhISG0fkxMzPnz5xsaGmpra7Ozs/mbXWFhYe3t7RZqNisyMjJohzg5OSUnJ+fl5TU0NLS0tNy8eXPt2rX8rYBZs2bZur12YfHixbRPevbsuWHDhqKiotbW1gcPHuzbt2/gwIF0bmRkpEaj0Xo7+tweWCSwGhoaJk6cyP/N6TKw0tPTaeXly5drzW1vb583bx6t8Mknn1ii2ayorq5+5plnSFe4ubldvHixc507d+74+/vTHvv222+t30678vXXX9PekMlk9+/f16rQ2Ng4fPhwWufs2bP8uehzO2H+wLp79y5/W8mQwGpra/Px8SE1Q0ND1Wq1zjphYWGkTt++fXXWsT5yhI7juM8//9xqH7p161basXv37tVX7dKlSw4ODqTazJkzrdY8+0S/PJ6enuXl5Trr3Lx5k3bs/Pnz+bPQ53bCzIF1+PBhGj3Ozs6DBw82JLCOHj1Kvw1ffPGFvmrHjh2j1f71r3+Zt+XGsUlgjR49mnyon5+f8N5xREQEqdmjRw+rNc8OXb58mX5zduzYIVDzpZde6tmzZ1BQUFxcHH86+txOmG1YQ1lZWWxs7PTp0ysrKzmO69mz57lz50aOHGnIe7/66itSkEqlkydP1ldt0qRJLi4upPzPf/7T5Caz6tq1a6Tw8ssv08TUiW5W1NbWtrS0WLxl9urLL78kBS8vrwULFgjU/Pe//11VVVVUVLR//37+dPS5nTBbYK1ZsyY7O5uUJ06cWFhYSH9qunTx4kVSCA0Nffrpp/VVc3JyGjZsGCmfP3+eTler1eHh4Q7/k5ycrG8JmZmZtNrIkSPb29sNbKH9aGpqio6OHj58uJ+f37PPPmv4GzUaDSncuHGDdsLChQuF31VXVyeVSknljRs3Gt9um6IDrKZOnerk5NTdt5ve52A25tpUIyeMfX199+3bRyfSXzOBXcK2tjZHR0dS7c9//rPwpyxdupTUFIvFbW1tdHpxcTHd+BKJRPqOidIBOO7u7iUlJd1fS2022SU0XGRkJF1f/vTQ0FAy3cPDQ3jQ0M6dO2mHdz5Qrc+oUaOM+zYWFxcbv7Z6NDc30z9TZmam2ZevRV+fg1mYbQvL19d3w4YNcrk8Pj6+W28sLy9XqVSk3K9fP+HK9CyMWq0uLy+n0wcMGLB582ZS1mg0CxcuVCqV/Deq1eq4uLimpibycteuXQEBAd1qJ3PKysropiv9LyISEhJIob6+nm4X60T3jMaNG9flKDn7JJfL1Wo1KQcHB5PCpUuXlixZIpPJ3N3dydUUycnJP/zwg4mfJdDnYB4WjUNDtrDoH5gz4Adw7969tPLly5e15sbExNC5q1ev5s96//336ayEhASj10iLPW9hxcXF0VXev38/f1Z1dTXdM3rllVf0LaGkpIQu4dChQ4Z/tF1tYfFP6VRUVFRVVU2fPl3np4tEoj/96U+mjFMX6HMwC4lxXywzevz4MS0LXPRAuLm56XwjkZmZOWTIkKqqKo7j0tLSZs2aRQZY5ObmpqamkjoDBw7kjwB8Uh05ciQrK4uUBw8ePHv2bP5cLy+v2NjYI0eOcByXnZ1dX1+vs+fpEjw9PX//+98b/ukZGRn19fVGNLtPnz5GvEvYo0ePaFmhUEREROi74k+j0XzyySe3bt06e/YsPcJgOOE+B/OwaBwasoVF/m2IkydPCi/wxIkTtPLx48c7V+D/nA4bNkytVjc1NdErhJycnAoKCoxYEbvaZOjS1atX6dE6sVj83Xffda7D70l9G7aBgYGkwpIlSyzcZAtKS0uja/riiy+SQnR09KlTp6qrq1tbW2/fvp2amsqP7NmzZ3f3UwzpczCd7QPr0KFD9Ity+vRp4QXSARAcxx0+fFhnncTERFonIyNjyZIl9OWmTZuMWxGGAuvGjRs9e/akDUhNTdVZTaVS0RFzY8eO7VyBP3YpNzfXwq22oLVr12r9UTZu3Ni5WnFxMf8Q6pkzZwz/CAP7HExn+8CiY2Q4jjt16pTwAvnbBfo2xxoaGugBdRcXFzryePz48Z0vEDMQK4FVUFDQq1cv+unx8fECq7x8+XJSTSQSdT4DSC/0DQ4OtnCrLeuDDz7g/0UWL16sr2Z+fr5I9N/TUGPGjDFw+d3qczCR7Y9hPfXUU7SsdWqvM34FqVSqs46bm9u+ffvI9avNzc1kore392effUbDq7v0HZSJiooiY21SUlL4F3tTljgoo8933303derUxsZG8nL27Nl79+4VWOXExMQtW7ZwHKfRaL744guaXxzHqVQquuVLTykyij/wSiqVfvjhh/pqvvjii7GxseRH8cKFCw0NDe7u7sIL726fg6ksGoeGbGH95z//oY359NNPhRfIP0uYn58vUHPVqlX81czOzjZuFYSZ8SxhVFSU8F+qqqpK4O2ffvopHc7GcdyCBQsMudySDsgKDQ3lT6dbsmKx+MGDByaumiUY3l1/+9vf6ESdO798u3btopW7PA5lXJ+DKWx/i2T+zUjJCT4B5Lofgh6C0Ulr06a0tNSo1jGgo6Nj9erViYmJdDjbqlWr9uzZQ/duBNCtp6tXrxYVFdHpdPjVhAkTfH19u9ukiIgIB6PcuXOnu5/VJf7+Gv8eMjrR8wzc//+yaTGlz8EUtu/fvn37SiT/3TO9e/eucGU6WFQqlQr8I8nl8pUrV/KnrFix4qeffjKtpfZIoVDMnDlz/fr15KVYLP773//+0UcfGfj2OXPm0D2mgwcPkkJ9ff3JkydJmX8Gg1H8EcLClwFyHMcfzUCPJ2gxsc/BFLYPLIlEQm/qcOvWLeHK9AYgQUFBNOa0tLe3x8XFketOnZycyD9kS0tLfHw8ixcPCnj8+PG4ceMOHz5MXrq6up44cYJ/m7oukQFZpEwPWh07dkyhUHAc16NHjylTppi1yTYwePBguuFTUVEhXJk/uI/eAEurgol9Dqaw/UF3juPCw8MLCws5jsvPz1epVPzjAnxKpbKgoICUBU7bpaam5ufnk3JKSoparSbD3PPz81NTU/lD3u3KN9980636dXV148aNu3LlCnnp6+ubnZ09dOjQ7n5uQkICGQonl8uLiooGDRp0/PhxMmv27NlGXCrMWWXgqOHd5erqGhISQi67uXTpklqtFtjOun79Oi0HBQVpzTVXn4PxLHqEzJCD7h3/f7SnwNhR/hBTnaNGOzo6cnNz6ZbX0KFDVSqVUqmUyWRkikQiycvLM3WteGx1aU5rayv/1j2BgYFlZWXGLYo/IGvDhg0KhYIOgBQ+rcGQNWvW0L4SPv1Cfwh79eqldQTdjH0ORrOLwFIoFF5eXqTm8OHDVSpV5zptbW30p8zHx4d/qwaqubmZHjR1dHS8du0amZ6Xl0eTJTAw0IwPCLBVYPH3QWQyWWVlpSlLowMawsPD6dBcmUxmrtba3J07d+he4aBBg/RdLcgflpycnKw117x9Dsaxi8Dq6Ojgj47pfHpY657u6enpOhdCbz7DcVxKSgp/1l/+8hc6KykpycT1si3+nVd9fX1Nf4wQ2R/nOE4kEk2bNo2Ujb4qwD7Nnz+fdtqUKVM6/2j98MMPdLS6VCrVuvuQ2fscjOPQYcmnky5cuDAzM5PjOB8fn4cPHwrUbGlpeeGFF4qLi8nLiIiINWvW/O53v+M47tKlS2vXrqXDtYYMGZKfn9951OjZs2fpky9kMtmVK1f4x19aW1tDQkLIWXMHB4fTp09PmDDBPCtpXRqN5rnnnqNDENasWdPliCRixIgR/DG6WsLCwq5evUpfSiSSiooK4YEjbKmpqQkLC6OnoQMDA99+++3o6GhfX9979+4dPHgwLS2N3iB0/fr177zzDn2vhfocjGHRODR8C6ujo+P27dtdPiDa19dXLpd3fm9NTQ29W5NYLNZ58CUnJ4cOQfbz86upqTHDGlod/0qmbhG+SGj79u38yrGxsVZbI6spLS3t379/lx01b948rWtrLNTnYAQ7CqyOjg65XC7w5OcRI0b8/PPPOt84a9YsWm3lypX6ls+/EJrRJ8fxd23M+M/Dv0MWp//CctZVVlbyb1mlxdnZ+aOPPup8JaCF+hyMYF+B1dHRodFojh49OmfOnP79+7u4uDg7O/v7+8+cOfPIkSP6rnugNyHiOC4oKKi1tVXfwhsaGvr27UsrZ2VlGbNWNmX0fSy7/Oeht7Xz8vJSKpXWWR2buHbt2sqVK0NDQ729vSUSiaen58iRIz/44AN994C2XJ9Dd1n2GBYwZPr06WTgyOuvv/7Xv/7V1s0B0AGBBRzHceQgYFtbG8dx169fHzJkiK1bBKCD7S/NAXuQmZlJ0mrUqFFIK7BbCCzgysvL09PTSVngqY4ANoddwl+p3bt3+/r6SiSSwsLCrVu3klFygwcPLiws7PKWBgC2gsD6lQoPD+fftZ3jOJFIdOHCBf7lcgD2BruEv1Jaz6wViUQ7duxAWoGdQ2D9SsXExAQFBUml0t69e0+ePDknJ2fRokW2bhRAF7BLCADMwBYWADADgQUAzEBgAQAzbBNYjx49Wrdu3ZgxY3x8fJycnNzd3YcOHfrmm2/y76j9a4B+IOrq6rZu3RodHf2b3/xGKpV6eHiEhYW99dZbN27csHXTwM5Y+WJrjUazZcsWZ2dnfe1ZsGBBfX29lVtlfegHaufOnZ6enjo7wcHBIS4urra21tZtBHth7cAy5IFIAwYMEH7K8RMA/UC89tprXfZDv3799N0HDX5trBpY/IeGu7m5rVu3Ti6XK5XK2traEydOjBgxgs4dPXp0e3u7NdtmTegHYvPmzfxgmjBhwtmzZ+vq6pqami5duhQfH09nBQQE1NXV2bq9YHvWC6y6ujr6/CgvL6+bN29qVVCpVDNmzKDf0f3791utbdaEfiDKysr4D6BMS0vrXCcrK4s+7SYxMdH6jQR7Y73A4v+c7tu3T2ed2tpaNzc3Umfs2LFWa5sw8z7Li91+MC/+7aqXLVumr9rq1atJHZFIdPv2bWu2EOyQ9QJrzJgx5Jvn4+Oj88mDBH02uqurq9XaJsy8gcVuP5gXfeCIh4dHQ0ODvmqNjY0eHh6k5ooVK6zZQrBD1hvWMG3atLi4uJCQkIkTJ9KHM3fWo0cPUmhpadFoNNZqnfWgHziOKy4upo99mz59Ot2c7MzV1ZU+U+vEiRPWaBzYM1snpja6AeLv78+f3t7eTh5TSLz22mv6lrBnzx5aLTw8XGArxkA2ebyzzn6gTzzlOG7BggXCS6itraUPwtmwYYOF29s93377LV2R3bt3C1d+7733SE0HB4fHjx9bp4Vgn+xrpLtcLr9w4QIpjx49mj9LLBbv37/fxcWFvPz444/po1X5fv755zfeeIOU3d3dDxw4ILAVY7f09YNMJgsNDSXlL7/8UqlUCizkH//4B7nrsVgs5p9x61JERISDUchzag1RV1dHy97e3sKVn3nmGVLo6Oi4ffu24SsCTx47CqySkpJp06ap1WqO40QiEf/h8sSAAQPoEWuNRrNw4UKt/1i1Wh0XF9fU1ERe7tq1KyAgwPINNzPhfkhISCCF+vr67OxsgeXs37+fFMaNG0efMmsn6A8Px3EqlUq4cmNjIy3fv3/fUm0CFtg4sNRq9ePHj8+fP79s2bLnnnvu1q1bZPr27duff/75zvUXLVoUExNDyrdv3167di1/bmpqKr2LZkJCwquvvmrJtpuT4f0wZ84cuqN34MABfQssLS29ePEiKScmJlqm1cbz8fGh5eLiYuHKP/30Ey1XVVVZqk3AAlveD+vx48edr8nw9vbesmXL3Llz9b2rsrJyyJAh5Ivr6OhYUFAQEhLCcVxubm5ERER7ezvHcQMHDrx69Sod7mQiiURCtnc+//xzS4Rgd/uBPkBQKpVWVlbSk2h8a9eufffddzmO8/T0/OWXX6RSqeHtuXbtWn19fTdW4H9GjBjx1FNPGVJTpVJ5eno2NzeTd2ndrJmvra3N39+/srKSvNyyZcubb75pRNvgCWHD42c6L/GdPHny6dOnhd949OhRWn/YsGFqtbqpqWnAgAFkipOTU0FBgRHtGTVqlHF9aOIDfrvbD/yTZZmZmTrrBAYGkgpLliwxpW2WM3XqVLoWR44c0VdN65Gu69evt2Yjwd7YMrAEDsG8/PLLv/zyi8B7+bs5GRkZ/FGImzZtMq49tgqs7vaDSqWiu1Q6h5XyN1hyc3NNaZvl0D1WjuM8PDwuXLjQuc7Zs2e1rg/fuHGj9ZsK9sOWgVVaWlpQUFBfX9/a2nrz5s1169bRwUccxwUHBwvcrqChoYEeUHdxcXFwcCDl8ePHazQa49pjq8Ayoh+WL19O5opEovv372vNTUpKou81pWGW9sc//pGupqOjY1JSUl5eXlNTU1NTU15e3pIlS8gZ3rCwMFpt27Zttm412JJ93dO9oqJiwoQJ9JBzcnLytm3b9FX+/vvvIyMj+YMqvb29f/zxRzqEurv0HbuJiooin5KSkjJ27NjOFQw/dmOgLvvhxo0b9PnMmzdvpvnFcZxKpfLz86uuruY4Li0t7e233zZjw8xLoVBMmjQpJydHoI6/v39OTs6zzz5LXu7Zs2fBggXWaBzYJxMDj45C1qe7N0gpKSmhewEuLi6NjY0ClVetWsX/rOzsbNPWRjebDBztsh/ogKzQ0FD+dHqESywWP3jwwGoNNo5SqVy6dCm9wlnLlClTqqurHzx4QKecOnXK1k0GW7KjcVhEQEAAPTXW3Nycm5srULlPnz78l6WlpRZsmXV12Q90QNbVq1eLiorodDr8asKECb6+vkZ8tBUGjlJOTk4ff/zxjz/++MYbb8hkMnd3d0dHx9/+9rdz5849d+7c8ePHvby8ysvLaX17G1AGVmZ3gcVxXEREBC2XlZXpqyaXy1euXMmfsmLFCv6YHdYJ9wN/QNbBgwdJob6+/uTJk6Rsh8Ov9JHJZFu3bi0sLKyvr29raysrK8vKyoqOjiZzr1y5QgoikWjQoEG2aybYnj0GFv9SWDIAqrP29va4uLiWlhaO45ycnMi/bktLS3x8PBmK9QQQ7gcvL6/Y2FhSPnToECkcO3ZMoVBwHNejRw96vwfW0auUgoKCzHusEJhj6nV233zzjSHViouLP/zww5KSkpKSkm3bts2aNUugMn8XQN8R9NTU1Pz8fFJOSUlRq9Xvv/8+x3H5+fmpqamkbIfM2w8JCQlkBKlcLi8qKho0aNDx48fJrNmzZ9Ptr+7KyMgwbuCo1h66WSiVylOnTpHy+PHjzb58YIx1DpXdvXuXfuKMGTOEK9MbFTg4OOg8bJybm0svaR46dKhKpVIqlTKZjEyRSCR5eXlmbLwZD7qbtx/4A7I2bNigUCjo4P78/HwTm2ppb731VkhISO/evadNmyZQbdeuXbTHzp8/b7XmgX2y3jis4OBg8rUTi8WFhYX6qh07dox+QUePHt25QnNzMx3G7ejoeO3aNTI9Ly+PJktgYGBzc7O5Wm7es4Tm6geCDmgIDw//6quvSFkmk5neTkujLXd2dq6srNRZp6qqim61Pf/889ZtINgj6wXWzp076X9gcHCwzoHs586d418A+P3333eus3TpUlohJSWFP4t/Y4OkpCRLrYlpzNUPBL1DlkgkmjZtGikbPdbfmvLy8ugKzpgxQ61Wa1V49OjRyJEjaZ2vv/7aJu0Eu2K9wFKr1fzTXr169dq0aZNcLm9rayM3KkhISKDbMhzHvfPOO50XcubMGVpBJpMplUr+3JaWFnpFoYODw5kzZ6y1ct1gln7gowOyCIlE8vDhQ+usi4kmTZpEmz18+PBjx45VVFS0trYWFxdv2rSJPyZj8eLFtm4s2AWrXppTU1PzwgsvcAZISkrqfIVNTU0NHYYjFot1HqbJycmhl+n4+fnV1NRYZc26x8R+0LJ9+3b+W2JjY62zFqarqKjo169fl50wc+ZM028bC08Ga19L2NzcvHTpUv4WhJY+ffocOHBA53v559RWrlyp7yP4F0LPmjXLYqtiElP6QUt1dTX/hODhw4ct3XgzunfvXmRkpL5OcHFxSU9PN/riUHjy2Obi59LS0nffffell17y9vZ2dHR0c3Pr37//q6+++tlnnykUCp1vycrKot/joKCg1tZWfQtvaGjo27cvrZyVlWWx9TCVEf2g0/Tp08nKenl5ae0m2z+NRnPmzJl58+YFBga6uro6Ojr6+PhERUWlp6c/evTI1q0D+2JfFz+Dcegt/V5//XWtG0gBPEkQWMwjh/bI8yauX79O7+IA8OSxx0tzoFsyMzNJWo0aNQppBU82BBbbysvL09PTSTk5Odm2jQGwNOwSsmf37t2+vr4SiaSwsHDr1q3kEcqDBw8uLCwUOO0I8ARAYLEnPDxc6zEzIpHowoUL/HHhAE8k7BKyR2uwpUgk2rFjB9IKfg0QWOyJiYkJCgqSSqW9e/eePHlyTk7OokWLbN0oAGvALiEAMANbWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMAMBBYAMAOBBQDMQGABADMQWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMAMBBYAMAOBBQDMQGABADMQWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMAMBBYAMAOBBQDMQGABADMQWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMAMBBYAMAOBBQDMQGABADMQWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMAMBBYAMAOBBQDMQGABADMQWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMAMBBYAMAOBBQDMQGABADMQWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMAMBBYAMAOBBQDMQGABADMQWADADAQWADADgQUAzEBgAQAzEFgAwAwEFgAwA4EFAMxAYAEAMxBYAMCM/wMtUSlOemxTpQAAAABJRU5ErkJggg== | -11 | float | algebra | high school |
9,493 | 493 | 10 | x, y, and z are the solutions of the above equations. What is x*y*z? | iVBORw0KGgoAAAANSUhEUgAAAZAAAADICAIAAABJdyC1AAAxSElEQVR4nO2de1hTR/7/JwkhkSAotBqgiPGxIDaLF1SKumvFu6CtoFYruFBtV8S11kvrLqB91PVR0WIXtdqnlO8qW9cWqSha1FppowXBgghVFKnIxVWEgBAuIUB+f8z3N898cyMkJyEHP6+/JjmfM+dz5pzzPnNmPjPDUavVCAAAgA1w+9oBAAAAYwHBAgCANYBgAQDAGkCwAABgDSBYAACwBhAsAABYAwgWAACsAQQLAADWAIIFAABrAMECAIA1gGABAMAaQLAAAGANIFgAALAGECwAAFgDCBYAAKwBBAsAANYAggUAAGsAwQIAgDWAYAEAwBpAsAAAYA0gWAAAsAYQLAAAWAMIFgAArAEECwAA1gCCBQAAawDBAgCANYBgAQDAGhgWrObm5iNHjoSGhkokkoEDBwqFQg8Pj2nTpm3fvr2iooLZY/VLoqKiOByOWCzua0esSkdHR0pKSlhYmJeXl0gkEolEw4cPX7x48fHjx1UqVV97Z0O0tLTweDyOcWRmZurLp6GhITExcebMma+88opAIHB2dvb399+0aVNJSYk1T8cU1Mxx7NgxZ2dnfQeys7Nbt25de3s7g0fsZ+Tm5vJ4PITQ0KFD+9oX6yGTyYYNG6bvtpFIJDk5OX3to63wyy+/GP9onzt3TmcmR48eHTx4sM5dOBxOeHi4XC638nkZD2OCFRMTY0whTp48uaWlhamD9icaGhpGjhyJS+nFEazMzEw7OzvD94y9vf2FCxf62lOb4PDhw2YK1l//+tcedxw+fHh5ebn1z84YmBGspKQk+vZav359Xl5eU1NTa2vrb7/9tnPnTrrmtXTpUkYO2p9ob28PCgoiRfSCCFZVVZWjoyM56+Dg4OzsbIVC0dLScu3atbfeeotsGjhwYEVFRV/72/esXr0aF4i3t/fVnqirq9PY/cCBA7QwzZkz5+LFiw0NDQqFIicnJyIigmySSCQNDQ19cYo9wIBg1dXVDRo0iNxY169f17Z58OABXe2/cuWK+cftNzQ1Nc2dO5e+k14QwXr//ffJKW/evFnbIDY2lhiEh4db30Nbw9/fH5dGZGRkb/etqKjg8/mkPPft26dtk5qayuX+b7t2VFQUEy4zDAOClZiYSErhq6++0meWk5PD4XCw2ZIlS8w/rpng1iKE0MmTJ/vQjUePHvn5+aH/i20KFrMl1tnZ6eLigjOUSqVdXV3aNt3d3RMmTMA2Dg4Ora2t5h+XvahUKoFAgEvj0KFDvd09Ojqa3GDr1q3TZ0ZeElwu9+7du+a5zDwM9BJ+9913OOHu7r5y5Up9Zq+//vqUKVNw+sqVK+Yftx+Qnp4+adKk27dvI4SEQqGvr29fe2Q9Kisr5XI5Tr/99tvkxU7D4XBWrFiB062trSzow7Ikd+7cUSqVOE2qWsZDnlNnZ+fdu3frM9u6dStuwOnu7k5JSTHJUwvCgGAVFhbixPTp08lLWCeklOVyeWtrq/mHZi8VFRUhISFhYWFPnz5FCL300kuXL1+ePHlyX/tlPYhaIYSGDh2qz4xuSairq7OsT7bNrVu3cMLOzm7s2LG92resrOzJkyc4HRYWNnDgQH2Wjo6OM2bMwOmzZ8+a4KdFMVewFArFzJkzJ02a5O7uPmLECON37O7uRgh1dXUFBgaSyJH169frs09OTiZmkydP7uzsNNPzviUuLu78+fM4PXfu3OLi4qlTp/a4V0lJCSkE0v6qj4aGBoFAgI337t3LgNOMQto9EULV1dX6zGpra0mafswOHjxoZDgSIS4uzjKnYiVIzeC1114TCoW92reqqoqkX3/9dcPGf/jDH3Di3r17z58/79WBLI25guXo6Jienn7jxo2ampodO3YYNiavCCcnJ9w9xOPxTpw4IRKJ8P+HDx/WGWlSXl6+YcMGsu+///3vHvvCWYGbm9vx48e///57IyNFpVLp+PHjcTotLY18IOjkm2++6ejoQAjxeDy6A8hGGDFixJAhQ3A6LS1NrVbrNPvmm29wQiAQjBkzxkrOITR16tTeCiLmwYMHFnKJCJa/v79arT579uyyZcu8vLyEQqGrq+u4ceM++uij3377Tee+DQ0NJE2KXR/kXaJWq+/evcuA68xhvaE5FRUV169fx+lp06aR/0eOHEl6W7u7u1evXq3xHHZ1dYWHhysUCvzz2LFjEonEKi5bEDc3tz179ty/f7+3UhIZGYkTz58/J3U0nZw4cQInZs2a5e7ubpKbFoTD4fzlL3/B6Tt37mzfvl3bJikp6erVqzgdHh5u4ENGI2d7e3snJyeNL83efkbZGuR9z+Fwxo8f/+abb546daqyslKpVMrl8lu3biUkJIwZMyY6Orq9vV1jX1InQAj1OHigubmZpGtqapjxnims1rwfHh5ODnrixAmNrcHBwWRrbGwsvemTTz4hm0zozdWHjfQS0qxatQq7ZKCXsK6uzt7eHpuFhobqM/v9999JoZ06dYoR9xgvsdbW1oCAAOJnaGioTCZTKBRtbW35+flEmhFCI0eO1I4q6pEPP/yQ5PDxxx/3al/SQdRbysrKeuunMZSXlxvvQ2BgoEYUVUFBAdm6e/duw8ciHR0Ioc8//9wSp2MyVhKs06dPkyLw9fXt7OzUMHjy5MnLL7+MDfh8flFREf4/NzeXfP29+uqrzc3NTLnEUsFSq9WhoaHYTCAQNDY26rQhn+eDBw9majiUJUqsubkZD5808PjNnz//6dOnvc350KFDJIc333xTZ9iEAQoKCnqMzNSJhWIv0tLS6DJxcXGJi4u7ffu2QqFoaGi4du1adHQ0HWYVHBzc3d1Ndu/o6CCVrICAAAMHUiqVdM30008/tcTpmIw1BKugoIAENPN4vB9//FGnGel2RQhNnDixq6tLoVCQ0Sr29vY3b9404ei29qo0gJGCRffdJCcn67Tx9vbGBtHR0b11w8olJpfLSQOlNsuWLTMh5DozM5PI69ixYxUKhQmO2RR0j8GECROqqqq0bX755RdXV1diphEUSY8cSE9P13eggwcP0uXfY3XMylhcsEpKSl566SVy/rt27TJgHBUVRSyTkpLoULf9+/eb5kD/EyyVSkXegUFBQdoGubm55Cxu3LjRWzesWWIHDx40MGAeM2jQoF59mNAvSLFYXFlZ2VuvbJDDhw/PmDFjxIgREomktrZWn9mlS5dIuY0YMYKuV5IWZISQs7OzTCbT3v3ixYsa/Y979+61yPmYimUF6+bNm+RDDyEUERFBV1O1aWpqIg3qIpGIfCnMnj3b8I4G6H+CpVarN27ciC25XG5NTY3GVjIQffTo0Sa4YbUSo19Izs7O27ZtKyoqamlpUSgUt27d2r59Ox36sHHjRmPyrKqqIj0MQqHQBL1mO/PmzSOFpvFR8u6775JNfD4/JiYmLy9PoVAoFIq8vLzo6Gjc/EJHpX722Wd9dSI64aj1dCebz48//vjWW2+RHofly5cfP368x3CEa9euTZs2DUdpYYYMGVJUVGTyFFGFhYU6Y0lmzJiBjxIfH08PPCYEBAQMGDDAtIOaxurVq5OTkxFCQ4cOJWF+OikpKSHBMgcOHCD6hRBSqVTu7u44xnLfvn1btmzprRvWKbH//Oc/y5cvx2lvb++srCztzt/KysqQkJDi4mL88+TJk8uWLTOQZ3Nz89SpU/HIAWPs+yX/+te/SH+Fxr3R3t4+b9687OxsA7sPGzYsOzubxFR++eWX5D1qE1hICFNSUugmwFWrVhnf6rl161baw/Pnz1vCQ2abkElwsD6ePXvWYybG17DUajUJyBo/fjz9P2nh4vF4jx8/Nv2UtGC2xEaPHo1zEwqFBqpmNTU1pJ4lkUgMVLRVKtWcOXNIgW/bts18Jy0NI7eNBkTfka5qqVKpXLt2rc6BUAihhQsX1tXVPX78mPyTmZnJ0LkyA/NxWGq1OjY2NioqioR7bN269csvv9RXRtp4eHjQPx8+fMiwi/0C8hYtKCgoLS0l/5Pwqzlz5ri5uVnfMWMoKyu7c+cOTkdGRpKuFW3c3d3J+IeHDx/m5eXps1y3bt3FixdxeunSpXQ0jAnYYOCokdDt7nS8KMbe3v7w4cNFRUUbNmyQSqVOTk58Pt/Ly2vFihWXL1/OyMhwdXWlw+JtLoKPWf1ra2sLCwsjmfN4vN7Gcdy7d8/BwYH20MHBobS0lFk/1eyvYdEBWfHx8fjPxsZG0mj67bffmntW/xcGS+zMmTOkZHr0kx78cPToUZ029NijiRMnmh9bYJ2GPEvUsOiIrQ8++KC3u6vV6iNHjuDduVyurc2QwWQNq7GxcdasWSTkytHR8ezZs2vWrDE+h87OzvDwcDwu2t7eHj+Qra2tERERbB88yDiurq4hISE4ferUKZw4c+YMjnJ2cXFZuHBhnznXE2TcAkKITDKjDzosSGfjWlpaGmlG8PDwyMjIsHLjo6VRq9VyufzevXsymYyu/uiENjCtii2TyXDCx8fH1kqSsRF5DQ0Ns2bN+vXXX/FPNze38+fPjxs3rleZ7Nq1Kz8/H6fj4+O7urpwxT4/P3/Xrl1mVvItyg8//GD9g0ZGRqanpyOE7t+/X1paOmrUqIyMDLxp+fLlpP5lg9CfLQZGPmPq6+tJWlvdcnNzIyIi1Go1QsjBweHcuXOMfAgnJSWZNu5Xo0HDMEbeNlevXiV1sY8//njPnj0GjIncICPGOWujVCrJ6hWzZ8/u7e4Wh5F6WltbGz01ire3twkT2t64cYP0IY4bN06lUimVSqlUiv+xs7PLy8tjxFsMeyPdCXRA1p49e9rb20n8UX5+PuPuMVhi9BJKPU6ZTT+fP//8M72pvLycxM1wOJzTp0+b6ZhtUldXR0J8fH19DVh2dnaSDj4XF5e2tjayadOmTX5+fmKxeNGiRQZyOHbsGCntn376ibFzYAhmBIv+7pNKpSYMpGhpaSHB2Xw+v7CwEP+fl5dHnhNvb28GF7DoB4KlpgKyAgMDL1y4QC6BJdxjtsTIPKv29vYFBQX6zORyORFlV1dXelCXXC738fEhN56txWQzyxtvvEHO1IAu/+Mf/yBmGsMnya0iFAr1PaHPnj0jNcQxY8YwewqMwIBg0Q2obm5u1dXVJmSydu1akglpQsZs3ryZbIqJiTHfYZvFBMEifdhcLnfRokU4bfKoAGty8uRJclklEklJSYm2TV1dHT1NGB11rVQq6Tk/3nvvPSv63geQj32EkIuLC3mj06SkpJCXilgs1liti+5gXbx4sXaYUW1tLf2ddOnSJcudjsmYK1hdXV2jRo0iJxkXF2fCGNGsrCySg1QqVSqV9CFaW1tJtzeHw8nKyjLTZ5vFBMFSUwFZGDs7uydPnljOSQZZsGABcVsoFK5fvz4nJ0cul7e1tZWWlu7fv59ujQoICKBHcdPT8gQHB2sPp+9/kEHvCKEBAwb87W9/Ky4ubm9vb2xsvHLlCr3Vzs5OZ/QiHQQ/adKkM2fOVFdXt7W1lZWVaZT2mjVrrH+CxmCuYGkMIjce0vtbX19PYj14PJ7Oxpfs7GzyDe/u7l5fX2+m27aJaYL1z3/+ky7YkJAQy3nILC0tLXQtyQB+fn70ADrSM4Px9PQUi8UikYiOVTZ817GRlpaWP/7xjz2WFZfL/frrr3XmUF1dPXz48B5zWLJkiUqlsvLZGYm5gvXnP/+5x/M3fOssXbqU/Glg0iJ63Fl/XdnQNMGiA7KQwQYOG0SlUsXGxhroO+fz+dHR0RrRQDk5OWbedSxFqVRu2bLFgC77+vpeu3bNQA6VlZUGXhIikSghIcHkcbtWwFzBMvINqe/WSU1NJf/4+PjQnRoaNDU1eXp6EuPU1FQzPbdBTBMstVpNgnVdXV01PqhZQW1tbUJCwrx58zw9PR0cHIRCoYeHR1BQ0M6dOx89eqRt/8IKFqa6unrHjh3Tp08Xi8UCgcDZ2XnUqFHvvPNOenq6MVe/u7s7Kytr5cqV3t7ejo6OfD5/6NChM2bMSEhIMDAPhI1gwcHPgNUICwvDAVkffPCBxnxGANCfAMFiPbgREK83cfv2bTKLAwD0P6y3CAVgIZKTk7FaTZkyBdQK6N+AYLGbqqqqhIQEnDawqiMA9A/gk5B9fPHFF25ubnZ2dsXFxYmJiXiqP19f3+LiYsMrbwMA2wHBYh+BgYH0rO0IIS6XK5PJXqiV7oEXE/gkZB8asX9cLvfIkSOgVsCLAAgW+wgODvbx8REIBGKxeMGCBdnZ2WQJZQDo38AnIQAArAFqWAAAsAYQLAAAWAMIFgAArIExwWppaeHxeEYuhUQmjX7BaWhoSExMnDlz5iuvvIJHsfr7+2/atKmkpKSvXbMqHR0dKSkpYWFhXl5eIpFIJBINHz588eLFx48fJ4vFAQieMsTcMl/0Wkw9cu7cOaaOy16OHj06ePBgneXD4XDCw8M1Zozsr8hksmHDhum7VSQSSU5OTl/7aCvAU8ZYDauwsJCprF4E1q9fv2bNGu11LjFqtTo1NXX8+PG///67lR2zMufPn58+fXplZaU+g4cPH06bNu3777+3plc2CzxljC3zRYrS29ubXnhDJy/4GN1PP/00KSmJ/JwzZ87GjRsnTZrE5/OLi4uPHDmCV2+uqKiYOXNmQUEBWau9n1FdXb1s2TKy4mRwcPCWLVsmTJjA4XAKCwv379+Plwvo6Oh4++23i4uLvby8+tJdGwCeMsY+Cf39/XGGkZGRTOXZL6moqKBnjNy3b5+2TWpqKpf7v5XfqKgo6ztpHd5//31SDps3b9Y2iI2NJQbh4eHW99DWgKeMGcFSqVQCgQAX5aFDhxjJ09L01TJf9FzP69at02dGnlUul3v37l1reqgPZkuss7OTrIoqlUq1F3FRq9Xd3d0TJkzANg4ODra2bLqVYeNTxjjMtGHduXNHqVTiNHkJADr57rvvcMLZ2Xn37t36zLZu3ers7IwQ6u7uTklJsZJzVqSyslIul+P022+/TWqUNBwOZ8WKFTjd2tr6onWeagBPGWIqrOHWrVs4YWdnN3bsWEby7JeUlZXh2WAQQmFhYQMHDtRn6ejoSFYnP3v2rDWcsy5ErRBCZKlUbegOxLq6Osv6ZNvAU4aYEizSFvjaa68JhULjd+zq6goMDCSRIwamoEtOTiZmkydPJi217KKqqoqkX3/9dcPGpNH03r17z58/RwiVlJSQQli9erXh3RsaGgQCATbeu3eveY4zD92TUF1drc+straWpGl9P3jwoJHhSIS4uDjLnIqVMPkp608wLFj+/v5qtfrs2bPLli3z8vISCoWurq7jxo376KOPfvvtN+0deTzeiRMnRCIR/nn48GGdkSbl5eUbNmzAaScnp3//+992doz1b1oTOo5hyJAhho3JI61Wq+/evYsQkkqlZNnUtLQ08oGgk2+++QZPnczj8ehlR22EESNGkBJIS0tT6xmE/8033+CEQCAYM2aMlZxDaOrUqb0VRMyDBw8s5JLJT1m/gpGWMNzaghBatWqVvsoqj8dbs2aNzoW8jh49Ssx8fX3pBX7VanVnZyddGWGqjbxPGt3peKJvv/3WsPGOHTuIMX6k1f932VTDSxBOmTIFm82dO5cR5xkvsfj4eHIu8fHx2gb0ya5atYrelJiYqO+W5nA49vb2Tk5OGl+aPRY4DSm93mK5lcTMfMr6BwwIVnl5ufGXMzAwsKGhQTuT4OBgYhMbG0tv+uSTT8gmBntz+0SwCgoKyLns3r3bsDFpb0YIff755/hPetnU0NBQffvSEaenTp1ixHnGS6y1tTUgIID4GRoaKpPJFApFW1tbfn5+ZGQk2TRy5Mi6urre5v/hhx+SHAys0asTWxMsRp6yfgADgqWxWr2Li0tcXNzt27cVCkVDQ8O1a9eio6PpyKPg4GDtpWWfPHny8ssvYwM+n19UVIT/z83NJV9/r776anNzs/kOY/pEsDo6Osj3b0BAgAFLpVJJVxA+/fRTsik0NBT/KRAIGhsbde5OameDBw/WqLGajCVKrLm5OSoqisPhGHj85s+f//Tp097mfOjQIZLDm2++qTNswgAFBQVXTcJCsReMPGX9AAYEi27LnDBhQlVVlbbNL7/84urqSsy++uorbRvS348QmjhxYldXl0KhGDlyJP7H3t7+5s2bJrhna6/Kt956ixwiPT1dn5nGeqh0dYzuNExOTta5u7e3NzaIjo7urYdWLjG5XE4aKLVZtmyZCZWFzMxMIq9jx45VKBQmOGZTMPWUsR0GBOvw4cMzZswYMWKERCIxsNT1pUuXSFGOGDFC5xsvKiqK2CQlJdExlvv37zfNPVsTrOvXr5NDODs7y2QybZuLFy9qdAPt3buXbFWpVKTyFRQUpL07vUTFjRs3euuhNUvs4MGDpGlGH4MGDSJfxMZQUFDg6OiI9xWLxZWVlb31ygZh8CljNYwNzTGGefPmkdLUWV1qamqSSCTYQCQSkS+F2bNnm1y/tTXBUqvV7777LjkKn8+PiYnJy8tTKBQKhSIvLy86Ohp/BdPBgZ999hmdw8aNG/H/XC63pqZGI/+YmBi8dfTo0Sa4Z7USo19Izs7O27ZtKyoqamlpUSgUt27d2r59Ox36sHHjRmPyrKqqcnd3x7sIhUIT9Jrt9PiUsRqrzun+r3/9i7SkHjhwgDx1NNeuXZs2bVp3dzf5Z8iQIUVFRWKx2LSDFhYW4iAmDWbMmIGPEh8fHxQUpG0QEBAwYMAA0w5qmPb29nnz5mVnZxuwGTZsWHZ29ogRI/DPL7/8ctWqVWRrSUkJidLSKEmVSuXu7o5jLPft27dly5beumedEvvPf/6zfPlynPb29s7KyiLvKkJlZWVISEhxcTH+efLkyWXLlhnIs7m5eerUqbdv3zbSvl9izFPGYqypjuTOQwZfmFu3bqU9PH/+vCWcYbYJmUSl6+PZs2e0vVKpXLt2rc7xKAihhQsX1tXVPX78mPyTmZmpcUQSkDV+/Hj6f9LCxePxHj9+bP6pEZgtsdGjR+PchEKhgapZTU0NqWdJJBIDFW2VSjVnzhxSYtu2bTPfSUvT29vGGIx8yliKVadIplsE9U0FhRDy8PCgfz58+NCCPvUR9vb2hw8fLioq2rBhg1QqdXJy4vP5Xl5eK1asuHz5ckZGhqurKx0WTz5zCOQtWlBQUFpaSv7HU9MghObMmePm5mbZ0zCVsrKyO3fu4HRkZCTpWtHG3d2djH94+PBhXl6ePst169ZdvHgRp5cuXUpHw5iADQaOGomRTxlLsapgtbW1kbSTk5NOm/v373/88cf0Px999NG9e/cs61kfIZVKExMTi4uLnz9/3tHRUVFRkZqaOnPmTLz1119/xQkulztq1CiNfd955x0SkPX111/jxPPnz8+dO4fTdA+GrUHUCiHUYy1j7ty5JE3G02mwb98+Mj/UxIkT/+d//sdwqEQ/xpinjL2YK1hqtVoul9+7d08mk9E1Ap3QBjpf/p2dneHh4a2trQghe3t7/EC2trZGRESwdPCgOchkMpzw8fHRbhtydXUNCQnB6VOnTuHEmTNn2tvbEUIuLi4LFy60lqe9RqFQkDSZZEYfdDyazsa1tLQ00ozg4eGRkZFhocbHvoLZp4zVmDsi7+rVq+QN+fHHH+/Zs8eAMXkCkZ6hv7t27crPz8fp+Pj4rq4uXLHPz8/ftWuXmZV8i/LDDz8wm6FSqSSLCMyePVunTWRkZHp6OkLo/v37paWlo0aNysjIwJuWL19O6l82CP3ZYmDkM6a+vp6ktdUtNzc3IiJCrVYjhBwcHM6dO8fIU5qUlKRTHHtEo0HDMEbeNsw+ZezGzDawuro6Uvf29fU1YNnZ2Un6vFxcXLSHO924cYMEtY8bN06lUimVSqlUiv+xs7PLy8sz01uavprAb9OmTX5+fmKxeNGiRQbM6Alwf/rpJ502dEDWnj172tvbSfxRfn4+454zWGIVFRXk7JYuXWrYmH4+f/75Z3pTeXk5GSDB4XAMD65kLww+ZWyHgV7CN954g9xPBu6Yf/zjH8RMe2BXS0sLCc7m8/mFhYX4/7y8PPKceHt7t7S0mO8wpq8Ei3QzC4VCfSNOnj17Rl7UY8aMMSa3wMDACxcu4LRUKrWE58yWmJ+fH87N3t6+oKBAn5lcLiei7Orq2tnZSW/y8fEhN1WPYzNZDSNPWT+AAcEinyFY1InW0KSkpJDbXSwWay9gtXbtWpKJxsD9zZs3k00xMTHmO9y30P1cixcv1o5Frq2tnTx5MrG5dOmSgdxIHzaXy120aBFOmzwqwJqcPHmSnKNEIikpKdG2qaurmzp1KjGjw/2VSuW0adPIpvfee8+KvvcBjDxl/QBm4rDIcFyE0IABA/72t78VFxe3t7c3NjZeuXKF3mpnZ6cdV5WVlUUMpFKpUqmkt7a2tpJubw6Hk5WVxYjPfQgdizxp0qQzZ85UV1e3tbWVlZXt37+fboJZs2ZNj7mRgCxSwk+ePLHCWZjPggULiNtCoXD9+vU5OTlyubytra20tFSjKAICAuhR3PQMX8HBwXTNq79i5lPWP2BGsFpaWv74xz+inuByuV9//bXGvvX19STIiMfj6Wx8yc7OJt/w7u7u9fX1jLjdV1RXVw8fPrzH4lqyZIlKpeoxN3rSKIRQSEiIFU6BEVpaWuhakgH8/PzoAXSkZwbj6ekpFotFIhE9XYFOLDfcygqY85T1GxiLdFcqlVu2bDFwx/j6+l67dk17x6VLlxIbA1/d9LizHptpbZ/KykoDz6pIJEpISDBy+CQ9QxbqaVY/W0OlUsXGxhqIQuDz+dHR0RpztuTk5PT43OqE1YKlNuMp6zcwPDSnurp6x44d06dPF4vFAoHA2dl51KhR77zzTnp6usaHHiY1NZWUtY+Pj4FOjaamJk9PT2KcmprKrOfWp7u7Oysra+XKld7e3o6Ojnw+f+jQoTNmzEhISDAwHF8nYWFhuFhcXV11lrONU1tbm5CQMG/ePE9PTwcHB6FQ6OHhERQUtHPnzkePHmnbv7CChentU9afsOrgZ8BChIWF4YCsDz74QGMiLQDoT4BgsR7cCIjXm7h9+3b/XKAcABBCVh5LCFiC5ORkrFZTpkwBtQL6NyBY7KaqqiohIQGnDazqCAD9A/gkZB9ffPGFm5ubnZ1dcXFxYmIiXkra19e3uLiYxA0CQL8EBIt9BAYG0rO2I4S4XK5MJqPj4wGgXwKfhOxDI+iUy+UeOXIE1Ap4EQDBYh/BwcE+Pj4CgUAsFi9YsCA7O/svf/lLXzsFANYAPgkBAGANUMMCAIA1gGABAMAaQLAAAGANDAtWQ0NDYmLizJkzX3nlFTws09/ff9OmTSUlJcweyMZpbm4+cuRIaGioRCIZOHAgHs07bdq07du307MD93s6OjpSUlLCwsK8vLxEIpFIJBo+fPjixYuPHz+uUqn62jsWEBUVxeFwjF9F2Pwbz9YvGYMDqY8ePTp48GCdR+FwOOHh4f1yCkRtjh075uzsrK/A7ezs1q1bR89F11+RyWTDhg3TVw4SiSQnJ6evfbRpcnNzcSTw0KFDjbE3/8az/UvGmGD99a9/1XeehOHDh5eXlzN1RNskJiamx3JACE2ePJnB+eltkMzMTLKkiD7s7e0vXLjQ157aKA0NDWSiXWMEy/wbjxWXjBnBOnDgAH1Wc+bMuXjxYkNDg0KhyMnJoWezlUgkDQ0NjBzUBklKSqIv7fr16/Py8pqamlpbW3/77bedO3fSL8B+MA2hPqqqqsj6PQih4ODg7OxshULR0tJy7dq1t956i2waOHBgRUVFX/trc7S3twcFBZFS6lGwzL/x2HLJGBCsiooKegrEffv2adukpqZyuf/bXhYVFWX+QW2Qurq6QYMGkYt6/fp1bZsHDx7QVe4rV65Y308r8P7775Nz3Lx5s7ZBbGwsMQgPD7e+h7ZMU1MTvdh1j4LFyI3HlkvGgGDRkxevW7dOnxk5YS6Xe/fuXfOPayaML/OVmJhIyuGrr77SZ5aTk0Pmp1+yZAkjhzYHxsuhs7OTLHcqlUq1lwVSq9Xd3d0TJkzANg4ODhozIL/IPHr0iCyAZqRgmX/jseiSMSBYpAvD2dm5qalJn1lzczOpl3700UfmH9dMGH9Q//SnP+EM3d3dDS/iQpaucnFxYeTQ5sB4Ofz+++/k+dm5c6c+M/oxY3aJXPZy+vRpsgijUCj09fU1RrDMv/FYdMnMDWsoKyvD05sghMLCwgYOHKjP0tHRkSy3ffbsWTOPa4MUFhbixPTp0w1P8+Lv748Tcrm8tbXV4p5ZF7lcTtLk8dOG/kKpq6uzrE82T0VFRUhISFhY2NOnTxFCL7300uXLl40c0G7+jceiS2auYFVVVZH066+/btiYzId5796958+fI4S6uroCAwM5/x8DU9AlJycTs8mTJ3d2dprpObMoFIqZM2dOmjTJ3d2drBVuDN3d3QihkpIScnarV682vEtDQ4NAIMDGe/fuNctvC0DaUxBC1dXV+sxqa2tJmn7PHTx4kNNL4uLiLHMq1iMuLu78+fM4PXfu3OLiYnoFWQOYeeNhzLxkVsXMGlpaWhrJ6syZM4aN6SolCegoKysTiUT4Ty6Xq6/JkHRhODk5/f7772a6re67perVajVZ4MvJyYn8SdZDdXZ2Nhwsc/ToUWzJ4/FqamrMdIbxcuju7h4yZAjOc/To0foWK5s+fTq2EQgEdEsCfZMYSWxsrPHuTZkypbf5Yyy64s6KFSsQQm5ubsePHyd/rlq1Ch/ayDisHtF546nNvmTWxNwaFtEahFCPgbDNzc0kXVNTgxMjR44kURHd3d2rV69WKpX0Xl1dXeHh4QqFAv88duyYRCIx0+0+pKKi4vr16zhNL00YGRmJE8+fPycvW52cOHECJ2bNmkXWoLUdOBwOme7mzp0727dv17ZJSkq6evUqToeHhxv5uuZwOPb29k5OThqfLWPHjjXLYxvAzc1tz5499+/fp2OAmEXfjYcsecmYx0zBKygoIFnt3r3bsDF+jWA+//xzelNwcDDZpPHC/OSTT8imyMhIMx0m9FUNKzw8nJzOiRMnyP/0eqihoaH6dqfbR0+dOmW+P5Yoh9bW1oCAAOJnaGioTCZTKBRtbW35+flEmhFCI0eOrKur623+H374IcnBwOK7OrHNGpZOmK1h6bvxMJa+ZExhrmB1dHSQSlZAQIABS6VSSb8YP/30U3rrkydPXn75ZbyJz+cXFRXh/3Nzc0n07auvvtrc3Gymw4Q+EazTp0+TEvD19dXo0wkNDcWbBAJBY2Ojzhx27NiBbQYPHszI+B4LlUNzczMeB2dAAubPn//06dPe5nzo0CGSw5tvvqmzD94ABQUFV03C+h35DAqW4RsPY7lLxiAMhDXQUbDp6en6zDQW+NSujn333Xdk68SJE7u6uhQKBRmdYG9vf/PmTRPcs503akFBAWmJ4/F4P/74o4YB3XmanJysMxNvb29sEB0d3aujW78c5HL5hg0b9GW7bNkyE8Y8ZGZmEoUdO3asQqEwzTdWwJRg9XjjESxxyZiFAcEiH8YIIWdnZ5lMpm1z8eJFoVBIn/zevXu1zaKioohBUlISHZK6f/9+09yzEcEqKSl56aWXSOa7du3StlGpVKQSGhQUpG1Arz1x48aNXjlg5XI4ePCggYG4mEGDBmm0DBiGfvDEYnFlZaUJjrEIRgTLmBsPY4lLxjjMjCV89913ySnx+fyYmJi8vDyFQqFQKPLy8qKjo/FnHQkDQQh99tln2vk0NTWRBnWRSERqp7Nnz9bXc9EjtiBYN2/eJB+8CKGIiAh9p7Nx40Zsw+VytXsAyQDX0aNH99YHa5YD/aZxdnbetm1bUVFRS0uLQqG4devW9u3b6X70jRs3GpNnVVUV6WEQCoW91Ws2Yr5gGX/jWeKSWQJmBKutre2NN94wfN8PGzaMbjD+8ssvdWYlk8nIqEPMkCFD/vvf/5rsm742C3KU+Ph4i7ZZXLlyhe5SWb58uUql0mdcXFxMLA8cOEBv6ujoIK9KnQM2DWO1cjh58iQ5BW9vb50xKI8ePaIXqe6x+aypqYkesGL9SJQ+wUzBMv7Gs8QlsxCMTS+jVCrXrl2roTWEhQsX1tXVPX78mPyTmZmpL6utW7fS+54/f54pJ2ms0+iekpJCjwxftWpVj43EJCBr/Pjx9P+khYvH4z1+/JgpDxkvh9GjR+MMhUKhgdpZTU0NeWlLJBIDNWiVSjVnzhxShtu2bWPET8tBRnTo49mzZ8bkY45g9erGY/ySWQ4mJ/BTq9XFxcUbNmyQSqVOTk58Pt/Ly2vFihWXL1/GW2/cuEFKsKCgQF8m9FwZCKFDhw4x6yTG0oLV3d3997//nT6RrVu3GrPjP//5T7ILPUp8yZIl+M/58+cz6Cez5XD//n3i/Jo1awwbb9u2jRjn5ubqM6MXMVu6dKmZz4kVPo37VrB6e+NZ4pJZDoYFyzBHjhzBp8rlcvV9aNy7d8/BwYEubgcHh9LSUsadsahgtbW1hYWFkVPg8XjGN1XSAVnx8fH4z8bGRtJr8e233zLoKrPlcObMGXLWPfr5yy+/EOOjR4/qtKHHHk2cONH87/T+LVgm3HiMXzKLYtVFKGQyGU74+PgMGDBA26CzszM8PBwPy7S3t8fPbWtra0REhK0NHjRAY2PjrFmzSOSLo6Pj2bNn16xZY+Turq6uISEhOH3q1CmcOHPmTHt7O0LIxcVl4cKFTLvMGGRAAkKIzFiiDzouD48t1SAtLY20D3h4eGRkZOi8bQCMaTces5fM0vQwIyqDKJXKzMxMnJ49e7ZOm127duXn5+N0fHx8V1cXDnPPz8/ftWsXHfJuszQ0NMyaNevXX3/FP93c3M6fPz9u3LheZRIZGZmeno4Qun//fmlp6ahRozIyMvCm5cuXk/qXDeLq6krSBobRYurr60la+1HJzc2NiIhQq9UIIQcHh3Pnzrm5uZnvYVJSkmlPmoeHh5GWP/zwgwn5m4nJNx6Dl8wamF9J27Rpk5+fn1gsXrRokQGzY8eOkYP+9NNP2gY3btwgQe3jxo1TqVRKpVIqleJ/7OzsmJ2CxxKfhG1tbfSUIN7e3qZNJksHZO3Zs6e9vZ3EH+Xn5zPlLYbZcqCXZulxDug9e/YQ459//pneVF5eTvrjORzO6dOnzfeNdRj/SWjOjcfUJbMODAgWCR0SCoX6wvafPXtGXlBjxozRNmhpaSEx3Hw+v7CwEP+fl5dHnihvb28GF26whGDR1W+pVGrOIAZSqoGBgRcuXCB5MuUqgfFyIPEH9vb2BrpW5HI5EWVXV1d6sIhcLvfx8SEl2eMY1f6K8YJl5o1n/iWzGgwIVl5eHimsxYsXa/ee1tbW0vJ/6dIl7UzWrl1LDEhLM2bz5s1kU0xMjPkOWwi68dLNza26utqc3EhAFpfLXbRoEU6bHO5vTeigHolEUlJSom1TV1dHz/dED3tQKpX0XALvvfeeFX23LYwULPNvPDMvmTXhqNVqZDbz58///vvvcXrSpEl///vfJ0yY4OrqWl1dnZGRceDAgf/+979465o1az7//HON3S9evEhm3ZdKpb/++ivdTNPW1ubn5/fgwQOEEIfD+f777+moHBuhu7v7tddeKy0txT/j4uJ67CrCBAQE6GtI9vf3pyfDsLOzq66uNjAhpO2wcOHCc+fO4bRQKHz//feXL1+Oe1oePXqUmZlJ3xIBAQE//fSTQCDAP1euXEnmzwkODs7IyDA8i2Y/ZvXq1cnJyQihoUOHknl9NWDqxjPnklkVRmSvurp6+PDhPR5ryZIl2rG29fX1ZMgFj8fT2UaTnZ1Nhum4u7vX19cz4jaD0BMZ9goDneV0QBZCKCQkxJpnZA4tLS0aMy7pw8/Pr7a2luxIulwwnp6eYrFYJBLRMZC9LUb2YkwNi6kbz+RLZmUYi8OqrKw0cMIikSghIUFnyN/SpUuJmYG5jeixTja4ot+f//xnRu4bGjogCyHEroZnlUoVGxtrIAqBz+dHR0drxFXl5OQwXozsxRjBYvDGM+2SWRkmA0e7u7uzsrJWrlzp7e3t6OjI5/OHDh06Y8aMhIQEfZKcmppKisPHx6etrU1f5k1NTZ6ensQ4NTWVQc/Nx8i3kzH3DQ0JAnR1dVUqlVY7Haaora1NSEiYN2+ep6eng4ODUCj08PAICgrauXPno0ePtO1BsGiMESzGb7zeXjIrw0wbFmAhwsLCcEDWBx98oDGhGAC8gIBg2S64da+jowMhdPv2bXqsPAC8mFh1aA7QK5KTk7FaTZkyBdQKABAIls1SVVWVkJCA0waWawSAFwr4JLQhvvjiCzc3Nzs7u+Li4sTERBx64+vrW1xc/MLGIgEADQiWDREYGEjP2o4Q4nK5MpnMyCXLAaDfA5+ENoRG8C2Xyz1y5AioFQAQQLBsiODgYB8fH4FAIBaLFyxYkJ2dTU+2CQAAfBICAMAaoIYFAABrAMECAIA1gGABAMAaQLAAAGANIFgAALAGECwAAFgDCBYAAKwBBAsAANYAggUAAGsAwQIAgDWAYAEAwBpAsAAAYA0gWAAAsAYQLAAAWAMIFgAArAEECwAA1gCCBQAAawDBAgCANYBgAQDAGkCwAABgDSBYAACwBhAsAABYAwgWAACsAQQLAADWAIIFAABrAMECAIA1gGABAMAaQLAAAGANIFgAALAGECwAAFgDCBYAAKwBBAsAANYAggUAAGsAwQIAgDWAYAEAwBpAsAAAYA0gWAAAsAYQLAAAWAMIFgAArAEECwAA1gCCBQAAawDBAgCANYBgAQDAGkCwAABgDSBYAACwBhAsAABYAwgWAACsAQQLAADWAIIFAABrAMECAIA1gGABAMAaQLAAAGAN/w/ZUi+9xtBW0QAAAABJRU5ErkJggg== | -378 | float | algebra | high school |
9,494 | 494 | 10 | x, y, and z are the solutions of the above equations. What is x + y + z? | iVBORw0KGgoAAAANSUhEUgAAAZAAAADICAIAAABJdyC1AAAzBElEQVR4nO29eVwUx9b43bOwKFsEZY0LRkEIcV8ubqioxAc33D6aQIRonoh4MZq4PYreq+hVcQ3RiI+EKJpEo0ZREtFoSFARMCgCEUEQBY1RYFhmgHEY5v2jnvd8+jdLM2vPtDnfv4ru09WnDtOnq0+dquIpFAoKQRCEC/DNrQCCIIi2oMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzoMNCEIQzmMdhvXjxYuvWrePGjXNzc7O2tnZ0dBw0aNCKFSvu3btnFn0snFevXqWkpMyePbtnz552dnZ2dna9evWaM2fOsWPHZDKZubWzLCQSiUAg4GnHxYsXza2vCWlqajp48OCsWbO8vb0dHBxsbW29vLyCgoI2bdpUWVmpZSUikWjv3r0TJ0588803bWxsnJychgwZ8umnnxYVFZlSd80o2KW9vX3Pnj22traa9Fm0aFFDQwPLWlkyWVlZPXr00GQub2/v7Oxsc+toQdy8eVP7H/+FCxfMra+pSEpKcnJy0tRwoVC4bNmy1tZW5koOHTrUpUsXtTXweLzw8PC6ujp2mgOw7bCWLFnS4c+oT58+L1++ZFkxy+TixYtCoZDZXNbW1j/++KO5NbUUDhw40OEPDHhdHVZMTIw2zR85cqREItFUyT//+c8Oa+jVq1d5eTmbTWPVYX3xxRfQVAcHh61bt5aWlkql0rq6urS0tBEjRsDZsWPHtrW1sambBVJVVWVvbw82CQ0NzczMFIvFEonk+vXrM2fOpBuzsrLS3PpaBIsXLyY28fHx+aUjampqzK2v8UlMTIQfhrW1dWxsbG5ubmNjY3Nzc3Fx8ZYtW+g9r3nz5qmtZPfu3XTHFBISkpGRIRKJxGJxdnZ2REQEnPL29haJRKy1jj2HJRKJ4PFzcXEpLi5WEpDJZHPmzAFDpKamsqabZfLf//3fYI3PPvtMVWD9+vUgEB4ezr6GFsiQIUOIQSIjI82tixmoqal544034DV248YNVZmHDx/SgwxXr15VEqisrLSysgKBnTt3qlZy/PhxPv//IuBRUVEmaYw62HNYdJ997NgxtTJ1dXUODg5EZsKECazpxoxAICAqffvtt6zdtK2tzdnZmdw3ICBALperyrS3tw8dOpTIdO7cubm5mTX1GDCLuQgymczGxobc/YsvvmD57pbA3r174Sn76quvNIllZ2fzeDwiNnfuXKWz0dHRUMmyZcs0VQLvSz6ff//+faO1gRH2HNa4ceNI89zc3GQymSax6dOnEzF7e3vWdGPGLE9gRUUF/Gi2bNmiSYz+A83NzWVNPQbM6LAKCgrAGn/PsYixY8eS5nt6ejIHVUaPHk0knZ2dlU65u7uTU05OTo2NjZpqaGpqgq/L1atXG6cBHcFeWkNYWFh4eHj//v3fffddhkAydCuam5vb29vZ0s7iqKurg7Kbm5smMXrfvqamxrQ6WTx3794lBaFQOHDgQHOqYibu3LlDCuPHj4c3h1rg27murq65uRmOl5WVPX/+nJRnz54NXzyq2NvbBwcHk3JaWpohamsPew4rNjY2NTW1oKDg66+/ZhCDDJE333wTPpIpipLL5YGBgZBBExsbq6mG5ORkEBs5cmRbW5txGsAuEImgKKq6ulqT2IsXL6BM/20VFRWBESAOrQmRSGRjY0OEd+zYob/S5gYe17fffpshdUYt+/bt0zJ7C9iwYYMJGqE/YrF44sSJw4cP9/T07N27t/YX0nsGVVVVUP7HP/7BfOE777xDCg8ePGhoaNBFWT2xrEz30tLSrKwsUobOLUEgEKSmptrZ2ZE/Dxw4oDbjpry8/JNPPiFlR0fHEydOdJgWYJn07t3b1dWVlE+fPq1QKNSKnTp1ihRsbGwGDBgAxwMCAgYPHgyXS6VShnudOnXq1atXFEUJBAL6ABDnAIc1ZMgQhUKRlpY2f/78nj172trauri4DBo0aPXq1cXFxWbRbfTo0bo6RMLDhw+1vIW9vf3Zs2dzcnKePn26efNmZmHojTo6OtIHo0UiEZThF6gJeK0qFIr79+9rqachWJDDqqioCAsLk8vlFEXx+fzPPvtMSaBPnz4QuW9vb1+8eLHScyiXy8PDw8ViMfkzKSnJ29vb9IqbBB6P9/HHH5PyH3/8sWnTJlWZxMTEX375hZTDw8OVeu+RkZGk0NDQkJ6eznCv1NRUUpg0aZKnp6dhipsTeAh5PN7gwYNnzJhx8uTJJ0+ekNSZu3fvJiQkDBgwIDo6urW1VftqeTwemY+h9G3O3a/OysrKGzdukHJQUBD9FPQJKIrqcB5FU1MTlJ8+fWo8BTXDTqhME21tbSKRKDMzMyYmht6HZxjiCQ0NBbH169fTT/3rX/+CU0Yc1TZXFLm5uZmemzZr1qysrCyxWNzS0pKXlwf+iKKoPn36qKYU1dTUWFtbw7Wa7kKP7p88edJwtc1lrvLycu1/9oGBgXpkD61YsQJqWLNmjU7Xjho1Snv16JSVlemqZ4eEh4dD/Ur5Q/n5+XBq27ZtzPW8//77IPzll18aXU9VzOmw6J1PwNXV9fjx4wxXPX/+vFu3bkTYysqqoKCAHL916xZ8/fXt27epqclYeppx2KupqSkqKgpGoNXyX//1X3/99Zfay2fNmkVkbGxs6uvr1crAt0OXLl06nKuhDeYy1+nTp+lmcXZ23rBhw71798RisUgkun79enR0ND29KDQ0tL29Xfv66WnPM2bMUJtowkB+fn6HiaxqMXq2ypkzZ6Ahfn5+SoOJr169gk7WiBEjGOqRSqX0LueePXuMq6dazOmw1E51njZt2k8//cR84Q8//ADyw4YNk8vlYrG4T58+5Ii1tfXt27f10Mei3oFAXV0dROVUmT9/PkNPgT52k5ycrFbGx8eHCERHR+ukmKWZix4CHzp0aFVVlarMzZs3XVxcQIwhU0mJixcvgiMeOHCgWCw2qu7skZ+fDxErgUBw7do1VRn6JIqzZ89qqmrfvn30f2uH3TGjYE6HxRBYGT9+/J9//slwbVRUFAgnJibSU9127dqlnz6W9gQqFIp9+/YxTGElvPHGG5p64zKZDN6BahNxb926BfXk5OTopJulmevAgQPBwcG9e/f29vZ+8eKFJrHLly+DJr1799amo0R/yN3d3Z88eWJUxdmjqKioa9eu0Pz4+Hi1YhDeoijKyckpKytLVSYjI0NpHHbHjh0mVl+hMK/DevTo0e3btxsaGlpaWoqLi7du3QpJWBRF+fv7Myzb0NjYCAF1Ozs7+GiaPHmyTv18Opb2BNK9sJOT08aNGwsKCiQSiVgsvnv37qZNm+ipDytXrlRbycqVK4kAn89/+vSp0lmYJevv76+repZmLu2ZMmUKKNNhZ7yqqgoGImxtbXV165bD7du3IZZCUVRERATDk/Lhhx+CpJWVVUxMTG5urlgsFovFubm50dHRJPwCyVwURe3fv5+FVvAUGsbLzUJ1dXVISMgff/xB/oyNjd2/f78m4evXrwcFBdFTSFxdXQsKCiBPV1fu3LmjNpckODiY3CUuLm7ChAmqAiNGjOjUqZN+N9XEd999t2DBAlL28fG5dOmS6ojnkydPpk6dWlhYSP789ttv58+fryRTVFQEyTK7d+8G/0VRlEwm8/T0JOmmO3fuXLVqlU4aWpS5dOLo0aMwZKFkEyWamppGjx4NsQu1FuYE165dmzlzJgzqLViw4NixYwwZP62trVOmTMnMzGSos0ePHpmZmZDwdeTIkUWLFhlPZQ0Y6PAg1VUTui4UU1FRAV1NOzs75tj52rVr6fdKT083rDXqMWIUWXtz+fv7kyO2trYMXZKnT59CP8vb21vtOxMSsgYPHkw/DhEugUDw7NkzA5sGmMVcOgEuntLcM1UoFDKZLCQkBCQ3btxoQFPMSUpKCn20YdGiRdp8CEul0qVLl9KTt+lMnz69pqbm2bNncOTixYsstMWC8rAI3t7eMFYqkUhycnIYhL28vOh/Pnr0yISasUhZWRl0MyMjI2E8QRVPT09I+n/06FFubq6qDPQm8vPzS0pK4DikX4WEhHh4eBhDcW5Aj7urHaomLFu2LCMjg5TnzZtHT5rRAxYSR1VRKBTr16+PioqCjKq1a9ceOXJEkxuiY21tfeDAgYKCgk8++SQgIMDR0dHKyqpnz57vv//+lStXzp8/7+LiQk+LZymDz0CHZ4p3YEpKClx+5MgRTWIPHjzo3Lkz/V6dO3cuKSkxrEFqYL/LcO7cOTjy/fffM9dJz/g/dOiQqgA9ISsuLo4crK+vh55sh7fQCcvvYdEztpYvX65Whj5FadiwYYbnFrAf8mtpaZk9ezbUIxAIjJ4qdfDgQVI5n89nZ7EQi+thUf/vnDiS+K5KW1tbeHg4mbRpbW1NHsjm5uaIiAiOTh6kA8n6FG02uCbouTBqg0ouLi5Tp04l5ZMnT5LCuXPnSLa3s7MzrJDBXRQKRV1d3YMHD7KysuivfbXQBdR2LU+fPg3RBi8vr/Pnz5s36KYH9fX1kyZNgpQre3v7tLQ0bdb71QmYSOfr68uOiQydZ/fzzz9rI1ZWVrZ58+aKioqKior9+/fPmzePQZj+e9IUQY+Pj8/LyyPluLg4uVxOeux5eXnx8fEG9t5Nh5bmon+zMMx8JtTW1kJZk3eLjIw8e/YsRVGlpaUlJSX9+vU7f/48ObVgwQLof1kaWpqLoqhffvkFumNr1qzZvn07gzA8ZpS6+b23bt2KiIhQKBQURXXu3PnChQtG+V5OTEzUb3qwUtxDG0Qi0aRJk37//Xfyp4eHR3p6+qBBg/S4OwNSqRR28Zg8ebJxK9cIC704hULx+PFjuOOcOXOYhWHlLB6PpzYYnJOTAwMcgwYNkslkUqk0ICCAHBEKhcZdGYr91G36piaaFrEF6A/nb7/9plaGnpC1ffv21tZWSCzKy8szrvJmyXSvqamB1BY/Pz8Gyba2NhjYcnZ2bmlpoZ8tLy+HsX8ej3fmzBkTK258WlpaRo4cCT8JHx8fXZfP/vTTT/v37+/u7h4WFsYglpSUBHf59ddfDdNaW9jLw4JhL4FAUFhYqEmMHr4ZO3asqoBEIoHkbCsrqzt37pDjubm58Kj4+PgwrK6vK2Z5Avv3709uam1tnZ+fr0msrq4OPJGLiwvDmm0weB8YGPjjjz+SckBAgNE1N9fUHHjPURTF4Gi2bt0KYkrzAevq6nx9feEsO6nbRof+3RcQEKBp2hYD8FOxtbXVdPnLly+h6zdgwABDldYa9hzWoUOHwI7+/v5qE9mvXLlCX+ni+vXrqjJLly4FAQghE+gLPMTExJiqJazw7bffQlu8vb2LiopUZWpqamDdSKqjVGMYy+fz+WFhYaSs96wACwQ+cimKcnZ2hjcZnZSUFPCn7u7u9F2qpFIpfd2Cjz76iD3VjQf9fe/h4VFdXa1HJfSx5jlz5qjmQLx48YLeibt8+bIxdNcK9hyWXC6nP13dunXbtWtXaWnpq1ev6uvrf/3118jISPoaievWrVOt5NKlS/S3h1QqpZ9tbm6GDAAej3fp0iW2GmcSpk2bBo21tbWNjY3Nzs6uq6traWkpKSnZtWsXPbYyYsSIDqcuQ0IWQSgUPn/+nJ22sANM9qYoqlOnTuvWrSssLGxtba2vr7969Sr9rFAoVMraoy8EFhoaysVNm+Ryeb9+/aAVGzZs0Ht+NX0ywPDhw8+dO1ddXd3S0lJWVqb0w1uyZAmbbWR1ak5tba2WSwjFxMSo5kDW1tZCrodAIFAbfMnMzIRYhqenZ21tLSstMwkSiURprSJN9O/fn2H2HPD555/Tr5o6dSoLrWATiUQyZsyYDs3F5/O/+eYb+oUwgEPo3r27u7u7nZ0dPd9SLWafZkRHab0K7VFtRXV1da9evTq8cO7cuQz7M5gCtucSSiSSpUuXMqw27eXldeLECbXX0scWGVYjok/B6zBibeHIZLL169czDBhbWVlFR0drmQJDT8iiGAM93EUqla5atYrB0fj5+amGGrKzszt8ONViUQ5r4cKFRmzFkydPGN6XdnZ2CQkJes/b1RvzTH5+9OjRxo0bx4wZ4+rqamVl5eDg8NZbb82fP//o0aOavmuOHz8OxvL19VUa3KHT2NjYvXt3EGZeXYsTvHjxIiEhYcqUKd27d+/cubOtra2Xl9eECRO2bNny+PFjnaqCTEIXFxelD+rXierq6s2bN48fP97d3d3GxsbJyalfv37vvffe2bNn1bb69XBYWvbHtW9Fe3v7pUuXPvjgAx8fH3t7eysrKzc3t+Dg4ISEBG169KbAsiY/I6Zm9uzZJCFr+fLlSusZIYjlgw7rbwQJApL9Ju7duwerOCAIV7DEqTmIiUhOTibeatSoUeitEC6CDuvvQlVVVUJCAikz7OqIIJYMfhK+zhw+fNjDw0MoFBYWFu7du5fs6Ovn51dYWMi8LTCCWCbosF5nAgMD6au2UxTF5/OzsrLoacoIwiHwk/B1Rin3j8/nHzx4EL0Vwl3QYb3OhIaG+vr62tjYuLu7T5s2LTMzE3aTRhAugp+ECIJwBuxhIQjCGdBhIQjCGdBhIQjCGYzssJqamg4ePDhr1ixvb28HBwcyTTcoKGjTpk30ZX9fe9AOmoiKiuLxeHpvdvt3Qw9zPX/+fP/+/cHBwb169bK1tXVwcPD19V24cOGVK1dMpyd7GHEidVJSkpOTk6YbCYXCZcuWdbjI3GsA2kETt27dIgmrbm5u5taFA+hqLrlcnpCQQF+zV4lx48Y9efLE1GqbFKM5rJiYGG3848iRI4242roFgnbQhEgkgvVg0WF1iK7mamtrgx2IGejRo4euSxJZFMZxWImJiWARa2vr2NjY3NzcxsbG5ubm4uLiLVu20HscXF9UjwG0gyZaW1snTJgAbUeHxYwe5qLvPdG1a9ft27eXlJS0tLQ8e/bs2LFjffv2hbNBQUHsL7xnLIzgsGpqat544w1iCwcHhxs3bqjKPHz4sEePHmCyq1evGn5fSwPtoInGxsZ3332X/p5Hh8WAHua6fPkyCAcEBDx9+lRJoKmpafjw4SCTkZFhMvVNixEc1t69e8EQX331lSax7OxsWG197ty5ht/XQIy+GxXaQS2PHz+GLcvQYXWIfuYaMmQIkezSpUtVVZVameLiYqhw4cKFxledFYzgsMaOHUus4OnpybzXCOya4+zsbPh9DcToDyraQZUzZ87Atom2trZ+fn7osBjQz1z0+e0HDx5kkBwzZkzXrl19fX3Dw8ONrTtLGCGt4c6dO6Qwfvx45kVL4D1QV1fX3Nxs+K0tCrQDncrKyqlTp86ePfuvv/6iKKpr165XrlzBedeaMMRcsFmOi4vLokWLGCR/++23ly9flpSUpKamGq6zWTDUYYnF4okTJw4fPtzT0xN2ANeG9vZ2iqLkcnlgYCDv/4dhYbnk5GQQGzlyZFtbm4GaGxcD7VBUVAStW7x4MfMlIpHIxsaGCO/YscMgvU3Ghg0b0tPTSfndd98tLCyk70rJwL59+3g6smHDBlM2hQ30NhdFUZBgNXPmTPquSK8nbHbnYFcPR0dHOFhWVmZnZ0eO8/l8TbFqyC5xdHSsqKgwXBlz7aiu0GAH2OXUycmJOUsL9tAWCASq4VVdMZEdyBC7h4fHsWPH4CC8/xm+ceihQC1Zv3699oqNGjVK1/oJJt0gR29zSSQS+A8mJyebTkMLgb2pOZWVlTdu3CBl+n5Effr02b17Nym3t7cvXrxYKpXSL5TL5eHh4WKxmPyZlJTk7e3NisomQZMdIiMjSaGhoQFetmqB/vykSZNgZ1lLw8PDY/v27aWlpfQdlQ2Ex+NZW1s7OjpCoIeg5e68loze5iotLZXL5aTs7+9PCtnZ2dHR0QEBAY6Ojo6Ojv7+/rGxsXfv3jWuzuaBNdcYHh4ON01NTVU6GxoaCmeVXpj/+te/4FRkZKSx9DFXD0uTHei7nM6aNUvT5RUVFXD5yZMnDdeHTTto02XQhhUrVoARGLbUVYtl9rDUoo25fvjhB9Cwurr65cuXsPWkEnw+/6OPPuL6FAuhfv88XTl79izshOrn57dgwQIlgeTk5Hfeeefly5cURe3cuXPevHlkcDcnJyc+Pp7I9O3bl56ZyUUY7ODi4jJ16lSyaWB6enpDQ4Pa+T1weZcuXWbMmGF6lS2OAwcOwGfjjBkztm3bptPliYmJDQ0NetzXy8tLj6tMzYsXL6Dc2to6evRoTZNV29vb//d///ePP/7IyMiAIAz3YMEp5ufnQwRKIBBcu3ZNrRj9XTFs2DC5XC4Wi2F2grW19e3bt/W4u+W8UTu0Q1paGtxdUzzCx8eHCERHR+t0d0uwg+E9rIsXL0KXcODAgWKx2Fi6WSDamGvnzp3wnxo6dCgpTJw48eLFizU1NS0tLffv34+Pj6e//BYsWMBmK4yLyR1WUVFR165dwVjx8fEMwlFRUSCZmJgYHR0Nf+7atUs/BSzhQVVoZweZTAbRmQkTJqgK0DNucnJydFLAEuxgoMOie3x3d3euz+PtEG3MtWXLFqX/144dO1TFysrK6Av8X7p0yZSKmxDTOqzbt29369YNzBQREcE8iamxsREC6nZ2dpARPnnyZL1nP1nCg6q9HVauXElk+Hy+6gggzKz29/fXVQdLsIMhDquqqgpGGGxtbXX111xEG3P9+9//pv+zlixZokkyLy+Pz/+/QbZx48aZRmWTY8IY1rVr12bOnNnU1ET+XLBgwVdffQU+SC0ODg7Hjh0jkzMlEgk56OrqevToUeYLGdAUswgODiY5UHFxcfSJpoCxYhY62SEqKmrPnj0URbW3t3/33XfgvyiKkslkJ0+eJGUYUtQes9vBEJqamkJDQ589e0b+TElJoc+M+ztDT7yysbHZvHmzJsmhQ4dOnTqVhB2ysrIaGxsdHR3ZUNG4mMgRpqSkWFlZwV0WLVokl8u1vHbt2rV0DdPT002hITujY3rYARKyBg8eTD8OES6BQPDs2TNjaWj5o4QymSwkJARsuHHjRtNpaBSCg4OZH7qXL19qU4825vriiy+gWrVhBDpJSUkgrCmUbOEYPw9LoVCsX78+KipKJpORI2vXrj1y5Ah0RztE6ZX+6NEjI6vICnrbAXpP+fn5JSUlcBzSr0JCQjw8PIyvsaWybNmyjIwMUp43bx49zUUPRo8erWsmPeHhw4dGaIyxoYca6GvIqAVGbCiKInOAOIeRHVZra+vcuXNhpFkgEHz55Zf/+c9/tK+htLR0zZo19COrV69+8OCBMbU0PYbY4b333oN+/jfffEMKDQ0NFy5cIGX60MRrz86dO6FfMGzYsK+//lrv4MBrCT2JmnkGK0VR9GwGCLlwC2M6rPr6+kmTJp05c4b8aW9vn5aWRl9XrEPa2trCw8PJfGBra2vy3DY3N0dERFja5EEGDLQDScgiZQhanTt3rrW1laIoZ2fn6dOnG1tlC+X06dMQH/Dy8jp//nynTp3Mq5Kl4efnB3326upqZuH6+noow9pt3MJoQXeRSDRp0qTff/+d/Onh4ZGenj5o0CCdKomPj8/LyyPluLg4uVxO+v95eXnx8fEGfguwg1HsEBkZSTJIS0tLS0pK+vXrd/78eXJqwYIFr/8EV4qiKOrWrVsREREKhYKiqM6dO1+4cMEoH8IsJI7+/PPPetSvH/b29v379yfTbrKzs+VyOUM/6969e1D29fVlQT3jY5RIWEtLC30pDB8fn8rKSl0rycnJEQr/z4EOGjRIJpNJpdKAgAByRCgU5ubmGkVbgimCzUaxg+L/Tcjavn17a2sr5B/l5eUZS1uCZQbdy8vLITrD4/HOnDljat0sEC3NRV+sgnmEClJbunXrpv0gmEVhHIdF/94JCAj466+/dK1BIpFARNDKyurOnTvkeG5uLjxRPj4+Rty4wRQPquF2ACChITAw8Mcff4Q6jaUqYIEOq66ujv7+37Ztm6kVs0y0NNfDhw/hq7Bfv36aZgvCr4iiqNjYWNOobHKM4LDOnTsHhvDw8KiurtajkqVLl0IlcXFx9FOfffYZnIqJiTFcYRNhFDsAhYWFpCo+nx8WFkbKeqf7WwjaPIFSqZS+iMVHH33EpoYWhfYd0oULF4LFpk+frvpev3v3Lky0sLGxMcoCTWaBp1AoKANob29/++23YfR9w4YNHSahEEaMGAEB1IyMDFh1PyAg4Pfff6eHaVpaWvr3708GlXk83k8//UTPyrEQjGIHJYYMGZKfnw9/CoXC6upqpZVVuMXixYuTk5MpinJzc3v+/LlamQ8++AASOEJDQ8+fP9/h4NfrijbmItTW1g4ZMuTx48fkTx8fn1WrVk2cONHDw+PJkyfffPPNzp07YW3bbdu2rVu3ztTKmwoDHR4sz6orMOGjtrYWplwIBAK1MZrMzEwYzPb09KytrTVQbaNjuB1U+fzzz+mSU6dOZbNFpqDDLgMMuRC6d+/u7u5uZ2dHT77V1YzcRac820ePHr311lsd/t4++OAD7u7xpTA8cRSSg/QmOjoaplx89tlnMOOcTlBQEISHnj17Rp8UbSEYbgdV6AlZ1N8j/UopeaWqqur58+cSiQSSbxFN9OrV6+bNm/TV1pSwtbX9z3/+w/VENkMdlqbFd7TkxIkTp06dImVfX1+GxIUdO3Z0796dlE+dOnXixAlD7mt0DLSDWlxcXKZNmwZlSM5CELW4urqmpqbeuXNnzZo1gwcPdnV1FQqFXbp0GTly5L///e/y8vK1a9dy2ltRFGVoDAsxKbNnzyYJWcuXL9+3b5+51UEQM4MOy3Ih0b1Xr15RFHXv3r133nnH3BohiJlhbxMKRFeSk5OJtxo1ahR6KwSh0GFZLFVVVQkJCaTMsF0jgvytwE9CC+Lw4cMeHh5CobCwsHDv3r0k9cbPz6+wsPBvm4uEIHTQYVkQgYGB9FXbKYri8/lZWVm4wzuCEPCT0IKgbxNAURSfzz948CB6KwQB0GFZEKGhob6+vjY2Nu7u7tOmTcvMzPz444/NrRSCWBD4SYggCGfAHhaCIJwBHRaCIJwBHRaCIJzBPA7rxYsXW7duHTdunJubm7W1taOj46BBg1asWEFfcxphoL29PSgoiGw/tWvXLnOrY3GIRKK9e/dOnDjxzTfftLGxcXJyGjJkyKefflpUVGRu1dijqanp4MGDs2bN8vb2dnBwsLW19fLyCgoK2rRpkzZz9SUSiUAg0HIPtIsXL5q+QRRFmWwjVU20t7fv2bPH1tZWkz6LFi1qaGhgWSvOsXPnTrBYQkKCudWxLA4dOtSlSxe1vy4ejxceHl5XV2duHU1OUlKSk5OTpqdMKBQuW7ZM02LKhJs3b2rvRi5cuMBOu9h2WNrsdtWnTx8tt8b9e1JUVGRjY4MOSy3//Oc/O/yB9erVq7y83NyampCYmBhtvMzIkSMZNkk4cOCANpUQXk+HRd9W28HBYevWraWlpVKptK6uLi0tbcSIEXB27NixbW1tbOrGFV69eqW0aRg6LGD37t10y4SEhGRkZIhEIrFYnJ2dHRERAae8vb1FIpG59TUJiYmJ0Exra+vY2Njc3NzGxsbm5ubi4uItW7bQe17z5s3TVM/ixYuJjI+Pzy8dUVNTw07r2HNYIpEI9qpycXEpLi5WEpDJZHPmzAFTpqamsqYbh/if//kfpZcbOixCZWUlfSXlnTt3qsocP34cNpiJiopiX0lTU1NTAzukOjg43LhxQ1Xm4cOHPXr0AENdvXpVbVVDhgwhApGRkSbWWgfYc1j0t9+xY8fUytTV1Tk4OBCZCRMmsKYbM2xuhMXMrVu3iDKwgaMFOixzmYu+cPayZcs0ia1fv57I8Pn8+/fvs6khC+zduxeM8NVXX2kSy87OhqVH586dqyogk8kg7PDFF1+YUmXdYM9hjRs3jrTfzc1NJpNpEoN92O3t7VnTjRkLcVgSiaRv375EE/remeiwCO7u7uS+Tk5OjY2NmsSamprgm2j16tVsasgCY8eOJU3z9PRkDqqMHj2aSDo7O6ueLSgogB9Ydna2yfTVGfbSGsLCwsLDw/v37//uu+/SOwhKODs7k0Jzc3N7eztb2nGAVatWlZWVURQ1ZsyYFStWmFsdy6KsrAw2wpo9ezb001Wxt7eHHdjS0tLYUI5F7ty5Qwrjx49nXpIIvvjq6upgBzDg7t27pCAUCgcOHGhcJQ2BPYcVGxubmppaUFDw9ddfM4hBhsibb74J4QaKouRyeWBgIOR9MKxpl5ycDGIjR45U2oiFo1y5cuXLL7+kKMrOzi4lJYVuGbUUFRWBESB6qgmRSGRjY0OEd+zYYTSlWaSqqgrK//jHP5iFYfnWBw8eNDQ0kPK+ffu0zDkC6P1cS0AsFk+cOHH48OGenp69e/fW/kLVngE4vrfffpshCYl9LCvTvbS0NCsri5Shc0sQCASpqal2dnbkzwMHDqjNEykvL//kk09I2dHR8cSJEwy9Oa5QX1//4YcfKhQKiqISEhK02X4uICBg8ODBpHz69GmpVMogfOrUKbIWs0AgoA+lcQiRSARlV1dXZmEISysUivv375tOKzqjR4/W1SESyBbC2mBvb3/27NmcnJynT59u3ryZWRj6UI6OjjAaBoDDGjJkiEKhSEtLmz9/fs+ePW1tbV1cXAYNGrR69eri4mId2m8kLMhhVVRUhIWFyeVyiqL4fD59h3pCnz59IHLf3t6+ePFipedQLpeHh4eLxWLyZ1JSkre3t+kVNzkxMTHV1dUURU2cOFGbRDZCZGQkKTQ0NKSnpzNIwk7LkyZNgk1tuQW8ySiK6nATw6amJig/ffq0w8p5PB6Zj6G07bZFfSvpRGVl5Y0bN0g5KChIVQDcGY/HGzx48IwZM06ePPnkyROShHT37t2EhIQBAwZER0e3traypjZFsZ7prkRbW5tIJMrMzIyJiaH3PBkGJkJDQ0Fs/fr19FP0bQ2NOBZr3qD7999/T+7u5OT05MkTcpDeodAUdK+pqYF9WGfNmqWp/oqKCqjq5MmThitsFnPl5+dDK7Zt28Ys/P7774Pwl19+qf1d6KHDNWvW6KThqFGj9HtCTbGpNX2/VdX8ofLycu3VCwwMZDOjzZwOi/7UAa6ursePH2e46vnz5926dSPCVlZWBQUF5PitW7fg669v375NTU3G0tOMDuvPP/90cXEhd09JSYHj2jgshUIxa9YsImNjY1NfX69WBr4dunTpwjxXQ0vMYq5Xr15BJ2vEiBEMklKplN5R2rNnj5a3oKc9z5gxQy6X66Rhfn5+h+mXamlubtbpRh1y5swZaIifn5/qYOLp06fpj6Szs/OGDRvu3bsnFotFItH169ejo6PpKW+hoaHt7e3GVVIT5nRYaqc6T5s27aeffmK+8IcffgD5YcOGyeVysVjcp08fcsTa2vr27dt66GNR70AC7PY8bdo0+nEtHRZ9FCw5OVmtjI+PDxGIjo7WSTdLM9fMmTPhFmfPntUkprQfbYfdMcLFixfBEQ8cOFAsFhtPcVbJz8+HiJVAILh27ZqqDH0wYejQoVVVVaoyN2/ehFcpxZjzZVzM6bAYAivjx4//888/Ga6NiooC4cTERHrS4K5du/TTx9KewMOHD5P6XVxclKyhpcOSyWTQm1CbiEvf8yInJ0cn9SzNXBCUoSjKyckpKytLVSYjI0NpzGvHjh0d1kx/yN3d3eHDnHMUFRV17doV2h4fH69W7MCBA8HBwb179/b29n7x4oWm2i5fvgxV9e7dW9cup36Y02E9evTo9u3bDQ0NLS0txcXFW7duhSQsiqL8/f0Zlm1obGyEgLqdnR2k7U6ePFnv3qlFPYEVFRXwkHz33XdKZ7V0WAqFYuXKlUSMz+c/ffpU6SzMkvX399dVQ4syF+HDDz+Eu1hZWcXExOTm5orFYrFYnJubGx0dTYIGkIJEUdT+/fuZ66yqqoKBCFtbW13duuVw+/ZtiKVQFBUREWH4d9yUKVOgQv0+a3TFstZ0r66uDgkJ+eOPP8ifsbGx+/fv1yR8/fr1oKAgegqJq6trQUEBZDzryp07dyArh05wcDC5S1xc3IQJE1QFRowY0alTJ/1uqpb29vbx48f/9ttvFEXNnTv31KlTSgL19fWwgkpCQoLqiCpQVFQEaUe7d+8G/0VRlEwm8/T0rKmpoShq586dq1at0klJyzEX0NraOmXKlMzMTAaZHj16ZGZmQprSkSNHFi1apEm4qalp9OjRELv49ttv58+fbzx92ePatWszZ86E4dEFCxYcO3bM8Iyfo0ePwmC00q/LVBjo8CBpWBO6LhRTUVEBnXY7Ozvm2PnatWvp90pPTzesNeoxYhRZS3PBcldubm5q58Fr38NSKBSQkDV48GD6cYhwCQSCZ8+eGdg0gH1z0ZFKpUuXLtWUWDt9+vSamppnz57BkYsXL2q6u0wmCwkJAcmNGzca2BxzkZKSQo+RL1q0yFifb4WFhVDtypUrjVInMxaUh0Xw9vaGUWeJRJKTk8Mg7OXlRf/z0aNHJtSMLYqLi+Pi4kj58OHD9NCmfsA7MD8/v6SkBI5D+lVISIiHh4eBd7EQrK2tDxw4UFBQ8MknnwQEBDg6OlpZWfXs2fP999+/cuXK+fPnXVxc6GnxDHlny5Yty8jIIOV58+bRk2b0gIXEUVUUCsX69eujoqIgN23t2rVHjhzpcKaEltB/nGoH/Y2PgQ7P6D0shUKRkpIClx85ckST2IMHDzp37ky/V+fOnUtKSgxrkBpY7jJs2bJFr/8kRVHUDz/8oHpTekJWXFwcOVhfXw892e+//97AdtExbw9LGw4ePEgu5/P5mpIG6FOUhg0bZnhuAfshv5aWltmzZ0M9AoFAp6QzbaBnbC1fvty4lavF4npYFEXRZ66SxHdV2trawsPDyaRNa2tr8kA2NzdHRES8HpMHjYiLiwukR5w8eZIUzp07R3KUnZ2dYYWMvwkw/cvX11dtNO306dMQbfDy8jp//ryJgm6mo76+ftKkSZByZW9vn5aWps00CYVCUVdX9+DBg6ysLHpXVC10AXY66YZG3X7++WdtxMrKyjZv3lxRUVFRUbF///558+YxCNOtoCmCHh8fn5eXR8pxcXFyuZz02PPy8uLj4w3svZsOLc1ldCIjI8+ePUtRVGlpaUlJSb9+/c6fP09OLViwAPpfloYpzCWVSmHHhMmTJ6sK3Lp1KyIiQqFQUBTVuXPnCxcuGOVRTExMVDtG0SFKcQ9tEIlEkyZN+v3338mfHh4e6enpSgvVauKXX36Bju2aNWu2b9/OIAyun9JizrlxYKEXp1AoHj9+DHecM2cOszCsnMXj8dQGg3NycmCAY9CgQTKZTCqVBgQEkCNCoTA3N9eIyrOcul1ZWdlh9vOFCxfAnkuWLIHjmj6R6AlZ27dvb21thZyJvLw84+pvrokBn376af/+/d3d3cPCwhjEkpKSwHS//vqr0tny8nIY++fxeGfOnDGlyiahpaVl5MiR0EYfH5/KykrtL6+pqYEkIT8/PwbJtrY2GGx1dnZuaWkxWPeOYS8Py9/fn7RNIBAUFhZqEjt37hzYeuzYsaoCEokEkrOtrKzu3LlDjufm5sKj4uPjw7C6vq5YyAJ+dHQaJSTAkHNgYOCPP/5IygEBAUbXzVzmggba2tr+9ddfamVevnwJHZYBAwYona2rq/P19QXDapkEb2nQv/sCAgI0mYIB6DFQFMXgsrdu3Qpius6s1Bv2HNahQ4egef7+/moT2a9cuUJf6eL69euqMkuXLgUBCCET6OlIMTExpmqJBaCHw4IRaD6fHxYWRsp6zwqwQHJzc8Emc+bMUR25f/HiBb3rcfnyZfpZqVRKX7fgo48+YlF3o0F/33t4eFRXV+tRCYQLKIpydnaGPgGdlJQUeDO5u7uztnMaew5LLpfDqqwURXXr1m3Xrl2lpaWvXr2qr6//9ddfIyMj6Wskrlu3TrWSS5cu0d8eUqmUfra5uRlmFPJ4vEuXLrHVOLbRw2EpaAlZBKFQ+Pz5c5PqyTL0xOvhw4efO3euurq6paWlrKxs165d9FDUkiVLlK6lLwQWGhrKxU2b5HJ5v379oBUbNmzQe341TJunKKpTp07r1q0rLCxsbW2tr6+/evUq/axQKDRR/qNaWJ2aU1tbq+USQjExMarzBmprayFrRiAQqA2+ZGZmwhe4p6dnbW0tKy1jG/0c1ueff0438tSpU02qJPtUV1f36tWrw1/X3LlzlXYVgAEcQvfu3d3d3e3s7Oj5lmox3TQjPVBaZUF7VFshkUjGjBnT4YV8Pv+bb75hs41szyWUSCRLly5lWG3ay8vrxIkTaq+ljy0yfDPTJ0IzbLvGafRzWPSELIoxPMFdnjx5onZFOoKdnV1CQoLquzA7O7vDh1MtFuWwFi5caMRWSKXSVatWMbhsPz8/tUEbk2Keyc+PHj3auHHjmDFjXF1draysHBwc3nrrrfnz5x89elTTkkzHjx8HS/n6+jIMSTQ2Nnbv3h2EmVfX4ij6OSyFQgGZhC4uLkof1K8N7e3tly5d+uCDD3x8fOzt7a2srNzc3IKDgxMSEjStPfB6OCwGT613K6qrqzdv3jx+/Hh3d3cbGxsnJ6d+/fq99957Z8+eNcvvx7ImPyOmZvbs2SQha/ny5UorQyGI5YMO628ECQKS/Sbu3bsHqzggCFewxKk5iIlITk4m3mrUqFHorRAugg7r70JVVVVCQgIpM+zqiCCWDH4Svs4cPnzYw8NDKBQWFhbu3buX7I3s5+dXWFjIvC0wglgm6LBeZwIDA+mrtlMUxefzs7Ky6AnfCMIh8JPwdUYpi5LP5x88eBC9FcJd0GG9zoSGhvr6+trY2Li7u0+bNi0zM/Pjjz82t1IIoj/4SYggCGfAHhaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJwBHRaCIJzh/wMu4juanRgpvQAAAABJRU5ErkJggg== | -8 | float | algebra | high school |
9,495 | 495 | 10 | What is the value of a * b + c? | iVBORw0KGgoAAAANSUhEUgAAAZAAAAGQCAIAAAAP3aGbAAAggklEQVR4nO3df1RUdR7w8e8MAygoIRKKiCt6WNiho8SUYUBpyWEV+2XrbmlKFBUJum6r21mPaa3Yrsqp6ECEtu5ZTiuJRGYosnEOJi5hJ0MFyRISPZkhisLyY0RmeP64z87jA4gjMPfylffrj85073Dno+jbuXcu9+q6uroEAMhAr/UAAGAvggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgRruDObzTqdTqfTJSYmaj3LzZnN5pCQEJ1OV1VV1W1VcnKyzj55eXmaDI+BI1iQhsViSUhIqK6u1noQaMag9QCAXdrb25999tnc3NwbPWHevHne3t43Wnv69Ons7GwhxOTJkx988EGHjAjHI1iQwDfffLN48eKTJ0/28Zx58+bNmzev11Vms/n+++8XQowYMWL37t133nmnQ6aE47FLeDtISUlRjs5oPcjgq62tjYuLmzFjhlIrJyenfmxkzZo1FRUVQojNmzdPnz59kEeEiggWhrSXXnopOzvbYrEIIR599NE1a9bc6hbKy8vT0tKEEBEREcnJyYM/IlREsNRWXl6elJQUGhrq7e3t7Ow8ZsyYkJCQxMTE48ePaz2asFqtGRkZJpPJ3d3dy8srMjIyPT29o6ND67nE+PHjs7OzP/30Uw8Pj1v6QqvVumzZMqvV6uTk9P7779+Wb0KHly6oxWw2L1q06EbfCL1en5mZ2b8tb9iwod/fzfb2duVr4+LioqOjew4WFBRUV1dnz6Z27dpl55+6oKAgO8eLj4/ftGlTa2ur8r9btmxRtlBZWWnPl//jH/9Qnp+YmGjnK2Io46C7ev7whz/s2LFDCBEcHPz8889PnTrVxcWlrq5ux44dZWVlVqv197//fWxsrL+/vybjffjhhxaLZeLEiStXrgwJCTl//nxWVtbhw4e/++676OjoY8eOjRw5Uv2ptm/f3u+v7ezsfP3114UQrq6u69atG7SZoB2CpZJz585lZWUJIaZPn37o0KFRo0bZViUlJSUmJmZlZXV0dOzZsycpKUmTCS0WS1hYWHFx8ZgxY5QlcXFx8fHx2dnZp06d2rJly03/zhuNxvXr19vzWn2cfzCI8vLyzpw5I4SIi4vz9fVV4RXhcFq/xRsuSkpKwsPDvb298/Pze649cuSI8u1YvXr1TTc1uHtetl1Cg8FQU1PTbW1bW5ufn58QwtfX12Kx2PmLdZxb2iWcMWOGEEKv13///fcqzAYVcNBdJbNmzfryyy8bGhqeeOKJnmuVKAghzGazunP9PzExMVOnTu22cOTIkU8//bQQ4vz58z1/GmYoKysr++qrr4QQCxYsCAwM1HocDA52CTXT3Nx86tSpqqqqw4cPFxUVKQutVutNv7DnntfBgwdLSkqEEN2W39KeV3h4eK/LTSaT8qCysnLatGn2b1Bb//znP5UHCQkJ2k6CQUSwVNXY2JiVlVVYWHjy5MmGhob+bcRoNCrHkm1SUlKUYHVbfkvGjRvX63LbeeGNjY393rjKrFbrnj17hBBjx459+OGHtR4Hg4ZdQvVs3brV399/zZo1paWlSq30en1gYOCiRYtSU1O1nu6Gurq6lAeurq59PzMvL8/O6yUEBwc7dOYvv/zy559/FkI8+eSTBgP/Kt8++F6qpLi4WDkVyM3NLT4+fvbs2UajccqUKUoFzpw5s2rVKm0nvHTpUq/L6+vrlQdjx45VcZwBUd5eCSF++9vfajsJBhfBUklqaqryVqWoqCgyMrLb2nPnzmkx1P+nsrKy1+Xl5eXKA9vBrBsZOqc1KDvILi4uPX+rITWCpZITJ04IITw9PXv9K/TRRx8pDzo7O1Ud6zoFBQWXL1+2nYSlaGpqysnJEUIEBwdPnjy57y30PLimCbPZfPToUSHE3XfffdPdWMiFY1gq8fT0FEJcuXLl8OHD3VZ98MEH6enpyuP+/eDe2rVrlbNUBjJhc3PzM888c/XqVduSjo6OpUuXKruKr7zyykA2rqYTJ05cu3ZN3PhzT8iLd1gqWbBggXIe09y5c5OTk00mk5OTU21tbW5ubllZmU6nMxgMnZ2dzc3NWk3o6em5b9++e+65JykpKSAg4PTp0+np6cobw5iYGIlODrBdNovTr25DGp60Oqy0trZGRET0+i3w8/Pbv3+/sqtoNBpVHsx2pntqaqpyang3sbGxLS0tKk91I/ac6Z6SkqI859NPP1VzNqiAXUKVuLm5lZSUpKWlzZw508PDw2Aw+Pj4REdHZ2Rk1NTUxMTEzJo1SwhRXV2t1XVm3N3dS0tLN27caDQaR4wY4eXlFR0dvXPnzoKCAnd3d01G6h/b+WITJ07UdhIMOl3XwA58AIBqeIcFQBoEC4A0CBYAaRAsANIgWACkQbAASINgAZAGwQIgDYIFQBoEa7gwm83K1T4TExO1nqU/zp49+8orrxiNRjc3tzvuuGP69Onr1q0bCtcRg5q4WgMkkJeXFx8f39LSovxve3v78ePHjx8//u67727btm3hwoXajgfVECwMdYcOHXr66ac7OzudnJwSEhJmz55tMBj+85//ZGRkNDU1LV68ePz48VFRUVqPCTUQLAx1ycnJnZ2der2+sLAwOjpaWfjkk08uXLjwgQceuHbt2urVq23XccbtjWNYGNKOHDly7NgxIURcXJytVoqZM2f+7ne/E0IcPnz4xx9/1GY+qItgYUgzm83z5s3z9/dfsGBBz7UhISHKg7Nnz6o7F7RBsNRWXl6elJQUGhrq7e3t7Ow8ZsyYkJCQxMRENa/bZ7VaMzIyTCaTu7u7l5dXZGRkenp6/y4n72gRERF79+49e/bs/Pnze661dcrX11fduaARrS95OoyYzeZFixbd6Buh1+szMzMd9+q2SyH33LdSBAUF1dXV2bOpXbt22fmnKygoyHG/ourq6tGjRwshTCaT414FQwpXHFXPsmXLMjMzhRDBwcHPP//81KlTXVxc6urqduzYUVZWJoRwcXGpqanx9/d3xKubzeaRI0cKIZycnCwWy8SJE1euXBkSEnL+/PmsrCzlXj6BgYHHjh1TntaHvLw8O88kCAoKst0SYlB0dXW1tbXV1tbm5OS89957zc3N7u7uJSUl99577yC+CoYsgqWSc+fOTZo0yWq1Tp8+/dChQ6NGjbp+bWJiYlZWlhAiPT09KSnJEQPYgiWECAsLKy4utt2C0Gq1xsfHZ2dnCyHeeOONdevW9b2p6urq3Nxce17U29s7OTl5AFN3t3v37ieeeML2v6GhoX//+9/DwsIG8SUwpGn8Dm/YKCkpCQ8P9/b2zs/P77n2yJEjyrdj9erVDhrAtktoMBhqamq6rW1ra/Pz8xNC+Pr6WiwWB80wcGlpadf/6R01atQLL7xQX1+v9VxQCQfdVTJr1qwvv/yyoaHh+jcINkoshBBms9nRk8TExEydOrXbwpEjRz799NNCiPPnzyv3TxyaQkNDc3Nzi4qKMjMzTSZTS0vLtm3bIiIi+JRwmODEUc00NzefOnWqqqrq8OHDRUVFykKr1ero173R/ZBNJpPyoLKyctq0aY4eo38eeOAB2+MXXnjh5Zdf3rZtW01NzbJlywoKCjQcDOogWKpqbGzMysoqLCw8efJkQ0NDP7bQ0tKifDTW03//+99uh8Z6NW7cuF6X33nnnbYh+zFY/wzkl+Pk5JSRkfH555/X1dXt27fv559/Hj9+vGPGxFDBLqF6tm7d6u/vv2bNmtLSUqVWer0+MDBw0aJFqampWk8nuv738Yurq2vfz8zLy9PZJzg42KEzOzs7P/roo8rwWt2AFmriHZZKiouLExMTu7q63Nzc4uPjZ8+ebTQap0yZotThzJkzq1atUmeSS5cu9bq8vr5eeTB27Fh1JhkUtmmH5omvGFwESyWpqanKW5iioqLIyMhua+2/rtOoUaO6BnYmSmVlZa/LbT8/bDuYdSNGo3H9+vX2vJa3t3ffT7jpL+evf/3rRx999OOPP9bV1fW681hbW6s84Mb0w4KWH1EOJ8pfJ09Pz17XLl++XPl2vPTSSw4awHZag4eHR2NjY7e1V65cUd6qBAcHO2iA/vnLX/6ijJ2RkdFz7YULFzw8PIQQ48aNG8pnY2CwcAxLJZ6enkKIK1euKOeUX++DDz5IT09XHquwX9Pc3PzMM89cvXrVtqSjo2Pp0qXKruIrr7zi6AFuydKlS11cXIQQr7322rfffnv9qqampt/85jfNzc1CiD/96U96PX+Yb3/sEqpkwYIFyvlNc+fOTU5ONplMTk5OtbW1ubm5ZWVlOp3OYDB0dnYqf/0cytPTc9++fffcc09SUlJAQMDp06fT09NPnDghhIiJiUlISHD0ALfkF7/4xYYNG1599dXGxsa77777xRdfjIyMHD16dEVFxXvvvafsSs+dO3fFihVaTwpVaP0Wb7hobW2NiIjo9Vvg5+e3f/9+5cCW0Wh00AC2XcLU1NQZM2b0HCM2NralpcVBrz5Ab775psHQ+z+uS5cubWtr03pAqIRgqaejoyMtLW3mzJkeHh4Gg8HHxyc6OjojI6O9vb2rq2vt2rXK38Bjx4454tVtwcrMzLx69erGjRuNRuOIESO8vLyio6N37tzpiBcdRNXV1UlJScHBwW5ubiNGjJg8efLSpUsPHTqk9VxQFT/8DEAaHKcEIA2CBUAaBAuANAgWAGkQLADSIFgApEGwAEiDYAGQBsECIA2CJbF///vfOp2u1x8MvBGz2axcCzQxMdFxg91mGhoaXn/99XvvvdfT09PV1XXChAnz58/Pzs7u7OzUerRhh6s1SMzLy8v2XzjI559//tRTT11/nfvz58/v3bt3796977zzTn5+/uTJk7WbbtjhHZZ8/vznPy9ZsuTrr79W7rng7+/f2tr63nvvhYaGnjlzRuvpbitHjx59/PHHlVo98sgj//rXv/bv35+WlhYUFCSEqKiomDNnjpr37ABXa5CM1Wq1XQs4OjpaCGEymWw3vNmyZUvfX267ZoPjLm16O7n//vuV367Nmzdfv7y9vX3+/PnKquTkZK3GG4YIlnxOnDiRmpr68MMPK5fiFELceeed8+fP37ZtW89rH3fj0GBt2LDhdvpXsKKiQvnlREVF9Vzb1NSkXLHe09Pz2rVr6o83PLFLKB+j0fjHP/5xx44dAQEBOp1OCLFq1arPPvssISFhzJgxWk93+ygsLFQevPDCCz3Xenh4xMbGCiGuXLny008/qTrZMEaw1FZeXp6UlBQaGurt7e3s7DxmzJiQkJDExMRbuq1ea2vr3Llzv/vuu7S0tClTprz66quZmZm3OonVas3IyDCZTO7u7l5eXpGRkenp6ZrfLKuxsTEtLS0iIsLX19fFxWXChAmPPfbY7t271Z/EYDDcddddHh4eUVFRvT5Buf+FEEL5ZwNq0Pot3jBiNpsXLVp0o2+EXq/PzMy0c1NLly4VQtx9990Wi0V5I+Dk5FRWVnbTL7TtEsbFxSmHwLoJCgqqq6vr3y9w4LuExcXFtuNx3Tz++OPKpVn7sGvXLjv/2AcFBfV7SIXVap02bZoQwtPTs7Ozc4Bbg50Ilnpefvll5W9LcHDwli1b8vPzCwoK0tPTbUd2XVxczp49a8+mzp49O2fOnIqKCuV/ly1btnnzZqvVetMvtAXLyclJCDFx4sTU1NTCwsLt27ffd999yqrAwMD+XSV9gMEqLy9XptLpdE899VROTk5hYeFbb70VEBCgbFa5E20f1AzWm2++qWyKg+5q4hLJKjl37tykSZOsVuv06dMPHTo0atSo69cmJiZmZWUJIdLT05OSkhw3htlsHjlypPI4LCysuLjYdtjLarXGx8dnZ2cLId54441169bd6sZTUlJee+01cd1d7+1nsVimTZtWXV3t5OSUn5+v3IBe0dTUFBUVVVlZ6eTkVFNT08d5T9XV1bm5ufa8nLe3d3Jy8q0OaZOWlrZy5UohhL+/f0VFhVz3ypab1sUcLkpKSsLDw729vfPz83uuPXLkiPLtWL16tUPHsL3DMhgMNTU13da2tbX5+fkJIXx9fW96X9LBfTvzxRdfKE9esWJFz7V79uzx8fGJioo6cOCA/b9YB9m4caMyqpeX1/Hjx7UeZ3ghWEPCzz//rPwdWL58uUNfyBas2NjYXp+watUq5Qk3vXnP4AbL/tfV1ttvv63MOW7cOGqlPn40RzPNzc2nTp2qqqo6fPhwUVGRstBqtarz6uHh4b0uN5lMyoPKykrloPKNGI3G9evXX7/k4MGDJSUlQohuy5Xzlfr2/fffCyFcXV1DQkJu+mStVFRUrF69Wgjh6+tbUlKinO8ONREsVTU2NmZlZRUWFp48ebKhoUHDScaNG9frctuHdDf9iROj0fj6669fvyQlJUUJVrfl9rhw4YIQwsvLSznuPjRt3rxZ+YHnjz/+mFppgvOw1LN161Z/f/81a9aUlpYqtdLr9YGBgYsWLUpNTdV6uv+r63/Hy11dXdV83WvXrg18I3l5eTr7BAcH92P7n3/+uRAiKipq5syZA58W/cA7LJUUFxcrn8q7ubnFx8fPnj3baDROmTJF6cKZM2dsB3HUcenSpV6X19fXKw9U/uRL+bDy8uXLVqtVrx+K/462trYqv2m3dD0fDC6CpZLU1FTlzUtRUVFkZGS3tefOnVN5nsrKyl6Xl5eXKw9sB7PUERISUlxcbDabv/32256HsVpbWydPnjxhwoQlS5b0Ufaeh9VuxJ7Daj1nUB5wPR8NESyVnDhxQgjh6enZs1ZCiI8++kh5oNo14QoKCi5fvtztZw+bmppycnKEEMHBwSpf5mnOnDlpaWlCiOzs7E2bNnVbW1hYePHixYsXL9p+3rtXPQ+rDSIfH58uTlrUnLYfUg4fd911l/IbXl5e3m3Vtm3bbD+MFh8f79AxbKc1CCHmzZtnNpttq65evWo7XXPr1q0OHaMni8UydepUIYSLi0tJScn1q+rr65Ur6ri5uTU0NKg8GIYU3mGpZMGCBVVVVUKIuXPnJicnm0wmJyen2tra3NzcsrIynU5nMBg6Ozubm5vVmcfT03Pfvn333HNPUlJSQEDA6dOn09PTlbeBMTExCQkJ6oxho9frt2/f/tBDD3V0dERHRz/77LNz5851cXE5evToO++8oxw8evPNN/uxKzdYDhw4MHv2bCHEgw8+eODAAa3GGO60LuZw0draGhER0eu3wM/Pb//+/cquotFodOgYtndYqampvR48jo2NbWlpcegMfdizZ8/o0aN7TqXX69evX6/VVArljA0hxIMPPqjtJMPZUPw45rbk5uZWUlKSlpY2c+ZMDw8Pg8Hg4+MTHR2dkZFRU1MTExMza9YsIUR1dfUtXWem39zd3UtLSzdu3Gg0GkeMGOHl5RUdHb1z586CggJ3d3cVBujVI488Ultbu3bt2rCwsDvuuMPZ2XnSpElLliz56quvHHdwChLhh58BSIN3WACkQbAASINgAZAGwQIgDYIFQBoEC4A0CBYAaRAsANIgWACkQbBUYjablWtdJiYmaj2LlMxmc0hIiE6nU36GvFefffZZ3xca/dvf/qbmzBh0BAsSsFgsCQkJ1dXVfT/tm2++UWceaIXLy2Coa29vf/bZZ+25Q6oSLC8vr+XLl/f6hF6vngiJECwMad98883ixYtPnjxp55OFEJGRkVza4XbFLuHtICUlRTlGo/Ugg6m2tjYuLm7GjBlKrW56+6+LFy/++OOPQoj77rtPjfmgBYKFIeqll17Kzs62WCxCiEcffXTNmjV9P//IkSPKA+5qcxsjWBqwWq0ZGRkmk8nd3d3LyysyMjI9Pb2jo0PbqRobG9PS0iIiInx9fV1cXCZMmPDYY4/t3r1b26nGjx+fnZ396aefenh49P3MiooKIYROp7v33ntVGQ1a0PqSp8OF7drEcXFx0dHRPb8RQUFBdXV1/dv4hg0bBvjdLC4utt3zuZvHH3+8vb297y/ftWuXnX/egoKC7BwpPj5+06ZNra2tyv9u2bJF2UJlZWWvz1+4cKEQIiAgIC8v78knn/zlL3/p5ubm6ekZERGRnp5+9epV+383MGQRLJXYgqUci5k4cWJqamphYeH27dttx1wCAwPb2tr6sfEBBqu8vFyZSqfTPfXUUzk5OYWFhW+99VZAQICyWeUWsH1wRLC6uWmwlJvu3EhISMjp06f799IYOviUUG0WiyUsLKy4uNh2T8C4uLj4+Pjs7OxTp05t2bJl3bp1Ks/z3HPPWSwWJyen/Px8252+fv3rXz/33HNRUVGVlZXbtm179dVX+7hToUPvYGqPpqamH374QXk8adKk+Pj40NBQV1fXqqqq999//4cffjhx4sRDDz309ddfcxtUuWldzOHC9g7LYDDU1NR0W9vW1ubn5yeE8PX1tVgsfW9qcN/OfPHFF8qTV6xY0XPtnj17fHx8oqKiDhw4YP8v1hH6fof13XffhYeH+/j4LFy40LYXqWhvb58/f77ytQkJCWrNC4cgWCqxBSs2NrbXJ9juwH7s2LG+NzW4wbL/dbV1013CPjQ1NSnv7JydnRsbGx0xHtTBLqHawsPDe11uMpmUB5WVldOmTetjCz33vw4ePKjcNa/bcnv2v77//nshhKura0hIyE2fLCkPD4/FixenpaVdu3bt4MGDjz32mNYToZ8IltrGjRvX63Lbh3SNjY19b8FoNHY7kzslJUUJVj/O8L5w4YIQwsvL66ZnZkotNDRUeXDmzBlNB8GAcB7WUNH1vxtEurq6qvm6165dG/hG8vLy+r5Mgk1wcPDAX64fbHeH1fx8NwwEwVLbpUuXel1eX1+vPBg7dqyK4wjlw8rLly9brVY1X3dwdXR0/PTTT0ePHr3Rr8L22+vj46PiXBhk7BKqrbKystfl5eXlygPbwSx1hISEFBcXm83mb7/9tudhrNbW1smTJ0+YMGHJkiW2w/M9aX5awzPPPKN8FnHo0KGIiIieTygtLVUecB681AiW2goKCi5fvmw7CUvR1NSUk5MjhAgODu7jdCdHmDNnTlpamhAiOzt706ZN3dYWFhZevHjx4sWLLi4ufWyk52E1lUVERCjBysnJ6RmsmpqaTz75RAgxffr0X/3qVxrMh8Gi9ceUw4XttAYhxLx588xms23V1atXbadrbt26VeXBLBaLco64i4tLSUnJ9avq6+snTpwohHBzc2toaFB5sG76Pq3hwoULo0aNEkLo9fq9e/d2W2X71PWTTz5RaVw4BsFSiS1Ynp6eQoi77rorMzNz//79mZmZth2xmJgYq9Wq/mxffPGF8hGhwWBISEj4+OOPP/vssw0bNtiOpr3zzjvqT9XNTc/Dev/995Un6HS6uLi4Dz/8cN++fX/5y19sH7+++OKLKs+MQUewVGILVmpqaq/XP4mNjW1padFqvD179owePbrnVHq9fv369VpNdT17Thx9++23nZ2de/4qdDrd8uXLb/ojBBj6+JRQbe7u7qWlpRs3bjQajSNGjPDy8oqOjt65c2dBQYHto3f1PfLII7W1tWvXrg0LC7vjjjucnZ0nTZq0ZMmSr776SqKrd65cubKqqmrFihVGo9Hd3X3kyJFTpkx57rnnysrK3n33Xb2eP+3S03X97/QfABji+DcHgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkAbBAiANggVAGgQLgDQIFgBpECwA0iBYAKRBsABIg2ABkMb/ATlNJuIxMeueAAAAAElFTkSuQmCC | 75 | float | algebra | high school |
9,496 | 496 | 10 | What is the value of (e - f) / g? | iVBORw0KGgoAAAANSUhEUgAAAZAAAAGQCAIAAAAP3aGbAAAkiUlEQVR4nO3de1hU1f4/8M8wMqSCXOSmIj4KgY03qPBUgpe8YaIPOGQqiKCoR/Oc86Qe4tijcjI1QVM5KRJCOmoZ4gWFEtADHW+UIlZkhmKFFxAFcbjIfX5/rO8zP2K4jMiezYL364+ezaw1ez4hvFl7zZq9JGq1mgAAeGAgdgEAALpCYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EVtdXW1u7YcMGuVxubGxsZmYml8vPnz8vYj1VVVXDhg2TSCQ5OTm6P+vatWtGRkYSiSQhIUG42qCT6yF2ASC4uXPnHj16VPPlkydPbGxsxCqmvr4+ODj4+vXrz/Ssqqoqf3//mpoagaoCXiCwuricnByWVgMGDFi/fr29vX1JSYmDg4MoxTx9+jQwMDA+Pv5Zn/j+++///PPPQpQEfEFgdXGa3/OwsLDg4GARK7l69aqfn9+NGzee9YlpaWn/+c9/hCgJuIM5rC6uoqKCHTg6OopVQ15e3oIFC0aPHs3SSiqV6v7ckpKSwMBAtVrt4uIiVH3ADwRWF9fQ0MAOevQQbTS9dOlSpVJZX19PRDNnzlyzZs0zPff+/fsjRoxYu3atYAUCNxBY+lBeXh4REeHu7m5paWlkZGRnZzd79uyUlBRBX9TT01MikSxevJh96eHhIZFIJBLJmTNnBH3dltja2iqVysTExD59+uj4lP379yckJMhksoMHD8pkMkHLAy4gsAR36dKlF198MSQk5MKFC8XFxTU1Nffu3Tty5Iinp+ecOXOqq6vFLvBPEhISJLoZOnSojue0t7ffsmVLXl7e/Pnzda/k999///vf/05EGzZsGDlyZHv+Z6DLwaS7sLKzs998882qqioi8vb29vX1tbKyysvLi4mJyc7O/uqrr2pqao4dOybES4eHh4eGhiYnJ2/dupWIIiMjR4wYQUSjRo0S4uVaERcX96xPaWhoCAgIUKlU7u7uq1evFqIq4BECS0ANDQ1+fn5VVVUSiSQ2NjYoKEjTtGTJkoULFyqVyuPHjx86dMjPz6/DX52NSm7dusW+dHV1dXd3b/NZcrl8/fr1upzf0tLyecpr3ZYtW86dO2dsbKxUKg0McB0A/weBJaDk5ORffvmFiBYtWtQ4rYhIKpXu2rXr9OnTRUVFW7duFSKw2kcul4eFhYlbQ3Z2NgvNHTt2DB48WNxioFPB3y4BJScns4Nly5ZptxobGysUCiK6du3a/fv39VpZJ/b06VM/P7/a2toZM2YsWrRI7HKgc8EIS0DZ2dnsoLi4OCMjQ7uD5p2vrKys/v37662wziwkJOSXX36xsrKKiYkRuxbodBBYAnr06BE7mDJlSus9Hz582EpreXm5iYlJs01lZWXGxsbtK68TSklJ2bVrFxF99tlnIn7gETotXBIKqK6uTseemvXoohNiWYPuvvzyS7VaTUQ+Pj5NXm7GjBmsz9tvv80eEfeeEyAKjLAEZGFhkZ+fP2DAgLt374pdC0BXgMAS0PDhw9mEekFBQb9+/dp9HmNjYzbu0ANxlzWEhoYGBgY223Tp0iX2mZ6wsLBx48YREVtWBt0KAktAU6dOPXjwoFqtjoqK+vDDD7U7zJs3LyMjw97ePi4uTi6X679CbeIuaxg6dGhLV5rl5eXsYNiwYePHj9dfTdCZYA5LQLNnz7azsyOijz/++OTJk01a9+3b9+WXXxYUFBQXFzs7O4tRIABnMMISkEwmUyqVkydPrq2t9fb29vHx8fb2trW1LSgoOH78eGJiIhFJpdI9e/Y80x1XALotBJawJkyYcOrUKT8/v8ePHx87dqzJxwZNTEz27ds3ceJEscoD4AsCS3DTpk27fft2VFRUcnLyjRs3njx50rt3bycnJ09Pz+XLl9va2opdIAA3JHp7+wkA4Dlh0h0AuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcDiTGpqqkQiGT16tO5PqaurY7foDA4OFq6w56FSqTZv3jx69GhTU1MjIyN7e/u5c+deuHBB7Lqg00FgccbCwkLz367h559/HjVq1Jo1ay5fvqxSqWpqau7cuXP48GF3d/eQkBCxq4POBYHFh3/961/z58+/cuUK+7D0wIEDKyoqdu/e7eLi8scff4hdXfs9efJk2rRpv//+OxFNmDBh7969iYmJ69atY5tuREREsG2rAf6PGjq9hoYGdiNAIpo8eTIRvfLKK1ZWVuyRiIiI1p9eW1vLei5atEg/BetOc3fTZcuWNX781q1b1tbWRNS7d++SkhKxyoPOBiMsDkgkkpSUlK1bt06cOPHbb78loqysLCLy8vKKiYnherfRpKQkInrhhRe2bdvW+HEHB4f333+fiCoqKtLS0sQpDjof3A+LD3K5XC6Xz58/f+zYsbm5uWq1evXq1V1giodtee3o6NizZ88mTS+//DI7yM/P13dZ0FlhhKUPV69eDQgIsLe3l8lkNjY2s2bNOnfuHBGNHz9eIpH4+vrqcpKKiopp06b9+uuvO3fuHDJkyPvvvx8VFdWOYuLj46dMmWJpadmzZ08HB4e//vWvv/zySzvO0yHYbqn5+flqrfuysYktImLXhgBEmMMSXlRUlIFB0z8MEolk48aNbLsqhUKhy3kCAgKIyNXVtb6+/ptvviEiqVR68eLFNp+omcPy8/Pz9vbW/hno2bPn8ePHdanhyJEjOv5cOTs763LC0NBQ1j86Orrx4zU1Na6urkRkaGj4xx9/6HIq6A4QWMI6ePAg+4Xs1atXSEhIUlJSQkJCYGAgizB2HaRjYOXn50+aNCk7O5t9uXz58vDw8IaGhjafqAks9qKDBg3avHlzUlLS559/zqbwicjMzOzRo0dtnqrDA+vhw4eOjo5EZGRk9OGHH+bl5ZWVlV24cGHs2LHsPOvWrdPlPNBN4BbJAlKpVE5OTg8ePLCwsMjIyGi88WdSUpKPjw/by16hUCQkJAhXRl1dnaGhITueMGFCYmIiWzTABAUF7du3j4j27t3b5vz99evX4+PjdXlRS0vLFStW6NKzoKBg5cqV8fHxDQ0NTc6wfv16HU8C3QQm3QV0+PDhBw8eENHWrVubbFPs5eW1cuXK8PBwfdZjYGCwb9++xmlFRCtXrmSB9dNPP7V5BiG2WS0vLzc1NZXJZFVVVY0ft7Cw6NOnT319PfZAAw1Mugvo1KlTRNS7d+958+Zpty5fvlzP9bz88sv29vZNHtTstFxSUqLneojo22+/ffXVV9kE1tKlSxMSEk6fPh0ZGTlq1Kjc3NwFCxb4+/uzcSgAESbdhcRWe77++ustdWDL1nWcw2o3zRyWr69vsx3YEGbOnDmClqGtsLCwT58+RGRqanr58uXGTXV1dYsXL2Zlh4SE6Lkw6LQwwhJQUVEREWmWpGvT86aELB1aotb7bGZsbKxKpSKiiIiIV199tXGTVCqNiooaPnw4EX366adlZWV6rg06JwSWUBoaGtjQpslccmN6zgiJRPKcZ0hISJDoRnOl2YpLly4RkYGBwdy5c7VbpVKpv78/EVVWVl6+fPk5K4euAYElFAMDA3ZPBTbOatajR4/0WFGnU1paSkS9e/c2NjZutsPAgQPZQTf/RoEG3iUUkIuLy9mzZ3Nycqqrq42MjJq0FhYW3rt3T5TC2k0ul69fv16XnpaWljr2KSsrKy4u7tu3r3aHwsJCdtBsK3RDCCwBzZgx4+zZs5WVlfHx8fPnz2/SGhcXJ0pVz6NjlzW88cYbJ06cIKL9+/evXLmySatarf7yyy+JyNDQsMkMF3RbuCQU0IIFC8zNzYlo9erVv/76a+OmCxcufPTRRyLV1VkEBASwi8G1a9eeP3++cZNarQ4JCbly5QoR+fv7m5qailMidDIYYQnIzMxs+/btgYGBRUVFbm5uK1asGDNmTF1dXWpqakxMjGZ50fPPhXPKxsZmx44dwcHBlZWVEyZMmDNnzltvvdW3b9/ffvtt3759mZmZRDR48OAtW7aIXSl0GuKuqugONm/erP3hZ6lUunv3bnbs5+cnaAFt3sCPrcN65513BC2jJXv27NGe4GNcXFxu374tSlXQOeGSUHChoaGZmZn+/v4DBw6UyWRWVlYKhSIzM1Pzwb2W3iPrJpYuXZqbmxsSEuLi4tKnTx9DQ0MbG5u33npr//79ly9fHjx4sNgFQieCDz+LpqCgoH///kQUFham41tvAN0cRlgC2rZtm5OTk5eXV0FBgXZramoqOxg5cqR+6wLgFQJLQIMHD75582ZycvKuXbuaNOXn569bt46ITExMJk2aJEZ1APzBJaGAKisrnZ2d7969S0TTp09XKBT9+/cvLS29evVqbGxscXEx6XYXKgBgEFjCysrK8vLy0qzYbszQ0HDLli3vvfee/qsC4BQCS3AqlSo6OvrkyZPXr19XqVTm5uZ2dnZTp04NCgpycnISuzoAniCwAIAbmHQHAG4gsACAGwgsAOAGAkt/4uPjJRLJwoULxS7kT2prazds2CCXy42Njc3MzORy+fnz56uqqoYMGWJubn7nzp32nVatVltbW0skkh9++KFjC9anhw8fhoWFubm5mZmZGRkZ9e/f38vLS6lUYl8M0Yj5Qcbu5O7du+bm5sbGxgUFBWLX8icKhaLJj0Rubq5arWZbJY4fP16XvVq1ff/990TUr1+/jq5Xf1JTU9k9Y7W5urr+9ttvYhfYHSGw9GTWrFlE9O9//1vsQv5EsxfhgAEDPvvss9OnT3/xxRf19fWs9Y033iCimJiYdpz5ww8/JKLAwMAOrVd/srOze/Xqxb45M2bMOHTo0OnTp3fu3Ons7MwedHBwKC4uFrvMbgeBpQ8pKSlEZGlpWVZWJnYtf3L48GH269dsKqWnpxNR3759S0pKnvXMr7/+OhEdPny4I8oUAQtrIgoPD2/8+NOnT728vFjTihUrxCqv20Jg6cMrr7xCROvXrxe7kKZiY2PZ7156enqzHUaPHk1EH3zwwTOdtqSkRCqVSqVSTscg2dnZ7Nvi4eGh3frkyRN2N3ozM7Pa2lr9l9edYdJdcElJSVlZWQYGBp1tup0abUHWo0fz954NDg4mosjISLbDjY7S0tLq6+tHjx7d0hxQJ/fNN9+wA81mro316dNn+vTpRFRaWnr//n29VtbtIbAE9+mnnxLR+PHjtbeJZ8rLyyMiItzd3S0tLY2MjOzs7GbPns2uIoXj6ekpkUg0v5AeHh5sP8EzZ8407jZnzhwjI6OysrL9+/frfnL2C+/p6an7U65evRoQEGBvby+TyWxsbGbNmnXu3DkiGj9+vEQi8fX11f1Uz69Hjx7Dhw/v06ePh4dHsx00W9J229tbi0bsIV4Xd+fOHfYz/cknnzTb4eLFiy3t//zOO+9UVVUJVNjUqVObfdG0tLQmPSdOnEhEI0aM0P3k/fr1I6LvvvtOx/5RUVHad5GWSCQbN24cN24cESkUijZPcuTIER1/5p2dnXX/f9HW0NDAbmFmZmZWV1f3PKeCZ4XAEpbmTlg//fSTduvVq1dfeOEF1sHb2/vgwYMpKSm7d+92dXVlD/r4+AhU2A8//JCenr569Wr2QpGRkenp6enp6drz6x9//DHrk5eXp8uZr127RkSWlpaadxtbd/DgQXb+Xr16hYSEJCUlJSQkBAYGsgjr2bNnZwusTZs2sfNg0l3/sGuOsP773/8SkZGR0UsvvdSkqaGhwc/Pr6qqSiKRxMbGBgUFaZqWLFmycOFCpVJ5/PjxQ4cO+fn5dXhhbIxw69Yt9qWrq6u7u3uzPTXpmZ6ePmTIkDbPzK4HJ0+erD1o0qZSqVatWkVEFhYWGRkZI0aMYI8rFAqFQuHj4/P06dO2/2eIqKM3eW3Jzp0716xZQ0QDBw7swC0aQVdiJ2YXx+atRo0apd108uRJ9k8QHBys3VpWVmZtbU1ELi4uwpUXExPDajh37lxLfTT3d166dKku52QXcUqlUpfO0dHR7ORxcXHarSEhIaxVlxGWHmzcuJHVY2Fh8eOPP4pdTneESXcBVVdXs4+2ODg4aLcmJyezg2XLlmm3GhsbszXo165dE/etKFtbW7avz82bN9vsXFZWdvHiRYlE0tIcWROnTp0iot69e8+bN0+7dfny5c9YrIB27NjxwQcfEJGNjU3jwSDoEy4JBVRYWKhWq4nIzMxMu1Wz2Ke4uDgjI0O7g0wmYwdZWVlsfx2xmJmZlZeX65KbZ86cqa2tffnll9nwsE1swmvkyJHNbk04aNAgW1vbZu/XqmfZ2dn//Oc/iahfv37p6ema9e6gZwgsAZWXl7MDzbvgjT169IgdTJkypfXzPHz4sPVXMTExabaprKysQzY9NDU1vXv3bkVFRZs9T58+Tc+yoKGoqIiIrKysWurQSQIrPDycfeD56NGjSCsR4ZJQQJpFOmxr5SZ0/8S/LkkhKDZ9rssk+jMFVkNDA9uVWrN+VZta5zviJiQkSHQzdOhQHc+pkZaWRkQeHh7sI0cgFoywBKQZ+FRWVmq3WlhY5OfnDxgwgG2r05mx+tscrF2/fj0/P9/U1FTH32oDAwMLC4vi4mI2zmqWZhwqooqKCrbFEfugEogIgSUgGxsbqVRaX1/f7Eaqw4cPZxPqBQUFbKVl+xgbG+s+DGkfdlE2YMCA1rux4dWkSZNa+qCPNhcXl7Nnz+bk5FRXV2tPYxUWFt67d0/HUwm3rEEzwuX0k0ZdCQJLQDKZbNCgQbdv3/7tt9+0W6dOnXrw4EG1Wh0VFcVuxtLEvHnzMjIy7O3t4+Li5HK58PU27+HDh+w3ts09ftrxiZwZM2acPXu2srIyPj5+/vz5TVrj4uJ0P5VcLhdoYZS1tbXQfxJAV6Iuquj65syZQ0QymaympqZJU3V1tZ2dHREZGhomJiY2af3888/ZP5Cjo6Nwn//QZR2W5lONBw4caOVUFRUVbIh0584d3Qt4/Pixubk5EVlbW9+4caNx0/nz59kyd+o067BAdJh0F9aECROIqKamRrOIQUMmkymVSqlUWltb6+3trVAoDhw4kJaWplQqfXx82K0dpFLpnj17mp2z15vvvvuOHYwfP76Vbunp6dXV1cOGDWMprCMzM7Pt27cTUVFRkZub25o1a5KTkxMTE999990JEyZUVVWxbuJ+xjgjI4PN1rf+HQB9EDsxu7jCwkIWNxs2bGi2w9dff82GGNpMTEyOHj0qaHm6jLDYHQtee+211k/17rvvEtGqVavaUcbmzZu134KUSqW7d+9mx35+fu04bUdhNzIkonHjxolYBqgxwhKajY0NW/N94sSJZjtMmzbt9u3bmzZtGjNmTN++fXv06GFqaurm5rZ27drc3Fx2Y2URFRUVXbx4kYgCAgJa7/msK7AaCw0NzczM9Pf3HzhwoEwms7KyUigUmZmZixYtYh06ZDUZdAViJ2bXp1nF3mSOhgs7d+4kIhsbm8rKSv2/umZtfVhYmP5fHTohjLAEN27cuLFjxxLRnj17xK7lmbGaV61apZn/7ljbtm1zcnLy8vJqduVHamoqO2D3lgDACEsf2DppU1PT0tJSsWt5Buwqr2/fvuXl5QK9xNGjR9nPofZt4//44w92rwsTExOVSiVQAcAXBJaeeHt7E2+XNq+99hq1d5svHVVUVGjeVZw+fXpcXNzp06cPHz4cEhLSt29f9vjevXuFKwD4gsDSkwcPHlhaWpqamhYVFYldi07YuwSenp5Cv9CVK1daukm0oaFhS7eWhu5JosYSXn05evSor6/vokWL9u7dK3YtbaiurpbL5SUlJTk5OW1+Iuf5qVSq6OjokydPXr9+XaVSmZub29nZTZ06NSgoqM3l9dCtILAAgBt4lxAAuIHAAgBuILAAgBsIrK6vtrZ2w4YNcrnc2NjYzMxMLpefP39e7KI6o6qqqmHDhkkkkpycnFa6ff/998HBwQ4ODr169WJ3K4yMjKyurtZbnd2a2G9TguDY7juN5ebmil1Up1NXV6fZ/7HZXW/VanVDQ8OqVauavXXEK6+88vDhQz3X3A3hBn5dXE5ODltNPmDAgPXr19vb25eUlDS77Vh39vTp08DAwPj4+Na7rV69+pNPPiEiW1vbf/zjHyNHjiwqKtq1a9eVK1eysrJ8fX2b3f0IOpLYiQnCOnz4MPuHFnTBOteysrKabEvR7Ajr0qVLbGzl5OTENnBjampqJk+ezJ544sQJPRbeHWEOq4vT3I/c0dGxfWf46KOP2O3rOq6oziIvL2/BggWjR4++ceMGtbC5kQb7WJVUKj1x4oSNjY3mcUNDw8jISHb8xRdfCFowILC6OM0OWrpvDNF9LF26VKlU1tfXE9HMmTPXrFnTUs+ioqIzZ84QUUBAwEsvvdSkdejQoaNGjbK1tX369KmgBQMCSx/Ky8sjIiLc3d0tLS2NjIzs7Oxmz56tuVe6QDw9PSUSyeLFi9mXHh4ebKDEfvH07OrVqwEBAfb29jKZzMbGZtasWefOnSOi8ePHSyQSX19f/ZekYWtrq1QqExMTm93vlklLS2O5tmDBgmY7XLt2raCg4OTJk0JVCUSEwNKDS5cuvfjiiyEhIRcuXCguLq6pqbl3796RI0c8PT3nzJnTHd4O37Nnj5ub24EDB+7cuVNbW1tUVHT8+PFx48Zt2rRJ95MIsU+qvb39li1b8vLytDfsaeLHH38kIqlUiq0JxYXLBGFlZ2e/+eabbDMFb29vX19fKyurvLy8mJiY7Ozsr776qqam5tixY0K8dHh4eGhoaHJy8tatW4koMjJyxIgRRDRq1CghXq4lhw4dWrZsGRH16tVrxYoVY8eOraqqSkpKUiqVH3zwgUD3BdSR7tuIXb9+nYj69+/fs2fP8vLyXbt2HTly5ObNm2q1eujQoe+888677777wgsvCFksECGwBNXQ0ODn51dVVSWRSGJjY4OCgjRNS5YsWbhwoVKpPH78+KFDhzQrgDoQu0vnrVu32Jeurq7u7u4d/iqtU6lUq1atIiILC4uMjAyWmESkUCgUCoWPj4/ukz7C7ZOqC7YBtbW19Q8//ODj49N4o8nLly9fvnx57969ycnJQ4YM6fCXhj8R+23KrkwzoxEcHKzdWlZWZm1tTUQuLi7C1aDLvjiNHTlyRMefHGdn5zbPFh0dzTrHxcVpt4aEhLDWTrLtYEREBKtHe1nD8OHDicjJyal///5ENGXKlP3796ekpERHR7u5ubFnOTg4PH78WIzCuxHMYQkoOTmZHbBroiaMjY3ZGnS2Yb1eK9OXU6dOEVHv3r3nzZun3bp8+XK9V9ROlZWVRJSbm3v//v2IiIiUlJSAgIApU6YsWbIkMzOTbSKZl5fX7A7e0IFwSSggzeapxcXFza6Blslk7CArK4v96Rad9pXX//73P7YxX5PHdbnyunbtGhGNHDmSbQrdxKBBg2xtbQsLC5+nYP3QzLXNnDlz9erVjZsMDAyioqLS0tLu3LkTGxsbHh6OFSTCwXdWQGzig4imTJnSes+HDx+20lpeXm5iYtJsU1lZWcfu2SeXy8PCwho/8tFHH7HAavK4LoqKiojIysqqpQ68BJbm+x8YGKjdKpPJfH19t2/frlKpfvrpJ1dXV70W153gklBAdXV1OvbUrEfvShoaGmpra6nR4lVtap1veCvEsgbd9evXjx209DFMzeMPHjzo8FcHDQSWgCwsLIhowIABbU4l/u1vfxO72I5nYGDAvgNsnNUszSC0k2OT7kT05MmTZjto/ji1NBaGDoFLQgENHz6cTagXFBRo/kS3g7Gxse4jkU7FxcXl7NmzOTk51dXV2tNYhYWF9+7d0/FU4i5rYDueEVFmZqaHh4d2B7ZQi4gGDRrU4a8O/5/g70N2YwcOHGDf5LVr1zbbYe7cuf369fvLX/7y888/C1TDsy5r0LZhw4Z2/6js2LGDPVepVGq3bty4kbV2/mUNNTU1bJ9ER0fHqqqqJq1lZWWs1dXVVV/FdlMILAFVV1ezXUINDQ0TExObtH7++efs18PR0bGurk6gGp4/sJ7H48ePzc3Nicja2vrGjRuNm86fP695663zB5ZardYsWQgMDKytrdU8Xltb+/bbb7Omzz77TI/1dke4JBSQTCZTKpWTJ0+ura319vb28fHx9va2tbUtKCg4fvx4YmIiEUml0j179rR+YxN+mZmZbd++PTAwsKioyM3NbcWKFWPGjKmrq0tNTY2JidHM+3Bx75rQ0NBTp05dvnx537592dnZixcvdnR0vHPnzu7du9n6lYkTJwYHB4tdZlcndmJ2fV9//TUbZWgzMTE5evSooK8u7giL2bx5s4FB07d3pFLp7t272bGfn59YtTXW+ghLrVaXlpZOmjSp2X/Kt956q7S0VM8Fd0N4l1Bw06ZNu3379qZNm8aMGdO3b98ePXqYmpq6ubmtXbs2Nzd31qxZYhcouNDQ0MzMTH9//4EDB8pkMisrK4VCkZmZuWjRItahY5eSCcfU1DQtLe3o0aMzZ87s16+fTCazs7ObNm3asWPHTp06ZWpqKnaBXR92fgbRFBQUsPX9YWFhOr4DCN0cRlggoG3btjk5OXl5eRUUFGi3pqamsgN2YwmANiGwQECDBw++efNmcnLyrl27mjTl5+evW7eOiExMTFqaGAJoApeEIKDKykpnZ+e7d+8S0fTp0xUKRf/+/UtLS69evRobG1tcXExEe/fu1UxmAbQOgQXCysrK8vLyavYTzoaGhlu2bHnvvff0XxVwCoEFglOpVNHR0SdPnrx+/bpKpTI3N7ezs5s6dWpQUJCTk5PY1QFPEFgAwA1MugMANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBw4/8BPX/cBN/lktwAAAAASUVORK5CYII= | 7.0 | float | algebra | high school |
9,497 | 497 | 10 | What is the value of (i ^ j) * k? | iVBORw0KGgoAAAANSUhEUgAAAZAAAAGQCAIAAAAP3aGbAAAj/UlEQVR4nO3deVjVZf7/8fdBBBGQxQU1sRIvN9wtxTUSHLVUNHWCSbRxTa9yTRv125VT5pJNuOWSOpbi6EWaipEDmjoVTqYC5jamFy6kIqCALC4I/P64f3O+fAXhAGfhxufjr8Nnuc/7HOHlZ7k/920oLCwUANCBna0LAABTEVgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoEFQBsEFgBtEFgAtEFgAdAGgQVAGwQWAG0QWAC0QWAB0AaBBUAbBBYAbRBYALRBYAHQBoFlZgaDwWAwvPnmm+Xa68iRI2rHyMhI0/e6f/++2uutt94qX5Xmk5aW9uGHH/r5+Xl6ejo4OHh5efXv33/Tpk0PHz4svvG+ffsMpVqyZIn1PwI0QmBVCStXrlQvVqxYYdtKyuXgwYOtWrX64IMPjh07lp6enpeXl5KSEhMTM378+G7dul27du2x7ePi4mxSJ6oNe1sXALl69arxwOrQoUNnzpxp27atbUsyRUJCQlBQUG5ursFgCA4ODgoK8vDwSExMXL9+fUJCQkJCwoABA3755RcXFxfjLiqwPD0933nnnRLb7NWrl5Wqh6YKYWvvvvuuiHTo0MHPz09EJkyYYOuKTNKnTx8RMRgMERERRZfn5eUFBwer364FCxYUXdWkSRMRGTJkiHUrRfVBYNlYTk6Oh4eHiKxatWrz5s0i4uTklJaWZuu6yvDbb7+pSBo1alTxtXfv3nV3dxeR5s2bGxempqaqXT7++GMrVopqhWtYNrZ169b09PRatWq98cYbr7/+uru7+7179zZs2GDrusrw/fffqxchISHF17q6uqqTu0uXLhmvvp88eVK96Nq1q1VqRDVEYJlZee8Srlq1SkSGDx/u4eHh5OQUGhoqImvWrHn06FGZ+9rwLqGdnV3btm3d3d1btGhR4gY1atRQL/Lz89WL+Ph4ETEYDC+++KJ1ikT1Q2DZ0sGDB8+ePSsi48aNU0smTZokIklJSbt37zbve+3cubP0LgVGrVq1KrO1iRMnnj59Oj09vXnz5sXX5ufnHzt2TEQaNWrk5OSkFqor7s8999zBgwdHjBjRsmVLZ2dnDw+PXr16ff755yV2gwAeQ2DZkurN4OPj4+/vr5b4+vr27NlTdOvf8JitW7cmJyeLyODBg40LVWBdvnx5xIgRu3bt+u2333JzczMyMmJjY99+++3OnTtfuXLFVgVDF3RrsJnExMSoqCgRGTdunMFgMC6fNGlSbGxsbGxsXFxc586dzfV2bdq0+eCDD0zZsl69epV5o6SkpNmzZ4tIzZo158yZoxZmZmYmJiaq102bNv3zn//csWNHR0fHM2fOrFu3LjEx8ezZs3379j1x4oSnp2dl3h3VnK2v+lc36lsdM2ZMmVtOnz5dROzt7W/cuFF0+b1799R9w9GjR5fewr1799TbTZo0qTI1m1FGRkbHjh1VVUuXLjUuv3Dhgp+fX4MGDUaOHJmTk1N0l3v37g0aNEjtMn78eKuXDJ0QWGZmYmBlZWW5ubnJEzolqSxzcHBITk4upZGqFljp6emqK5mIjBw5sqCgwMQdMzMz1WFdzZo179y5Y9EioTWuYdmGi4tLRkZGYWHh3r17i68NCwsrLCx88OCBl5eX9WurmJs3b/r7+//8888iMnjw4PDw8KLnuaWrU6fOG2+8ISJ5eXk//PCDBauE5ggsmMHZs2f9/PxOnTolIsHBwbt27XJwcChXC8YTyatXr5q9PFQbBNbTwrzdGoqKiYnp0aOHetR52rRp27Ztq1mzZnnLc3Z2Vi/o34BSEFiolPDw8FdfffXu3bt2dnZhYWHLly+3syvhl+rhw4c3btxISEgoKCgosZ1bt26pFw0aNLBgudAc3RqeFpbo1hAeHj5mzJiCggJHR8fw8PARI0Y8actRo0Z9/fXXIvLTTz+pjmaP+fHHH9UL+sGjFATW06JNmzYLFiwwY4OxsbFjx44tKCioXbt2ZGRkQEBAKRv37NlTBdb27duLB9alS5dUz/4OHTq0bt3ajEWimuGUEBWRnZ09atSovLw8Edm8eXPpaSUif/rTn9TAWGvXrv3uu++KrkpNTR0+fLhqyryRiuqHIyxUxOrVq9WTNN7e3ufOnSslaGbOnFmnTp369et/+umnb731VkFBwaBBg0aPHt2vXz9PT88TJ06sWrVKjTwzceLEoUOHWukDQFM27gdW7ahv1ZSe7pVnw46jzz77rIm/YElJSca9wsLCSryBaDAY3nnnnfz8fCt/CmiHU0KUW2ZmZsV6S02fPv3MmTNTp05t06aNs7Ozk5NTs2bNxo4de/To0ZUrV5Z4exEoilNCMyv870GWNVn5T93Nza3CH7NFixZaD0QB2+L/NI0ZTwlr1apl20oA6yCwNGYcQKphw4Y2LQSwEk4JtRQREeHs7PzZZ5+pH804bBZQlRlscs0FlZGcnNyoUSPjj+3bt4+LizOOoQ5UY5wS6icxMbFx48b29vb16tULDQ2Njo4mrfCU4AgLgDY4wgKgDQILgDYILADaILDMrLwzP5ciJibGYDCUa2J3G84FbZSWlvbhhx/6+fl5eno6ODh4eXn1799/06ZNDCWKyqMfVtWlZujTa56+gwcPBgcH375927gkJSUlJiYmJiZm9erVe/fubdq0qQ3Lg+44wqpy5s6dGxoaeuLECdV/3dvbOycnZ82aNR07dqziEzQkJCQEBQXdvn3bYDCEhITs2LEjOjp67dq1aoKJhISEAQMGZGdn27pM6MymY0VUQ+pbrfDwMgUFBU2aNFGN9OvXT0S6dOlSv359tWTZsmVmLdbM+vTpIyIGgyEiIqLo8ry8vODgYPURFixYYKvyUA3QD8vM1GR8Y8aM+fLLLyvWwrlz5/bv379///4ff/xRXfepX79+t27dgoKChg8friaFroIuXrzYokULERk1atTWrVsfW5uVldW0adOMjIzmzZtfvHjRFgWiOuCUsMpp06bNrFmz/vGPfzz//PMq/t599919+/aNHz++yqaViHz//ffqRUhISPG1rq6uvXr1EpFLly5x9R0VRmBZycSJE9X9u4CAAOOwME+Sk5MzcODACxcurFixolmzZu+9997atWtNeRcb3iW0s7Nr27atu7u7Os4qzvj8UH5+vhXrQvVi63PS6kZ9q49dw5o2bZpa3rdv39zc3DIbGT16tIh06tQpPz9///79IlKjRo2jR4+WuWO5Bk1W09iYomXLlmW2VrpHjx6pewiNGjWqZFN4mtGtweLmzZunxtgMCAjYt2+fk5NTmbssXLjwxo0by5Yts7OzGzBgwJQpU5577jk/Pz/LF2spW7duTU5OFpHBgwfbuhZojMCyrIULFy5evFjKk1Yi4u3tfeDAAeOPn3/+uSVqs8TUqiVKSkqaPXu2iNSsWXPOnDmVaQpPOQLLgpYvX/7++++LSGBgYGRkpIlpZTVmn1q1RJmZmUOGDElLSxORhQsX+vj4WPodUY1x0d1S1q9fP2PGDBEJCAiogmllHRkZGQMGDEhISBCRkSNHquMsoMI4wrKIw4cPb9myRb1W81nZth6buHnz5sCBA0+dOiUigwcPDg8PV700gArjCMsirl27VlhY6OjoKCKRkZE7duywdUXWdvbsWT8/P5VWwcHBu3btcnBwsHVR0B6BZSn+/v4nT56sXbu2iEydOlVdxKlSdu7caTBNq1atytVyTExMjx49rl27JiLTpk3btm1biRM+A+VFYFlE586do6KifH191VXt1NTUqVOn2rooKwkPD3/11Vfv3r1rZ2cXFha2fPlypnSGuXANyyLatWunjq1mzJixbdu2U6dObd++PSQkpEr1QrJEt4bw8PAxY8YUFBQ4OjqGh4ePGDGiEgUCjyOwLMve3v6LL77o3r17QUHB5MmT+/Tp4+bmZuui/j+zd2uIjY0dO3ZsQUFB7dq1IyMjAwICzNg4IJwSWkHXrl2nTJkiItevX3/33XdtXY6lZGdnjxo1Ki8vT0Q2b95MWsESOMKyhkWLFu3evfv69esbN24MDg6uln/Mq1evvnLlioh4e3ufO3eulGO3mTNn1qlTx2qFoTohsKzB1dV11apVr732mohMmDDh9OnTzs7Oti7KzNatW6deJCUl/fWvfy1ly/HjxxNYqBhOCa1k2LBhQUFBInL58uX58+fbuhwzy8zMrOLDN6N64AjLzAqfPILrnj17rFaGlXsSuLm5lfLBAXPhCKtaMY6HVatWLdtWAlgCgVWtqMveIqJGywOqGU4Jq4mIiAhnZ+fPPvtM/di5c2fb1gNYArPmVAfJycmNGjUy/ti+ffu4uDjjGOpAtcEpYXWQmJjYuHFje3v7evXqhYaGRkdHk1aoljjCAqANjrAAaIPAAqANAguANggsC4qIiDAYDGPHjlU/qtE733zzzXI1cuTIEbVjZGRkuXYscRbo+/fvN2vWzMPDIykpqVytKTExMQaDoWvXruXaq2If3ApSU1MXLFjw4osvuru7Ozo6Nm7ceNCgQVu2bHn06JGtS8MT2HIW12rt999/9/DwcHFxuXnzplqivvDHJoUu07Bhw9SOffv2LdeOT5oFeufOnSLi7+9fUFBQrgYLCwuPHz8uIv379y/XXhX74JYWExPj6elZ4h9Fp06dLl++bOsCUQKOsCxl6tSp6enps2fPrkyn86tXrxoPrA4dOnTmzJnKFzZ8+PAePXocOXJk06ZNJu4yd+7c0NDQEydOqM/i7e2dk5OzZs2ajh07avrMc0JCwtChQ+/cuSMigwcP3rZt2z//+c8VK1a0bNlSROLj4wMDA9VaVC22TszqKTo6WkTq1auXlZVVmXbUgH8dOnRQ89RPmDDBLOUdPnxYROrWrXvnzp0yNy4oKGjSpIn6benXr5+IdOnSpX79+mrJsmXLymxBbVmljrB69Oihqvrkk0+KLr93796gQYPUqrfffttW5eFJCCyL6NKli4h88MEHlWkkJyfHw8NDRFatWrV582YRcXJySktLM0uF6jrU/PnzTdn47Nmzn376aUBAgHGqrvr16w8aNGjDhg2mRF5VC6z4+HhVUu/evYuvzczMVGPYu7u75+XlWb88lILAMr99+/aJiJ2d3dWrVyvTjhoSr1atWnfu3MnNzXV3dxeRxYsXm6XIL774QkRcXV3T09NN3OXWrVstW7ZUk6EuXbrU9PeqaoG1aNEiVdKWLVtK3GDMmDFqg0r+C8LsuIZlfqtXrxYRf3//pk2bFl1e3ptlq1atEpHhw4d7eHg4OTmFhoaKyJo1a0y8h1XiXUKj4OBgR0fHrKysr776ypTWcnJyBg4ceOHChRUrVjRr1uy9995bu3atiR/kSSZOnKgqDAgIMN4isAJ7e/u2bdvWqVOnd+/eJW5gHBCVqaqrHFsnZnWTlJSkfss/++yzx1apL9zEA40DBw6o7Q8dOqSWGK+4R0REmNLCk+4SGqmh5du1a2dKa6NHjxaRTp065efn79+/X0Rq1Khx9OhRU/Yt8YNPmzZNLe/bt29ubm7pLXz99dcm/j63bNnSlJJKUVBQ0L59exFxd3d/9OhRJVuDeXGEZWaRkZGFhYXy3+vTFbZy5UoR8fHx8ff3V0t8fX179uwpIitWrKhslSLy3wpPnz6dmJhY5sYLFy4MDAz8+9//bmdnN2DAgClTpixevFjdCqiAefPmqU8REBDw7bffOjk5VawdS1iyZMmvv/4qIqNGjeIZ8qqG8bDM7NChQyLi6OjYunXrCjeSmJgYFRUlIuPGjSt6VjJp0qTY2NjY2Ni4uLjKj3jVqVMn9eLw4cPNmjUrfWNvb2/jQZ+IfP755xV+34ULFy5evFhEAgIC9u3bZ0paWWLO1xKtWLFi3rx5IuLt7W3eSRthHrY+xKtu1HWrDh06FF+lvnBTTgmnT58uIvb29jdu3Ci6/N69e+q+4ejRo8tspMxTwps3b5a+gbkU/eBhYWHqx8DAwDLPBK3s448/VrV5enr++uuvti4HJeCU0JwePHigHnnx8fGpcCPZ2dmqE8Mrr7xSdFg+EalVq5a6gbVjx45bt25Vrlhp2LChi4uLiFy8eLGSTZlo/fr1M2bMEJGAgIDIyMgqdSa4fPlyNZuRl5fXkSNH2rVrZ+uKUAJOCc0pOTm5sLBQRFQXhIpxcXHJyMh40tqwsDDjQUrlubu7Z2dn37hxw1wNluLw4cNbtmxRr52dnatUWsXHx8+ePVtEGjVqdPjwYdXfHVUQR1jmlJ2drV7oMlGom5ubiOTk5Fjhva5du1ZYWOjo6CgikZGRO3bssMKbmuiTTz5RnUV27dpFWlVlBJY5GS+Q63J3SU1faLVJDP39/U+ePFm7dm0RmTp1alpamok77ty502CaVq1aVaAwdT+hd+/e3bt3r8DusBoCy5xcXV3Vi9zcXNtWYiJVp7qSZWmdO3eOiory9fVVd99SU1OnTp1qhfctU05Ozu3bt0WkvMPmwPq4hmVOXl5eNWrUyM/PN96Aq+KSk5NF5JlnnrHCe7Vr104dW82YMWPbtm2nTp3avn17SEjI4MGDy9zXot0ajGfETxptBlUHgWVODg4Ozz77bGJi4uXLl21dS9lSU1PV32qLFi2s+b729vZffPFF9+7dCwoKJk+e3KdPH3UprRRt2rSxXK+oBg0aFDIViyY4JTQzdVpx/vz5vLw8W9dSBuOgBd26dbPyW3ft2nXKlCkicv36dTWEDmAKAsvMXn75ZRF5+PChMQ6qrGPHjqkXxqd/rGnRokXqVHTjxo3ff/+99QswMg5CbZPvAeVCYJlZUFCQukUYExNj61rKoG6N+fn5GcfnsyZXV1c1HIWITJgwwTpdK6A7AsvMvLy8+vfvLyJ79uyxdS2lSUlJOXr0qIioYRhsYtiwYUFBQSJy+fJl1cscKB0X3c1vzpw533333cmTJy9cuFC0F6KtruyW2M1qx44d+fn5Xl5eVpjMppQPXhVi3d/fn4vuuuAIy/xeeumlPn36iIgaMtRWjA8/16pVq/haVdusWbOq1CMyQOkILIt4//33RWTz5s2ZmZm2quHKlSvqRfFpe6Kjo8+fP1+3bl11qw7QBYFlEYGBgUOHDs3MzFy+fLn13z0iIiIqKsrYXaD4yFmqT9OSJUucnZ2tXBtQGQbO3i0kJSXF19c3Ly/v4sWLxkmxrCA5ObnooDTt27ePi4sr+mzj3r17hw4dOmDAADXSMaARjrAspUGDBuvWrcvMzJw7d6413zcxMbFx48b29vb16tULDQ2Njo4umlYPHjyYOXOmu7v7xo0brVkVYBYcYQHQBkdYALRBYAHQBoEFQBsElgVFREQYDIaxY8eqH8s787NifDQ3MjKyXDuWOPPz/fv3mzVr5uHhoSbLsJWKfRVWkJaW9uGHH/r5+Xl6ejo4OKgHrTZt2vTw4cNS9vrll1/Gjx/v4+NTu3ZtNze37t27r1y58sGDB1Yr+yliuwl7qrnff//dw8PDxcXl5s2baon6wk2c+dlo2LBhase+ffuWa8cnTfO1c+dOEfH39y8oKChXg2ZUsa/C0g4cOFC3bt0S/0w6dux49erV4rsUFBTMmjWrxBntu3Tpkpqaav1PUb0RWJby2muvichf//pX45IK/JVeuXKlaKeE06dPm75vKfMS9ujRQ0Q2bNhgemvmVQUDKz4+Xg2IajAYQkJCduzYER0dvXbt2o4dO6pqW7dunZWV9dheM2fOVGsbNmy4ePHiqKiozZs3v/DCC2rhSy+9ZIuPUp0RWBYRHR0tIvXq1Sv+K14uqrd6hw4d1KTwEyZMMEt5hw8fFpG6deveuXPHLA2WVxUMLPX4p8FgiIiIKLo8Ly8vODhYFbxgwYKiq/7973+rY6sWLVqoGd6Uhw8f9uvXT+2yZ88eK32ApwOBZRFdunQRkQ8++KAyjeTk5Kh5nletWqWmVnVyckpLSzNLhWpk1Pnz51ds948++qgylxSqWmD99ttvqqRRo0YVX3v37l010WTz5s2LLlfjCNWoUePcuXOP7XL+/HnV4B//+EcL1v304aK7+X377bcnT560s7MzXm6vmK1bt6anp9eqVeuNN954/fXX3d3d7927t2HDBrMUOX78eBFZuXJlKZO2Pj2MQ56GhIQUX+vq6tqrVy8RuXTpkvHqe0pKysGDB0Vk9OjRrVu3fmyXVq1adejQoWHDhsYTc5gFgWV+q1evFhF/f/+mTZsWXV7eW2NqQM7hw4d7eHg4OTmFhoaKyJo1a9SUn2Uq8S6hUXBwsKOjY1ZW1ldffWViPVYwceJEVXNAQIA1/9Tt7Ozatm3r7u7+pPk4jFcS8/Pz1YsDBw6o12PGjClxl4SEhJs3b5b33i5KR2CZ2e+//64GRx40aFBl2jl48ODZs2dFZNy4cWrJpEmTRCQpKWn37t2VLvN/jxo2bdpU+dbMYvr06er4sW/fvt9++23pA3WZd2rViRMnnj59Oj09vXnz5sXX5ufnq/HvGzVqZKzq119/FZEaNWowm6E1EVhmFhkZWVhYKCLGy64Vs3LlShHx8fExzozg6+vbs2dPEVmxYkVlqxSR/1Z4+vTpxMREszRYGfPmzVOfKyAgoMy0srKtW7eqCRyLTqF47tw5EWncuLGTk1N2dvbSpUtfeOEFNze3OnXqdO3a9W9/+9v9+/dtVnH1xRDJZnbo0CERcXR0LH5dw3SJiYlRUVEiMm7cuKJ9fCZNmhQbGxsbGxsXF1d8lKvy6tSpk3px+PDhZs2aVbK1yli4cOHixYtFJCAgYN++faaklUWnVi0qKSlp9uzZIlKzZs05c+YYl6elpYlIgwYNTp06NWzYsKIzUR4/fvz48eMbN26Mioqy7RdbDdn6qn91o65bdejQofgq9YWbcmts+vTpImJvb3/jxo2iy+/du6fuG44ePbrMRkrph6UYp6d+0gZGX3/9tYm/Ti1btiyzsML/+1WEhYWpHwMDA3Nzc03Z3WoyMjKM/bCWLl1adFXbtm1FpEWLFo0bNxaRP/zhD1999VV0dPT69etffPFFtYuPj096erqNaq+eCCxzUte5ReS1114rvtbEwMrKylIzIQ8ZMqT4WpVlDg4ORTv+lKjMwCosLHRxcRET+tBbLrCMw94HBARUtbRKT09X3d9EZOTIkY89GFD00GnZsmVFV+Xn5xtvEM+YMcO6VVdznBKakwoREVHddirGxcWllK4GYWFhxkOSynN3d8/Ozr5x40bpmxU///rhhx9U79PHlpfr/Ovw4cNbtmxRr52dnavUdaubN28OHDjw1KlTIjJ48ODw8PDHnr8xVjtkyJDHJq+2s7Nbu3btgQMHkpKSNm3a9Mknn9jb84dmJrZOzGrlzJkz6ludPn168bVqldV6S5pyhOXr6ysi3t7e5W3cLB1HFUdHR/Vi+/btFWvN7M6cOWPskhIcHPzw4cPi2xgPvr755psSG5kxY4baIC4uzsL1PkW4S2hOxv+Eiz4AWJWpKQtLnLjQOvz9/U+ePKke4ps6daq6km0K83ZrKComJqZHjx7Xrl0TkWnTpm3btq1mzZrFNzMOnO/j41NiO8blt27dKlcBKAWBZU6urq7qRW5urm0rMZGqU13Jsr7OnTtHRUX5+vqqWXxSU1OnTp1qk0qMwsPDX3311bt379rZ2YWFhS1fvvxJaa4uuovIk2ZyM/bvNf5WoPI4tTYnLy+vGjVq5OfnG2/AVXGqe9Ezzzxjk3dv166dOraaMWPGtm3bTp06tX379pCQkKLdnZ7EEt0awsPDx4wZU1BQ4OjoGB4ePmLEiFI2Np4S/vzzz7179y6+geqoJSLPPvusiQWgbLY+J61u1M2jSnZrMIsyr2GlpKSoDd5+++3yNm72h5+PHTumjmWeeeaZjIyMijVbGT/99JM69atdu/bBgwfL3P7hw4dq8KzmzZvfv3//sbVZWVlqbadOnSxT71OKU0IzUw9qnD9/Pi8vz9a1lCE+Pl696NatW3n3/Z//+R/1C2SuYrp27aqmob5+/fpjN92sIDs7e9SoUeqfbPPmzQEBAWXuUrNmzWnTponIpUuX3nrrraIPeD569Gjs2LG3b98WkcmTJ1us6qcRp4Rm9vLLL+/YsePhw4fx8fFV/Ckz9XyciBif/rGtRYsW7d69+/r16xs3bgwODjYlNcxl9erVV65cERFvb+9z586pa2olmjlzZp06ddTrv/zlL/v27Tt+/PiXX34ZHx8/YcKE5s2bJyUlrVmzRv1nEBAQoEbFgNnY9gCv+klOTla3CD/66KPHVqkvvOqcEqorL35+ftapp6gnfRXffPONWvX8889nZ2dbrR7TLzMlJSUV3TEjIyMwMLDELV955RWbnNtWb5wSmpmatkBE9uzZY+taSpOSknL06FERGT16tK1r+V/Dhg0LCgoSkcuXL8+fP986b5qZmXn16tWK7evm5nbgwIFdu3YNGTKkUaNGDg4OTZo0GThw4DfffLNv3z71xALMiJmfze9f//qXOsn6z3/+07JlS1uVcf/+fdUbe/LkyWvWrHls7cqVK6dNm+bl5XX58uUq1cUcKAVHWOb30ksvqQHCjQ/K2YTxlLBWrVrF16raZs2aRVpBIwSWRbz//vsisnnz5if1KrQCdRVZRBo2bPjYqujo6PPnz9etW1fdmAN0QWBZRGBg4NChQzMzM5cvX279d4+IiIiKijJ2Dig+cpa6C7ZkyRJnZ2cr1wZUBtewLCUlJcXX1zcvL+/ixYv169e32vsmJycbH3MTkfbt28fFxRV9tnHv3r1Dhw4dMGDA/v37rVYVYBYcYVlKgwYN1q1bl5mZOXfuXGu+b2JiYuPGje3t7evVqxcaGhodHV00rR48eDBz5kx3d/eNGzdasyrALDjCAqANjrAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDYILADaILAAaIPAAqANAguANggsANogsABog8ACoA0CC4A2CCwA2iCwAGiDwAKgDQILgDb+H2hlx0WdI8OdAAAAAElFTkSuQmCC | 25 | float | algebra | high school |
9,498 | 498 | 10 | Given positive integers m, n, and o. From the system equation in the image. What is the value of m * n - o? | iVBORw0KGgoAAAANSUhEUgAAAZAAAAGQCAIAAAAP3aGbAAApSUlEQVR4nO3de1hU1d4H8N/IZQYzBkRBDRUGUsILTmRq5C1ANEksTD3HkCSSMk05Wh7fOI+IdFHUEZ8UNa94BFGITI1BTMVOiKViqSiW+QgeUi7KxQFxYHj/WOdsOTNchgFmWPr9/NGz3WvP3mummS9rr732XqL6+noCAOBBF1NXAABAXwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAgsAuIHAAgBuILAAgBsILADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAguIiI4ePSoSiV588UVTV6Q9FRYWfvzxx4MHD+7WrVvXrl2HDh36f//3f3fu3DF1vcBw5qauAHQK3bt3F/77eEhJSQkODlapVMKaixcvXrx4cePGjQcOHJgwYYIJ6wYGQwvribZs2bKgoKCzZ8/26tWLiPr27atSqTZt2jRs2LCbN2+aunaGO3r06PTp01la+fn57dmzR6lUrlmzxtHRsaKiwt/f//Dhw6auIxikHp5UGo3G0dGRfQ18fX2JyNPTs2fPnmxNTEyMqStooJqaGuF9rV27tmHR3bt3n3/+eSJ65plnKisrTVVDMBgCyzRWrlzZGf5gXL58ec2aNd7e3paWlqw+PXv29Pf3/+qrr+7evWvauhls37597L3MmDFDt/Tq1atdunQhoujoaOPXDdoIp4RPNHd398WLFyckJDg7O4tEIiJasmTJoUOHQkNDbW1tTV07A504cYItLFq0SLd04MCBL730EhElJSUZs1bQLhBYVFtbKxKJRCLRvn37NBrNjh07vLy8bG1tra2t5XK5QqGora1lW2ZmZgYEBPTq1UssFru4uCxatKikpMS0FSaihIQEHx8fe3t7iUQik8nCwsKuXbum/95UKtWkSZPy8vJiY2NlMtnSpUvj4uJaVZ+ioqIVK1aMGDHC1tZWLBY7OjoGBgampqa27l21n1u3bhGRSCR64YUXGt3gueeeI6LLly9XVlYatWbQdqZu4pmeWq1mH8XOnTtZV46WyZMnazSaqKgo1gZpSCaTlZSUGHDQtpwSChWOj4+fMmWKboUtLCxSU1P13Nvs2bOJSC6X19XVpaWlEZGZmVlWVpaeL09KSrK2tm70qzV+/Pji4mJ9dnLgwAE9v64DBw5scW9+fn5EZGlp2dQGYWFhbG/nz5/X821CJ4HAevT779OnDxF5eHjExcUdOXIkJiZGKpWyomnTphGRs7Pz+vXrlUrl1q1bn332WVa0cOFCAw7aLoHVv39/9htWKBRKpXLv3r0+Pj6syNbW9t69e/rsLT8/38fHJycnh/1z3rx5q1ev1mg0+rw2JSWF9Qd16dIlKCgoKSlJqVTGxsayJgwRDRkyRKVStbif9g2s4OBgtnFBQUGjG3h7e7MNvvvuO33eJnQeovr6ej2/K4+r2tpaCwsLtuzv75+SkiL0QB89epT9uSYiuVx+8uRJoTVRUlLi6upaXl7u5OR048aN1h40Ojr6H//4BxEZ8Pk3rHBAQEBSUpJYLGb/rK+vnzVrVmJiIhHt2rVL+Ol2hIqKCplMVlpaKpFIDh8+LKQAEanVapZfRBQeHr5u3brmd5Wbm7t//359DtqjR4/58+c3v81XX301d+5cIoqOjv7kk0+0Sm/duiWTyVjoHzhwgP0pAm6YODA7AaHBYmZmpvs32c7OjpUeP35cq2jq1KmsSK1WN3+I9m1BCBU2NzcvLCzUKs3Ozmal4eHhLe6qLRQKBTvQqlWrdEurqqqcnJyIyMrKqqysrENroqWsrIw1jcVicUZGRsOi+/fvjx07Vvi0ExISjFkxaDt0uj8il8uF8TsCtkYikYwePVqryMHBgS00HE5tTHK5vHfv3lorBwwYwBY6ukc5PT2diMzNzYUuoYasrKxCQ0OJqLq6OjMzs0NrokUqlbI2XU1NzcSJE99+++3k5OT09HSFQuHh4ZGZmTlmzBi2pdCUBl7g1pxHnJ2ddVdKJBIisre3NzfX/qxYEelxWufu7r58+fKGa06dOsWuvmut79Gjh/4Vlslkuiu7devGFoSLmx3k0qVLROTu7i709GkZNWqUsGWjFwc6TkhIyN27d5cuXVpXV7d79+7du3ez9SKRKDw8/JVXXjl16hQRPfXUU8asFbQdAusR4aeuS+gzMoy7u3tkZGTDNdHR0SywtNa3SqO/N+FSZosx2kalpaVEZG9v39QG7HYfYUsjW7Jkia+v77p1644fP15UVNSzZ08vL68FCxa8/PLLQn41U3nonBBYj7ALXhzRHWZhTCwQm6lDXV0dW2jxg01OTn7zzTf1OejAgQOvXr2qZw09PDyEbGro4sWLbKHRNjV0Zpz9RKHzYI92uH37dlMbCEWd7SEQP/74IxH169eP39H8Tyy0sMBAQ4cOLSwsvHLlSnl5eaPdWFlZWWzBzc2t+V3p9vE1RZ8+vtOnT4eGhv7555+JiYnCqBTBrVu3zpw5Q0TCmDXgCAILDDRhwgSlUllbW7tly5aPP/5Yq7SqqmrHjh1EZGlp2XAkQaN0+/jaom/fvrm5uUR06NAh3cD6/PPP2cksG+IPfMEpoWlERESwcSWmrojhQkJCbGxsiCgyMvL7779vWKRWq0NCQvLz84lozpw5Rj4ldHR09PLyIqIdO3awS5mChIQEdqfk2LFjW4xR6ITQwgIDSaXSbdu2TZs2rbq62s/Pb9asWZMnT5ZKpXl5eVu2bGFtHDc3t7Vr1xq/bp999tn48eOrq6tHjhy5ePHi4cOH379/PzU1lY2nt7Oz2759u/FrBW2HwALDBQYGJiYmhoaGqlSq+Pj4+Pj4hqXsUZ8mGes0ZsyYuLi4Dz74QKVSRUVFNSySyWSpqakuLi7GrxW0HU4JoU1mzpx5/fr1iIgIT09PGxsbiUTi6uo6Y8YMpVKZlpYmPL/U+ObOnfvzzz+/9dZbjo6OFhYW1tbWXl5eCoXi0qVLQ4cONVWtoI1w8zMAcAMtLADgBgILALiBwAIAbiCwAIAbCCwA4AYCCwC4gcACAG4gsACAGwgsAOAGAkvb/v37RSJRSEiIqStiPA8ePJDJZLa2tgUFBYbtob6+3t7eXiQS/fLLL+1bNyNTq9UbN2708vKSSqVWVlaurq4ffPBBXl6e/nuYP3++SD/JycnCqw4dOtT8xl988UUHvF3+ILD+x7///e/33nuvW7dun332manrYjwSiSQmJqasrGz27NmG3ap19uzZ4uLi3r17e3h4tHv1jKa0tNTLy2v+/PlZWVkVFRUPHjy4fv36pk2b5HL5nj17OvTQ58+f79D9PzbwtIb/8eGHH967d2/FihXCBApPiMDAwJdeeunkyZPbt29n03O1ilKpJCLdp+VxRKPRvPHGGz///DMR+fn5BQcHS6XSH3/8cf369VVVVSEhIf369dPnEVqvvvpqM49FvXHjBnumhZOTU8O9scDq3r37ggULGn3hyy+/3Np39Hgy0XyInRGbaK9Hjx6VlZWmrosJsFl87Ozs7t6929rXshm99u3b1xEVMw72fFQiWrBgQcP158+fZ9N9DxkypK6uri2HqK6ulsvlRCSRSC5cuNCwiE1/OWXKlLbs/0mAwHrE09OTiJYvX27qitSvXLnSJH9OXnzxRSL65JNPWvWqu3fvmpmZmZmZlZaWdlDFjGDw4MFE5ODgoFKptIqEZxAeOXKkLYcIDw9n+9mwYUPD9cXFxWz9p59+2pb9PwnQh/Ufhw8fPnfuXJcuXZ6o7nYt7GRww4YNZWVl+r8qIyOjrq7uxRdf7Gyz4+jvt99+Yw9Tnj59eteuXbVK33nnHTMzMyI6cOCAwYfIzs6OjY0lItZN1rDo3LlzbIH9wYBmILD+48svvySicePG9evXr+H62tpadplm3759Go1mx44dXl5etra21tbWcrlcoVAIEyxnZmYGBAT06tVLLBa7uLgsWrSopKTE+G+kYYWJKCEhwcfHx97eXiKRyGSysLCwa9euNfXamTNnisXiysrKRqfza0paWhoRTZw4Uf+XFBUVrVixYsSIEba2tmKx2NHRMTAwMDU1Vf89tC828RcRjRs3TrdUKpWyiwlaj67Xn0ajmTdvnkajMTMz27x5s9Zkjjk5OUQkEomGDx9u2P6fIKZu4nUKBQUF7Du0bt06rSK1Ws0+qJ07d/r6+up+gJMnT9ZoNFFRUbpTispkspKSEgPq05ZTQqHC8fHxjU4Qb2FhkZqa2tTLvb29iWjIkCH6H7F3795EdObMGT23T0pKYr1CusaPH19cXKzPTvRv7AwcOLDFvQmz/ly6dKnRDaZPn842MKx/c+fOnezl7733nm4pm0TW2dk5OTk5MDBwwIABXbt2tbGx8fLy+vLLL2tqagw44uMKgVVfX1+/ceNG9n26ePGiVpHw++/Tpw8ReXh4xMXFHTlyJCYmRpiMb9q0aewLt379eqVSuXXr1meffZYVLVy40ID6tEtg9e/fn/1cFQqFUqncu3evMBOfra3tvXv3Gn25MN7n+vXr+hzuwoULRNSjRw89O6RTUlLYRNBdunQJCgpKSkpSKpWxsbHPPfccO+6QIUN0e5F0tW9gzZo1i21cUVHR6AaLFy9mG+Tl5enzNhtSq9Xs/4VYLC4sLNTdoPkHzA8aNOjGjRutPejjCsMaiIiOHz9ORGKxWPjZ6CosLPT3909JSbG0tCSiV199dejQoexCfnJyslwuP3nypNBweP31111dXcvLyw8ePLh+/XpjvAcdN2/eDAgISEpKEovFbM1f/vKXWbNmJSYm3rt37+DBg8HBwbqvYpexiOjEiRMymazFo7DzQV9f3xbnoyeiioqKuXPnajQaiURy+PBh1pojIj8/v/fff5/l18WLFyMiItatW9f8rtp37tW7d++yhW7dujW6gTCVRqt695jk5OSbN28SUXBwMGuNNlReXv7HH3+w5X79+s2ZM2fYsGFisfjSpUubN2/+448/Ll++/Morr5w9e5bfLsL2ZOrE7BRYv5WHh4dukdBgMTMzKygo0Cq1s7NjpcePH9cqmjp1KitSq9XNH719GwtChc3NzXX/nmdnZ7PS8PDwRl/+559/sg3CwsJaPFZ9fT0bTBQfH6/PxgqFgu181apVuqVVVVVOTk5EZGVlVVZWps8O28srr7xCRGKxuKkNPv/8c1bzU6dOtXbnrCu9S5cu165d0y3Ny8sbOXKkvb39m2++qdW0rK6u9vf3Z8cNDQ1t7XEfS+h0p5qaGnZLSvMtc7lczgbLNMTWSCSS0aNHaxU5ODiwBZVK1W51bQ25XK7793zAgAFsobKystFX9erVi7UyfvvttxYPUVlZmZWVJRKJ9Bwyyka6mZubh4WF6ZZaWVmxy5TV1dWZmZn67LC9sIuAur2Qgvr/3gCgT0OyoaysrJ9++omI3njjDaGjoKEBAwacPn36zp07+/fv17pAKZFI9u7dy1qIu3fvvnfvXqsO/VjCKSHdvn2bfR3ZPMZNcXZ21l0pkUiIyN7e3txc+5NkRdTgu94U3bObU6dOsWGcWuv1ObsRNHpCJ5zyCBc3ddnY2Ny/f7+wsLDFQxw7dkytVj///PP29vb6VIkNHXB3dxe6/7SwAahsy0avGHQQ9rHU1NQ0tcGDBw/YgnB+rSfheqsB9w8QkbW19axZs2JjY9Vq9alTpwICAgzYyeMEgUX3799nC01dumKa6t0gIgsLi7ZUwN3dPTIysuGa6OhoFlha61ul0RlMhUZEMzEqlUpv3bqlT8OQ3ZGj/4CG0tJSImom3YQ7otiWRvP0008TUX19vUqlavRzE74krepI0mg03377LRHZ2dkJHXatNWzYMLbAOsKecDglfPQbZucFTWntuYDJNXOC0zzhKl6LW7Y2sFhKNlOxurq6hnVoRnJysp4PRXBzc2uxYuwqHhHdunWr0Q1Yp4FIJGrVTaanT5++ffs2EQUGBuq2wfUkBOjDhw8N28PjhLMfYUdgf12JqKqqyrQ16STY59BMi5LJzc3Nz8+XSqXCeVyLWPOE/YYbJRQZ+YrYoEGD2EJTPXe///47ETk5OemOg28Ga14RkTCMS9fDhw8LCwsvXLig0Wga3eDOnTtsQc/z7scbTgnJwcHBzMysrq5OuED2hGOp8cwzzzS/GWte+fj46N92GDp0aGFh4ZUrV8rLyxvtxsrKymILLTaL2ndYw4gRI9jCqVOnhAtzgrKyMvacLy8vL32OKGDn9ZaWls08a+Gtt95il4n/9a9/Nbr/H374gS1gHDwhsIjI0tKyf//+f/zxx40bN0xdF9MrLi5mvVfC9cSmGHBHzoQJE5RKZW1t7ZYtW4TB5YKqqir2yARLS8sWH+Si2/HXFk5OTi+88MLZs2f37t0bFRUlXDBhtm3bxpo/b7zxhv77fPDgARtVK5fLm+mq9/LyYoGVmJioG1i///47u2PJw8OjmUGCTw6cEhL996bTK1euCIOYTCsiIoKNOjH+odl9bdSg0dGoqqoq9pe/VYEVEhLCLsVGRkZq3ZenVqtDQkLy8/OJaM6cOcYfJPnBBx8QUWFh4fz58xuenZ0/fz4qKoqIXFxcXnvtNf13ePnyZfZ1GjlyZDOb/fWvf2Vn33Fxcd99913DouLi4sDAQLaTdkxnriGwiIjGjx9PRA8fPhR+rk+sM2fOsIVGbwMWnDhxoqamZtCgQbpj05ohlUq3bdtGRNXV1ewhefv3709PT9+wYcOwYcOSkpKIyM3NTXicizEFBwezBs727dvHjRv3z3/+My0tLSIiYvTo0ZWVlSKRaOPGjQ1PfpVKJevUF2540nL16lW20OjwK0HPnj3XrFlDRBqNxt/f/+233967d29aWtrKlSsHDRr066+/EtHcuXOFcchPOlONWO1Ubt++zS4Rrly5UqtIaHO98847ui9kzRAXFxfdooULF7IXNnXXXgdpvsJCaXBwcKMvZyNgR44c2fxRWHtk8eLFBtQwMTGx0aEDROTn51dUVGTAPttFcXHx888/r1src3PzLVu2aG3MzoiJyNvbu9G9RUdHsw0OHjzY4qEVCkWjg2NEItGCBQva+ODAxwlaWEREDg4ObKz2N998Y+q6mFJRURHr9p49e3bzW7Z2QENDM2fOvH79ekREhKenp42NjUQicXV1nTFjhlKpTEtL69mzpwH7bBc9evQ4c+YMm4TCxsbGwsKib9++s2fPPnfu3Ny5c1u7N+H+RH0aoYsWLbp06dKHH37o7u7+1FNPWVlZyWSykJCQrKysDRs2cDekpuOI6k3RUdIJZWZmspOgq1evDhw40NTVMY0NGzYsXLjQwcHhxo0bVlZWpq4OgDYk93+MHTt2zJgxRLR582ZT18Vk2HtfvHgx0go6J7SwHjl27Jivr69UKr1582ZTN7s9xtLT0ydOnGhnZ3fz5s2m+pgATAstrEd8fHymTp1aXl5uqidYmRa7cP7FF18graDTQgvrfxQVFQ0aNEitVv/2228m7P01voMHD06dOnXixInCxS+ATggtrP9hb2+/efPm8vLyZcuWmbouxlNTU/O3v/3NxsaGDZIC6LTQwgIAbqCFBQDcQGABADcQWADADQSWUR09elQkEmFG8nZXXFwcGRk5fPhwGxsbsVjcp08ff3//+Pj4Zh5dDzxCp7tRnT17dvjw4X5+fuxePGgXGRkZM2fOFO7da0gul3/99dds9jB4DKCFZQzLli0LCgo6e/YseyJ43759VSrVpk2bhg0bhpkF2ujChQtTp05lafXaa6/t3buXTSXNbgjNycnx8fFpNMuASyZ9VsQTQaPRCPfr+/r6EpGnp6cwKjUmJsbUFeTbSy+9xD7J1atXN1zfcBbS+fPnm6p60L5wSmgMubm5aWlpaWlpP/zwA5v7pGfPniNGjAgICAgMDLS1tTV1BXl14cIFuVxORKNHjz516pRWaUVFhYuLS0lJiY2NTXFxscHz1kDngVNCY3B3d1+8eHFCQoKzszOb5GrJkiWHDh0KDQ1FWrWFcCPRu+++q1tqbW09efJkIiorK9NnXljo/BBYVFtby551u2/fPo1Gs2PHDi8vL1tbW2tra7lcrlAohCtNmZmZAQEBvXr1EovFLi4uixYtKikp0fMoKpVq0qRJeXl5sbGxMpls6dKlcXFxra0eESUkJPj4+Njb20skEplMFhYWdu3aNcPeuAGKiopWrFgxYsQIW1tbsVjs6OgYGBjIZkkwCXNz88GDB1tbW7MHpeoSJsc1eJZG6FxMfU5qesJTg3fu3Mn6mLRMnjxZo9FERUXpfullMllJSYk+R2HP8JTL5XV1daxdYGZmlpWVpX/14uPjG5293cLCIjU1ta2fgh6SkpKamhx7/PjxxcXF+uyEzRCjj4EDB7axwhqNZujQoURkY2NTW1vbxr1BZ4DAepQIffr0ISIPD4+4uLgjR47ExMQIT8WaNm0aETk7O69fv16pVG7dulWYWWDhwoX6HCU/P9/HxycnJ4f9c968eatXr9ZoNPpXj81OPHDgQIVCoVQq9+7dK0x/YGtr29FPjk9JSRFmhA4KCkpKSmIX44S5p4YMGaJSqVrcjzED67PPPmO7Qqf7YwOd7lRbWys8/9/f3z8lJcXS0pL98+jRo+xZ70Qkl8tPnjwpNDFKSkpcXV3Ly8udnJw6dELDhtULCAhISkoSJrmrr6+fNWtWYmIiEe3atSs4OLiD6lBRUSGTyUpLSyUSyeHDh729vYUitVrN8ouIwsPD161b1/yucnNz9+/fr89Be/ToMX/+fIPrHBsbu2jRIiLq27dvTk6OnZ2dwbuCTsTUiWl6QhPGzMysoKBAq1T4oh8/flyrSJh5Sa1WG6F65ubmhYWFWqXZ2dmsNDw8vOPqoFAo2FFWrVqlW1pVVcVGZlpZWZWVlXVcNfT36aefsgp37979119/NXV1oN2g0/0RuVyuO8EJWyORSHS7dR0cHNgCmyrZCNXr3bu31kphfubKysqOO3R6ejoRmZubh4WF6ZZaWVmFhoYSUXV1dWZmZsdVQ0/r16//5JNPiMjBweHkyZNDhgwxdY2g3SCwHnF2dtZdyWYtt7e31x3FI0xoXm+U02qZTKa7kk0aTEQdetPcpUuXiMjd3b2pR92PGjWq4ZYmlJOT89FHHxFR7969MzMzkVaPGQTWI8KPX1ejk1waWaOPWhcuXLYYmvfv3xc14f79+82/trS0lIjs7e2b2oDdciRsaUKrV69m2Z2SkvLETtf2GENgPdLJp6s04UgilobNVKCuro4ttPgZJicnN5WbWtzc3AyoakZGBhGNHj1aaPTB46RT/0Shk+jevTsR3b59u6kNhCK2pamoVCrWxMMDfB5XuLvqSdGtWzeD+9qGDh1aWFh45cqV8vLyRrux2AT3RNRis8jd3X358uX6HLRHjx6tradw9cO0uQkdB4EFLZswYYJSqaytrd2yZcvHH3+sVVpVVbVjxw4isrS0HDt2bPO7cnd3ZxMgdgR7e3vjXAABU8EpIbQsJCTExsaGiCIjI7///vuGRWq1OiQkJD8/n4jmzJmDpg10KAQWtEwqlbIpC6urq/38/IKDg/fv35+enr5hw4Zhw4axYe5ubm5r1641bT1PnjzJOuzHjRtn2ppAB8EpIeglMDAwMTExNDRUpVLFx8fHx8c3LPXz89uzZw/muIeOhhYW6GvmzJnXr1+PiIjw9PS0sbGRSCSurq4zZsxQKpVpaWnCM1QBOg5ufgYAbqCFBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYHWIo0ePikQiPEbO5H766afQ0FAXF5euXbtKpdJRo0Zt2LChpqbG1PUCA+Hm5w7BnrKCZ62YUH19/UcffbRu3Trh5rPq6urs7Ozs7Oz4+HilUmnAAwLB5NDCak/Lli0LCgo6e/Ysm5Shb9++KpVq06ZNw4YNu3nzpqlr92RZsmTJ2rVr6+vre/Xq9fnnnx85cmTnzp0vvPACEZ07d45N5Q38MdmMiI8djUYjTGvo6+tLRJ6ensIzDGJiYkxdwSfI6dOn2ZQZAwYMuH37trD+4cOH7H8NEX3zzTcmrCEYBoHVni5fvrxmzRpvb29hsvuePXv6+/t/9dVXd+/eNXXtGrFy5crH8u+Wn58fEZmZmeXm5moVXblyhb3l6dOnm6Ru0Bbow2pP7u7u7u7uQUFBY8aMuXbtWn19/ZIlS3Qfgg4dqqio6NixY0Q0e/bs5557TqvUzc3Nw8Pjzp071dXVpqgdtAn6sKi2tpY9V3ffvn1ElJCQ4OPjY29vL5FIZDJZWFjYtWvX9N+bSqWaNGlSXl5ebGysTCZbunRpXFxca6uh0Wh27Njh5eVla2trbW0tl8sVCoUwt3NmZmZAQECvXr3EYrGLi8uiRYtKSkoMeOPtpaioaMWKFSNGjLC1tRWLxY6OjoGBgampqaaqT0ZGBpsnMTg4uNENLly48Oeff3777bfGrRe0B1M38UxPrVazjyI+Pn7KlCm6H5GFhUVqaqqee5s9ezYRyeXyurq6tLQ0IjIzM8vKytK/Gjt37hT6WRqaPHmyRqOJiorSndBUJpOVlJQY8N7bfkqYlJRkbW3d6Fdr/PjxxcXF+uzkwIEDen5dBw4c2OLeWJPWzMysqqrK4PcFnRMC61FS9O/fn/0kFAqFUqncu3evj48PK7K1tb13754+e8vPz/fx8cnJyWH/nDdv3urVqzUajf7V6NOnDxF5eHjExcUdOXIkJiZGmAqQXdtydnZev369UqncunXrs88+y4oWLlxowHtvY2ClpKSwqZ67dOkSFBSUlJSkVCpjY2OFE7EhQ4aoVKoW99O+geXv709Effv2ra+vr6ys/OKLLzw9Pa2trZ9++unhw4evWbOmurrasPcLJodHJFNtba2FhQVbDggISEpKEovF7J/19fWzZs1KTEwkol27djV1itHu1fD3909JSRF67o8ePcp6kYlILpefPHlSaNSUlJS4urqWl5c7OTnduHGjtQeNjo7+xz/+Qf+djL5VKioqZDJZaWmpRCI5fPiwt7e3UKRWq1l+EVF4ePi6deua31Vubu7+/fv1OWiPHj3mz5/f/DajRo3Kzs729PTcvn3766+/rvuxuLm5HTlyRCaT6XNE6FxMHJidgNC0MTc3Lyws1CrNzs5mpeHh4caphpmZWUFBgVapnZ0dKz1+/LhW0dSpU1mRWq1u/hDt25BRKBRs41WrVumWVlVVOTk5EZGVlVVZWVmLe2tHgwcPJqIBAwawtuqECRN2796dnp6+ZcuW4cOHszq7uLjo2WSGTgWd7o/I5fLevXtrrRwwYABbqKysNFo1hPFcArZGIpGMHj1aq8jBwYEtCBO1G0d6ejoRmZubh4WF6ZZaWVmFhoYSUXV1dWZmpjErVlVVRUTXrl0rLCyMiYlJT0+fPXv2hAkT5s6dm52dHRISQkTXr1+PiooyZq2gXWBYwyONniN069aNLQgX6Tqas7Oz7kqJREJE9vb25uba/8tYEelxWufu7r58+fKGa06dOnXixAki0lqvz20rly5dYvsUuti0jBo1Stiy0asZHcTKyootTJkyZcmSJQ2LunTpEhcXl5GRUVBQsH379tWrV+t+ntCZ4f/WI43OAypckmsxDtqLEJG6hE4uw7i7u0dGRjZcEx0dzQJLa70+SktLicje3r6pDdj9ScKWRvP000+zhbffflu31NLSctq0aQqFoqKi4uLFi3K53Jh1gzbCKeEjusMFTIJdd+v8WII386GxwVCkxztKTk4W6cfNza3Fignn9S4uLo1uIKy/c+dOi3uDToWP3wZ0QuxZFLdv325qA6HIyE+tYJ3uRFReXt7oBsLZvdAWA17glBAMNHTo0MLCwitXrpSXlzfajZWVlcUWWmwW6XauNUWfzrWRI0eyhezsbN1rFESUm5vLFtjIO+AIAgsMNGHCBKVSWVtbu2XLFt37Jauqqnbs2EFElpaWY8eObX5Xup1rbeHr62tnZ1daWrp169YPP/xQGFXH3L9/PyUlhZq4GgudHE4Jn2gRERFseIsBrw0JCbGxsSGiyMjI77//vmGRWq0OCQnJz88nojlz5hj5lNDCwmLhwoVE9Pvvv7/33nsNL+/W1taGhISwiwDvv/++MWsF7QItLDCQVCrdtm3btGnTqqur/fz8Zs2aNXnyZKlUmpeXt2XLFnba5ebmtnbtWuPX7e9///uhQ4d+/vnnXbt25eTkvPvuu66urgUFBZs2bcrJySEib29vNkwM+ILAAsMFBgYmJiaGhoaqVKr4+Pj4+PiGpX5+fnv27Gl0sEhHs7CwyMjImDZt2rFjx3755Retu3leffXVhISETnJRGFoFp4TQJjNnzrx+/XpERISnp6eNjY1EInF1dZ0xY4ZSqUxLSxMeuGp8Uqk0IyMjJSVlypQpvXv3trS0dHR0nDRp0tdff33o0KGmBrtCJ4ebnwGAG2hhAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwA0EFgBwA4EFANxAYAEANxBYAMANBBYAcAOBBQDcQGABADcQWADADQQWAHADgQUA3EBgAQA3EFgAwI3/B+tqKTEfpcInAAAAAElFTkSuQmCC | -2 | float | algebra | high school |
9,499 | 499 | 10 | What is the value of a^2 + c? | iVBORw0KGgoAAAANSUhEUgAAAZAAAAGQCAIAAAAP3aGbAAAhv0lEQVR4nO3de1SVVf7H8c0BDjcvRyQVFdPIYA4uJShHRfJSLEJDS3NSVAgvSUE3V9Yal6NOqbNMJmUEHbJyDVEqslzGmERSmLfQtRxRFCsxQTM1EYFAEOHw+2P/fufHcPPI5Txseb/+enye5+zni0c+PnuffZ5tU1dXJwBABTqtCwAASxFYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYAFQBoEFQBkEFgBlEFgAlEFgAVAGgQVAGQQWAGUQWACUQWABUAaBBUAZBBYAZRBYAJRBYHV1VVVVNjY2NjY2UVFRWtfyX2JiYmwsk5qaqnWxsBICC4Ay7LQuAGjapEmT3Nzcmjt64cKFpKQkIcTgwYPHjRtnxbqgJQILndSkSZMmTZrU5KGqqqoxY8YIIRwdHXfv3v3AAw9YtzRohi7h/WDVqlVyNEfrQqxk6dKlJ06cEEK8//77I0aM0LocWA+BBcVkZ2fHxcUJIQICAmJiYrQuB1ZFYFlbdnZ2dHS0r6+vm5ubvb19r169fHx8oqKiTp06pXVpwmQyJSQk+Pv7u7i4uLq6jh07Nj4+vrq6Wuu6/p/JZHrllVdMJpOtre0///nPrnNTif9VB2upqqoKCwtr7o3Q6XSbN29uXcvvvfdeq9/NyspK+dqIiIigoKDGhXl5eRUUFFjS1M6dOy38V+fl5dWKUuvq6rZu3SpbiIqKal0LUBqD7tbz5ptvfv7550IIb2/v+fPne3p66vX6goKCzz///MiRIyaT6fXXX588ebKHh4cm5SUnJ9fW1g4cOPCNN97w8fG5cuVKYmLi0aNHf/zxx6CgoJMnTzo5OWlSmFlNTc3KlSuFEA4ODsuXL9e2GGiCwLKSy5cvJyYmCiFGjBhx6NChbt26mQ9FR0dHRUUlJiZWV1enpaVFR0drUmFtba2fn19mZmavXr3knoiIiMjIyKSkpHPnzq1bt+6uGWE0GlesWGHJtVqYr9CC1NTUwsJCWZi7u3srWoDytL7F6yqysrJGjRrl5ua2a9euxkePHz8u344lS5bctan27XmZu4R2dnb5+fkNjt66dWvAgAFCCHd399raWgt/2A4ycuRIIYROp/vpp5+0rQRaYdDdSsaPH//9999fv379ueeea3xUhoIQoqqqyrp1/b/g4GBPT88GO52cnGbNmiWEuHLlyunTp7Wo638dOXLk2LFjQohp06YNHTpUw0qgIbqEmikrKzt37tzp06ePHj2akZEhd5pMpru+sHHP68CBA1lZWUKIBvvvqec1atSoJvf7+/vLjdzc3OHDh1veYPv617/+JTcWLFigVQ3QHIFlVcXFxYmJienp6T/88MP169db14jRaJRjz2arVq2SgdVg/z3p27dvk/vN88iLi4tb3XgbmUymtLQ0IUTv3r2ffPJJrcqA5ugSWs+HH37o4eGxdOnSgwcPyrTS6XRDhw4NCwuLjY3Vurpm1dXVyQ0HB4eWz0xNTbXw+Qre3t73VMP3339/9epVIcT06dPt7PhftuvivbeSzMxMOXXI2dk5MjJywoQJRqPxoYcekilQWFj41ltvaVvhjRs3mtx/7do1udG7d28rlvNf5O2VEOJPf/qTVjWgMyCwrCQ2NlbeqmRkZIwdO7bB0cuXL2tR1H/Jzc1tcn92drbcMA9mNafjpjXIDq9er2/8V4cuhcCykjNnzgghDAZDk79y27dvlxs1NTVWLauePXv23Lx50zwJSyotLd22bZsQwtvbe/DgwS230HhwrV1UVVXl5OQIIR599NG7dktxf2MMy0oMBoMQoqSk5OjRow0OffTRR/Hx8XK7dV/cW7ZsmZyl0pYKy8rK5syZc/v2bfOe6urq8PBw2VVcvHhxWxpvizNnzty5c0c0/zkmug7usKxk2rRpch5TSEhITEyMv7+/ra3t+fPnU1JSjhw5YmNjY2dnV1NTU1ZWplWFBoNh7969jz32WHR09JAhQy5cuBAfHy9vDIODgzWcTPDDDz/IDaZfgZnuVlJRUREQENDkWzBgwICvvvpKdhWNRqOVCzPPdI+NjZVTyRuYPHlyeXm5lauqb9WqVbKSL774QsMy0BnQJbQSZ2fnrKysuLi40aNH9+jRw87Ork+fPkFBQQkJCfn5+cHBwePHjxdC5OXlafWcGRcXl4MHD65evdpoNDo6Orq6ugYFBe3YsWPPnj0uLi6alCSZ538NHDhQwzLQGdjUtW3gAwCshjssAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILC6iqqqKvm0z6ioKK1radrFixcXL15sNBqdnZ179uw5YsSI5cuXd4YnhaHz4GkN6BRSU1MjIyPLy8vlHysrK0+dOnXq1Kl//OMfW7ZsmTFjhrbloZMgsKC9Q4cOzZo1q6amxtbWdsGCBRMmTLCzszt8+HBCQkJpaens2bP79esXGBiodZnQHoEF7cXExNTU1Oh0uvT09KCgILlz+vTpM2bMeOKJJ+7cubNkyRLzk5rRlTGGBY0dP3785MmTQoiIiAhzWkmjR49+4YUXhBBHjx795ZdftKkPnQmBBY1VVVVNmjTJw8Nj2rRpjY/6+PjIjYsXL1q3LnRGBJa1ZWdnR0dH+/r6urm52dvb9+rVy8fHJyoqyprP7TOZTAkJCf7+/i4uLq6urmPHjo2Pj2/d4+TbLiAg4Msvv7x48eIzzzzT+Kg5p9zd3a1bFzolrR952oVUVVWFhYU190bodLrNmzd33NXNj0Ju3POSvLy8CgoKLGlq586dFv7r8vLyakvNeXl53bt3F0L4+/u3pR3cN3jiqPW88sormzdvFkJ4e3vPnz/f09NTr9cXFBR8/vnnR44cEULo9fr8/HwPD4+OuHpVVZWTk5MQwtbWtra2duDAgW+88YaPj8+VK1cSExPlWj5Dhw49efKkPK0FqampFs4z8PLyMi8hYaG6urpbt26dP39+27ZtmzZtKisrc3FxycrKevzxx++pHdyXCCwruXz58qBBg0wm04gRIw4dOtStW7f6R6OiohITE4UQ8fHx0dHRHVGAObCEEH5+fpmZmeYlCE0mU2RkZFJSkhDir3/96/Lly1tuKi8vLyUlxZKLurm5xcTE3FOdu3fvfu6558x/9PX1/fjjj/38/O6pEdy3NL7D6zKysrJGjRrl5ua2a9euxkePHz8u344lS5Z0UAHmLqGdnV1+fn6Do7du3RowYIAQwt3dvba2toNqsERcXFz9f5/dunVbuHDhtWvXNCwJnQeD7lYyfvz477///vr16/VvH8xkWAghqqqqOrqS4OBgT0/PBjudnJxmzZolhLhy5YpcP1Ervr6+KSkpGRkZmzdv9vf3Ly8v37JlS0BAAJ8SQjBxVENlZWXnzp07ffr00aNHMzIy5E6TydTR121u/WR/f3+5kZubO3z48I4uozlPPPGEeXvhwoUvv/zyli1b8vPzX3nllT179mhVFToJAsuqiouLExMT09PTf/jhh+vXr7eihfLycvnBWWO///57g6GxJvXt27fJ/Q888IC5yFYU1hFsbW0TEhL27dtXUFCwd+/eq1ev9uvXT+uioCW6hNbz4Ycfenh4LF269ODBgzKtdDrd0KFDw8LCYmNjta5O1P3fxy8ODg4tn5mammpjGW9v7zZWZW9vP2XKFFmeVkvMovPgDstKMjMzo6Ki6urqnJ2dIyMjJ0yYYDQaH3roIZkOhYWFb731lnUquXHjRpP7r127Jjd69+5tnUosZK5Hq6mt6DwILCuJjY2VtzAZGRljx45tcNTypz5169atrm0zUXJzc5vcb/52sXkwqzlGo3HFihWWXMvNze2u5/ztb3/bvn37L7/8UlBQ0GRv9/z583KDperBtAYrkb9sBoOhyaOvvvqqfDsWLVrUQQWYpzX06NGjuLi4wdGSkhJ5I+Pt7d1BBTTn3XfflYUlJCQ0Pvrbb7/16NFDCNG3b19t51ugM2AMy0oMBoMQoqSkRM4pr++jjz6Kj4+X21bo9ZSVlc2ZM+f27dvmPdXV1eHh4bKruHjx4o4uoIHw8HC9Xi+E+Mtf/nL27Nn6h0pLS59//vmysjIhxNtvv63T8c+1q6NLaCXTpk2T85tCQkJiYmL8/f1tbW3Pnz+fkpJy5MgRGxsbOzu7mpoa+cvZoQwGw969ex977LHo6OghQ4ZcuHAhPj7+zJkzQojg4OAFCxZ0dAENPPjgg++9994777xTXFz86KOPvvTSS2PHju3evfuJEyc2bdokO8shISGvvfaalQtDZ6T1LV5XUVFRERAQ0ORbMGDAgK+++koObBmNxg4qwNwljI2NHTlyZOMyJk+eXF5e3kFXv6s1a9bY2TX932d4ePitW7e0KgydCoFlPdXV1XFxcaNHj+7Ro4ednV2fPn2CgoISEhIqKyvr6uqWLVsmfz9PnjzZEVc3B9bmzZtv3769evVqo9Ho6Ojo6uoaFBS0Y8eOjrjoPcnLy4uOjvb29nZ2dnZ0dBw8eHB4ePihQ4e0rgudCF9+BqAMRjEBKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwFLD/v375TM809LSWjitqKjo3XffHTVqlKurq16v79u3b3Bw8Mcff8yj7xq7fv36ypUrH3/8cYPB4ODg0L9//2eeeSYpKammpkbr0tA8rb8bBIuY19qZOHFic+fs27evuYeF+vr6FhYWWrPgTu7rr792dXVt8u/q0UcfvXDhgtYFoml8l1ABhYWFnp6etbW18o+5ubnDhg1rcE5OTk5AQMCtW7dsbGxmzpw5derUXr16/fzzz4mJiTk5OUKIP/zhD8eOHbNklYr7nvnvSggRGho6c+bM3r17//jjj5s2bfrxxx+FEJ6enseOHWsu0aAlrRMTdycf9z5ixAi5QtfChQsbnyNXx7KxsUlJSam//86dOzNnzpTv9cqVK61Vcqc2ZswY+Rfy/vvv199fWVn5zDPPyEMxMTFalYcWEFidXUVFhVxTfuPGjVu3bhVCODk5FRUV1T/np59+kr9mc+bMadxCWVmZfN7pww8/3IoC3nvvvfvp/7YTJ07IHycwMLDx0dLSUvkceoPBcOfOHeuXh5Yx6N7Zffrppzdv3nR0dJw9e/YLL7xgMBgqKyu3bNlS/5xvvvlGbsjVmxvo3r27fDpgfn4+o+/p6elyY+HChY2P9ujRY/LkyUKIkpKSX3/91aqVwQIElrVlZ2dHR0f7+vq6ubnZ29v36tXLx8cnKiqquUX3Nm7cKISYPn16r169nJyc5s6dK4TYtGlT/Q+zdDrdsGHDDAbDI4880mQjtra2csM8EGZlxcXFcXFxAQEB7u7uer2+f//+U6dO3b17t/UrsbOzGzZsWI8ePQIDA5s8Qa55IYSwsbGxYl2wjNa3eF1IVVVVWFhYc2+ETqfbvHlzg5fs27dPHv3222/lHvlgeCFEg7GqFtTU1MgFk93d3VtRdtu7hJmZmeZlpRt49tln5QNXW7Bz504L/zF7eXm1ukjJZDINHz5cCGEwGGpqatrYGtodgWU9L7/8svy98vb2Xrdu3a5du/bs2RMfH28eA9br9RcvXqz/ktDQUCGEp6enyWQy75TPhg8ICLDwunLkSwjx0ksvtaLsNgZWdna2vL+TH19u27YtPT39gw8+GDJkiGxWri/bAmsG1po1a2RTDLp3TkxrsJLLly8PGjTIZDKNGDHi0KFDDaYXREVFJSYmCiHi4+Ojo6Plzp9//nno0KEmk2nNmjV//vOfzSd/+umn4eHhQojjx4/7+fm1fN1Lly75+fkVFRXZ29ufPXvW09PzXitftWrVX/7yF1FvLXvL1dbWDh8+PC8vz9bWdteuXXLReam0tDQwMDA3N9fW1jY/P3/w4MHNNZKXl5eSkmLJ5dzc3GJiYu61SLO4uLg33nhDCOHh4XHixInOtgI2hKBLaC1ZWVmjRo1yc3PbtWtX46PHjx+Xb8eSJUvMO+Uvj52d3a+//lr/5MrKSvm5YXh4eMsXLSkp8fX1lS2vXbvWkjrb93bmu+++kye/9tprjY+mpaX16dMnMDBw//79ltTWoVavXi1LdXV1PXXqlNbloGkEVqdw9epV+dvy6quvyj2///57z549hRBTpkxpfL7MMr1ef/Xq1ebavHnzppy3JYSYMWNG/U5lC9o3sOQMMtFhSwG1l/Xr18s6+/btS1p1ZiykqpmysrJz586dPn366NGjGRkZcqfJZJIb3bp1Kykpae6169evN/+ONenKlSshISEnT54UQoSGhiYnJ1v4mZfRaFyxYkX9PQcOHMjKyhJCNNgv5yu1TE4Qc3Bw8PHxseTqmjhx4sSSJUuEEO7u7llZWV5eXlpXhOZpnZhdy40bN9asWRMYGNjcp2bR0dFtv8rp06cHDRokG5w5c2Z1dXVbWmvLoLu8xWvdp5NWY/4mwJEjR7SuBXfBPCzr+fDDDz08PJYuXXrw4MHr168LIXQ63dChQ8PCwmJjY9vrKl9//fWYMWMuXrwohHj99dc/++wze3v79mr8Xt25c6ftjaSmptpYxtvbuxXty7kjgYGBo0ePbnu16FB0Ca0kMzNTfn7v7OwcGRk5YcIEo9H40EMPOTg4CCEKCwvNwz1tkZycHBkZWVNTo9Pp/v73v8uhLg3JDwdu3rxpMpl0us74v2NFRcWNGzeEECNHjtS6FtwdgWUlsbGxdXV1QoiMjAz5RZn6Ll++3PZLJCcnR0REmEwmBweH5OTk559/vu1ttpGPj09mZmZVVdXZs2cbD2NVVFQMHjy4f//+c+fObSGvGw+rNceSYbXGNcgNns2gBALLSs6cOSOEMBgMjdNKCLF9+3a50eqnxx0+fHjevHkmk8nZ2TktLe3JJ59sdant6KmnnoqLixNCJCUlrV27tsHR9PT0oqKioqIivV7fQiNGo3HlypUdVGGfPn3qmIqoEI3H0LoM8xOssrOzGxzasmWL+SO8yMjIVjT++++/myde7tixoz3qbR+1tbVyqqper8/Kyqp/6Nq1awMHDhRCODs7X79+XaMCoRjusKxk2rRp8muAISEhMTEx/v7+tra258+fT0lJOXLkiI2NjZ2dXU1NTVlZWSsaj4+PLygoEEJ4eHjk5eW1cD+yePFi85d7rUCn033yyScTJ06srq4OCgp68cUXQ0JC9Hp9Tk7Ohg0b5ODRmjVrWtGVay/79++fMGGCEGLcuHH79+/XqgxYSuvE7CoqKirkdwAbGzBgwFdffSW7ikajsRWNP/jggxa+3ZcuXWr3H+2u0tLSunfv3rgYnU63YsUK69dTn5xiJoQYN26ctpXAEp3xg5v7krOzc1ZWVlxc3OjRo3v06GFnZ9enT5+goKCEhIT8/Pzg4ODx48cLIfLy8pp7zkxzSktLCwsLO6TodhIaGnr+/Plly5b5+fn17NnT3t5+0KBBc+fOPXbsWMcNTuG+xJefASiDOywAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsKykqqpKPhUzKiqqFS/fv3+/fHlaWloLpxUVFb377rujRo1ydXXV6/V9+/YNDg7++OOPWaG+ZVVVVT4+PjY2NuZ1att+JjqE1l9m7CoqKyvlX/iiRYta8fLnnntOvnzixInNnbNv377mltLz9fUtLCxsQ/n3s5qamtmzZ8u/qNzc3HY5Ex2EOywFFBYWmm+svv322yb/b8/JyZk6deqNGzdsbGxmzZq1ffv2jIyMzZs3y3UJc3Jynn766fLycmuWrYTKysqwsLDPPvusHc9EB9I6MbuKttxhyccHjxgxQi5Cs3DhwsbnPPHEE0IIGxublJSU+vvv3LljXhVm5cqVrf8B7kfHjx9vsG5Fc/dNlp+JDkVgWUmrA6uiokIu5bBx48atW7cKIZycnIqKiuqfI5f/E0LMmTOncQtlZWUGg0EI8fDDD7ei8rYs89Vp5efnh4eH29rayh/NvNE4hiw/E1ZAl7Cz+/TTT2/evOno6Dh79uwXXnjBYDBUVlZu2bKl/jnffPON3Jg1a1bjFrp37y6fDpifn8/ou7Ro0aKkpKTa2lohxJQpU5YuXdr2M2EFBJYGTCZTQkKCv7+/i4uLq6vr2LFj4+Pjm4uSjRs3CiGmT5/eq1cvJyenuXPnCiE2bdpUf7kKnU43bNgwg8HwyCOPNNmI+b5A/uJZX3FxcVxcXEBAgLu7u16v79+//9SpU3fv3q1JMWb9+vVLSkr64osv7vrYaMvPRMfS+havqzB3CSMiIoKCghq/EV5eXgUFBQ1eJdf4FEJ8++23co95xL3BWFULampq+vXrJ1q7AnPbu4SZmZnNrXT97LPPVlZWtvzynTt3WviP2cvLy8KSIiMj165dW1FRIf+4bt062ULjjp7lZ8IKCCwrMQeWvNkZOHBgbGxsenr6J5988sc//lEeGjp06K1bt+q/KjQ0VAjh6elpMpnMO+Wz4QMCAiy8tBz5EkK89NJLrai8jYGVnZ0tf2QbG5uZM2du27YtPT39gw8+GDJkiGxWri/bgo4IrAYsjyECS1usmmNttbW1fn5+mZmZcihdCBEREREZGZmUlHTu3Ll169YtX75c7v/555+//PJLIcT8+fPN64AJIRYtWnT48OHDhw//5z//8fPza/lyly5dWrJkiRDC3t7+7bff7pAfqXm1tbXz5s2rra21tbXdtWvXlClT5P6nn3563rx5gYGBubm5W7Zseeedd8zLlDXWoQupQjFaJ2ZXYb7DsrOzy8/Pb3D01q1bAwYMEEK4u7vX1tbKnXKheTs7u19//bVBUzLswsPDW75oSUmJnIclhFi7dq0ldbbv7cx3330nT37ttdcaH01LS+vTp09gYOD+/fstqa3jcIelCgbdrS04OFiuLVqfk5OT/IDvypUrcpSqvLxcduUmTZrk7u5e/2RHR8eIiAghxPbt269du9bchUpKSp5++umcnBwhxIwZM+R9lpX9+9//lhvz589vfDQ0NPTatWsHDhwYN26cdeuCqugSWpuc/NmYv7+/3MjNzR0+fHi3bt1KSkqaa2T9+vXr169v4SpXrlwJCQk5efKkECI0NDQ5Obl+p7IFjftfBw4ckIv3NdhvSf9LThBzcHDw8fGx5OpAywgsa+vbt2+T+82foxUXF7fxEmfOnJk0adLFixeFEDNnzkxKSrK3t7fwtUajscFagatWrZKB1Yo1BH/77TchhKurq3leBdAWdAk7i7r/WyDSwcGhLe18/fXXY8aMkWn1+uuvf/bZZ5anVbu7c+dO2xtJTU21sUyDb8/g/kNgWduNGzea3G8ejWruiQuWSE5Onjx5cllZmU6nW79+/YYNG3Q6Ld9i+eHAzZs3TSaThmXgvkGX0Npyc3Ob3J+dnS03zINZ9yo5OTkiIsJkMjk4OCQnJz///POtLLH9+Pj4ZGZmVlVVnT17tvEwVkVFxeDBg/v37z937lz5Be8mMa0BZgSWte3Zs+fmzZvmSVhSaWnptm3bhBDe3t4tzEhqweHDh+fNm2cymZydndPS0p588sl2qbaNnnrqqbi4OCFEUlLS2rVrGxxNT08vKioqKirS6/UtNNJ4WA1dFl1CaysrK5szZ87t27fNe6qrq8PDw2VXcfHixa1os7y8fM6cOXLAaOvWre2bVsuWLZNTYFrx2kmTJsk5HBs2bNi/f3/9Q7/99tubb74phHB2dg4LC2uPSnH/4w7L2gwGw969ex977LHo6OghQ4ZcuHAhPj7+zJkzQojg4OAFCxa0os34+PiCggIhhIeHR15eXgv3I4sXL7bm13d1Ot0nn3wyceLE6urqoKCgF198MSQkRK/X5+TkbNiwQWb0mjVr6MrBUppOW+1CzDPdY2NjR44c2fiNmDx5cnl5eesaf/DBBy18uy9dutS+P5cl0tLSunfv3rgYnU63YsUK69fTGDPdVUGX0NpcXFwOHjy4evVqo9Ho6Ojo6uoaFBS0Y8eOPXv2uLi4tKLB0tLSwsLCdq+zHYWGhp4/f37ZsmV+fn49e/a0t7cfNGjQ3Llzjx07xuAU7olNXavGJgDA+rjDAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMggsAMogsAAog8ACoAwCC4AyCCwAyiCwACiDwAKgDAILgDIILADKILAAKIPAAqAMAguAMv4H9m59DjRYSJ0AAAAASUVORK5CYII= | 32 | float | algebra | high school |
9,500 | 500 | 10 | Which operation is omitted in the equation as shown in the image? Choices: (A) + (B) - (C) * (D) / | iVBORw0KGgoAAAANSUhEUgAAAZAAAAGQCAIAAAAP3aGbAAATSElEQVR4nO3deWwUdePH8S096EWhLRQqAkXkKEIIaDgKBngQBAtp5EYkmghyBMFQE401ARVUFCERFY2KKB7QogYFAsXUQuUQKYdFASMohXLZIi3l6PbY3x88P57xu1C6dLs7H/p+/bfDzuy335b3TqczswEul8sBAAoa+HsAAFBTBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZAR5O8BwAMVFRU//PDD1q1bt2/fnp+ff+7cuZKSkkaNGkVHR8fFxfXs2bNv376DBg2KjY3190iBOhHgcrn8PQb7+u2337777rsff/zx8OHDp0+fvnTpUkRERHR0dNu2bXv37j148OCBAwcGBAT4YCQXL15ctmzZ0qVL8/Pzq39maGjoo48+OmfOnMTERB8M7Br7zJX9HT9+PD09ffv27b/88ktRUVFJSUl4eHhcXFznzp0HDhw4cuTINm3a+HuMduXC9WRmZiYlJd109tq3b798+fK6Hszu3bs7dOjg0bc1ODh4wYIFlZWVdT02l83myub+/PPPkSNHBgYGVjNRgYGBY8aMOXr0qL8Ha0cEy1RcXDxhwgSP6jBo0KCzZ8/W0Xi+/vrr4OBgj8ZzzeDBgy9fvlxHA3PZb65s7pNPPomIiKjhRIWFhX388cf+HrLtEKx/OX78+D333ON5GRyJiYknT570+niysrIaNmzo/nLBwcF9+/adNm3a888/P3PmzOHDh0dFRV13YMnJyU6n0+sDc9lvrmxu0aJFtzBXCxcu9PfA7YVjWP9TWFjYr1+/w4cPG8sjIyPvv//+Tp06hYWFnTt3bt++fbt3766oqDCe1qdPn5ycnOr39j1SXFzcsWPHM2fOWBcGBwenpqampqY2bdrUury8vHzlypXz5s07fvy4sZ20tLT58+d7a1RX2W2ubG7NmjVjxowxFgYEBCQlJXXu3Dk2NvbUqVO5ubkHDhxwXzc9Pd193frL38W0i6qqqqFDhxqTExUVtXjx4tLSUuPJBQUFs2bNatDAPCnEu++HTz31lLH92NjYnTt3VrNKUVHRgw8+aKwVEhJy8OBBLw7MhnNlZ3/99VdkZKTx5Y8ePfrYsWPGM3/++edevXq5T2xBQYFfRm5DBOu/3nvvPeMHpWPHjocPH65mlY0bNxq/r8XFxV25csUr4zlz5kxQ0L9OOgkJCdm2bdtNV7xy5cqAAQOMr+XJJ5/0yqiusttc2dyoUaOM6Xr11Vdv9OTy8vKpU6caz584caIvB2xnBMvlcrmKi4ubNWtm/RFJSEioydvam2++afxsrVq1yitDWrJkibHl1NTUGq5bUFDQqFEj67pNmzatqKjwysBsOFd2tnv3buOrnjZtWvWrVFZWjh071rpKgwYNvLuPrItguVxu/5eCgoJ++umnmqxYVlbWokUL67re2pcxfjUICQkpLCys+erPPPOM8f/kwIEDXhmYDefKzh577DHjnaOkpOSmaxUXFxtzNX36dB+M1v64NMfhcrneffdd65KZM2f27NmzJuuGhIQ88sgjjRs3btu27b333jtkyBBj7+PWOJ3OPXv2WJcMHz7co/PXU1JSjCUnT56s/cBsOFd2dvHixdWrV1uXzJgxw9j5va6oqKjZs2dbl3zxxRdlZWVeHp8ifxfT/3bt2mWdkNDQUL+fKJSbm2t8mz788EOPtnDixAljC6tXr679wGw4V3b27bffGt+F6o/0WeXn5xsXBmzYsKFORyuBawkda9eutT5MSUnx+zt/06ZNFy1adMyid+/eHm3h0qVLxpImTZrUfmA2nCs727Rpk/Vhu3btan7FQqtWrbp06ZKXl3dtycaNG4cNG+bN8QkiWI7s7Gzrw9GjR/tpIP/TunXr1NTU2mzB+oN+VefOnWuzwatsOFcOh2P8+PHGb161l5ycvG7dulpuxDji3q9fP49WT0pKsn4fd+7cWcvx3Abq+zGs8vJy4/evmlwWZ3/vv/++9WFiYuKdd95Zy23ernNVR1wu16+//mpd0q1bN4+20KVLF+vD/fv3V1VVeWFkyur7HtahQ4euXLly7WF8fPwdd9xhfcLevXu/+eabnJycQ4cOnTt3rmHDhi1atEhISBg6dGhKSkq7du18PuSby8jIyMzMtC6ZMmVK7Td7W85V3cnPzy8tLbUu6dSpk0dbaN++vfVhWVnZiRMnWrdu7YXB6fL3QTQ/++qrr6yzkZSUdO2ftmzZctM9iDFjxhw5csSP43e3ZcuWsLAw6yATEhIuXrxY+y3bdq7GjRvnyY98jSQnJ9dyVNu2bTO2mZeX59EW3H+vz87OruWo1NX3XwmPHDlifXj17cvpdM6YMaN///7bt2+vfvWMjIzExMSPPvqoDofoiczMzGHDhl2+fPnakqCgoBUrVoSHh9d+47fZXNW106dPG0uMHdKbMk7FcjgchYWFtRqTvvoeLOPS4piYmMuXLw8bNmzZsmU13ILT6Zw8efJzzz1XB6PzzPLly5OTk42/D7711lv9+/f3yvZtO1d1ccZ87Y+4nz171ljSuHFjj7bg/vx//vmnVmPSV9+PYRlvWeHh4RMmTMjKyrIu7NChQ58+fZo3b+50OgsKCrKzs//++29jOwsXLmzWrFkt/7RXG2lpaa+88oqxcMGCBdOnT/fWS9w2c+UbxjtHRESEp3enCA4ObtiwofV80QsXLnhncLq8/takxTgjvGXLltaHI0aM2L9/v7FKZWXl2rVr3Q+gBgYGZmVl+f5LqKioMK7/cDgcAQEBr7/+undf6DaYK18y3j+io6NvYSPGbR5ee+01r49TS30PlvttUq4KCgp65513qlnx0qVLDz/8sLFWYmKib+5KfI37hbIOhyM4OPjTTz/1+mupz5WPzZ071/r1NmvW7BY2Eh0dbd3Iyy+/7PVxaqnvx7CcTud1ly9btmzGjBnVrBgWFpaRkWEcHjp48KDXz2Cs3rPPPpuenm5dEhUVtX79+kmTJnn9tdTnysdc/7415q19AIeL+2v+W30P1nVNmDBh8uTJN31aYGDgl19+aZxD8Pbbb9fZuEzr16837p0QFxeXnZ09ePBgn41BZa58LyQkxPrQ/barNWGsFRoaWqsx6avvwTJ+qhwOR2Bg4EsvvVTD1ePj45944gnrkl27dpWUlHhncNWqqKiYPXu29R04JiYmKyure/fudfSKunPlF8YNC2+0f1q98vLyarZZD9X3YLm/ZfXq1evuu++u+RaMsxYrKiq2bt3qhZHdTHp6unFi1IoVK27tUyFqSHeu/ML4WJCr5+56tIXy8nLjljJeOZ9OWn0PlnFQ0+FwDBw40KMt9OzZ03jfMzpSR9avX299OGDAgBEjRtTpK9p2rsaPHx/gbcOHD6/lqIxPCXG5XJ7uThYXFxtL4uLiajkqdfU9WO53R/H0IuGQkBDjjGTfnI68efNm68PHH3+8rl9Rd678onnz5sYS48zbmzp16pSxxP3c9/qmvgfL/VLSW7hvVExMjPVhUVFRbYZUE6WlpcYJmX369KnrFxWdK3+56667jCUFBQUebcH9JrHGuW/1UH0PlnFBvMPhsF6IV0PWexg4fHJk1H3HJCEhoa5fVHSu/CU+Pt74nOfff//doy0Yz2/cuLGnVyPefup7sLp27WosuYWjKsYVXu7HerzOeMXIyEj3P+F5nehc+ZFxA6zrfk5qNYy7NbjPfz1U34MVHx/fpk0b6xJP7+tYVFRkHJvw9LZHt8D4XFLjnbyO2Hau7Hnxs8PhMD76aMeOHR6tbtwA47777qv9kNTV92A5HI7//Oc/1oc5OTkeHVjJyckx/lzdo0cP74zsxrp162b93+V+J5M6ojhXfmT8FXXv3r01P+6en59v3LD0RpdG1SsEy2Fc5uZ0Oj/44IOar27c4Kl9+/YenZqkhbnyyAMPPGA9ub+qqurzzz+v4borV660PoyIiPDWbYK0eX1fWo7T6YyPj7fOSXR0dA0/vSo3N9e4RuyFF16o6wH7EXPlqYkTJ1q/5FatWpWWlt50rfPnzxtnRUyZMsUHo7U/guVyuVwLFiwwOj5kyJDy8vLq17pw4YLxqU3BwcEnT570zZj9hbnyiPuNkidNmlRVVVXNKpWVlaNGjTLW2rt3r6+GbGsEy+VyuS5evNiqVSvjRyQlJaWaTxUvLCx0/6zAp59+2pfD9gvmylNDhgwxvvbZs2ff6NY65eXlU6dONZ4/duxYH4/ZtgjWf2VmZhp/enM4HAkJCZ999pnT6bQ+s6KiYtWqVe4nebds2fL8+fO+Ga1xryWHw5GWluabl3apzZXf5eXluZ9u1q9fP/edptzcXPeyR0ZGHjt2zB8Dt6MAFzfc+X9LliyZM2eO+/LY2NgBAwZcPXH5xIkT33//vfttf0NCQrZs2eLp5zPfsnnz5r344ovWJWlpafPnz/fNqzuk5soOli5dOmvWLPfl3bt37969e1xc3NmzZ/fs2bNv3z7352RkZNjkA2ttwd/FtJclS5a47zvcVGho6Lp163w5Tv/uYV2lMlc2cWv3sH/jjTf8PXB7IVimTZs2eXTFVrt27Xbs2OHjQdohWC6RubKPxYsXBwcH13CuwsPDly9f7u8h2w7Buo7i4uK5c+cal+m6a9Kkybx58y5cuOD7EdokWC6FubKVvLy85OTk6ueqQYMGKSkpdvuAXpvgGNYNOZ3ODRs2bN68ec+ePUePHr16kDgqKqp169Y9evQYOnToQw895K8bqvn9GJbBznNlQ3/88ceaNWtycnIOHTp0+vTpsrKyRo0axcTEdO3aNSkpady4ccYlULiGYAGQwaU5AGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiCDYAGQQbAAyCBYAGQQLAAyCBYAGQQLgAyCBUAGwQIgg2ABkEGwAMggWABkECwAMggWABkEC4AMggVABsECIINgAZBBsADIIFgAZBAsADIIFgAZBAuADIIFQAbBAiDj/wA5jpshaZpQBAAAAABJRU5ErkJggg== | B | multiple choice | algebra | elementary school |
9,501 | 501 | 10 | Which operation is omitted in the equation as shown in the image? Choices: (A) + (B) - (C) * (D) / | iVBORw0KGgoAAAANSUhEUgAAAlgAAAGQCAIAAAD9V4nPAAAVmklEQVR4nO3df5BVdf348UuwKwGC7DJIpfhrgMyK1MQwNEZmDEVHCTWYRjTQMcNGk4gCHfuBWEG/QHMio2KnBmjMMnAQmPjhlDSBP8lCSfkQxI/lRwsrIIvs9w++n53zOYv7e++5d1+Px3/3cPee977Pe3nu3nvOvZ1qa2tzABDVe7IeAABkSQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQhNCAEITQgBCE0IAQitS9YDgFY5duzYqlWr1q5d+5e//GXr1q379u07cODAqaee2rt37759+w4ZMuSTn/zkiBEjysvLsx4pUKhqg3nggQdaM13du3fP+jvIt4Kdserq6lmzZvXv37/RMXTt2vX2229/9dVX23wM//jHP1ozOSf1uc99rs3HWbAKZHUV4HGsqKioe6iKioo2+Tbr27lzZ9++fet2NGbMmHbaUYEL99To888/n/UQikxhztiGDRsuuuiiKVOmbN26tdE7Hzly5PHHHx88ePDMmTOPHz+eh+HRRIW5ujK3ffv2++67r733UltbO378+N27d7f3jgqfENKIApyxJ598cujQoa+99lqzvqqmpmb69OkjR448cuRIOw2M5irA1ZW5w4cPjxkzprKysr13NHv27OXLl7f3XopCrNcId+3atWPHjqxHUUwKcMZWrVo1bty4mpqa1PaSkpIhQ4Z85CMfKSsrO3DgwJYtW9auXXvgwIHU3VasWHHjjTc++eSTJSUl+RoyJ1eAqytzb7/99g033PDXv/61vXe0fv366dOnt/deikWsEG7YsCHrIRSZQpuxqqqqcePGvf3228mNJSUlkydPnjx5cp8+fZLba2pqKioqvvGNb/z73/9Obl+6dOk3v/nNGTNm5GPEzdS5c+dx48ZlPYo8KbTV1YZadhyrqqpGjx69atWq9hhSUnV19Ul/mwwr1lOjqedhRo0a1dzXVKurq7MafCYKbcYeeOCBXbt2JbeUl5c/++yzDz/8cKqCuVyupKRkwoQJL7744qc//enUP82aNeuf//xn68fzwQ9+sLkTkjRlypTUA86dO3fUqFGtH1hRKJzVVQjHcfPmzcOGDctDBXO53Be/+MXNmzfnYUfFInQIhwwZktVImqhr166dEo4dO5bnARTUjO3evfuxxx5LbiktLX3qqacuvfTSBr6qrKzsD3/4w/Dhw5Mbjx49+sMf/rA9Btl0FRUVs2bNSm65995777rrrqzGk38FtbparE2O429/+9uLL75448aNbTq0k/v1r3+dPCWVXC7Y5RNnnXVW8ntftmxZ1iNqxCmnnJIccE1NTZ4HUFAzVj9dkydPbuLXbt++/dRTT01+bZ8+fY4dO9auA27A+vXrUwd36NChR48ezWo8mSio1dUyrT+OO3fuvOmmmxr+X7oNL5/YvHlz6gchKezlE4FCuHfv3tRR37t3b9aDakS2ISy0GUv95VdaWrpnz56mf/lXvvKV1LezcePG9httAw4ePDhgwIDkSMrLy7du3ZrJYLJSaKurBVp5HA8fPvzwww/37Nnz3bJUp61CePTo0UsuuaTuYUtKSi666KLkjsKGMNBTo6nnYQYMGFBWVpbVYIpCQc3Y0aNHU+O59tprm/V+Mddff31qy3/+8582GFnzTZo06fXXX09u+dnPfnbmmWdmMpisFNTqapkWH8eDBw/Onj373HPP/frXv17/xOaRI0c2pY4tcP/99//tb3+ru/mtb33rwgsvbI8dFZ24ISzSFyTyqaBmbOPGjamT3K655ppmPcI555yT2rJ///7WDqv5fv/73y9YsCC5ZezYsaNHj87/SLJVUKurBVpzHB999NEpU6bUv3SktLR05syZS5cubY9re1auXJl8LXP48OFf/epX23wvRSrQ5ROpH7yGz7AgV2Az1qdPn9mzZ/9Pwic+8YlmPcKhQ4dSW0477bQ2G1/TVFVVTZo0Kbmlb9++c+fOzfMwCkFBra7mao/jOHz48J/85Cfnn39+64Z2cpWVlbfcckttbe2Jm717966oqHjPewL9IdSwuCEsut9A86+gZqx///6TJ09uzSO88sorqS0f+tCHWvOALTB16tTU87E/+tGP6l/40Xpjx45dtGhR2z7mqFGjlixZ0laPVlCrq7na9jh++MMf/va3v33DDTe0wchOpra29rbbbtu5c2fdlnnz5p1xxhnttLtiFCWEBw8eTF43U1pa+rGPfSyXy9XW1q5cuXLZsmVr167dtm3bvn37evbsefrpp5933nlXX331qFGjor1yU6fjzdhPf/rT5M3zzz8/z/8XrF+/ft68ecktV1xxRZzL55OKenW14XG88MIL77///tGjR3fq1KmNRncSP/7xj59++um6mxMnTrzxxhvbb3dFKdNTdfJnzZo1ye/6kksuOX78+Pz58wcNGtTA5HTq1GncuHGbN2/OatgZnjVapDP2bhYvXpwa6g9+8IM8j2HYsGHJAXTu3Pnll19up3199rOfbeAwtUwLLnh/N0W9ulp/HOfMmXPrrbc+++yz73aH1FlgrTlr9IUXXkj+NzJw4MDq6uq6f504cWJyR2HPGo0SwtQlaFdddVVqNTegpKTk+9//fibDzjCERTpjJ7VmzZr3vve9yRGeffbZb731Vj7HsHDhwtQs3X333e23uwIPYfGurvwcx7YKYXV1dfJ3i5KSkvXr1yfvIIQnRAnhLbfc0oyf+JOZMGFC/q93zjCERTpj9T3zzDPdunVLDqxLly6rV6/O5xhqamrOPffc5Bh69Oixa9eu9ttjgYewSFdX3o5jW4Xw85//fPJxvvvd76buIIQnRHmNsIFPe+nXr9+wYcPOOuuskpKSysrKTZs2rVu3rv6bmc2fP79z586p1wY6sI4xY/Pnz7/zzjtTY5szZ86nPvWpfA7jV7/61RtvvJHc8uUvfzn5gahtbuHChfX/dikcRbq68n8cW2PRokW/+MUv6m5eeeWV9d9Tgv8v6xLnw6FDhzp37lz/ex88ePCSJUveeeed1P0PHDgwa9ask54DNnfu3LYaVSH/zl6YM9Zc06ZNqz+ehx56KM/DqKmpSV3CWF5eXlVVledhFI4iXV35PI6t/4vwzTff7NWrV90jlJWVbdu2rf7d/EV4QogQPvfcc/V/hCZOnHjkyJEGvmrHjh31r1Tr2rXrSddTCxRyCAtzxpru2LFjt956a2oknTp1+t73vpfnkdTW1iZ/Kz9h5syZ+R9G4SjS1ZXP49jKENbU1AwdOjT5CE888cRJ7ymEJ4QI4aOPPppawVOnTm3KFx46dKj+WxB94QtfaJNRFXIIC3PGmuidd965+eabU2MoKSlZsGBBPodRZ/DgwcmR9OjRY9++fZmMpEAU6erK53FsZQhTz4Xccccd73ZPITwhRAjXrVv34IMPjh8//vLLLz/jjDNGjBjR9I8dePPNN1MnHJaUlLTJD0Ahh7AwZ6yJ6r8Q0rNnz+XLl+dtAEn1P17u3nvvzWQkhaMYV1eej2NrQrhq1arkW8YMGjSogROkhfCEECFspS996Uupn4HFixe3/mELOYSt1E4z1hRLlixJXZvct2/f559/Pj97r+8zn/lMcjBdunTZsmVLVoPpGDJZXXk+ji0O4Z49ez7wgQ/UfWFpaemGDRsauL8QnuC95hp35513prY888wzrX/YhQsXNnp4mnv5RBu+A1ZrtNOMNerYsWP33HNP7f++oWIulysrK/vTn/6U1VvsV1ZWPvXUU8kt11xzTepD+Giu/K+uIjqOEyZM2L59e93Nhx56KPVBS5yUEDbuggsuSJ0h/eqrr2Y1mKKQ1YwtXrz4X//6V3LLL3/5ywsuuCAPuz6p3/zmN6nz/m+//fasBtNh5H91FctxfOSRR5LBHjFiRCvfnjcOIWyS1LszV1ZWZjWSYpHJjC1dujR5c/jw4dddd10e9vtuKioqkjff9773Nfejo1ps7Nixndratddem5/BNyrPqyvD49h0r7zyypQpU+pulpeXL1iwoF3fwrQjEcImST1lL4SNymTGVqxYkbx522235WGn7+b111/fsGFDcsv48eNPev0czZXP1VUUx/Hw4cNjx449cuRI3ZbHH3/8/e9/f4ZDKi5C2CSpz8ksLS3NaiTFIv8zVl1dnfoPMXUpVZ6lXlXK5XI33XRTJiPpePK5uoriOG7YsCH1/PCJT7Ro1M9//vPkVz3xxBOpO3znO9/J77eSDSFskj179iRvtscHyHUw+Z+x1B5zudzZZ5/d3jttwB//+MfkzbPOOuviiy/OajAdTD5Xl+MYQcd/r9Hjx4/v3bt39+7du3fvrqys3L1798SJE1OXIjVq27ZtyZunn356m46xsBTpjO3fvz95s0ePHhn+4f7f//73z3/+c3JL6vz7sIprdTmOQXT8ED7yyCP33HNPcsvgwYMvv/zypj/Cnj17Nm3alNxSXJ+m3VxFOmPJi4hzuVz37t3be48NWL16deo8w+uvvz6fAyjYN90urtWV+XEkPzp+CD/60Y+mtqxevbpZP3hPP/108tK0XC6X588uyLMinbHBgwendpqh1AfPdu/ePdsXLAtHca2uYjmOvXr1atkkbNq0aefOnXU3+/Tpk7rcqH///q0dXFFo7RX5BW///v2pU7wGDhzYrEdI/ej26tUr+RHP7SqTzyMs6hkrEKlL+EeOHJn1iApFca2urI5jG35CfcO8s8wJHf9kmdNOO+2qq65KbnnttdcWL17cxC+fN2/eyy+/nNxyxx13ZPu0W3szY61UXV390ksvJbc06y+ejq2IVpfjGEfHD2HuZNeT3XfffTt27Gj0C9evX596PeOUU06p/1aHHY8Za40XX3zx+PHjyS0f//jHsxpMASqW1eU4xhEihGPGjEk9xbF9+/aRI0emzj1LWbly5ZVXXpm8RjWXy82YMSOfT5qnPqGtS5c8vaZbvDNWCF544YXUFifcJxXL6nIcA8nqOdk8W7duXeqswlwuV15e/thjj9X/ONAtW7ZMnDix/v0vu+yy+h+f3VEV3Yw9+OCDqb1Pnz49P7tOSb3u0q9fv0yGUcjys7rqv9PmrFmzmj7IDI+j1wjzrOOfNXrCpZdeOmfOnLvvvju5ce/evXfdddfUqVOvuOKK8847r1u3brt27XrppZdS76h0wjnnnPO73/2u/k9jR2XGWmzz5s3JmwMHDsxqJAWrKFaX4xhHlBDmcrlJkyYdPHhw2rRptf/33OsDBw40+ulFgwYNWrZsWce+jr4+M9Yyb7zxRvLmgAEDshpJISv81eU4xhHrt/Wvfe1rS5cuTX2GS6Nuvvnm5557Ltv368qKGWuu48ePJz8QLpfLnXnmmVkNpsAV8upyHEOJFcJcLnf11Vf//e9/nz59ellZWaN3vuyyy5YvX75o0aLevXvnYWyFyYw1S1VVVepUw379+mU1mMJXsKvLcQwl0FOjdfr06TNjxoxp06atWLFizZo169at27Fjx759+956661u3br169dv0KBBw4YNu+6661IfexaWGWu6qqqq1Bb/gTasMFeX4xhKp9qCeVcqAMi/cE+NAkCSEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhCaEAIQmhACEJoQAhDa/wOt7vznfa5uMQAAAABJRU5ErkJggg== | D | multiple choice | algebra | elementary school |