JulioContrerasH commited on
Commit
b4ef4ff
Β·
verified Β·
1 Parent(s): 85062b2
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. README.md +187 -0
  3. assets/taco.png +3 -0
  4. pathlib +3 -0
.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ pathlib filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license:
3
+ - cc-by-4.0
4
+ language:
5
+ - en
6
+ tags:
7
+ - remote-sensing
8
+ - sentinel-2
9
+ - climate-extremes
10
+ - video-compression
11
+ - deep-learning
12
+ ---
13
+
14
+ <div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">
15
+
16
+ ![Dataset Image](assets/taco.png)
17
+
18
+ <b><p>This dataset follows the TACO specification.</p></b>
19
+ </div>
20
+
21
+ <br>
22
+ <br>
23
+
24
+ # DeepExtremeCubes-video: Sentinel-2 Minicubes in Video Format for Compound-Extreme Analysis
25
+
26
+ ## Description
27
+
28
+ ### Dataset
29
+
30
+ **DeepExtremeCubes-video** is a storage-efficient, analysis-ready re-packaging of the original [DeepExtremeCubes](https://doi.org/10.5281/zenodo.1234567) collection.
31
+ All 42 k Sentinel-2 minicubes (2.56 km Γ— 2.56 km, 2016-2022, 7 bands, 5-daily cadence) have been transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** into H.265/HEVC videos, achieving \~12 Γ— lossless-perceptual compression (β‰ˆ 270 GB vs 2.3 TB) at β‰ˆ 56 dB PSNR.
32
+
33
+ This compact representation removes the prime bottleneck for training deep-learning models on spatio-temporal Earth-observation data, while preserving scientific fidelity for tasks such as:
34
+
35
+ * **Impact mapping** of compound heat-wave & drought (CHD) events
36
+ * **Forecasting** vegetation stress during extremes with ConvLSTM / U-TAE models
37
+ * **Self-supervised pre-training** on long reflectance sequences
38
+
39
+ ### Sensors used
40
+
41
+ * **Sentinel-2 MSI (Level-2A surface reflectance)** – Bands B02, B03, B04, B05, B06, B07, B8A at 10 m & 20 m (upsampled)
42
+ * **ERA5-Land single-pixel time-series** (temperature, soil moisture, etc.)
43
+ * **Copernicus DEM 30 m** (static)
44
+ * **Cloud/SCL masks** from EarthNet Cloud-Mask v1
45
+
46
+ > **Note:** All dynamic variables (bands, masks, ERA5-Land) are encoded as multi-channel videos; static rasters (DEM, land-cover) remain as compressed GeoTIFFs.
47
+
48
+ ## Creators
49
+
50
+ * Leipzig University – Remote Sensing Centre
51
+ * Image and Signal Processing group (UV) – USMILE project
52
+ * Helmholtz-Zentrum für Umweltforschung (UFZ)
53
+
54
+ ## Original dataset
55
+
56
+ | Version | DOI | Notes |
57
+ | ------------------------ | ---------------------- | ------------------------------------------------- |
58
+ | 1.0.0 | [10.25532/OPARA-703](https://doi.org/10.25532/OPARA-703) | Zarr minicubes (2.3 TB) |
59
+
60
+
61
+ ## Taco dataset
62
+
63
+ Each sample folder contains:
64
+
65
+ | File | Format | Shape | Description |
66
+ | --------------- | ------- | ----------------- | ----------------------- |
67
+ | `bands_rgb.mp4` | H.265 | T Γ— 128 Γ— 128 Γ— 3 | B04-B03-B02, 12-bit |
68
+ | `bands_ir.mp4` | H.265 | T Γ— 128 Γ— 128 Γ— 4 | B8A-B05-B06-B07, 12-bit |
69
+ | `masks.mp4` | FFV1 | T Γ— 128 Γ— 128 Γ— 3 | cloud, SCL, validity |
70
+ | `era5.zarr` | zstd | T Γ— 13 vars | ERA5-Land point series |
71
+ | `dem.tif` | GeoTIFF | 85Γ—85 | Copernicus DEM 30 m |
72
+ | `landcover.tif` | GeoTIFF | 85Γ—85 | ESA-CCI LC 300 m |
73
+
74
+ All videos use **preset = medium, tune = psnr, qp = 1-5** yielding β‰ˆ 56 dB PSNR per channel.
75
+
76
+
77
+ ### Spectral bands retained
78
+
79
+ Only the 7 Sentinel-2 bands actually present in the compressed videos are listed below.
80
+ (20 m native bands are provided *upsampled* to 10 m to match the others.)
81
+
82
+ | **idx** | **Band** | **Sentinel-2 Name** | **Central Ξ»** | **Bandwidth** | **Native Resolution** | **Status in DEC-video** |
83
+ | :-----: | :------: | :------------------ | :-----------: | :-----------: | :-------------------: | :---------------------- |
84
+ | 0 | B2 | Blue | 492 nm | 65 nm | 10 m | βœ” Included |
85
+ | 1 | B3 | Green | 560 nm | 35 nm | 10 m | βœ” Included |
86
+ | 2 | B4 | Red | 665 nm | 30 nm | 10 m | βœ” Included |
87
+ | 3 | B5 | Red-edge 1 | 704 nm | 15 nm | 20 m β†’ 10 m | βœ” Included |
88
+ | 4 | B6 | Red-edge 2 | 740 nm | 15 nm | 20 m β†’ 10 m | βœ” Included |
89
+ | 5 | B7 | Red-edge 3 | 783 nm | 20 nm | 20 m β†’ 10 m | βœ” Included |
90
+ | 6 | B8A | Narrow-NIR | 865 nm | 21 nm | 20 m β†’ 10 m | βœ” Included |
91
+
92
+ ## πŸ”„ Reproducible Example
93
+
94
+ <a target="_blank" href="https://colab.research.google.com/github/IPL-UV/xarrayvideo/blob/main/notebooks/load_deepextremecubes_video.ipynb">
95
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
96
+ </a>
97
+
98
+ ```python
99
+ import tacoreader
100
+ import xarrayvideo as xav
101
+ import xarray as xr
102
+ import matplotlib.pyplot as plt
103
+
104
+ # Load tacos
105
+ table = tacoreader.load("tacofoundation:deepextremecubes-video")
106
+
107
+ # Read a sample row
108
+ idx = 0
109
+ row = dataset.read(idx)
110
+ row_id = dataset.iloc[idx]["tortilla:id"]
111
+ ```
112
+
113
+ <center>
114
+ <img src="assets/dec_example.png" width="100%" />
115
+ </center>
116
+
117
+ ## πŸ›°οΈ Sensor Information
118
+
119
+ Sensors: **sentinel2msi**, **era5-land**, **copernicus-dem**
120
+
121
+ ## 🎯 Task
122
+
123
+ Intended tasks: **impact-mapping**, **forecasting**, **self-supervised learning**
124
+
125
+ ## πŸ“‚ Original Data Repository
126
+
127
+ Raw data: [10.25532/OPARA-703](https://doi.org/10.25532/OPARA-703)
128
+
129
+ ## πŸ’¬ Discussion
130
+
131
+ Join the conversation: [https://huggingface.co/datasets/tacofoundation/DeepExtremeCubes-video/discussions](https://huggingface.co/datasets/tacofoundation/DeepExtremeCubes-video/discussions)
132
+
133
+ ## πŸ”€ Split Strategy
134
+
135
+ All train.
136
+
137
+ ## πŸ“š Scientific Publications
138
+
139
+
140
+ ### Publication 01
141
+
142
+ - **DOI**: [10.48550/arXiv.2410.01770](https://doi.org/10.48550/arXiv.2410.01770)
143
+ - **Summary**:
144
+ DeepExtremeCubes (~40,000 Sentinel-2 minicubes from 2016–2022 with extreme-event labels, meteorology, vegetation cover, and topography) powered a convLSTM achieving RΒ² = 0.9055 for predicting reflectance and NDVI. Explainable AI on October 2020 South America heatwave–drought versus October 2019 revealed a shift from temperature and pressure predictors to evaporation and distinct latent heat anomalies
145
+ - **BibTeX Citation**:
146
+ ```bibtex
147
+ @article{pellicer2024explainable,
148
+ title = {Explainable Earth Surface Forecasting under Extreme Events},
149
+ author = {Pellicer-Valero, Oscar J and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Ji, Chaonan and Mahecha, Miguel D and Camps-Valls, Gustau},
150
+ year = 2024,
151
+ journal = {arXiv preprint arXiv:2410.01770}
152
+ }
153
+ ```
154
+
155
+ ### Publication 02
156
+ - **DOI**: [10.1038/s41597-025-04447-5](https://doi.org/10.1038/s41597-025-04447-5)
157
+ - **Summary**:
158
+ DeepExtremeCubes is a global database of over 40,000 2.5 Γ— 2.5 km minicubes combining Sentinel-2 L2A imagery, analysis-ready ERA5-Land data and extreme-event flags, plus land cover and topography (2016–2022). Designed to improve accessibility, reproducibility and support machine learning forecasting of ecosystem responses to compound heatwave and drought extremes, focusing on persistent natural vegetation.
159
+ - **BibTeX Citation**:
160
+ ```bibtex
161
+ @article{ji2025deepextremecubes,
162
+ title = {DeepExtremeCubes: Earth system spatio-temporal data for assessing compound heatwave and drought impacts},
163
+ author = {Ji, Chaonan and Fincke, Tonio and Benson, Vitus and Camps-Valls, Gustau and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Gans, Fabian and Kraemer, Guido and Martinuzzi, Francesco and Montero, David and Mora, Karin and others},
164
+ year = 2025,
165
+ journal = {Scientific Data},
166
+ publisher = {Nature Publishing Group UK London},
167
+ volume = 12,
168
+ number = 1,
169
+ pages = 149
170
+ }
171
+ ```
172
+
173
+ ## 🀝 Data Providers
174
+
175
+ | Name | Role | URL |
176
+ | --------------------------- | ----------- | ------------------------------------------------------------------------ |
177
+ | European Space Agency (ESA) | producer | [SENTINEL ESA](https://sentinel.esa.int/) |
178
+ | ECMWF | producer | [CLIMATE COPERNICUS](https://cds.climate.copernicus.eu/) |
179
+ | Copernicus DEM | contributor | [LAND COPERNICUS](https://land.copernicus.eu/) | |
180
+
181
+ ## πŸ§‘β€πŸ”¬ Curators
182
+
183
+ | Name | Organization | URL |
184
+ | ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- |
185
+ | Oscar J. Pellicer-Valero | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.com/citations?user=CCFJshwAAAAJ&hl=en) |
186
+ | Cesar Aybar | Image Signal Processing (ISP) | [Google Scholar](https://scholar.google.es/citations?user=rfF51ocAAAAJ&hl=es) |
187
+ | Julio Contreras | Image Signal Processing (ISP) | [GitHub](https://github.com/JulioContrerasH) |
assets/taco.png ADDED

Git LFS Details

  • SHA256: 1a366084d37e267d37523c1af429982fc9c218aa1ea45e75e7324be98c526aea
  • Pointer size: 130 Bytes
  • Size of remote file: 61.4 kB
pathlib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74418b156ccfcb9a2df7aca916d1f4bab5875758eeb99d1f4ca4bd595246e907
3
+ size 12606832