Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
image

Dataset Image

This dataset follows the TACO specification.


DeepExtremeCubes-video: Sentinel-2 Minicubes in Video Format for Compound-Extreme Analysis

๐Ÿ“ Description

๐Ÿ“ฆ Dataset

DeepExtremeCubes-video is a storage-efficient, analysis-ready re-packaging of the original DeepExtremeCubes collection. All 42 k Sentinel-2 minicubes (2.56 km ร— 2.56 km, 2016-2022, 7 bands, 5-daily cadence) have been transcoded with xarrayvideo into H.265/HEVC videos, achieving ~12 ร— lossless-perceptual compression (โ‰ˆ 270 GB vs 2.3 TB) at โ‰ˆ 56 dB PSNR.

This compact representation removes the prime bottleneck for training deep-learning models on spatio-temporal Earth-observation data, while preserving scientific fidelity for tasks such as:

  • Impact mapping of compound heat-wave & drought (CHD) events
  • Forecasting vegetation stress during extremes with ConvLSTM / U-TAE models
  • Self-supervised pre-training on long reflectance sequences

๐Ÿ›ฐ๏ธ Sensors

  • Sentinel-2 MSI (Level-2A surface reflectance) โ€“ Bands B02, B03, B04, B05, B06, B07, B8A at 10 m & 20 m (upsampled)
  • ERA5-Land single-pixel time-series (temperature, soil moisture, etc.)
  • Copernicus DEM 30 m (static)
  • Cloud/SCL masks from EarthNet Cloud-Mask v1

Note: All dynamic variables (bands, masks, ERA5-Land) are encoded as multi-channel videos; static rasters (DEM, land-cover) remain as compressed GeoTIFFs.

๐Ÿ‘ค Creators

  • Leipzig University โ€“ Remote Sensing Centre
  • Image and Signal Processing group (UV) โ€“ USMILE project
  • Helmholtz-Zentrum fuฬˆr Umweltforschung (UFZ)

๐Ÿ“‚ Original dataset

Version DOI Notes
1.0.0 10.25532/OPARA-703 Zarr minicubes (2.3 TB)

๐ŸŒฎ Taco dataset

Each sample folder contains:

File Format Shape Description
bands_rgb.mp4 H.265 T ร— 128 ร— 128 ร— 3 B04-B03-B02, 12-bit
bands_ir.mp4 H.265 T ร— 128 ร— 128 ร— 4 B8A-B05-B06-B07, 12-bit
masks.mp4 FFV1 T ร— 128 ร— 128 ร— 3 cloud, SCL, validity
era5.zarr zstd T ร— 13 vars ERA5-Land point series
dem.tif GeoTIFF 85ร—85 Copernicus DEM 30 m
landcover.tif GeoTIFF 85ร—85 ESA-CCI LC 300 m

All videos use preset = medium, tune = psnr, qp = 1-5 yielding โ‰ˆ 56 dB PSNR per channel.

โšก Reproducible Example

Open In Colab
import tacoreader
import xarrayvideo as xav
import xarray as xr
import matplotlib.pyplot as plt

# Load tacos
table = tacoreader.load("tacofoundation:deepextremecubes-video")

# Read a sample row
idx = 0
row = dataset.read(idx)
row_id = dataset.iloc[idx]["tortilla:id"]

๐Ÿ›ฐ๏ธ Sensor Information

Sensors: sentinel2msi, era5-land, copernicus-dem

๐ŸŽฏ Task

Intended tasks: impact-mapping, forecasting, self-supervised learning

๐Ÿ“‚ Original Data Repository

Raw data: 10.25532/OPARA-703

๐Ÿ’ฌ Discussion

Join the conversation: https://huggingface.co/datasets/tacofoundation/DeepExtremeCubes-video/discussions

๐Ÿ”€ Split Strategy

All train.

๐Ÿ“š Scientific Publications

Publication 01

  • DOI: 10.48550/arXiv.2410.01770
  • Summary: DeepExtremeCubes (~40,000 Sentinel-2 minicubes from 2016โ€“2022 with extreme-event labels, meteorology, vegetation cover, and topography) powered a convLSTM achieving Rยฒ = 0.9055 for predicting reflectance and NDVI. Explainable AI on October 2020 South America heatwaveโ€“drought versus October 2019 revealed a shift from temperature and pressure predictors to evaporation and distinct latent heat anomalies
  • BibTeX Citation:
@article{pellicer2024explainable,
    title        = {Explainable Earth Surface Forecasting under Extreme Events},
    author       = {Pellicer-Valero, Oscar J and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Ji, Chaonan and Mahecha, Miguel D and Camps-Valls, Gustau},
    year         = 2024,
    journal      = {arXiv preprint arXiv:2410.01770}
}

Publication 02

  • DOI: 10.1038/s41597-025-04447-5

  • Summary: DeepExtremeCubes is a global database of over 40,000 2.5 ร— 2.5 km minicubes combining Sentinel-2 L2A imagery, analysis-ready ERA5-Land data and extreme-event flags, plus land cover and topography (2016โ€“2022). Designed to improve accessibility, reproducibility and support machine learning forecasting of ecosystem responses to compound heatwave and drought extremes, focusing on persistent natural vegetation.

  • BibTeX Citation:

@article{ji2025deepextremecubes,
    title        = {DeepExtremeCubes: Earth system spatio-temporal data for assessing compound heatwave and drought impacts},
    author       = {Ji, Chaonan and Fincke, Tonio and Benson, Vitus and Camps-Valls, Gustau and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Gans, Fabian and Kraemer, Guido and Martinuzzi, Francesco and Montero, David and Mora, Karin and others},
    year         = 2025,
    journal      = {Scientific Data},
    publisher    = {Nature Publishing Group UK London},
    volume       = 12,
    number       = 1,
    pages        = 149
}

๐Ÿค Data Providers

Name Role URL
European Space Agency (ESA) producer SENTINEL ESA
ECMWF producer CLIMATE COPERNICUS
Copernicus DEM contributor LAND COPERNICUS

๐Ÿง‘โ€๐Ÿ”ฌ Curators

Name Organization URL
Oscar J. Pellicer-Valero Image Signal Processing (ISP) Google Scholar
Cesar Aybar Image Signal Processing (ISP) Google Scholar
Julio Contreras Image Signal Processing (ISP) GitHub
Downloads last month
70