Datasets:
image
image |
---|
DeepExtremeCubes-video: Sentinel-2 Minicubes in Video Format for Compound-Extreme Analysis
๐ Description
๐ฆ Dataset
DeepExtremeCubes-video is a storage-efficient, analysis-ready re-packaging of the original DeepExtremeCubes collection. All 42 k Sentinel-2 minicubes (2.56 km ร 2.56 km, 2016-2022, 7 bands, 5-daily cadence) have been transcoded with xarrayvideo into H.265/HEVC videos, achieving ~12 ร lossless-perceptual compression (โ 270 GB vs 2.3 TB) at โ 56 dB PSNR.
This compact representation removes the prime bottleneck for training deep-learning models on spatio-temporal Earth-observation data, while preserving scientific fidelity for tasks such as:
- Impact mapping of compound heat-wave & drought (CHD) events
- Forecasting vegetation stress during extremes with ConvLSTM / U-TAE models
- Self-supervised pre-training on long reflectance sequences
๐ฐ๏ธ Sensors
- Sentinel-2 MSI (Level-2A surface reflectance) โ Bands B02, B03, B04, B05, B06, B07, B8A at 10 m & 20 m (upsampled)
- ERA5-Land single-pixel time-series (temperature, soil moisture, etc.)
- Copernicus DEM 30 m (static)
- Cloud/SCL masks from EarthNet Cloud-Mask v1
Note: All dynamic variables (bands, masks, ERA5-Land) are encoded as multi-channel videos; static rasters (DEM, land-cover) remain as compressed GeoTIFFs.
๐ค Creators
- Leipzig University โ Remote Sensing Centre
- Image and Signal Processing group (UV) โ USMILE project
- Helmholtz-Zentrum fuฬr Umweltforschung (UFZ)
๐ Original dataset
Version | DOI | Notes |
---|---|---|
1.0.0 | 10.25532/OPARA-703 | Zarr minicubes (2.3 TB) |
๐ฎ Taco dataset
Each sample folder contains:
File | Format | Shape | Description |
---|---|---|---|
bands_rgb.mp4 |
H.265 | T ร 128 ร 128 ร 3 | B04-B03-B02, 12-bit |
bands_ir.mp4 |
H.265 | T ร 128 ร 128 ร 4 | B8A-B05-B06-B07, 12-bit |
masks.mp4 |
FFV1 | T ร 128 ร 128 ร 3 | cloud, SCL, validity |
era5.zarr |
zstd | T ร 13 vars | ERA5-Land point series |
dem.tif |
GeoTIFF | 85ร85 | Copernicus DEM 30 m |
landcover.tif |
GeoTIFF | 85ร85 | ESA-CCI LC 300 m |
All videos use preset = medium, tune = psnr, qp = 1-5 yielding โ 56 dB PSNR per channel.
โก Reproducible Example
import tacoreader
import xarrayvideo as xav
import xarray as xr
import matplotlib.pyplot as plt
# Load tacos
table = tacoreader.load("tacofoundation:deepextremecubes-video")
# Read a sample row
idx = 0
row = dataset.read(idx)
row_id = dataset.iloc[idx]["tortilla:id"]

๐ฐ๏ธ Sensor Information
Sensors: sentinel2msi, era5-land, copernicus-dem
๐ฏ Task
Intended tasks: impact-mapping, forecasting, self-supervised learning
๐ Original Data Repository
Raw data: 10.25532/OPARA-703
๐ฌ Discussion
Join the conversation: https://huggingface.co/datasets/tacofoundation/DeepExtremeCubes-video/discussions
๐ Split Strategy
All train.
๐ Scientific Publications
Publication 01
- DOI: 10.48550/arXiv.2410.01770
- Summary: DeepExtremeCubes (~40,000 Sentinel-2 minicubes from 2016โ2022 with extreme-event labels, meteorology, vegetation cover, and topography) powered a convLSTM achieving Rยฒ = 0.9055 for predicting reflectance and NDVI. Explainable AI on October 2020 South America heatwaveโdrought versus October 2019 revealed a shift from temperature and pressure predictors to evaporation and distinct latent heat anomalies
- BibTeX Citation:
@article{pellicer2024explainable,
title = {Explainable Earth Surface Forecasting under Extreme Events},
author = {Pellicer-Valero, Oscar J and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Ji, Chaonan and Mahecha, Miguel D and Camps-Valls, Gustau},
year = 2024,
journal = {arXiv preprint arXiv:2410.01770}
}
Publication 02
Summary: DeepExtremeCubes is a global database of over 40,000 2.5 ร 2.5 km minicubes combining Sentinel-2 L2A imagery, analysis-ready ERA5-Land data and extreme-event flags, plus land cover and topography (2016โ2022). Designed to improve accessibility, reproducibility and support machine learning forecasting of ecosystem responses to compound heatwave and drought extremes, focusing on persistent natural vegetation.
BibTeX Citation:
@article{ji2025deepextremecubes,
title = {DeepExtremeCubes: Earth system spatio-temporal data for assessing compound heatwave and drought impacts},
author = {Ji, Chaonan and Fincke, Tonio and Benson, Vitus and Camps-Valls, Gustau and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Gans, Fabian and Kraemer, Guido and Martinuzzi, Francesco and Montero, David and Mora, Karin and others},
year = 2025,
journal = {Scientific Data},
publisher = {Nature Publishing Group UK London},
volume = 12,
number = 1,
pages = 149
}
๐ค Data Providers
Name | Role | URL |
---|---|---|
European Space Agency (ESA) | producer | SENTINEL ESA |
ECMWF | producer | CLIMATE COPERNICUS |
Copernicus DEM | contributor | LAND COPERNICUS |
๐งโ๐ฌ Curators
Name | Organization | URL |
---|---|---|
Oscar J. Pellicer-Valero | Image Signal Processing (ISP) | Google Scholar |
Cesar Aybar | Image Signal Processing (ISP) | Google Scholar |
Julio Contreras | Image Signal Processing (ISP) | GitHub |
- Downloads last month
- 70