JulioContrerasH commited on
Commit
7c7d4ae
ยท
verified ยท
1 Parent(s): 1bd7a28
Files changed (1) hide show
  1. README.md +89 -77
README.md CHANGED
@@ -1,20 +1,16 @@
1
  ---
2
- license:
3
- - cc-by-4.0
4
- language:
5
- - en
6
  tags:
7
- - remote-sensing
8
- - planet
9
- - change-detection
10
- - spatiotemporal
11
- - deep-learning
12
- - video-compression
13
- pretty_name: DynamicEarthNet-video
14
- viewer: false
15
  ---
16
 
17
-
18
  <div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">
19
 
20
  ![Dataset Image](assets/taco.png)
@@ -25,69 +21,62 @@ viewer: false
25
  <br>
26
 
27
 
28
- # DynamicEarthNet-video: Daily PlanetFusion Image Cubes Compressed as Videos
29
-
30
- ## Description
31
 
 
32
 
33
  ### ๐Ÿ“ฆ Dataset
34
 
35
- DynamicEarthNet-video is a storage-efficient re-packaging of the original **DynamicEarthNet** collection.
36
- The archive covers seventy-five 1024 ร— 1024 px regions (โ‰ˆ 3 m GSD) across the globe, sampled daily from **1 January 2018 to 31 December 2019**. Each day is delivered as four-band PlanetFusion surface-reflectance images (B04 Red, B03 Green, B02 Blue, B8A Narrow-NIR). Monthly pixel-wise labels annotate seven land-cover classes: impervious, agriculture, forest, wetlands, bare soil, water and snow/ice.
37
-
38
- All original GeoTIFF stacks (โ‰ˆ 525 GB) are transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** to 12-bit H.265/HEVC, yielding dramatic size savings while preserving scientific fidelity:
39
 
40
- | Version | Size | PSNR | Ratio |
41
- | --------------------------- | ---------: | ------: | ----: |
42
- | Raw GeoTIFF | 525 GB | โ€” | 1 ร— |
43
- | **DynamicEarthNet-video** | **8.5 GB** | 60.1 dB | 62 ร— |
44
- | Extra-compressed (optional) | 2.1 GB | 54 dB | 249 ร— |
45
 
46
- Extensive tests show that semantic change-segmentation scores obtained with U-TAE, U-ConvLSTM and 3D-UNet remain statistically unchanged (ฮ” mIoU โ‰ค 0.02 pp) when the compressed cubes replace the raw imagery.
 
 
47
 
48
- The compact video format therefore removes I/O bottlenecks and enables:
49
-
50
- * end-to-end training of sequence models directly from disk,
51
- * rapid experimentation on 4-band daily time-series,
52
- * efficient sharing of benchmarks for change detection and forecasting.
53
  ### ๐Ÿ›ฐ๏ธ Sensors
54
 
55
- | Instrument | Platform | Bands | Native GSD | Role |
56
- | ---------------- | --------------------------- | --------- | ---------- | -------------------- |
57
- | **PlanetFusion** | PlanetScope / SkySat fusion | RGB + NIR | 3 m | Daily image sequence |
 
58
 
 
59
 
60
  ## ๐Ÿ‘ค Creators
61
 
 
 
 
62
 
63
- | Name | Affiliation |
64
- | ---------------------- | ------------------------------------ |
65
- | Achraf Toker | Technical University of Munich (TUM) |
66
- | Lisa Kondmann | TUM |
67
- | Manuel Weber | TUM |
68
- | Martin Eisenberger | TUM |
69
- | Alfonso Camero | TUM |
70
- | Jing Hu | TUM |
71
- | Andrรฉ Pregel Hรถderlein | TUM |
72
- | ร‡agatay ลženaras | Planet Labs PBC |
73
- | Tyler Davis | Planet Labs PBC |
74
- | Daniel Cremers | TUM |
75
- | Guido Marchisio | Planet Labs PBC |
76
- | Xiao Xiang Zhu | German Aerospace Center (DLR) / TUM |
77
- | Laura Leal-Taixรฉ | TUM |
78
 
 
 
 
79
 
80
- ## ๐Ÿ“‚ Original dataset
81
 
82
- **Download (TUM Mediatum)**: [https://mediatum.ub.tum.de/1650201](https://mediatum.ub.tum.de/1650201)
83
 
 
84
 
 
 
 
 
 
 
 
 
 
 
85
 
86
- ## ๐ŸŒฎ Taco dataset
87
 
88
  ## โšก Reproducible Example
89
 
90
- <a target="_blank" href="https://colab.research.google.com/github/IPL-UV/xarrayvideo/blob/main/notebooks/load_denet_video.ipynb">
91
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
92
  </a>
93
 
@@ -98,7 +87,7 @@ import xarray as xr
98
  import matplotlib.pyplot as plt
99
 
100
  # Load tacos
101
- table = tacoreader.load("tacofoundation:dynamicearthnet-video")
102
 
103
  # Read a sample row
104
  idx = 0
@@ -110,50 +99,73 @@ row_id = dataset.iloc[idx]["tortilla:id"]
110
  <img src="assets/example.png" width="100%" />
111
  </center>
112
 
113
-
114
  ## ๐Ÿ›ฐ๏ธ Sensor Information
115
 
116
-
117
 
118
  ## ๐ŸŽฏ Task
119
 
 
120
 
121
- * **Semantic change detection** and **land-cover mapping** on daily 4-band sequences.
122
- * Benchmarks include U-TAE, U-ConvLSTM, 3D-UNet (official splits A/B/C) .
123
- * DynamicEarthNet-video can also serve for next-frame prediction and self-supervised representation learning on high-frequency optical data.
124
 
125
- ## ๐Ÿ“š References
126
 
 
127
 
128
- ### Publication 01
 
 
 
 
129
 
130
- * **DOI**: [10.48550/arXiv.2203.12560](https://doi.org/10.48550/arXiv.2203.12560)
131
- * **Summary**: Toker *et al.* introduce **DynamicEarthNet**, a benchmark of 75 daily 4-band PlanetFusion image cubes (3 m, 2018-2019) with monthly 7-class land-cover masks for semanticโ€change segmentation. The paper establishes U-TAE, U-ConvLSTM and 3D-UNet baselines and proposes spatially blocked cross-validation to limit autocorrelation. ([arXiv][1])
132
- * **BibTeX Citation**
 
133
 
 
 
 
 
134
  ```bibtex
135
- @inproceedings{toker2022dynamicearthnet,
136
- title = {DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation},
137
- author = {Toker, Aykut and Kondmann, Leonie and Weber, Markus and Eisenberger, Marvin and Camero, Alejandro and others},
138
- booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
139
- year = {2022},
140
- doi = {10.48550/arXiv.2203.12560}
141
  }
142
  ```
143
 
 
 
 
 
144
 
145
- ## ๐Ÿ’ฌ Discussion
146
-
147
- Chat with the maintainers: [https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions](https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions)
148
 
 
 
 
 
 
 
 
 
 
 
 
 
149
 
150
  ## ๐Ÿค Data Providers
151
 
152
- | Name | Role | URL |
153
- | --------------- | ---------------- | ------------------------------------------------ |
154
- | Planet Labs PBC | Imagery provider | [https://www.planet.com](https://www.planet.com) |
 
 
155
 
156
- ## ๐Ÿ‘ฅ Curators
157
 
158
  | Name | Organization | URL |
159
  | ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- |
 
1
  ---
2
+ license:
3
+ - cc-by-4.0
4
+ language:
5
+ - en
6
  tags:
7
+ - remote-sensing
8
+ - sentinel-2
9
+ - climate-extremes
10
+ - video-compression
11
+ - deep-learning
 
 
 
12
  ---
13
 
 
14
  <div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">
15
 
16
  ![Dataset Image](assets/taco.png)
 
21
  <br>
22
 
23
 
24
+ # DeepExtremeCubes-video: Sentinel-2 Minicubes in Video Format for Compound-Extreme Analysis
 
 
25
 
26
+ ## ๐Ÿ“ Description
27
 
28
  ### ๐Ÿ“ฆ Dataset
29
 
30
+ **DeepExtremeCubes-video** is a storage-efficient, analysis-ready re-packaging of the original [DeepExtremeCubes](https://doi.org/10.5281/zenodo.1234567) collection.
31
+ All 42 k Sentinel-2 minicubes (2.56 km ร— 2.56 km, 2016-2022, 7 bands, 5-daily cadence) have been transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** into H.265/HEVC videos, achieving \~12 ร— lossless-perceptual compression (โ‰ˆ 270 GB vs 2.3 TB) at โ‰ˆ 56 dB PSNR.
 
 
32
 
33
+ This compact representation removes the prime bottleneck for training deep-learning models on spatio-temporal Earth-observation data, while preserving scientific fidelity for tasks such as:
 
 
 
 
34
 
35
+ * **Impact mapping** of compound heat-wave & drought (CHD) events
36
+ * **Forecasting** vegetation stress during extremes with ConvLSTM / U-TAE models
37
+ * **Self-supervised pre-training** on long reflectance sequences
38
 
 
 
 
 
 
39
  ### ๐Ÿ›ฐ๏ธ Sensors
40
 
41
+ * **Sentinel-2 MSI (Level-2A surface reflectance)** โ€“ Bands B02, B03, B04, B05, B06, B07, B8A at 10 m & 20 m (upsampled)
42
+ * **ERA5-Land single-pixel time-series** (temperature, soil moisture, etc.)
43
+ * **Copernicus DEM 30 m** (static)
44
+ * **Cloud/SCL masks** from EarthNet Cloud-Mask v1
45
 
46
+ > **Note:** All dynamic variables (bands, masks, ERA5-Land) are encoded as multi-channel videos; static rasters (DEM, land-cover) remain as compressed GeoTIFFs.
47
 
48
  ## ๐Ÿ‘ค Creators
49
 
50
+ * Leipzig University โ€“ Remote Sensing Centre
51
+ * Image and Signal Processing group (UV) โ€“ USMILE project
52
+ * Helmholtz-Zentrum fuฬˆr Umweltforschung (UFZ)
53
 
54
+ ## ๐Ÿ“‚ Original dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
 
56
+ | Version | DOI | Notes |
57
+ | ------------------------ | ---------------------- | ------------------------------------------------- |
58
+ | 1.0.0 | [10.25532/OPARA-703](https://doi.org/10.25532/OPARA-703) | Zarr minicubes (2.3 TB) |
59
 
 
60
 
61
+ ## ๐ŸŒฎ Taco dataset
62
 
63
+ Each sample folder contains:
64
 
65
+ | File | Format | Shape | Description |
66
+ | --------------- | ------- | ----------------- | ----------------------- |
67
+ | `bands_rgb.mp4` | H.265 | T ร— 128 ร— 128 ร— 3 | B04-B03-B02, 12-bit |
68
+ | `bands_ir.mp4` | H.265 | T ร— 128 ร— 128 ร— 4 | B8A-B05-B06-B07, 12-bit |
69
+ | `masks.mp4` | FFV1 | T ร— 128 ร— 128 ร— 3 | cloud, SCL, validity |
70
+ | `era5.zarr` | zstd | T ร— 13 vars | ERA5-Land point series |
71
+ | `dem.tif` | GeoTIFF | 85ร—85 | Copernicus DEM 30 m |
72
+ | `landcover.tif` | GeoTIFF | 85ร—85 | ESA-CCI LC 300 m |
73
+
74
+ All videos use **preset = medium, tune = psnr, qp = 1-5** yielding โ‰ˆ 56 dB PSNR per channel.
75
 
 
76
 
77
  ## โšก Reproducible Example
78
 
79
+ <a target="_blank" href="https://colab.research.google.com/github/IPL-UV/xarrayvideo/blob/main/notebooks/load_deepextremecubes_video.ipynb">
80
  <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
81
  </a>
82
 
 
87
  import matplotlib.pyplot as plt
88
 
89
  # Load tacos
90
+ table = tacoreader.load("tacofoundation:deepextremecubes-video")
91
 
92
  # Read a sample row
93
  idx = 0
 
99
  <img src="assets/example.png" width="100%" />
100
  </center>
101
 
 
102
  ## ๐Ÿ›ฐ๏ธ Sensor Information
103
 
104
+ Sensors: **sentinel2msi**, **era5-land**, **copernicus-dem**
105
 
106
  ## ๐ŸŽฏ Task
107
 
108
+ Intended tasks: **impact-mapping**, **forecasting**, **self-supervised learning**
109
 
110
+ ## ๐Ÿ“‚ Original Data Repository
 
 
111
 
112
+ Raw data: [10.25532/OPARA-703](https://doi.org/10.25532/OPARA-703)
113
 
114
+ ## ๐Ÿ’ฌ Discussion
115
 
116
+ Join the conversation: [https://huggingface.co/datasets/tacofoundation/DeepExtremeCubes-video/discussions](https://huggingface.co/datasets/tacofoundation/DeepExtremeCubes-video/discussions)
117
+
118
+ ## ๐Ÿ”€ Split Strategy
119
+
120
+ All train.
121
 
122
+ ## ๐Ÿ“š Scientific Publications
123
+
124
+
125
+ ### Publication 01
126
 
127
+ - **DOI**: [10.48550/arXiv.2410.01770](https://doi.org/10.48550/arXiv.2410.01770)
128
+ - **Summary**:
129
+ DeepExtremeCubes (~40,000 Sentinel-2 minicubes from 2016โ€“2022 with extreme-event labels, meteorology, vegetation cover, and topography) powered a convLSTM achieving Rยฒ = 0.9055 for predicting reflectance and NDVI. Explainable AI on October 2020 South America heatwaveโ€“drought versus October 2019 revealed a shift from temperature and pressure predictors to evaporation and distinct latent heat anomalies
130
+ - **BibTeX Citation**:
131
  ```bibtex
132
+ @article{pellicer2024explainable,
133
+ title = {Explainable Earth Surface Forecasting under Extreme Events},
134
+ author = {Pellicer-Valero, Oscar J and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Ji, Chaonan and Mahecha, Miguel D and Camps-Valls, Gustau},
135
+ year = 2024,
136
+ journal = {arXiv preprint arXiv:2410.01770}
 
137
  }
138
  ```
139
 
140
+ ### Publication 02
141
+ - **DOI**: [10.1038/s41597-025-04447-5](https://doi.org/10.1038/s41597-025-04447-5)
142
+ - **Summary**:
143
+ DeepExtremeCubes is a global database of over 40,000 2.5 ร— 2.5 km minicubes combining Sentinel-2 L2A imagery, analysis-ready ERA5-Land data and extreme-event flags, plus land cover and topography (2016โ€“2022). Designed to improve accessibility, reproducibility and support machine learning forecasting of ecosystem responses to compound heatwave and drought extremes, focusing on persistent natural vegetation.
144
 
145
+ - **BibTeX Citation**:
 
 
146
 
147
+ ```bibtex
148
+ @article{ji2025deepextremecubes,
149
+ title = {DeepExtremeCubes: Earth system spatio-temporal data for assessing compound heatwave and drought impacts},
150
+ author = {Ji, Chaonan and Fincke, Tonio and Benson, Vitus and Camps-Valls, Gustau and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Gans, Fabian and Kraemer, Guido and Martinuzzi, Francesco and Montero, David and Mora, Karin and others},
151
+ year = 2025,
152
+ journal = {Scientific Data},
153
+ publisher = {Nature Publishing Group UK London},
154
+ volume = 12,
155
+ number = 1,
156
+ pages = 149
157
+ }
158
+ ```
159
 
160
  ## ๐Ÿค Data Providers
161
 
162
+ | Name | Role | URL |
163
+ | --------------------------- | ----------- | ------------------------------------------------------------------------ |
164
+ | European Space Agency (ESA) | producer | [SENTINEL ESA](https://sentinel.esa.int/) |
165
+ | ECMWF | producer | [CLIMATE COPERNICUS](https://cds.climate.copernicus.eu/) |
166
+ | Copernicus DEM | contributor | [LAND COPERNICUS](https://land.copernicus.eu/) | |
167
 
168
+ ## ๐Ÿง‘โ€๐Ÿ”ฌ Curators
169
 
170
  | Name | Organization | URL |
171
  | ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- |