Datasets:
Upload
Browse files
README.md
CHANGED
@@ -1,20 +1,16 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
|
4 |
-
language:
|
5 |
-
|
6 |
tags:
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
- video-compression
|
13 |
-
pretty_name: DynamicEarthNet-video
|
14 |
-
viewer: false
|
15 |
---
|
16 |
|
17 |
-
|
18 |
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">
|
19 |
|
20 |

|
@@ -25,69 +21,62 @@ viewer: false
|
|
25 |
<br>
|
26 |
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
## Description
|
31 |
|
|
|
32 |
|
33 |
### ๐ฆ Dataset
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
All original GeoTIFF stacks (โ 525 GB) are transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** to 12-bit H.265/HEVC, yielding dramatic size savings while preserving scientific fidelity:
|
39 |
|
40 |
-
|
41 |
-
| --------------------------- | ---------: | ------: | ----: |
|
42 |
-
| Raw GeoTIFF | 525 GB | โ | 1 ร |
|
43 |
-
| **DynamicEarthNet-video** | **8.5 GB** | 60.1 dB | 62 ร |
|
44 |
-
| Extra-compressed (optional) | 2.1 GB | 54 dB | 249 ร |
|
45 |
|
46 |
-
|
|
|
|
|
47 |
|
48 |
-
The compact video format therefore removes I/O bottlenecks and enables:
|
49 |
-
|
50 |
-
* end-to-end training of sequence models directly from disk,
|
51 |
-
* rapid experimentation on 4-band daily time-series,
|
52 |
-
* efficient sharing of benchmarks for change detection and forecasting.
|
53 |
### ๐ฐ๏ธ Sensors
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
|
|
|
59 |
|
60 |
## ๐ค Creators
|
61 |
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
| ---------------------- | ------------------------------------ |
|
65 |
-
| Achraf Toker | Technical University of Munich (TUM) |
|
66 |
-
| Lisa Kondmann | TUM |
|
67 |
-
| Manuel Weber | TUM |
|
68 |
-
| Martin Eisenberger | TUM |
|
69 |
-
| Alfonso Camero | TUM |
|
70 |
-
| Jing Hu | TUM |
|
71 |
-
| Andrรฉ Pregel Hรถderlein | TUM |
|
72 |
-
| รagatay ลenaras | Planet Labs PBC |
|
73 |
-
| Tyler Davis | Planet Labs PBC |
|
74 |
-
| Daniel Cremers | TUM |
|
75 |
-
| Guido Marchisio | Planet Labs PBC |
|
76 |
-
| Xiao Xiang Zhu | German Aerospace Center (DLR) / TUM |
|
77 |
-
| Laura Leal-Taixรฉ | TUM |
|
78 |
|
|
|
|
|
|
|
79 |
|
80 |
-
## ๐ Original dataset
|
81 |
|
82 |
-
|
83 |
|
|
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
-
## ๐ฎ Taco dataset
|
87 |
|
88 |
## โก Reproducible Example
|
89 |
|
90 |
-
<a target="_blank" href="https://colab.research.google.com/github/IPL-UV/xarrayvideo/blob/main/notebooks/
|
91 |
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
92 |
</a>
|
93 |
|
@@ -98,7 +87,7 @@ import xarray as xr
|
|
98 |
import matplotlib.pyplot as plt
|
99 |
|
100 |
# Load tacos
|
101 |
-
table = tacoreader.load("tacofoundation:
|
102 |
|
103 |
# Read a sample row
|
104 |
idx = 0
|
@@ -110,50 +99,73 @@ row_id = dataset.iloc[idx]["tortilla:id"]
|
|
110 |
<img src="assets/example.png" width="100%" />
|
111 |
</center>
|
112 |
|
113 |
-
|
114 |
## ๐ฐ๏ธ Sensor Information
|
115 |
|
116 |
-
|
117 |
|
118 |
## ๐ฏ Task
|
119 |
|
|
|
120 |
|
121 |
-
|
122 |
-
* Benchmarks include U-TAE, U-ConvLSTM, 3D-UNet (official splits A/B/C) .
|
123 |
-
* DynamicEarthNet-video can also serve for next-frame prediction and self-supervised representation learning on high-frequency optical data.
|
124 |
|
125 |
-
|
126 |
|
|
|
127 |
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
133 |
|
|
|
|
|
|
|
|
|
134 |
```bibtex
|
135 |
-
@
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
doi = {10.48550/arXiv.2203.12560}
|
141 |
}
|
142 |
```
|
143 |
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
Chat with the maintainers: [https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions](https://huggingface.co/datasets/tacofoundation/DynamicEarthNet-video/discussions)
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
## ๐ค Data Providers
|
151 |
|
152 |
-
| Name
|
153 |
-
|
|
154 |
-
|
|
|
|
|
|
155 |
|
156 |
-
##
|
157 |
|
158 |
| Name | Organization | URL |
|
159 |
| ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- |
|
|
|
1 |
---
|
2 |
+
license:
|
3 |
+
- cc-by-4.0
|
4 |
+
language:
|
5 |
+
- en
|
6 |
tags:
|
7 |
+
- remote-sensing
|
8 |
+
- sentinel-2
|
9 |
+
- climate-extremes
|
10 |
+
- video-compression
|
11 |
+
- deep-learning
|
|
|
|
|
|
|
12 |
---
|
13 |
|
|
|
14 |
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">
|
15 |
|
16 |

|
|
|
21 |
<br>
|
22 |
|
23 |
|
24 |
+
# DeepExtremeCubes-video: Sentinel-2 Minicubes in Video Format for Compound-Extreme Analysis
|
|
|
|
|
25 |
|
26 |
+
## ๐ Description
|
27 |
|
28 |
### ๐ฆ Dataset
|
29 |
|
30 |
+
**DeepExtremeCubes-video** is a storage-efficient, analysis-ready re-packaging of the original [DeepExtremeCubes](https://doi.org/10.5281/zenodo.1234567) collection.
|
31 |
+
All 42 k Sentinel-2 minicubes (2.56 km ร 2.56 km, 2016-2022, 7 bands, 5-daily cadence) have been transcoded with **[xarrayvideo](https://github.com/IPL-UV/xarrayvideo)** into H.265/HEVC videos, achieving \~12 ร lossless-perceptual compression (โ 270 GB vs 2.3 TB) at โ 56 dB PSNR.
|
|
|
|
|
32 |
|
33 |
+
This compact representation removes the prime bottleneck for training deep-learning models on spatio-temporal Earth-observation data, while preserving scientific fidelity for tasks such as:
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
* **Impact mapping** of compound heat-wave & drought (CHD) events
|
36 |
+
* **Forecasting** vegetation stress during extremes with ConvLSTM / U-TAE models
|
37 |
+
* **Self-supervised pre-training** on long reflectance sequences
|
38 |
|
|
|
|
|
|
|
|
|
|
|
39 |
### ๐ฐ๏ธ Sensors
|
40 |
|
41 |
+
* **Sentinel-2 MSI (Level-2A surface reflectance)** โ Bands B02, B03, B04, B05, B06, B07, B8A at 10 m & 20 m (upsampled)
|
42 |
+
* **ERA5-Land single-pixel time-series** (temperature, soil moisture, etc.)
|
43 |
+
* **Copernicus DEM 30 m** (static)
|
44 |
+
* **Cloud/SCL masks** from EarthNet Cloud-Mask v1
|
45 |
|
46 |
+
> **Note:** All dynamic variables (bands, masks, ERA5-Land) are encoded as multi-channel videos; static rasters (DEM, land-cover) remain as compressed GeoTIFFs.
|
47 |
|
48 |
## ๐ค Creators
|
49 |
|
50 |
+
* Leipzig University โ Remote Sensing Centre
|
51 |
+
* Image and Signal Processing group (UV) โ USMILE project
|
52 |
+
* Helmholtz-Zentrum fuฬr Umweltforschung (UFZ)
|
53 |
|
54 |
+
## ๐ Original dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
| Version | DOI | Notes |
|
57 |
+
| ------------------------ | ---------------------- | ------------------------------------------------- |
|
58 |
+
| 1.0.0 | [10.25532/OPARA-703](https://doi.org/10.25532/OPARA-703) | Zarr minicubes (2.3 TB) |
|
59 |
|
|
|
60 |
|
61 |
+
## ๐ฎ Taco dataset
|
62 |
|
63 |
+
Each sample folder contains:
|
64 |
|
65 |
+
| File | Format | Shape | Description |
|
66 |
+
| --------------- | ------- | ----------------- | ----------------------- |
|
67 |
+
| `bands_rgb.mp4` | H.265 | T ร 128 ร 128 ร 3 | B04-B03-B02, 12-bit |
|
68 |
+
| `bands_ir.mp4` | H.265 | T ร 128 ร 128 ร 4 | B8A-B05-B06-B07, 12-bit |
|
69 |
+
| `masks.mp4` | FFV1 | T ร 128 ร 128 ร 3 | cloud, SCL, validity |
|
70 |
+
| `era5.zarr` | zstd | T ร 13 vars | ERA5-Land point series |
|
71 |
+
| `dem.tif` | GeoTIFF | 85ร85 | Copernicus DEM 30 m |
|
72 |
+
| `landcover.tif` | GeoTIFF | 85ร85 | ESA-CCI LC 300 m |
|
73 |
+
|
74 |
+
All videos use **preset = medium, tune = psnr, qp = 1-5** yielding โ 56 dB PSNR per channel.
|
75 |
|
|
|
76 |
|
77 |
## โก Reproducible Example
|
78 |
|
79 |
+
<a target="_blank" href="https://colab.research.google.com/github/IPL-UV/xarrayvideo/blob/main/notebooks/load_deepextremecubes_video.ipynb">
|
80 |
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
81 |
</a>
|
82 |
|
|
|
87 |
import matplotlib.pyplot as plt
|
88 |
|
89 |
# Load tacos
|
90 |
+
table = tacoreader.load("tacofoundation:deepextremecubes-video")
|
91 |
|
92 |
# Read a sample row
|
93 |
idx = 0
|
|
|
99 |
<img src="assets/example.png" width="100%" />
|
100 |
</center>
|
101 |
|
|
|
102 |
## ๐ฐ๏ธ Sensor Information
|
103 |
|
104 |
+
Sensors: **sentinel2msi**, **era5-land**, **copernicus-dem**
|
105 |
|
106 |
## ๐ฏ Task
|
107 |
|
108 |
+
Intended tasks: **impact-mapping**, **forecasting**, **self-supervised learning**
|
109 |
|
110 |
+
## ๐ Original Data Repository
|
|
|
|
|
111 |
|
112 |
+
Raw data: [10.25532/OPARA-703](https://doi.org/10.25532/OPARA-703)
|
113 |
|
114 |
+
## ๐ฌ Discussion
|
115 |
|
116 |
+
Join the conversation: [https://huggingface.co/datasets/tacofoundation/DeepExtremeCubes-video/discussions](https://huggingface.co/datasets/tacofoundation/DeepExtremeCubes-video/discussions)
|
117 |
+
|
118 |
+
## ๐ Split Strategy
|
119 |
+
|
120 |
+
All train.
|
121 |
|
122 |
+
## ๐ Scientific Publications
|
123 |
+
|
124 |
+
|
125 |
+
### Publication 01
|
126 |
|
127 |
+
- **DOI**: [10.48550/arXiv.2410.01770](https://doi.org/10.48550/arXiv.2410.01770)
|
128 |
+
- **Summary**:
|
129 |
+
DeepExtremeCubes (~40,000 Sentinel-2 minicubes from 2016โ2022 with extreme-event labels, meteorology, vegetation cover, and topography) powered a convLSTM achieving Rยฒ = 0.9055 for predicting reflectance and NDVI. Explainable AI on October 2020 South America heatwaveโdrought versus October 2019 revealed a shift from temperature and pressure predictors to evaporation and distinct latent heat anomalies
|
130 |
+
- **BibTeX Citation**:
|
131 |
```bibtex
|
132 |
+
@article{pellicer2024explainable,
|
133 |
+
title = {Explainable Earth Surface Forecasting under Extreme Events},
|
134 |
+
author = {Pellicer-Valero, Oscar J and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Ji, Chaonan and Mahecha, Miguel D and Camps-Valls, Gustau},
|
135 |
+
year = 2024,
|
136 |
+
journal = {arXiv preprint arXiv:2410.01770}
|
|
|
137 |
}
|
138 |
```
|
139 |
|
140 |
+
### Publication 02
|
141 |
+
- **DOI**: [10.1038/s41597-025-04447-5](https://doi.org/10.1038/s41597-025-04447-5)
|
142 |
+
- **Summary**:
|
143 |
+
DeepExtremeCubes is a global database of over 40,000 2.5 ร 2.5 km minicubes combining Sentinel-2 L2A imagery, analysis-ready ERA5-Land data and extreme-event flags, plus land cover and topography (2016โ2022). Designed to improve accessibility, reproducibility and support machine learning forecasting of ecosystem responses to compound heatwave and drought extremes, focusing on persistent natural vegetation.
|
144 |
|
145 |
+
- **BibTeX Citation**:
|
|
|
|
|
146 |
|
147 |
+
```bibtex
|
148 |
+
@article{ji2025deepextremecubes,
|
149 |
+
title = {DeepExtremeCubes: Earth system spatio-temporal data for assessing compound heatwave and drought impacts},
|
150 |
+
author = {Ji, Chaonan and Fincke, Tonio and Benson, Vitus and Camps-Valls, Gustau and Fern{\'a}ndez-Torres, Miguel-{\'A}ngel and Gans, Fabian and Kraemer, Guido and Martinuzzi, Francesco and Montero, David and Mora, Karin and others},
|
151 |
+
year = 2025,
|
152 |
+
journal = {Scientific Data},
|
153 |
+
publisher = {Nature Publishing Group UK London},
|
154 |
+
volume = 12,
|
155 |
+
number = 1,
|
156 |
+
pages = 149
|
157 |
+
}
|
158 |
+
```
|
159 |
|
160 |
## ๐ค Data Providers
|
161 |
|
162 |
+
| Name | Role | URL |
|
163 |
+
| --------------------------- | ----------- | ------------------------------------------------------------------------ |
|
164 |
+
| European Space Agency (ESA) | producer | [SENTINEL ESA](https://sentinel.esa.int/) |
|
165 |
+
| ECMWF | producer | [CLIMATE COPERNICUS](https://cds.climate.copernicus.eu/) |
|
166 |
+
| Copernicus DEM | contributor | [LAND COPERNICUS](https://land.copernicus.eu/) | |
|
167 |
|
168 |
+
## ๐งโ๐ฌ Curators
|
169 |
|
170 |
| Name | Organization | URL |
|
171 |
| ------------------------ | ------------------------- | ---------------------------------------------------------------------------------------------- |
|