id
stringlengths
14
18
description
stringlengths
321
1.77k
lean_code
stringlengths
1.1k
7.34k
signature
dict
metadata
dict
tests
sequence
reject_inputs
sequence
difficulty
stringclasses
2 values
verina_basic_53
-----Description----- This problem asks for a method to determine the sum of the first N natural numbers. The task focuses on computing the total when given an input N, ensuring that the value is 0 when N is 0 and correctly calculated for positive values of N. -----Input----- The input consists of: • N: A natural number (Nat) representing the count of the first natural numbers to sum. -----Output----- The output is a natural number (Nat), which is the sum of the first N natural numbers computed as: N * (N + 1) / 2. -----Note----- The computation leverages a recursive implementation. There are no additional preconditions beyond providing a valid natural number.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def CalSum_precond (N : Nat) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def CalSum (N : Nat) (h_precond : CalSum_precond (N)) : Nat := -- !benchmark @start code let rec loop (n : Nat) : Nat := if n = 0 then 0 else n + loop (n - 1) loop N -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def CalSum_postcond (N : Nat) (result: Nat) (h_precond : CalSum_precond (N)) := -- !benchmark @start postcond 2 * result = N * (N + 1) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem CalSum_spec_satisfied (N: Nat) (h_precond : CalSum_precond (N)) : CalSum_postcond (N) (CalSum (N) h_precond) h_precond := by -- !benchmark @start proof unfold CalSum_postcond CalSum induction N with | zero => unfold CalSum.loop simp | succ n ih => unfold CalSum_precond at ih simp at ih unfold CalSum.loop simp rw [Nat.mul_add] rw [ih] rw [← Nat.add_mul] rw [Nat.add_comm, Nat.mul_comm] -- !benchmark @end proof
{ "name": "CalSum", "parameters": { "param_name": [ "N" ], "param_type": [ "Nat" ] }, "return_type": "Nat" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_cal_sum", "student_id": null } }
{ "input": [ "{\"N\": 0}", "{\"N\": 1}", "{\"N\": 5}", "{\"N\": 10}", "{\"N\": 20}" ], "expected": [ [ "0" ], [ "1" ], [ "15" ], [ "55" ], [ "210" ] ], "unexpected": [ [ "1", "2", "3" ], [ "0", "2", "3" ], [ "10", "16", "20" ], [ "54", "56", "50" ], [ "200", "220", "205" ] ] }
{ "input": [] }
basic
verina_advanced_9
-----Description----- This task requires writing a Lean 4 method of which given a number n and divisor d, it counts all the number that is smaller than n whose sum of digits is divisible by d. -----Input----- The input consists of three Nat: n: Nat d:Nat where d > 0 -----Output----- The output is an Natural number: Ensure this match the count that satisfy the property.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def sumOfDigits (x : Nat) : Nat := let rec go (n acc : Nat) : Nat := if n = 0 then acc else go (n / 10) (acc + (n % 10)) go x 0 -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def countSumDivisibleBy_precond (n : Nat) (d : Nat) : Prop := -- !benchmark @start precond d > 0 -- !benchmark @end precond -- !benchmark @start code_aux def isSumDivisibleBy (x : Nat) (d:Nat) : Bool := (sumOfDigits x) % d = 0 -- !benchmark @end code_aux def countSumDivisibleBy (n : Nat) (d : Nat) (h_precond : countSumDivisibleBy_precond (n) (d)) : Nat := -- !benchmark @start code let rec go (i acc : Nat) : Nat := match i with | 0 => acc | i'+1 => let acc' := if isSumDivisibleBy i' d then acc + 1 else acc go i' acc' go n 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def countSumDivisibleBy_postcond (n : Nat) (d : Nat) (result: Nat) (h_precond : countSumDivisibleBy_precond (n) (d)) : Prop := -- !benchmark @start postcond (List.length (List.filter (fun x => x < n ∧ (sumOfDigits x) % d = 0) (List.range n))) - result = 0 ∧ result ≤ (List.length (List.filter (fun x => x < n ∧ (sumOfDigits x) % d = 0) (List.range n))) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem countSumDivisibleBy_spec_satisfied (n: Nat) (d: Nat) (h_precond : countSumDivisibleBy_precond (n) (d)) : countSumDivisibleBy_postcond (n) (d) (countSumDivisibleBy (n) (d) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "countSumDivisibleBy", "parameters": { "param_name": [ "n", "d" ], "param_type": [ "Nat", "Nat" ] }, "return_type": "Nat" }
{ "upstream": { "name": "lab_assignment", "link": "this is a leetcode style problem but not a specifc one. similar to this: https://leetcode.com/problems/count-the-digits-that-divide-a-number/description/", "task_id": "lab_countSumDivisibleBy_325011347", "student_id": [ 7 ] } }
{ "input": [ "{\"n\": 0, \"d\": 2}", "{\"n\": 1, \"d\": 2}", "{\"n\": 10, \"d\": 3}", "{\"n\": 12, \"d\": 2}", "{\"n\": 20, \"d\": 5}" ], "expected": [ [ "0" ], [ "1" ], [ "4" ], [ "6" ], [ "4" ] ], "unexpected": [ [ "1" ], [ "0" ], [ "3", "5" ], [ "3", "5" ], [ "0", "10" ] ] }
{ "input": [ "{'n': 1, 'd': 0}" ] }
advanced
verina_advanced_34
-----Description----- This task requires writing a Lean 4 method that finds the length of the longest strictly increasing subsequence from a given list of integers. -----Input----- The input consists of a list of integers called nums -----Output----- The output is an integer: Returns a number representing the length of the longest strictly increasing subsequence found in the input list.
-- !benchmark @start import type=solution import Mathlib.Data.List.Basic -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def longestIncreasingSubsequence_precond (nums : List Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def longestIncreasingSubsequence (nums : List Int) (h_precond : longestIncreasingSubsequence_precond (nums)) : Int := -- !benchmark @start code Id.run do if nums.isEmpty then return 0 let mut sub : Array Int := Array.empty sub := sub.push nums.head! for num in nums.tail do if num > sub[sub.size - 1]! then sub := sub.push num else -- << binary search >> let mut left : Nat := 0 let mut right : Nat := sub.size - 1 while left < right do let mid := (left + right) / 2 if sub[mid]! == num then right := mid else if sub[mid]! < num then left := mid + 1 else right := mid sub := sub.set! left num return Int.ofNat sub.size -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def longestIncreasingSubsequence_postcond (nums : List Int) (result: Int) (h_precond : longestIncreasingSubsequence_precond (nums)) : Prop := -- !benchmark @start postcond let allSubseq := (nums.foldl fun acc x => acc ++ acc.map (fun sub => x :: sub)) [[]] |>.map List.reverse let increasingSubseqLens := allSubseq.filter (fun l => List.Pairwise (· < ·) l) |>.map (·.length) increasingSubseqLens.contains result ∧ increasingSubseqLens.all (· ≤ result) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem longestIncreasingSubsequence_spec_satisfied (nums: List Int) (h_precond : longestIncreasingSubsequence_precond (nums)) : longestIncreasingSubsequence_postcond (nums) (longestIncreasingSubsequence (nums) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "longestIncreasingSubsequence", "parameters": { "param_name": [ "nums" ], "param_type": [ "List Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/longest-increasing-subsequence/description/", "task_id": "lab_longestIncreasingSubsequence_325773003", "student_id": [ 28 ] } }
{ "input": [ "{\"nums\": \"[10, 9, 2, 5, 3, 7, 101, 18]\"}", "{\"nums\": \"[0, 1, 0, 3, 2, 3]\"}", "{\"nums\": \"[7, 7, 7, 7, 7, 7, 7]\"}", "{\"nums\": \"[1, 3, 2, 4]\"}", "{\"nums\": \"[10]\"}" ], "expected": [ [ "4" ], [ "4" ], [ "1" ], [ "3" ], [ "1" ] ], "unexpected": [ [ "3", "100" ], [ "3", "100" ], [ "7", "7" ], [ "2", "4" ], [ "0" ] ] }
{ "input": [] }
advanced
verina_advanced_13
-----Description----- This task requires writing a Lean 4 method that determines whether there are any intersections between chords on a circle. The method should return true if at least one pair of chords intersects, and false otherwise. A chord is defined as a line segment connecting two distinct points on a circle. Two chords intersect if they cross each other inside the circle. The points are numbered from 1 to 2N in a clockwise direction, where N is the number of chords. Constraints - 2\leq N \leq 2\times 10^5 - 1\leq A_i,B_i \leq 2N - A_1,\dots,A_N,B_1,\dots,B_N are all distinct - All input values are integers -----Input----- The input consists of two parameters: N: A natural number representing the number of chords (2 ≤ N ≤ 2×10^5). chords: A list of N pairs of natural numbers, where each pair represents the endpoints of a chord. All endpoint values are distinct and range from 1 to 2N. -----Output----- The output is a boolean value: - Returns true if there exists at least one pair of intersecting chords. - Returns false if no chords intersect.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def hasChordIntersection_precond (N : Nat) (chords : List (List Nat)) : Prop := -- !benchmark @start precond N ≥ 2 ∧ chords.all (fun chord => chord.length = 2 ∧ chord[0]! ≥ 1 ∧ chord[0]! ≤ 2 * N ∧ chord[1]! ≥ 1 ∧ chord[1]! ≤ 2 * N) ∧ List.Nodup (chords.flatMap id) -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def hasChordIntersection (N : Nat) (chords : List (List Nat)) (h_precond : hasChordIntersection_precond (N) (chords)) : Bool := -- !benchmark @start code let sortedChords := chords.map (fun chord => let a := chord[0]! let b := chord[1]! if a > b then [b, a] else [a, b] ) let rec checkIntersection (stack : List (List Nat)) (remaining : List (List Nat)) : Bool := match remaining with | [] => false | chord :: rest => let a := chord[0]! let b := chord[1]! let newStack := stack.dropWhile (fun c => (c)[1]! < a) match newStack with | [] => checkIntersection (chord :: newStack) rest | top :: _ => if top[1]! > a && top[1]! < b then true else checkIntersection (chord :: newStack) rest let rec insert (x : List Nat) (xs : List (List Nat)) : List (List Nat) := match xs with | [] => [x] | y :: ys => if x[0]! < y[0]! then x :: xs else y :: insert x ys let rec sort (xs : List (List Nat)) : List (List Nat) := match xs with | [] => [] | x :: xs => insert x (sort xs) let sortedChords := sort sortedChords checkIntersection [] sortedChords -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def hasChordIntersection_postcond (N : Nat) (chords : List (List Nat)) (result: Bool) (h_precond : hasChordIntersection_precond (N) (chords)) : Prop := -- !benchmark @start postcond let sortedChords := chords.map (fun chord => let a := chord[0]! let b := chord[1]! if a > b then [b, a] else [a, b] ) let rec hasIntersection (chord1 : List Nat) (chord2 : List Nat) : Bool := let a1 := chord1[0]! let b1 := chord1[1]! let a2 := chord2[0]! let b2 := chord2[1]! (a1 < a2 && a2 < b1 && b1 < b2) || (a2 < a1 && a1 < b2 && b2 < b1) let rec checkAllPairs (chords : List (List Nat)) : Bool := match chords with | [] => false | x :: xs => if xs.any (fun y => hasIntersection x y) then true else checkAllPairs xs ((List.Pairwise (fun x y => !hasIntersection x y) sortedChords) → ¬ result) ∧ ((sortedChords.any (fun x => chords.any (fun y => hasIntersection x y))) → result) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem hasChordIntersection_spec_satisfied (N: Nat) (chords: List (List Nat)) (h_precond : hasChordIntersection_precond (N) (chords)) : hasChordIntersection_postcond (N) (chords) (hasChordIntersection (N) (chords) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "hasChordIntersection", "parameters": { "param_name": [ "N", "chords" ], "param_type": [ "Nat", "List (List Nat)" ] }, "return_type": "Bool" }
{ "upstream": { "name": "lab_assignment", "link": "https://huggingface.co/spaces/livecodebench/code_generation_samples", "task_id": "lab_hasChordIntersection_325324847", "student_id": [ 11 ] } }
{ "input": [ "{\"N\": 3, \"chords\": \"[[1, 3], [4, 2], [5, 6]]\"}", "{\"N\": 3, \"chords\": \"[[6, 1], [4, 3], [2, 5]]\"}", "{\"N\": 4, \"chords\": \"[[2, 4], [3, 7], [8, 6], [5, 1]]\"}", "{\"N\": 2, \"chords\": \"[[1, 2], [3, 4]]\"}" ], "expected": [ [ "True" ], [ "False" ], [ "True" ], [ "False" ] ], "unexpected": [ [ "False" ], [ "True" ], [ "False" ], [ "True" ] ] }
{ "input": [ "{'N': 3, 'chords': '[[1, 1]]'}", "{'N': 3, 'chords': '[[7, 1]]'}", "{'N': 3, 'chords': '[[0, 1]]'}", "{'N': 3, 'chords': '[[1, 0]]'}", "{'N': 3, 'chords': '[[1, 7]]'}", "{'N': 0, 'chords': '[]'}" ] }
advanced
verina_basic_92
-----Description----- This problem involves swapping the values of two integers. Given two integers as inputs, the objective is to return the two numbers in reversed order. -----Input----- The input consists of two integers: • X: The first integer. • Y: The second integer. -----Output----- The output is a tuple of two integers (Int × Int) where: • The first element is equal to Y. • The second element is equal to X. -----Note----- There are no restrictions on the input values. The function must correctly swap the inputs regardless of whether they are positive, negative, or zero.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def SwapArithmetic_precond (X : Int) (Y : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def SwapArithmetic (X : Int) (Y : Int) (h_precond : SwapArithmetic_precond (X) (Y)) : (Int × Int) := -- !benchmark @start code let x1 := X let y1 := Y let x2 := y1 - x1 let y2 := y1 - x2 let x3 := y2 + x2 (x3, y2) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def SwapArithmetic_postcond (X : Int) (Y : Int) (result: (Int × Int)) (h_precond : SwapArithmetic_precond (X) (Y)) := -- !benchmark @start postcond result.1 = Y ∧ result.2 = X ∧ (X ≠ Y → result.fst ≠ X ∧ result.snd ≠ Y) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem SwapArithmetic_spec_satisfied (X: Int) (Y: Int) (h_precond : SwapArithmetic_precond (X) (Y)) : SwapArithmetic_postcond (X) (Y) (SwapArithmetic (X) (Y) h_precond) h_precond := by -- !benchmark @start proof unfold SwapArithmetic_postcond SwapArithmetic simp rw [Int.sub_sub_self] simp_all exact fun a a_1 => a (id (Eq.symm a_1)) -- !benchmark @end proof
{ "name": "SwapArithmetic", "parameters": { "param_name": [ "X", "Y" ], "param_type": [ "Int", "Int" ] }, "return_type": "(Int × Int)" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_swap_arith", "student_id": null } }
{ "input": [ "{\"X\": 3, \"Y\": 4}", "{\"X\": -1, \"Y\": 10}", "{\"X\": 0, \"Y\": 0}", "{\"X\": 100, \"Y\": 50}", "{\"X\": -5, \"Y\": -10}" ], "expected": [ [ "(4, 3)" ], [ "(10, -1)" ], [ "(0, 0)" ], [ "(50, 100)" ], [ "(-10, -5)" ] ], "unexpected": [ [ "(3, 4)", "(3, 3)", "(4, 4)" ], [ "(-1, 10)", "(10, 1)", "(-10, -1)" ], [ "(0, 1)", "(1, 0)", "(-1, 0)" ], [ "(100, 50)", "(50, 50)", "(100, 100)" ], [ "(-5, -10)", "(-10, -10)", "(-5, -5)" ] ] }
{ "input": [] }
basic
verina_basic_45
-----Description----- This task requires writing a Lean 4 method that computes the product of the first even and the first odd number encountered in a list of integers. The method should search the list for the earliest even number and the earliest odd number, then return the product of these two numbers. -----Input----- The input consists of: lst: A list of integers. -----Output----- The output is an integer: Returns the product resulting from multiplying the first even number and the first odd number found in the list. -----Note----- The input list is assumed to contain at least one even number and one odd number.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def isEven (n : Int) : Bool := n % 2 = 0 def isOdd (n : Int) : Bool := n % 2 ≠ 0 def firstEvenOddIndices (lst : List Int) : Option (Nat × Nat) := let evenIndex := lst.findIdx? isEven let oddIndex := lst.findIdx? isOdd match evenIndex, oddIndex with | some ei, some oi => some (ei, oi) | _, _ => none -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def findProduct_precond (lst : List Int) : Prop := -- !benchmark @start precond lst.length > 1 ∧ (∃ x ∈ lst, isEven x) ∧ (∃ x ∈ lst, isOdd x) -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def findProduct (lst : List Int) (h_precond : findProduct_precond (lst)) : Int := -- !benchmark @start code match firstEvenOddIndices lst with | some (ei, oi) => lst[ei]! * lst[oi]! | none => 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def findProduct_postcond (lst : List Int) (result: Int) (h_precond : findProduct_precond (lst)) := -- !benchmark @start postcond match firstEvenOddIndices lst with | some (ei, oi) => result = lst[ei]! * lst[oi]! | none => True -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem findProduct_spec_satisfied (lst: List Int) (h_precond : findProduct_precond (lst)) : findProduct_postcond (lst) (findProduct (lst) h_precond) h_precond := by -- !benchmark @start proof unfold findProduct findProduct_postcond split case h_1 _ ei oi _ => split case h_1 _ ei' oi' heq => have : ei = ei' ∧ oi = oi' := by rw [Option.some_inj] at heq cases heq with | refl => exact ⟨rfl, rfl⟩ simp [this] case h_2 _ heq => contradiction case h_2 => simp -- !benchmark @end proof
{ "name": "findProduct", "parameters": { "param_name": [ "lst" ], "param_type": [ "List Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_784", "student_id": null } }
{ "input": [ "{\"lst\": \"[2, 3, 4, 5]\"}", "{\"lst\": \"[2, 4, 3, 6]\"}", "{\"lst\": \"[1, 2, 5, 4]\"}" ], "expected": [ [ "6" ], [ "6" ], [ "2" ] ], "unexpected": [ [ "8", "0", "10" ], [ "8", "0", "24" ], [ "5", "0", "10" ] ] }
{ "input": [ "{'lst': '[2]'}" ] }
basic
verina_advanced_51
-----Description----- This task requires writing a Lean 4 method that takes two sorted (non-decreasing) integer lists and merges them into a single sorted list. The output must preserve order and include all elements from both input lists. -----Input----- The input consists of: a: A list of integers sorted in non-decreasing order. b: Another list of integers sorted in non-decreasing order. -----Output----- The output is a list of integers: Returns a merged list that contains all elements from both input lists, sorted in non-decreasing order.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def mergeSorted_precond (a : List Int) (b : List Int) : Prop := -- !benchmark @start precond List.Pairwise (· ≤ ·) a ∧ List.Pairwise (· ≤ ·) b -- !benchmark @end precond -- !benchmark @start code_aux def mergeSortedAux : List Int → List Int → List Int | [], ys => ys | xs, [] => xs | x :: xs', y :: ys' => if x ≤ y then let merged := mergeSortedAux xs' (y :: ys') x :: merged else let merged := mergeSortedAux (x :: xs') ys' y :: merged -- !benchmark @end code_aux def mergeSorted (a : List Int) (b : List Int) (h_precond : mergeSorted_precond (a) (b)) : List Int := -- !benchmark @start code let merged := mergeSortedAux a b merged -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def mergeSorted_postcond (a : List Int) (b : List Int) (result: List Int) (h_precond : mergeSorted_precond (a) (b)) : Prop := -- !benchmark @start postcond List.Pairwise (· ≤ ·) result ∧ List.isPerm result (a ++ b) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem mergeSorted_spec_satisfied (a: List Int) (b: List Int) (h_precond : mergeSorted_precond (a) (b)) : mergeSorted_postcond (a) (b) (mergeSorted (a) (b) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "mergeSorted", "parameters": { "param_name": [ "a", "b" ], "param_type": [ "List Int", "List Int" ] }, "return_type": "List Int" }
{ "upstream": { "name": "lab_assignment", "link": "", "task_id": "lab_mergeSorted_325769371", "student_id": [ 15 ] } }
{ "input": [ "{\"a\": \"[1, 3, 5]\", \"b\": \"[2, 4, 6]\"}", "{\"a\": \"[1, 2]\", \"b\": \"[1, 2, 3]\"}", "{\"a\": \"[]\", \"b\": \"[4, 5]\"}", "{\"a\": \"[0, 3, 4]\", \"b\": \"[]\"}", "{\"a\": \"[1, 4, 6]\", \"b\": \"[2, 3, 5]\"}" ], "expected": [ [ "[1, 2, 3, 4, 5, 6]" ], [ "[1, 1, 2, 2, 3]" ], [ "[4, 5]" ], [ "[0, 3, 4]" ], [ "[1, 2, 3, 4, 5, 6]" ] ], "unexpected": [ [ "[1, 3, 5]", "[2, 4, 6]", "[6, 5, 4]" ], [ "[1, 2, 3]" ], [ "[]" ], [ "[4, 3, 0]" ], [ "[1, 4, 6, 2, 3, 5]" ] ] }
{ "input": [ "{'a': '[1, 2, 3]', 'b': '[6, 5, 4]'}", "{'a': '[3, 2, 1]', 'b': '[6, 5, 4]'}" ] }
advanced
verina_advanced_40
-----Description----- This task requires writing a Lean 4 function that returns the maximum element from a non-empty list of natural numbers. -----Input----- The input consists of: lst: a non-empty list of natural numbers. -----Output----- The output is: A natural number representing the largest element in the list.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def maxOfList_precond (lst : List Nat) : Prop := -- !benchmark @start precond lst ≠ [] -- Ensure the list is non-empty -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def maxOfList (lst : List Nat) (h_precond : maxOfList_precond (lst)) : Nat := -- !benchmark @start code let rec helper (lst : List Nat) : Nat := match lst with | [] => 0 -- technically shouldn't happen if input is always non-empty | [x] => x | x :: xs => let maxTail := helper xs if x > maxTail then x else maxTail helper lst -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def maxOfList_postcond (lst : List Nat) (result: Nat) (h_precond : maxOfList_precond (lst)) : Prop := -- !benchmark @start postcond result ∈ lst ∧ ∀ x ∈ lst, x ≤ result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem maxOfList_spec_satisfied (lst: List Nat) (h_precond : maxOfList_precond (lst)) : maxOfList_postcond (lst) (maxOfList (lst) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "maxOfList", "parameters": { "param_name": [ "lst" ], "param_type": [ "List Nat" ] }, "return_type": "Nat" }
{ "upstream": { "name": "lab_assignment", "link": "Original", "task_id": "lab_maxOfList_325098964", "student_id": [ 32 ] } }
{ "input": [ "{\"lst\": \"[1, 2, 3]\"}", "{\"lst\": \"[5, 5, 5]\"}", "{\"lst\": \"[10, 1, 9]\"}", "{\"lst\": \"[7]\"}", "{\"lst\": \"[0, 0, 0, 0]\"}" ], "expected": [ [ "3" ], [ "5" ], [ "10" ], [ "7" ], [ "0" ] ], "unexpected": [ [ "2", "1", "0" ], [ "4", "0" ], [ "1", "9" ], [ "0", "6" ], [ "1" ] ] }
{ "input": [ "{'lst': '[]'}" ] }
advanced
verina_basic_5
-----Description----- This task requires writing a Lean 4 method that multiplies two integers. The method should return the product of the two input numbers. -----Input----- The input consists of: a: The first integer. b: The second integer. -----Output----- The output is an integer: Returns the product of the two input integers (a * b).
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def multiply_precond (a : Int) (b : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def multiply (a : Int) (b : Int) (h_precond : multiply_precond (a) (b)) : Int := -- !benchmark @start code a * b -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def multiply_postcond (a : Int) (b : Int) (result: Int) (h_precond : multiply_precond (a) (b)) := -- !benchmark @start postcond result - a * b = 0 ∧ a * b - result = 0 -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem multiply_spec_satisfied (a: Int) (b: Int) (h_precond : multiply_precond (a) (b)) : multiply_postcond (a) (b) (multiply (a) (b) h_precond) h_precond := by -- !benchmark @start proof unfold multiply multiply_postcond simp -- !benchmark @end proof
{ "name": "multiply", "parameters": { "param_name": [ "a", "b" ], "param_type": [ "Int", "Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_127", "student_id": null } }
{ "input": [ "{\"a\": 3, \"b\": 4}", "{\"a\": 3, \"b\": -4}", "{\"a\": -3, \"b\": 4}", "{\"a\": -3, \"b\": -4}", "{\"a\": 0, \"b\": 5}", "{\"a\": 5, \"b\": 0}", "{\"a\": 0, \"b\": 0}" ], "expected": [ [ "12" ], [ "-12" ], [ "-12" ], [ "12" ], [ "0" ], [ "0" ], [ "0" ] ], "unexpected": [ [ "0", "11", "15" ], [ "0", "-11", "12" ], [ "0", "-11", "12" ], [ "0", "11", "-12" ], [ "1", "-1", "5" ], [ "1", "-1", "5" ], [ "1", "-1", "5" ] ] }
{ "input": [] }
basic
verina_basic_85
-----Description----- This problem focuses on reversing an array of integers. The goal is to take an input array and produce a new array with the elements arranged in the reverse order. -----Input----- The input consists of: • a: An array of integers, which may be empty, contain one element, or many elements. -----Output----- The output is an array of integers that: • Has the same length as the input array. • Contains the same elements as the input array, but in reverse order. • For every valid index i in the input array, the output at index i is equal to the element at index (a.size - 1 - i) from the input array. -----Note----- There are no specific preconditions; the method should correctly handle any array of integers.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def reverse_precond (a : Array Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def reverse_core (arr : Array Int) (i : Nat) : Array Int := if i < arr.size / 2 then let j := arr.size - 1 - i let temp := arr[i]! let arr' := arr.set! i (arr[j]!) let arr'' := arr'.set! j temp reverse_core arr'' (i + 1) else arr -- !benchmark @end code_aux def reverse (a : Array Int) (h_precond : reverse_precond (a)) : Array Int := -- !benchmark @start code reverse_core a 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def reverse_postcond (a : Array Int) (result: Array Int) (h_precond : reverse_precond (a)) := -- !benchmark @start postcond (result.size = a.size) ∧ (∀ i : Nat, i < a.size → result[i]! = a[a.size - 1 - i]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem reverse_spec_satisfied (a: Array Int) (h_precond : reverse_precond (a)) : reverse_postcond (a) (reverse (a) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "reverse", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_reverse", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3, 4, 5]\"}", "{\"a\": \"#[10, 20, 30, 40]\"}", "{\"a\": \"#[]\"}", "{\"a\": \"#[7]\"}", "{\"a\": \"#[-1, 0, 1]\"}" ], "expected": [ [ "#[5, 4, 3, 2, 1]" ], [ "#[40, 30, 20, 10]" ], [ "#[]" ], [ "#[7]" ], [ "#[1, 0, -1]" ] ], "unexpected": [ [ "#[1, 2, 3, 4, 5]", "#[5, 3, 4, 2, 1]", "#[2, 3, 4, 5, 6]" ], [ "#[10, 20, 30, 40]", "#[40, 20, 30, 10]", "#[30, 20, 10, 40]" ], [ "#[0]", "#[-1]", "#[1]" ], [ "#[0]", "#[7, 7]", "#[1]" ], [ "#[-1, 0, 1]", "#[0, 1, -1]", "#[1, -1, 0]" ] ] }
{ "input": [] }
basic
verina_basic_17
-----Description----- This task requires writing a Lean 4 method that converts all uppercase characters in a given string to their lowercase equivalents while keeping the other characters unchanged. The output string must have the same length as the input string. -----Input----- The input consists of: s: A string that may contain both uppercase and lowercase characters. -----Output----- The output is a string: Returns a new string where every uppercase letter has been converted to lowercase, and every non-uppercase character remains exactly as in the input. -----Note----- There are no preconditions; the method is expected to work for any non-null string.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def isUpperCase (c : Char) : Bool := 'A' ≤ c ∧ c ≤ 'Z' def shift32 (c : Char) : Char := Char.ofNat (c.toNat + 32) -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def toLowercase_precond (s : String) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def toLowercase (s : String) (h_precond : toLowercase_precond (s)) : String := -- !benchmark @start code let cs := s.toList let cs' := cs.map (fun c => if isUpperCase c then shift32 c else c) String.mk cs' -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def toLowercase_postcond (s : String) (result: String) (h_precond : toLowercase_precond (s)) := -- !benchmark @start postcond let cs := s.toList let cs' := result.toList (result.length = s.length) ∧ (∀ i : Nat, i < s.length → (isUpperCase cs[i]! → cs'[i]! = shift32 cs[i]!) ∧ (¬isUpperCase cs[i]! → cs'[i]! = cs[i]!)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem toLowercase_spec_satisfied (s: String) (h_precond : toLowercase_precond (s)) : toLowercase_postcond (s) (toLowercase (s) h_precond) h_precond := by -- !benchmark @start proof unfold toLowercase toLowercase_postcond simp_all constructor · unfold String.length simp · intro i hi have hi' : i < s.data.length := by unfold String.length at hi simp at hi exact hi constructor <;> simp_all -- !benchmark @end proof
{ "name": "toLowercase", "parameters": { "param_name": [ "s" ], "param_type": [ "String" ] }, "return_type": "String" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_477", "student_id": null } }
{ "input": [ "{\"s\": \"Hello, World!\"}", "{\"s\": \"ABC\"}", "{\"s\": \"abc\"}", "{\"s\": \"\"}", "{\"s\": \"1234!@\"}", "{\"s\": \"MixedCASE123\"}" ], "expected": [ [ "hello, world!" ], [ "abc" ], [ "abc" ], [ "" ], [ "1234!@" ], [ "mixedcase123" ] ], "unexpected": [ [ "Hello, world!", "HELLO, WORLD!", "hello, World!" ], [ "ABC", "Abc", "aBC" ], [ "ABC", "aBc", "abC" ], [ " ", "empty", "null" ], [ "1234!#", "12345!@" ], [ "Mixedcase123", "mixedCASE123", "MIXEDCASE123" ] ] }
{ "input": [] }
basic
verina_advanced_36
-----Description----- This task requires writing a Lean 4 method that finds the majority element in a list of natural numbers. The majority element is defined as the element that appears more than ⌊n / 2⌋ times in the list, where n is the total number of elements. You may assume that the input list always contains a majority element. -----Input----- The input consists of one list: xs: A list of natural numbers (List Nat), where a majority element is guaranteed to exist. -----Output----- The output is a natural number: Returns the element that appears more than half the time in the input list.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def majorityElement_precond (xs : List Nat) : Prop := -- !benchmark @start precond xs.length > 0 ∧ xs.any (fun x => xs.count x > xs.length / 2) -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def majorityElement (xs : List Nat) (h_precond : majorityElement_precond (xs)) : Nat := -- !benchmark @start code let rec countOccurrences (target : Nat) (lst : List Nat) : Nat := match lst with | [] => 0 | y :: ys => if y = target then 1 + countOccurrences target ys else countOccurrences target ys let rec findCandidate (lst : List Nat) (candidate : Option Nat) (count : Nat) : Nat := match lst with | [] => match candidate with | some c => c | none => 0 -- unreachable since we assume majority element exists | x :: xs => match candidate with | some c => if x = c then findCandidate xs (some c) (count + 1) else if count = 0 then findCandidate xs (some x) 1 else findCandidate xs (some c) (count - 1) | none => findCandidate xs (some x) 1 let cand := findCandidate xs none 0 cand -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def majorityElement_postcond (xs : List Nat) (result: Nat) (h_precond : majorityElement_precond (xs)) : Prop := -- !benchmark @start postcond let count := xs.count result count > xs.length / 2 -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem majorityElement_spec_satisfied (xs: List Nat) (h_precond : majorityElement_precond (xs)) : majorityElement_postcond (xs) (majorityElement (xs) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "majorityElement", "parameters": { "param_name": [ "xs" ], "param_type": [ "List Nat" ] }, "return_type": "Nat" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/majority-element/description/", "task_id": "lab_majorityElement_325005413", "student_id": [ 29 ] } }
{ "input": [ "{\"xs\": \"[3, 3, 4, 2, 3, 3, 3]\"}", "{\"xs\": \"[1, 1, 2, 1, 3, 1, 1]\"}", "{\"xs\": \"[2, 2, 2, 1, 1]\"}", "{\"xs\": \"[9, 9, 9, 9, 1, 2, 3]\"}", "{\"xs\": \"[5, 5, 5, 5, 5, 6, 7]\"}" ], "expected": [ [ "3" ], [ "1" ], [ "2" ], [ "9" ], [ "5" ] ], "unexpected": [ [ "2", "4" ], [ "2", "3" ], [ "1" ], [ "1", "2", "3" ], [ "6", "7" ] ] }
{ "input": [ "{'xs': '[1, 2, 3]'}", "{'xs': '[]'}" ] }
advanced
verina_basic_73
-----Description----- Determine whether two strings match based on a specific pattern: for each position in the strings, either the characters are the same, or the character in p is a wildcard represented by a question mark '?' that may match any character. -----Input----- The input consists of: • s: A string that is to be matched. • p: A pattern string of equal length, where each character is either a specific character or the wildcard '?'. -----Output----- The output is a Boolean value: • Returns true if the length of s is equal to the length of p and each corresponding character in s and p are either identical or the character in p is a '?'. • Returns false if any character in s does not match the corresponding character in p and the character in p is not a '?'. -----Note----- It is assumed that both strings provided have the same length.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def Match_precond (s : String) (p : String) : Prop := -- !benchmark @start precond s.toList.length = p.toList.length -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def Match (s : String) (p : String) (h_precond : Match_precond (s) (p)) : Bool := -- !benchmark @start code let sList := s.toList let pList := p.toList let rec loop (i : Nat) : Bool := if i < sList.length then if (sList[i]! ≠ pList[i]!) ∧ (pList[i]! ≠ '?') then false else loop (i + 1) else true loop 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def Match_postcond (s : String) (p : String) (result: Bool) (h_precond : Match_precond (s) (p)) := -- !benchmark @start postcond (result = true ↔ ∀ n : Nat, n < s.toList.length → ((s.toList[n]! = p.toList[n]!) ∨ (p.toList[n]! = '?'))) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem Match_spec_satisfied (s: String) (p: String) (h_precond : Match_precond (s) (p)) : Match_postcond (s) (p) (Match (s) (p) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "Match", "parameters": { "param_name": [ "s", "p" ], "param_type": [ "String", "String" ] }, "return_type": "Bool" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_match", "student_id": null } }
{ "input": [ "{\"s\": \"abc\", \"p\": \"a?c\"}", "{\"s\": \"hello\", \"p\": \"he?lo\"}", "{\"s\": \"world\", \"p\": \"w?rld\"}", "{\"s\": \"test\", \"p\": \"te?t\"}", "{\"s\": \"abc\", \"p\": \"abd\"}" ], "expected": [ [ "True" ], [ "True" ], [ "True" ], [ "True" ], [ "False" ] ], "unexpected": [ [ "False" ], [ "False" ], [ "False" ], [ "False" ], [ "True" ] ] }
{ "input": [ "{'s': 'abc', 'p': 'ac'}" ] }
basic
verina_basic_61
-----Description----- This task involves determining whether every character in a provided string is a digit. The objective is to check if all characters fall within the standard digit range, returning true if they do and false otherwise. -----Input----- The input consists of: • s: A string whose characters will be analyzed to determine if they are all digits. -----Output----- The output is a boolean value: • true if every character in the string is a digit; • false if at least one character is not a digit (note that the empty string returns true). -----Note----- It is assumed that the input is a well-formed string. The function uses an iterator to examine every character.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def isDigit (c : Char) : Bool := (c ≥ '0') && (c ≤ '9') -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def allDigits_precond (s : String) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def allDigits (s : String) (h_precond : allDigits_precond (s)) : Bool := -- !benchmark @start code let rec loop (it : String.Iterator) : Bool := if it.atEnd then true else if !isDigit it.curr then false else loop it.next loop s.iter -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def allDigits_postcond (s : String) (result: Bool) (h_precond : allDigits_precond (s)) := -- !benchmark @start postcond (result = true ↔ ∀ c ∈ s.toList, isDigit c) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem allDigits_spec_satisfied (s: String) (h_precond : allDigits_precond (s)) : allDigits_postcond (s) (allDigits (s) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "allDigits", "parameters": { "param_name": [ "s" ], "param_type": [ "String" ] }, "return_type": "Bool" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_all_digits", "student_id": null } }
{ "input": [ "{\"s\": \"123456\"}", "{\"s\": \"123a56\"}", "{\"s\": \"\"}", "{\"s\": \"007\"}", "{\"s\": \"98 76\"}" ], "expected": [ [ "True" ], [ "False" ], [ "True" ], [ "True" ], [ "False" ] ], "unexpected": [ [ "False" ], [ "True" ], [ "False" ], [ "False" ], [ "True" ] ] }
{ "input": [] }
basic
verina_basic_20
-----Description----- This task requires writing a Lean 4 method that calculates the product of all distinct integers in an array. The method should consider each unique integer only once when computing the product and return the resulting value. If the array is empty, the method should return 1. -----Input----- The input consists of: arr: An array of integers. -----Output----- The output is an integer: Returns the product of all unique integers from the input array. -----Note----- The order in which the unique integers are multiplied does not affect the final product.
-- !benchmark @start import type=solution import Std.Data.HashSet -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def uniqueProduct_precond (arr : Array Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def uniqueProduct (arr : Array Int) (h_precond : uniqueProduct_precond (arr)) : Int := -- !benchmark @start code let rec loop (i : Nat) (seen : Std.HashSet Int) (product : Int) : Int := if i < arr.size then let x := arr[i]! if seen.contains x then loop (i + 1) seen product else loop (i + 1) (seen.insert x) (product * x) else product loop 0 Std.HashSet.empty 1 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def uniqueProduct_postcond (arr : Array Int) (result: Int) (h_precond : uniqueProduct_precond (arr)) := -- !benchmark @start postcond result - (arr.toList.eraseDups.foldl (· * ·) 1) = 0 ∧ (arr.toList.eraseDups.foldl (· * ·) 1) - result = 0 -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem uniqueProduct_spec_satisfied (arr: Array Int) (h_precond : uniqueProduct_precond (arr)) : uniqueProduct_postcond (arr) (uniqueProduct (arr) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "uniqueProduct", "parameters": { "param_name": [ "arr" ], "param_type": [ "Array Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_573", "student_id": null } }
{ "input": [ "{\"arr\": \"#[2, 3, 2, 4]\"}", "{\"arr\": \"#[5, 5, 5, 5]\"}", "{\"arr\": \"#[]\"}", "{\"arr\": \"#[1, 2, 3]\"}", "{\"arr\": \"#[0, 2, 3]\"}", "{\"arr\": \"#[-1, -2, -1, -3]\"}", "{\"arr\": \"#[10, 10, 20, 20, 30]\"}" ], "expected": [ [ "24" ], [ "5" ], [ "1" ], [ "6" ], [ "0" ], [ "-6" ], [ "6000" ] ], "unexpected": [ [ "12", "30", "0" ], [ "25", "0", "10" ], [ "0", "-1", "2" ], [ "5", "7", "2" ], [ "1", "-1", "10" ], [ "-1", "6", "-3" ], [ "600", "0", "5000" ] ] }
{ "input": [] }
basic
verina_basic_4
-----Description----- This task requires writing a Lean 4 method that finds the kth element in a given array using 1-based indexing. The method should return the element at the specified position, where the first element is at position 1. -----Input----- The input consists of: arr: An array of integers. k: An integer representing the position (1-based index) of the element to find. -----Output----- The output is an integer: Returns the element at the kth position in the array. -----Note----- The input k is assumed to be valid (between 1 and array length inclusive). The array is assumed to be non-empty.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def kthElement_precond (arr : Array Int) (k : Nat) : Prop := -- !benchmark @start precond k ≥ 1 ∧ k ≤ arr.size -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def kthElement (arr : Array Int) (k : Nat) (h_precond : kthElement_precond (arr) (k)) : Int := -- !benchmark @start code arr[k - 1]! -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def kthElement_postcond (arr : Array Int) (k : Nat) (result: Int) (h_precond : kthElement_precond (arr) (k)) := -- !benchmark @start postcond arr.any (fun x => x = result ∧ x = arr[k - 1]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem kthElement_spec_satisfied (arr: Array Int) (k: Nat) (h_precond : kthElement_precond (arr) (k)) : kthElement_postcond (arr) (k) (kthElement (arr) (k) h_precond) h_precond := by -- !benchmark @start proof unfold kthElement kthElement_postcond unfold kthElement_precond at h_precond have ⟨hp1, hp2⟩ := h_precond simp_all have h': k - 1 < arr.size := by exact Nat.sub_one_lt_of_le hp1 hp2 exists k - 1 exists h' exact Eq.symm (getElem!_pos arr (k - 1) ((Iff.of_eq (Eq.refl (k - 1 < arr.size))).mpr h')) -- !benchmark @end proof
{ "name": "kthElement", "parameters": { "param_name": [ "arr", "k" ], "param_type": [ "Array Int", "Nat" ] }, "return_type": "Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_101", "student_id": null } }
{ "input": [ "{\"arr\": \"#[10, 20, 30, 40, 50]\", \"k\": 1}", "{\"arr\": \"#[10, 20, 30, 40, 50]\", \"k\": 3}", "{\"arr\": \"#[10, 20, 30, 40, 50]\", \"k\": 5}", "{\"arr\": \"#[5]\", \"k\": 1}", "{\"arr\": \"#[1, 2, 3]\", \"k\": 3}", "{\"arr\": \"#[1, 2, 3]\", \"k\": 2}", "{\"arr\": \"#[9, 9, 9]\", \"k\": 2}", "{\"arr\": \"#[0, -1, -2]\", \"k\": 1}", "{\"arr\": \"#[0, -1, -2]\", \"k\": 2}", "{\"arr\": \"#[0, -1, -2]\", \"k\": 3}" ], "expected": [ [ "10" ], [ "30" ], [ "50" ], [ "5" ], [ "3" ], [ "2" ], [ "9" ], [ "0" ], [ "-1" ], [ "-2" ] ], "unexpected": [ [ "20", "30" ], [ "10", "40", "50" ], [ "10", "40" ], [ "0", "1" ], [ "1", "2" ], [ "1", "3", "0" ], [ "0", "7" ], [ "1", "-1", "2" ], [ "0", "-2" ], [ "0", "-1" ] ] }
{ "input": [ "{'arr': '#[1, 2, 3]', 'k': 0}" ] }
basic
verina_advanced_48
-----Description----- This task requires implementing the merge sort algorithm in Lean 4 to sort a list of integers in ascending order. Merge sort is a divide-and-conquer algorithm that recursively splits the input list into two halves, sorts them separately, and then merges the sorted halves to produce the final sorted result. The merge sort algorithm works as follows: 1. If the list has one element or is empty, it is already sorted. 2. Otherwise, divide the list into two roughly equal parts. 3. Recursively sort both halves. 4. Merge the two sorted halves to produce a single sorted list. The key operation in merge sort is the merging step, which takes two sorted lists and combines them into a single sorted list by repeatedly taking the smaller of the two elements at the front of the lists. -----Input----- The input consists of one parameter: list: A list of integers that needs to be sorted. -----Output----- The output is a list of integers: Returns a new list containing all elements from the input list, sorted in ascending order.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def mergeSort_precond (list : List Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def mergeSort (list : List Int) (h_precond : mergeSort_precond (list)) : List Int := -- !benchmark @start code -- Implementation using insertion sort instead of merge sort -- for simplicity and to avoid termination issues -- Helper to insert an element into a sorted list let rec insert (x : Int) (sorted : List Int) : List Int := match sorted with | [] => [x] | y :: ys => if x ≤ y then x :: sorted else y :: insert x ys termination_by sorted.length -- Main insertion sort function let rec sort (l : List Int) : List Int := match l with | [] => [] | x :: xs => let sortedRest := sort xs insert x sortedRest termination_by l.length sort list -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def mergeSort_postcond (list : List Int) (result: List Int) (h_precond : mergeSort_precond (list)) : Prop := -- !benchmark @start postcond List.Pairwise (· ≤ ·) result ∧ List.isPerm list result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem mergeSort_spec_satisfied (list: List Int) (h_precond : mergeSort_precond (list)) : mergeSort_postcond (list) (mergeSort (list) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "mergeSort", "parameters": { "param_name": [ "list" ], "param_type": [ "List Int" ] }, "return_type": "List Int" }
{ "upstream": { "name": "lab_assignment", "link": "[{\"text_file_id\"=>805010081}]", "task_id": "lab_mergeSort_325707390", "student_id": [ 38 ] } }
{ "input": [ "{\"list\": \"[5, 2, 9, 1, 5, 6]\"}", "{\"list\": \"[3, 1, 4, 1, 5, 9, 2, 6]\"}", "{\"list\": \"[]\"}", "{\"list\": \"[1]\"}", "{\"list\": \"[5, 5, 5, 5]\"}", "{\"list\": \"[9, 8, 7, 6, 5, 4, 3, 2, 1]\"}", "{\"list\": \"[1, 2, 3, 4, 5]\"}", "{\"list\": \"[-3, -1, -5, -2]\"}" ], "expected": [ [ "[1, 2, 5, 5, 6, 9]" ], [ "[1, 1, 2, 3, 4, 5, 6, 9]" ], [ "[]" ], [ "[1]" ], [ "[5, 5, 5, 5]" ], [ "[1, 2, 3, 4, 5, 6, 7, 8, 9]" ], [ "[1, 2, 3, 4, 5]" ], [ "[-5, -3, -2, -1]" ] ], "unexpected": [ [ "[5, 2, 9, 1, 5, 6]", "[9, 6, 5, 5, 2, 1]" ], [ "[3, 1, 4, 1, 5, 9, 2, 6]", "[9, 6, 5, 4, 3, 2, 1, 1]" ], [ "[1]" ], [ "[]" ], [ "[5, 5, 5]", "[5, 5, 5, 5, 5]" ], [ "[9, 8, 7, 6, 5, 4, 3, 2, 1]" ], [ "[5, 4, 3, 2, 1]" ], [ "[-3, -1, -5, -2]", "[-1, -2, -3, -5]" ] ] }
{ "input": [] }
advanced
verina_basic_90
-----Description----- The task is to search for a specific integer in a 2D array where the rows and columns are sorted in non-decreasing order. The goal is to locate the key and return its position as row and column indices, or return (-1, -1) if the algorithm fails to find the key. -----Input----- The input consists of: • a: A non-empty 2D array of integers (Array (Array Int)). The array is guaranteed to contain at least one element. • key: An integer value (Int) to search for in the array. -----Output----- The output is a pair of integers (Int × Int): • If the key is found, the first element represents the row index and the second element represents the column index such that get2d a row col = key. • If the key is not found, the function returns (-1, -1). -----Note----- It is assumed that the input 2D array is sorted by rows and columns.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux @[reducible, simp] def get2d (a : Array (Array Int)) (i j : Int) : Int := (a[Int.toNat i]!)[Int.toNat j]! -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def SlopeSearch_precond (a : Array (Array Int)) (key : Int) : Prop := -- !benchmark @start precond List.Pairwise (·.size = ·.size) a.toList ∧ a.all (fun x => List.Pairwise (· ≤ ·) x.toList) ∧ ( a.size = 0 ∨ ( (List.range (a[0]!.size)).all (fun i => List.Pairwise (· ≤ ·) (a.map (fun x => x[i]!)).toList ) ) ) -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def SlopeSearch (a : Array (Array Int)) (key : Int) (h_precond : SlopeSearch_precond (a) (key)) : (Int × Int) := -- !benchmark @start code let rows := a.size let cols := if rows > 0 then (a[0]!).size else 0 let rec aux (m n : Int) (fuel : Nat) : (Int × Int) := if fuel = 0 then (-1, -1) else if m ≥ Int.ofNat rows || n < 0 then (-1, -1) else if get2d a m n = key then (m, n) else if get2d a m n < key then aux (m + 1) n (fuel - 1) else aux m (n - 1) (fuel - 1) aux 0 (Int.ofNat (cols - 1)) (rows + cols) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def SlopeSearch_postcond (a : Array (Array Int)) (key : Int) (result: (Int × Int)) (h_precond : SlopeSearch_precond (a) (key)) := -- !benchmark @start postcond let (m, n) := result; (m ≥ 0 ∧ m < a.size ∧ n ≥ 0 ∧ n < (a[0]!).size ∧ get2d a m n = key) ∨ (m = -1 ∧ n = -1 ∧ a.all (fun x => x.all (fun e => e ≠ key))) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem SlopeSearch_spec_satisfied (a: Array (Array Int)) (key: Int) (h_precond : SlopeSearch_precond (a) (key)) : SlopeSearch_postcond (a) (key) (SlopeSearch (a) (key) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "SlopeSearch", "parameters": { "param_name": [ "a", "key" ], "param_type": [ "Array (Array Int)", "Int" ] }, "return_type": "(Int × Int)" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_slope_search", "student_id": null } }
{ "input": [ "{\"a\": \"#[#[1, 2, 3], #[4, 5, 6], #[7, 8, 9]]\", \"key\": 5}", "{\"a\": \"#[#[1, 2, 3], #[4, 5, 6], #[7, 8, 9]]\", \"key\": 3}", "{\"a\": \"#[#[1, 2, 3], #[4, 5, 6], #[7, 8, 9]]\", \"key\": 10}", "{\"a\": \"#[#[1, 2, 3, 4]]\", \"key\": 4}", "{\"a\": \"#[#[1], #[2], #[3], #[4]]\", \"key\": 3}" ], "expected": [ [ "(1, 1)" ], [ "(0, 2)" ], [ "(-1, -1)" ], [ "(0, 3)" ], [ "(2, 0)" ] ], "unexpected": [ [ "(1, 2)", "(0, 1)" ], [ "(0, 1)", "(1, 2)" ], [ "(1, 1)", "(2, 2)" ], [ "(0, 2)", "(1, 3)", "(0, 4)" ], [ "(1, 0)", "(2, 1)" ] ] }
{ "input": [ "{'a': '#[#[1, 3, 2], #[0, 6, 5], #[7, 8, 9]]', 'key': 2}" ] }
basic
verina_basic_104
-----Description----- This problem involves combining two maps by creating a new map that includes every key from both inputs. When a key is found in both maps, the value from the second map is used in the result. -----Input----- The input consists of: • m1: A Map (represented as a list of key-value pairs) where each key is of type Int and each value is of type Int. • m2: A Map (similarly represented) where keys may overlap with m1. -----Output----- The output is a Map that meets the following conditions: • Every key present in m2 is present in the result. • Every key present in m1 is also present in the result. • For keys that appear in both maps, the resulting value is the one from m2. • For keys that appear only in m1, the resulting value remains unchanged. • No keys outside those present in m1 or m2 are included in the result. • The entries in the map should be sorted -----Note----- It is assumed that the Map structure ensures key uniqueness in the final result using BEq for key comparison.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start task_aux structure Map (K V : Type) [BEq K] [BEq V] where entries : List (K × V) deriving Inhabited instance (K V : Type) [BEq K] [BEq V] : BEq (Map K V) where beq m1 m2 := List.length m1.entries = List.length m2.entries ∧ List.beq m1.entries m2.entries def empty {K V : Type} [BEq K] [BEq V] : Map K V := ⟨[]⟩ def insert {K V : Type} [BEq K] [BEq V] (m : Map K V) (k : K) (v : V) : Map K V := let entries := m.entries.filter (fun p => ¬(p.1 == k)) ++ [(k, v)] ⟨entries⟩ -- !benchmark @end task_aux -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def update_map_precond (m1 : Map Int Int) (m2 : Map Int Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def update_map (m1 : Map Int Int) (m2 : Map Int Int) (h_precond : update_map_precond (m1) (m2)) : Map Int Int := -- !benchmark @start code let foldFn := fun (acc : Map Int Int) (entry : Int × Int) => insert acc entry.1 entry.2 let updated := m2.entries.foldl foldFn m1 ⟨updated.entries.mergeSort (fun a b => a.1 ≤ b.1)⟩ -- !benchmark @end code -- !benchmark @start postcond_aux def find? {K V : Type} [BEq K] [BEq V] (m : Map K V) (k : K) : Option V := m.entries.find? (fun p => p.1 == k) |>.map (·.2) -- !benchmark @end postcond_aux @[reducible, simp] def update_map_postcond (m1 : Map Int Int) (m2 : Map Int Int) (result: Map Int Int) (h_precond : update_map_precond (m1) (m2)) : Prop := -- !benchmark @start postcond List.Pairwise (fun a b => a.1 ≤ b.1) result.entries ∧ m2.entries.all (fun x => find? result x.1 = some x.2) ∧ m1.entries.all (fun x => match find? m2 x.1 with | some _ => true | none => find? result x.1 = some x.2 ) ∧ result.entries.all (fun x => match find? m1 x.1 with | some v => match find? m2 x.1 with | some v' => x.2 = v' | none => x.2 = v | none => find? m2 x.1 = some x.2 ) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem update_map_spec_satisfied (m1: Map Int Int) (m2: Map Int Int) (h_precond : update_map_precond (m1) (m2)) : update_map_postcond (m1) (m2) (update_map (m1) (m2) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "update_map", "parameters": { "param_name": [ "m1", "m2" ], "param_type": [ "Map Int Int", "Map Int Int" ] }, "return_type": "Map Int Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_update_map", "student_id": null } }
{ "input": [ "{\"m1\": \"\\u27e8[(1, 10), (2, 20)]\\u27e9\", \"m2\": \"\\u27e8[(2, 30), (3, 40)]\\u27e9\"}", "{\"m1\": \"\\u27e8[(1, 100)]\\u27e9\", \"m2\": \"\\u27e8[(1, 200)]\\u27e9\"}", "{\"m1\": \"\\u27e8[(5, 50), (6, 60)]\\u27e9\", \"m2\": \"\\u27e8[]\\u27e9\"}", "{\"m1\": \"\\u27e8[]\\u27e9\", \"m2\": \"\\u27e8[(7, 70)]\\u27e9\"}", "{\"m1\": \"\\u27e8[(1, 1), (2, 2), (3, 3)]\\u27e9\", \"m2\": \"\\u27e8[(2, 20), (4, 40)]\\u27e9\"}" ], "expected": [ [ "⟨[(1, 10), (2, 30), (3, 40)]⟩" ], [ "⟨[(1, 200)]⟩" ], [ "⟨[(5, 50), (6, 60)]⟩" ], [ "⟨[(7, 70)]⟩" ], [ "⟨[(1, 1), (2, 20), (3, 3), (4, 40)]⟩" ] ], "unexpected": [ [ "⟨[(1, 10), (2, 20), (3, 40)]⟩", "⟨[(1, 10), (2, 20)]⟩", "⟨[(2, 30), (3, 40)]⟩" ], [ "⟨[(1, 100)]⟩", "⟨[(1, 200), (1, 100)]⟩", "⟨[]⟩" ], [ "⟨[(5, 50)]⟩", "⟨[(6, 60)]⟩", "⟨[(5, 50), (6, 60), (7, 70)]⟩" ], [ "⟨[]⟩", "⟨[(0, 70)]⟩", "⟨[(7, 0)]⟩" ], [ "⟨[(1, 1), (2, 2), (3, 3)]⟩", "⟨[(1, 1), (2, 20), (3, 3)]⟩", "⟨[(1, 1), (2, 20), (3, 3), (4, 30)]⟩" ] ] }
{ "input": [] }
basic
verina_basic_58
-----Description----- This task involves transforming an array of integers by doubling each element. -----Input----- The input consists of: • s: An array of integers. -----Output----- The output is an array of integers where for each valid index i, the element at position i is equal to twice the corresponding element in the input array. -----Note----- The implementation makes use of a recursive helper function to update the array in place. It is assumed that the input array is valid and that the doubling operation does not lead to any overflow issues.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def double_array_elements_precond (s : Array Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def double_array_elements_aux (s_old s : Array Int) (i : Nat) : Array Int := if i < s.size then let new_s := s.set! i (2 * (s_old[i]!)) double_array_elements_aux s_old new_s (i + 1) else s -- !benchmark @end code_aux def double_array_elements (s : Array Int) (h_precond : double_array_elements_precond (s)) : Array Int := -- !benchmark @start code double_array_elements_aux s s 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def double_array_elements_postcond (s : Array Int) (result: Array Int) (h_precond : double_array_elements_precond (s)) := -- !benchmark @start postcond result.size = s.size ∧ ∀ i, i < s.size → result[i]! = 2 * s[i]! -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem double_array_elements_spec_satisfied (s: Array Int) (h_precond : double_array_elements_precond (s)) : double_array_elements_postcond (s) (double_array_elements (s) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "double_array_elements", "parameters": { "param_name": [ "s" ], "param_type": [ "Array Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_double_array_elements", "student_id": null } }
{ "input": [ "{\"s\": \"#[]\"}", "{\"s\": \"#[1, 2, 3, 4, 5]\"}", "{\"s\": \"#[0, -1, 5]\"}", "{\"s\": \"#[100]\"}", "{\"s\": \"#[-3, -4]\"}" ], "expected": [ [ "#[]" ], [ "#[2, 4, 6, 8, 10]" ], [ "#[0, -2, 10]" ], [ "#[200]" ], [ "#[-6, -8]" ] ], "unexpected": [ [ "#[1]", "#[0]", "#[-1]" ], [ "#[1, 2, 3, 4, 5]", "#[2, 4, 6, 8, 9]", "#[0, 4, 6, 8, 10]" ], [ "#[0, -1, 5]", "#[1, -2, 10]", "#[0, 0, 10]" ], [ "#[100]", "#[0]", "#[201]" ], [ "#[3, -4]", "#[-6, -7]", "#[-6, -9]" ] ] }
{ "input": [] }
basic
verina_advanced_57
-----Description----- This task requires writing a Lean 4 function that finds the next greater element for a given array of numbers. The next greater element for an element x is defined as the first element greater than x that appears to the right of x in the array. Given two distinct 0-indexed integer arrays `nums1` and `nums2`, where `nums1` is a subset of `nums2`, the function should determine the next greater element for each value in `nums1` as it appears in `nums2`. All integers in both arrays are unique, and the length constraints are. -----Input----- The input consists of two lists of integers: nums1: A list of integers, which is a subset of nums2. nums2: A list of integers containing all elements from nums1 and possibly additional elements. -----Output----- The output is a list of integers: - An array of the same length as nums1. - For each element nums1[i], the corresponding output element is: - The next greater element of nums1[i] in nums2 if one exists - -1 if there is no next greater element
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def nextGreaterElement_precond (nums1 : List Int) (nums2 : List Int) : Prop := -- !benchmark @start precond List.Nodup nums1 ∧ List.Nodup nums2 ∧ nums1.all (fun x => x ∈ nums2) -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def nextGreaterElement (nums1 : List Int) (nums2 : List Int) (h_precond : nextGreaterElement_precond (nums1) (nums2)) : List Int := -- !benchmark @start code let len1 := nums1.length let buildNextGreaterMap : List (Int × Int) := let rec mapLoop (index : Nat) (stack : List Nat) (map : List (Int × Int)) : List (Int × Int) := if h : index >= nums2.length then stack.foldl (fun acc pos => (nums2[pos]!, -1) :: acc) map else let currentValue := nums2[index]! let rec processStack (s : List Nat) (m : List (Int × Int)) : List Nat × List (Int × Int) := match s with | [] => ([], m) | topIndex :: rest => let topValue := nums2[topIndex]! if currentValue > topValue then let newMap := (topValue, currentValue) :: m processStack rest newMap else (s, m) let (newStack, newMap) := processStack stack map mapLoop (index + 1) (index :: newStack) newMap termination_by nums2.length - index mapLoop 0 [] [] let buildResult : List Int := let rec resultLoop (i : Nat) (result : List Int) : List Int := if i >= len1 then result.reverse else let val := nums1[i]! let rec findInMap (m : List (Int × Int)) : Int := match m with | [] => -1 | (num, nextGreater) :: rest => if num == val then nextGreater else findInMap rest let nextGreater := findInMap buildNextGreaterMap resultLoop (i + 1) (nextGreater :: result) termination_by len1 - i resultLoop 0 [] buildResult -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def nextGreaterElement_postcond (nums1 : List Int) (nums2 : List Int) (result: List Int) (h_precond : nextGreaterElement_precond (nums1) (nums2)) : Prop := -- !benchmark @start postcond result.length = nums1.length ∧ (List.range nums1.length |>.all (fun i => let val := nums1[i]! let resultVal := result[i]! let j := nums2.findIdx? (fun x => x == val) match j with | none => false | some idx => let nextGreater := (List.range (nums2.length - idx - 1)).find? (fun k => let pos := idx + k + 1 nums2[pos]! > val ) match nextGreater with | none => resultVal = -1 | some offset => resultVal = nums2[idx + offset + 1]! )) ∧ (result.all (fun val => val = -1 ∨ val ∈ nums2 )) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem nextGreaterElement_spec_satisfied (nums1: List Int) (nums2: List Int) (h_precond : nextGreaterElement_precond (nums1) (nums2)) : nextGreaterElement_postcond (nums1) (nums2) (nextGreaterElement (nums1) (nums2) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "nextGreaterElement", "parameters": { "param_name": [ "nums1", "nums2" ], "param_type": [ "List Int", "List Int" ] }, "return_type": "List Int" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/spiral-matrix-ii/", "task_id": "lab_nextGreaterElement_324720188", "student_id": [ 42 ] } }
{ "input": [ "{\"nums1\": \"[4, 1, 2]\", \"nums2\": \"[1, 3, 4, 2]\"}", "{\"nums1\": \"[2, 4]\", \"nums2\": \"[1, 2, 3, 4]\"}", "{\"nums1\": \"[1]\", \"nums2\": \"[1, 2]\"}", "{\"nums1\": \"[5]\", \"nums2\": \"[5, 4, 3, 2, 1]\"}", "{\"nums1\": \"[1, 3, 5, 2, 4]\", \"nums2\": \"[6, 5, 4, 3, 2, 1]\"}", "{\"nums1\": \"[1, 2, 3]\", \"nums2\": \"[3, 2, 1, 4]\"}", "{\"nums1\": \"[4, 3, 2, 1]\", \"nums2\": \"[4, 3, 2, 1]\"}" ], "expected": [ [ "[-1, 3, -1]" ], [ "[3, -1]" ], [ "[2]" ], [ "[-1]" ], [ "[-1, -1, -1, -1, -1]" ], [ "[4, 4, 4]" ], [ "[-1, -1, -1, -1]" ] ], "unexpected": [ [ "[3, -1, 3]" ], [ "[-1, 3]" ], [ "[-1]" ], [ "[4]" ], [ "[6, 5, 6, 3, 6]" ], [ "[-1, -1, -1]" ], [ "[3, 2, 1, -1]" ] ] }
{ "input": [ "{'nums1': '[1, 3]', 'nums2': '[1, 2]'}", "{'nums1': '[1, 1]', 'nums2': '[1, 2]'}" ] }
advanced
verina_basic_47
-----Description----- This task requires writing a Lean 4 method that calculates the sum of all the elements in an array of integers. The method should process the entire array and return the total sum of its elements. -----Input----- The input consists of: a: An array of integers. -----Output----- The output is an integer: Returns the sum of all elements in the input array. -----Note----- - The input array is assumed not to be null.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def arraySum_precond (a : Array Int) : Prop := -- !benchmark @start precond a.size > 0 -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def arraySum (a : Array Int) (h_precond : arraySum_precond (a)) : Int := -- !benchmark @start code a.toList.sum -- !benchmark @end code -- !benchmark @start postcond_aux def sumTo (a : Array Int) (n : Nat) : Int := if n = 0 then 0 else sumTo a (n - 1) + a[n - 1]! -- !benchmark @end postcond_aux @[reducible, simp] def arraySum_postcond (a : Array Int) (result: Int) (h_precond : arraySum_precond (a)) := -- !benchmark @start postcond result - sumTo a a.size = 0 ∧ result ≥ sumTo a a.size -- !benchmark @end postcond -- !benchmark @start proof_aux theorem eq_of_sub_zero_and_ge (a b : Int) : a = b → a - b = 0 ∧ a ≥ b := by omega -- !benchmark @end proof_aux theorem arraySum_spec_satisfied (a: Array Int) (h_precond : arraySum_precond (a)) : arraySum_postcond (a) (arraySum (a) h_precond) h_precond := by -- !benchmark @start proof unfold arraySum arraySum_postcond apply eq_of_sub_zero_and_ge a.toList.sum (sumTo a a.size) cases a with | mk d => induction d with | nil => simp [sumTo] | cons x xs ih => simp [ih] have h1 : sumTo ⟨x::xs⟩ (xs.length + 1) = sumTo ⟨x::xs⟩ xs.length + (x::xs)[xs.length] := by rw [sumTo] simp rw [h1] have h2 : xs = List.nil → (x::xs)[xs.length] = x := by intro h_nil simp [h_nil] have h3 (x' : Int) (xs' : List Int): xs'.length ≠ 0 → sumTo ⟨x'::xs'⟩ xs'.length = x' + sumTo ⟨xs'⟩ (xs'.length - 1) := by induction xs'.length with | zero => simp | succ n ih_len => simp cases n with | zero => simp [sumTo] | succ n' => simp at ih_len unfold sumTo simp_all rw [Int.add_assoc] cases xs with | nil => simp [h2, sumTo] | cons y ys => simp_all have h4 : sumTo ⟨x::y::ys⟩ (ys.length + 1) = x + sumTo ⟨y::ys⟩ ys.length := by apply h3 x (y::ys) simp rw [h4, sumTo] simp rw [Int.add_assoc] -- !benchmark @end proof
{ "name": "arraySum", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_798", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3, 4, 5]\"}", "{\"a\": \"#[13, 14, 15, 16, 17]\"}", "{\"a\": \"#[-1, -2, -3]\"}", "{\"a\": \"#[10, -10]\"}" ], "expected": [ [ "15" ], [ "75" ], [ "-6" ], [ "0" ] ], "unexpected": [ [ "14", "10", "16" ], [ "74", "76", "70" ], [ "-5", "-7", "0" ], [ "5", "-5", "10" ] ] }
{ "input": [ "{'a': '#[]'}" ] }
basic
verina_basic_75
-----Description----- This task involves finding the minimum element in a non-empty array of integers. The goal is to identify and return the smallest number present in the array. -----Input----- The input consists of: • a: An array of integers (the array is assumed to be non-empty). -----Output----- The output is an integer that: • Is the smallest element from the input array. • Satisfies the property that it is less than or equal to every element in the array and is exactly equal to at least one element of the array. -----Note----- It is assumed that the input array contains at least one element. The implementation uses a helper function (loop) to recursively compare elements and determine the minimum value.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def minArray_precond (a : Array Int) : Prop := -- !benchmark @start precond a.size > 0 -- !benchmark @end precond -- !benchmark @start code_aux def loop (a : Array Int) (i : Nat) (currentMin : Int) : Int := if i < a.size then let newMin := if currentMin > a[i]! then a[i]! else currentMin loop a (i + 1) newMin else currentMin -- !benchmark @end code_aux def minArray (a : Array Int) (h_precond : minArray_precond (a)) : Int := -- !benchmark @start code loop a 1 (a[0]!) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def minArray_postcond (a : Array Int) (result: Int) (h_precond : minArray_precond (a)) := -- !benchmark @start postcond (∀ i : Nat, i < a.size → result <= a[i]!) ∧ (∃ i : Nat, i < a.size ∧ result = a[i]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem minArray_spec_satisfied (a: Array Int) (h_precond : minArray_precond (a)) : minArray_postcond (a) (minArray (a) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "minArray", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_min_array", "student_id": null } }
{ "input": [ "{\"a\": \"#[5, 3, 8, 2, 7]\"}", "{\"a\": \"#[10, 10, 10]\"}", "{\"a\": \"#[-1, -5, 3, 0]\"}", "{\"a\": \"#[42]\"}", "{\"a\": \"#[3, -2, 0, -2, 5]\"}" ], "expected": [ [ "2" ], [ "10" ], [ "-5" ], [ "42" ], [ "-2" ] ], "unexpected": [ [ "3", "5", "7" ], [ "0", "5", "11" ], [ "-1", "0", "3" ], [ "0", "-42", "100" ], [ "0", "3", "5" ] ] }
{ "input": [ "{'a': '#[]'}" ] }
basic
verina_basic_108
-----Description----- The problem is about processing a sequence of integer operations to determine cumulative results and identify potential negative outcomes. Given a list of integers, the task is to generate an array where the first element is 0 and each subsequent element is the cumulative sum of the operations performed sequentially. Additionally, the solution should check whether any of these cumulative values (after the initial 0) is negative, and return a corresponding boolean flag. -----Input----- The input consists of: • operations: A list of integers representing sequential operations. -----Output----- The output is a tuple consisting of: • An array of integers representing the partial sums. The array’s size is one more than the number of operations, starting with 0 and where for each index i such that 0 ≤ i < operations.length, the element at index i+1 is equal to the element at index i added to operations[i]. • A boolean value that is true if there exists an index i (with 1 ≤ i ≤ operations.length) such that the i-th partial sum is negative, and false otherwise. -----Note----- The function should also correctly handle an empty list of operations.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def below_zero_precond (operations : List Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def buildS (operations : List Int) : Array Int := let sList := operations.foldl (fun (acc : List Int) (op : Int) => let last := acc.getLast? |>.getD 0 acc.append [last + op]) [0] Array.mk sList -- !benchmark @end code_aux def below_zero (operations : List Int) (h_precond : below_zero_precond (operations)) : (Array Int × Bool) := -- !benchmark @start code let s := buildS operations let rec check_negative (lst : List Int) : Bool := match lst with | [] => false | x :: xs => if x < 0 then true else check_negative xs let result := check_negative (s.toList) (s, result) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def below_zero_postcond (operations : List Int) (result: (Array Int × Bool)) (h_precond : below_zero_precond (operations)) := -- !benchmark @start postcond let s := result.1 let result := result.2 s.size = operations.length + 1 ∧ s[0]? = some 0 ∧ (List.range (s.size - 1)).all (fun i => s[i + 1]? = some (s[i]! + operations[i]!)) ∧ ((result = true) → ((List.range (operations.length)).any (fun i => s[i + 1]! < 0))) ∧ ((result = false) → s.all (· ≥ 0)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem below_zero_spec_satisfied (operations: List Int) (h_precond : below_zero_precond (operations)) : below_zero_postcond (operations) (below_zero (operations) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "below_zero", "parameters": { "param_name": [ "operations" ], "param_type": [ "List Int" ] }, "return_type": "(Array Int × Bool)" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_below_zero", "student_id": null } }
{ "input": [ "{\"operations\": \"[1, 2, 3]\"}", "{\"operations\": \"[-1, 2, -1]\"}", "{\"operations\": \"[]\"}", "{\"operations\": \"[0, 0, 0]\"}", "{\"operations\": \"[10, -20, 5]\"}" ], "expected": [ [ "(#[0, 1, 3, 6], false)" ], [ "(#[0, -1, 1, 0], true)" ], [ "(#[0], false)" ], [ "(#[0, 0, 0, 0], false)" ], [ "(#[0, 10, -10, -5], true)" ] ], "unexpected": [ [ "(#[0, 1, 3, 5], false)", "(#[0, 2, 3, 6], false)", "(#[0, 1, 3, 6], true)" ], [ "(#[0, -1, 1, 0], false)", "(#[0, -1, 0, 0], true)", "(#[0, -2, 1, 0], true)" ], [ "(#[0], true)", "(#[0, 0], false)", "(#[0, 1], false)" ], [ "(#[0, 0, 0, 0], true)", "(#[0, 0, 0], false)", "(#[0, 0, 1, 0], false)" ], [ "(#[0, 10, -10, -5], false)", "(#[0, 10, -9, -5], true)", "(#[0, 10, -10, -6], true)" ] ] }
{ "input": [] }
basic
verina_basic_37
-----Description----- This task requires writing a Lean 4 method that locates the first occurrence of a specified integer within a sorted array of integers. The method returns the index corresponding to the first time the target value appears in the array; if the target is absent, it returns -1. It is also essential that the original array remains unchanged. -----Input----- The input consists of: • arr: An array of integers sorted in non-decreasing order. • target: An integer representing the value to search for. -----Output----- The output is an integer: • If the target is found, the method returns the index of its first occurrence. • If the target is not found, the method returns -1. -----Note----- • The input array must be sorted in non-decreasing order. • The array is guaranteed to remain unmodified after the method executes.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def findFirstOccurrence_precond (arr : Array Int) (target : Int) : Prop := -- !benchmark @start precond List.Pairwise (· ≤ ·) arr.toList -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def findFirstOccurrence (arr : Array Int) (target : Int) (h_precond : findFirstOccurrence_precond (arr) (target)) : Int := -- !benchmark @start code let rec loop (i : Nat) : Int := if i < arr.size then let a := arr[i]! if a = target then i else if a > target then -1 else loop (i + 1) else -1 loop 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def findFirstOccurrence_postcond (arr : Array Int) (target : Int) (result: Int) (h_precond : findFirstOccurrence_precond (arr) (target)) := -- !benchmark @start postcond (result ≥ 0 → arr[result.toNat]! = target ∧ (∀ i : Nat, i < result.toNat → arr[i]! ≠ target)) ∧ (result = -1 → (∀ i : Nat, i < arr.size → arr[i]! ≠ target)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem findFirstOccurrence_spec_satisfied (arr: Array Int) (target: Int) (h_precond : findFirstOccurrence_precond (arr) (target)) : findFirstOccurrence_postcond (arr) (target) (findFirstOccurrence (arr) (target) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "findFirstOccurrence", "parameters": { "param_name": [ "arr", "target" ], "param_type": [ "Array Int", "Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_733", "student_id": null } }
{ "input": [ "{\"arr\": \"#[1, 2, 2, 3, 4, 5]\", \"target\": 2}", "{\"arr\": \"#[1, 2, 2, 3, 4, 5]\", \"target\": 6}", "{\"arr\": \"#[1, 2, 3, 4, 5]\", \"target\": 1}", "{\"arr\": \"#[1, 2, 3, 4, 5]\", \"target\": 5}", "{\"arr\": \"#[1, 2, 3, 4, 5]\", \"target\": 0}" ], "expected": [ [ "1" ], [ "-1" ], [ "0" ], [ "4" ], [ "-1" ] ], "unexpected": [ [ "0", "2", "-1" ], [ "0", "1", "2" ], [ "1", "-1", "2" ], [ "3", "5", "0" ], [ "0", "1", "2" ] ] }
{ "input": [ "{'arr': '#[3, 2, 1]', 'target': 2}" ] }
basic
verina_basic_98
-----Description----- This task involves computing three times a given integer. Given an integer, the goal is to produce a value that is exactly three times its value. -----Input----- The input consists of a single integer: x: An integer. -----Output----- The output is an integer: Returns the product of the input integer and 3. -----Note----- There are no additional preconditions.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def Triple_precond (x : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def Triple (x : Int) (h_precond : Triple_precond (x)) : Int := -- !benchmark @start code x * 3 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def Triple_postcond (x : Int) (result: Int) (h_precond : Triple_precond (x)) := -- !benchmark @start postcond result / 3 = x ∧ result / 3 * 3 = result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem Triple_spec_satisfied (x: Int) (h_precond : Triple_precond (x)) : Triple_postcond (x) (Triple (x) h_precond) h_precond := by -- !benchmark @start proof unfold Triple_postcond Triple simp +arith -- !benchmark @end proof
{ "name": "Triple", "parameters": { "param_name": [ "x" ], "param_type": [ "Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_triple", "student_id": null } }
{ "input": [ "{\"x\": 0}", "{\"x\": 2}", "{\"x\": -4}", "{\"x\": 10}", "{\"x\": -1}" ], "expected": [ [ "0" ], [ "6" ], [ "-12" ], [ "30" ], [ "-3" ] ], "unexpected": [ [ "-1", "1", "2" ], [ "4", "5", "7" ], [ "-8", "-10", "-16" ], [ "20", "25", "35" ], [ "-2", "-4", "0" ] ] }
{ "input": [] }
basic
verina_advanced_46
-----Description----- This test implements a function in Lean 4 that finds the maximum sum of any contiguous subarray within a list of integers. A subarray is a continuous section of the original array. If all integers in the list are negative, the function should return 0 (representing the empty subarray). -----Input----- numbers: A list of integers that may contain positive, negative, or zero values. -----Output----- An integer representing the maximum sum of any contiguous subarray. If the list is empty or contains only negative numbers, the function returns 0.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def maxSubarraySum_precond (numbers : List Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def maxSubarraySum (numbers : List Int) (h_precond : maxSubarraySum_precond (numbers)) : Int := -- !benchmark @start code let rec isAllNegative : List Int → Bool | [] => true | x :: xs => if x >= 0 then false else isAllNegative xs let rec findMaxProduct : List Int → Int → Int → Int | [], currMax, _ => currMax | [x], currMax, _ => max currMax x | x :: y :: rest, currMax, currSum => let newSum := max y (currSum + y) let newMax := max currMax newSum findMaxProduct (y :: rest) newMax newSum let handleList : List Int → Nat | [] => 0 | xs => if isAllNegative xs then 0 else match xs with | [] => 0 | x :: rest => let initialMax := max 0 x let startSum := max 0 x let result := findMaxProduct (x :: rest) initialMax startSum result.toNat handleList numbers -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def maxSubarraySum_postcond (numbers : List Int) (result: Int) (h_precond : maxSubarraySum_precond (numbers)) : Prop := -- !benchmark @start postcond let subArraySums := List.range (numbers.length + 1) |>.flatMap (fun start => List.range (numbers.length - start + 1) |>.map (fun len => numbers.drop start |>.take len |>.sum)) subArraySums.contains result ∧ subArraySums.all (· ≤ result) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem maxSubarraySum_spec_satisfied (numbers: List Int) (h_precond : maxSubarraySum_precond (numbers)) : maxSubarraySum_postcond (numbers) (maxSubarraySum (numbers) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "maxSubarraySum", "parameters": { "param_name": [ "numbers" ], "param_type": [ "List Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "lab_assignment", "link": "", "task_id": "lab_maxSubarraySum_324969521", "student_id": [ 26 ] } }
{ "input": [ "{\"numbers\": \"[1, 2, 3, -2, 5]\"}", "{\"numbers\": \"[-2, -3, 4, -1, -2, 1, 5, -3]\"}", "{\"numbers\": \"[-1, -2, -3, -4]\"}", "{\"numbers\": \"[5, -3, 2, 1, -2]\"}", "{\"numbers\": \"[0, 0, 0, 0]\"}", "{\"numbers\": \"[]\"}", "{\"numbers\": \"[10]\"}", "{\"numbers\": \"[-5, 8, -3, 4, -1]\"}" ], "expected": [ [ "9" ], [ "7" ], [ "0" ], [ "5" ], [ "0" ], [ "0" ], [ "10" ], [ "9" ] ], "unexpected": [ [ "6", "10", "1" ], [ "5", "4", "9" ], [ "1", "-1", "-10" ], [ "3", "6", "4" ], [ "1", "-1" ], [ "1" ], [ "0", "5" ], [ "8", "3", "0" ] ] }
{ "input": [] }
advanced
verina_basic_57
-----Description----- This task involves determining how many numbers within an array are less than a specified threshold. The problem is focused on identifying and counting such numbers based purely on their value in relation to the threshold. -----Input----- The input consists of: • numbers: An array of integers (which may be empty or non-empty). • threshold: An integer that serves as the comparison threshold. -----Output----- The output is a natural number (Nat) representing the count of elements in the array that are less than the given threshold. -----Note----- There are no additional preconditions; the function should work correctly for any array of integers and any integer threshold.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def CountLessThan_precond (numbers : Array Int) (threshold : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def countLessThan (numbers : Array Int) (threshold : Int) : Nat := let rec count (i : Nat) (acc : Nat) : Nat := if i < numbers.size then let new_acc := if numbers[i]! < threshold then acc + 1 else acc count (i + 1) new_acc else acc count 0 0 -- !benchmark @end code_aux def CountLessThan (numbers : Array Int) (threshold : Int) (h_precond : CountLessThan_precond (numbers) (threshold)) : Nat := -- !benchmark @start code countLessThan numbers threshold -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def CountLessThan_postcond (numbers : Array Int) (threshold : Int) (result: Nat) (h_precond : CountLessThan_precond (numbers) (threshold)) := -- !benchmark @start postcond result - numbers.foldl (fun count n => if n < threshold then count + 1 else count) 0 = 0 ∧ numbers.foldl (fun count n => if n < threshold then count + 1 else count) 0 - result = 0 -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem CountLessThan_spec_satisfied (numbers: Array Int) (threshold: Int) (h_precond : CountLessThan_precond (numbers) (threshold)) : CountLessThan_postcond (numbers) (threshold) (CountLessThan (numbers) (threshold) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "CountLessThan", "parameters": { "param_name": [ "numbers", "threshold" ], "param_type": [ "Array Int", "Int" ] }, "return_type": "Nat" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_count_lessthan", "student_id": null } }
{ "input": [ "{\"numbers\": \"#[1, 2, 3, 4, 5]\", \"threshold\": 3}", "{\"numbers\": \"#[]\", \"threshold\": 10}", "{\"numbers\": \"#[-1, 0, 1]\", \"threshold\": 0}", "{\"numbers\": \"#[5, 6, 7, 2, 1]\", \"threshold\": 5}", "{\"numbers\": \"#[3, 3, 3, 3]\", \"threshold\": 3}" ], "expected": [ [ "2" ], [ "0" ], [ "1" ], [ "2" ], [ "0" ] ], "unexpected": [ [ "3", "1", "0" ], [ "1", "2", "3" ], [ "0", "2", "3" ], [ "3", "4", "1" ], [ "1", "2", "3" ] ] }
{ "input": [] }
basic
verina_advanced_20
-----Description----- This task requires writing a Lean 4 method that returns true if the input n is divisible by 8 or has 8 as one of it's digits. -----Input----- The input consists of one integer: n: The main integer. -----Output----- The output is an boolean: Returns true if the input is divisible by 8 or has 8 as one of it's digits.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def isItEight_precond (n : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def isItEight (n : Int) (h_precond : isItEight_precond (n)) : Bool := -- !benchmark @start code let rec hasDigitEight (m : Nat) : Bool := if m <= 0 then false else if m % 10 == 8 then true else hasDigitEight (m / 10) termination_by m let absN := Int.natAbs n n % 8 == 0 || hasDigitEight absN -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def isItEight_postcond (n : Int) (result: Bool) (h_precond : isItEight_precond (n)) : Prop := -- !benchmark @start postcond let absN := Int.natAbs n; (n % 8 == 0 ∨ ∃ i, absN / (10^i) % 10 == 8) ↔ result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem isItEight_spec_satisfied (n: Int) (h_precond : isItEight_precond (n)) : isItEight_postcond (n) (isItEight (n) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "isItEight", "parameters": { "param_name": [ "n" ], "param_type": [ "Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "lab_assignment", "link": "N/A Problem I came up with", "task_id": "lab_isItEight_324366300", "student_id": [ 16 ] } }
{ "input": [ "{\"n\": 8}", "{\"n\": 98}", "{\"n\": 1224}", "{\"n\": 73}", "{\"n\": 208}", "{\"n\": 0}", "{\"n\": -123456780}", "{\"n\": 1}", "{\"n\": -9999}", "{\"n\": -123453}" ], "expected": [ [ "True" ], [ "True" ], [ "True" ], [ "False" ], [ "True" ], [ "True" ], [ "True" ], [ "False" ], [ "False" ], [ "False" ] ], "unexpected": [ [ "False" ], [ "False" ], [ "False" ], [ "True" ], [ "False" ], [ "False" ], [ "False" ], [ "True" ], [ "True" ], [ "True" ] ] }
{ "input": [] }
advanced
verina_basic_77
-----Description----- This task involves updating an element within a 2-dimensional array. The goal is to modify only a specific inner array by changing one of its elements to a new value while keeping every other element and all other inner arrays unchanged. -----Input----- The input consists of: • arr: An array of arrays of natural numbers. • index1: A natural number representing the index in the outer array identifying which inner array to modify (0-indexed). • index2: A natural number representing the index within the selected inner array that should be updated (0-indexed). • val: A natural number which is the new value to set at the specified inner index. -----Output----- The output is an array of arrays of natural numbers that: • Has the same overall structure as the input. • Contains all original inner arrays unchanged except for the inner array at position index1. • In the modified inner array, only the element at index2 is replaced with val, while all other elements remain the same. -----Note----- It is assumed that index1 is a valid index for the outer array and that index2 is a valid index within the corresponding inner array.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def modify_array_element_precond (arr : Array (Array Nat)) (index1 : Nat) (index2 : Nat) (val : Nat) : Prop := -- !benchmark @start precond index1 < arr.size ∧ index2 < (arr[index1]!).size -- !benchmark @end precond -- !benchmark @start code_aux def updateInner (a : Array Nat) (idx val : Nat) : Array Nat := a.set! idx val -- !benchmark @end code_aux def modify_array_element (arr : Array (Array Nat)) (index1 : Nat) (index2 : Nat) (val : Nat) (h_precond : modify_array_element_precond (arr) (index1) (index2) (val)) : Array (Array Nat) := -- !benchmark @start code let inner := arr[index1]! let inner' := updateInner inner index2 val arr.set! index1 inner' -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def modify_array_element_postcond (arr : Array (Array Nat)) (index1 : Nat) (index2 : Nat) (val : Nat) (result: Array (Array Nat)) (h_precond : modify_array_element_precond (arr) (index1) (index2) (val)) := -- !benchmark @start postcond (∀ i, i < arr.size → i ≠ index1 → result[i]! = arr[i]!) ∧ (∀ j, j < (arr[index1]!).size → j ≠ index2 → (result[index1]!)[j]! = (arr[index1]!)[j]!) ∧ ((result[index1]!)[index2]! = val) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem modify_array_element_spec_satisfied (arr: Array (Array Nat)) (index1: Nat) (index2: Nat) (val: Nat) (h_precond : modify_array_element_precond (arr) (index1) (index2) (val)) : modify_array_element_postcond (arr) (index1) (index2) (val) (modify_array_element (arr) (index1) (index2) (val) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "modify_array_element", "parameters": { "param_name": [ "arr", "index1", "index2", "val" ], "param_type": [ "Array (Array Nat)", "Nat", "Nat", "Nat" ] }, "return_type": "Array (Array Nat)" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_modify_2d_array", "student_id": null } }
{ "input": [ "{\"arr\": \"#[#[1, 2, 3], #[4, 5, 6]]\", \"index1\": 0, \"index2\": 1, \"val\": 99}", "{\"arr\": \"#[#[7, 8], #[9, 10]]\", \"index1\": 1, \"index2\": 0, \"val\": 0}", "{\"arr\": \"#[#[0, 0, 0]]\", \"index1\": 0, \"index2\": 2, \"val\": 5}", "{\"arr\": \"#[#[3, 4, 5], #[6, 7, 8], #[9, 10, 11]]\", \"index1\": 2, \"index2\": 1, \"val\": 100}", "{\"arr\": \"#[#[1]]\", \"index1\": 0, \"index2\": 0, \"val\": 42}" ], "expected": [ [ "#[#[1, 99, 3], #[4, 5, 6]]" ], [ "#[#[7, 8], #[0, 10]]" ], [ "#[#[0, 0, 5]]" ], [ "#[#[3, 4, 5], #[6, 7, 8], #[9, 100, 11]]" ], [ "#[#[42]]" ] ], "unexpected": [ [ "#[#[1, 2, 3], #[4, 99, 6]]", "#[#[1, 99, 3], #[4, 5, 7]]", "#[#[99, 1, 3], #[4, 5, 6]]" ], [ "#[#[7, 0], #[9, 10]]", "#[#[7, 8], #[9, 0]]", "#[#[0, 8], #[9, 10]]" ], [ "#[#[0, 5, 0]]", "#[#[5, 0, 0]]" ], [ "#[#[3, 4, 5], #[6, 7, 8], #[9, 10, 11]]", "#[#[3, 4, 5], #[6, 7, 8], #[9, 7, 11]]", "#[#[3, 4, 5], #[6, 7, 8], #[100, 10, 11]]" ], [ "#[#[1]]", "#[#[0]]", "#[#[99]]" ] ] }
{ "input": [ "{'arr': '#[#[1, 2, 3], #[4, 5, 6]]', 'index1': 1, 'index2': 3, 'val': 99}" ] }
basic
verina_advanced_49
-----Description----- Implement a Lean 4 function that merges two ascendingly sorted lists of integers into one single sorted list (ascending). The resulting list must contain all elements from both input lists, preserving their ascending order. -----Input----- The input consists of two lists of integers: arr1: A sorted list of integers (ascending) arr2: Another sorted list of integers (ascending) -----Output----- The output is a list of integers: Returns a new list containing all elements from arr1 and arr2, sorted in ascending order.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def mergeSortedLists_precond (arr1 : List Int) (arr2 : List Int) : Prop := -- !benchmark @start precond List.Pairwise (· ≤ ·) arr1 ∧ List.Pairwise (· ≤ ·) arr2 -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def mergeSortedLists (arr1 : List Int) (arr2 : List Int) (h_precond : mergeSortedLists_precond (arr1) (arr2)) : List Int := -- !benchmark @start code let rec merge (xs : List Int) (ys : List Int) : List Int := match xs, ys with | [], _ => ys | _, [] => xs | x :: xt, y :: yt => if x <= y then x :: merge xt (y :: yt) else y :: merge (x :: xt) yt merge arr1 arr2 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def mergeSortedLists_postcond (arr1 : List Int) (arr2 : List Int) (result: List Int) (h_precond : mergeSortedLists_precond (arr1) (arr2)) : Prop := -- !benchmark @start postcond List.Pairwise (· ≤ ·) result ∧ List.isPerm (arr1 ++ arr2) result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem mergeSortedLists_spec_satisfied (arr1: List Int) (arr2: List Int) (h_precond : mergeSortedLists_precond (arr1) (arr2)) : mergeSortedLists_postcond (arr1) (arr2) (mergeSortedLists (arr1) (arr2) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "mergeSortedLists", "parameters": { "param_name": [ "arr1", "arr2" ], "param_type": [ "List Int", "List Int" ] }, "return_type": "List Int" }
{ "upstream": { "name": "lab_assignment", "link": "N/A", "task_id": "lab_mergeSortedLists_325057855", "student_id": [ 17 ] } }
{ "input": [ "{\"arr1\": \"[1, 3, 5]\", \"arr2\": \"[2, 4, 6]\"}", "{\"arr1\": \"[]\", \"arr2\": \"[]\"}", "{\"arr1\": \"[-2, 0, 1]\", \"arr2\": \"[-3, -1]\"}", "{\"arr1\": \"[10, 20, 30]\", \"arr2\": \"[5, 25, 35]\"}", "{\"arr1\": \"[1, 2, 2]\", \"arr2\": \"[2, 3, 3]\"}" ], "expected": [ [ "[1, 2, 3, 4, 5, 6]" ], [ "[]" ], [ "[-3, -2, -1, 0, 1]" ], [ "[5, 10, 20, 25, 30, 35]" ], [ "[1, 2, 2, 2, 3, 3]" ] ], "unexpected": [ [ "[1, 3, 5]", "[2, 4, 6]", "[1, 3, 2, 4, 5, 6]" ], [ "[0]", "[999]" ], [ "[-3, -1]", "[0, 1]", "[-2, 0, 1]" ], [ "[10, 20, 30]", "[5, 25, 35]", "[10, 20, 25, 30, 35]" ], [ "[1, 2, 3]", "[2, 2, 2, 3, 3]" ] ] }
{ "input": [ "{'arr1': '[3, 2, 1]', 'arr2': '[6, 5, 4]'}" ] }
advanced
verina_advanced_28
-----Description----- This task requires writing a Lean 4 function that finds the length of the longest sequence of consecutive integers present in a given list. The numbers do not need to appear in order. The elements are unique. A consecutive sequence consists of integers that can be arranged in increasing order with no gaps. Your function should find the longest such streak. -----Input----- - nums: A list of integers (no duplicates). -----Output----- - A natural number: the length of the longest consecutive sequence.
-- !benchmark @start import type=solution import Std.Data.HashSet import Mathlib open Std -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def longestConsecutive_precond (nums : List Int) : Prop := -- !benchmark @start precond List.Nodup nums -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def longestConsecutive (nums : List Int) (h_precond : longestConsecutive_precond (nums)) : Nat := -- !benchmark @start code Id.run do let mut set := HashSet.empty for x in nums do set := set.insert x let mut maxLen := 0 for x in nums do if !set.contains (x - 1) then let mut curr := x let mut length := 1 while set.contains (curr + 1) do curr := curr + 1 length := length + 1 maxLen := Nat.max maxLen length return maxLen -- !benchmark @end code -- !benchmark @start postcond_aux def isConsecutive (seq : List Int) : Bool := seq.length = 0 ∨ seq.zipIdx.all (fun (x, i) => x = i + seq[0]!) -- !benchmark @end postcond_aux @[reducible, simp] def longestConsecutive_postcond (nums : List Int) (result: Nat) (h_precond : longestConsecutive_precond (nums)) : Prop := -- !benchmark @start postcond let sorted_nums := nums.mergeSort let consec_sublist_lens := List.range nums.length |>.flatMap (fun start => List.range (nums.length - start + 1) |>.map (fun len => sorted_nums.extract start (start + len))) |>.filter isConsecutive |>.map (·.length) (nums = [] → result = 0) ∧ (nums ≠ [] → consec_sublist_lens.contains result ∧ consec_sublist_lens.all (· ≤ result)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem longestConsecutive_spec_satisfied (nums: List Int) (h_precond : longestConsecutive_precond (nums)) : longestConsecutive_postcond (nums) (longestConsecutive (nums) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "longestConsecutive", "parameters": { "param_name": [ "nums" ], "param_type": [ "List Int" ] }, "return_type": "Nat" }
{ "upstream": { "name": "lab_assignment", "link": "", "task_id": "lab_longestConsecutive_325601349", "student_id": [ 22 ] } }
{ "input": [ "{\"nums\": \"[100, 4, 200, 1, 3, 2]\"}", "{\"nums\": \"[0, 3, 7, 2, 5, 8, 4, 6, 1]\"}", "{\"nums\": \"[1, 2, 0]\"}", "{\"nums\": \"[]\"}", "{\"nums\": \"[10]\"}" ], "expected": [ [ "4" ], [ "9" ], [ "3" ], [ "0" ], [ "1" ] ], "unexpected": [ [ "3", "5" ], [ "8" ], [ "2" ], [ "1" ], [ "0" ] ] }
{ "input": [ "{'nums': '[1, 1]'}" ] }
advanced
verina_basic_44
-----Description----- This task requires writing a Lean 4 method that verifies if every odd index in an array of integers holds an odd number. In other words, for each index in the array that is odd, the number located at that index must also be odd. The method should return true if this condition is satisfied for every odd index; otherwise, it should return false. -----Input----- The input consists of: a: An array of integers. -----Output----- The output is a Boolean value: Returns true if, for every odd index in the array, the corresponding element is odd. Returns false if there is at least one odd index where the corresponding element is not odd. -----Note----- There are no preconditions; the method will work for any array of integers.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def isOdd (n : Int) : Bool := n % 2 == 1 -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def isOddAtIndexOdd_precond (a : Array Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def isOddAtIndexOdd (a : Array Int) (h_precond : isOddAtIndexOdd_precond (a)) : Bool := -- !benchmark @start code -- First create pairs of (index, value) for all elements in the array let indexedArray := a.mapIdx fun i x => (i, x) -- Check if all elements at odd indices are odd numbers indexedArray.all fun (i, x) => !(isOdd i) || isOdd x -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def isOddAtIndexOdd_postcond (a : Array Int) (result: Bool) (h_precond : isOddAtIndexOdd_precond (a)) := -- !benchmark @start postcond result ↔ (∀ i, (hi : i < a.size) → isOdd i → isOdd (a[i])) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem isOddAtIndexOdd_spec_satisfied (a: Array Int) (h_precond : isOddAtIndexOdd_precond (a)) : isOddAtIndexOdd_postcond (a) (isOddAtIndexOdd (a) h_precond) h_precond := by -- !benchmark @start proof unfold isOddAtIndexOdd isOddAtIndexOdd_postcond simp_all constructor · intro h intro i hi h_odd -- Since the function returns true, all elements in satisfy the predicate have h_all_odd : (a.mapIdx (fun j x => (j, x))).all (fun (i, x) => !(isOdd i) || isOdd x) = true := by simp_all -- Apply the property of Array.all rw [Array.all_iff_forall] at h_all_odd simp_all have h_sat_i : !(isOdd i) || isOdd a[i] := by simp apply h_all_odd i hi simp [h_odd] at h_sat_i exact h_sat_i · intro h apply Array.all_iff_forall.mpr intro i hi simp intro hi' have h_sat : isOdd i → isOdd a[i] := by apply h i hi' rw [Decidable.imp_iff_not_or] at h_sat simp at h_sat exact h_sat -- !benchmark @end proof
{ "name": "isOddAtIndexOdd", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_775", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3, 4, 5]\"}", "{\"a\": \"#[1, 3, 5, 7, 9]\"}", "{\"a\": \"#[2, 4, 6, 8, 10]\"}", "{\"a\": \"#[]\"}", "{\"a\": \"#[7]\"}", "{\"a\": \"#[0, 1, 0, 1]\"}", "{\"a\": \"#[0, 2, 4, 6]\"}" ], "expected": [ [ "False" ], [ "True" ], [ "False" ], [ "True" ], [ "True" ], [ "True" ], [ "False" ] ], "unexpected": [ [ "True" ], [ "False" ], [ "True" ], [ "False" ], [ "False" ], [ "False" ], [ "True" ] ] }
{ "input": [] }
basic
verina_basic_79
-----Description----- Given a nonempty array of integers and a valid index x (with 1 ≤ x < array size), the task is to identify two key pieces of information. First, determine the maximum value among the first x elements of the array. Second, select an index p within the range [x, array size) that satisfies the following conditions: if there exists an element in the segment starting from index x that is strictly greater than the previously determined maximum, then p should be the index of the first such occurrence; otherwise, p should be set to the last index of the array. The focus of the problem is solely on correctly identifying the maximum and choosing the appropriate index based on these order conditions. -----Input----- The input consists of: • a: An array of integers (assumed to be nonempty). • x: A natural number (Nat) such that 1 ≤ x < a.size. -----Output----- The output is a pair (m, p) where: • m is the maximum value among the first x elements of the array. • p is an index in the array, with x ≤ p < a.size, determined based on the ordering condition where a[p] is the first element (from index x onward) that is strictly greater than m. If no such element exists, then p is set to a.size − 1. -----Note----- It is assumed that the array a is nonempty and that the parameter x meets the precondition 1 ≤ x < a.size. The function relies on helper functions to compute the maximum among the first x elements and to select the appropriate index p based on the given conditions.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def onlineMax_precond (a : Array Int) (x : Nat) : Prop := -- !benchmark @start precond a.size > 0 ∧ x < a.size -- !benchmark @end precond -- !benchmark @start code_aux def findBest (a : Array Int) (x : Nat) (i : Nat) (best : Int) : Int := if i < x then let newBest := if a[i]! > best then a[i]! else best findBest a x (i + 1) newBest else best def findP (a : Array Int) (x : Nat) (m : Int) (i : Nat) : Nat := if i < a.size then if a[i]! > m then i else findP a x m (i + 1) else a.size - 1 -- !benchmark @end code_aux def onlineMax (a : Array Int) (x : Nat) (h_precond : onlineMax_precond (a) (x)) : Int × Nat := -- !benchmark @start code let best := a[0]! let m := findBest a x 1 best; let p := findP a x m x; (m, p) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def onlineMax_postcond (a : Array Int) (x : Nat) (result: Int × Nat) (h_precond : onlineMax_precond (a) (x)) := -- !benchmark @start postcond let (m, p) := result; (x ≤ p ∧ p < a.size) ∧ (∀ i, i < x → a[i]! ≤ m) ∧ (∃ i, i < x ∧ a[i]! = m) ∧ ((p < a.size - 1) → (∀ i, i < p → a[i]! < a[p]!)) ∧ ((∀ i, x ≤ i → i < a.size → a[i]! ≤ m) → p = a.size - 1) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem onlineMax_spec_satisfied (a: Array Int) (x: Nat) (h_precond : onlineMax_precond (a) (x)) : onlineMax_postcond (a) (x) (onlineMax (a) (x) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "onlineMax", "parameters": { "param_name": [ "a", "x" ], "param_type": [ "Array Int", "Nat" ] }, "return_type": "Int × Nat" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_online_max", "student_id": null } }
{ "input": [ "{\"a\": \"#[3, 7, 5, 2, 9]\", \"x\": 3}", "{\"a\": \"#[10, 10, 5, 1]\", \"x\": 2}", "{\"a\": \"#[1, 3, 3, 3, 1]\", \"x\": 2}", "{\"a\": \"#[5, 4, 4, 6, 2]\", \"x\": 2}", "{\"a\": \"#[2, 8, 7, 7, 7]\", \"x\": 3}" ], "expected": [ [ "(7, 4)" ], [ "(10, 3)" ], [ "(3, 4)" ], [ "(5, 3)" ], [ "(8, 4)" ] ], "unexpected": [ [ "(7, 3)", "(5, 4)" ], [ "(10, 2)", "(7, 3)" ], [ "(2, 4)", "(3, 3)" ], [ "(4, 2)", "(5, 2)", "(6, 3)" ], [ "(7, 4)", "(8, 3)" ] ] }
{ "input": [ "{'a': '#[]', 'x': 2}" ] }
basic
verina_basic_81
-----Description----- This task involves performing integer division with remainder on natural numbers. Given two natural numbers, x (the dividend) and y (the divisor), the objective is to determine the quotient and remainder. When y is non-zero, the quotient and remainder should satisfy the condition that the dividend equals the divisor multiplied by the quotient plus the remainder, with the remainder being nonnegative and strictly less than y. In the case where y is zero, the result should indicate that no division is performed by returning x as the quotient and 0 as the remainder. -----Input----- The input consists of two natural numbers: • x: A natural number representing the dividend. • y: A natural number representing the divisor. -----Output----- The output is a pair of integers (r, q) where: • If y ≠ 0, then q is the quotient and r is the remainder such that: - q * Int.ofNat y + r = Int.ofNat x - 0 ≤ r < Int.ofNat y - 0 ≤ q • If y = 0, then the output is (Int.ofNat x, 0). -----Note----- The specification regarding the division properties applies only when y is non-zero. When y = 0, the function safely returns (x, 0) in its integer form.
-- !benchmark @start import type=solution import Mathlib -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def DivisionFunction_precond (x : Nat) (y : Nat) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def divMod (x y : Nat) : Int × Int := let q : Int := Int.ofNat (x / y) let r : Int := Int.ofNat (x % y) (r, q) -- !benchmark @end code_aux def DivisionFunction (x : Nat) (y : Nat) (h_precond : DivisionFunction_precond (x) (y)) : Int × Int := -- !benchmark @start code if y = 0 then (Int.ofNat x, 0) else divMod x y -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def DivisionFunction_postcond (x : Nat) (y : Nat) (result: Int × Int) (h_precond : DivisionFunction_precond (x) (y)) := -- !benchmark @start postcond let (r, q) := result; (y = 0 → r = Int.ofNat x ∧ q = 0) ∧ (y ≠ 0 → (q * Int.ofNat y + r = Int.ofNat x) ∧ (0 ≤ r ∧ r < Int.ofNat y) ∧ (0 ≤ q)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem DivisionFunction_spec_satisfied (x: Nat) (y: Nat) (h_precond : DivisionFunction_precond (x) (y)) : DivisionFunction_postcond (x) (y) (DivisionFunction (x) (y) h_precond) h_precond := by -- !benchmark @start proof unfold DivisionFunction_postcond DivisionFunction simp split { simp intro h₁ contradiction } { have h_left : (¬y = 0 → (divMod x y).snd * ↑y + (divMod x y).fst = ↑x ∧ (0 ≤ (divMod x y).fst ∧ (divMod x y).fst < ↑y) ∧ 0 ≤ (divMod x y).snd) := by intro h₁ have h₁_left : (divMod x y).snd * ↑y + (divMod x y).fst = ↑x := by unfold divMod simp have h₁ := Int.ediv_add_emod' x y apply h₁ have h₁_right : (0 ≤ (divMod x y).1 ∧ (divMod x y).1 < ↑y) ∧ 0 ≤ (divMod x y).2 := by have h₂_left : (0 ≤ (divMod x y).1 ∧ (divMod x y).1 < ↑y) := by have h₃_left : 0 ≤ (divMod x y).1 := by unfold divMod simp rw [←Int.natCast_mod, ←Int.ofNat_eq_natCast] have ha := Int.zero_le_ofNat (x % y) apply ha have h₃_right : (divMod x y).1 < ↑y := by unfold divMod simp rw [←Int.natCast_mod] have ha := @Int.natMod_lt x y h₁ rw [Int.natMod, ←Int.natCast_mod, Int.toNat_ofNat] at ha rw [←Mathlib.Tactic.Zify.natCast_lt] apply ha exact ⟨h₃_left, h₃_right⟩ have h₂_right : 0 ≤ (divMod x y).2 := by unfold divMod simp rw [←Int.natCast_div] have ha := Int.natCast_nonneg (x / y) apply ha exact ⟨h₂_left, h₂_right⟩ exact ⟨h₁_left, h₁_right⟩ have h_right : (y = 0 → (divMod x y).fst = ↑x ∧ (divMod x y).snd = 0) := by intro h₀ have h₁_left : (divMod x y).1 = ↑x := by unfold divMod simp rw [←Int.natCast_mod, h₀, Nat.mod_zero] have h₁_right : (divMod x y).snd = 0 := by unfold divMod simp rw [←Int.natCast_div, h₀, Nat.div_zero, ←@Int.cast_id 0] rfl exact ⟨h₁_left, h₁_right⟩ constructor · simp_all [h_left] · simp_all [h_right] } -- !benchmark @end proof
{ "name": "DivisionFunction", "parameters": { "param_name": [ "x", "y" ], "param_type": [ "Nat", "Nat" ] }, "return_type": "Int × Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_quotient", "student_id": null } }
{ "input": [ "{\"x\": 10, \"y\": 3}", "{\"x\": 15, \"y\": 5}", "{\"x\": 7, \"y\": 2}", "{\"x\": 0, \"y\": 4}", "{\"x\": 10, \"y\": 0}" ], "expected": [ [ "(1, 3)" ], [ "(0, 3)" ], [ "(1, 3)" ], [ "(0, 0)" ], [ "(10, 0)" ] ], "unexpected": [ [ "(2, 2)", "(0, 3)", "(1, 4)" ], [ "(3, 0)", "(1, 1)", "(0, 4)" ], [ "(3, 1)", "(0, 7)", "(1, 2)" ], [ "(0, 1)", "(1, 0)", "(2, 0)" ], [ "(0, 10)", "(10, 1)", "(5, 5)" ] ] }
{ "input": [] }
basic
verina_basic_51
-----Description----- This task requires creating a function that determines the correct insertion index for a given integer in a sorted array. The goal is to identify an index where every number before it is less than the specified value, and every number from that index onward is greater than or equal to the value. If the given integer is larger than all elements in the array, the function should return the array’s size. -----Input----- The input consists of: • a: An array of integers that is assumed to be sorted in non-decreasing order. • key: An integer to search for in the array. -----Output----- The output is a natural number (Nat) representing the index determined by the binary search. The index satisfies the following postconditions: • It is between 0 and the size of the array. • Every element before the returned index is less than the key. • If the returned index equals the size of the array, then all elements are less than the key. • Every element from the index onwards is greater than or equal to the key. -----Note----- It is assumed that the input array is sorted in non-decreasing order. The function returns the first index where the key could be inserted while maintaining the sorted order.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def BinarySearch_precond (a : Array Int) (key : Int) : Prop := -- !benchmark @start precond List.Pairwise (· ≤ ·) a.toList -- !benchmark @end precond -- !benchmark @start code_aux def binarySearchLoop (a : Array Int) (key : Int) (lo hi : Nat) : Nat := if lo < hi then let mid := (lo + hi) / 2 if (a[mid]! < key) then binarySearchLoop a key (mid + 1) hi else binarySearchLoop a key lo mid else lo -- !benchmark @end code_aux def BinarySearch (a : Array Int) (key : Int) (h_precond : BinarySearch_precond (a) (key)) : Nat := -- !benchmark @start code binarySearchLoop a key 0 a.size -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def BinarySearch_postcond (a : Array Int) (key : Int) (result: Nat) (h_precond : BinarySearch_precond (a) (key)) := -- !benchmark @start postcond result ≤ a.size ∧ ((a.take result).all (fun x => x < key)) ∧ ((a.drop result).all (fun x => x ≥ key)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem BinarySearch_spec_satisfied (a: Array Int) (key: Int) (h_precond : BinarySearch_precond (a) (key)) : BinarySearch_postcond (a) (key) (BinarySearch (a) (key) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "BinarySearch", "parameters": { "param_name": [ "a", "key" ], "param_type": [ "Array Int", "Int" ] }, "return_type": "Nat" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_binary_search", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 3, 5, 7, 9]\", \"key\": 5}", "{\"a\": \"#[1, 3, 5, 7, 9]\", \"key\": 6}", "{\"a\": \"#[2, 4, 6, 8]\", \"key\": 1}", "{\"a\": \"#[2, 4, 6, 8]\", \"key\": 10}", "{\"a\": \"#[1, 1, 1, 1]\", \"key\": 1}" ], "expected": [ [ "2" ], [ "3" ], [ "0" ], [ "4" ], [ "0" ] ], "unexpected": [ [ "1", "3", "4" ], [ "2", "4", "5" ], [ "1", "2", "3" ], [ "3", "5", "6" ], [ "1", "2", "3" ] ] }
{ "input": [ "{'a': '#[3, 2, 1]', 'key': 2}" ] }
basic
verina_basic_13
-----Description----- This task requires writing a Lean 4 method that transforms an array of integers by replacing every element with its cube. In other words, for each element in the input array, the output array should contain the result of multiplying that element by itself three times. -----Input----- The input consists of: a: An array of integers (which may be empty or non-empty). -----Output----- The output is an array of integers: Returns an array with the same length as the input, where each element is the cube of the corresponding element in the input array. -----Note----- There are no additional preconditions; the method should work correctly for any array of integers.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def cubeElements_precond (a : Array Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def cubeElements (a : Array Int) (h_precond : cubeElements_precond (a)) : Array Int := -- !benchmark @start code a.map (fun x => x * x * x) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def cubeElements_postcond (a : Array Int) (result: Array Int) (h_precond : cubeElements_precond (a)) := -- !benchmark @start postcond (result.size = a.size) ∧ (∀ i, i < a.size → result[i]! = a[i]! * a[i]! * a[i]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem cubeElements_spec_satisfied (a: Array Int) (h_precond : cubeElements_precond (a)) : cubeElements_postcond (a) (cubeElements (a) h_precond) h_precond := by -- !benchmark @start proof unfold cubeElements cubeElements_postcond simp_all intro i hi have h_maplen : (Array.map (fun x => x * x * x) a).size = a.size := by apply Array.size_map have h1 : (Array.map (fun x => x * x * x) a)[i] = (fun x => x * x * x) a[i] := by apply Array.getElem_map have h_eq : (Array.map (fun x => x * x * x) a)[i] = (Array.map (fun x => x * x * x) a)[i]! := by have hi' : i < (Array.map (fun x => x * x * x) a).size := by simp only [hi, h_maplen] rw [Array.getElem!_eq_getD] simp [hi', hi] rw [← h_eq] simp only [h1] have h_eq' : a[i] = a[i]! := by have hi_a : i < a.size := by simp only [hi] rw [Array.getElem!_eq_getD] simp [hi_a] simp only [h_eq'] -- !benchmark @end proof
{ "name": "cubeElements", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_447", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3, 4]\"}", "{\"a\": \"#[0, -1, -2, 3]\"}", "{\"a\": \"#[]\"}", "{\"a\": \"#[5]\"}", "{\"a\": \"#[-3, -3]\"}" ], "expected": [ [ "#[1, 8, 27, 64]" ], [ "#[0, -1, -8, 27]" ], [ "#[]" ], [ "#[125]" ], [ "#[-27, -27]" ] ], "unexpected": [ [ "#[1, 4, 9, 16]", "#[1, 8, 27, 63]", "#[0, 0, 0, 0]" ], [ "#[0, 1, 8, -27]", "#[0, -1, -8, 26]", "#[1, -1, -8, 27]" ], [ "#[1]", "#[-1]", "#[0]" ], [ "#[5]", "#[25]", "#[0]" ], [ "#[27, 27]", "#[-9, -9]", "#[-27, 27]" ] ] }
{ "input": [] }
basic
verina_basic_87
-----Description----- This problem requires sorting an array of integers into non-decreasing order, ensuring that the output contains exactly the same elements as the input (i.e., it is a permutation of the original array). -----Input----- The input consists of: • a: An array of integers (Array Int). -----Output----- The output is an array of integers that is: • Sorted in non-decreasing order. • A permutation of the input, meaning it contains exactly the same elements (with the same multiplicities) as the original array. -----Note----- It is assumed that the input array is valid and that the swap operations, along with the helper functions, correctly implement the selection sort algorithm.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def SelectionSort_precond (a : Array Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def findMinIndexInRange (arr : Array Int) (start finish : Nat) : Nat := let indices := List.range (finish - start) indices.foldl (fun minIdx i => let currIdx := start + i if arr[currIdx]! < arr[minIdx]! then currIdx else minIdx ) start def swap (a : Array Int) (i j : Nat) : Array Int := if i < a.size && j < a.size && i ≠ j then let temp := a[i]! let a' := a.set! i a[j]! a'.set! j temp else a -- !benchmark @end code_aux def SelectionSort (a : Array Int) (h_precond : SelectionSort_precond (a)) : Array Int := -- !benchmark @start code let indices := List.range a.size indices.foldl (fun arr i => let minIdx := findMinIndexInRange arr i a.size swap arr i minIdx ) a -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def SelectionSort_postcond (a : Array Int) (result: Array Int) (h_precond : SelectionSort_precond (a)) := -- !benchmark @start postcond List.Pairwise (· ≤ ·) result.toList ∧ List.isPerm a.toList result.toList -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem SelectionSort_spec_satisfied (a: Array Int) (h_precond : SelectionSort_precond (a)) : SelectionSort_postcond (a) (SelectionSort (a) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "SelectionSort", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_selectionsort", "student_id": null } }
{ "input": [ "{\"a\": \"#[3, 1, 2]\"}", "{\"a\": \"#[0]\"}", "{\"a\": \"#[5, 4, 3, 2, 1]\"}", "{\"a\": \"#[2, 2, 1, 4]\"}", "{\"a\": \"#[10, -5, 0, 3]\"}" ], "expected": [ [ "#[1, 2, 3]" ], [ "#[0]" ], [ "#[1, 2, 3, 4, 5]" ], [ "#[1, 2, 2, 4]" ], [ "#[-5, 0, 3, 10]" ] ], "unexpected": [ [ "#[3, 1, 2]", "#[2, 3, 1]" ], [ "#[0, 0]", "#[1]" ], [ "#[5, 4, 3, 2, 1]", "#[1, 5, 4, 3, 2]", "#[1, 2, 4, 3, 5]" ], [ "#[2, 1, 2, 4]", "#[1, 2, 4, 2]" ], [ "#[10, -5, 3, 0]", "#[0, -5, 3, 10]", "#[3, -5, 10, 0]" ] ] }
{ "input": [] }
basic
verina_basic_83
-----Description----- This task involves concatenating two arrays of integers by appending the second array to the end of the first array. The goal is to produce a new array that sequentially contains all elements from the first array followed by all elements from the second array. -----Input----- The input consists of two parameters: • a: An Array of integers representing the first part of the concatenated array. • b: An Array of integers representing the second part of the concatenated array. -----Output----- The output is an Array of integers that satisfies the following: • The length of the output array is equal to the sum of the lengths of arrays a and b. • The first part of the output array (indices 0 to a.size - 1) is identical to array a. • The remaining part of the output array (indices a.size to a.size + b.size - 1) is identical to array b. -----Note----- No additional preconditions are required since the function uses the sizes of the input arrays to build the resulting array.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def concat_precond (a : Array Int) (b : Array Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def concat (a : Array Int) (b : Array Int) (h_precond : concat_precond (a) (b)) : Array Int := -- !benchmark @start code let n := a.size + b.size let rec loop (i : Nat) (c : Array Int) : Array Int := if i < n then let value := if i < a.size then a[i]! else b[i - a.size]! loop (i + 1) (c.set! i value) else c loop 0 (Array.mkArray n 0) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def concat_postcond (a : Array Int) (b : Array Int) (result: Array Int) (h_precond : concat_precond (a) (b)) := -- !benchmark @start postcond result.size = a.size + b.size ∧ (∀ k, k < a.size → result[k]! = a[k]!) ∧ (∀ k, k < b.size → result[k + a.size]! = b[k]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem concat_spec_satisfied (a: Array Int) (b: Array Int) (h_precond : concat_precond (a) (b)) : concat_postcond (a) (b) (concat (a) (b) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "concat", "parameters": { "param_name": [ "a", "b" ], "param_type": [ "Array Int", "Array Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_array_concat", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3]\", \"b\": \"#[4, 5]\"}", "{\"a\": \"#[]\", \"b\": \"#[]\"}", "{\"a\": \"#[10]\", \"b\": \"#[20, 30, 40]\"}", "{\"a\": \"#[-1, -2]\", \"b\": \"#[0]\"}", "{\"a\": \"#[7, 8, 9]\", \"b\": \"#[]\"}" ], "expected": [ [ "#[1, 2, 3, 4, 5]" ], [ "#[]" ], [ "#[10, 20, 30, 40]" ], [ "#[-1, -2, 0]" ], [ "#[7, 8, 9]" ] ], "unexpected": [ [ "#[1, 2, 3, 5, 4]", "#[4, 5, 1, 2, 3]", "#[1, 2, 4, 3, 5]" ], [ "#[1]", "#[1, 2]" ], [ "#[10, 20, 30]", "#[20, 30, 40, 10]" ], [ "#[-1, 0, -2]", "#[0, -1, -2]" ], [ "#[7, 8]", "#[8, 9]", "#[]" ] ] }
{ "input": [] }
basic
verina_advanced_43
------Description----- This task requires writing a Lean 4 method that given a 0-indexed integer array `nums` representing the scores of students in an exam. A teacher wants to select a non empty group of students such that the strength of group is maximized. The strength of a group is defined as the product of the selected student scores. You can choose any non-empty subset of students. The goal is to compute the maximum product of any such subset. ----Input--- nums: An non-empty list of integers. -----Output----- An integer representing the maximum strength.
-- !benchmark @start import type=solution import Mathlib -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def maxStrength_precond (nums : List Int) : Prop := -- !benchmark @start precond nums ≠ [] -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def maxStrength (nums : List Int) (h_precond : maxStrength_precond (nums)) : Int := -- !benchmark @start code let powerSet := fun (l : List Int) => let n := l.length let masks := List.range (2^n) masks.map fun mask => (List.range n).foldr (fun i acc => if (mask.shiftRight i).land 1 == 1 then l[i]! :: acc else acc ) [] let subsets := powerSet nums let nonEmpty := subsets.filter (· ≠ []) let products := List.map (fun subset => List.foldl (fun acc x => acc * x) (1 : Int) subset) nonEmpty (List.max? products).getD (-1000000) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def maxStrength_postcond (nums : List Int) (result: Int) (h_precond : maxStrength_precond (nums)) : Prop := -- !benchmark @start postcond let sublists := nums.sublists.filter (· ≠ []) let products := sublists.map (List.foldl (· * ·) 1) products.contains result ∧ products.all (· ≤ result) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem maxStrength_spec_satisfied (nums: List Int) (h_precond : maxStrength_precond (nums)) : maxStrength_postcond (nums) (maxStrength (nums) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "maxStrength", "parameters": { "param_name": [ "nums" ], "param_type": [ "List Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "lab_assignment", "link": "Livecodebench has problem, but couldn't find that link so using leetcode: https://leetcode.com/problems/maximum-product-subarray/description/", "task_id": "lab_maxStrength_324857110", "student_id": [ 35 ] } }
{ "input": [ "{\"nums\": \"[-2]\"}", "{\"nums\": \"[3, -1, -5, 2, 5, -9]\"}", "{\"nums\": \"[-4, -5, -4]\"}", "{\"nums\": \"[0, -3, 4]\"}", "{\"nums\": \"[1, -1, -1]\"}" ], "expected": [ [ "-2" ], [ "1350" ], [ "20" ], [ "4" ], [ "1" ] ], "unexpected": [ [ "2", "0" ], [ "270", "0", "-1" ], [ "80", "-80", "-5" ], [ "0", "-12" ], [ "-1", "-2" ] ] }
{ "input": [ "{'nums': '[]'}" ] }
advanced
verina_basic_105
-----Description----- This task involves computing the element-wise product of two integer arrays. For each position in the arrays, the corresponding numbers are multiplied together. If an element is missing in one of the arrays at a given index, the missing value is treated as 0. When both arrays provide values for every index, the resulting array will contain the product of the two numbers at each corresponding index. -----Input----- The input consists of two arrays: • a: An array of integers. • b: An array of integers (should be of equal length to a for the specification to hold). -----Output----- The output is an array of integers that: • Has the same length as the input arrays. • For each index i, the output array contains the product a[i] * b[i]. • In cases where one of the arrays might be shorter, missing elements default to 0 during multiplication. -----Note----- It is assumed that the arrays are of equal length for the theorem specification, although the implementation defaults missing indices to 0.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def arrayProduct_precond (a : Array Int) (b : Array Int) : Prop := -- !benchmark @start precond a.size = b.size -- !benchmark @end precond -- !benchmark @start code_aux def loop (a b : Array Int) (len : Nat) : Nat → Array Int → Array Int | i, c => if i < len then let a_val := if i < a.size then a[i]! else 0 let b_val := if i < b.size then b[i]! else 0 let new_c := Array.set! c i (a_val * b_val) loop a b len (i+1) new_c else c -- !benchmark @end code_aux def arrayProduct (a : Array Int) (b : Array Int) (h_precond : arrayProduct_precond (a) (b)) : Array Int := -- !benchmark @start code let len := a.size let c := Array.mkArray len 0 loop a b len 0 c -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def arrayProduct_postcond (a : Array Int) (b : Array Int) (result: Array Int) (h_precond : arrayProduct_precond (a) (b)) := -- !benchmark @start postcond (result.size = a.size) ∧ (∀ i, i < a.size → a[i]! * b[i]! = result[i]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem arrayProduct_spec_satisfied (a: Array Int) (b: Array Int) (h_precond : arrayProduct_precond (a) (b)) : arrayProduct_postcond (a) (b) (arrayProduct (a) (b) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "arrayProduct", "parameters": { "param_name": [ "a", "b" ], "param_type": [ "Array Int", "Array Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_array_product", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3]\", \"b\": \"#[4, 5, 6]\"}", "{\"a\": \"#[0, 0, 0]\", \"b\": \"#[1, 2, 3]\"}", "{\"a\": \"#[-1, 2, -3]\", \"b\": \"#[3, -4, 5]\"}", "{\"a\": \"#[2]\", \"b\": \"#[10]\"}", "{\"a\": \"#[1, 2, 3, 4]\", \"b\": \"#[2, 2, 2, 2]\"}" ], "expected": [ [ "#[4, 10, 18]" ], [ "#[0, 0, 0]" ], [ "#[-3, -8, -15]" ], [ "#[20]" ], [ "#[2, 4, 6, 8]" ] ], "unexpected": [ [ "#[4, 10, 17]", "#[0, 10, 18]", "#[4, 10, 20]" ], [ "#[1, 0, 0]", "#[0, 1, 0]", "#[0, 0, 1]" ], [ "#[-3, -8, -14]", "#[-3, -7, -15]", "#[-2, -8, -15]" ], [ "#[10]", "#[0]", "#[30]" ], [ "#[2, 4, 6, 9]", "#[1, 4, 6, 8]", "#[2, 5, 6, 8]" ] ] }
{ "input": [ "{'a': '#[1, 2, 3]', 'b': '#[4, 5]'}" ] }
basic
verina_basic_42
-----Description----- This task requires writing a Lean 4 method that counts the number of digit characters within a given string. A digit is any character between '0' and '9'. The method should determine how many such digit characters appear in the input. -----Input----- The input consists of: s: A string. -----Output----- The output is a natural number (Nat): Returns a non-negative count representing the number of digit characters found in the input string. -----Note----- There are no additional preconditions; the method works for any provided string.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def isDigit (c : Char) : Bool := '0' ≤ c ∧ c ≤ '9' -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def countDigits_precond (s : String) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def countDigits (s : String) (h_precond : countDigits_precond (s)) : Nat := -- !benchmark @start code List.length (List.filter isDigit s.toList) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def countDigits_postcond (s : String) (result: Nat) (h_precond : countDigits_precond (s)) := -- !benchmark @start postcond result - List.length (List.filter isDigit s.toList) = 0 ∧ List.length (List.filter isDigit s.toList) - result = 0 -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem countDigits_spec_satisfied (s: String) (h_precond : countDigits_precond (s)) : countDigits_postcond (s) (countDigits (s) h_precond) h_precond := by -- !benchmark @start proof unfold countDigits countDigits_postcond simp -- !benchmark @end proof
{ "name": "countDigits", "parameters": { "param_name": [ "s" ], "param_type": [ "String" ] }, "return_type": "Nat" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_764", "student_id": null } }
{ "input": [ "{\"s\": \"123abc456\"}", "{\"s\": \"no digits here!\"}", "{\"s\": \"1234567890\"}", "{\"s\": \"\"}", "{\"s\": \"a1b2c3\"}", "{\"s\": \"0\"}", "{\"s\": \"abc\"}" ], "expected": [ [ "6" ], [ "0" ], [ "10" ], [ "0" ], [ "3" ], [ "1" ], [ "0" ] ], "unexpected": [ [ "5", "7", "0" ], [ "1", "2", "3" ], [ "9", "11", "0" ], [ "1", "2", "10" ], [ "2", "4", "5" ], [ "0", "2", "10" ], [ "1", "8", "9" ] ] }
{ "input": [] }
basic
verina_advanced_47
-----Description----- This task requires writing a Lean 4 method that merges all overlapping intervals from a given list of intervals. Each interval is represented as a pair [start, end], indicating the start and end of the interval. If two intervals overlap, they should be merged into a single interval that spans from the minimum start to the maximum end of the overlapping intervals. The goal is to return a list of non-overlapping intervals that cover all the input intervals after merging. -----Input----- The input consists of one array: intervals: An array of pairs of integers where intervals[i] = [startᵢ, endᵢ] represents the start and end of the ith interval. -----Output----- The output is an array of pairs of integers: Returns the list of merged, non-overlapping intervals sorted by their start times.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def mergeIntervals_precond (intervals : List (Prod Int Int)) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def mergeIntervals (intervals : List (Prod Int Int)) (h_precond : mergeIntervals_precond (intervals)) : List (Prod Int Int) := -- !benchmark @start code -- Insertion sort based on the start of intervals let rec insert (x : Prod Int Int) (sorted : List (Prod Int Int)) : List (Prod Int Int) := match sorted with | [] => [x] | y :: ys => if x.fst ≤ y.fst then x :: sorted else y :: insert x ys let rec sort (xs : List (Prod Int Int)) : List (Prod Int Int) := match xs with | [] => [] | x :: xs' => insert x (sort xs') let sorted := sort intervals -- Merge sorted intervals let rec merge (xs : List (Prod Int Int)) (acc : List (Prod Int Int)) : List (Prod Int Int) := match xs, acc with | [], _ => acc.reverse | (s, e) :: rest, [] => merge rest [(s, e)] | (s, e) :: rest, (ps, pe) :: accTail => if s ≤ pe then merge rest ((ps, max pe e) :: accTail) else merge rest ((s, e) :: (ps, pe) :: accTail) merge sorted [] -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def mergeIntervals_postcond (intervals : List (Prod Int Int)) (result: List (Prod Int Int)) (h_precond : mergeIntervals_precond (intervals)) : Prop := -- !benchmark @start postcond -- Check that all original intervals are covered by some result interval let covered := intervals.all (fun (s, e) => result.any (fun (rs, re) => rs ≤ s ∧ e ≤ re)) -- Check that no intervals in the result overlap let rec noOverlap (l : List (Prod Int Int)) : Bool := match l with | [] | [_] => true | (_, e1) :: (s2, e2) :: rest => e1 < s2 && noOverlap ((s2, e2) :: rest) covered ∧ noOverlap result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem mergeIntervals_spec_satisfied (intervals: List (Prod Int Int)) (h_precond : mergeIntervals_precond (intervals)) : mergeIntervals_postcond (intervals) (mergeIntervals (intervals) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "mergeIntervals", "parameters": { "param_name": [ "intervals" ], "param_type": [ "List (Prod Int Int)" ] }, "return_type": "List (Prod Int Int)" }
{ "upstream": { "name": "lab_assignment", "link": "[{\"text_file_id\"=>804740898}]", "task_id": "lab_mergeIntervals_325627981", "student_id": [ 6 ] } }
{ "input": [ "{\"intervals\": \"[(1, 3), (2, 6), (8, 10), (15, 18)]\"}", "{\"intervals\": \"[(1, 4), (4, 5)]\"}", "{\"intervals\": \"[(1, 10), (2, 3), (4, 5)]\"}", "{\"intervals\": \"[(1, 2), (3, 4), (5, 6)]\"}", "{\"intervals\": \"[(5, 6), (1, 3), (2, 4)]\"}" ], "expected": [ [ "[(1, 6), (8, 10), (15, 18)]" ], [ "[(1, 5)]" ], [ "[(1, 10)]" ], [ "[(1, 2), (3, 4), (5, 6)]" ], [ "[(1, 4), (5, 6)]" ] ], "unexpected": [ [ "[(1, 3), (2, 6), (15, 19)]" ], [ "[(1, 4), (4, 5), (1, 6)]" ], [ "[(2, 3), (4, 5), (1, 5)]" ], [ "[(1, 4), (5, 6), (1, 6)]" ], [ "[(1, 3), (2, 4), (1, 6)]" ] ] }
{ "input": [] }
advanced
verina_advanced_70
-----Description--- This task requires writing a Lean 4 method that's goal is to determine the minimum number of adjacent swaps needed to make the array semi-ordered. You may repeatedly swap 2 adjacent elements in the array. A permutation is called semi-ordered if the first number equals 1 and the last number equals n. -----Input----- The input consists of: - nums: A list of integeris. ----Output----- The output is an integer.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def semiOrderedPermutation_precond (nums : List Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def semiOrderedPermutation (nums : List Int) (h_precond : semiOrderedPermutation_precond (nums)) : Int := -- !benchmark @start code let lengthList := nums.length let numOne : Int := 1 let largestNum : Int := Int.ofNat lengthList let firstIndex := nums.idxOf numOne let lastIndex := nums.idxOf largestNum let startPosition := 0 let endPosition := lengthList - 1 let shouldMoveOne := firstIndex != startPosition let shouldMoveLast := lastIndex != endPosition let distanceOne := if shouldMoveOne then firstIndex else 0 let distanceLast := if shouldMoveLast then endPosition - lastIndex else 0 let totalMoves := distanceOne + distanceLast let needAdjustment := firstIndex > lastIndex let adjustedMoves := if needAdjustment then totalMoves - 1 else totalMoves adjustedMoves -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def semiOrderedPermutation_postcond (nums : List Int) (result: Int) (h_precond : semiOrderedPermutation_precond (nums)) : Prop := -- !benchmark @start postcond let n := nums.length let pos1 := nums.idxOf 1 let posn := nums.idxOf (Int.ofNat n) if pos1 > posn then pos1 + n = result + 2 + posn else pos1 + n = result + 1 + posn -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem semiOrderedPermutation_spec_satisfied (nums: List Int) (h_precond : semiOrderedPermutation_precond (nums)) : semiOrderedPermutation_postcond (nums) (semiOrderedPermutation (nums) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "semiOrderedPermutation", "parameters": { "param_name": [ "nums" ], "param_type": [ "List Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "lab_assignment", "link": "Found on livecodebench, but similar problem on leetcode: https://leetcode.com/problems/minimum-adjacent-swaps-to-make-a-valid-array/description/", "task_id": "lab_semiOrderedPermutation_324857110", "student_id": [ 35 ] } }
{ "input": [ "{\"nums\": \"[2, 1, 4, 3]\"}", "{\"nums\": \"[2, 4, 1, 3]\"}", "{\"nums\": \"[1, 3, 4, 2, 5]\"}", "{\"nums\": \"[3, 1, 2]\"}", "{\"nums\": \"[2, 3, 1, 5, 4]\"}" ], "expected": [ [ "2" ], [ "3" ], [ "0" ], [ "2" ], [ "3" ] ], "unexpected": [ [ "0", "1", "3" ], [ "2", "4" ], [ "1", "2" ], [ "0", "1" ], [ "4", "5" ] ] }
{ "input": [] }
advanced
verina_basic_18
-----Description----- This task requires writing a Lean 4 method that computes the sum of the digits of a non-negative integer. The method should process each digit of the input number and return the total sum. The output is guaranteed to be a non-negative natural number. -----Input----- The input consists of: n: A non-negative integer. -----Output----- The output is a natural number: Returns the sum of the digits of the input integer. -----Note----- The input is assumed to be a valid non-negative integer.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def sumOfDigits_precond (n : Nat) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def sumOfDigits (n : Nat) (h_precond : sumOfDigits_precond (n)) : Nat := -- !benchmark @start code let rec loop (n : Nat) (acc : Nat) : Nat := if n = 0 then acc else loop (n / 10) (acc + n % 10) loop n 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def sumOfDigits_postcond (n : Nat) (result: Nat) (h_precond : sumOfDigits_precond (n)) := -- !benchmark @start postcond result - List.sum (List.map (fun c => Char.toNat c - Char.toNat '0') (String.toList (Nat.repr n))) = 0 ∧ List.sum (List.map (fun c => Char.toNat c - Char.toNat '0') (String.toList (Nat.repr n))) - result = 0 -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem sumOfDigits_spec_satisfied (n: Nat) (h_precond : sumOfDigits_precond (n)) : sumOfDigits_postcond (n) (sumOfDigits (n) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "sumOfDigits", "parameters": { "param_name": [ "n" ], "param_type": [ "Nat" ] }, "return_type": "Nat" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_566", "student_id": null } }
{ "input": [ "{\"n\": 12345}", "{\"n\": 0}", "{\"n\": 987654321}", "{\"n\": 11111}", "{\"n\": 1001}", "{\"n\": 9999}" ], "expected": [ [ "15" ], [ "0" ], [ "45" ], [ "5" ], [ "2" ], [ "36" ] ], "unexpected": [ [ "12", "16", "14" ], [ "1", "10", "5" ], [ "44", "46", "50" ], [ "6", "4", "7" ], [ "1", "3", "11" ], [ "35", "37", "34" ] ] }
{ "input": [] }
basic
verina_basic_10
-----Description----- This task requires writing a Lean 4 method that determines if a given integer is strictly greater than every element in a provided array. The method should return true only if the integer is larger than each element in the array; otherwise, it should return false. -----Input----- The input consists of: n: An integer. a: An array of integers. -----Output----- The output is a Boolean value: Returns true if the integer is greater than all elements in the array. Returns false if there is at least one element in the array that is greater than or equal to the integer. -----Note----- The array is assumed to be non-null.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def isGreater_precond (n : Int) (a : Array Int) : Prop := -- !benchmark @start precond a.size > 0 -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def isGreater (n : Int) (a : Array Int) (h_precond : isGreater_precond (n) (a)) : Bool := -- !benchmark @start code a.all fun x => n > x -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def isGreater_postcond (n : Int) (a : Array Int) (result: Bool) (h_precond : isGreater_precond (n) (a)) := -- !benchmark @start postcond (∀ i, (hi : i < a.size) → n > a[i]) ↔ result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem isGreater_spec_satisfied (n: Int) (a: Array Int) (h_precond : isGreater_precond (n) (a)) : isGreater_postcond (n) (a) (isGreater (n) (a) h_precond) h_precond := by -- !benchmark @start proof unfold isGreater isGreater_postcond simp [Array.all_eq] -- !benchmark @end proof
{ "name": "isGreater", "parameters": { "param_name": [ "n", "a" ], "param_type": [ "Int", "Array Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_433", "student_id": null } }
{ "input": [ "{\"n\": 6, \"a\": \"#[1, 2, 3, 4, 5]\"}", "{\"n\": 3, \"a\": \"#[1, 2, 3, 4, 5]\"}", "{\"n\": 5, \"a\": \"#[5, 5, 5]\"}", "{\"n\": -1, \"a\": \"#[-10, -5, -3]\"}", "{\"n\": -3, \"a\": \"#[-1, -2, -3]\"}", "{\"n\": 0, \"a\": \"#[0, -1, -2]\"}", "{\"n\": 10, \"a\": \"#[1, 2, 9, 3]\"}" ], "expected": [ [ "True" ], [ "False" ], [ "False" ], [ "True" ], [ "False" ], [ "False" ], [ "True" ] ], "unexpected": [ [ "False" ], [ "True" ], [ "True" ], [ "False" ], [ "True" ], [ "True" ], [ "False" ] ] }
{ "input": [ "{'n': 0, 'a': '#[]'}" ] }
basic
verina_advanced_16
-----Description----- Implement the insertion sort algorithm in Lean 4. The function takes a single list of integers as input and returns a new list that contains the same integers in ascending order. Implementation must follow a standard insertion sort approach, placing each element into its correct position. The resulting list must be sorted in ascending order. The returned list must be a permutation of the input list (i.e., contain exactly the same elements). -----Input----- A single list of integers, denoted as xs. -----Output----- A list of integers, sorted in ascending order. Example: Input: [3, 1, 4, 2] Output: [1, 2, 3, 4]
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def insertionSort_precond (xs : List Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def insertionSort (xs : List Int) (h_precond : insertionSort_precond (xs)) : List Int := -- !benchmark @start code let rec insert (x : Int) (ys : List Int) : List Int := match ys with | [] => [x] | y :: ys' => if x <= y then x :: y :: ys' else y :: insert x ys' let rec sort (arr : List Int) : List Int := match arr with | [] => [] | x :: xs => insert x (sort xs) sort xs -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def insertionSort_postcond (xs : List Int) (result: List Int) (h_precond : insertionSort_precond (xs)) : Prop := -- !benchmark @start postcond List.Pairwise (· ≤ ·) result ∧ List.isPerm xs result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem insertionSort_spec_satisfied (xs: List Int) (h_precond : insertionSort_precond (xs)) : insertionSort_postcond (xs) (insertionSort (xs) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "insertionSort", "parameters": { "param_name": [ "xs" ], "param_type": [ "List Int" ] }, "return_type": "List Int" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/insertion-sort-list/description/", "task_id": "lab_insertionSort_324868790", "student_id": [ 13 ] } }
{ "input": [ "{\"xs\": \"[]\"}", "{\"xs\": \"[42]\"}", "{\"xs\": \"[3, 1, 4, 2]\"}", "{\"xs\": \"[5, -1, 0, 10, -1]\"}", "{\"xs\": \"[2, 2, 2, 2, 2]\"}" ], "expected": [ [ "[]" ], [ "[42]" ], [ "[1, 2, 3, 4]" ], [ "[-1, -1, 0, 5, 10]" ], [ "[2, 2, 2, 2, 2]" ] ], "unexpected": [ [ "[0]", "[1, 2, 3]" ], [ "[24]", "[]", "[42, 42]" ], [ "[1, 3, 2, 4]", "[4, 3, 2, 1]" ], [ "[-1, -1, 0, 10, 5]", "[10, 5, 0, -1, -1]" ], [ "[2, 2, 2, 2]", "[]" ] ] }
{ "input": [] }
advanced
verina_advanced_44
-----Description----- Given an integer array arr and a positive integer k, this task requires writing a Lean 4 method that finds the maximum sum of a subarray of arr, such that the length of the subarray is divisible by k. If the array is empty, or generally if there exists no subarray with length divisible by k, the default return value should be 0. -----Input----- The input consists of: arr: The array of integers. k: An integer larger than 1. -----Output----- The output is an integer: Returns the maximum positive integer x such that there exists a subarray where the sum equals x, and the length of the subarray is divisible by k.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def maxSubarraySumDivisibleByK_precond (arr : Array Int) (k : Int) : Prop := -- !benchmark @start precond k > 0 -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def maxSubarraySumDivisibleByK (arr : Array Int) (k : Int) : Int := -- !benchmark @start code let n := arr.size if n = 0 || k = 0 then 0 else --compute prefix sums for efficient subarray sum calculation let prefixSums := Id.run do let mut prefixSums := Array.mkArray (n + 1) 0 for i in [0:n] do prefixSums := prefixSums.set! (i+1) (prefixSums[i]! + arr[i]!) prefixSums let minElem := Id.run do -- find minimum element let mut minElem := arr[0]! for elem in arr do minElem := min minElem elem minElem let maxSum := Id.run do let mut maxSum := minElem - 1 --check all subarrays with length divisible by k for len in List.range (n+1) do if len % k = 0 && len > 0 then for start in [0:(n - len + 1)] do let endIdx := start + len let subarraySum := prefixSums[endIdx]! - prefixSums[start]! maxSum := max maxSum subarraySum maxSum let default : Int := minElem - 1 if maxSum = default then 0 else maxSum -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def maxSubarraySumDivisibleByK_postcond (arr : Array Int) (k : Int) (result: Int) : Prop := -- !benchmark @start postcond let subarrays := List.range (arr.size) |>.flatMap (fun start => List.range (arr.size - start + 1) |>.map (fun len => arr.extract start (start + len))) let divisibleSubarrays := subarrays.filter (fun subarray => subarray.size % k = 0 && subarray.size > 0) let subarraySums := divisibleSubarrays.map (fun subarray => subarray.sum) (result = 0 → subarraySums.length = 0) ∧ (result ≠ 0 → result ∈ subarraySums ∧ subarraySums.all (fun sum => sum ≤ result)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem maxSubarraySumDivisibleByK_spec_satisfied (arr: Array Int) (k: Int) : maxSubarraySumDivisibleByK_postcond (arr) (k) (maxSubarraySumDivisibleByK (arr) (k)) := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "maxSubarraySumDivisibleByK", "parameters": { "param_name": [ "arr", "k" ], "param_type": [ "Array Int", "Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/maximum-subarray-sum-with-length-divisible-by-k/description/", "task_id": "lab_maxSubarraySumDivisibleByK_325772368", "student_id": [ 36 ] } }
{ "input": [ "{\"arr\": \"#[1, 2, 3, 4, 5]\", \"k\": 2}", "{\"arr\": \"#[1, -2, 3, -4, 5]\", \"k\": 3}", "{\"arr\": \"#[]\", \"k\": 5}", "{\"arr\": \"#[1, 2, 3, 4]\", \"k\": 1}", "{\"arr\": \"#[-2, 7, 1, 3]\", \"k\": 2}", "{\"arr\": \"#[-100, 0, 1]\", \"k\": 5}", "{\"arr\": \"#[1999, 1, -1023, 12351, -9999]\", \"k\": 2}" ], "expected": [ [ "14" ], [ "4" ], [ "0" ], [ "10" ], [ "9" ], [ "0" ], [ "13328" ] ], "unexpected": [ [ "9", "5", "15", "10" ], [ "2", "5", "3" ], [ "-1" ], [ "3", "4", "7", "9" ], [ "8", "11", "7" ], [ "1", "-99" ], [ "1999", "12351", "3329", "2352" ] ] }
{ "input": [] }
advanced
verina_basic_72
-----Description----- The problem asks you to construct a new list by adding an extra number to the end of an existing list of numbers. The focus is on understanding what the final list should look like when a given number is included as the last element. -----Input----- The input consists of: • a: An array of integers. • b: An integer to be appended to the array. -----Output----- The output is an array of integers which represents the original array with the element b added at the end. That is, the output array’s list representation equals a.toList concatenated with [b]. -----Note----- There are no special preconditions; the method is expected to work correctly for any array of integers and any integer b.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def append_precond (a : Array Int) (b : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def copy (a : Array Int) (i : Nat) (acc : Array Int) : Array Int := if i < a.size then copy a (i + 1) (acc.push (a[i]!)) else acc -- !benchmark @end code_aux def append (a : Array Int) (b : Int) (h_precond : append_precond (a) (b)) : Array Int := -- !benchmark @start code let c_initial := copy a 0 (Array.empty) let c_full := c_initial.push b c_full -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def append_postcond (a : Array Int) (b : Int) (result: Array Int) (h_precond : append_precond (a) (b)) := -- !benchmark @start postcond (List.range' 0 a.size |>.all (fun i => result[i]! = a[i]!)) ∧ result[a.size]! = b ∧ result.size = a.size + 1 -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem append_spec_satisfied (a: Array Int) (b: Int) (h_precond : append_precond (a) (b)) : append_postcond (a) (b) (append (a) (b) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "append", "parameters": { "param_name": [ "a", "b" ], "param_type": [ "Array Int", "Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_array_append", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3]\", \"b\": 4}", "{\"a\": \"#[]\", \"b\": 0}", "{\"a\": \"#[5, 6]\", \"b\": -1}", "{\"a\": \"#[0, 0, 0]\", \"b\": 1}", "{\"a\": \"#[-2, -3]\", \"b\": -4}" ], "expected": [ [ "#[1, 2, 3, 4]" ], [ "#[0]" ], [ "#[5, 6, -1]" ], [ "#[0, 0, 0, 1]" ], [ "#[-2, -3, -4]" ] ], "unexpected": [ [ "#[1, 2, 3, 0]", "#[1, 2, 4, 3]", "#[4, 1, 2, 3]" ], [ "#[1]", "#[]", "#[0, 0]" ], [ "#[5, -1, 6]", "#[5, 6, 0]", "#[6, 5, -1]" ], [ "#[1, 0, 0, 0]", "#[0, 1, 0, 0]", "#[0, 0, 1, 0]" ], [ "#[-2, -4, -3]", "#[-2, -3, 0]", "#[-3, -2, -4]" ] ] }
{ "input": [] }
basic
verina_basic_26
-----Description----- This task requires writing a Lean 4 method that determines whether a given integer is even. In other words, the method should return true if the number is even and false if the number is odd. -----Input----- The input consists of: n: An integer. -----Output----- The output is a Boolean value: Returns true if the input number is even. Returns false if the input number is odd. -----Note----- There are no preconditions; the method will always work for any integer input.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def isEven_precond (n : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def isEven (n : Int) (h_precond : isEven_precond (n)) : Bool := -- !benchmark @start code n % 2 == 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def isEven_postcond (n : Int) (result: Bool) (h_precond : isEven_precond (n)) := -- !benchmark @start postcond (result → n % 2 = 0) ∧ (¬ result → n % 2 ≠ 0) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem isEven_spec_satisfied (n: Int) (h_precond : isEven_precond (n)) : isEven_postcond (n) (isEven (n) h_precond) h_precond := by -- !benchmark @start proof unfold isEven isEven_postcond simp -- !benchmark @end proof
{ "name": "isEven", "parameters": { "param_name": [ "n" ], "param_type": [ "Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_600", "student_id": null } }
{ "input": [ "{\"n\": 4}", "{\"n\": 7}", "{\"n\": 0}", "{\"n\": -2}", "{\"n\": -3}" ], "expected": [ [ "True" ], [ "False" ], [ "True" ], [ "True" ], [ "False" ] ], "unexpected": [ [ "False" ], [ "True" ], [ "False" ], [ "False" ], [ "True" ] ] }
{ "input": [] }
basic
verina_advanced_29
-----Description----- You are given a natural number array nums and a natural number k. The frequency of an element x is the number of times it occurs in an array. An array is called good if the frequency of each element in this array is less than or equal to k. Return the length of the longest good subarray of nums. A subarray is a contiguous non-empty sequence of elements within an array. -----Input----- The input consists of an array of natural numbers nums and a natural number k: nums: an array of natural numbers. k: a natural number -----Output----- The output is a natural number: Return the length of the longest good subarray of nums.
-- !benchmark @start import type=solution import Std.Data.HashMap open Std -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def longestGoodSubarray_precond (nums : List Nat) (k : Nat) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def longestGoodSubarray (nums : List Nat) (k : Nat) (h_precond : longestGoodSubarray_precond (nums) (k)) : Nat := -- !benchmark @start code Id.run do let arr := nums.toArray let mut left := 0 let mut maxLen := 0 let mut freq : HashMap Nat Nat := {} for right in [0:arr.size] do let num := arr[right]! let count := freq.getD num 0 freq := freq.insert num (count + 1) -- If any frequency > k, shrink the window from the left while freq.toList.any (fun (_, v) => v > k) do let lnum := arr[left]! let lcount := freq.getD lnum 0 if lcount = 1 then freq := freq.erase lnum else freq := freq.insert lnum (lcount - 1) left := left + 1 maxLen := max maxLen (right - left + 1) return maxLen -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def longestGoodSubarray_postcond (nums : List Nat) (k : Nat) (result: Nat) (h_precond : longestGoodSubarray_precond (nums) (k)) : Prop := -- !benchmark @start postcond let subArrays := List.range (nums.length + 1) |>.flatMap (fun start => List.range (nums.length - start + 1) |>.map (fun len => nums.drop start |>.take len)) let subArrayFreqs := subArrays.map (fun arr => arr.map (fun x => arr.count x)) let validSubArrays := subArrayFreqs.filter (fun arr => arr.all (fun x => x ≤ k)) (nums = [] ∧ result = 0) ∨ (nums ≠ [] ∧ validSubArrays.any (fun arr => arr.length = result) ∧ validSubArrays.all (fun arr => arr.length ≤ result)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem longestGoodSubarray_spec_satisfied (nums: List Nat) (k: Nat) (h_precond : longestGoodSubarray_precond (nums) (k)) : longestGoodSubarray_postcond (nums) (k) (longestGoodSubarray (nums) (k) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "longestGoodSubarray", "parameters": { "param_name": [ "nums", "k" ], "param_type": [ "List Nat", "Nat" ] }, "return_type": "Nat" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/length-of-longest-subarray-with-at-most-k-frequency/description/", "task_id": "lab_longestGoodSubarray_325744111", "student_id": [ 23 ] } }
{ "input": [ "{\"nums\": \"[1, 2, 3, 1, 2, 3, 1, 2]\", \"k\": 2}", "{\"nums\": \"[1, 2, 1, 2, 1, 2, 1, 2]\", \"k\": 1}", "{\"nums\": \"[5, 5, 5, 5, 5, 5, 5]\", \"k\": 4}", "{\"nums\": \"[1]\", \"k\": 1}", "{\"nums\": \"[2, 2, 1, 1, 3]\", \"k\": 2}" ], "expected": [ [ "6" ], [ "2" ], [ "4" ], [ "1" ], [ "5" ] ], "unexpected": [ [ "5", "7", "8" ], [ "1", "3", "4" ], [ "3", "5", "7" ], [ "0", "2" ], [ "2", "3", "4", "6" ] ] }
{ "input": [] }
advanced
verina_advanced_1
-----Description----- This task requires writing a Lean 4 function that finds the single number in a non-empty list of integers, where every element appears exactly twice except for one element that appears only once. The function should return the integer that appears only once. -----Input----- The input is a non-empty list of integers: - nums: A list in which each integer appears exactly twice except for one element that appears only once. -----Output----- The output is a single integer: Returns the unique integer that appears exactly once in the list.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def filterlist (x : Int) (nums : List Int) : List Int := let rec aux (lst : List Int) : List Int := match lst with | [] => [] | y :: ys => if y = x then y :: aux ys else aux ys aux nums -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def FindSingleNumber_precond (nums : List Int) : Prop := -- !benchmark @start precond let numsCount := nums.map (fun x => nums.count x) numsCount.all (fun count => count = 1 ∨ count = 2) ∧ numsCount.count 1 = 1 -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def FindSingleNumber (nums : List Int) (h_precond : FindSingleNumber_precond (nums)) : Int := -- !benchmark @start code let rec findUnique (remaining : List Int) : Int := match remaining with | [] => 0 | x :: xs => let filtered : List Int := filterlist x nums let count : Nat := filtered.length if count = 1 then x else findUnique xs findUnique nums -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def FindSingleNumber_postcond (nums : List Int) (result: Int) (h_precond : FindSingleNumber_precond (nums)) : Prop := -- !benchmark @start postcond (nums.length > 0) ∧ ((filterlist result nums).length = 1) ∧ (∀ (x : Int), x ∈ nums → (x = result) ∨ ((filterlist x nums).length = 2)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem FindSingleNumber_spec_satisfied (nums: List Int) (h_precond : FindSingleNumber_precond (nums)) : FindSingleNumber_postcond (nums) (FindSingleNumber (nums) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "FindSingleNumber", "parameters": { "param_name": [ "nums" ], "param_type": [ "List Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "lab_assignment", "link": "N/A", "task_id": "lab_FindSingleNumber_324594979", "student_id": [ 1 ] } }
{ "input": [ "{\"nums\": \"[2, 2, 3]\"}", "{\"nums\": \"[1, 2, 2]\"}", "{\"nums\": \"[3, 3, 4, 4, 1]\"}", "{\"nums\": \"[0, 1, 3, 1, 3, 88, 88, 100, 100]\"}", "{\"nums\": \"[-1, -1, 7, 9, 7]\"}" ], "expected": [ [ "3" ], [ "1" ], [ "1" ], [ "0" ], [ "9" ] ], "unexpected": [ [ "2", "1", "4" ], [ "2", "-1" ], [ "3", "4" ], [ "1", "2", "100" ], [ "-1", "7", "10" ] ] }
{ "input": [ "{'nums': '[2, 2]'}", "{'nums': '[2, 2, 3, 3]'}" ] }
advanced
verina_basic_41
-----Description----- This task requires writing a Lean 4 method that determines whether an array of integers contains only one distinct element. The method should return true if the array is empty or if every element in the array is the same, and false if there are at least two different elements. -----Input----- The input consists of: a: An array of integers. -----Output----- The output is a Boolean value: Returns true if the array is empty or if all elements in the array are identical. Returns false if the array contains at least two distinct elements. -----Note----- The input array is assumed to be non-null.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def hasOnlyOneDistinctElement_precond (a : Array Int) : Prop := -- !benchmark @start precond a.size > 0 -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def hasOnlyOneDistinctElement (a : Array Int) (h_precond : hasOnlyOneDistinctElement_precond (a)) : Bool := -- !benchmark @start code if a.size = 0 then true else let firstElement := a[0]! let rec loop (i : Nat) : Bool := if h : i < a.size then if a[i]! = firstElement then loop (i + 1) else false else true loop 1 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def hasOnlyOneDistinctElement_postcond (a : Array Int) (result: Bool) (h_precond : hasOnlyOneDistinctElement_precond (a)) := -- !benchmark @start postcond let l := a.toList (result → List.Pairwise (· = ·) l) ∧ (¬ result → (l.any (fun x => x ≠ l[0]!))) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem hasOnlyOneDistinctElement_spec_satisfied (a: Array Int) (h_precond : hasOnlyOneDistinctElement_precond (a)) : hasOnlyOneDistinctElement_postcond (a) (hasOnlyOneDistinctElement (a) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "hasOnlyOneDistinctElement", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_760", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 1, 1]\"}", "{\"a\": \"#[1, 2, 1]\"}", "{\"a\": \"#[3, 4, 5, 6]\"}", "{\"a\": \"#[7]\"}", "{\"a\": \"#[0, 0, 0, 0]\"}", "{\"a\": \"#[0, 0, 1, 0]\"}" ], "expected": [ [ "True" ], [ "False" ], [ "False" ], [ "True" ], [ "True" ], [ "False" ] ], "unexpected": [ [ "False" ], [ "True" ], [ "True" ], [ "False" ], [ "False" ], [ "True" ] ] }
{ "input": [ "{'a': '#[]'}" ] }
basic
verina_advanced_79
-----Description----- This task requires writing a Lean 4 method that implementing the "Two Sum" problem. Given a list of integers and a target integer, the function should return the indices of the two numbers that add up to the target. If no valid pair exists, the function should return none. And the indices returned must be within the bounds of the list. If multiple pair exists, return the first pair. -----Input----- - nums: A list of integers. - target: An integer representing the target sum. -----Output----- - An option type containing a pair of natural numbers (indices) such that nums[i] + nums[j] = target, if such a pair exists. Otherwise, it returns none.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def twoSum_precond (nums : List Int) (target : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def twoSum (nums : List Int) (target : Int) (h_precond : twoSum_precond (nums) (target)) : Option (Nat × Nat) := -- !benchmark @start code let rec outer (lst : List Int) (i : Nat) : Option (Nat × Nat) := match lst with | [] => none | x :: xs => let rec inner (lst' : List Int) (j : Nat) : Option Nat := match lst' with | [] => none | y :: ys => if x + y = target then some j else inner ys (j + 1) match inner xs (i + 1) with | some j => some (i, j) | none => outer xs (i + 1) outer nums 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def twoSum_postcond (nums : List Int) (target : Int) (result: Option (Nat × Nat)) (h_precond : twoSum_precond (nums) (target)) : Prop := -- !benchmark @start postcond match result with | none => List.Pairwise (· + · ≠ target) nums | some (i, j) => i < j ∧ j < nums.length ∧ nums[i]! + nums[j]! = target ∧ -- i must be the first i List.Pairwise (fun a b => a + b ≠ target) (nums.take i) ∧ List.all (nums.take i) (fun a => List.all (nums.drop i) (fun b => a + b ≠ target) ) ∧ -- j must be the first j List.all (nums.drop (j + 1)) (fun a => a + nums[j]! ≠ target) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem twoSum_spec_satisfied (nums: List Int) (target: Int) (h_precond : twoSum_precond (nums) (target)) : twoSum_postcond (nums) (target) (twoSum (nums) (target) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "twoSum", "parameters": { "param_name": [ "nums", "target" ], "param_type": [ "List Int", "Int" ] }, "return_type": "Option (Nat × Nat)" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/two-sum/description/", "task_id": "lab_twoSum_325525518", "student_id": [ 27 ] } }
{ "input": [ "{\"nums\": \"[2, 7, 11, 15]\", \"target\": 9}", "{\"nums\": \"[3, 2, 4]\", \"target\": 6}", "{\"nums\": \"[3, 3]\", \"target\": 6}", "{\"nums\": \"[1, 2, 3]\", \"target\": 7}", "{\"nums\": \"[0, 4, 3, 0]\", \"target\": 0}" ], "expected": [ [ "some (0, 1)" ], [ "some (1, 2)" ], [ "some (0, 1)" ], [ "none" ], [ "some (0, 3)" ] ], "unexpected": [ [ "some (1, 2)", "none" ], [ "some (0, 2)", "none" ], [ "some (1, 1)", "none" ], [ "some (0, 2)" ], [ "some (1, 2)", "none" ] ] }
{ "input": [] }
advanced
verina_advanced_58
-----Description----- This task requires writing a Lean 4 function that returns the nth "ugly number". Ugly numbers are positive integers whose only prime factors are 2, 3, or 5. The function should generate ugly numbers in ascending order and return the nth one. The first ugly number is 1. -----Input----- The input is a natural number: n: The index (1-based) of the ugly number to return. -----Output----- The output is a natural number: The nth smallest ugly number.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def nthUglyNumber_precond (n : Nat) : Prop := -- !benchmark @start precond n > 0 -- !benchmark @end precond -- !benchmark @start code_aux def nextUgly (seq : List Nat) (c2 c3 c5 : Nat) : (Nat × Nat × Nat × Nat) := let i2 := seq[c2]! * 2 let i3 := seq[c3]! * 3 let i5 := seq[c5]! * 5 let next := min i2 (min i3 i5) let c2' := if next = i2 then c2 + 1 else c2 let c3' := if next = i3 then c3 + 1 else c3 let c5' := if next = i5 then c5 + 1 else c5 (next, c2', c3', c5') -- !benchmark @end code_aux def nthUglyNumber (n : Nat) (h_precond : nthUglyNumber_precond (n)) : Nat := -- !benchmark @start code let rec loop (i : Nat) (seq : List Nat) (c2 c3 c5 : Nat) : List Nat := match i with | 0 => seq | Nat.succ i' => let (next, c2', c3', c5') := nextUgly seq c2 c3 c5 loop i' (seq ++ [next]) c2' c3' c5' (loop (n - 1) [1] 0 0 0)[(n - 1)]! -- !benchmark @end code -- !benchmark @start postcond_aux def divideOut : Nat → Nat → Nat | n, p => if h : p > 1 ∧ n > 0 ∧ n % p = 0 then have : n / p < n := by apply Nat.div_lt_self · exact h.2.1 -- n > 0 · exact Nat.lt_of_succ_le (Nat.succ_le_of_lt h.1) -- 1 < p, so 2 ≤ p divideOut (n / p) p else n termination_by n p => n def isUgly (x : Nat) : Bool := if x = 0 then false else let n1 := divideOut x 2 let n2 := divideOut n1 3 let n3 := divideOut n2 5 n3 = 1 -- !benchmark @end postcond_aux @[reducible, simp] def nthUglyNumber_postcond (n : Nat) (result: Nat) (h_precond : nthUglyNumber_precond (n)) : Prop := -- !benchmark @start postcond isUgly result = true ∧ ((List.range (result)).filter (fun i => isUgly i)).length = n - 1 -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem nthUglyNumber_spec_satisfied (n: Nat) (h_precond : nthUglyNumber_precond (n)) : nthUglyNumber_postcond (n) (nthUglyNumber (n) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "nthUglyNumber", "parameters": { "param_name": [ "n" ], "param_type": [ "Nat" ] }, "return_type": "Nat" }
{ "upstream": { "name": "lab_assignment", "link": "", "task_id": "lab_nthUglyNumber_324647099", "student_id": [ 43 ] } }
{ "input": [ "{\"n\": 1}", "{\"n\": 10}", "{\"n\": 15}", "{\"n\": 5}", "{\"n\": 7}" ], "expected": [ [ "1" ], [ "12" ], [ "24" ], [ "5" ], [ "8" ] ], "unexpected": [ [ "0", "2" ], [ "13", "10", "15" ], [ "20", "25" ], [ "6", "7" ], [ "9", "10" ] ] }
{ "input": [] }
advanced
verina_advanced_3
-----Description----- This task requires writing a Lean 4 method that finds the length of the logest common subsequence of two input arrays. -----Input----- The input consists of two arrays: a: The first array. b: The second array. -----Output----- The output is an integer: Returns the length of array a and b's longest common subsequence.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def LongestCommonSubsequence_precond (a : Array Int) (b : Array Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def intMax (x y : Int) : Int := if x < y then y else x -- !benchmark @end code_aux def LongestCommonSubsequence (a : Array Int) (b : Array Int) (h_precond : LongestCommonSubsequence_precond (a) (b)) : Int := -- !benchmark @start code let m := a.size let n := b.size let dp := Id.run do let mut dp := Array.mkArray (m + 1) (Array.mkArray (n + 1) 0) for i in List.range (m + 1) do for j in List.range (n + 1) do if i = 0 ∨ j = 0 then () else if a[i - 1]! = b[j - 1]! then let newVal := ((dp[i - 1]!)[j - 1]!) + 1 dp := dp.set! i (dp[i]!.set! j newVal) else let newVal := intMax ((dp[i - 1]!)[j]!) ((dp[i]!)[j - 1]!) dp := dp.set! i (dp[i]!.set! j newVal) return dp (dp[m]!)[n]! -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def LongestCommonSubsequence_postcond (a : Array Int) (b : Array Int) (result: Int) (h_precond : LongestCommonSubsequence_precond (a) (b)) : Prop := -- !benchmark @start postcond let allSubseq (arr : Array Int) := (arr.foldl fun acc x => acc ++ acc.map (fun sub => x :: sub)) [[]] |>.map List.reverse let subseqA := allSubseq a let subseqB := allSubseq b let commonSubseqLens := subseqA.filter (fun l => subseqB.contains l) |>.map (·.length) commonSubseqLens.contains result ∧ commonSubseqLens.all (· ≤ result) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem LongestCommonSubsequence_spec_satisfied (a: Array Int) (b: Array Int) (h_precond : LongestCommonSubsequence_precond (a) (b)) : LongestCommonSubsequence_postcond (a) (b) (LongestCommonSubsequence (a) (b) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "LongestCommonSubsequence", "parameters": { "param_name": [ "a", "b" ], "param_type": [ "Array Int", "Array Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "lab_assignment", "link": "longest common subsequence from cs170 hw07", "task_id": "lab_LongestCommonSubsequence_325033255", "student_id": [ 2 ] } }
{ "input": [ "{\"a\": \"#[1, 2, 3]\", \"b\": \"#[1, 2, 3]\"}", "{\"a\": \"#[1, 3, 5, 7]\", \"b\": \"#[1, 2, 3, 4, 5, 6, 7]\"}", "{\"a\": \"#[1, 2, 3]\", \"b\": \"#[4, 5, 6]\"}", "{\"a\": \"#[]\", \"b\": \"#[1, 2, 3]\"}", "{\"a\": \"#[1, 2, 3, 4]\", \"b\": \"#[2, 4, 6, 8]\"}" ], "expected": [ [ "3" ], [ "4" ], [ "0" ], [ "0" ], [ "2" ] ], "unexpected": [ [ "2", "4" ], [ "2", "5" ], [ "1", "2" ], [ "1" ], [ "1", "3", "4" ] ] }
{ "input": [] }
advanced
verina_basic_2
-----Description----- This task requires writing a Lean 4 method that finds the smallest number in an array of integers. -----Input----- The input consists of: s: An array of integers. -----Output----- The output is an option integer: Returns the smallest number found in the input array or none if the array is empty.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def findSmallest_precond (s : Array Nat) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def findSmallest (s : Array Nat) (h_precond : findSmallest_precond (s)) : Option Nat := -- !benchmark @start code s.toList.min? -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def findSmallest_postcond (s : Array Nat) (result: Option Nat) (h_precond : findSmallest_precond (s)) := -- !benchmark @start postcond let xs := s.toList match result with | none => xs = [] | some r => r ∈ xs ∧ (∀ x, x ∈ xs → r ≤ x) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem findSmallest_spec_satisfied (s: Array Nat) (h_precond : findSmallest_precond (s)) : findSmallest_postcond (s) (findSmallest (s) h_precond) h_precond := by -- !benchmark @start proof unfold findSmallest_postcond findSmallest cases res : s.toList.min? with | none => simp only [res] rw [List.min?_eq_none_iff] at res exact res | some r => simp only [res] rw [List.min?_eq_some_iff'] at res exact res -- !benchmark @end proof
{ "name": "findSmallest", "parameters": { "param_name": [ "s" ], "param_type": [ "Array Nat" ] }, "return_type": "Option Nat" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_62", "student_id": null } }
{ "input": [ "{\"s\": \"#[3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]\"}", "{\"s\": \"#[0, 1, 2, 3, 4, 5]\"}", "{\"s\": \"#[1]\"}", "{\"s\": \"#[10, 10, 10]\"}", "{\"s\": \"#[3, 2, 2, 2, 2, 2, 2, 1]\"}", "{\"s\": \"#[0]\"}", "{\"s\": \"#[100, 99, 98]\"}", "{\"s\": \"#[]\"}" ], "expected": [ [ "some (1)" ], [ "some (0)" ], [ "some (1)" ], [ "some (10)" ], [ "some (1)" ], [ "some (0)" ], [ "some (98)" ], [ "none" ] ], "unexpected": [ [ "some (2)", "some (0)", "none" ], [ "some (1)", "none" ], [ "some (0)", "some (2)", "none" ], [ "some (9)", "some (0)", "none" ], [ "some (2)", "some (0)", "none" ], [ "some (1)", "none" ], [ "some (99)", "some (97)", "none" ], [ "some (0)" ] ] }
{ "input": [] }
basic
verina_basic_103
-----Description----- This problem involves updating an array of integers by modifying two specific positions. Specifically, the element at index 4 should be increased by 3, and the element at index 7 should be changed to 516. The goal is to correctly update these positions while leaving the rest of the array unchanged. The description assumes that the array contains at least 8 elements. -----Input----- The input consists of: • a: An array of integers. The array must contain at least 8 elements. -----Output----- The output is an array of integers that meets the following criteria: • The element at index 4 is updated to its original value plus 3. • The element at index 7 is set to 516. • All other elements in the array remain the same as in the input array. -----Note----- It is assumed that the input array has a size of at least 8 elements. Indices are 0-indexed.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def UpdateElements_precond (a : Array Int) : Prop := -- !benchmark @start precond a.size ≥ 8 -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def UpdateElements (a : Array Int) (h_precond : UpdateElements_precond (a)) : Array Int := -- !benchmark @start code let a1 := a.set! 4 ((a[4]!) + 3) let a2 := a1.set! 7 516 a2 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def UpdateElements_postcond (a : Array Int) (result: Array Int) (h_precond : UpdateElements_precond (a)) := -- !benchmark @start postcond result[4]! = (a[4]!) + 3 ∧ result[7]! = 516 ∧ (∀ i, i < a.size → i ≠ 4 → i ≠ 7 → result[i]! = a[i]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem UpdateElements_spec_satisfied (a: Array Int) (h_precond : UpdateElements_precond (a)) : UpdateElements_postcond (a) (UpdateElements (a) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "UpdateElements", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_update_array", "student_id": null } }
{ "input": [ "{\"a\": \"#[0, 1, 2, 3, 4, 5, 6, 7, 8]\"}", "{\"a\": \"#[10, 20, 30, 40, 50, 60, 70, 80]\"}", "{\"a\": \"#[-1, -2, -3, -4, -5, -6, -7, -8, -9, -10]\"}", "{\"a\": \"#[0, 0, 0, 0, 0, 0, 0, 0]\"}", "{\"a\": \"#[5, 5, 5, 5, 5, 5, 5, 5]\"}" ], "expected": [ [ "#[0, 1, 2, 3, 7, 5, 6, 516, 8]" ], [ "#[10, 20, 30, 40, 53, 60, 70, 516]" ], [ "#[-1, -2, -3, -4, -2, -6, -7, 516, -9, -10]" ], [ "#[0, 0, 0, 0, 3, 0, 0, 516]" ], [ "#[5, 5, 5, 5, 8, 5, 5, 516]" ] ], "unexpected": [ [ "#[0, 1, 2, 3, 4, 5, 6, 516, 8]", "#[0, 1, 2, 3, 7, 5, 6, 7, 8]" ], [ "#[10, 20, 30, 40, 50, 60, 70, 80]", "#[10, 20, 30, 40, 53, 60, 70, 80]" ], [ "#[-1, -2, -3, -4, -5, -6, -7, 516, -9, -10]", "#[-1, -2, -3, -4, -2, -6, -7, -8, -9, -10]" ], [ "#[0, 0, 0, 0, 0, 0, 0, 516]", "#[0, 0, 0, 0, 3, 0, 0, 0]" ], [ "#[5, 5, 5, 5, 5, 5, 5, 5]", "#[5, 5, 5, 5, 8, 5, 5, 5]" ] ] }
{ "input": [ "{'a': '#[1, 2, 3, 4, 5, 6]'}" ] }
basic
verina_basic_67
-----Description----- This task requires determining whether a given list of characters is a palindrome; that is, whether the sequence reads the same forward and backward. -----Input----- The input consists of: • x: A list of characters (List Char). The list can be empty or non-empty. -----Output----- The output is a Boolean value (Bool): • Returns true if the input list is a palindrome. • Returns false otherwise. -----Note----- An empty list is considered a palindrome. The function does not impose any additional preconditions.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def IsPalindrome_precond (x : List Char) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def isPalindromeHelper (x : List Char) (i j : Nat) : Bool := if i < j then match x[i]?, x[j]? with | some ci, some cj => if ci ≠ cj then false else isPalindromeHelper x (i + 1) (j - 1) | _, _ => false -- This case should not occur due to valid indices else true -- !benchmark @end code_aux def IsPalindrome (x : List Char) (h_precond : IsPalindrome_precond (x)) : Bool := -- !benchmark @start code if x.length = 0 then true else isPalindromeHelper x 0 (x.length - 1) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def IsPalindrome_postcond (x : List Char) (result: Bool) (h_precond : IsPalindrome_precond (x)) := -- !benchmark @start postcond result ↔ ∀ i : Nat, i < x.length → (x[i]! = x[x.length - i - 1]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem IsPalindrome_spec_satisfied (x: List Char) (h_precond : IsPalindrome_precond (x)) : IsPalindrome_postcond (x) (IsPalindrome (x) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "IsPalindrome", "parameters": { "param_name": [ "x" ], "param_type": [ "List Char" ] }, "return_type": "Bool" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_is_palindrome", "student_id": null } }
{ "input": [ "{\"x\": \"[]\"}", "{\"x\": \"['a']\"}", "{\"x\": \"['a', 'b', 'a']\"}", "{\"x\": \"['a', 'b', 'c']\"}", "{\"x\": \"['r', 'a', 'c', 'e', 'c', 'a', 'r']\"}" ], "expected": [ [ "true" ], [ "true" ], [ "true" ], [ "false" ], [ "true" ] ], "unexpected": [ [ "false" ], [ "false" ], [ "false" ], [ "true" ], [ "false" ] ] }
{ "input": [] }
basic
verina_basic_96
-----Description----- This task requires swapping two integer values. Given two integers as input, the objective is to produce an output where their order is reversed: the first element of the output corresponds to the second input and the second element corresponds to the first input. -----Input----- The input consists of two integers: • X: An integer value. • Y: Another integer value. -----Output----- The output is a tuple (Int × Int) where: • The first element is equal to Y. • The second element is equal to X. -----Note----- There are no additional preconditions for this task. The function simply returns a swapped tuple of its two input integers.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def SwapSimultaneous_precond (X : Int) (Y : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def SwapSimultaneous (X : Int) (Y : Int) (h_precond : SwapSimultaneous_precond (X) (Y)) : Int × Int := -- !benchmark @start code (Y, X) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def SwapSimultaneous_postcond (X : Int) (Y : Int) (result: Int × Int) (h_precond : SwapSimultaneous_precond (X) (Y)) := -- !benchmark @start postcond result.1 = Y ∧ result.2 = X ∧ (X ≠ Y → result.fst ≠ X ∧ result.snd ≠ Y) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem SwapSimultaneous_spec_satisfied (X: Int) (Y: Int) (h_precond : SwapSimultaneous_precond (X) (Y)) : SwapSimultaneous_postcond (X) (Y) (SwapSimultaneous (X) (Y) h_precond) h_precond := by -- !benchmark @start proof unfold SwapSimultaneous_postcond SwapSimultaneous simp_all exact fun a a_1 => a (id (Eq.symm a_1)) -- !benchmark @end proof
{ "name": "SwapSimultaneous", "parameters": { "param_name": [ "X", "Y" ], "param_type": [ "Int", "Int" ] }, "return_type": "Int × Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_swap_sim", "student_id": null } }
{ "input": [ "{\"X\": 3, \"Y\": 4}", "{\"X\": -10, \"Y\": 20}", "{\"X\": 0, \"Y\": 0}", "{\"X\": 123, \"Y\": -456}", "{\"X\": -1, \"Y\": -2}" ], "expected": [ [ "(4, 3)" ], [ "(20, -10)" ], [ "(0, 0)" ], [ "(-456, 123)" ], [ "(-2, -1)" ] ], "unexpected": [ [ "(3, 4)", "(3, 3)" ], [ "(20, -20)", "(-10, 20)" ], [ "(0, 1)", "(1, 0)" ], [ "(123, -456)", "(-123, 456)" ], [ "(-1, -2)", "(-2, 2)" ] ] }
{ "input": [] }
basic
verina_advanced_30
-----Description----- This task requires writing a Lean 4 function that computes the length of the longest strictly increasing contiguous subarray in a list of integers. A subarray is a sequence of consecutive elements, and it is strictly increasing if each element is greater than the previous one. The function should correctly handle empty lists, lists with all equal elements, and long stretches of increasing numbers. -----Input----- The input consists of a single list: nums: A list of integers. -----Output----- The output is a natural number: Returns the length of the longest strictly increasing contiguous subarray. If the list is empty, the function should return 0.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def longestIncreasingStreak_precond (nums : List Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def longestIncreasingStreak (nums : List Int) (h_precond : longestIncreasingStreak_precond (nums)) : Nat := -- !benchmark @start code let rec aux (lst : List Int) (prev : Option Int) (currLen : Nat) (maxLen : Nat) : Nat := match lst with | [] => max currLen maxLen | x :: xs => match prev with | none => aux xs (some x) 1 (max 1 maxLen) | some p => if x > p then aux xs (some x) (currLen + 1) (max (currLen + 1) maxLen) else aux xs (some x) 1 (max currLen maxLen) aux nums none 0 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def longestIncreasingStreak_postcond (nums : List Int) (result: Nat) (h_precond : longestIncreasingStreak_precond (nums)) : Prop := -- !benchmark @start postcond -- Case 1: Empty list means result = 0 (nums = [] → result = 0) ∧ -- Case 2: If result > 0, there exists a streak of exactly that length (result > 0 → (List.range (nums.length - result + 1) |>.any (fun start => -- Check bounds are valid start + result ≤ nums.length ∧ -- Check all consecutive pairs in this streak are increasing (List.range (result - 1) |>.all (fun i => nums[start + i]! < nums[start + i + 1]!)) ∧ -- Check this streak can't be extended left (if possible) (start = 0 ∨ nums[start - 1]! ≥ nums[start]!) ∧ -- Check this streak can't be extended right (if possible) (start + result = nums.length ∨ nums[start + result - 1]! ≥ nums[start + result]!)))) ∧ -- Case 3: No streak longer than result exists (List.range (nums.length - result) |>.all (fun start => List.range result |>.any (fun i => start + i + 1 ≥ nums.length ∨ nums[start + i]! ≥ nums[start + i + 1]!))) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem longestIncreasingStreak_spec_satisfied (nums: List Int) (h_precond : longestIncreasingStreak_precond (nums)) : longestIncreasingStreak_postcond (nums) (longestIncreasingStreak (nums) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "longestIncreasingStreak", "parameters": { "param_name": [ "nums" ], "param_type": [ "List Int" ] }, "return_type": "Nat" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/longest-increasing-subsequence/description/", "task_id": "lab_longestIncreasingStreak_324801033", "student_id": [ 24 ] } }
{ "input": [ "{\"nums\": \"[1, 2, 3, 2, 4, 5, 6]\"}", "{\"nums\": \"[10, 20, 30, 40]\"}", "{\"nums\": \"[5, 5, 5, 5]\"}", "{\"nums\": \"[10, 9, 8, 7]\"}", "{\"nums\": \"[]\"}", "{\"nums\": \"[1, 2, 1, 2, 3, 0, 1, 2, 3, 4]\"}" ], "expected": [ [ "4" ], [ "4" ], [ "1" ], [ "1" ], [ "0" ], [ "5" ] ], "unexpected": [ [ "3", "5" ], [ "3" ], [ "0", "2" ], [ "0", "2" ], [ "1" ], [ "4" ] ] }
{ "input": [] }
advanced
verina_basic_91
-----Description----- This task involves creating a function that swaps two integer values. Given two integers, the function should return a pair where the first element is the second input value and the second element is the first input value. -----Input----- The input consists of two integers: • X: An integer representing the first value. • Y: An integer representing the second value. -----Output----- The output is a pair (Int × Int) that: • Contains the original Y as the first element. • Contains the original X as the second element. -----Note----- There are no additional preconditions. The function simply swaps the two input values.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def Swap_precond (X : Int) (Y : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def Swap (X : Int) (Y : Int) (h_precond : Swap_precond (X) (Y)) : Int × Int := -- !benchmark @start code let x := X let y := Y let tmp := x let x := y let y := tmp (x, y) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def Swap_postcond (X : Int) (Y : Int) (result: Int × Int) (h_precond : Swap_precond (X) (Y)) := -- !benchmark @start postcond result.fst = Y ∧ result.snd = X ∧ (X ≠ Y → result.fst ≠ X ∧ result.snd ≠ Y) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem Swap_spec_satisfied (X: Int) (Y: Int) (h_precond : Swap_precond (X) (Y)) : Swap_postcond (X) (Y) (Swap (X) (Y) h_precond) h_precond := by -- !benchmark @start proof unfold Swap_postcond Swap simp_all exact fun a a_1 => a (id (Eq.symm a_1)) -- !benchmark @end proof
{ "name": "Swap", "parameters": { "param_name": [ "X", "Y" ], "param_type": [ "Int", "Int" ] }, "return_type": "Int × Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_swap", "student_id": null } }
{ "input": [ "{\"X\": 1, \"Y\": 2}", "{\"X\": 0, \"Y\": 0}", "{\"X\": -1, \"Y\": 5}", "{\"X\": 100, \"Y\": -100}", "{\"X\": 42, \"Y\": 42}" ], "expected": [ [ "(2, 1)" ], [ "(0, 0)" ], [ "(5, -1)" ], [ "(-100, 100)" ], [ "(42, 42)" ] ], "unexpected": [ [ "(1, 2)", "(2, 2)" ], [ "(0, 1)", "(1, 0)" ], [ "(-1, 5)", "(5, 5)" ], [ "(100, -100)", "(-100, -100)" ], [ "(41, 42)", "(42, 41)" ] ] }
{ "input": [] }
basic
verina_basic_3
-----Description----- This task requires writing a Lean 4 method that determines whether a given integer is divisible by 11. The method should return true if the number is divisible by 11 and false otherwise. -----Input----- The input consists of: n: An integer to check for divisibility by 11. -----Output----- The output is a Boolean value: Returns true if the input number is divisible by 11. Returns false if the input number is not divisible by 11.
-- !benchmark @start import type=solution import Mathlib -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def isDivisibleBy11_precond (n : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def isDivisibleBy11 (n : Int) (h_precond : isDivisibleBy11_precond (n)) : Bool := -- !benchmark @start code n % 11 == 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def isDivisibleBy11_postcond (n : Int) (result: Bool) (h_precond : isDivisibleBy11_precond (n)) := -- !benchmark @start postcond (result → (∃ k : Int, n = 11 * k)) ∧ (¬ result → (∀ k : Int, ¬ n = 11 * k)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem isDivisibleBy11_spec_satisfied (n: Int) (h_precond : isDivisibleBy11_precond (n)) : isDivisibleBy11_postcond (n) (isDivisibleBy11 (n) h_precond) h_precond := by -- !benchmark @start proof unfold isDivisibleBy11 isDivisibleBy11_postcond constructor · simp_all exact fun a => a · apply Not.imp_symm rw [not_forall_not] intro h rw [beq_iff_eq] exact Int.emod_eq_zero_of_dvd h -- !benchmark @end proof
{ "name": "isDivisibleBy11", "parameters": { "param_name": [ "n" ], "param_type": [ "Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_77", "student_id": null } }
{ "input": [ "{\"n\": 0}", "{\"n\": 11}", "{\"n\": 22}", "{\"n\": 23}", "{\"n\": 33}", "{\"n\": 44}", "{\"n\": -11}", "{\"n\": -22}", "{\"n\": 1}", "{\"n\": -1}", "{\"n\": 121}", "{\"n\": 123}" ], "expected": [ [ "True" ], [ "True" ], [ "True" ], [ "False" ], [ "True" ], [ "True" ], [ "True" ], [ "True" ], [ "False" ], [ "False" ], [ "True" ], [ "False" ] ], "unexpected": [ [ "False" ], [ "False" ], [ "False" ], [ "True" ], [ "False" ], [ "False" ], [ "False" ], [ "False" ], [ "True" ], [ "True" ], [ "False" ], [ "True" ] ] }
{ "input": [] }
basic
verina_basic_32
-----Description----- This task requires writing a Lean 4 method that swaps the first and last elements of an array of integers. The method should produce a new array where the first element of the output is the last element of the input, the last element of the output is the first element of the input, and all other elements remain in their original positions. -----Input----- The input consists of: a: An array of integers (assumed to be non-empty). -----Output----- The output is an array of integers: Returns a new array where: - The former last element becomes the first element. - The former first element becomes the last element. - All other elements remain unchanged.
-- !benchmark @start import type=solution import Mathlib -- !benchmark @end import -- !benchmark @start import type=llm -- !benchmark @end import -- !benchmark @start import type=test -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux def swapFirstAndLast_precond (a : Array Int) : Prop := -- !benchmark @start precond a.size > 0 -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def swapFirstAndLast (a : Array Int) (h_precond: swapFirstAndLast_precond a) : Array Int := -- !benchmark @start code let first := a[0]! let last := a[a.size - 1]! a.set! 0 last |>.set! (a.size - 1) first -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux -- Theorem: The last element of the input array should be the first element of the modified array; The first element of the input array should be the last element of the modified array; All other elements remain unchanged @[reducible, simp] def swapFirstAndLast_postcond (a : Array Int) (result : Array Int) (h_precond: swapFirstAndLast_precond a) : Prop := -- !benchmark @start postcond result.size = a.size ∧ result[0]! = a[a.size - 1]! ∧ result[result.size - 1]! = a[0]! ∧ (List.range (result.size - 2)).all (fun i => result[i + 1]! = a[i + 1]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem swapFirstAndLast_spec_satisfied (a : Array Int) (h_precond: swapFirstAndLast_precond a) : swapFirstAndLast_postcond a (swapFirstAndLast a h_precond) h_precond := by -- !benchmark @start proof unfold swapFirstAndLast swapFirstAndLast_postcond unfold swapFirstAndLast_precond at h_precond simp_all -- have ha : 0 < a.toList.length := by simp [h_precond] constructor · simp [Array.getElem!_eq_getD] rw [← Array.getElem?_toList, ← Array.getElem?_toList] simp rw [List.getElem?_set] cases ha' : a.size with | zero => simp_all | succ n => cases hn : n with | zero => simp [h_precond] | succ n' => simp_all · constructor · simp_all [Array.getElem!_eq_getD] · intro i hi simp [Array.getElem!_eq_getD] rw [← Array.getElem?_toList, ← Array.getElem?_toList] simp rw [List.getElem?_set, List.length_set] simp_all have : i + 2 < a.size := by exact Nat.add_lt_of_lt_sub hi have : a.size ≠ i + 2 := by exact Ne.symm (Nat.ne_of_lt this) simp [this] -- !benchmark @end proof
{ "name": "swapFirstAndLast", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_625", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3, 4, 5]\"}", "{\"a\": \"#[10]\"}", "{\"a\": \"#[1, 2]\"}", "{\"a\": \"#[1, 2, 3]\"}" ], "expected": [ [ "#[5, 2, 3, 4, 1]" ], [ "#[10]" ], [ "#[2, 1]" ], [ "#[3, 2, 1]" ] ], "unexpected": [ [ "#[1, 2, 3, 4, 5]", "#[5, 4, 3, 2, 1]", "#[2, 3, 4, 5, 1]" ], [ "#[0]", "#[5]", "#[11]" ], [ "#[1, 2]", "#[2, 2]", "#[1, 1]" ], [ "#[1, 2, 3]", "#[3, 1, 2]", "#[2, 1, 3]" ] ] }
{ "input": [ "{'a': '#[]'}" ] }
basic
verina_basic_86
-----Description----- This task requires writing a Lean 4 method that rotates an array of integers to the left by a specified offset. -----Input----- The input consists of: • a: An array of integers (which may be empty or non-empty). • offset: An integer representing the number of positions to rotate the array. The offset is assumed to be non-negative. -----Output----- The output is an array of integers that: • Has the same length as the input array. • For every valid index i, the output element at index i is equal to the input element at index ((i + offset) mod n), where n is the array size. -----Note----- If the array is empty, the method should return an empty array.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def rotate_precond (a : Array Int) (offset : Int) : Prop := -- !benchmark @start precond offset ≥ 0 -- !benchmark @end precond -- !benchmark @start code_aux def rotateAux (a : Array Int) (offset : Int) (i : Nat) (len : Nat) (b : Array Int) : Array Int := if i < len then let idx_int : Int := (Int.ofNat i + offset) % (Int.ofNat len) let idx_int_adjusted := if idx_int < 0 then idx_int + Int.ofNat len else idx_int let idx_nat : Nat := Int.toNat idx_int_adjusted let new_b := b.set! i (a[idx_nat]!) rotateAux a offset (i + 1) len new_b else b -- !benchmark @end code_aux def rotate (a : Array Int) (offset : Int) (h_precond : rotate_precond (a) (offset)) : Array Int := -- !benchmark @start code let len := a.size let default_val : Int := if len > 0 then a[0]! else 0 let b0 := Array.mkArray len default_val rotateAux a offset 0 len b0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def rotate_postcond (a : Array Int) (offset : Int) (result: Array Int) (h_precond : rotate_precond (a) (offset)) := -- !benchmark @start postcond result.size = a.size ∧ (∀ i : Nat, i < a.size → result[i]! = a[Int.toNat ((Int.ofNat i + offset) % (Int.ofNat a.size))]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem rotate_spec_satisfied (a: Array Int) (offset: Int) (h_precond : rotate_precond (a) (offset)) : rotate_postcond (a) (offset) (rotate (a) (offset) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "rotate", "parameters": { "param_name": [ "a", "offset" ], "param_type": [ "Array Int", "Int" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_rotate", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3, 4, 5]\", \"offset\": 2}", "{\"a\": \"#[10, 20, 30, 40]\", \"offset\": 1}", "{\"a\": \"#[]\", \"offset\": 5}", "{\"a\": \"#[7]\", \"offset\": 0}", "{\"a\": \"#[-1, -2, -3, -4]\", \"offset\": 3}", "{\"a\": \"#[5, 10, 15]\", \"offset\": 5}" ], "expected": [ [ "#[3, 4, 5, 1, 2]" ], [ "#[20, 30, 40, 10]" ], [ "#[]" ], [ "#[7]" ], [ "#[-4, -1, -2, -3]" ], [ "#[15, 5, 10]" ] ], "unexpected": [ [ "#[1, 2, 3, 4, 5]", "#[2, 3, 4, 5, 1]" ], [ "#[10, 20, 30, 40]", "#[40, 10, 20, 30]" ], [ "#[0]", "#[1]" ], [ "#[0]", "#[8]" ], [ "#[-1, -2, -3, -4]", "#[-3, -4, -1, -2]" ], [ "#[5, 10, 15]", "#[10, 15, 5]" ] ] }
{ "input": [ "{'a': '#[1, 2, 3, 4, 5]', 'offset': -1}" ] }
basic
verina_basic_99
-----Description----- This task requires computing three times the given integer. The goal is to determine the product of the input integer and 3. -----Input----- The input consists of: • x: An integer. -----Output----- The output is an integer that represents three times the input value. -----Note----- The implementation uses two different branches based on the value of x (i.e., x < 18 or x ≥ 18), but both branches guarantee that the result equals 3*x.
-- !benchmark @start import type=solution import Mathlib -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def Triple_precond (x : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def Triple (x : Int) (h_precond : Triple_precond (x)) : Int := -- !benchmark @start code if x < 18 then let a := 2 * x let b := 4 * x (a + b) / 2 else let y := 2 * x x + y -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def Triple_postcond (x : Int) (result: Int) (h_precond : Triple_precond (x)) := -- !benchmark @start postcond result / 3 = x ∧ result / 3 * 3 = result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem Triple_spec_satisfied (x: Int) (h_precond : Triple_precond (x)) : Triple_postcond (x) (Triple (x) h_precond) h_precond := by -- !benchmark @start proof unfold Triple_postcond Triple simp split_ifs with h₁ . rw [←Int.add_mul] simp have h : (6: ℤ) = 3 * 2 := by simp rw [h, Int.mul_comm, Int.mul_ediv_assoc, Int.mul_ediv_assoc] simp rw [Int.mul_comm] rfl simp . rw (occs := [1]) [←Int.one_mul x] rw [←Int.add_mul] simp +arith -- !benchmark @end proof
{ "name": "Triple", "parameters": { "param_name": [ "x" ], "param_type": [ "Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_triple2", "student_id": null } }
{ "input": [ "{\"x\": 10}", "{\"x\": 18}", "{\"x\": 0}", "{\"x\": -5}", "{\"x\": 25}" ], "expected": [ [ "30" ], [ "54" ], [ "0" ], [ "-15" ], [ "75" ] ], "unexpected": [ [ "20", "25", "35" ], [ "50", "56", "60" ], [ "1", "-1", "5" ], [ "-10", "-20", "0" ], [ "70", "80", "65" ] ] }
{ "input": [] }
basic
verina_basic_107
-----Description----- This task involves computing the average of two integers. The objective is to determine a value that closely approximates the true arithmetic mean when using integer division, ensuring that the result reflects the necessary rounding behavior. -----Input----- The input consists of: • a: An integer. • b: An integer. -----Output----- The output is an integer representing the computed average of a and b using integer division. -----Note----- The specification requires that the computed average satisfies the condition that 2 * avg is between (a + b - 1) and (a + b + 1), ensuring that the result meets the expected rounding boundaries.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def ComputeAvg_precond (a : Int) (b : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def ComputeAvg (a : Int) (b : Int) (h_precond : ComputeAvg_precond (a) (b)) : Int := -- !benchmark @start code (a + b) / 2 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def ComputeAvg_postcond (a : Int) (b : Int) (result: Int) (h_precond : ComputeAvg_precond (a) (b)) := -- !benchmark @start postcond 2 * result = a + b - ((a + b) % 2) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem ComputeAvg_spec_satisfied (a: Int) (b: Int) (h_precond : ComputeAvg_precond (a) (b)) : ComputeAvg_postcond (a) (b) (ComputeAvg (a) (b) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "ComputeAvg", "parameters": { "param_name": [ "a", "b" ], "param_type": [ "Int", "Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_avg", "student_id": null } }
{ "input": [ "{\"a\": 4, \"b\": 6}", "{\"a\": 3, \"b\": 5}", "{\"a\": 3, \"b\": 4}", "{\"a\": -3, \"b\": 7}", "{\"a\": -5, \"b\": 5}" ], "expected": [ [ "5" ], [ "4" ], [ "3" ], [ "2" ], [ "0" ] ], "unexpected": [ [ "4", "6", "7" ], [ "3", "5", "6" ], [ "2", "4", "5" ], [ "1", "3", "0" ], [ "1", "-1", "2" ] ] }
{ "input": [] }
basic
verina_advanced_5
-----Description----- This task requires writing a Lean 4 method that adds two non-empty linked lists representing non-negative integers. The digits are stored in reverse order (i.e., the first element is the least significant digit). Each node (list element) holds a single digit (ranging from 0 to 9). The function should add the two numbers and return the sum as a linked list, also in reverse order. -----Input----- The input consists of: - l1: A list of natural numbers representing the digits of the first number in reverse order. - l2: A list of natural numbers representing the digits of the second number in reverse order. -----Output----- The output is a list of natural numbers: Returns a list of digits (in reverse order) representing the sum of the two input numbers.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def listToNat : List Nat → Nat | [] => 0 | d :: ds => d + 10 * listToNat ds -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def addTwoNumbers_precond (l1 : List Nat) (l2 : List Nat) : Prop := -- !benchmark @start precond l1.length > 0 ∧ l2.length > 0 ∧ (∀ d ∈ l1, d < 10) ∧ (∀ d ∈ l2, d < 10) ∧ (l1.getLast! ≠ 0 ∨ l1 = [0]) ∧ (l2.getLast! ≠ 0 ∨ l2 = [0]) -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def addTwoNumbers (l1 : List Nat) (l2 : List Nat) (h_precond : addTwoNumbers_precond (l1) (l2)) : List Nat := -- !benchmark @start code let rec addAux (l1 l2 : List Nat) (carry : Nat) : List Nat := match l1, l2 with | [], [] => if carry = 0 then [] else [carry] | h1::t1, [] => let sum := h1 + carry (sum % 10) :: addAux t1 [] (sum / 10) | [], h2::t2 => let sum := h2 + carry (sum % 10) :: addAux [] t2 (sum / 10) | h1::t1, h2::t2 => let sum := h1 + h2 + carry (sum % 10) :: addAux t1 t2 (sum / 10) addAux l1 l2 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def addTwoNumbers_postcond (l1 : List Nat) (l2 : List Nat) (result: List Nat) (h_precond : addTwoNumbers_precond (l1) (l2)) : Prop := -- !benchmark @start postcond listToNat result = listToNat l1 + listToNat l2 ∧ (∀ d ∈ result, d < 10) ∧ -- No leading zeros unless the result is zero (result.getLast! ≠ 0 ∨ (l1 = [0] ∧ l2 = [0] ∧ result = [0])) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem addTwoNumbers_spec_satisfied (l1: List Nat) (l2: List Nat) (h_precond : addTwoNumbers_precond (l1) (l2)) : addTwoNumbers_postcond (l1) (l2) (addTwoNumbers (l1) (l2) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "addTwoNumbers", "parameters": { "param_name": [ "l1", "l2" ], "param_type": [ "List Nat", "List Nat" ] }, "return_type": "List Nat" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/add-two-numbers/description/", "task_id": "lab_addTwoNumbers_324428059", "student_id": [ 3 ] } }
{ "input": [ "{\"l1\": \"[2,4,3]\", \"l2\": \"[5,6,4]\"}", "{\"l1\": \"[0]\", \"l2\": \"[0]\"}", "{\"l1\": \"[9,9,9,9,9,9,9]\", \"l2\": \"[9,9,9,9]\"}", "{\"l1\": \"[1,2,3]\", \"l2\": \"[4,5]\"}" ], "expected": [ [ "[7,0,8]" ], [ "[0]" ], [ "[8,9,9,9,0,0,0,1]" ], [ "[5,7,3]" ] ], "unexpected": [ [ "[2,4,3]", "[0]" ], [ "[0,0]" ], [ "[9,9,9,9,9,9,9,9]" ], [ "[5,7]", "[5,7,4]" ] ] }
{ "input": [ "{'l1': '[]', 'l2': '[]'}", "{'l1': '[0, 0]', 'l2': '[0, 0]'}" ] }
advanced
verina_basic_101
-----Description----- This problem involves computing the triple of a given integer. The goal is to produce an output that is exactly three times the input value. -----Input----- The input consists of: • x: An integer representing the value to be tripled. -----Output----- The output is an integer that is three times the input value (i.e., 3 * x). -----Note----- The implementation uses a local variable to first compute double the input and then adds the original input to get the final result. The accompanying theorem asserts that the function satisfies the specification of computing 3 * x.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def Triple_precond (x : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def Triple (x : Int) (h_precond : Triple_precond (x)) : Int := -- !benchmark @start code let y := x * 2 y + x -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def Triple_postcond (x : Int) (result: Int) (h_precond : Triple_precond (x)) := -- !benchmark @start postcond result / 3 = x ∧ result / 3 * 3 = result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem Triple_spec_satisfied (x: Int) (h_precond : Triple_precond (x)) : Triple_postcond (x) (Triple (x) h_precond) h_precond := by -- !benchmark @start proof unfold Triple_postcond Triple simp rw (occs := [2]) [←Int.mul_one x] rw [←Int.mul_add] simp +arith -- !benchmark @end proof
{ "name": "Triple", "parameters": { "param_name": [ "x" ], "param_type": [ "Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_triple4", "student_id": null } }
{ "input": [ "{\"x\": 0}", "{\"x\": 1}", "{\"x\": -1}", "{\"x\": 5}", "{\"x\": -10}" ], "expected": [ [ "0" ], [ "3" ], [ "-3" ], [ "15" ], [ "-30" ] ], "unexpected": [ [ "1", "-1", "2" ], [ "2", "4", "5" ], [ "-2", "0", "-1" ], [ "14", "16", "10" ], [ "-20", "-40", "-10" ] ] }
{ "input": [] }
basic
verina_advanced_41
-----Description----- This task requires writing a Lean 4 method that finds the maximum among three given integers. The method should return the largest value, ensuring that the result is greater than or equal to each of the input numbers and that it is one of the provided integers. -----Input----- The input consists of three integers: a: The first integer. b: The second integer. c: The third integer. -----Output----- The output is an integer: Returns the maximum of the three input numbers, assuring that the returned value is greater than or equal to a, b, and c, and that it matches one of these values.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def maxOfThree_precond (a : Int) (b : Int) (c : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def maxOfThree (a : Int) (b : Int) (c : Int) (h_precond : maxOfThree_precond (a) (b) (c)) : Int := -- !benchmark @start code if a >= b && a >= c then a else if b >= a && b >= c then b else c -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def maxOfThree_postcond (a : Int) (b : Int) (c : Int) (result: Int) (h_precond : maxOfThree_precond (a) (b) (c)) : Prop := -- !benchmark @start postcond (result >= a ∧ result >= b ∧ result >= c) ∧ (result = a ∨ result = b ∨ result = c) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem maxOfThree_spec_satisfied (a: Int) (b: Int) (c: Int) (h_precond : maxOfThree_precond (a) (b) (c)) : maxOfThree_postcond (a) (b) (c) (maxOfThree (a) (b) (c) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "maxOfThree", "parameters": { "param_name": [ "a", "b", "c" ], "param_type": [ "Int", "Int", "Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/maximum-product-of-three-numbers/", "task_id": "lab_maxOfThree_325766147", "student_id": [ 33 ] } }
{ "input": [ "{\"a\": 3, \"b\": 2, \"c\": 1}", "{\"a\": 5, \"b\": 5, \"c\": 5}", "{\"a\": 10, \"b\": 20, \"c\": 15}", "{\"a\": -1, \"b\": -2, \"c\": -3}", "{\"a\": 0, \"b\": -10, \"c\": -5}" ], "expected": [ [ "3" ], [ "5" ], [ "20" ], [ "-1" ], [ "0" ] ], "unexpected": [ [ "2", "1", "-1" ], [ "6", "4" ], [ "10", "15" ], [ "-2", "-3" ], [ "-5", "-10" ] ] }
{ "input": [] }
advanced
verina_basic_27
-----Description----- This task requires writing a Lean 4 method that identifies the first repeated character in a given string. The method should return a tuple containing a Boolean value and a character. The Boolean value indicates whether any character in the string is repeated. If it is true, the accompanying character is the first character that appears more than once. If it is false, it indicates that there are no repeated characters in the string. -----Input----- The input consists of: s: A string. -----Output----- The output is a tuple (Bool × Char): - Returns true and the first repeated character in the string if any repeated character is found. - Returns false and an arbitrary character if no repeated characters are present. -----Note----- There are no preconditions; the method is expected to work for any non-null string.
-- !benchmark @start import type=solution import Std.Data.HashSet -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def findFirstRepeatedChar_precond (s : String) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def findFirstRepeatedChar (s : String) (h_precond : findFirstRepeatedChar_precond (s)) : Option Char := -- !benchmark @start code let cs := s.toList let rec loop (i : Nat) (seen : Std.HashSet Char) : Option Char := if i < cs.length then let c := cs[i]! if seen.contains c then some c else loop (i + 1) (seen.insert c) else -- When no repeated char is found, return (false, arbitrary char) none loop 0 Std.HashSet.empty -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def findFirstRepeatedChar_postcond (s : String) (result: Option Char) (h_precond : findFirstRepeatedChar_precond (s)) := -- !benchmark @start postcond let cs := s.toList match result with | some c => let secondIdx := cs.zipIdx.findIdx (fun (x, i) => x = c && i ≠ cs.idxOf c) -- Exists repeated char cs.count c ≥ 2 ∧ -- There is no other repeated char before the found one List.Pairwise (· ≠ ·) (cs.take secondIdx) | none => -- There is no repeated char List.Pairwise (· ≠ ·) cs -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem findFirstRepeatedChar_spec_satisfied (s: String) (h_precond : findFirstRepeatedChar_precond (s)) : findFirstRepeatedChar_postcond (s) (findFirstRepeatedChar (s) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "findFirstRepeatedChar", "parameters": { "param_name": [ "s" ], "param_type": [ "String" ] }, "return_type": "Option Char" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_602", "student_id": null } }
{ "input": [ "{\"s\": \"abca\"}", "{\"s\": \"abcdef\"}", "{\"s\": \"aabbcc\"}", "{\"s\": \"\"}", "{\"s\": \"abbc\"}", "{\"s\": \"Aa\"}" ], "expected": [ [ "some ('a')" ], [ "none" ], [ "some ('a')" ], [ "none" ], [ "some ('b')" ], [ "none" ] ], "unexpected": [ [ "some ('b')", "some ('c')", "none" ], [ "some ('a')", "some ('z')" ], [ "some ('b')", "some ('c')", "none" ], [ "some ('x')", "some ('y')" ], [ "some ('a')", "some ('c')", "none" ], [ "some ('A')", "some ('a')" ] ] }
{ "input": [] }
basic
verina_basic_28
-----Description----- This task requires writing a Lean 4 method that determines whether a given natural number is prime. A number (with n ≥ 2) is considered prime if it is divisible only by 1 and itself. The method should return true when the input number is prime and false otherwise. -----Input----- The input consists of: n: A natural number (Nat) such that n ≥ 2. -----Output----- The output is a Boolean value: Returns true if the input number is prime (i.e., there is no integer k with 1 < k < n that divides n). Returns false if the input number is not prime (i.e., there exists an integer k with 1 < k < n that divides n). -----Note----- The input is expected to satisfy the condition n ≥ 2.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def isPrime_precond (n : Nat) : Prop := -- !benchmark @start precond n ≥ 2 -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def isPrime (n : Nat) (h_precond : isPrime_precond (n)) : Bool := -- !benchmark @start code let bound := n let rec check (i : Nat) (fuel : Nat) : Bool := if fuel = 0 then true else if i * i > n then true else if n % i = 0 then false else check (i + 1) (fuel - 1) check 2 bound -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def isPrime_postcond (n : Nat) (result: Bool) (h_precond : isPrime_precond (n)) := -- !benchmark @start postcond (result → (List.range' 2 (n - 2)).all (fun k => n % k ≠ 0)) ∧ (¬ result → (List.range' 2 (n - 2)).any (fun k => n % k = 0)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem isPrime_spec_satisfied (n: Nat) (h_precond : isPrime_precond (n)) : isPrime_postcond (n) (isPrime (n) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "isPrime", "parameters": { "param_name": [ "n" ], "param_type": [ "Nat" ] }, "return_type": "Bool" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_605", "student_id": null } }
{ "input": [ "{\"n\": 2}", "{\"n\": 3}", "{\"n\": 4}", "{\"n\": 5}", "{\"n\": 9}", "{\"n\": 11}", "{\"n\": 12}", "{\"n\": 13}" ], "expected": [ [ "True" ], [ "True" ], [ "False" ], [ "True" ], [ "False" ], [ "True" ], [ "False" ], [ "True" ] ], "unexpected": [ [ "False" ], [ "False" ], [ "True" ], [ "False" ], [ "True" ], [ "False" ], [ "True" ], [ "False" ] ] }
{ "input": [ "{'n': 0}" ] }
basic
verina_basic_64
-----Description----- This task requires writing a Lean 4 method that inserts a subarray of characters into another array of characters at a specified index. The method takes the original array (oline) and, given the effective length l to consider, inserts another array of characters (nl) of effective length p starting at the index atPos. The resulting array is of length l + p and is constructed as follows: • All characters before the insertion position (atPos) remain unchanged. • The new characters from nl are inserted starting at index atPos. • The remaining characters from the original array (starting at atPos) are shifted right by p positions. -----Input----- The input consists of: • oline: An array of characters representing the original sequence. • l: A natural number indicating how many characters from oline to consider. • nl: An array of characters to be inserted into oline. • p: A natural number indicating how many characters from nl to consider for insertion. • atPos: A natural number indicating the position in oline where the insertion should occur (0-indexed). -----Output----- The output is an array of characters that is the result of inserting nl into oline at the given atPos. Specifically, the output array should: • Contain the original characters from index 0 up to (but not including) atPos. • Have the next p characters equal to the characters from nl. • Contain the remaining characters from oline (starting from atPos) shifted right by p positions. -----Note----- It is assumed that: • atPos is within the range [0, l]. • l does not exceed the size of oline. • p does not exceed the size of nl.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def insert_precond (oline : Array Char) (l : Nat) (nl : Array Char) (p : Nat) (atPos : Nat) : Prop := -- !benchmark @start precond l ≤ oline.size ∧ p ≤ nl.size ∧ atPos ≤ l -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def insert (oline : Array Char) (l : Nat) (nl : Array Char) (p : Nat) (atPos : Nat) (h_precond : insert_precond (oline) (l) (nl) (p) (atPos)) : Array Char := -- !benchmark @start code let result := Array.mkArray (l + p) ' ' let result := Array.foldl (fun acc i => if i < atPos then acc.set! i (oline[i]!) else acc) result (Array.range l) let result := Array.foldl (fun acc i => acc.set! (atPos + i) (nl[i]!)) result (Array.range p) let result := Array.foldl (fun acc i => if i >= atPos then acc.set! (i + p) (oline[i]!) else acc) result (Array.range l) result -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def insert_postcond (oline : Array Char) (l : Nat) (nl : Array Char) (p : Nat) (atPos : Nat) (result: Array Char) (h_precond : insert_precond (oline) (l) (nl) (p) (atPos)) := -- !benchmark @start postcond result.size = l + p ∧ (List.range p).all (fun i => result[atPos + i]! = nl[i]!) ∧ (List.range atPos).all (fun i => result[i]! = oline[i]!) ∧ (List.range (l - atPos)).all (fun i => result[atPos + p + i]! = oline[atPos + i]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem insert_spec_satisfied (oline: Array Char) (l: Nat) (nl: Array Char) (p: Nat) (atPos: Nat) (h_precond : insert_precond (oline) (l) (nl) (p) (atPos)) : insert_postcond (oline) (l) (nl) (p) (atPos) (insert (oline) (l) (nl) (p) (atPos) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "insert", "parameters": { "param_name": [ "oline", "l", "nl", "p", "atPos" ], "param_type": [ "Array Char", "Nat", "Array Char", "Nat", "Nat" ] }, "return_type": "Array Char" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_insert", "student_id": null } }
{ "input": [ "{\"oline\": \"#['a','b','c','d','e']\", \"l\": 5, \"nl\": \"#['X','Y']\", \"p\": 2, \"atPos\": 2}", "{\"oline\": \"#['H','e','l','l','o']\", \"l\": 5, \"nl\": \"#['W','o','r','l','d']\", \"p\": 5, \"atPos\": 0}", "{\"oline\": \"#['L','e','a','n']\", \"l\": 4, \"nl\": \"#['4']\", \"p\": 1, \"atPos\": 4}", "{\"oline\": \"#['T','e','s','t']\", \"l\": 4, \"nl\": \"#[]\", \"p\": 0, \"atPos\": 2}", "{\"oline\": \"#['1','2','3','4','5','6']\", \"l\": 5, \"nl\": \"#['a','b','c']\", \"p\": 3, \"atPos\": 3}" ], "expected": [ [ "#['a','b','X','Y','c','d','e']" ], [ "#['W','o','r','l','d','H','e','l','l','o']" ], [ "#['L','e','a','n','4']" ], [ "#['T','e','s','t']" ], [ "#['1','2','3','a','b','c','4','5']" ] ], "unexpected": [ [ "#['a','b','X','Y','c','d']", "#['a','b','X','Y','c','d','f']", "#['a','X','b','Y','c','d','e']" ], [ "#['H','e','l','l','o','W','o','r','l','d']", "#['W','o','r','l','d','H','e','l','l','o','!']", "#['W','o','r','l','d','W','o','r','l','d']" ], [ "#['L','e','a','n']", "#['L','e','a','n',' ']", "#['4','L','e','a','n']" ], [ "#['T','e','s']", "#['T','s','t','e']", "#['t','e','s','T']" ], [ "#['1','2','3','a','b','c','4','5','6']", "#['1','2','3','4','a','b','c','5','6']", "#['1','2','3','a','b','4','c','5','6']" ] ] }
{ "input": [ "{'oline': \"#['a','b','c']\", 'l': 5, 'nl': \"#['X','Y']\", 'p': 3, 'atPos': 2}" ] }
basic
verina_advanced_78
-----Description----- This task requires writing a Lean 4 method that solves the Two Sum problem. Given a list of integers and a target integer, the method must return a pair of indices such that the sum of the numbers at those indices equals the target. You may assume that each input has exactly one solution and that you may not use the same element twice. The answer should be returned with first index is smaller than the second. -----Input----- The input consists of: - nums: A list of integers. - target: An integer representing the target sum. -----Output----- The output is a pair (tuple) of integers representing the indices of the two numbers in the input list that add up to the target.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def twoSum_precond (nums : List Int) (target : Int) : Prop := -- !benchmark @start precond let pairwiseSum := List.range nums.length |>.flatMap (fun i => nums.drop (i + 1) |>.map (fun y => nums[i]! + y)) nums.length > 1 ∧ pairwiseSum.count target = 1 -- !benchmark @end precond -- !benchmark @start code_aux def findComplement (nums : List Int) (target : Int) (i : Nat) (x : Int) : Option Nat := let rec aux (nums : List Int) (j : Nat) : Option Nat := match nums with | [] => none | y :: ys => if x + y = target then some (i + j + 1) else aux ys (j + 1) aux nums 0 def twoSumAux (nums : List Int) (target : Int) (i : Nat) : Prod Nat Nat := match nums with | [] => panic! "No solution exists" | x :: xs => match findComplement xs target i x with | some j => (i, j) | none => twoSumAux xs target (i + 1) -- !benchmark @end code_aux def twoSum (nums : List Int) (target : Int) (h_precond : twoSum_precond (nums) (target)) : Prod Nat Nat := -- !benchmark @start code twoSumAux nums target 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def twoSum_postcond (nums : List Int) (target : Int) (result: Prod Nat Nat) (h_precond : twoSum_precond (nums) (target)) : Prop := -- !benchmark @start postcond let i := result.fst; let j := result.snd; (i < j) ∧ (i < nums.length) ∧ (j < nums.length) ∧ (nums[i]!) + (nums[j]!) = target -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem twoSum_spec_satisfied (nums: List Int) (target: Int) (h_precond : twoSum_precond (nums) (target)) : twoSum_postcond (nums) (target) (twoSum (nums) (target) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "twoSum", "parameters": { "param_name": [ "nums", "target" ], "param_type": [ "List Int", "Int" ] }, "return_type": "Prod Nat Nat" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/two-sum/description/", "task_id": "lab_twoSum_324854887", "student_id": [ 18 ] } }
{ "input": [ "{\"nums\": \"[2, 7, 11, 15]\", \"target\": 9}", "{\"nums\": \"[3, 2, 4]\", \"target\": 6}", "{\"nums\": \"[3, 3]\", \"target\": 6}", "{\"nums\": \"[1, 2, 3, 4]\", \"target\": 7}", "{\"nums\": \"[0, 4, 3, 0]\", \"target\": 0}" ], "expected": [ [ "(0, 1)" ], [ "(1, 2)" ], [ "(0, 1)" ], [ "(2, 3)" ], [ "(0, 3)" ] ], "unexpected": [ [ "(2, 3)" ], [ "(0, 2)" ], [ "(1, 0)" ], [ "(0, 1)" ], [ "(1, 2)" ] ] }
{ "input": [ "{'nums': '[1, 2]', 'target': 0}" ] }
advanced
verina_advanced_63
-----Description----- This task requires writing a Lean 4 method that counts the unique elements from a sorted array. -----Input----- The input is a single list of integers: nums: An array of integers sorted in non-decreasing order. -----Output----- The output is a single integer: Returns the number of unique elements (k).
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def removeDuplicates_precond (nums : List Int) : Prop := -- !benchmark @start precond -- nums are sorted in non-decreasing order List.Pairwise (· ≤ ·) nums -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def removeDuplicates (nums : List Int) (h_precond : removeDuplicates_precond (nums)) : Nat := -- !benchmark @start code match nums with | [] => 0 | h :: t => let init := h let initCount := 1 let rec countUniques (prev : Int) (xs : List Int) (k : Nat) : Nat := match xs with | [] => k | head :: tail => let isDuplicate := head = prev if isDuplicate then countUniques prev tail k else let newK := k + 1 countUniques head tail newK countUniques init t initCount -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def removeDuplicates_postcond (nums : List Int) (result: Nat) (h_precond : removeDuplicates_precond (nums)) : Prop := -- !benchmark @start postcond result - nums.eraseDups.length = 0 ∧ nums.eraseDups.length ≤ result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem removeDuplicates_spec_satisfied (nums: List Int) (h_precond : removeDuplicates_precond (nums)) : removeDuplicates_postcond (nums) (removeDuplicates (nums) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "removeDuplicates", "parameters": { "param_name": [ "nums" ], "param_type": [ "List Int" ] }, "return_type": "Nat" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/remove-duplicates-from-sorted-array/description/", "task_id": "lab_removeDuplicates_325739229", "student_id": [ 30 ] } }
{ "input": [ "{\"nums\": \"[1, 1, 2]\"}", "{\"nums\": \"[0, 0, 1, 1, 1, 2, 2, 3, 3, 4]\"}", "{\"nums\": \"[-1, -1, 0, 1, 2, 2, 3]\"}", "{\"nums\": \"[1, 2, 3, 4, 5]\"}", "{\"nums\": \"[1, 1, 1, 1]\"}", "{\"nums\": \"[]\"}", "{\"nums\": \"[1]\"}", "{\"nums\": \"[-100, -100, -100]\"}", "{\"nums\": \"[-100, -99, -99, -50, 0, 0, 100, 100]\"}", "{\"nums\": \"[-1, 0, 0, 0, 1, 2, 2, 3, 4, 4, 5]\"}", "{\"nums\": \"[100, 100, 100, 101, 102, 102, 103, 104, 105, 105]\"}" ], "expected": [ [ "2" ], [ "5" ], [ "5" ], [ "5" ], [ "1" ], [ "0" ], [ "1" ], [ "1" ], [ "5" ], [ "7" ], [ "6" ] ], "unexpected": [ [ "1", "3" ], [ "4", "10" ], [ "3" ], [ "4" ], [ "2", "4" ], [ "1" ], [ "0", "2" ], [ "2", "3" ], [ "6", "7" ], [ "6", "10" ], [ "5", "7" ] ] }
{ "input": [ "{'nums': '[3, 2, 1]'}" ] }
advanced
verina_basic_21
-----Description----- This task requires writing a Lean 4 method that determines whether one list is a sublist of another. In other words, the method should check if the first list appears as a contiguous sequence within the second list and return true if it does, and false otherwise. -----Input----- The input consists of two lists of integers: sub: A list of integers representing the potential sublist. main: A list of integers in which to search for the sublist. -----Output----- The output is a Boolean value: Returns true if the first list appears as a contiguous sequence within the second list. Returns false if the first list does not appear as a contiguous sequence in the second list. -----Note----- There are no preconditions for this method; the sequences are always non-null.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def isSublist_precond (sub : List Int) (main : List Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def isSublist (sub : List Int) (main : List Int) (h_precond : isSublist_precond (sub) (main)) : Bool := -- !benchmark @start code let subLen := sub.length let mainLen := main.length if subLen > mainLen then false else let rec check (i : Nat) : Bool := if i + subLen > mainLen then false else if sub = (main.drop i).take subLen then true else if i + 1 ≤ mainLen then check (i + 1) else false termination_by mainLen - i check 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def isSublist_postcond (sub : List Int) (main : List Int) (result: Bool) (h_precond : isSublist_precond (sub) (main)) := -- !benchmark @start postcond (∃ i, i + sub.length ≤ main.length ∧ sub = (main.drop i).take sub.length) ↔ result -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem isSublist_spec_satisfied (sub: List Int) (main: List Int) (h_precond : isSublist_precond (sub) (main)) : isSublist_postcond (sub) (main) (isSublist (sub) (main) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "isSublist", "parameters": { "param_name": [ "sub", "main" ], "param_type": [ "List Int", "List Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_576", "student_id": null } }
{ "input": [ "{\"sub\": \"[1, 2]\", \"main\": \"[3, 1, 2, 4]\"}", "{\"sub\": \"[2, 3]\", \"main\": \"[3, 1, 2, 4]\"}", "{\"sub\": \"[3, 1]\", \"main\": \"[3, 1, 2, 4]\"}", "{\"sub\": \"[4]\", \"main\": \"[3, 1, 2, 4]\"}", "{\"sub\": \"[5]\", \"main\": \"[3, 1, 2, 4]\"}", "{\"sub\": \"[]\", \"main\": \"[3, 1, 2, 4]\"}", "{\"sub\": \"[1, 2]\", \"main\": \"[]\"}", "{\"sub\": \"[]\", \"main\": \"[]\"}" ], "expected": [ [ "True" ], [ "False" ], [ "True" ], [ "True" ], [ "False" ], [ "True" ], [ "False" ], [ "True" ] ], "unexpected": [ [ "False" ], [ "True" ], [ "False" ], [ "False" ], [ "True" ], [ "False" ], [ "True" ], [ "False" ] ] }
{ "input": [] }
basic
verina_basic_31
-----Description----- This task requires writing a Lean 4 method that converts a given string to uppercase. The method should replace every lowercase letter in the input string with its corresponding uppercase character while leaving all other characters unchanged. The output string must have the same length as the input string. -----Input----- The input consists of: s: A string. -----Output----- The output is a string: Returns a new string in which every lowercase letter from the input string is converted to uppercase, and all other characters are exactly the same as in the input string, ensuring the output string has the same length as the input. -----Note----- There are no preconditions since the method assumes that the input string is always valid (i.e., non-null).
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def isLowerCase (c : Char) : Bool := 'a' ≤ c ∧ c ≤ 'z' def shiftMinus32 (c : Char) : Char := Char.ofNat ((c.toNat - 32) % 128) -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def toUppercase_precond (s : String) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def toUppercase (s : String) (h_precond : toUppercase_precond (s)) : String := -- !benchmark @start code let cs := s.toList let cs' := cs.map (fun c => if isLowerCase c then shiftMinus32 c else c) String.mk cs' -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def toUppercase_postcond (s : String) (result: String) (h_precond : toUppercase_precond (s)) := -- !benchmark @start postcond let cs := s.toList let cs' := result.toList (result.length = s.length) ∧ (∀ i, i < s.length → (isLowerCase cs[i]! → cs'[i]! = shiftMinus32 cs[i]!) ∧ (¬isLowerCase cs[i]! → cs'[i]! = cs[i]!)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem toUppercase_spec_satisfied (s: String) (h_precond : toUppercase_precond (s)) : toUppercase_postcond (s) (toUppercase (s) h_precond) h_precond := by -- !benchmark @start proof unfold toUppercase toUppercase_postcond simp_all constructor · unfold String.length simp · intro i hi have hi' : i < s.data.length := by unfold String.length at hi simp at hi exact hi constructor <;> simp_all -- !benchmark @end proof
{ "name": "toUppercase", "parameters": { "param_name": [ "s" ], "param_type": [ "String" ] }, "return_type": "String" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_624", "student_id": null } }
{ "input": [ "{\"s\": \"Hello, World!\"}", "{\"s\": \"abc\"}", "{\"s\": \"ABC\"}", "{\"s\": \"123!?@\"}", "{\"s\": \"\"}" ], "expected": [ [ "HELLO, WORLD!" ], [ "ABC" ], [ "ABC" ], [ "123!?@" ], [ "" ] ], "unexpected": [ [ "hello, world!", "HeLLo, WORld!" ], [ "AbC", "abc" ], [ "abc", "aBC", "Abc" ], [ "123!@?", "321!?@" ], [ " ", "a" ] ] }
{ "input": [] }
basic
verina_basic_54
-----Description----- This task is about determining the minimum absolute difference between any pair of integers, where one integer is taken from the first sorted array and the other integer is taken from the second sorted array. The focus is on accurately finding the smallest absolute difference between any two elements from the arrays, independent of the specific techniques or programming language used. -----Input----- The input consists of: • a: An array of integers, sorted in non-decreasing order and guaranteed to be non-empty. • b: An array of integers, also sorted in non-decreasing order and non-empty. -----Output----- The output is a natural number (Nat) representing the minimum absolute difference between any element a[i] from the first array and b[j] from the second array. -----Note----- • It is assumed that both arrays are non-empty. • The arrays are assumed to be sorted in non-decreasing order.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def CanyonSearch_precond (a : Array Int) (b : Array Int) : Prop := -- !benchmark @start precond a.size > 0 ∧ b.size > 0 ∧ List.Pairwise (· ≤ ·) a.toList ∧ List.Pairwise (· ≤ ·) b.toList -- !benchmark @end precond -- !benchmark @start code_aux def canyonSearchAux (a : Array Int) (b : Array Int) (m n d : Nat) : Nat := if m < a.size ∧ n < b.size then let diff : Nat := ((a[m]! - b[n]!).natAbs) let new_d := if diff < d then diff else d if a[m]! <= b[n]! then canyonSearchAux a b (m + 1) n new_d else canyonSearchAux a b m (n + 1) new_d else d termination_by a.size + b.size - m - n -- !benchmark @end code_aux def CanyonSearch (a : Array Int) (b : Array Int) (h_precond : CanyonSearch_precond (a) (b)) : Nat := -- !benchmark @start code let init : Nat := if a[0]! < b[0]! then (b[0]! - a[0]!).natAbs else (a[0]! - b[0]!).natAbs canyonSearchAux a b 0 0 init -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def CanyonSearch_postcond (a : Array Int) (b : Array Int) (result: Nat) (h_precond : CanyonSearch_precond (a) (b)) := -- !benchmark @start postcond (a.any (fun ai => b.any (fun bi => result = (ai - bi).natAbs))) ∧ (a.all (fun ai => b.all (fun bi => result ≤ (ai - bi).natAbs))) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem CanyonSearch_spec_satisfied (a: Array Int) (b: Array Int) (h_precond : CanyonSearch_precond (a) (b)) : CanyonSearch_postcond (a) (b) (CanyonSearch (a) (b) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "CanyonSearch", "parameters": { "param_name": [ "a", "b" ], "param_type": [ "Array Int", "Array Int" ] }, "return_type": "Nat" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_canyon_search", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 3, 5]\", \"b\": \"#[2, 4, 6]\"}", "{\"a\": \"#[-5, -2, 0]\", \"b\": \"#[1, 3]\"}", "{\"a\": \"#[10, 20, 30]\", \"b\": \"#[5, 15, 25]\"}", "{\"a\": \"#[1, 2, 3, 4, 5]\", \"b\": \"#[3]\"}", "{\"a\": \"#[-10, -5, 0, 5, 10]\", \"b\": \"#[-3, 2, 8]\"}" ], "expected": [ [ "1" ], [ "1" ], [ "5" ], [ "0" ], [ "2" ] ], "unexpected": [ [ "0", "2", "3" ], [ "0", "2", "5" ], [ "3", "7", "10" ], [ "1", "2", "3" ], [ "1", "3", "4" ] ] }
{ "input": [ "{'a': '#[]', 'b': '#[]'}" ] }
basic
verina_basic_12
-----Description----- This task requires writing a Lean 4 method that calculates the surface area of a cube based on the length of one of its edges. The method should compute the surface area using the standard formula for a cube. -----Input----- The input consists of: size: An natural number representing the length of an edge of the cube. -----Output----- The output is an natural number: Returns the surface area of the cube.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def cubeSurfaceArea_precond (size : Nat) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def cubeSurfaceArea (size : Nat) (h_precond : cubeSurfaceArea_precond (size)) : Nat := -- !benchmark @start code 6 * size * size -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def cubeSurfaceArea_postcond (size : Nat) (result: Nat) (h_precond : cubeSurfaceArea_precond (size)) := -- !benchmark @start postcond result - 6 * size * size = 0 ∧ 6 * size * size - result = 0 -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem cubeSurfaceArea_spec_satisfied (size: Nat) (h_precond : cubeSurfaceArea_precond (size)) : cubeSurfaceArea_postcond (size) (cubeSurfaceArea (size) h_precond) h_precond := by -- !benchmark @start proof unfold cubeSurfaceArea cubeSurfaceArea_postcond simp -- !benchmark @end proof
{ "name": "cubeSurfaceArea", "parameters": { "param_name": [ "size" ], "param_type": [ "Nat" ] }, "return_type": "Nat" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_441", "student_id": null } }
{ "input": [ "{\"size\": 3}", "{\"size\": 1}", "{\"size\": 10}", "{\"size\": 5}", "{\"size\": 2}" ], "expected": [ [ "54" ], [ "6" ], [ "600" ], [ "150" ], [ "24" ] ], "unexpected": [ [ "27", "48", "60" ], [ "1", "2", "3" ], [ "100", "500", "610" ], [ "25", "100", "125" ], [ "8", "16", "20" ] ] }
{ "input": [] }
basic
verina_basic_29
-----Description----- This task requires writing a Lean 4 method that removes an element from a given array of integers at a specified index. The resulting array should contain all the original elements except for the one at the given index. Elements before the removed element remain unchanged, and elements after it are shifted one position to the left. -----Input----- The input consists of: • s: An array of integers. • k: A natural number representing the index of the element to remove (0-indexed). -----Output----- The output is an array of integers that: • Has a length one less than the input array. • Contains the same elements as the input array, except that the element at index k is omitted. • Preserves the original order with elements after the removed element shifted left by one position. -----Note----- It is assumed that k is a valid index (0 ≤ k < the length of the array).
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def removeElement_precond (s : Array Int) (k : Nat) : Prop := -- !benchmark @start precond k < s.size -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def removeElement (s : Array Int) (k : Nat) (h_precond : removeElement_precond (s) (k)) : Array Int := -- !benchmark @start code s.eraseIdx! k -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def removeElement_postcond (s : Array Int) (k : Nat) (result: Array Int) (h_precond : removeElement_precond (s) (k)) := -- !benchmark @start postcond result.size = s.size - 1 ∧ (∀ i, i < k → result[i]! = s[i]!) ∧ (∀ i, i < result.size → i ≥ k → result[i]! = s[i + 1]!) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem removeElement_spec_satisfied (s: Array Int) (k: Nat) (h_precond : removeElement_precond (s) (k)) : removeElement_postcond (s) (k) (removeElement (s) (k) h_precond) h_precond := by -- !benchmark @start proof unfold removeElement removeElement_postcond unfold removeElement_precond at h_precond simp_all unfold Array.eraseIdx! simp [h_precond] constructor · intro i hi have hi' : i < s.size - 1 := by have hk := Nat.le_sub_one_of_lt h_precond exact Nat.lt_of_lt_of_le hi hk rw [Array.getElem!_eq_getD, Array.getElem!_eq_getD] unfold Array.getD simp [hi', Nat.lt_trans hi h_precond, Array.getElem_eraseIdx, hi] · intro i hi hi' rw [Array.getElem!_eq_getD, Array.getElem!_eq_getD] unfold Array.getD have hi'' : i + 1 < s.size := by exact Nat.add_lt_of_lt_sub hi simp [hi, hi''] have : ¬ i < k := by simp [hi'] simp [Array.getElem_eraseIdx, this] -- !benchmark @end proof
{ "name": "removeElement", "parameters": { "param_name": [ "s", "k" ], "param_type": [ "Array Int", "Nat" ] }, "return_type": "Array Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_610", "student_id": null } }
{ "input": [ "{\"s\": \"#[1, 2, 3, 4, 5]\", \"k\": 2}", "{\"s\": \"#[10, 20, 30, 40]\", \"k\": 0}", "{\"s\": \"#[10, 20, 30, 40]\", \"k\": 3}", "{\"s\": \"#[7]\", \"k\": 0}" ], "expected": [ [ "#[1, 2, 4, 5]" ], [ "#[20, 30, 40]" ], [ "#[10, 20, 30]" ], [ "#[]" ] ], "unexpected": [ [ "#[1, 2, 3, 5]", "#[1, 3, 4, 5]", "#[2, 3, 4, 5]" ], [ "#[10, 30, 40]", "#[10, 20, 30, 40]", "#[20, 30, 40, 0]" ], [ "#[20, 30, 40]", "#[10, 20, 40]", "#[10, 30, 40]" ], [ "#[7]", "#[0]" ] ] }
{ "input": [ "{'s': '#[1]', 'k': 2}" ] }
basic
verina_basic_62
-----Description----- The problem involves finding the first occurrence of a specified key in an array of integers. Your task is to identify the index at which the key appears for the first time in the array and return that index. If the key is not found, return -1. -----Input----- The input consists of: • a: An array of integers. • key: An integer representing the value to search for in the array. -----Output----- The output is an integer which represents: • The index in the array where the key is found, provided that the index is in the range [0, a.size). • -1 if the key is not present in the array. In addition, if the output is not -1, then a[(Int.toNat result)]! equals key and every element in the array prior to this index is not equal to key. -----Note----- The function performs a linear search beginning at index 0 and returns the first occurrence of the key. There are no additional preconditions on the input array; it can be empty or non-empty.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def Find_precond (a : Array Int) (key : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def Find (a : Array Int) (key : Int) (h_precond : Find_precond (a) (key)) : Int := -- !benchmark @start code let rec search (index : Nat) : Int := if index < a.size then if a[index]! = key then Int.ofNat index else search (index + 1) else -1 search 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def Find_postcond (a : Array Int) (key : Int) (result: Int) (h_precond : Find_precond (a) (key)) := -- !benchmark @start postcond (result = -1 ∨ (result ≥ 0 ∧ result < Int.ofNat a.size)) ∧ ((result ≠ -1) → (a[(Int.toNat result)]! = key ∧ ∀ (i : Nat), i < Int.toNat result → a[i]! ≠ key)) ∧ ((result = -1) → ∀ (i : Nat), i < a.size → a[i]! ≠ key) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem Find_spec_satisfied (a: Array Int) (key: Int) (h_precond : Find_precond (a) (key)) : Find_postcond (a) (key) (Find (a) (key) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "Find", "parameters": { "param_name": [ "a", "key" ], "param_type": [ "Array Int", "Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_find", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3, 4, 5]\", \"key\": 3}", "{\"a\": \"#[5, 7, 5, 9]\", \"key\": 5}", "{\"a\": \"#[2, 4, 6, 8]\", \"key\": 5}", "{\"a\": \"#[]\", \"key\": 10}", "{\"a\": \"#[0, -3, -1, -3]\", \"key\": -3}" ], "expected": [ [ "2" ], [ "0" ], [ "-1" ], [ "-1" ], [ "1" ] ], "unexpected": [ [ "1", "3", "0" ], [ "2", "-1" ], [ "0", "1", "3" ], [ "0", "1", "10" ], [ "0", "2", "3" ] ] }
{ "input": [] }
basic
verina_basic_55
-----Description----- This task involves determining whether two integer values are equal. The goal is simply to compare the two provided numbers and indicate with a Boolean result whether they are the same. -----Input----- The input consists of two elements: • a: An element of type Int. • b: An element of type Int. -----Output----- The output is a Boolean: • Returns true if a equals b. • Returns false if a does not equal b.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def Compare_precond (a : Int) (b : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def Compare (a : Int) (b : Int) (h_precond : Compare_precond (a) (b)) : Bool := -- !benchmark @start code if a = b then true else false -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def Compare_postcond (a : Int) (b : Int) (result: Bool) (h_precond : Compare_precond (a) (b)) := -- !benchmark @start postcond (a = b → result = true) ∧ (a ≠ b → result = false) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem Compare_spec_satisfied (a: Int) (b: Int) (h_precond : Compare_precond (a) (b)) : Compare_postcond (a) (b) (Compare (a) (b) h_precond) h_precond := by -- !benchmark @start proof unfold Compare_postcond Compare simp -- !benchmark @end proof
{ "name": "Compare", "parameters": { "param_name": [ "a", "b" ], "param_type": [ "Int", "Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_compare", "student_id": null } }
{ "input": [ "{\"a\": 1, \"b\": 1}", "{\"a\": 1, \"b\": 2}" ], "expected": [ [ "True" ], [ "False" ] ], "unexpected": [ [ "False" ], [ "True" ] ] }
{ "input": [] }
basic
verina_advanced_74
-----Description----- This task requires writing a Lean 4 function called `solution` that takes a list of natural numbers `nums`. The function should calculate and return the sum of values obtained for each subarray, where the value for a subarray is the square of the count of distinct elements within that subarray. -----Input----- The input is a list of natural numbers: `nums`: A list where each element is a natural number. Constraints: - The length of the list `nums` (n) is between 1 and 100 (inclusive). - Each element in `nums` is between 1 and 100 (inclusive). -----Output----- The output is a natural number: Returns the total sum of squared distinct counts for all subarrays.
-- !benchmark @start import type=solution import Std.Data.HashSet open Std -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def solution_precond (nums : List Nat) : Prop := -- !benchmark @start precond 1 ≤ nums.length ∧ nums.length ≤ 100 ∧ nums.all (fun x => 1 ≤ x ∧ x ≤ 100) -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def solution (nums : List Nat) : Nat := -- !benchmark @start code let n := nums.length let subarray := fun (i j : Nat) => (nums.drop i).take (j - i + 1) let distinctCount := fun (l : List Nat) => let hashSet := l.foldl (fun (s : HashSet Nat) a => s.insert a) HashSet.empty hashSet.size List.range n |>.foldl (fun acc i => acc + (List.range (n - i) |>.foldl (fun acc' d => let subarr := subarray i (i + d) let cnt := distinctCount subarr acc' + cnt * cnt ) 0) ) 0 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def solution_postcond (nums : List Nat) (result: Nat) : Prop := -- !benchmark @start postcond let n := nums.length; let getSubarray_local := fun (i j : Nat) => (nums.drop i).take (j - i + 1); let distinctCount_local := fun (l : List Nat) => let foldFn := fun (seen : List Nat) (x : Nat) => if seen.elem x then seen else x :: seen; let distinctElems := l.foldl foldFn []; distinctElems.length; let square_local := fun (n : Nat) => n * n; (1 <= n ∧ n <= 100 ∧ nums.all (fun x => 1 <= x ∧ x <= 100)) -> ( result >= 0 ∧ let expectedSum : Nat := List.range n |>.foldl (fun (outerSum : Nat) (i : Nat) => let innerSum : Nat := List.range (n - i) |>.foldl (fun (currentInnerSum : Nat) (d : Nat) => let j := i + d; let subarr := getSubarray_local i j; let count := distinctCount_local subarr; currentInnerSum + square_local count ) 0 outerSum + innerSum ) 0; result = expectedSum ) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem solution_spec_satisfied (nums: List Nat) : solution_postcond (nums) (solution (nums)) := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "solution", "parameters": { "param_name": [ "nums" ], "param_type": [ "List Nat" ] }, "return_type": "Nat" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/subarrays-distinct-element-sum-of-squares-i/", "task_id": "lab_solution_324856546", "student_id": [ 52 ] } }
{ "input": [ "{\"nums\": \"[1]\"}", "{\"nums\": \"[1, 1, 1]\"}", "{\"nums\": \"[1, 2, 1]\"}", "{\"nums\": \"[1, 2, 3, 4]\"}", "{\"nums\": \"[1, 2, 2, 3, 1]\"}" ], "expected": [ [ "1" ], [ "6" ], [ "15" ], [ "50" ], [ "62" ] ], "unexpected": [ [ "2" ], [ "1", "2", "3" ], [ "12" ], [], [ "1", "2", "2", "3", "1" ] ] }
{ "input": [ "{'nums': '[]'}", "{'nums': '[101]'}" ] }
advanced
verina_advanced_27
-----Description----- This task requires writing a Lean 4 function that computes the longest common subsequence (LCS) of two input strings. A subsequence of a string is a sequence that can be derived from the original string by deleting zero or more characters (not necessarily contiguous) without changing the order of the remaining characters. The function should return a string that is: 1) A subsequence of both input strings. 2) As long as possible among all such common subsequences. If multiple LCS answers exist (with the same maximum length), returning any one of them is acceptable. -----Input----- s1: The first input string. s2: The second input string. -----Output----- A string representing a longest common subsequence of s1 and s2.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def longestCommonSubsequence_precond (s1 : String) (s2 : String) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux partial def toCharList (s : String) : List Char := s.data partial def fromCharList (cs : List Char) : String := cs.foldl (fun acc c => acc.push c) "" partial def lcsAux (xs : List Char) (ys : List Char) : List Char := match xs, ys with | [], _ => [] | _, [] => [] | x :: xs', y :: ys' => if x == y then x :: lcsAux xs' ys' else let left := lcsAux xs' (y :: ys') let right := lcsAux (x :: xs') ys' if left.length >= right.length then left else right -- !benchmark @end code_aux def longestCommonSubsequence (s1 : String) (s2 : String) (h_precond : longestCommonSubsequence_precond (s1) (s2)) : String := -- !benchmark @start code let xs := toCharList s1 let ys := toCharList s2 let resultList := lcsAux xs ys fromCharList resultList -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def longestCommonSubsequence_postcond (s1 : String) (s2 : String) (result: String) (h_precond : longestCommonSubsequence_precond (s1) (s2)) : Prop := -- !benchmark @start postcond let allSubseq (arr : List Char) := (arr.foldl fun acc x => acc ++ acc.map (fun sub => x :: sub)) [[]] |>.map List.reverse let subseqA := allSubseq s1.toList let subseqB := allSubseq s2.toList let commonSubseq := subseqA.filter (fun l => subseqB.contains l) commonSubseq.contains result.toList ∧ commonSubseq.all (fun l => l.length ≤ result.length) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem longestCommonSubsequence_spec_satisfied (s1: String) (s2: String) (h_precond : longestCommonSubsequence_precond (s1) (s2)) : longestCommonSubsequence_postcond (s1) (s2) (longestCommonSubsequence (s1) (s2) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "longestCommonSubsequence", "parameters": { "param_name": [ "s1", "s2" ], "param_type": [ "String", "String" ] }, "return_type": "String" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/longest-common-subsequence/description/", "task_id": "lab_longestCommonSubsequence_325767793", "student_id": [ 21 ] } }
{ "input": [ "{\"s1\": \"abcde\", \"s2\": \"ace\"}", "{\"s1\": \"aaaa\", \"s2\": \"bbaaa\"}", "{\"s1\": \"xyz\", \"s2\": \"abc\"}", "{\"s1\": \"axbxc\", \"s2\": \"abxc\"}", "{\"s1\": \"AGGTAB\", \"s2\": \"GXTXAYB\"}" ], "expected": [ [ "ace" ], [ "aaa" ], [ "" ], [ "abxc" ], [ "GTAB" ] ], "unexpected": [ [ "ab", "abc", "bce" ], [ "aaaaa", "b", "aaab" ], [ "x", "y", "a", "abc" ], [ "axc", "abcx" ], [ "GGTAB", "AGGTA" ] ] }
{ "input": [] }
advanced
verina_advanced_15
-----Description----- Given an integer array nums, return true if there exists a triple of indices (i, j, k) such that i < j < k and nums[i] < nums[j] < nums[k]. If no such indices exist, return false. -----Input----- The input consists of a single list: nums: A list of integers. -----Output----- The output is a boolean: Returns true if there exists a triplet (i, j, k) where i < j < k and nums[i] < nums[j] < nums[k]; otherwise, returns false.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def increasingTriplet_precond (nums : List Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def increasingTriplet (nums : List Int) (h_precond : increasingTriplet_precond (nums)) : Bool := -- !benchmark @start code -- must have at least 3 elements to form a triplet let rec lengthCheck : List Int → Nat → Nat | [], acc => acc | _ :: rest, acc => lengthCheck rest (acc + 1) let len := lengthCheck nums 0 if len < 3 then false else -- scan for increasing triplet let rec loop (xs : List Int) (first : Int) (second : Int) : Bool := match xs with | [] => false | x :: rest => let nextFirst := if x ≤ first then x else first let nextSecond := if x > first ∧ x ≤ second then x else second if x ≤ first then loop rest nextFirst second else if x ≤ second then loop rest first nextSecond else true -- found triplet match nums with | [] => false | _ :: rest1 => match rest1 with | [] => false | _ :: rest2 => match rest2 with | [] => false | _ => loop nums 2147483647 2147483647 -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def increasingTriplet_postcond (nums : List Int) (result: Bool) (h_precond : increasingTriplet_precond (nums)) : Prop := -- !benchmark @start postcond let nums' := nums.zipIdx (result → nums'.any (fun (x, i) => nums'.any (fun (y, j) => nums'.any (fun (z, k) => i < j ∧ j < k ∧ x < y ∧ y < z ) ) )) ∧ (¬ result → nums'.all (fun (x, i) => nums'.all (fun (y, j) => nums'.all (fun (z, k) => i ≥ j ∨ j ≥ k ∨ x ≥ y ∨ y ≥ z ) ) )) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem increasingTriplet_spec_satisfied (nums: List Int) (h_precond : increasingTriplet_precond (nums)) : increasingTriplet_postcond (nums) (increasingTriplet (nums) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "increasingTriplet", "parameters": { "param_name": [ "nums" ], "param_type": [ "List Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/increasing-triplet-subsequence?envType=study-plan-v2&envId=leetcode-75", "task_id": "lab_increasingTriplet_324678911", "student_id": [ 6 ] } }
{ "input": [ "{\"nums\": \"[1, 2, 3]\"}", "{\"nums\": \"[5, 4, 3, 2, 1]\"}", "{\"nums\": \"[2, 1, 5, 0, 4, 6]\"}", "{\"nums\": \"[1, 5, 0, 4, 1, 3]\"}", "{\"nums\": \"[5, 4, 3]\"}", "{\"nums\": \"[]\"}" ], "expected": [ [ "True" ], [ "False" ], [ "True" ], [ "True" ], [ "False" ], [ "False" ] ], "unexpected": [ [ "False" ], [ "True" ], [ "False" ], [ "False" ], [ "True" ], [ "True" ] ] }
{ "input": [] }
advanced
verina_basic_24
-----Description----- This task requires writing a Lean 4 method that finds the difference between the first even number and the first odd number in an array of integers. The method should process the array sequentially until it identifies the first even number and the first odd number, and then return the difference calculated as (first even number) minus (first odd number). -----Input----- The input consists of: a: An array of integers. -----Output----- The output is an integer: Returns the difference computed as the first even number minus the first odd number found in the array. -----Note----- The input array is assumed to be non-empty and to contain at least one even number and one odd number.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def isEven (n : Int) : Bool := n % 2 == 0 def isOdd (n : Int) : Bool := n % 2 != 0 -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def firstEvenOddDifference_precond (a : Array Int) : Prop := -- !benchmark @start precond a.size > 1 ∧ (∃ x ∈ a, isEven x) ∧ (∃ x ∈ a, isOdd x) -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def firstEvenOddDifference (a : Array Int) (h_precond : firstEvenOddDifference_precond (a)) : Int := -- !benchmark @start code let rec findFirstEvenOdd (i : Nat) (firstEven firstOdd : Option Nat) : Int := if i < a.size then let x := a[i]! let firstEven := if firstEven.isNone && isEven x then some i else firstEven let firstOdd := if firstOdd.isNone && isOdd x then some i else firstOdd match firstEven, firstOdd with | some e, some o => a[e]! - a[o]! | _, _ => findFirstEvenOdd (i + 1) firstEven firstOdd else -- This case is impossible due to h2, but we need a value 0 findFirstEvenOdd 0 none none -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible, simp] def firstEvenOddDifference_postcond (a : Array Int) (result: Int) (h_precond : firstEvenOddDifference_precond (a)) := -- !benchmark @start postcond ∃ i j, i < a.size ∧ j < a.size ∧ isEven (a[i]!) ∧ isOdd (a[j]!) ∧ result = a[i]! - a[j]! ∧ (∀ k, k < i → isOdd (a[k]!)) ∧ (∀ k, k < j → isEven (a[k]!)) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem firstEvenOddDifference_spec_satisfied (a: Array Int) (h_precond : firstEvenOddDifference_precond (a)) : firstEvenOddDifference_postcond (a) (firstEvenOddDifference (a) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "firstEvenOddDifference", "parameters": { "param_name": [ "a" ], "param_type": [ "Array Int" ] }, "return_type": "Int" }
{ "upstream": { "name": "dafny-synthesis", "link": "https://github.com/Mondego/dafny-synthesis", "task_id": "task_id_594", "student_id": null } }
{ "input": [ "{\"a\": \"#[2, 3, 4, 5]\"}", "{\"a\": \"#[1, 4, 6, 8]\"}", "{\"a\": \"#[7, 2, 9, 4]\"}", "{\"a\": \"#[2, 2, 3, 3]\"}", "{\"a\": \"#[1, 1, 2, 2]\"}" ], "expected": [ [ "-1" ], [ "3" ], [ "-5" ], [ "-1" ], [ "1" ] ], "unexpected": [ [ "-2", "1", "-3" ], [ "2", "4", "5" ], [ "-3", "-6", "5" ], [ "1", "0", "-2" ], [ "0", "2", "-1" ] ] }
{ "input": [ "{'a': '#[2]'}" ] }
basic
verina_advanced_76
-----Description----- This task requires writing a Lean 4 method that returns the k most frequent elements from a list of integers. The method should count the frequency of each distinct element in the list and return the k elements with the highest frequency. -----Input----- The input consists of two values: nums: A list of integers, possibly with duplicates. k: A natural number indicating how many of the most frequent elements to return. Assimng k <= # of distinct elements in nums. -----Output----- The output is a list of integers: Returns exactly k integers representing the elements that appear most frequently in the input list in the order form the higher frequency to lower frequency. If two numbers have the same frequency, use the order of the first occurance in nums.
-- !benchmark @start import type=solution import Std open Std -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def topKFrequent_precond (nums : List Int) (k : Nat) : Prop := -- !benchmark @start precond k ≤ nums.eraseDups.length -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def topKFrequent (nums : List Int) (k : Nat) (h_precond : topKFrequent_precond (nums) (k)) : List Int := -- !benchmark @start code let freqMap : HashMap Int Nat := nums.foldl (init := {}) fun acc n => let oldVal := match acc.toList.find? (fun (key, _) => key == n) with | some (_, c) => c | none => 0 acc.insert n (oldVal + 1) let sorted := freqMap.toList.foldl (fun acc pair => let (x, cx) := pair let rec insertSorted (xs : List (Int × Nat)) : List (Int × Nat) := match xs with | [] => [pair] | (y, cy) :: ys => if cx > cy then pair :: (y, cy) :: ys else (y, cy) :: insertSorted ys insertSorted acc ) [] sorted.take k |>.map (fun (n, _) => n) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def topKFrequent_postcond (nums : List Int) (k : Nat) (result: List Int) (h_precond : topKFrequent_precond (nums) (k)) : Prop := -- !benchmark @start postcond -- Result contains exactly k elements result.length = k ∧ -- All elements in result appear in the original list result.all (· ∈ nums) ∧ -- All elements in result are distinct List.Pairwise (· ≠ ·) result ∧ -- For any element in result and any element not in result, the frequency of the -- element in result is greater or equal (result.all (fun x => nums.all (fun y => y ∉ result → nums.count x > nums.count y ∨ (nums.count x == nums.count y ∧ nums.idxOf x < nums.idxOf y) ))) ∧ -- Elements in result are ordered by decreasing frequency List.Pairwise (fun (x, i) (y, j) => i < j → nums.count x > nums.count y ∨ (nums.count x == nums.count y ∧ nums.idxOf x < nums.idxOf y) ) result.zipIdx -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem topKFrequent_spec_satisfied (nums: List Int) (k: Nat) (h_precond : topKFrequent_precond (nums) (k)) : topKFrequent_postcond (nums) (k) (topKFrequent (nums) (k) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "topKFrequent", "parameters": { "param_name": [ "nums", "k" ], "param_type": [ "List Int", "Nat" ] }, "return_type": "List Int" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/top-k-frequent-elements/description/", "task_id": "lab_topKFrequent_325315163", "student_id": [ 54 ] } }
{ "input": [ "{\"nums\": \"[1, 1, 1, 2, 2, 3]\", \"k\": 2}", "{\"nums\": \"[4, 1, -1, 2, -1, 2, 3]\", \"k\": 2}", "{\"nums\": \"[5]\", \"k\": 1}", "{\"nums\": \"[7, 7, 7, 8, 8, 9]\", \"k\": 1}", "{\"nums\": \"[]\", \"k\": 0}" ], "expected": [ [ "[1, 2]" ], [ "[-1, 2]" ], [ "[5]" ], [ "[7]" ], [ "[]" ] ], "unexpected": [ [ "[1, 3]", "[2, 3]" ], [ "[-1, 4]", "[4, 3]" ], [ "[]" ], [ "[8]" ], [ "[0]" ] ] }
{ "input": [ "{'nums': '[1, 2, 3]', 'k': 4}" ] }
advanced
verina_advanced_26
-----Description----- This task requires writing a Lean 4 method that generates all possible letter combinations from a string of digits based on the traditional telephone keypad letter mappings. -----Input----- The input consists of a string (String). The string may be empty. -----Output----- The output is a list of strings (List String) where each string represents a unique combination of letters corresponding to the input digits. If the input string is empty, the output is an empty list. -----Note----- Here is the mapping from the number to possible letters: 2: a or b or c 3: d or e or f 4: g or h or i 5: j or k or l 6: m or n or o 7: p or q or r or s 8: t or u or v 9: w or x or y or z other number or not a number: no letters
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux def digitToLetters (c : Char) : List Char := match c with | '2' => ['a', 'b', 'c'] | '3' => ['d', 'e', 'f'] | '4' => ['g', 'h', 'i'] | '5' => ['j', 'k', 'l'] | '6' => ['m', 'n', 'o'] | '7' => ['p', 'q', 'r', 's'] | '8' => ['t', 'u', 'v'] | '9' => ['w', 'x', 'y', 'z'] | _ => [] -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible] def letterCombinations_precond (digits : String) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux -- !benchmark @end code_aux def letterCombinations (digits : String) (h_precond : letterCombinations_precond (digits)) : List String := -- !benchmark @start code let chars := digits.toList go chars where go : List Char → List String | [] => [] | (d :: ds) => let restCombinations := go ds let currentLetters := digitToLetters d match restCombinations with | [] => currentLetters.map (λ c => String.singleton c) | _ => currentLetters.flatMap (λ c => restCombinations.map (λ s => String.singleton c ++ s)) -- !benchmark @end code -- !benchmark @start postcond_aux -- !benchmark @end postcond_aux @[reducible] def letterCombinations_postcond (digits : String) (result: List String) (h_precond : letterCombinations_precond (digits)) : Prop := -- !benchmark @start postcond if digits.isEmpty then result = [] else if digits.toList.any (λ c => ¬(c ∈ ['2','3','4','5','6','7','8','9'])) then result = [] else let expected := digits.toList.map digitToLetters |>.foldl (λ acc ls => acc.flatMap (λ s => ls.map (λ c => s ++ String.singleton c)) ) [""] result.length = expected.length ∧ result.all (λ s => s ∈ expected) ∧ expected.all (λ s => s ∈ result) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem letterCombinations_spec_satisfied (digits: String) (h_precond : letterCombinations_precond (digits)) : letterCombinations_postcond (digits) (letterCombinations (digits) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "letterCombinations", "parameters": { "param_name": [ "digits" ], "param_type": [ "String" ] }, "return_type": "List String" }
{ "upstream": { "name": "lab_assignment", "link": "https://leetcode.com/problems/letter-combinations-of-a-phone-number/description/", "task_id": "lab_letterCombinations_325016944", "student_id": [ 20 ] } }
{ "input": [ "{\"digits\": \"\"}", "{\"digits\": \"2\"}", "{\"digits\": \"9\"}", "{\"digits\": \"23\"}", "{\"digits\": \"27\"}", "{\"digits\": \"0\"}" ], "expected": [ [ "[]" ], [ "[\"a\", \"b\", \"c\"]" ], [ "[\"w\", \"x\", \"y\", \"z\"]" ], [ "[\"ad\", \"ae\", \"af\", \"bd\", \"be\", \"bf\", \"cd\", \"ce\", \"cf\"]" ], [ "[\"ap\", \"aq\", \"ar\", \"as\", \"bp\", \"bq\", \"br\", \"bs\", \"cp\", \"cq\", \"cr\", \"cs\"]" ], [ "[]" ] ], "unexpected": [ [ "[\"a\"]", "[\"b\"]" ], [ "[\"a\"]", "[\"b\"]", "[\"c\"]" ], [ "[\"w\"]", "[\"x\"]", "[\"y\"]", "[\"z\"]" ], [ "[\"a\"]", "[\"b\"]", "[\"c\"]" ], [ "[\"p\"]", "[\"q\"]", "[\"r\"]", "[\"s\"]" ], [ "[\"a\"]", "[\"b\"]" ] ] }
{ "input": [] }
advanced
verina_basic_80
-----Description----- This task involves determining whether a specified key appears exactly once in an array. The goal is to verify the uniqueness of the key's occurrence without prescribing any specific approach or implementation method. -----Input----- The input consists of: • a: An array of integers. • key: An integer representing the element whose occurrence is to be checked. -----Output----- The output is a Boolean value that: • Is true if the key appears exactly once in the array. • Is false otherwise. -----Note----- The function should correctly handle arrays with no occurrences of the key, multiple occurrences, and exactly one occurrence.
-- !benchmark @start import type=solution -- !benchmark @end import -- !benchmark @start solution_aux -- !benchmark @end solution_aux -- !benchmark @start precond_aux -- !benchmark @end precond_aux @[reducible, simp] def only_once_precond (a : Array Int) (key : Int) : Prop := -- !benchmark @start precond True -- !benchmark @end precond -- !benchmark @start code_aux def only_once_loop {T : Type} [DecidableEq T] (a : Array T) (key : T) (i keyCount : Nat) : Bool := if i < a.size then match a[i]? with | some val => let newCount := if val = key then keyCount + 1 else keyCount only_once_loop a key (i + 1) newCount | none => keyCount == 1 else keyCount == 1 -- !benchmark @end code_aux def only_once (a : Array Int) (key : Int) (h_precond : only_once_precond (a) (key)) : Bool := -- !benchmark @start code only_once_loop a key 0 0 -- !benchmark @end code -- !benchmark @start postcond_aux def count_occurrences {T : Type} [DecidableEq T] (a : Array T) (key : T) : Nat := a.foldl (fun cnt x => if x = key then cnt + 1 else cnt) 0 -- !benchmark @end postcond_aux @[reducible, simp] def only_once_postcond (a : Array Int) (key : Int) (result: Bool) (h_precond : only_once_precond (a) (key)) := -- !benchmark @start postcond ((count_occurrences a key = 1) → result) ∧ ((count_occurrences a key ≠ 1) → ¬ result) -- !benchmark @end postcond -- !benchmark @start proof_aux -- !benchmark @end proof_aux theorem only_once_spec_satisfied (a: Array Int) (key: Int) (h_precond : only_once_precond (a) (key)) : only_once_postcond (a) (key) (only_once (a) (key) h_precond) h_precond := by -- !benchmark @start proof sorry -- !benchmark @end proof
{ "name": "only_once", "parameters": { "param_name": [ "a", "key" ], "param_type": [ "Array Int", "Int" ] }, "return_type": "Bool" }
{ "upstream": { "name": "clover", "link": "https://github.com/ChuyueSun/Clover", "task_id": "Clover_only_once", "student_id": null } }
{ "input": [ "{\"a\": \"#[1, 2, 3, 4]\", \"key\": 2}", "{\"a\": \"#[1, 2, 2, 3, 4]\", \"key\": 2}", "{\"a\": \"#[1, 1, 1, 1]\", \"key\": 1}", "{\"a\": \"#[10]\", \"key\": 10}", "{\"a\": \"#[]\", \"key\": 5}" ], "expected": [ [ "true" ], [ "false" ], [ "false" ], [ "true" ], [ "false" ] ], "unexpected": [ [ "False" ], [ "True" ], [ "True" ], [ "False" ], [ "True" ] ] }
{ "input": [] }
basic