File size: 2,403 Bytes
66417d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60b20ee
12348ef
d69231e
 
b5bb450
 
12348ef
d69231e
 
 
 
 
 
 
 
12348ef
d69231e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12348ef
0158022
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
tags:
  - dna
  - variant-effect-prediction
  - biology
  - genomics
configs:
- config_name: "mendelian_traits"
  data_files:
  - split: test
    path: "mendelian_traits_matched_9/test.parquet"
- config_name: "complex_traits"
  data_files:
  - split: test
    path: "complex_traits_matched_9/test.parquet"
- config_name: "mendelian_traits_full"
  data_files:
  - split: test
    path: "mendelian_traits_all/test.parquet"
- config_name: "complex_traits_full"
  data_files:
  - split: test
    path: "complex_traits_all/test.parquet"
---
# 🧬 TraitGym
Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics

🏆 Leaderboard: https://huggingface.co/spaces/songlab/TraitGym-leaderboard

## ⚡️ Quick start
- Load a dataset
    ```python
    from datasets import load_dataset
    
    dataset = load_dataset("songlab/TraitGym", "mendelian_traits", split="test")
    ```
- Example notebook to run variant effect prediction with a gLM, runs in 5 min on Google Colab: `TraitGym.ipynb` [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/songlab-cal/TraitGym/blob/main/TraitGym.ipynb)

## 🤗 Resources (https://huggingface.co/datasets/songlab/TraitGym)
- Datasets: `{dataset}/test.parquet`
- Subsets: `{dataset}/subset/{subset}.parquet`
- Features: `{dataset}/features/{features}.parquet`
- Predictions: `{dataset}/preds/{subset}/{model}.parquet`
- Metrics: `{dataset}/{metric}/{subset}/{model}.csv`

`dataset` examples (`load_dataset` config name):
- `mendelian_traits_matched_9` (`mendelian_traits`)
- `complex_traits_matched_9` (`complex_traits`)
- `mendelian_traits_all` (`mendelian_traits_full`)
- `complex_traits_all` (`complex_traits_full`)

`subset` examples:
- `all` (default)
- `3_prime_UTR_variant`
- `disease`
- `BMI`

`features` examples:
- `GPN-MSA_LLR`
- `GPN-MSA_InnerProducts`
- `Borzoi_L2`

`model` examples:
-  `GPN-MSA_LLR.minus.score`
-  `GPN-MSA.LogisticRegression.chrom`
-  `CADD+GPN-MSA+Borzoi.LogisticRegression.chrom`

`metric` examples:
- `AUPRC_by_chrom_weighted_average` (main metric)
- `AUPRC`

## 💻 Code (https://github.com/songlab-cal/TraitGym)
- Tries to follow [recommended Snakemake structure](https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html)
- GPN-Promoter code is in [the main GPN repo](https://github.com/songlab-cal/gpn)