Datasets:
File size: 2,403 Bytes
66417d4 60b20ee 12348ef d69231e b5bb450 12348ef d69231e 12348ef d69231e 12348ef 0158022 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
tags:
- dna
- variant-effect-prediction
- biology
- genomics
configs:
- config_name: "mendelian_traits"
data_files:
- split: test
path: "mendelian_traits_matched_9/test.parquet"
- config_name: "complex_traits"
data_files:
- split: test
path: "complex_traits_matched_9/test.parquet"
- config_name: "mendelian_traits_full"
data_files:
- split: test
path: "mendelian_traits_all/test.parquet"
- config_name: "complex_traits_full"
data_files:
- split: test
path: "complex_traits_all/test.parquet"
---
# 🧬 TraitGym
Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics
🏆 Leaderboard: https://huggingface.co/spaces/songlab/TraitGym-leaderboard
## ⚡️ Quick start
- Load a dataset
```python
from datasets import load_dataset
dataset = load_dataset("songlab/TraitGym", "mendelian_traits", split="test")
```
- Example notebook to run variant effect prediction with a gLM, runs in 5 min on Google Colab: `TraitGym.ipynb` [](https://colab.research.google.com/github/songlab-cal/TraitGym/blob/main/TraitGym.ipynb)
## 🤗 Resources (https://huggingface.co/datasets/songlab/TraitGym)
- Datasets: `{dataset}/test.parquet`
- Subsets: `{dataset}/subset/{subset}.parquet`
- Features: `{dataset}/features/{features}.parquet`
- Predictions: `{dataset}/preds/{subset}/{model}.parquet`
- Metrics: `{dataset}/{metric}/{subset}/{model}.csv`
`dataset` examples (`load_dataset` config name):
- `mendelian_traits_matched_9` (`mendelian_traits`)
- `complex_traits_matched_9` (`complex_traits`)
- `mendelian_traits_all` (`mendelian_traits_full`)
- `complex_traits_all` (`complex_traits_full`)
`subset` examples:
- `all` (default)
- `3_prime_UTR_variant`
- `disease`
- `BMI`
`features` examples:
- `GPN-MSA_LLR`
- `GPN-MSA_InnerProducts`
- `Borzoi_L2`
`model` examples:
- `GPN-MSA_LLR.minus.score`
- `GPN-MSA.LogisticRegression.chrom`
- `CADD+GPN-MSA+Borzoi.LogisticRegression.chrom`
`metric` examples:
- `AUPRC_by_chrom_weighted_average` (main metric)
- `AUPRC`
## 💻 Code (https://github.com/songlab-cal/TraitGym)
- Tries to follow [recommended Snakemake structure](https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html)
- GPN-Promoter code is in [the main GPN repo](https://github.com/songlab-cal/gpn) |