Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -23,4 +23,50 @@ configs:
|
|
23 |
- split: test
|
24 |
path: "complex_traits_all/test.parquet"
|
25 |
---
|
26 |
-
# TraitGym
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
- split: test
|
24 |
path: "complex_traits_all/test.parquet"
|
25 |
---
|
26 |
+
# TraitGym
|
27 |
+
Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics
|
28 |
+
|
29 |
+
## Quick start
|
30 |
+
- Load a dataset
|
31 |
+
```python
|
32 |
+
from datasets import load_dataset
|
33 |
+
|
34 |
+
dataset = load_dataset("songlab/TraitGym", "mendelian_traits", split="test")
|
35 |
+
```
|
36 |
+
- Example notebook to run variant effect prediction with a gLM, runs in 5 min on Google Colab: `TraitGym.ipynb` [](https://colab.research.google.com/github/songlab-cal/TraitGym/blob/main/TraitGym.ipynb)
|
37 |
+
|
38 |
+
## Resources (https://huggingface.co/datasets/songlab/TraitGym)
|
39 |
+
- Datasets: `{dataset}/test.parquet`
|
40 |
+
- Subsets: `{dataset}/subset/{subset}.parquet`
|
41 |
+
- Features: `{dataset}/features/{features}.parquet`
|
42 |
+
- Predictions: `{dataset}/preds/{subset}/{model}.parquet`
|
43 |
+
- Metrics: `{dataset}/{metric}/{subset}/{model}.csv`
|
44 |
+
|
45 |
+
`dataset` examples (`load_dataset` config name):
|
46 |
+
- `mendelian_traits_matched_9` (`mendelian_traits`)
|
47 |
+
- `complex_traits_matched_9` (`complex_traits`)
|
48 |
+
- `mendelian_traits_all` (`mendelian_traits_full`)
|
49 |
+
- `complex_traits_all` (`complex_traits_full`)
|
50 |
+
|
51 |
+
`subset` examples:
|
52 |
+
- `all` (default)
|
53 |
+
- `3_prime_UTR_variant`
|
54 |
+
- `disease`
|
55 |
+
- `BMI`
|
56 |
+
|
57 |
+
`features` examples:
|
58 |
+
- `GPN-MSA_LLR`
|
59 |
+
- `GPN-MSA_InnerProducts`
|
60 |
+
- `Borzoi_L2`
|
61 |
+
|
62 |
+
`model` examples:
|
63 |
+
- `GPN-MSA_LLR.minus.score`
|
64 |
+
- `GPN-MSA.LogisticRegression.chrom`
|
65 |
+
- `CADD+GPN-MSA+Borzoi.LogisticRegression.chrom`
|
66 |
+
|
67 |
+
`metric` examples:
|
68 |
+
- `AUPRC_by_chrom_weighted_average` (main metric)
|
69 |
+
- `AUPRC`
|
70 |
+
|
71 |
+
## Code (https://github.com/songlab-cal/TraitGym)
|
72 |
+
- Tries to follow [recommended Snakemake structure](https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html)
|