text
stringlengths
0
2.2M
// bdlma_heapbypassallocator.cpp -*-C++-*-
// ----------------------------------------------------------------------------
// NOTICE
//
// This component is not up to date with current BDE coding standards, and
// should not be used as an example for new development.
// ----------------------------------------------------------------------------
#include <bdlma_heapbypassallocator.h>
#include <bsls_ident.h>
BSLS_IDENT_RCSID(bdlma_heapbypassallocator_cpp,"$Id$ $CSID$")
#include <bsls_assert.h>
#include <bsls_alignmentutil.h>
#include <bsls_platform.h>
#include <bsl_algorithm.h>
#ifdef BSLS_PLATFORM_OS_WINDOWS
#include <windows.h>
#elif defined(BSLS_PLATFORM_OS_UNIX)
#include <unistd.h>
#include <sys/mman.h>
#endif
namespace BloombergLP {
namespace bdlma {
// ========================================
// struct HeapBypassAllocator::BufferHeader
// ========================================
struct HeapBypassAllocator::BufferHeader {
// This struct defines a link in a linked list of buffers allocated by
// 'class HeapBypassAllocator'. Each buffer header is located at the
// beginning of the buffer it describes, and contains the size (in bytes)
// of the buffer.
BufferHeader *d_nextBuffer; // pointer to linked list of buffers
// allocated after this one
bsls::Types::size_type d_size; // size (in bytes) of this buffer
};
} // close package namespace
// --------------------------
// bdlma::HeapBypassAllocator
// --------------------------
// PRIVATE CLASS METHODS
#if defined(BSLS_PLATFORM_OS_UNIX)
namespace bdlma {
char *HeapBypassAllocator::map(bsls::Types::size_type size)
{
// Note that passing 'MAP_ANONYMOUS' and a null file descriptor tells
// 'mmap' to use a special system file to map to.
char *address = (char *)mmap(0, // 'mmap' chooses what address to which
// to map the memory
size,
PROT_READ | PROT_WRITE,
#ifdef BSLS_PLATFORM_OS_DARWIN
MAP_ANON | MAP_PRIVATE,
#else
MAP_ANONYMOUS | MAP_PRIVATE,
#endif
-1, // null file descriptor
0);
return (MAP_FAILED == address ? 0 : address);
}
void HeapBypassAllocator::unmap(void *address, bsls::Types::size_type size) {
// On some platforms, munmap takes a 'char *', on others, a 'void *'.
munmap((char *)address, size);
}
} // close package namespace
#elif defined(BSLS_PLATFORM_OS_WINDOWS)
namespace bdlma {
char *HeapBypassAllocator::map(bsls::Types::size_type size)
{
char *address =
(char *)VirtualAlloc(0, // 'VirtualAlloc' chooses what address to
// which to map the memory
size,
MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);
return NULL == address ? 0 : address;
}

Dataset Card for "SourceCode"

Dataset Summary

Source code dataset is a collection of Github awesome repos, it contains Python, Java, C++, and other programming languages. This dataset can be used in different NLP tasks like language modeling and text generation tasks.

data source:

Supported Tasks and Leaderboards

Languages

  • programming languages: Python, Java, C++
  • natural language: English

Dataset Structure

Data Instances

An example of 'train' looks as follows.

This example was too long and was cropped:

{
    "text": """
import json
import argparse


def _parse_args():
    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.RawTextHelpFormatter,
    )
    parser.add_argument(
        '--model-file',
        required=True,
        help=(
            'A pt file from '
            'https://github.com/pytorch/fairseq/tree/main/examples/hubert'
        )
    )
    return parser.parse_args()
    """
}

Data Fields

The data fields are the same among all splits.

  • text: a string feature.

Data Splits

python

$ wc -l python/*
   10000 python/test.txt
 5215412 python/train.txt
   10000 python/valid.txt
 5235412 total

java

$ wc -l java/*  
  950083 java/test.txt
 2802880 java/train.txt
  940803 java/valid.txt
 4693766 total

cpp

$ wc -l cpp/* 
 1060014 cpp/test.txt
 3119241 cpp/train.txt
 1099124 cpp/valid.txt
 5278379 total

Dataset Creation

Curation Rationale

As code generation dataset, I upload it to huggingface datasets.

Source Data

Initial Data Collection and Normalization

Who are the source language producers?

Citation:

APA:

Xu, M. code-autocomplete: Code AutoComplete with GPT2 model (Version 0.0.4) [Computer software]. https://github.com/shibing624/code-autocomplete

BibTeX:

@software{Xu_code-autocomplete_Code_AutoComplete,
author = {Xu, Ming},
title = {code-autocomplete: Code AutoComplete with GPT2 model},
url = {https://github.com/shibing624/code-autocomplete},
version = {0.0.4}
}

Annotations

Annotation process

Who are the annotators?

nobody

Personal and Sensitive Information

Considerations for Using the Data

Social Impact of Dataset

This dataset was developed as a benchmark for evaluating code generation model.

Discussion of Biases

Other Known Limitations

Additional Information

Dataset Curators

Github awesome programing code repos.

Licensing Information

GNU Free Documentation License v1.3 or later.

For research use only.

Contributions

Thanks to @shibing624 add this dataset.

Downloads last month
105