The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: JobManagerCrashedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
image
image | label
class label |
---|---|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
|
0CNV
|
Investigating Diffusion Models Across Diverse Imaging Modalities: Synthetic Data for Retinal OCT Images
This repository contains a fully synthetic dataset used for the study, Is Synthetic Data Generation Effective in Maintaining Clinical Biomarkers? Investigating Diffusion Models Across Diverse Imaging Modalities.
Abstract:
The integration of recent technologies in medical imaging has become a cornerstone of modern healthcare, facilitating detailed analysis of internal anatomy and pathology. Traditional methods, however, often grapple with data-sharing restrictions due to privacy concerns. Emerging techniques in artificial intelligence offer innovative solutions to overcome these constraints, with synthetic data generation enabling the creation of realistic medical imaging datasets, but the preservation of critical hidden medical biomarkers is an open question.
Data
This dataset is fully synthetic and was generated using diffusion models for the Retinal OCT Images (optical coherence tomography) classification task.
- Class CNV
- Class DME
- Class DRUSEN
- Class NORMAL
The source real dataset that served as the basis for this work can be found Retinal OCT Images (optical coherence tomography).
Code
The code and detailed instructions for using this dataset are available on GitHub: I-SynMed.
Other Datasets
We have made additional synthetic datasets publicly available for research purposes. Explore them below:
- Synthetic Data for Radiology(Pneumonia Classifcation): Synthetic Data in Pneumonia
- Synthetic Data for Breast Cancer Histopathology: Synthetic Data in Breast Cancer Histopathology
Citation
If you use the data or code from this repository, please cite the following publication:
@article{Hosseini2024,
author = {Hosseini, A. and Serag, A.},
title = {Is Synthetic Data Generation Effective in Maintaining Clinical Biomarkers? Investigating Diffusion Models Across Diverse Imaging Modalities},
journal = {Frontiers in Artificial Intelligence},
year = {2024},
volume = {7},
doi = {10.3389/frai.2024.1454441},
url = {https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1454441/abstract}
}
π Acknowledgements
We extend our sincere gratitude to the developers of 2D Medical Image Synthesis Using Transformer-Based Denoising Diffusion Probabilistic Model, whose open-source contributions provided a critical foundation for this project.
- Downloads last month
- 9