Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
age
int64
29
77
sex
int64
0
1
cp
int64
0
3
trestbps
int64
94
200
chol
int64
126
564
fbs
int64
0
1
restecg
int64
0
2
thalach
int64
71
202
exang
int64
0
1
oldpeak
float64
0
6.2
slope
int64
0
2
ca
int64
0
4
thal
int64
0
3
target
int64
0
1
63
1
3
145
233
1
0
150
0
2.3
0
0
1
1
37
1
2
130
250
0
1
187
0
3.5
0
0
2
1
41
0
1
130
204
0
0
172
0
1.4
2
0
2
1
56
1
1
120
236
0
1
178
0
0.8
2
0
2
1
57
0
0
120
354
0
1
163
1
0.6
2
0
2
1
57
1
0
140
192
0
1
148
0
0.4
1
0
1
1
56
0
1
140
294
0
0
153
0
1.3
1
0
2
1
44
1
1
120
263
0
1
173
0
0
2
0
3
1
52
1
2
172
199
1
1
162
0
0.5
2
0
3
1
57
1
2
150
168
0
1
174
0
1.6
2
0
2
1
54
1
0
140
239
0
1
160
0
1.2
2
0
2
1
48
0
2
130
275
0
1
139
0
0.2
2
0
2
1
49
1
1
130
266
0
1
171
0
0.6
2
0
2
1
64
1
3
110
211
0
0
144
1
1.8
1
0
2
1
58
0
3
150
283
1
0
162
0
1
2
0
2
1
50
0
2
120
219
0
1
158
0
1.6
1
0
2
1
58
0
2
120
340
0
1
172
0
0
2
0
2
1
66
0
3
150
226
0
1
114
0
2.6
0
0
2
1
43
1
0
150
247
0
1
171
0
1.5
2
0
2
1
69
0
3
140
239
0
1
151
0
1.8
2
2
2
1
59
1
0
135
234
0
1
161
0
0.5
1
0
3
1
44
1
2
130
233
0
1
179
1
0.4
2
0
2
1
42
1
0
140
226
0
1
178
0
0
2
0
2
1
61
1
2
150
243
1
1
137
1
1
1
0
2
1
40
1
3
140
199
0
1
178
1
1.4
2
0
3
1
71
0
1
160
302
0
1
162
0
0.4
2
2
2
1
59
1
2
150
212
1
1
157
0
1.6
2
0
2
1
51
1
2
110
175
0
1
123
0
0.6
2
0
2
1
65
0
2
140
417
1
0
157
0
0.8
2
1
2
1
53
1
2
130
197
1
0
152
0
1.2
0
0
2
1
41
0
1
105
198
0
1
168
0
0
2
1
2
1
65
1
0
120
177
0
1
140
0
0.4
2
0
3
1
44
1
1
130
219
0
0
188
0
0
2
0
2
1
54
1
2
125
273
0
0
152
0
0.5
0
1
2
1
51
1
3
125
213
0
0
125
1
1.4
2
1
2
1
46
0
2
142
177
0
0
160
1
1.4
0
0
2
1
54
0
2
135
304
1
1
170
0
0
2
0
2
1
54
1
2
150
232
0
0
165
0
1.6
2
0
3
1
65
0
2
155
269
0
1
148
0
0.8
2
0
2
1
65
0
2
160
360
0
0
151
0
0.8
2
0
2
1
51
0
2
140
308
0
0
142
0
1.5
2
1
2
1
48
1
1
130
245
0
0
180
0
0.2
1
0
2
1
45
1
0
104
208
0
0
148
1
3
1
0
2
1
53
0
0
130
264
0
0
143
0
0.4
1
0
2
1
39
1
2
140
321
0
0
182
0
0
2
0
2
1
52
1
1
120
325
0
1
172
0
0.2
2
0
2
1
44
1
2
140
235
0
0
180
0
0
2
0
2
1
47
1
2
138
257
0
0
156
0
0
2
0
2
1
53
0
2
128
216
0
0
115
0
0
2
0
0
1
53
0
0
138
234
0
0
160
0
0
2
0
2
1
51
0
2
130
256
0
0
149
0
0.5
2
0
2
1
66
1
0
120
302
0
0
151
0
0.4
1
0
2
1
62
1
2
130
231
0
1
146
0
1.8
1
3
3
1
44
0
2
108
141
0
1
175
0
0.6
1
0
2
1
63
0
2
135
252
0
0
172
0
0
2
0
2
1
52
1
1
134
201
0
1
158
0
0.8
2
1
2
1
48
1
0
122
222
0
0
186
0
0
2
0
2
1
45
1
0
115
260
0
0
185
0
0
2
0
2
1
34
1
3
118
182
0
0
174
0
0
2
0
2
1
57
0
0
128
303
0
0
159
0
0
2
1
2
1
71
0
2
110
265
1
0
130
0
0
2
1
2
1
54
1
1
108
309
0
1
156
0
0
2
0
3
1
52
1
3
118
186
0
0
190
0
0
1
0
1
1
41
1
1
135
203
0
1
132
0
0
1
0
1
1
58
1
2
140
211
1
0
165
0
0
2
0
2
1
35
0
0
138
183
0
1
182
0
1.4
2
0
2
1
51
1
2
100
222
0
1
143
1
1.2
1
0
2
1
45
0
1
130
234
0
0
175
0
0.6
1
0
2
1
44
1
1
120
220
0
1
170
0
0
2
0
2
1
62
0
0
124
209
0
1
163
0
0
2
0
2
1
54
1
2
120
258
0
0
147
0
0.4
1
0
3
1
51
1
2
94
227
0
1
154
1
0
2
1
3
1
29
1
1
130
204
0
0
202
0
0
2
0
2
1
51
1
0
140
261
0
0
186
1
0
2
0
2
1
43
0
2
122
213
0
1
165
0
0.2
1
0
2
1
55
0
1
135
250
0
0
161
0
1.4
1
0
2
1
51
1
2
125
245
1
0
166
0
2.4
1
0
2
1
59
1
1
140
221
0
1
164
1
0
2
0
2
1
52
1
1
128
205
1
1
184
0
0
2
0
2
1
58
1
2
105
240
0
0
154
1
0.6
1
0
3
1
41
1
2
112
250
0
1
179
0
0
2
0
2
1
45
1
1
128
308
0
0
170
0
0
2
0
2
1
60
0
2
102
318
0
1
160
0
0
2
1
2
1
52
1
3
152
298
1
1
178
0
1.2
1
0
3
1
42
0
0
102
265
0
0
122
0
0.6
1
0
2
1
67
0
2
115
564
0
0
160
0
1.6
1
0
3
1
68
1
2
118
277
0
1
151
0
1
2
1
3
1
46
1
1
101
197
1
1
156
0
0
2
0
3
1
54
0
2
110
214
0
1
158
0
1.6
1
0
2
1
58
0
0
100
248
0
0
122
0
1
1
0
2
1
48
1
2
124
255
1
1
175
0
0
2
2
2
1
57
1
0
132
207
0
1
168
1
0
2
0
3
1
52
1
2
138
223
0
1
169
0
0
2
4
2
1
54
0
1
132
288
1
0
159
1
0
2
1
2
1
45
0
1
112
160
0
1
138
0
0
1
0
2
1
53
1
0
142
226
0
0
111
1
0
2
0
3
1
62
0
0
140
394
0
0
157
0
1.2
1
0
2
1
52
1
0
108
233
1
1
147
0
0.1
2
3
3
1
43
1
2
130
315
0
1
162
0
1.9
2
1
2
1
53
1
2
130
246
1
0
173
0
0
2
3
2
1
End of preview. Expand in Data Studio

Heart Disease Dataset

This dataset contains information about individuals and their health characteristics related to heart disease. It can be used to predict whether a person has heart disease or not based on various medical and personal attributes.

Columns:

  • age: Age of the person (in years).

  • sex: Gender of the person (binary encoding):

    • 1 = Male
    • 0 = Female
  • cp: Chest pain type:

    • 0 = Asymptomatic
    • 1 = Atypical angina
    • 2 = Non-anginal pain
    • 3 = Typical angina
  • trestbps: Resting blood pressure (in mm Hg) on admission to the hospital.

  • chol: Cholesterol level (in mg/dl).

  • fbs: Fasting blood sugar (> 120 mg/dl):

    • 1 = True
    • 0 = False
  • restecg: Resting electrocardiographic results:

    • 0 = Showing probable or definite left ventricular hypertrophy by Estes’ criteria.
    • 1 = Normal.
    • 2 = Having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV).
  • thalach: Maximum heart rate achieved during exercise.

  • exang: Exercise-induced angina (binary encoding):

    • 1 = Yes
    • 0 = No
  • oldpeak: ST depression induced by exercise relative to rest (measured in millivolts).

  • slope: The slope of the peak exercise ST segment:

    • 0 = Downsloping
    • 1 = Flat
    • 2 = Upsloping
  • ca: Number of major vessels (0–3) colored by fluoroscopy.

  • thal: A blood disorder called thalassemia, indicating heart condition:

    • 0 = NULL (dropped from dataset)
    • 1 = Fixed defect (no blood flow in some part of the heart)
    • 2 = Normal blood flow
    • 3 = Reversible defect (blood flow observed but not normal)
  • target: Presence of heart disease (binary encoding):

    • 1 = No heart disease
    • 0 = Heart disease present

This dataset can be used for predictive modeling to assess the risk of heart disease based on the provided features.

Downloads last month
6