Datasets:
Create swiss_criticality_prediction.py
Browse files- swiss_criticality_prediction.py +166 -0
swiss_criticality_prediction.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Dataset for the Legal Criticality Prediction task."""
|
15 |
+
|
16 |
+
import json
|
17 |
+
import lzma
|
18 |
+
import os
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
try:
|
22 |
+
import lzma as xz
|
23 |
+
except ImportError:
|
24 |
+
import pylzma as xz
|
25 |
+
|
26 |
+
|
27 |
+
# TODO: Add BibTeX citation
|
28 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
29 |
+
_CITATION = """\
|
30 |
+
@InProceedings{huggingface:dataset,
|
31 |
+
title = {A great new dataset},
|
32 |
+
author={huggingface, Inc.
|
33 |
+
},
|
34 |
+
year={2020}
|
35 |
+
}
|
36 |
+
"""
|
37 |
+
|
38 |
+
# You can copy an official description
|
39 |
+
_DESCRIPTION = """\
|
40 |
+
This dataset contains Swiss federal court decisions for the legal criticality prediction task
|
41 |
+
"""
|
42 |
+
|
43 |
+
_URLS = {
|
44 |
+
"full": "https://huggingface.co/datasets/rcds/swiss_criticality_prediction/resolve/main/data",
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
class SwissCriticalityPrediction(datasets.GeneratorBasedBuilder):
|
49 |
+
"""This dataset contains court decision for court view generation task."""
|
50 |
+
|
51 |
+
|
52 |
+
BUILDER_CONFIGS = [
|
53 |
+
datasets.BuilderConfig(name="full", description="This part covers the whole dataset"),
|
54 |
+
]
|
55 |
+
|
56 |
+
DEFAULT_CONFIG_NAME = "full" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
57 |
+
|
58 |
+
def _info(self):
|
59 |
+
if self.config.name == "full": # This is the name of the configuration selected in BUILDER_CONFIGS above
|
60 |
+
features = datasets.Features(
|
61 |
+
{
|
62 |
+
# Todo check if these are all
|
63 |
+
"decision_id": datasets.Value("string"),
|
64 |
+
"language": datasets.Value("string"),
|
65 |
+
"year": datasets.Value("int32"),
|
66 |
+
"chamber": datasets.Value("string"),
|
67 |
+
"region": datasets.Value("string"),
|
68 |
+
"origin_chamber": datasets.Value("string"),
|
69 |
+
"origin_court": datasets.Value("string"),
|
70 |
+
"origin_canton": datasets.Value("string"),
|
71 |
+
"law_area": datasets.Value("string"),
|
72 |
+
"law_sub_area": datasets.Value("string"),
|
73 |
+
"bge_label": datasets.Value("string"),
|
74 |
+
"citation_label": datasets.Value("string"),
|
75 |
+
"facts": datasets.Value("string"),
|
76 |
+
"considerations": datasets.Value("string"),
|
77 |
+
"rulings": datasets.Value("string"),
|
78 |
+
# These are the features of your dataset like images, labels ...
|
79 |
+
}
|
80 |
+
)
|
81 |
+
return datasets.DatasetInfo(
|
82 |
+
# This is the description that will appear on the datasets page.
|
83 |
+
description=_DESCRIPTION,
|
84 |
+
# This defines the different columns of the dataset and their types
|
85 |
+
features=features, # Here we define them above because they are different between the two configurations
|
86 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
87 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
88 |
+
# supervised_keys=("sentence", "label"),
|
89 |
+
# Homepage of the dataset for documentation
|
90 |
+
# homepage=_HOMEPAGE,
|
91 |
+
# License for the dataset if available
|
92 |
+
# license=_LICENSE,
|
93 |
+
# Citation for the dataset
|
94 |
+
# citation=_CITATION,
|
95 |
+
)
|
96 |
+
|
97 |
+
def _split_generators(self, dl_manager):
|
98 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
99 |
+
|
100 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
101 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
102 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
103 |
+
urls = _URLS[self.config.name]
|
104 |
+
filepath_train = dl_manager.download(os.path.join(urls, "train.jsonl.xz"))
|
105 |
+
filepath_validation = dl_manager.download(os.path.join(urls, "validation.jsonl.xz"))
|
106 |
+
filepath_test = dl_manager.download(os.path.join(urls, "test.jsonl.xz"))
|
107 |
+
|
108 |
+
return [
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.TRAIN,
|
111 |
+
# These kwargs will be passed to _generate_examples
|
112 |
+
gen_kwargs={
|
113 |
+
"filepath": filepath_train,
|
114 |
+
"split": "train",
|
115 |
+
},
|
116 |
+
),
|
117 |
+
datasets.SplitGenerator(
|
118 |
+
name=datasets.Split.VALIDATION,
|
119 |
+
# These kwargs will be passed to _generate_examples
|
120 |
+
gen_kwargs={
|
121 |
+
"filepath": filepath_validation,
|
122 |
+
"split": "validation",
|
123 |
+
},
|
124 |
+
),
|
125 |
+
datasets.SplitGenerator(
|
126 |
+
name=datasets.Split.TEST,
|
127 |
+
# These kwargs will be passed to _generate_examples
|
128 |
+
gen_kwargs={
|
129 |
+
"filepath": filepath_test,
|
130 |
+
"split": "test"
|
131 |
+
},
|
132 |
+
)
|
133 |
+
]
|
134 |
+
|
135 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
136 |
+
def _generate_examples(self, filepath, split):
|
137 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
138 |
+
line_counter = 0
|
139 |
+
try:
|
140 |
+
with xz.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
|
141 |
+
for id, line in enumerate(f):
|
142 |
+
line_counter += 1
|
143 |
+
if line:
|
144 |
+
data = json.loads(line)
|
145 |
+
if self.config.name == "full":
|
146 |
+
yield id, {
|
147 |
+
"decision_id": data["decision_id"],
|
148 |
+
"language": data["language"],
|
149 |
+
"year": data["year"],
|
150 |
+
"chamber": data["chamber"],
|
151 |
+
"region": data["region"],
|
152 |
+
"origin_chamber": data["origin_chamber"],
|
153 |
+
"origin_court": data["origin_court"],
|
154 |
+
"origin_canton": data["origin_canton"],
|
155 |
+
"law_area": data["law_area"],
|
156 |
+
"law_sub_area": data["law_sub_area"],
|
157 |
+
"citation_label": data["citation_label"],
|
158 |
+
"bge_label": data["bge_label"],
|
159 |
+
"facts": data["facts"],
|
160 |
+
"considerations": data["considerations"],
|
161 |
+
"rulings": data["rulings"],
|
162 |
+
}
|
163 |
+
except lzma.LZMAError as e:
|
164 |
+
print(split, e)
|
165 |
+
if line_counter == 0:
|
166 |
+
raise e
|