Datasets:
rcds
/

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
Stern5497 commited on
Commit
316f9b7
1 Parent(s): b8d1eef

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +200 -0
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language:
5
+ - de
6
+ - fr
7
+ - it
8
+ language_creators:
9
+ - expert-generated
10
+ license: []
11
+ multilinguality:
12
+ - multilingual
13
+ pretty_name: Legal Criticality Prediction
14
+ size_categories:
15
+ - 100K<n<1M
16
+ source_datasets:
17
+ - original
18
+ tags: []
19
+ task_categories:
20
+ - text-classification
21
+ ---
22
+ # Dataset Card for [legal criticality prediction]
23
+
24
+ ## Table of Contents
25
+ - [Table of Contents](#table-of-contents)
26
+ - [Dataset Description](#dataset-description)
27
+ - [Dataset Summary](#dataset-summary)
28
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
29
+ - [Languages](#languages)
30
+ - [Dataset Structure](#dataset-structure)
31
+ - [Data Instances](#data-instances)
32
+ - [Data Fields](#data-fields)
33
+ - [Data Splits](#data-splits)
34
+ - [Dataset Creation](#dataset-creation)
35
+ - [Curation Rationale](#curation-rationale)
36
+ - [Source Data](#source-data)
37
+ - [Annotations](#annotations)
38
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
39
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
40
+ - [Social Impact of Dataset](#social-impact-of-dataset)
41
+ - [Discussion of Biases](#discussion-of-biases)
42
+ - [Other Known Limitations](#other-known-limitations)
43
+ - [Additional Information](#additional-information)
44
+ - [Dataset Curators](#dataset-curators)
45
+ - [Licensing Information](#licensing-information)
46
+ - [Citation Information](#citation-information)
47
+ - [Contributions](#contributions)
48
+
49
+ ## Dataset Description
50
+
51
+ - **Homepage:**
52
+ - **Repository:**
53
+ - **Paper:**
54
+ - **Leaderboard:**
55
+ - **Point of Contact:**
56
+
57
+ ### Dataset Summary
58
+
59
+ Legal Criticality Prediction (LCP) is a multilingual, diachronic dataset of 130K Swiss Federal Supreme Court (FSCS) cases annotated with two criticality labels. The bge_label i a binary label (critical, non-critical), while the citation label has 5 classes (critical-1, critical-2, critical-3, critical-4, non-critical). Critical classes of the citation_label are distinct subsets of the critical class of the bge_label. This dataset creates a challenging text classification task. We also provide additional metadata as the publication year, the law area and the canton of origin per case, to promote robustness and fairness studies on the critical area of legal NLP.
60
+
61
+ ### Supported Tasks and Leaderboards
62
+
63
+ LCP can be used as text classification task
64
+
65
+ ### Languages
66
+
67
+ Switzerland has four official languages with three languages German, French and Italian being represenated. The decisions are written by the judges and clerks in the language of the proceedings.
68
+ German (80k), French (40k), Italian (10k)
69
+
70
+ ## Dataset Structure
71
+
72
+ ```
73
+ {
74
+ "decision_id": ,
75
+ "language": de,
76
+ "year": 2018,
77
+ "chamber": ,
78
+ "court": ,
79
+ "canton": ,
80
+ "region": ,
81
+ "origin_chamber": ,
82
+ "origin_court": ,
83
+ "origin_canton": ,
84
+ "law_area": ,
85
+ "law_sub_area": ,
86
+ "bge_label": ,
87
+ "citation_label": ,
88
+ "facts": ,
89
+ "considerations": ,
90
+ "rulings": ,
91
+ "origin_facts": ,
92
+ "origin_considerations": ,
93
+ }
94
+ ```
95
+
96
+ ### Data Fields
97
+
98
+ ```
99
+ decision_id: (str) a unique identifier of the for the document
100
+ language: (str) one of (de, fr, it)
101
+ year: (int) the publication year
102
+ chamber: (str) the chamber of the case
103
+ court: (str) the court of the case
104
+ canton: (str) the canton
105
+ region: (str) the region of the case
106
+ origin_chamber: (str) the chamber of the origin case
107
+ origin_court: (str) the court of the origin case
108
+ origin_canton: (str) the canton of the origin case
109
+ law_area: (str) the law area of the case
110
+ law_sub_area:(str) the law sub area of the case
111
+ bge_label: (str) critical or non-critical
112
+ citation_label: (str) critical-1, critical-2, critical-3, critical-4, non-critical
113
+ facts: (str) the facts of the case
114
+ considerations: (str) the considerations of the case
115
+ rulings: (str) the rulings of the case
116
+ origin_facts: (str) the facts of the origin case
117
+ origin_considerations: (str) the considerations of the origin case
118
+ ```
119
+
120
+ ### Data Instances
121
+ [More Information Needed]
122
+ ### Data Fields
123
+ [More Information Needed]
124
+ ### Data Splits
125
+
126
+ The dataset was split date-stratisfied
127
+ - Train: 2002-2015
128
+ - Validation: 2016-2017
129
+ - Test: 2018-2022
130
+
131
+ | Language | Subset | Number of Documents (Training/Validation/Test) |
132
+ |------------|------------|--------------------------------------------|
133
+ | German | **de** | / / |
134
+ | French | **fr** | / / |
135
+ | Italian | **it** | / / |
136
+
137
+ ## Dataset Creation
138
+ ### Curation Rationale
139
+
140
+ The dataset was curated by Stern et al. (2023).
141
+
142
+ ### Source Data
143
+ #### Initial Data Collection and Normalization
144
+
145
+ The original data are published from the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML.
146
+
147
+ #### Who are the source language producers?
148
+
149
+ The decisions are written by the judges and clerks in the language of the proceedings.
150
+
151
+ ### Annotations
152
+ #### Annotation process
153
+
154
+ bge_label:
155
+ 1. all bger_references in the bge header were extracted
156
+ 2. bger file_names are compared with the found references
157
+
158
+ citation_label:
159
+ 1. count all citations for all bger cases and weight citations
160
+ 2. divide cited cases in four different classes, depending on amount of citations
161
+
162
+ #### Who are the annotators?
163
+
164
+ Ronja Stern annotated the citations.
165
+ Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch).
166
+
167
+ ### Personal and Sensitive Information
168
+
169
+ The dataset contains publicly available court decisions from the Swiss Federal Supreme Court. Personal or sensitive information has been anonymized by the court before publication according to the following guidelines: https://www.bger.ch/home/juridiction/anonymisierungsregeln.html.
170
+
171
+ ## Considerations for Using the Data
172
+ ### Social Impact of Dataset
173
+ [More Information Needed]
174
+ ### Discussion of Biases
175
+ [More Information Needed]
176
+ ### Other Known Limitations
177
+ [More Information Needed]
178
+ ## Additional Information
179
+ ### Dataset Curators
180
+ [More Information Needed]
181
+ ### Licensing Information
182
+
183
+ We release the data under CC-BY-4.0 which complies with the court licensing (https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf)
184
+ © Swiss Federal Supreme Court, 2002-2022
185
+
186
+ The copyright for the editorial content of this website and the consolidated texts, which is owned by the Swiss Federal Supreme Court, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made.
187
+ Source: https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf
188
+
189
+ ### Citation Information
190
+
191
+ *Visu, Ronja, Joel*
192
+ *Title: Blabliblablu*
193
+ *Name of conference*
194
+ ```
195
+ cit
196
+ ```
197
+
198
+ ### Contributions
199
+
200
+ Thanks to [@Stern5497](https://github.com/stern5497) for adding this dataset.