The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Dataset Card for MedIAnomaly
Dataset Description
MedIAnomaly is a benchmark designed to evaluate anomaly detection methods in the medical imaging domain. It provides a standardized evaluation protocol across seven real-world medical image datasets, including both image-level anomaly classification (AnoCls) and pixel-level anomaly segmentation (AnoSeg) tasks.
All datasets follow a one-class training setting, where only normal (non-anomalous) images are available in the training set, and the test set includes both normal and abnormal cases. This reflects real-world scenarios where anomalies are rare and not annotated during training.
The benchmark includes a total of seven datasets, spanning across various imaging modalities (X-ray, MRI, fundus, dermatoscopy, histopathology), and ensures unified data format and preprocessing to support fair and reproducible comparison of anomaly detection methods.
Dataset Source
- Homepage: https://github.com/caiyu6666/MedIAnomaly
- License: Apache License 2.0
- Paper: Yu Cai et al. MedIAnomaly: A Comparative Study of Anomaly Detection in Medical Images, arXiv 2024.
Dataset Structure
Dataset | Modality | Task | ๐train | ๐test (Normal+Abnormal) |
---|---|---|---|---|
RSNA | Chest X-ray | AnoCls | 3851 | 1000 + 1000 |
VinDr-CXR | Chest X-ray | AnoCls | 4000 | 1000 + 1000 |
Brain Tumor | Brain MRI | AnoCls | 1000 | 600 + 600 |
LAG | Retinal fundus image | AnoCls | 1500 | 811 + 811 |
ISIC2018 | Dermatoscopic image | AnoCls | 6705 | 909 + 603 |
Camelyon16 | Histopathology image | AnoCls | 5088 | 1120 + 1113 |
BraTS2021 | Brain MRI | AnoCls & AnoSeg | 4211 | 828 + 1948 |
Notes on Dataset-Specific Definitions
- RSNA: Training images are all normal chest X-rays. Test set contains a balanced mix of normal and pneumonia images.
- VinDr-CXR: Training set consists only of normal chest X-rays. Test set includes both normal and abnormal findings.
- Brain Tumor: MRI scans. All training samples are healthy brains; test set contains normal and tumor cases.
- LAG: Retinal fundus images. Training set includes only normal cases; glaucomatous images appear in test set.
- ISIC2018: One-hot multi-label data. Only images with
NV = 1
and all other labels = 0 are considered normal. All others (with any other disease present) are considered abnormal. - Camelyon16: Histopathological whole-slide patches. Training includes only benign tissue. Abnormal cancerous regions are tested.
- BraTS2021: Brain MRI for both classification and segmentation. Training includes only normal images. Test set includes tumor cases with segmentation masks.
Example Usage
RSNA
from datasets import load_dataset
dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="test", trust_remote_code=True)
# View a sample
example = dataset[0]
image = example["image"]
label = example["label"] # "normal" or "abnormal"
image.show()
print(f"Label: {label}")
Vin-CXR
from datasets import load_dataset
dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="test", trust_remote_code=True)
# View a sample
example = dataset[0]
image = example["image"]
label = example["label"] # "normal" or "abnormal"
image.show()
print(f"Label: {label}")
Brain Tumor
from datasets import load_dataset
dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="test", trust_remote_code=True)
# View a sample
example = dataset[0]
image = example["image"]
label = example["label"] # "normal" or "abnormal"
image.show()
print(f"Label: {label}")
LAG
from datasets import load_dataset
dataset = load_dataset("randall-lab/medianomaly", name="lag", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="lag", split="test", trust_remote_code=True)
# View a sample
example = dataset[0]
image = example["image"]
label = example["label"] # "normal" or "abnormal"
image.show()
print(f"Label: {label}")
Camelyon16
from datasets import load_dataset
dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="test", trust_remote_code=True)
# View a sample
example = dataset[0]
image = example["image"]
label = example["label"] # "normal" or "abnormal"
image.show()
print(f"Label: {label}")
BraTS2021
from datasets import load_dataset
# Train
dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="train", trust_remote_code=True)
example = dataset[0]
image = example["image"]
label = example["label"] # "normal" or "abnormal"
image.show()
print(f"Label: {label}")
# Test
dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="test", trust_remote_code=True)
example = dataset[828] # >= 828 is abnormal images with seg mask
image = example["image"]
label = example["label"] # "normal" or "abnormal"
anno = example["annotation"] # None if label is 0, seg mask if label is 1
image.show()
anno.show()
print(f"Label: {label}")
ISIC2018
from datasets import load_dataset
dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="test", trust_remote_code=True)
# View a sample
example = dataset[0]
image = example["image"]
label = example["label"] # "normal" or "abnormal"
labels = example["labels"] # one-hot multi label for different disease [MEL, NV, BCC, AKIEC, BKL, DF, VASC]
# Individual binary class labels (0 or 1)
mel_label = example["MEL"]
nv_label = example["NV"]
bcc_label = example["BCC"]
akiec_label = example["AKIEC"]
bkl_label = example["BKL"]
df_label = example["DF"]
vasc_label = example["VASC"]
image.show()
print(f"Label: {label}")
If you are using colab, you should update datasets to avoid errors
pip install -U datasets
Citation
@article{cai2024medianomaly,
title={MedIAnomaly: A comparative study of anomaly detection in medical images},
author={Cai, Yu and Zhang, Weiwen and Chen, Hao and Cheng, Kwang-Ting},
journal={arXiv preprint arXiv:2404.04518},
year={2024}
}
- Downloads last month
- 130