Datasets:

ArXiv:
License:
Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for MedIAnomaly

Dataset Description

MedIAnomaly is a benchmark designed to evaluate anomaly detection methods in the medical imaging domain. It provides a standardized evaluation protocol across seven real-world medical image datasets, including both image-level anomaly classification (AnoCls) and pixel-level anomaly segmentation (AnoSeg) tasks.

All datasets follow a one-class training setting, where only normal (non-anomalous) images are available in the training set, and the test set includes both normal and abnormal cases. This reflects real-world scenarios where anomalies are rare and not annotated during training.

The benchmark includes a total of seven datasets, spanning across various imaging modalities (X-ray, MRI, fundus, dermatoscopy, histopathology), and ensures unified data format and preprocessing to support fair and reproducible comparison of anomaly detection methods.

dataset

Dataset Source

Dataset Structure

Dataset Modality Task ๐’Ÿtrain ๐’Ÿtest (Normal+Abnormal)
RSNA Chest X-ray AnoCls 3851 1000 + 1000
VinDr-CXR Chest X-ray AnoCls 4000 1000 + 1000
Brain Tumor Brain MRI AnoCls 1000 600 + 600
LAG Retinal fundus image AnoCls 1500 811 + 811
ISIC2018 Dermatoscopic image AnoCls 6705 909 + 603
Camelyon16 Histopathology image AnoCls 5088 1120 + 1113
BraTS2021 Brain MRI AnoCls & AnoSeg 4211 828 + 1948

Notes on Dataset-Specific Definitions

  • RSNA: Training images are all normal chest X-rays. Test set contains a balanced mix of normal and pneumonia images.
  • VinDr-CXR: Training set consists only of normal chest X-rays. Test set includes both normal and abnormal findings.
  • Brain Tumor: MRI scans. All training samples are healthy brains; test set contains normal and tumor cases.
  • LAG: Retinal fundus images. Training set includes only normal cases; glaucomatous images appear in test set.
  • ISIC2018: One-hot multi-label data. Only images with NV = 1 and all other labels = 0 are considered normal. All others (with any other disease present) are considered abnormal.
  • Camelyon16: Histopathological whole-slide patches. Training includes only benign tissue. Abnormal cancerous regions are tested.
  • BraTS2021: Brain MRI for both classification and segmentation. Training includes only normal images. Test set includes tumor cases with segmentation masks.

Example Usage

RSNA

from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="rsna", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")

Vin-CXR

from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="vincxr", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")

Brain Tumor

from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="braintumor", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")

LAG

from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="lag", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="lag", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")

Camelyon16

from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="camelyon16", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")

BraTS2021

from datasets import load_dataset

# Train
dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="train", trust_remote_code=True)

example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"

image.show()
print(f"Label: {label}")

# Test
dataset = load_dataset("randall-lab/medianomaly", name="brats2021", split="test", trust_remote_code=True)

example = dataset[828] # >= 828 is abnormal images with seg mask
image = example["image"]
label = example["label"]  # "normal" or "abnormal"
anno = example["annotation"] # None if label is 0, seg mask if label is 1

image.show()
anno.show()
print(f"Label: {label}")

ISIC2018

from datasets import load_dataset

dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="train", trust_remote_code=True)
# dataset = load_dataset("randall-lab/medianomaly", name="isic2018_task3", split="test", trust_remote_code=True)

# View a sample
example = dataset[0]
image = example["image"]
label = example["label"]  # "normal" or "abnormal"
labels = example["labels"] # one-hot multi label for different disease [MEL, NV, BCC, AKIEC, BKL, DF, VASC]

# Individual binary class labels (0 or 1)
mel_label = example["MEL"]
nv_label = example["NV"]
bcc_label = example["BCC"]
akiec_label = example["AKIEC"]
bkl_label = example["BKL"]
df_label = example["DF"]
vasc_label = example["VASC"]

image.show()
print(f"Label: {label}")

If you are using colab, you should update datasets to avoid errors

pip install -U datasets

Citation

@article{cai2024medianomaly,
  title={MedIAnomaly: A comparative study of anomaly detection in medical images},
  author={Cai, Yu and Zhang, Weiwen and Chen, Hao and Cheng, Kwang-Ting},
  journal={arXiv preprint arXiv:2404.04518},
  year={2024}
}
Downloads last month
130