link
stringlengths 85
120
| problem
stringlengths 32
1.09k
| solution
stringlengths 28
1.87k
|
---|---|---|
https://loigiaihay.com/ly-thuyet-xac-suat-co-dieu-kien-toan-12-chan-troi-sang-tao-a176703.html | Một hộp chứa ba tấm thẻ cùng loại ghi số lần lượt từ 1 đến 3. Bạn Hà lấy ra một cách ngẫu nhiên thẻ từ hộp, bỏ thẻ đó ra ngoài và lại lấy ra thêm một thẻ nữa. Xét các biến cố: A: "Thẻ lấy ra lần thứ nhất ghi số 1". B: "Thẻ lấy ra lần thứ hai ghi số 2". C: "Thẻ lấy ra lần thứ hai ghi số lẻ". c) Tính xác suất để lấy ra lần thứ hai ghi số lẻ, biết rằng thế lấy ra lần thứ nhất ghi số 2. | Xác suất cần tìm là \(P(C|B)\). Khi biến cố B xảy ra thì kết quả của phép thử là (2; 1) hoặc (2; 3). Cả hai kết quả này đều thuận lợi cho biến cố C. Vậy xác suất để lấy ra lần thứ hai ghi số lẻ, biết rằng lần thứ nhất ghi số 2 là \(P(C|B) = 1\). |
https://loigiaihay.com/ly-thuyet-xac-suat-co-dieu-kien-toan-12-chan-troi-sang-tao-a176703.html | Một công ty bảo hiểm nhận thấy 48% số người mua bảo hiểm ô tô là phụ nữ và có 36% số người mua bảo hiểm ô tô là phụ nữ trên 45 tuổi. a) Biết một người mua bảo hiểm ô tô là phụ nữ, tính xác suất người đó trên 45 tuổi. | Gọi A là biến cố "Người mua bảo hiểm ô tô là phụ nữ", B là biến cố "Người mua bảo hiểm ô tô trên 45 tuổi". Ta cần tính \(P(B|A)\). Do có 48% người mua bảo hiểm ô tô là phụ nữ nên \(P(A) = 0,48\). Do có 36% số người mua bảo hiểm ô tô là phụ nữ trên 45 tuổi nên \(P(AB) = 0,36\). Vậy \(P\left( B|A \right) = \frac{{P(AB)}}{{P(A)}} = \frac{{0,36}}{{0,48}} = 0,75\). |
https://loigiaihay.com/ly-thuyet-xac-suat-co-dieu-kien-toan-12-chan-troi-sang-tao-a176703.html | Một công ty bảo hiểm nhận thấy 48% số người mua bảo hiểm ô tô là phụ nữ và có 36% số người mua bảo hiểm ô tô là phụ nữ trên 45 tuổi. b) Tính tỉ lệ người trên 45 tuổi trong số những người phụ nữ mua bảo hiểm ô tô. | Trong số những phụ nữ mua bảo hiểm ô tô thì có 75% người trên 45 tuổi. |
https://loigiaihay.com/ly-thuyet-xac-suat-co-dieu-kien-toan-12-chan-troi-sang-tao-a176703.html | Bạn Việt chuẩn bị đi tham quan một hòn đảo trong hai ngày thứ Bảy và Chủ nhật. Ở hòn đảo đó, mỗi ngày chỉ có nắng hoặc mưa, nếu một ngày là nắng thì khả năng xảy ra mưa ở ngày tiếp theo là 20%, còn nếu một ngày là mưa thì khả năng ngày hôm sau vẫn mưa là 30%. Theo dự báo thời tiết, xác suất trời sẽ nắng vào thứ Bảy là 0,7. a) Tính xác suất trời nắng vào thứ Bảy và trời mưa vào Chủ nhật. | Gọi A là biến cố "Ngày thứ Bảy trời nắng" và B là biến cố "Ngày Chủ nhật trời mưa". Ta có \(P(A) = 0,7\); \(P(B|A) = 0,2\); \(P(B|A̅) = 0,3\). Do đó \(P(A̅) = 1 - P(A) = 0,3\); \(P(B|A) = 0,8\); \(P(B|A̅) = 1 - P(B|A) = 0,7\). Áp dụng công thức nhân xác suất, ta có xác suất trời nắng vào thứ Bảy và trời mưa vào Chủ nhật là \(P(AB) = P(A)P(B|A) = 0,7.0,2 = 0,14\). |
https://loigiaihay.com/ly-thuyet-xac-suat-co-dieu-kien-toan-12-chan-troi-sang-tao-a176703.html | Bạn Việt chuẩn bị đi tham quan một hòn đảo trong hai ngày thứ Bảy và Chủ nhật. Ở hòn đảo đó, mỗi ngày chỉ có nắng hoặc mưa, nếu một ngày là nắng thì khả năng xảy ra mưa ở ngày tiếp theo là 20%, còn nếu một ngày là mưa thì khả năng ngày hôm sau vẫn mưa là 30%. Theo dự báo thời tiết, xác suất trời sẽ nắng vào thứ Bảy là 0,7. b) Tính xác suất trời mưa vào thứ Bảy và trời mưa vào Chủ nhật. | Tương tự, ta có \(P(A̅B) = P(A̅).P(B|A̅) = 0,3.0,8 = 0,56\). |
https://loigiaihay.com/ly-thuyet-xac-suat-co-dieu-kien-toan-12-chan-troi-sang-tao-a176703.html | Bạn Việt chuẩn bị đi tham quan một hòn đảo trong hai ngày thứ Bảy và Chủ nhật. Ở hòn đảo đó, mỗi ngày chỉ có nắng hoặc mưa, nếu một ngày là nắng thì khả năng xảy ra mưa ở ngày tiếp theo là 20%, còn nếu một ngày là mưa thì khả năng ngày hôm sau vẫn mưa là 30%. Theo dự báo thời tiết, xác suất trời sẽ nắng vào thứ Bảy là 0,7. c) Tính xác suất trời nắng vào thứ Bảy và trời nắng vào Chủ nhật. | Tương tự, ta có \(P(AB̅) = P(A).P(B̅|A) = 0,7.0,3 = 0,09\). |
https://loigiaihay.com/ly-thuyet-xac-suat-co-dieu-kien-toan-12-chan-troi-sang-tao-a176703.html | Bạn Việt chuẩn bị đi tham quan một hòn đảo trong hai ngày thứ Bảy và Chủ nhật. Ở hòn đảo đó, mỗi ngày chỉ có nắng hoặc mưa, nếu một ngày là nắng thì khả năng xảy ra mưa ở ngày tiếp theo là 20%, còn nếu một ngày là mưa thì khả năng ngày hôm sau vẫn mưa là 30%. Theo dự báo thời tiết, xác suất trời sẽ nắng vào thứ Bảy là 0,7. d) Tính xác suất trời mưa vào thứ Bảy và trời nắng vào Chủ nhật. | Tương tự, ta có \(P(A̅B̅) = P(A̅)P(B̅|A̅) = 0,3.0,7 = 0,21\). |
https://loigiaihay.com/giai-muc-1-trang-69-70-sgk-toan-12-tap-2-chan-troi-sang-tao-a171924.html | Hộp thứ nhất chứa 2 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 2 viên bi xanh và 3 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Bạn Thanh lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai. Gọi \(A\) là biến cố: “Viên bi lấy ra lần thứ nhất là bi xanh”, \(B\) là biến cố “Viên bi lấy ra lần thứ hai là bi đỏ”. a) Biết rằng biến cố \(A\) xảy ra, tính xác suất của biến cố \(B\). | Khi biến cố \(A\) xảy ra, tức là viên bi lấy ra lần thứ nhất có màu xanh. Khi đó, túi thứ hai có 3 viên bi xanh và 3 viên bi đỏ. Khi đó, xác suất để lấy ra được viên bi đỏ ở túi thứ hai (cũng là xác suất của biến cố \(B\)) là \(P\left( B \right) = \frac{3}{6} = \frac{1}{2}\). |
https://loigiaihay.com/giai-muc-1-trang-69-70-sgk-toan-12-tap-2-chan-troi-sang-tao-a171924.html | Hộp thứ nhất chứa 2 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 2 viên bi xanh và 3 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Bạn Thanh lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai. Gọi \(A\) là biến cố: “Viên bi lấy ra lần thứ nhất là bi xanh”, \(B\) là biến cố “Viên bi lấy ra lần thứ hai là bi đỏ”. b) Biết rằng biến cố \(A\) không xảy ra, tính xác suất của biến cố \(B\). | Khi biến cố \(A\) không xảy ra, tức là viên bi lấy ra lần thứ nhất là viên bi màu đỏ. Bỏ viên bi màu đỏ đó vào túi thứ hai, lúc này trong túi thứ hai ta có 2 viên bi xanh và 4 viên bi đỏ. Khi đó, xác suất để lấy ra được viên bi đỏ ở túi thứ hai (cũng là xác suất của biến cố \(B\)) là \(P\left( B \right) = \frac{4}{6} = \frac{2}{3}\). |
https://loigiaihay.com/giai-muc-1-trang-69-70-sgk-toan-12-tap-2-chan-troi-sang-tao-a171924.html | Xét phép thử lấy thẻ ở Ví dụ 1: Một hộp chứa ba tấm thẻ cùng loại được ghi số lần lượt từ 1 đến 3. Bạn Hà lấy ra một cách ngẫu nhiên một thẻ từ hộp, bỏ thẻ đó ra ngoài và lại lấy ra một cách ngẫu nhiên thêm một thẻ nữa. Xét các biến cố: A: “Thẻ lấy ra lần thứ nhất ghi số 1” B: “Thẻ lấy ra lần thứ nhất ghi số 2” D: “Thẻ lấy ra lần thứ hai ghi số lớn hơn 1”. Tinh \(P\left( {D|A} \right)\) và \(P\left( {D|B} \right)\). | Tính \(P\left( {D|A} \right)\), tức là tính xác suất của biến cố \(D\) với điều kiện \(A\). Khi biến cố \(A\) xảy ra thì kết quả của phép thử sẽ là \(\left( {1;2} \right)\) hoặc \(\left( {1;3} \right)\). Cả hai kết quả này đều có lợi cho biến cố \(D\). Suy ra \(P\left( {D|A} \right) = 1\). Tính \(P\left( {D|B} \right)\), tức là tính xác suất của biến cố \(D\) với điều kiện \(B\). Khi biến cố \(B\) xảy ra thì kết quả của phép thử là \(\left( {2;1} \right)\) hoặc \(\left( {2;3} \right)\). Trong hai kết quả trên, chỉ có kết quả \(\left( {2;3} \right)\) là có lợi cho biến cố \(D\). Suy ra \(P\left( {D|B} \right) = \frac{1}{2}\). |
https://loigiaihay.com/giai-muc-1-trang-69-70-sgk-toan-12-tap-2-chan-troi-sang-tao-a171924.html | Xét phép thử ở Ví dụ 2: Câu lạc bộ cờ của nhà trường có 35 thành viên, mỗi thành viên biết chơi ít nhất một trong hai môn cờ vua hoặc cờ tướng. Biết rằng có 25 thành viên biết chơi cờ vua và 20 thành viên biết chơi cờ tướng. Chọn ngẫu nhiên 1 thành viên của câu lạc bộ. Tính xác suất thành viên được chọn không biết chơi cờ tướng, biết rằng thành viên đó biết chơi cờ vua. | Số thành viên biết chơi cả hai môn cờ tướng và cờ vua là: \(25 + 20 - 35 = 10\) (người). \(\overline A \) là biến cố “Thành viên được chọn không biết chơi cờ tướng”. Trong số 25 thành viên biết chơi cờ vua, số thành viên biết chơi cả cờ tướng là 10. Vì vậy, số thành viên chỉ biết chơi cờ vua mà không biết chơi cờ tướng là 25 – 10 = 15. Xác suất thành viên được chọn không biết chơi cờ tướng, biết thành viên đó biết chơi cờ vua là \(P(\overline A |B) = \frac{{15}}{{25}} = 0,6\). |
https://loigiaihay.com/giai-muc-1-trang-69-70-sgk-toan-12-tap-2-chan-troi-sang-tao-a171924.html | Bạn Thuỷ gieo một con xúc xắc cân đối và đồng chất. Nếu biết rằng xuất hiện mặt chẵn chấm thì xác suất xuất hiện mặt 6 chấm là bao nhiêu? | Gọi \(A\) là biến cố “Xuất hiện mặt chẵn chấm” và \(B\) là biến cố “Xuất hiện mặt 6 chấm”. Ta phải tìm \(P\left( {B|A} \right)\). Khi biến cố \(A\) xuất hiện, các kết quả của phép thử sẽ là 2, 4, 6. Chỉ có duy nhất kết quả 6 là có lợi cho biến cố \(B\). Vậy \(P\left( {B|A} \right) = \frac{1}{3}\). |
https://loigiaihay.com/giai-muc-2-trang-70-71-72-sgk-toan-12-tap-2-chan-troi-sang-tao-a171925.html | Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi \(A\) là biến cố: “Xuất hiện hai mặt cùng số chấm”, \(B\) là biến cố: “Tổng số chấm của hai mặt xuất hiện bằng 8” và \(C\) là biến cố: “Xuất hiện ít nhất một mặt 6 chấm”. a) Tính \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\) và \(P\left( {A|B} \right)\). | Ta dễ dàng thấy các kết quả \(\left( {3;5} \right)\); \(\left( {4;4} \right)\); \(\left( {5;3} \right)\) là có lợi cho biến cố \(B\), suy ra \(P\left( B \right) = \frac{3}{{36}} = \frac{1}{{12}}\). Biến cố \(A \cap B\) là biến cố “Xuất hiện hai mặt cùng số chấm và tổng số chấm của hai mặt xuất hiện là 8”. Dễ dàng thấy \(\left( {4;4} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {A \cap B} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{{12}}}} = \frac{1}{3}\). Khi biến cố \(B\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(A\). Như vậy \(P\left( {A|B} \right) = \frac{1}{3}\). |
https://loigiaihay.com/giai-muc-2-trang-70-71-72-sgk-toan-12-tap-2-chan-troi-sang-tao-a171925.html | Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi \(A\) là biến cố: “Xuất hiện hai mặt cùng số chấm”, \(B\) là biến cố: “Tổng số chấm của hai mặt xuất hiện bằng 8” và \(C\) là biến cố: “Xuất hiện ít nhất một mặt 6 chấm”. b) Tính \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}}\) và \(P\left( {C|A} \right)\). | Ta dễ dàng thấy các kết quả \(\left( {1;1} \right)\); \(\left( {2;2} \right)\); \(\left( {3;3} \right)\); \(\left( {4;4} \right)\); \(\left( {5;5} \right)\); \(\left( {6;6} \right)\) là các kết quả có lợi cho biến cố \(A\). Suy ra \(P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\). Biến cố \(C \cap A\) là biến cố “Xuất hiện hai mặt cùng số chấm và có ít nhất một mặt 6 chấm”. Dễ dàng thấy \(\left( {6;6} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {C \cap A} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\). Khi biến cố \(A\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(C\). Như vậy \(P\left( {C|A} \right) = \frac{1}{6}\). |
https://loigiaihay.com/giai-muc-2-trang-70-71-72-sgk-toan-12-tap-2-chan-troi-sang-tao-a171925.html | Một nhóm 5 học sinh nam và 4 học sinh nữ tham gia lao động trên sân trường. Cô giáo chọn ngẫu nhiên đồng thời 2 bạn đi tưới cây. Tính xác suất để hai bạn được chọn có cùng giới tính, biết rằng có ít nhất 1 bạn nam được chọn. | Gọi \(A\) là biến cố “Hai bạn được chọn cùng giới tính” và \(B\) là biến cố “Hai bạn được chọn có ít nhất một bạn nam”. Ta cần phải tính \(P\left( {A|B} \right)\). Số cách chọn hai bạn bất kì là \(C_9^2 = 45\). Số cách chọn hai bạn nam là \(C_5^2 = 10\). Số cách chọn hai bạn nữ là \(C_4^2 = 6\). Biến cố \(AB\) là biến cố “Hai bạn được chọn có cùng giới tính và có ít nhất một bạn nam”, đồng nghĩa với “Hai bạn được chọn là hai bạn nam”. Suy ra \(P\left( {AB} \right) = \frac{{10}}{{45}} = \frac{2}{9}\). Xác suất của biến cố \(B\) là \(P\left( B \right) = \frac{{45 - 6}}{{45}} = \frac{{13}}{{15}}\). Như vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{2}{9}}}{{\frac{{13}}{{15}}}} = \frac{{10}}{{39}}\). |
https://loigiaihay.com/giai-muc-2-trang-70-71-72-sgk-toan-12-tap-2-chan-troi-sang-tao-a171925.html | Kết quả khảo sát những bệnh nhân bị tai nạn xe máy về mối liên hệ giữa việc đội mũ bảo hiểm và khả năng bị chấn thương ở vùng đầu cho thấy: - Tỉ lệ bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn là 80%. - Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách khi gặp tai nạn là 90%. - Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách bị chấn thương vùng đầu là 18%. Hỏi theo kết quả điều tra trên, việc đội mũ bảo hiểm đúng cách sẽ giảm khả năng bị chấn thương vùng đầu bao nhiêu lần? | Gọi \(A\) là biến cố “Bệnh nhân bị chấn thương vùng đầu”, \(B\) là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách”. Theo đề bài, ta có \(P\left( A \right) = 80\% = 0,8\); \(P\left( B \right) = 90\% = 0,9\). Biến cố \(AB\) là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách bị chấn thương vùng đầu”. Theo đề bài, ta có \(P\left( {AB} \right) = 18\% = 0,18\). Khi biến cố \(B\) xảy ra, tức là bệnh nhân đội mũ bảo hiểm đúng cách, ta cần tính xác suất để bệnh nhân bị chấn thương vùng đầu, tức là tính \(P\left( {A|B} \right)\). Ta có \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,18}}{{0,9}} = 0,2\). Như vậy, khi đội mũ bảo hiểm đúng cách thì tỉ lệ chấn thương vùng đầu sẽ là 0,2. Suy ra việc đội mũ bảo hiểm đúng cách sẽ làm giảm khả năng chấn thương vùng đầu đi \(\frac{{0,8}}{{0,2}} = 4\) lần. |
https://loigiaihay.com/giai-muc-3-trang-72-73-74-sgk-toan-12-tap-2-chan-troi-sang-tao-a171927.html | Ban Việt chuẩn bị đi tham quan một hòn đảo trong hai ngày thứ Bảy và Chủ Nhật. Ở hòn đảo đó, mỗi ngày chỉ có nắng hoặc mưa, nếu một ngày là nắng thì khả năng xảy ra mưa ở ngày tiếp theo là 20%, còn nếu một ngày là mưa thì khả năng ngày hôm sau vẫn mưa là 30%. Theo dự báo thời tiết, xác suất trời sẽ nắng vào ngày thứ Bảy là 0,7. Hãy tìm các giá trị thích hợp thay vào ? ở sơ đồ hình cây sau. | Với ngày thứ 7, xác suất trời nắng là \(0,7\) nên xác suất trời mưa là \(1 - 0,7 = 0,3\). Với ngày Chủ nhật: - Trong trường hợp ngày thứ 7 trời nắng, xác suất trời mưa trong ngày Chủ nhật là \(0,2\). Suy ra xác suất trời nắng trong ngày Chủ nhật là \(1 - 0,2 = 0,8\). - Trong trường hợp ngày thứ 7 trời mưa, xác suất trời mưa trong ngày Chủ nhật là \(0,3\). Suy ra xác suất trời nắng trong ngày Chủ nhật là \(1 - 0,3 = 0,7\). |
https://loigiaihay.com/giai-muc-3-trang-72-73-74-sgk-toan-12-tap-2-chan-troi-sang-tao-a171927.html | Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai. Sử dụng sơ đồ hình cây, tính xác suất của các biến cố: \(A\): “Viên bi lấy ra từ hộp thứ nhất có màu xanh và viên bi lấy ra từ hộp thứ hai có màu đỏ”. \(B\): “Hai viên bi lấy ra có cùng màu”. | Xác suất để lấy ra được 1 viên bi xanh ở hộp thứ nhất là \(rac{4}{{10}} = 0,4\). Nếu ta lấy được viên bi xanh ở hộp thứ nhất và bỏ vào hộp thứ hai thì hộp thứ hai có 6 viên bi xanh và 4 viên bi đỏ. Suy ra xác suất để lấy ra được 1 viên bi đỏ là \(rac{4}{{10}} = 0,4\). Nếu ta lấy được viên bi đỏ ở hộp thứ nhất và bỏ vào hộp thứ hai thì hộp thứ hai có 5 viên bi xanh và 5 viên bi đỏ. Suy ra xác suất để lấy được 1 viên bi đỏ là \(rac{5}{{10}} = 0,5\). Dựa vào sơ đồ hình cây, ta có: \(P\left( A
ight) = P\left( {MN}
ight) = 0,16.\) \(P\left( B
ight) = P\left( {Mar N}
ight) + P\left( {ar MN}
ight) = 0,24 + 0,3 = 0,54.\) |
https://loigiaihay.com/giai-muc-3-trang-72-73-74-sgk-toan-12-tap-2-chan-troi-sang-tao-a171927.html | Một trường đại học tiến hành khảo sát tình trạng việc làm sau khi tốt nghiệp của sinh viên. Kết quả khảo sát cho thấy tỉ lệ người tìm được việc làm đúng chuyên ngành là 85% đối với sinh viên loại giỏi và 70% đối với sinh viên tốt nghiệp loại khác. Tỉ lệ sinh viên tốt nghiệp loại giỏi là 30%. Gặp ngẫu nhiên một sinh viên đã tốt nghiệp của trường. Sử dụng sơ đồ hình cây, tính xác suất của các biến cố: \(C\): “Sinh viên tốt nghiệp loại giỏi và tìm được việc làm đúng chuyên ngành”. \(D\): “Sinh viên không tốt nghiệp loại giỏi và tìm được việc làm đúng chuyên ngành”. | Từ sơ đồ hình cây, ta suy ra \(P\left( C
ight) = P\left( {MN}
ight) = 0,255\) và \(P\left( D
ight) = P\left( {ar MN}
ight) = 0,49.\) |
https://loigiaihay.com/giai-bai-tap-1-trang-75-sgk-toan-12-tap-2-chan-troi-sang-tao-a171930.html | Một thư viện có 35% tổng số sách là sách khoa học, 14% tổng số sách là sách khoa học tự nhiên. Chọn ngẫu nhiên một quyển sách của thư viện. Tính xác suất để quyển sách được chọn là sách khoa học tự nhiên, biết rằng đó là quyển sách về khoa học. | Gọi \(A\) là biến cố “Chọn được sách khoa học tự nhiên” và \(B\) là biến cố “Chọn được sách khoa học”. Biến cố \(AB\) là biến cố “Chọn được sách khoa học và khoa học tự nhiên”, tức là “chọn được sách khoa học tự nhiên”. Suy ra \(P\left( {AB} \right) = P\left( A \right) = 0,14\). Ta cũng có \(P\left( B \right) = 0,35\). Suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,14}}{{0,35}} = 0,4\). Vậy xác suất để sách được chọn là sách khoa học tự nhiên, biết đó là sách khoa học là 0,4. |
https://loigiaihay.com/giai-bai-tap-2-trang-75-sgk-toan-12-tap-2-chan-troi-sang-tao-a171932.html | Cho hai biến cố \(A\) và \(B\) có \(P\left( A \right) = 0,4\); \(P\left( B \right) = 0,8\) và \(P\left( {A|\bar B} \right) = 0,5\). Tính \(P\left( {A\bar B} \right)\) và \(P\left( {A|B} \right)\). | Ta có \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,8 = 0,2\).Do \(P\left( {A|\bar B} \right) = \frac{{P\left( {A\bar B} \right)}}{{P\left( {\bar B} \right)}}\) nên \(P\left( {A\bar B} \right) = P\left( {A|\bar B} \right).P\left( {\bar B} \right) = 0,5.0,2 = 0,1\).Ta có \(A\bar B\) và \(AB\) là các biến cố xung khắc và \(A\bar B \cup AB = A\) nên \(P\left( {AB} \right) = P\left( A \right) - P\left( {A\bar B} \right) = 0,3 - 0,1 = 0,2\).Suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,2}}{{0,8}} = 0,25\). |
https://loigiaihay.com/giai-bai-tap-3-trang-75-sgk-toan-12-tap-2-chan-troi-sang-tao-a171936.html | Mỗi bạn học sinh trong lớp của Minh lựa chọn học một trong hai ngoại ngữ là tiếng Anh hoặc tiếng Nhật. Xác suất chọn tiếng Anh của mỗi bạn học sinh nữ là 0,6 và của mỗi bạn học sinh nam là 0,7. Lớp của Minh có 25 bạn nữ và 20 bạn nam. Chọn ra ngẫu nhiên một bạn trong lớp. Sử dụng sơ đồ hình cây, tính xác suất của các biến cố: \(A\): “Bạn được chọn là nam và học tiếng Nhật” \(B\): “Bạn được chọn là nữ và học tiếng Anh” | Gọi \(M\) là biến cố “Bạn được chọn là nam”, \(N\) là biến cố “Bạn được chọn học tiếng Anh”. Lớp có 25 bạn nữ và 20 bạn nam nên xác suất chọn được 1 bạn nam là \(P\left( M \right) = \frac{{20}}{{45}} = \frac{4}{9}\). Từ đó, ta có sơ đồ hình cây sau: Từ sơ đồ hình cây, suy ra: \(P\left( A \right) = P\left( {M\bar N} \right) = \frac{2}{{15}}\) và \(P\left( B \right) = P\left( {\bar MN} \right) = \frac{1}{3}.\) |
https://loigiaihay.com/giai-bai-tap-4-trang-75-sgk-toan-12-tap-2-chan-troi-sang-tao-a171939.html | Máy tính và thiết bị lưu điện (UPS) được kết nối như hình dưới đây. Khi xảy ra sự cố điện, UPS bị hỏng với xác suất 0,02. Nếu UPS bị hỏng khi xảy ra sự cố điện, máy tính sẽ bị hỏng với xác suất 0,1; ngược lại, nếu UPS không bị hỏng, máy tính sẽ không bị hỏng. a) Tính xác suất để cả UPS và máy tính đều không bị hỏng khi xảy ra sự cố điện. | Gọi \(M\) là biến cố “UPS không bị hỏng”, \(N\) là biến cố “Máy tính không bị hỏng”. Từ sơ đồ hình cây, ta suy ra xác suất để cả UPS và máy tính không bị hỏng là \(P\left( {MN} \right) = 0,98\). |
https://loigiaihay.com/giai-bai-tap-4-trang-75-sgk-toan-12-tap-2-chan-troi-sang-tao-a171939.html | Máy tính và thiết bị lưu điện (UPS) được kết nối như hình dưới đây. Khi xảy ra sự cố điện, UPS bị hỏng với xác suất 0,02. Nếu UPS bị hỏng khi xảy ra sự cố điện, máy tính sẽ bị hỏng với xác suất 0,1; ngược lại, nếu UPS không bị hỏng, máy tính sẽ không bị hỏng. b) Tính xác suất để cả UPS và máy tính đều bị hỏng khi xảy ra sự cố điện. | Gọi \(M\) là biến cố “UPS không bị hỏng”, \(N\) là biến cố “Máy tính không bị hỏng”. Từ sơ đồ hình cây, ta suy ra xác suất để cả UPS và máy tính bị hỏng là \(P\left( {\bar M\bar N} \right) = 0,002\). |
https://loigiaihay.com/ly-thuyet-cong-thuc-xac-suat-toan-phan-va-cong-thuc-bayes-toan-12-chan-troi-sang-tao-a176705.html | Một loại xét nghiệm nhanh SARS-CoV-2 cho kết quả dương tính với 76,2% các ca thực sự nhiễm virus và kết quả âm tính với 99,1% các ca thực sự không nhiễm virus. Giả sử tỉ lệ người nhiễm virus SARS-CoV-2 trong một cộng đồng là 1%. Một người trong cộng đồng đó làm xét nghiệm và nhận được kết quả dương tính. Hỏi khả năng người đó thực sự nhiễm virus là cao hay thấp? | Gọi A là biến cố "Người làm xét nghiệm có kết quả dương tính" và B là biến cố "Người làm xét nghiệm thực sự nhiễm virus". Đối với xét nghiệm cho kết quả dương tính, có 76,2% các ca thực sự nhiễm virus nên P(A∣B) = 0,762. Đối với xét nghiệm cho kết quả âm tính, có 99,1% các ca thực sự không nhiễm virus nên P(A̅|B̅) = 0,991. Suy ra P(A̅|B) = 1 - 0,991 = 0,009. Do tỉ lệ người nhiễm virus trong cộng đồng là 1%, nên P(B) = 0,01 và P(B̅) = 0,99. Áp dụng công thức xác suất toàn phần, ta có xác suất người làm xét nghiệm có kết quả dương tính là: P(A) = P(B).P(A∣B) + P(B) P(A∣B) = 0,01.0,762 + 0,99.0,009 = 0,01653. |
https://loigiaihay.com/ly-thuyet-cong-thuc-xac-suat-toan-phan-va-cong-thuc-bayes-toan-12-chan-troi-sang-tao-a176705.html | a) Tính xác suất để sản phẩm đó bị lỗi. | Gọi A là biến cố “Sản phẩm được kiểm tra bị lỗi” và B là biến cố “Sản phẩm được kiểm tra do phân xưởng I sản xuất”. Do phân xưởng I sản xuất 40% số sản phẩm và phân xưởng II sản xuất 60% số sản phẩm nên P(B) = 0,4 và P(\overline B) = 1 - 0,4 = 0,6. Do tỷ lệ sản phẩm bị lỗi của phân xưởng I là 2% và của phân xưởng II là 1% nên: P(A|B) = 0,02 và P(A|\overline B) = 0,01. Xác suất để sản phẩm được kiểm tra bị lỗi là: P(A) = P(B).P(A|B) + P(\overline B).P(A|\overline B) = 0,4.0,02 + 0,6.0,01 = 0,014. |
https://loigiaihay.com/ly-thuyet-cong-thuc-xac-suat-toan-phan-va-cong-thuc-bayes-toan-12-chan-troi-sang-tao-a176705.html | b) Biết rằng sản phẩm được kiểm tra bị lỗi. Hỏi xác suất sản phẩm đó do phân xưởng nào sản xuất cao hơn? | Nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng I sản xuất là: P(B|A) = \frac{P(B).P(A|B)}{P(A)} = \frac{0,4.0,02}{0,014} = \frac{4}{7}. Nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng II sản xuất là: P(\overline B|A) = 1 - P(B|A) = \frac{3}{7}. Vậy nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng I sản xuất cao hơn xác suất sản phẩm đó do phân xưởng II sản xuất. |
https://loigiaihay.com/giai-muc-1-trang-76-77-sgk-toan-12-tap-2-chan-troi-sang-tao-a171941.html | Chị An trả lời hai câu hỏi. Xác suất trả lời đúng câu hỏi thứ nhất là 0,7. Xác suất trả lời đúng câu hỏi thứ hai là 0,9 nếu chị An trả lời đúng câu hỏi thứ nhất và là 0,5 nếu chị An không trả lời đúng câu hỏi thứ nhất. Gọi \(A\) là biến cố “Chị An trả lời đúng câu hỏi thứ nhất” và \(B\) là biến cố “Chị An trả lời đúng câu hỏi thứ hai”. Hãy tìm các giá trị thích hợp điền vào các ô ? ở sơ đồ hình cây. | Do xác suất chị An trả lời đúng câu hỏi thứ nhất là 0,7 nên xác suất chị An trả lời sai câu hỏi thứ nhất là \(1 - 0,7 = 0,3\), suy ra \(P\left( {\bar A} \right) = 0,3\). Với trường hợp chị An trả lời đúng câu thứ nhất, xác suất chị trả lời đúng câu thứ hai là 0,9. Suy ra xác suất chị trả lời sai câu thứ hai là \(P\left( {\bar B|A} \right) = 1 - 0,9 = 0,1\). Suy ra \(P\left( {A\bar B} \right) = 0,7.0,1 = 0,07\). Với trường hợp chị An trả lời sai câu thứ nhất, xác suất chị trả lời đúng câu thứ hai là 0,5. Suy ra xác suất chị trả lời sai câu thứ hai là \(P\left( {\bar B|\bar A} \right) = 1 - 0,5 = 0,5\). Suy ra \(P\left( {\bar A\bar B} \right) = 0,3.0,5 = 0,15\). |
https://loigiaihay.com/giai-muc-1-trang-76-77-sgk-toan-12-tap-2-chan-troi-sang-tao-a171941.html | Vào mỗi buổi sáng ở tuyến phố H, xác suất xảy ra tắc đường khi trời mưa và không mưa lần lượt là 0,7 và 0,2. Xác suất có mưa vào một buổi sáng là 0,1. Tính xác suất để sáng đó tuyến phố H bị tắc đường. | Gọi \(A\) là biến cố “Tuyến phố H bị tắc đường”, \(B\) là biến cố “Sáng hôm đó trời mưa”. Theo đề bài, ta có \(P\left( B \right) = 0,1\); \(P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\bar B} \right) = 0,2\). Ta có \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,1 = 0,9\). Như vậy, xác suất để sáng hôm đó tuyến phố H bị tắc đường là \(P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( {\bar B} \right)P\left( {A|\bar B} \right) = 0,1.0,7 + 0,9.0,2 = 0,25\). |
https://loigiaihay.com/giai-muc-2-trang-77-78-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172002.html | Khảo sát thị lực của 100 học sinh, ta thu được bảng số liệu sau:
Chọn ngẫu nhiên 1 bạn trong 100 học sinh trên.
a) Biết rằng bạn đó có tật khúc xạ, tính xác suất bạn đó là học sinh nam.
b) Biết rằng bạn đó là học sinh nam, tính xác suất bạn đó có tật khúc xạ. | a) Có tất cả \(12 + 18 = 30\) bạn bị tật khúc xạ, trong đó có 18 bạn nam. Vậy xác suất của biến cố là \(rac{{18}}{{30}} = 0,6\).
b) Có tất cả \(18 + 32 = 50\) bạn nam, trong đó có 18 bạn bị tật khúc xạ. Vậy xác suất của biến cố là \(rac{{18}}{{50}} = 0,36\). |
https://loigiaihay.com/giai-muc-2-trang-77-78-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172002.html | Khi phát hiện một vật thể bay, xác suất một hệ thống radar phát cảnh báo là 0,9 nếu vật thể bay đó là mục tiêu thật và là 0,05 nếu đó là mục tiêu giả. Có 99% các vật thể bay là mục tiêu giả. Biết rằng hệ thống radar đang phát cảnh báo khi phát hiện một vật thể bay. Tính xác suất vật thể đó là mục tiêu thật. | Gọi \(A\) là biến cố “Radar phát cảnh báo”, \(B\) là biến cố “Vật thể bay là mục tiêu thật”. Xác suất cần tính là \(P\left( {B|A} \right)\). Theo đề bài, ta có \(P\left( {A|B} \right) = 0,9\); \(P\left( {A|\bar B} \right) = 0,05\); \(P\left( B \right) = 1 - 0,99 = 0,01\) và \(P\left( {\bar B} \right) = 0,99\). Áp dụng công thức tính xác suất toàn phần, ta có: \(P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( {\bar B} \right)P\left( {A|\bar B} \right) = 0,01.0,9 + 0,99.0,05 = 0,0585.\) Vậy khi radar phát cảnh báo, xác suất vật thể đó là mục tiêu thật là: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,01.0,9}}{{0,0585}} = \frac{2}{{13}}.\) |
https://loigiaihay.com/giai-muc-2-trang-77-78-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172002.html | Người ta điều tra thấy ở một địa phương nọ có 2% tài xế sử dụng điện thoại di động khi lái xe. Trong các vụ tai nạn ở địa phương đó, người ta nhận thấy có 10% là do tài xế có sử dụng điện thoại khi lái xe gây ra. Hỏi việc sử dụng điện thoại di động khi lái xe làm tăng xác suất gây tai nạn lên bao nhiêu lần? | Gọi \(A\) là biến cố “Tài xế gây tai nạn”, \(B\) là biến cố “Tài xế có sử dụng điện thoại di động”. Suy ra \(P\left( {A|B} \right)\) là xác suất tài xế gây tai nạn khi sử dụng điện thoại, và \(P\left( {A|\bar B} \right)\) là xác suất tài xế gây tai nạn khi không sử dụng điện thoại. Theo đề bài ta có \(P\left( B \right) = 0,02\), \(P\left( {B|A} \right) = 0,1\), suy ra \(P\left( {\bar B} \right) = 1 - 0,02 = 0,98\) và \(P\left( {\bar B|A} \right) = 1 - 0,1 = 0,9\). Áp dụng công thức xác suất toàn phần, ta có \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right) = 0,02.P\left( {A|B} \right) + 0,98.P\left( {A|\bar B} \right)\) Mặt khác, theo công thức Bayes ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} \Rightarrow P\left( A \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( {B|A} \right)}} = \frac{{0,02.P\left( {A|B} \right)}}{{0,1}} = 0,2.P\left( {A|B} \right)\) Suy ra \(0,2.P\left( {A|B} \right) = 0,02.P\left( {A|B} \right) + 0,98P\left( {A|\bar B} \right) \Rightarrow 0,18.P\left( {A|B} \right) = 0,98.P\left( {A|\bar B} \right)\) Vậy \(\frac{{P\left( {A|B} \right)}}{{P\left( {A|\bar B} \right)}} = \frac{{0,98}}{{0,18}} = \frac{{49}}{9} \approx 5,4\). Điều đó có nghĩa khi sử dụng điện thoại, xác suất tài xế gây tai nạn khi lái xe sẽ tăng khoảng 5,4 lần. |
https://loigiaihay.com/giai-bai-tap-1-trang-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172003.html | Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai. a) Tính xác suất để hai viên bi lấy ra từ hộp thứ hai là bi đỏ. | Gọi \(A\) là biến cố “Lần thứ nhất lấy được viên bi đỏ”, \(B\) là biến cố “Lần thứ hai lấy ra được 2 viên bi đỏ”. Theo đề bài, ta có \(P\left( A \right) = \frac{6}{{3 + 6}} = \frac{2}{3}\) và \(P\left( {\bar A} \right) = \frac{3}{{3 + 6}} = \frac{1}{3}.\) Trường hợp lần thứ nhất lấy được viên bi đỏ bỏ vào hộp thứ hai, lúc này hộp thứ hai sẽ có 3 bi xanh và 8 bi đỏ, do đó \(P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{11}^2}} = \frac{{28}}{{55}}.\) Trường hợp lần thứ nhất lấy được viên bi xanh bỏ vào hộp thứ hai, lúc này hộp thứ hai sẽ có 4 viên bi xanh và 7 viên bi đỏ, do đó \(P\left( {B|\bar A} \right) = \frac{{C_7^2}}{{C_{11}^2}} = \frac{{21}}{{55}}.\) Xác suất để lấy được hai viên bi đỏ ở hộp thứ hai là: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = \frac{2}{3}.\frac{{28}}{{55}} + \frac{1}{3}.\frac{{21}}{{55}} = \frac{7}{{15}}.\) |
https://loigiaihay.com/giai-bai-tap-1-trang-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172003.html | Hộp thứ nhất có 3 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ hai. Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ, tính xác suất viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ. | Gọi \(A\) là biến cố “Lần thứ nhất lấy được viên bi đỏ”, \(B\) là biến cố “Lần thứ hai lấy ra được 2 viên bi đỏ”. Theo đề bài, ta có \(P\left( A \right) = \frac{6}{{3 + 6}} = \frac{2}{3}\) và \(P\left( {\bar A} \right) = \frac{3}{{3 + 6}} = \frac{1}{3}.\) Trường hợp lần thứ nhất lấy được viên bi đỏ bỏ vào hộp thứ hai, lúc này hộp thứ hai sẽ có 3 bi xanh và 8 bi đỏ, do đó \(P\left( {B|A} \right) = \frac{{C_8^2}}{{C_{11}^2}} = \frac{{28}}{{55}}.\) Trường hợp lần thứ nhất lấy được viên bi xanh bỏ vào hộp thứ hai, lúc này hộp thứ hai sẽ có 4 viên bi xanh và 7 viên bi đỏ, do đó \(P\left( {B|\bar A} \right) = \frac{{C_7^2}}{{C_{11}^2}} = \frac{{21}}{{55}}.\) Xác suất để viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ, nếu lấy ra được 2 viên bi đỏ ở hộp thứ hai là: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{2}{3}.\frac{{28}}{{55}}}}{{\frac{7}{{15}}}} = \frac{8}{{11}}.\) |
https://loigiaihay.com/giai-bai-tap-2-trang-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172004.html | Trong một trường học, tỉ lệ học sinh nữ là 52%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 18% và 15%. Chọn ngẫu nhiên 1 học sinh của trường. a) Tính xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật. | Gọi \(A\) là biến cố “Chọn được 1 học sinh nữ”, \(B\) là biến cố “Chọn được 1 học sinh tham gia câu lạc bộ nghệ thuật”. Theo đề bài, ta có \(P\left( A \right) = 0,52 \Rightarrow P\left( {\bar A} \right) = 1 - 0,52 = 0,48\); \(P\left( {B|A} \right) = 0,18\) và \(P\left( {B|\bar A} \right) = 0,15\). Xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật là: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = 0,52.0,18 + 0,48.0,15 = 0,1656\) |
https://loigiaihay.com/giai-bai-tap-2-trang-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172004.html | Trong một trường học, tỉ lệ học sinh nữ là 52%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 18% và 15%. Chọn ngẫu nhiên 1 học sinh của trường. b) Biết rằng học sinh được chọn có tham gia câu lạc bộ nghệ thuật. Tính xác suất học sinh đó là nam. | Xác suất học sinh được chọn là nam, biết rằng em đó có tham gia câu lạc bộ nghệ thuật là: \(P\left( {\bar A|B} \right) = \frac{{P\left( {\bar A} \right).P\left( {B|\bar A} \right)}}{{P\left( B \right)}} = \frac{{0,48.0,15}}{{0,1656}} = \frac{{10}}{{23}}.\) |
https://loigiaihay.com/giai-bai-tap-3-trang-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172005.html | Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là 65%. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A là 5%; trong số những người chưa tiêm phòng, tỉ lệ mắc bệnh A là 17%. Chọn ngẫu nhiên một người ở địa phương đó. a) Tính xác suất người được chọn mắc bệnh A. | Gọi \(A\) là biến cố “Người được chọn đã tiêm phòng”, \(B\) là biến cố “Người được chọn mắc bệnh A”. Xác suất cần tính là \(P\left( B \right)\). Để tính được xác suất này, ta sử dụng công thức tính xác suất toàn phần: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right).\) Theo đề bài, ta có \(P\left( A \right) = 0,65 \Rightarrow P\left( {\bar A} \right) = 1 - 0,65 = 0,35\); \(P\left( {B|A} \right) = 0,05\) và \(P\left( {B|\bar A} \right) = 0,17.\) Xác suất người được chọn mắc bệnh A là: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = 0,65.0,05 + 0,35.0,17 = 0,092.\) |
https://loigiaihay.com/giai-bai-tap-3-trang-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172005.html | Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là 65%. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A là 5%; trong số những người chưa tiêm phòng, tỉ lệ mắc bệnh A là 17%. Chọn ngẫu nhiên một người ở địa phương đó. b) Biết rằng người được chọn mắc bệnh A. Tính xác suất người đó chưa tiêm vắc xin phòng bệnh A. | Gọi \(A\) là biến cố “Người được chọn đã tiêm phòng”, \(B\) là biến cố “Người được chọn mắc bệnh A”. Xác suất cần tính là \(P\left( {\bar A|B} \right)\). Sử dụng công thức Bayes để tính xác suất này. Theo đề bài, ta có \(P\left( A \right) = 0,65 \Rightarrow P\left( {\bar A} \right) = 1 - 0,65 = 0,35\); \(P\left( {B|A} \right) = 0,05\) và \(P\left( {B|\bar A} \right) = 0,17.\) Xác suất người được chọn chưa tiêm phòng, nếu người đó mắc bệnh A là: \(P\left( {\bar A|B} \right) = \frac{{P\left( {\bar A} \right).P\left( {B|\bar A} \right)}}{{P\left( B \right)}} = \frac{{0,35.0,17}}{{0,092}} = \frac{{119}}{{184}}.\) |
https://loigiaihay.com/giai-bai-tap-4-trang-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172006.html | Ở một khu rừng nọ có 7 chú lùn, trong đó có 4 chú luôn nói thật, 3 chú còn lại luôn tự nhận mình nói thật nhưng xác suất để mỗi chú này nói thật là 0,5. Bạn Tuyết gặp ngẫu nhiên 1 chú lùn. Gọi \(A\) là biến cố “Chú lùn đó luôn nói thật” và \(B\) là biến cố “Chú lùn đó tự nhận mình luôn nói thật”. a) Tính xác suất của các biến cố \(A\) và \(B\). | Có 7 chú lùn, trong đó có 4 chú lùn luôn nói thật, nên xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{4}{7}\). Suy ra \(P\left( {\bar A} \right) = 1 - \frac{4}{7} = \frac{3}{7}\). Nếu chọn được chú lùn luôn nói thật, xác suất chú lùn đó nói thật là 1. Như vậy \(P\left( {B|A} \right) = 1\). Nếu chọn được chú lùn tự nhận mình nói thật, xác suất chú lùn đó nói thật là 0,5. Như vậy \(P\left( {B|\bar A} \right) = 0,5\). Vậy xác suất của biến cố \(B\) là \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = \frac{4}{7}.1 + \frac{3}{7}.0,5 = \frac{{11}}{{14}}\). |
https://loigiaihay.com/giai-bai-tap-4-trang-79-sgk-toan-12-tap-2-chan-troi-sang-tao-a172006.html | Biết rằng chú lùn mà bạn Tuyết gặp tự nhận mình là người luôn nói thật. Tính xác suất để chú lùn đó luôn nói thật. | Xác suất chú lùn đó luôn nói thật, nếu bạn Tuyết gặp một chú lùn tự nhận mình nói thật là \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{4}{7}.1}}{{\frac{{11}}{{14}}}} = \frac{8}{{11}}\). |
https://loigiaihay.com/giai-bai-tap-1-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a172008.html | Cho hai biến cố \(A\) và \(B\) có \(P\left( A \right) = 0,8\); \(P\left( B \right) = 0,5\) và \(P\left( {AB} \right) = 0,2\). Xác suất của biến cố \(A\) với điều kiện \(B\) là | Xác suất cần tính là \(P\left( {A|B} \right)\). Sử dụng công thức tính xác suất có điều kiện để tính \(P\left( {A|B} \right)\).\n\(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,2}}{{0,5}} = 0,4\).\nVậy đáp án đúng là A. |
https://loigiaihay.com/giai-bai-tap-1-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a172008.html | Cho hai biến cố \(A\) và \(B\) có \(P\left( A \right) = 0,8\); \(P\left( B \right) = 0,5\) và \(P\left( {AB} \right) = 0,2\). Xác suất biến cố \(B\) không xảy ra với điều kiện biến cố \(A\) xảy ra là | Xác suất cần tính là \(P\left( {\bar B|A} \right)\). Sử dụng công thức tính xác suất có điều kiện để tính \(P\left( {B|A} \right)\), sau đó tính \(P\left( {\bar B|A} \right) = 1 - P\left( {B|A} \right)\).\nTa có \(P\left( {B|A} \right) = \frac{{P\left( {BA} \right)}}{{P\left( A \right)}} = \frac{{0,2}}{{0,8}} = 0,25\).\nSuy ra \(P\left( {\bar B|A} \right) = 1 - P\left( {B|A} \right) = 1 - 0,25 = 0,75\).\nVậy đáp án đúng là C. |
https://loigiaihay.com/giai-bai-tap-1-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a172008.html | Cho hai biến cố \(A\) và \(B\) có \(P\left( A \right) = 0,8\); \(P\left( B \right) = 0,5\) và \(P\left( {AB} \right) = 0,2\). Giá trị biểu thức \(\frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} - \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}}\) là | Từ câu a và b, tính \(\frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} - \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}}\).\n\(\frac{{P\left( {A|B} \right)}}{{P\left( A \right)}} - \frac{{P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,4}}{{0,8}} - \frac{{0,25}}{{0,5}} = 0\).\nVậy đáp án đúng là B. |
https://loigiaihay.com/giai-bai-tap-2-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a174004.html | Một nhà máy thực hiện khảo sát toàn bộ công nhân về sự hài lòng của họ về điều kiện làm việc tại phân xưởng. Kết quả khảo sát như sau: Gặp ngẫu nhiên một công nhân của nhà máy. Gọi \(A\) là biến cố “Công nhân đó làm việc tại phân xưởng I”. a) Xác suất của biến cố \(A\) là? | Tổng số công nhân trong nhà máy là \(37 + 63 + 13 + 27 = 140\) người. Số công nhân trong nhà máy làm việc tại phân xưởng I là \(37 + 13 = 50\) người. Vậy xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{50}}{{140}} = \frac{5}{{14}}\). Vậy đáp án đúng là C. |
https://loigiaihay.com/giai-bai-tap-2-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a174004.html | Một nhà máy thực hiện khảo sát toàn bộ công nhân về sự hài lòng của họ về điều kiện làm việc tại phân xưởng. Kết quả khảo sát như sau: Gặp ngẫu nhiên một công nhân của nhà máy. Gọi \(A\) là biến cố “Công nhân đó làm việc tại phân xưởng I” và \(B\) là biến cố “Công nhân đó hài lòng với điều kiện làm việc tại phân xưởng”. b) Xác suất của biến cố \(A\) với điều kiện \(B\) là? | Xác suất cần tính là \(P\left( {A|B} \right)\), có nghĩa là tính xác suất công nhân đó làm việc tại phân xưởng I, nếu công nhân đó hài lòng với điều kiện làm việc tại phân xưởng. Trong nhà máy, số công nhân hài lòng với điều kiện làm việc tại phân xưởng là \(37 + 63 = 100\) người, trong đó có 37 người làm ở phân xưởng I. Như vậy \(P\left( {A|B} \right) = \frac{{37}}{{100}} = 0,37\). Vậy đáp án đúng là A. |
https://loigiaihay.com/giai-bai-tap-2-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a174004.html | Một nhà máy thực hiện khảo sát toàn bộ công nhân về sự hài lòng của họ về điều kiện làm việc tại phân xưởng. Kết quả khảo sát như sau: Gặp ngẫu nhiên một công nhân của nhà máy. Gọi \(A\) là biến cố “Công nhân đó làm việc tại phân xưởng I” và \(B\) là biến cố “Công nhân đó hài lòng với điều kiện làm việc tại phân xưởng”. c) Xác suất của biến cố \(B\) với điều kiện \(A\) không xảy ra là? | Xác suất cần tính là \(P\left( {B|\bar A} \right)\), có nghĩa là tính xác suất công nhân đó hài lòng với điều kiện làm việc tại phân xưởng, nếu công nhân đó không làm việc tại phân xưởng I (đồng nghĩa công nhân đó làm việc tại phân xưởng II). Trong nhà máy có \(63 + 27 = 90\) công nhân làm việc tại phân xưởng II, trong đó có 63 người hài lòng với điều kiện làm việc của phân xưởng. Do đó \(P\left( {B|\bar A} \right) = \frac{{63}}{{90}} = 0,7\). Vậy đáp án đúng là C. |
https://loigiaihay.com/giai-bai-tap-3-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a174005.html | Cho sơ đồ hình cây dưới đây. a) Xác suất của biến cố cả \(A\) và \(B\) đều không xảy ra là | Dựa vào sơ đồ hình cây, xác suất của biến cố cả \(A\) và \(B\) đều không xảy ra là \(P\left( {\bar A\bar B} \right) = 0,8.0,4 = 0,32\). Vậy đáp án đúng là A. |
https://loigiaihay.com/giai-bai-tap-3-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a174005.html | b) Xác suất của biến cố \(B\) là | Với công thức xác suất toàn phần, ta có \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right)\). Dựa vào sơ đồ hình cây, ta có \(P\left( A \right) = 0,2\); \(P\left( {B|A} \right) = 0,7\); \(P\left( {\bar A} \right) = 0,8\); \(P\left( {B|\bar A} \right) = 0,6\). Do đó \(P\left( B \right) = 0,2.0,7 + 0,8.0,6 = 0,62\). Vậy đáp án đúng là B. |
https://loigiaihay.com/giai-bai-tap-3-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a174005.html | c) Xác suất điều kiện \(P\left( {A|B} \right)\) là | Sử dụng công thức Bayes, ta có \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}}\). Ta có \(P\left( A \right) = 0,2\); \(P\left( {B|A} \right) = 0,7\); \(P\left( B \right) = 0,62\). Suy ra \(P\left( {A|B} \right) = \frac{{0,2.0,7}}{{0,62}} = \frac{7}{{31}}\). Vậy đáp án đúng là A. |
https://loigiaihay.com/giai-bai-tap-3-trang-80-sgk-toan-12-tap-2-chan-troi-sang-tao-a174005.html | d) Giá trị của biểu thức \(\frac{{P\left( B \right)P\left( {\bar A|B} \right)}}{{P\left( {\bar A} \right)}}\) là | Ta có \(P\left( {A|B} \right) = \frac{7}{{31}}\), suy ra \(P\left( {\bar A|B} \right) = 1 - \frac{7}{{31}} = \frac{{24}}{{31}}\). Ta có \(P\left( {\bar A} \right) = 0,8\). Như vậy \(\frac{{P\left( B \right)P\left( {\bar A|B} \right)}}{{P\left( {\bar A} \right)}} = \frac{{0,62.\frac{{24}}{{31}}}}{{0,8}} = 0,6\). Vậy đáp án đúng là D. |
https://loigiaihay.com/giai-bai-tap-4-trang-81-sgk-toan-12-tap-2-chan-troi-sang-tao-a174006.html | Một khu dân cư có 85% các hộ gia đình sử dụng điện để đun nước. Hơn nữa, có 21% các hộ gia đình sử dụng ấm điện siêu tốc. Chọn ngẫu nhiên một hộ gia đình, tính xác suất hộ đó sử dụng ấm điện siêu tốc, biết hộ đó sử dụng điện để đun nước. | Gọi \(A\) là biến cố “Hộ gia đình sử dụng điện để đun nước”, \(B\) là biến cố “Hộ gia đình sử dụng ấm điện siêu tốc”. Theo đề bài ta có \(P\left( A \right) = 0,85\); \(P\left( B \right) = 0,21\).Do hộ gia đình nếu sử dụng ấm điện siêu tốc để đun nước, hộ đó chắc chắn dùng điện để đun nước, nên ta có \(P\left( {A|B} \right) = 1\).Như vậy, với công thức Bayes, xác suất hộ đó sử dụng ấm điện siêu tốc, biết hộ đó sử dụng điện để đun nước là \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,21.1}}{{0,85}} = \frac{{21}}{{85}}\). |
https://loigiaihay.com/giai-bai-tap-5-trang-81-sgk-toan-12-tap-2-chan-troi-sang-tao-a174007.html | Cho hai biến cố ngẫu nhiên \(A\) và \(B\). Biết rằng \(P\left( {A|B} \right) = 2P\left( {B|A} \right)\) và \(P\left( {AB} \right) \ne 0\). Tính tỉ số \(\frac{{P\left( A \right)}}{{P\left( B \right)}}\). | Do \(P\left( {AB} \right) \ne 0\) và \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right) = P\left( B \right).P\left( {A|B} \right)\) nên \(P\left( {A|B} \right)\), \(P\left( B \right)\), \(P\left( A \right)\) và \(P\left( {B|A} \right)\) đều khác 0. Do \(P\left( A \right).P\left( {B|A} \right) = P\left( B \right).P\left( {A|B} \right)\) nên \(\frac{{P\left( A \right)}}{{P\left( B \right)}} = \frac{{P\left( {A|B} \right)}}{{P\left( {B|A} \right)}}\). Vậy \(\frac{{P\left( A \right)}}{{P\left( B \right)}} = \frac{{P\left( {A|B} \right)}}{{P\left( {B|A} \right)}} = 2\). |
https://loigiaihay.com/giai-bai-tap-6-trang-81-sgk-toan-12-tap-2-chan-troi-sang-tao-a174008.html | Phòng công nghệ của một công ty có 4 kĩ sư và 6 kĩ thuật viên. Chọn ra ngẫu nhiên đồng thời 3 người từ phòng. Tính xác suất để cả 3 người được chọn đều là kĩ sư, biết rằng trong 3 người được chọn có ít nhất 2 kĩ sư. | Gọi biến cố \(A\) là biến cố “Chọn được 3 kĩ sư”, \(B\) là biến cố “Chọn được 3 người trong đó ít nhất 2 kĩ sư”. Xác suất của biến cố \(A\) là \(P\left( A \right) = \frac{{C_4^3}}{{C_{10}^3}} = \frac{1}{{30}}\). Xác suất của biến cố \(B\) là \(P\left( B \right) = \frac{{C_4^3 + 6.C_4^2}}{{C_{10}^3}} = \frac{1}{3}\). Do nếu chọn được 3 kĩ sư, ta chắc chắn chọn được 3 người trong đó có ít nhất 2 kĩ sư. Như vậy \(P\left( {B|A} \right) = 1\). Vậy với công thức Bayes, xác suất để cả 3 người được chọn đều là kĩ sư, biết rằng trong 3 người được chọn có ít nhất 2 kĩ sư là: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{30}}.1}}{{\frac{1}{3}}} = 0,1\). |
https://loigiaihay.com/giai-bai-tap-7-trang-81-sgk-toan-12-tap-2-chan-troi-sang-tao-a174009.html | Có hai cái hộp giống nhau, hộp thứ nhất chứa 5 quả bóng bàn màu trắng và 3 quả bóng bàn màu vàng, hộp thứ hai chứa 4 quả bóng bàn màu trắng và 6 quả bóng bàn màu vàng. Các quả bóng có cùng kích thước và khối lượng. Minh lấy ra ngẫu nhiên 1 quả bóng từ hộp thứ nhất. Nếu quả bóng đó là bóng vàng thì Minh lấy ra ngẫu nhiên đồng thời 2 quả bóng từ hộp thứ hai; nếu quả bóng đó màu trắng thì Minh lấy ra ngẫu nhiên 3 quả bóng từ hộp thứ hai. a) Sử dụng sơ đồ hình cây, tính xác suất để có đúng 1 quả bóng màu vàng trong các quả bóng lấy ra từ hộp thứ hai. | Gọi \(A\) là biến cố “Lấy được quả bóng vàng ở hộp thứ nhất”, \(B\) là biến cố “Chọn được đúng 1 quả bóng vàng ở hộp thứ hai”.Ta có \(P\left( A \right) = \frac{3}{{3 + 5}} = \frac{3}{8}\) và \(P\left( {\bar A} \right) = 1 - \frac{3}{8} = \frac{5}{8}\).Khi lấy được quả bóng vàng ở hộp thứ nhất, Minh sẽ lấy ngẫu nhiên đồng thời 2 quả bóng ở hộp thứ hai. Do đó \(P\left( {B|A} \right) = \frac{{4.6}}{{C_{10}^2}} = \frac{8}{{15}}\).Khi lấy được quả bóng trắng ở hộp thứ nhất, Minh sẽ lấy ngẫu nhiên đồng thời 3 quả bóng ở hộp thứ hai. Do đó \(P\left( {B|\bar A} \right) = \frac{{6.C_4^2}}{{C_{10}^3}} = \frac{3}{{10}}\).Vậy ta có sơ đồ hình cây sau:Dựa vào sơ đồ hình cây, ta có \(P\left( B \right) = \frac{1}{5} + \frac{3}{{16}} = \frac{{31}}{{80}}\). |
https://loigiaihay.com/giai-bai-tap-7-trang-81-sgk-toan-12-tap-2-chan-troi-sang-tao-a174009.html | Có hai cái hộp giống nhau, hộp thứ nhất chứa 5 quả bóng bàn màu trắng và 3 quả bóng bàn màu vàng, hộp thứ hai chứa 4 quả bóng bàn màu trắng và 6 quả bóng bàn màu vàng. Các quả bóng có cùng kích thước và khối lượng. Minh lấy ra ngẫu nhiên 1 quả bóng từ hộp thứ nhất. Nếu quả bóng đó là bóng vàng thì Minh lấy ra ngẫu nhiên đồng thời 2 quả bóng từ hộp thứ hai; nếu quả bóng đó màu trắng thì Minh lấy ra ngẫu nhiên 3 quả bóng từ hộp thứ hai. b) Biết rằng các quả bóng lấy ra từ hộp thứ hai đều có màu trắng. Tính xác suất để quả bóng lấy ra từ hộp thứ nhất có màu vàng. | Gọi \(C\) là biến cố “Tất cả quả bóng lấy ra ở hộp thứ hai đều có màu trắng”. Xác suất cần tính là \(P\left( {A|C} \right)\).Ta có \(P\left( C \right) = P\left( A \right).P\left( {C|A} \right) + P\left( {\bar A} \right).P\left( {C|\bar A} \right)\).Nếu lấy được quả bóng màu vàng ở hộp thứ nhất, Minh sẽ lấy đồng thời ngẫu nhiên 2 quả ở hộp thứ hai. Do đó \(P\left( {C|A} \right) = \frac{{C_4^2}}{{C_{10}^2}} = \frac{2}{{15}}\).Nếu lấy được quả bóng màu trắng ở hộp thứ nhất, Minh sẽ lấy đồng thời ngẫu nhiên 3 quả ở hộp thứ hai. Do đó \(P\left( {C|\bar A} \right) = \frac{{C_4^3}}{{C_{10}^3}} = \frac{1}{{30}}\).Như vậy \(P\left( C \right) = \frac{3}{8}.\frac{2}{{15}} + \frac{5}{8}.\frac{1}{{30}} = \frac{{17}}{{240}}\).Vậy theo công thức Bayes, xác suất để xác suất để quả bóng lấy ra từ hộp thứ nhất có màu vàng là \(P\left( {A|C} \right) = \frac{{P\left( A \right).P\left( {C|A} \right)}}{{P\left( C \right)}} = \frac{{\frac{3}{8}.\frac{2}{{15}}}}{{\frac{{17}}{{240}}}} = \frac{{12}}{{17}}\). |
https://loigiaihay.com/giai-bai-tap-8-trang-81-sgk-toan-12-tap-2-chan-troi-sang-tao-a174010.html | Hộp thứ nhất có 1 viên bi xanh và 5 viên bi đỏ, hộp thứ hai có 3 viên bi xanh và 5 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi ở hộp thứ hai. Tính xác suất để hai viên bi lấy ra ở hộp thứ hai là bi đỏ. | Gọi \(A\) là biến cố “Hai viên bi lấy ra ở hộp thứ nhất là màu đỏ”, \(B\) là biến cố “Hai viên bi được lấy ra ở hộp thứ hai là màu đỏ”. Biến cố \(ar A\) là biến cố “Hai viên bi lấy ra ở hộp thứ nhất không phải là hai viên bi đỏ”, đồng nghĩa với “Hai viên bi lấy ra ở hộp thứ nhất là một bi xanh và một bi đỏ”. Ta có \(P\left( A
ight) = rac{{C_5^2}}{{C_6^2}} = rac{2}{3}\), suy ra \(P\left( {ar A}
ight) = 1 - rac{2}{3} = rac{1}{3}\). Trường hợp lấy được 2 viên bi đỏ ở hộp thứ nhất chuyển sang hộp thứ hai thì hộp thứ hai có 3 viên bi xanh và 7 viên bi đỏ. Do đó \(P\left( {B|A}
ight) = rac{{C_7^2}}{{C_{10}^2}} = rac{7}{{15}}\). Trường hợp lấy được 1 viên bi đỏ và 1 viên bi xanh ở hộp thứ nhất chuyển sang hộp thứ hai thì hộp thứ hai có 4 viên bi xanh và 6 viên bi đỏ. Do đó \(P\left( {B|ar A}
ight) = rac{{C_6^2}}{{C_{10}^2}} = rac{1}{3}\). Vậy xác suất để lấy được 2 viên bi đỏ ở hộp thứ hai là \(P\left( B
ight) = P\left( A
ight).P\left( {B|A}
ight) + P\left( {ar A}
ight).P\left( {B|ar A}
ight) = rac{2}{3}.rac{7}{{15}} + rac{1}{3}.rac{1}{3} = rac{{19}}{{45}}\). |
https://loigiaihay.com/giai-bai-tap-8-trang-81-sgk-toan-12-tap-2-chan-troi-sang-tao-a174010.html | Hộp thứ nhất có 1 viên bi xanh và 5 viên bi đỏ, hộp thứ hai có 3 viên bi xanh và 5 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên đồng thời 2 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên đồng thời 2 viên bi ở hộp thứ hai. Biết rằng 2 viên bi lấy ra từ hộp thứ hai là bi đỏ. Tính xác suất để hai viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ. | Xác suất để hai viên bi lấy ra từ hộp thứ nhất cũng là bi đỏ, nếu hai viên bi lấy ra từ hộp thứ hai cũng là bi đỏ là \(P\left( {A|B}
ight) = rac{{P\left( A
ight).P\left( {B|A}
ight)}}{{P\left( B
ight)}} = rac{{rac{2}{3}.rac{7}{{15}}}}{{rac{{19}}{{45}}}} = rac{{14}}{{19}}\). |
https://loigiaihay.com/giai-bai-tap-9-trang-81-sgk-toan-12-tap-2-chan-troi-sang-tao-a174012.html | Một doanh nghiệp có 45% nhân viên là nữ. Tỉ lệ nhân viên nữ và tỉ lệ nhân viên nam mua bảo hiểm nhân thọ lần lượt là 7% và 5%. Chọn ngẫu nhiên một nhân viên của doanh nghiệp. a) Tính xác suất nhân viên được chọn có mua bảo hiểm nhân thọ. | Gọi \(A\) là biến cố “Nhân viên được chọn là nam”, \(B\) là biến cố “Nhân viên được chọn có mua bảo hiểm nhân thọ”. Xác suất cần tính là \(P\left( B \right)\). Theo đề bài, ta có \(P\left( A \right) = 0,55\); \(P\left( {\bar A} \right) = 0,45\); \(P\left( {B|A} \right) = 0,05\) và \(P\left( {B|\bar A} \right) = 0,07\). Với công thức xác suất toàn phần, xác suất nhân viên được chọn có mua bảo hiểm nhân thọ là \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = 0,55.0,05 + 0,45.0,07 = 0,059\). |
https://loigiaihay.com/giai-bai-tap-9-trang-81-sgk-toan-12-tap-2-chan-troi-sang-tao-a174012.html | Một doanh nghiệp có 45% nhân viên là nữ. Tỉ lệ nhân viên nữ và tỉ lệ nhân viên nam mua bảo hiểm nhân thọ lần lượt là 7% và 5%. Chọn ngẫu nhiên một nhân viên của doanh nghiệp. b) Biết rằng nhân viên được chọn có mua bảo hiểm nhân thọ. Tính xác suất nhân viên đó là nam. | Theo công thức Bayes, xác suất để nhân viên được chọn là nam nếu nhân viên đó có mua bảo hiểm nhân thọ là \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,55.0,05}}{{0,059}} = \frac{{55}}{{118}}\). |
https://loigiaihay.com/giai-bai-61-trang-42-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174942.html | Cho \(P\left( A \right) = \frac{2}{5};{\rm{ }}P\left( B \right) = \frac{1}{3};{\rm{ }}P\left( {A \cup B} \right) = \frac{1}{2}\). Tính \(P\left( {A|B} \right)\) và \(P\left( {B|A} \right)\). | Ta có \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\) do đó \(\frac{2}{5} + \frac{1}{3} - P\left( {AB} \right) = \frac{1}{2} \Leftrightarrow P\left( {AB} \right) = \frac{7}{{30}}\). Suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{7}{{30}}:\frac{1}{3} = \frac{7}{{10}}\); \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{7}{{30}}:\frac{2}{5} = \frac{7}{{12}}\). |
https://loigiaihay.com/giai-bai-62-trang-42-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174943.html | Một túi đựng 5 viên bi đỏ và 3 viên bi xanh. Sơn lấy ngẫu nhiên một viên bi đưa cho Tùng rồi Tùng lấy ngẫu nhiên tiếp một viên bi. Tính xác suất để hai viên bi lấy ra có ít nhất một viên bi đỏ. | Gọi E là biến cố: “Trong hai viên bi lấy ra có ít nhất một viên bi đỏ”. Biến cố đối \(\overline E \) là biến cố: “Cả hai viên bi rút ra đều là viên bi xanh”. Gọi A là biến cố: “Sơn lấy được viên bi xanh”. B là biến cố: “Tùng lấy được viên bi xanh”. Khi đó \(\overline E = AB\). Ta có \(P\left( A \right) = \frac{3}{8};{\rm{ }}P\left( {B|A} \right) = \frac{2}{7}\). \(P\left( {\overline E } \right) = P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{3}{8} \cdot \frac{2}{7} = \frac{3}{{28}}\). Suy ra \(P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - \frac{3}{{28}} = \frac{{25}}{{28}}\). |
https://loigiaihay.com/giai-bai-63-trang-42-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174944.html | Một hộp chứa 20 tấm thẻ đánh số \(\left\{ {1;2;...;20} \right\}\). Nam rút ngẫu nhiên một tấm thẻ đưa cho Hà rồi Hà rút ngẫu nhiên tiếp một tấm thẻ. Tính xác suất để cả hai thẻ Hà nhận được đều ghi số nguyên tố. | Gọi E là biến cố: “Hai thẻ Hà nhận được đều ghi số nguyên tố”. Gọi A là biến cố: “Nam rút được tấm thẻ ghi số nguyên tố”. B là biến cố: “Hà rút được tấm thẻ ghi số nguyên tố”. Khi đó \(E = AB\). Trong hộp có 8 tấm thẻ ghi số nguyên tố \(\left\{ {2;3;5;7;11;13;17;19} \right\}\) suy ra \(n\left( A \right) = 8\). Ta có \(P\left( A \right) = \frac{8}{{20}} = \frac{2}{5}\). Nếu A xảy ra thì trong hộp còn 19 thẻ với 7 thẻ số nguyên tố, do đó \(P\left( {B|A} \right) = \frac{7}{{19}}\). Suy ra \(P\left( E \right) = P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{2}{5} \cdot \frac{7}{{19}} = \frac{{14}}{{95}}\). |
https://loigiaihay.com/giai-bai-64-trang-43-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174945.html | Một hộp chứa 17 viên bi đỏ, 13 viên bi xanh. An lấy ngẫu nhiên một viên bi đưa cho Bình rồi Bình lấy ngẫu nhiên tiếp một viên bi. Tính xác suất để hai viên bi Bình nhận được đều là bi đỏ. | Gọi E là biến cố: “Hai viên bi Bình nhận được đều là bi đỏ”. Gọi A là biến cố: “An lấy được một viên bi đỏ”. B là biến cố: “Bình lấy được một viên bi đỏ”. Khi đó \(E = AB\). Ta có \(P\left( A \right) = \frac{{17}}{{30}}\); \(P\left( {B|A} \right) = \frac{{16}}{{29}}\). Suy ra \(P\left( E \right) = P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = \frac{{17}}{{30}} \cdot \frac{{16}}{{29}} = \frac{{136}}{{435}}\). |
https://loigiaihay.com/giai-bai-64-trang-43-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174945.html | Một hộp chứa 17 viên bi đỏ, 13 viên bi xanh. An lấy ngẫu nhiên một viên bi đưa cho Bình rồi Bình lấy ngẫu nhiên tiếp một viên bi. Tính xác suất để hai viên bi Bình nhận được là hai viên bi khác màu. | Xét các biến cố đối: \(\overline A \) là biến cố: “An lấy được một viên bi xanh”. \(\overline B \) là biến cố: “Bình lấy được một viên bi xanh”. Khi đó với D là biến cố : “Hai viên bi Bình nhận được là hai viên bi khác màu” ta có: \(P\left( D \right) = P\left( {\overline A B} \right) + P\left( {A\overline B } \right)\). Ta có \(P\left( {\overline A } \right) = 1 - P\left( A \right) = 1 - \frac{{17}}{{30}} = \frac{{13}}{{30}}\); \(P\left( {B|\overline A } \right) = \frac{{17}}{{29}}\). Suy ra \(P\left( {\overline A B} \right) = P\left( {\overline A } \right) \cdot P\left( {B|\overline A } \right) = \frac{{13}}{{30}} \cdot \frac{{17}}{{29}} = \frac{{221}}{{870}}\). Ta có \(P\left( {\overline B |A} \right) = \frac{{13}}{{29}}\) suy ra \(P\left( {A\overline B } \right) = P\left( A \right) \cdot P\left( {\overline B |A} \right) = \frac{{17}}{{30}} \cdot \frac{{13}}{{29}} = \frac{{221}}{{870}}\). Vậy \(P\left( D \right) = \frac{{221}}{{870}} + \frac{{221}}{{870}} = \frac{{221}}{{435}}\). |
https://loigiaihay.com/giai-bai-65-trang-43-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174946.html | Cho hai biến cố A và B với \(P\left( A \right) > 0,{\rm{ }}P\left( A \right) > 0\). Chứng minh rằng nếu \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right)\) thì \(A,B\) độc lập. | Giả sử \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right)\) với \(P\left( A \right) > 0,{\rm{ }}P\left( A \right) > 0\).Ta có \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right) \cdot P\left( B \right)}}{{P\left( B \right)}} = P\left( A \right)\); \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{P\left( A \right) \cdot P\left( B \right)}}{{P\left( A \right)}} = P\left( B \right)\). Suy ra việc xảy ra biến cố B không ảnh hưởng tới xác suất xảy ra của biến cố A và ngược lại. Do đó A và B độc lập. |
https://loigiaihay.com/giai-bai-66-trang-43-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174947.html | Tung con xúc xắc cân đối liên tiếp hai lần. Xét các biến cố sau: A: “Xuất hiện mặt một chấm ở lần gieo thứ nhất”; B: “Xuất hiện mặt hai chấm ở lần gieo thứ hai”. Chứng minh rằng hai biến cố A và B độc lập. | Ta có \(A = \left\{ {(1,1);(1,2);(1,3);(1,4);(1,5);(1,6)} \right\}\);\(B = \left\{ {(1,2);(2,3);(3,2);(4,2);(5,2);(6,2)} \right\}\); \(AB = \left\{ {(1,2)} \right\}\)Suy ra \(P\left( A \right) = \frac{6}{{36}} = \frac{1}{6};P\left( B \right) = \frac{6}{{36}} = \frac{1}{6};P\left( {AB} \right) = \frac{1}{6} \Rightarrow P\left( {AB} \right) = P\left( A \right) \cdot P\left( B \right)\). Vậy hai biến cố A và B độc lập. |
https://loigiaihay.com/giai-bai-66-trang-43-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174947.html | Tung con xúc xắc cân đối liên tiếp hai lần. Xét các biến cố sau: B: “Xuất hiện mặt hai chấm ở lần gieo thứ hai”; C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 7”. Chứng minh rằng hai biến cố B và C độc lập. | Ta có \(C = \left\{ {(1,6);(2,5);(3,4);(4,3);(5,2);(6,1)} \right\}\); \(BC = \left\{ {(5,2)} \right\}\).Suy ra \(P\left( C \right) = \frac{6}{{36}} = \frac{1}{6} \Rightarrow P\left( {BC} \right) = P\left( B \right) \cdot P\left( C \right)\).Vậy hai biến cố B và C độc lập. |
https://loigiaihay.com/giai-bai-66-trang-43-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174947.html | Tung con xúc xắc cân đối liên tiếp hai lần. Xét các biến cố sau: A: “Xuất hiện mặt một chấm ở lần gieo thứ nhất”; C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 7”. Chứng minh rằng hai biến cố A và C độc lập. | Ta có \(AC = \left\{ {(1,6)} \right\}\) nên \(P\left( {AC} \right) = \frac{1}{6} \Rightarrow P\left( {AC} \right) = P\left( A \right) \cdot P\left( C \right)\).Vậy hai biến cố A và C độc lập. |
https://loigiaihay.com/giai-bai-67-trang-44-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174948.html | Trong kì thi học sinh giỏi quốc gia, tỉnh X có hai đội tuyển môn Toán và môn Ngữ văn tham dự. Đội tuyển Toán có 10 em, đội tuyển Ngữ văn có 8 em. Xác suất có giải của mỗi em trong đội tuyển Toán là 0,8; trong đội tuyển Ngữ văn là 0,7. Sau giải lấy ngẫu nhiên một em của tỉnh X trong số các em thi học sinh giỏi môn Toán và môn Ngữ văn. Tính xác suất để em đó là một em được giải. | Gọi A là biến cố: “Em đó thuộc đội tuyển môn Toán”; B là biến cố: “Em đó được giải”. Khi đó \(\overline A \) là biến cố: “Em đó thuộc đội tuyển môn Ngữ văn”. Ta có \(P\left( A \right) = \frac{{10}}{{18}}\), \(P\left( {B|A} \right) = 0,8\), \(P\left( {\overline A } \right) = \frac{8}{{18}}\), \(P\left( {B|\overline A } \right) = 0,7\). Theo công thức xác suất toàn phần ta có: \(P\left( B \right) = P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\bar A} \right) \cdot P\left( {B|\bar A} \right) = \frac{{10}}{{18}} \cdot 0,8 + \frac{8}{{18}} \cdot 0,7 = \frac{{148}}{{180}} = \frac{{37}}{{45}}\). |
https://loigiaihay.com/giai-bai-68-trang-45-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174949.html | Giải ngoại hạng Anh có 20 đội. Hiện tại đội Tottenham xếp vị trí thứ 8. Trong trận tới nếu gặp đội xếp trên thì Tottenham có xác suất thắng là 0,2; xác suất thua là 0,5. Nếu gặp đội xếp dưới thì Tottenham có xác suất thắng là 0,5 và xác suất thua là 0,3. Bốc thăm ngẫu nhiên một đội đấu với đội Tottenham trong trận tới. Tính xác suất để đội Tottenham hòa trong trận tới. | Gọi A là biến cố: “Tottenham gặp đội xếp trên”; B là biến cố: “Tottenham thắng”. C là biến cố: “Tottenham thua”. D là biến cố: “Tottenham hòa”.Ta có \(P\left( A \right) = \frac{7}{{19}}\), \(P\left( {\overline A } \right) = 1 - P\left( A \right) = \frac{{12}}{{19}}\);\(P\left( {D|A} \right) = 1 - 0,2 - 0,5 = 0,3\), \(P\left( {D|\overline A } \right) = 1 - 0,5 - 0,3 = 0,2\).Theo công thức xác suất toàn phần ta có: \(P\left( D \right) = P\left( A \right) \cdot P\left( {D|A} \right) + P\left( {\bar A} \right) \cdot P\left( {D|\bar A} \right) = \frac{7}{{19}} \cdot 0,3 + \frac{{12}}{{19}} \cdot 0,2 = \frac{9}{{38}}\). |
https://loigiaihay.com/giai-bai-69-trang-45-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174950.html | Có hai túi kẹo. Túi I có 3 chiếc kẹo sô cô la đen và 2 chiếc kẹo sô cô la trắng. Túi II có 4 chiếc kẹo sô cô la đen và 3 chiếc kẹo sô cô la trắng. Từ túi I lấy ngẫu nhiên một chiếc kẹo. Nếu là chiếc kẹo sô cô la đen thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Nếu là chiếc kẹo sô cô la trắng thì thêm hai chiếc kẹo sô cô la trắng vào túi II. Sau đó từ túi II lấy ngẫu nhiên một chiếc kẹo. Tính xác suất để lấy được chiếc kẹo sô cô la trắng. | Gọi A là biến cố: \"Lấy được một chiếc kẹo trắng từ túi I\"; B là biến cố: \"Lấy được một chiếc kẹo trắng từ túi II\".Ta có \(P\left( A \right) = \frac{2}{5}\), \(P\left( {\overline A } \right) = \frac{3}{5}\);\(P\left( {B|A} \right) = \frac{5}{9}\), \(P\left( {B|\overline A } \right) = \frac{3}{9} = \frac{1}{3}\).Theo công thức xác suất toàn phần ta có:\(P\left( B \right) = P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\bar A} \right) \cdot P\left( {B|\bar A} \right) = \frac{2}{5} \cdot \frac{5}{9} + \frac{3}{5} \cdot \frac{1}{3} = \frac{{19}}{{45}}\). |
https://loigiaihay.com/giai-bai-610-trang-45-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174951.html | Trong một nhà máy có hai phân xưởng. Phân xưởng I sản xuất 40% sản phẩm. Phân xưởng II sản xuất 60% sản phẩm. Xác suất làm ra phế phẩm của hai phân xưởng I và II tương ứng là 0,05 và 0,02. Chọn ngẫu nhiên một sản phẩm của nhà máy thì đó là phế phẩm. Tính xác suất để sản phẩm đó là do phân xưởng I sản xuất. | Gọi A là biến cố: “Sản phẩm của phân xưởng I”; B là biến cố: “Sản phẩm là phế phẩm”. Khi đó \(\overline{A}\) là biến cố:”Sản phẩm của phân xưởng II”; \(\overline{B}\) là biến cố: “Sản phẩm không là phế phẩm”. Ta có \(P\left( A \right) = 0,4\), \(P\left( B|A \right) = 0,05\); \(P\left( {\overline{A} } \right) = 1 - P\left( A \right) = 0,6\), \(P\left( {B|\overline{A} } \right) = 0,02\). Theo công thức Bayes ta có: \(P\left( {A|B} \right) = \frac{{P\left( A \right) \cdot P\left( {B|A} \right)}}{{P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\bar{A}} \right) \cdot P\left( {B|\bar{A}} \right)}} = \frac{{0,4 \cdot 0,05}}{{0,4 \cdot 0,05 + 0,6 \cdot 0,02}} = \frac{5}{8}\). |
https://loigiaihay.com/giai-bai-611-trang-45-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174952.html | Giá sách của Dũng có hai ngăn. Ngăn trên có 3 cuốn tiểu thuyết của các nhà văn Việt Nam và 2 cuốn tiểu thuyết của các nhà văn nước ngoài. Ngăn dưới chứa 4 cuốn tiểu thuyết của các nhà văn Việt Nam và 1 cuốn tiểu thuyết của các nhà văn nước ngoài. Dũng chọn một cuốn sách để mang đi khi du lịch theo cách sau: Tung một con xúc xắc cân đối. Nếu số chấm xuất hiện là 1 hoặc 2 thì chọn ngăn trên, nếu trái lại thì chọn ngăn dưới. Sau đó từ ngăn đã chọn lấy ngẫu nhiên một cuốn sách. Biết rằng cuốn sách Dũng chọn được là cuốn tiểu thuyết của nhà văn nước ngoài. Tính xác suất để cuốn sách thuộc ngăn trên. | Gọi A là biến cố: “Cuốn sách thuộc ngăn trên”; B là biến cố: “Cuốn sách là cuốn tiểu thuyết của nhà văn nước ngoài”.Ta cần tính \(P\left( {A|B} \right)\).Ta có \(P\left( A \right) = \frac{1}{3}\), \(P\left( {B|A} \right) = \frac{2}{5}\);\(P\left( {\overline A } \right) = \frac{2}{3}\), \(P\left( {B|\overline A } \right) = \frac{1}{5}\).Theo công thức Bayes ta có: \(P\left( {A|B} \right) = \frac{{P\left( A \right) \cdot P\left( {B|A} \right)}}{{P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\bar A} \right) \cdot P\left( {B|\bar A} \right)}} = \frac{1}{2}\). |
https://loigiaihay.com/giai-bai-612-trang-45-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174953.html | Có hai chuồng thỏ. Chuồng I có 12 con thỏ trắng và 13 con thỏ nâu. Chuồng II có 14 con thỏ trắng và 11 con thỏ nâu. Tung một con xúc xắc cân đối. Nếu xuất hiện 6 chấm thì ta chọn chuồng I, nếu trái lại ta chọn chuồng II. Từ chuồng chọn được bắt ngẫu nhiên một con thỏ. Giả sử bắt được con thỏ trắng. Tính xác suất để đó là con thỏ của chuồng II. | Gọi A là biến cố: “Chọn được chuồng II”; B là biến cố: “Bắt được con thỏ trắng”. Ta cần tính \(P\left( {A|B} \right)\). Ta có \(P\left( A \right) = \frac{5}{6}\), \(P\left( {\overline A } \right) = \frac{1}{6}\), \(P\left( {B|A} \right) = \frac{{14}}{{25}}\); \(P\left( {B|\overline A } \right) = \frac{{12}}{{25}}\). Theo công thức Bayes ta có: \(P\left( {A|B} \right) = \frac{{P\left( A \right) \cdot P\left( {B|A} \right)}}{{P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\bar A} \right) \cdot P\left( {B|\bar A} \right)}} = \frac{{35}}{{21}}\). |
https://loigiaihay.com/giai-bai-612-trang-45-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174953.html | Có hai chuồng thỏ. Chuồng I có 12 con thỏ trắng và 13 con thỏ nâu. Chuồng II có 14 con thỏ trắng và 11 con thỏ nâu. Tung một con xúc xắc cân đối. Nếu xuất hiện 6 chấm thì ta chọn chuồng I, nếu trái lại ta chọn chuồng II. Từ chuồng chọn được bắt ngẫu nhiên một con thỏ. Giả sử bắt được con thỏ nâu. Tính xác suất để đó là con thỏ của chuồng I. | Ta cần tính \(P\left( {\overline A |\overline B } \right)\). Ta có \(P\left( A \right) = \frac{5}{6}\), \(P\left( {\overline A } \right) = \frac{1}{6}\), \(P\left( {\overline B |\overline A } \right) = \frac{{13}}{{25}}\); \(P\left( {\overline B |A} \right) = \frac{{11}}{{25}}\). Theo công thức Bayes ta có: \(P\left( {\overline A |\overline B } \right) = \frac{{P\left( {\overline A } \right) \cdot P\left( {\overline B |\overline A } \right)}}{{P\left( {\overline A } \right) \cdot P\left( {\overline B |\overline A } \right) + P\left( A \right) \cdot P\left( {\overline B |A} \right)}} = \frac{{13}}{{68}}\). |
https://loigiaihay.com/giai-bai-613-trang-45-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174954.html | Cho \(P\left( A \right) = 0,2, P\left( B \right) = 0,5, P\left( {B|A} \right) = 0,8.\) Khi đó \(P\left( {A|B} \right)\) bằng | Ta có \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}}\) suy ra \(0,8 = \frac{{P\left( {AB} \right)}}{{0,2}} \Leftrightarrow P\left( {AB} \right) = 0,16\). Mặt khác \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\) suy ra \(P\left( {A|B} \right) = \frac{{0,16}}{{0,5}} = 0,32\). Vậy ta chọn đáp án A. |
https://loigiaihay.com/giai-bai-614-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174955.html | Chọn ngẫu nhiên một gia đình có 2 con. Biết rằng gia đình đó có con gái. Xác suất để gia đình đó có một con trai, một con gái là | Gọi A là biến cố: “Gia đình đó có một con trai, một con gái”; B là biến cố: “Gia đình đó có con gái”. Ta cần tính \(P\left( {A|B} \right)\). Ta có \(B = \left\{ {GT,GG,TG} \right\},n\left( B \right) = 3\); \(A = \left\{ {TG,GT} \right\},n\left( {AB} \right) = 2\). Do đó \(P\left( B \right) = \frac{3}{4}\); \(P\left( {AB} \right) = \frac{2}{4}\) suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{2}{3}\). Vậy ta chọn đáp án D. |
https://loigiaihay.com/giai-bai-615-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174956.html | Gieo hai con xúc xắc cân đối. Biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm. Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 7 là | Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”; B là biến cố: “Có một con xúc xắc xuất hiện mặt 5 chấm”. Ta cần tính \(P\left( {A|B} \right)\). Ta có \(A = \left\{ {\left( {1,6} \right);\left( {2,5} \right);\left( {3,4} \right);\left( {4,3} \right);\left( {5,2} \right);\left( {6,1} \right)} \right\}\)\(B = \left\{ {\left( {5,1} \right);\left( {1,5} \right);\left( {2,5} \right);\left( {5,2} \right);\left( {3,5} \right);\left( {5,3} \right);\left( {4,5} \right);\left( {5,4} \right);\left( {5,5} \right);\left( {6,5} \right);\left( {5,6} \right)} \right\}\). Suy ra \(AB = A \cap B = \left\{ {\left( {2,5} \right),\left( {5,2} \right)} \right\}\). Từ đó \(n\left( B \right) = 11,n\left( {AB} \right) = 2\). Do đó \(P\left( B \right) = \frac{{11}}{{36}},P\left( {AB} \right) = \frac{2}{{36}}\). Suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{2}{{11}}\). Vậy ta chọn đáp án B. |
https://loigiaihay.com/giai-bai-616-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174957.html | Tung hai con xúc xắc cân đối. Biết rằng tổng số chấm xuất hiện trên con xúc xắc bằng 8. Xác suất để ít nhất có một con xúc xắc xuất hiện mặt 3 chấm là | Gọi A là biến cố: “Ít nhất có một con xúc xắc xuất hiện mặt 3 chấm”; B là biến cố: “Tổng số chấm xuất hiện trên con xúc xắc bằng 8”. Ta cần tính \(P\left( {A|B} \right)\). Ta có \(B = \left\{ {\left( {2,6} \right);\left( {3,5} \right);\left( {4,4} \right);\left( {5,3} \right);\left( {6,2} \right)} \right\}\). Suy ra \(AB = A \cap B = \left\{ {\left( {3,5} \right),\left( {5,3} \right)} \right\}\). Từ đó \(n\left( B \right) = 5, n\left( {AB} \right) = 2\). Do đó \(P\left( B \right) = \frac{5}{{36}}, P\left( {AB} \right) = \frac{2}{{36}}\). Suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{2}{5}\). Vậy ta chọn đáp án A. |
https://loigiaihay.com/giai-bai-617-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174958.html | Một lớp 12 có 40 học sinh. Trong đó có 22 em đăng kí thi Đại học quốc gia (ĐHQG), 25 em đăng kí thi Đại học bách khoa (ĐHBK), 3 em không đăng kí thi cả hai đại học này. Chọn ngẫu nhiên một học sinh. Biết rằng em đó đăng kí thi ĐHQG. Xác suất em đó đăng kí thi ĐHBK là | Gọi A là biến cố: “Em đó đăng kí thi ĐHQG”; B là biến cố: “Em đó đăng kí thi ĐHBK”. Ta có biến cố \(A \cup B\): “Em đó đăng kí thi ĐHBK hoặc ĐHQG” là biến cố đối của biến cố “Em ấy không đăng kí thi cả hai đại học này”. Do đó \(P\left( A \right) = \frac{{22}}{{40}},P\left( B \right) = \frac{{25}}{{40}},P\left( {\overline A \overline B } \right) = \frac{3}{{40}}\). Suy ra \(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - \frac{3}{{40}} = \frac{{37}}{{40}}\). \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{{22}}{{40}} + \frac{{25}}{{40}} - \frac{{37}}{{40}} = \frac{{10}}{{40}}\). Vậy \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{{10}}{{22}} = \frac{5}{{11}}\). |
https://loigiaihay.com/giai-bai-618-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174959.html | Trong một lớp học nhạc có 60% là học sinh nữ. Biết rằng có 20% học sinh nữ học violon, 30% học sinh nam học violon. Chọn ngẫu nhiên một học sinh. a) Tính xác suất để học sinh này là nam và chơi violon. | Gọi A là biến cố: \Chọn được học sinh nam\; B là biến cố: \Chọn được học sinh chơi violon\. Ta có \(P\left( A \right) = 0,4;{\rm{ }}P\left( {\overline A } \right) = 0,6;{\rm{ }}P\left( {B|A} \right) = 0,3;{\rm{ }}P\left( {B|\overline A } \right) = 0,2\). Vậy \(P\left( {AB} \right) = P\left( A \right) \cdot P\left( {B|A} \right) = 0,4 \cdot 0,3 = 0,12\). |
https://loigiaihay.com/giai-bai-618-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174959.html | Trong một lớp học nhạc có 60% là học sinh nữ. Biết rằng có 20% học sinh nữ học violon, 30% học sinh nam học violon. Chọn ngẫu nhiên một học sinh. b) Tính xác suất để học sinh này học violon. | Theo công thức xác suất toàn phần, ta có: \(P\left( B \right) = P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\overline A } \right) \cdot P\left( {B|\overline A } \right) = 0,4 \cdot 0,3 + 0,6 \cdot 0,2 = 0,24\). |
https://loigiaihay.com/giai-bai-619-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174960.html | Một kì thi Toán có hai bài. Một bài thi theo hình thức trắc nghiệm. Một bài theo hình thức tự luận. Một lớp có 30 học sinh tham dự kì thi đó. Kết quả 25 học sinh đạt bài thi trắc nghiệm, 26 học sinh đạt bài thi tự luận; 3 học sinh không đạt cả hai bài. Chọn ngẫu nhiên một học sinh. Tính xác suất để: a) Học sinh đó đạt bài thi tự luận, biết rằng học sinh đó đạt bài thi trắc nghiệm. | Gọi A là biến cố: \(A\): Học sinh đó đạt bài thi tự luận; \(B\): Học sinh đó đạt bài thi trắc nghiệm. Ta có \(P(A) = \frac{26}{30}; P(B) = \frac{25}{30}; P(\overline{A} \overline{B}) = \frac{3}{30}\). Suy ra \(P(A \cup B) = 1 - P(\overline{A} \overline{B}) = 1 - \frac{3}{30} = \frac{27}{30}\). \(P(AB) = P(A) + P(B) - P(A \cup B) = \frac{26}{30} + \frac{25}{30} - \frac{27}{30} = \frac{24}{30}\). Vậy \(P(A|B) = \frac{P(AB)}{P(B)} = \frac{24}{25}\). |
https://loigiaihay.com/giai-bai-619-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174960.html | Một kì thi Toán có hai bài. Một bài thi theo hình thức trắc nghiệm. Một bài theo hình thức tự luận. Một lớp có 30 học sinh tham dự kì thi đó. Kết quả 25 học sinh đạt bài thi trắc nghiệm, 26 học sinh đạt bài thi tự luận; 3 học sinh không đạt cả hai bài. Chọn ngẫu nhiên một học sinh. Tính xác suất để: b) Học sinh đó đạt bài thi trắc nghiệm, biết rằng học sinh đó đạt bài thi tự luận. | Gọi A là biến cố: \(A\): Học sinh đó đạt bài thi tự luận; \(B\): Học sinh đó đạt bài thi trắc nghiệm. Ta có \(P(A) = \frac{26}{30}; P(B) = \frac{25}{30}; P(\overline{A} \overline{B}) = \frac{3}{30}\). Suy ra \(P(A \cup B) = 1 - P(\overline{A} \overline{B}) = 1 - \frac{3}{30} = \frac{27}{30}\). \(P(AB) = P(A) + P(B) - P(A \cup B) = \frac{26}{30} + \frac{25}{30} - \frac{27}{30} = \frac{24}{30}\). Vậy \(P(B|A) = \frac{P(AB)}{P(A)} = \frac{24}{26} = \frac{12}{13}\). |
https://loigiaihay.com/giai-bai-620-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174961.html | Thống kê kết quả của một đội bóng X trong 37 trận tại giải vô địch quốc gia ta có kết quả sau: Chọn ngẫu nhiên một trận. Tính xác suất để: a) Đó là trận đá thắng nếu biết rằng trận đó đá trên sân nhà. | Gọi A là biến cố: “Đó là trận thắng”; B là biến cố: “Đó là trận đá trên sân nhà”; AB là biến cố: “Đó là trận thắng và đá trên sân nhà”. Ta có \(n\left( A \right) = 11 + 6 = 17,{\rm{ }}n\left( B \right) = 11 + 5 + 3 = 19,{\rm{ }}n\left( {AB} \right) = 11\). Do đó \(P\left( A \right) = \frac{{17}}{{37}};{\rm{ P}}\left( B \right) = \frac{{19}}{{37}};{\rm{ }}P\left( {AB} \right) = \frac{{11}}{{37}}\). Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{11}}{{19}}\). |
https://loigiaihay.com/giai-bai-620-trang-46-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174961.html | Thống kê kết quả của một đội bóng X trong 37 trận tại giải vô địch quốc gia ta có kết quả sau: Chọn ngẫu nhiên một trận. Tính xác suất để: b) Đó là trận đá trên sân nhà nếu biết rằng trận đó thắng. | Gọi A là biến cố: “Đó là trận thắng”; B là biến cố: “Đó là trận đá trên sân nhà”; AB là biến cố: “Đó là trận thắng và đá trên sân nhà”. Ta có \(n\left( A \right) = 11 + 6 = 17,{\rm{ }}n\left( B \right) = 11 + 5 + 3 = 19,{\rm{ }}n\left( {AB} \right) = 11\). Do đó \(P\left( A \right) = \frac{{17}}{{37}};{\rm{ P}}\left( B \right) = \frac{{19}}{{37}};{\rm{ }}P\left( {AB} \right) = \frac{{11}}{{37}}\). Vậy \(P\left( {B|A} \right) = \frac{{P\left( {BA} \right)}}{{P\left( A \right)}} = \frac{{11}}{{17}}\). |
https://loigiaihay.com/giai-bai-621-trang-47-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174962.html | Chọn ngẫu nhiên một hộ gia đình. Tính xác suất để: a) Hộ đó nuôi 2 vật nuôi biết rằng hộ đó có 4 người; | Gọi A là biến cố: “Hộ đó nuôi 2 vật nuôi”; B là biến cố: “Hộ đó có 4 người”; Cần tính \(P\left( {A|B} \right)\). Ta có \({\rm{ }}n\left( B \right) = 7 + 12 + 11 + 7 = 37,{\rm{ }}n\left( {AB} \right) = 11\). Do đó \(P\left( B \right) = \frac{{37}}{{98}};{\rm{ }}P\left( {AB} \right) = \frac{{11}}{{98}}\). Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{11}}{{37}}\). |
https://loigiaihay.com/giai-bai-621-trang-47-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174962.html | Chọn ngẫu nhiên một hộ gia đình. Tính xác suất để: b) Hộ đó có 3 người biết rằng hộ đó có ít nhất 2 vật nuôi; | Gọi C là biến cố: “Hộ đó có 3 người”; D là biến cố: “Hộ đó có ít nhất 2 vật nuôi”. Cần tính \(P\left( {C|D} \right)\). Ta có \(n\left( D \right) = 29 + 16 = 45;n\left( {CD} \right) = 9 + 3 = 12\). Do đó \(P\left( D \right) = \frac{{29}}{{98}};P\left( {CD} \right) = \frac{{12}}{{98}}\). Vậy \(P\left( {C|D} \right) = \frac{{P\left( {CD} \right)}}{{P\left( D \right)}} = \frac{{12}}{{45}} = \frac{4}{{15}}\). |
https://loigiaihay.com/giai-bai-621-trang-47-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174962.html | Chọn ngẫu nhiên một hộ gia đình. Tính xác suất để: c) Hộ đó có ít nhất một vật nuôi, biết rằng hộ đó có ít nhất 4 người. | Gọi E là biến cố: “Hộ đó có ít nhất một vật nuôi”; F là biến cố: “Hộ đó có ít nhất 4 người”. Cần tính \(P\left( {E|F} \right)\). Ta có \(n\left( F \right) = 37 + 12 = 58;n\left( {EF} \right) = 30 + 18 = 48\). Do đó \(P\left( F \right) = \frac{{58}}{{98}};P\left( {EF} \right) = \frac{{48}}{{98}}\). Vậy \(P\left( {E|F} \right) = \frac{{P\left( {EF} \right)}}{{P\left( F \right)}} = \frac{{48}}{{58}} = \frac{{24}}{{29}}\). |
https://loigiaihay.com/giai-bai-622-trang-47-sach-bai-tap-toan-12-ket-noi-tri-thuc-a174963.html | Có 3 hộp, mỗi hộp chứa ba tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Xét các biến cố sau: A: “Tổng số ghi trên các tấm thẻ là 6”; B: “Ba tấm thẻ có số ghi bằng nhau”. Tính \(P\left( {A|B} \right),P\left( {B|A} \right)\). | Ta có \(\Omega\ = \left\{ {\left( {a,b,c} \right);1 \le a,b,c \le 3} \right\}\) suy ra \(n\left( \Omega\ \right) = 27\).\(A = \left\{ {\left( {1,2,3} \right);\left( {2,1,3} \right);\left( {3,1,2} \right);\left( {1,3,2} \right);\left( {3,2,1} \right);\left( {2,3,1} \right);\left( {2,2,2} \right)} \right\};n\left( A \right) = 7\) suy ra \(P\left( A \right) = \frac{7}{{27}}\).\(B = \left\{ {\left( {1,1,1} \right);\left( {2,2,2} \right);\left( {3,3,3} \right)} \right\};n\left( B \right) = 3\) suy ra \(P\left( B \right) = \frac{3}{{27}}\). \(A \cap B = \left\{ {\left( {2,2,2} \right)} \right\}\) suy ra \(P\left( {AB} \right) = \frac{1}{{27}}\). Vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{3}\); \(P\left( {B|A} \right) = \frac{{P\left( {AB} \right)}}{{P\left( A \right)}} = \frac{1}{7}\). |
https://loigiaihay.com/giai-bai-1-trang-87-sach-bai-tap-toan-12-canh-dieu-a174980.html | Nếu hai biến cố \(A,B\) thoả mãn \(P\left( B \right) = 0,6;P\left( {A \cap B} \right) = 0,2\) thì \(P\left( {A|B} \right)\) bằng: A. \(\frac{3}{{25}}\). B. \(\frac{2}{5}\). C. \(\frac{1}{3}\). D. \(\frac{4}{5}\). | Sử dụng công thức tính xác suất của \(A\) với điều kiện \(B\): \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\). Ta có: \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{0,2}}{{0,6}} = \frac{1}{3}\). Chọn C. |
https://loigiaihay.com/giai-bai-2-trang-87-sach-bai-tap-toan-12-canh-dieu-a174981.html | Nếu hai biến cố \(A,B\) thoả mãn \(P\left( B \right) = 0,3;P\left( {A|B} \right) = 0,5\) thì \(P\left( {A \cap B} \right)\) bằng: A. 0,8. B. 0,2. C. 0,6. D. 0,15. | Sử dụng công thức: \(P\left( {A \cap B} \right) = P\left( B \right).P\left( {A|B} \right)\). Ta có: \(P\left( {A \cap B} \right) = P\left( B \right).P\left( {A|B} \right) = 0,3.0,5 = 0,15\). Chọn D. |
https://loigiaihay.com/giai-bai-3-trang-87-sach-bai-tap-toan-12-canh-dieu-a174982.html | Trong lớp 12A có 40 học sinh. Trong một buổi kiểm tra định kì, số học sinh của lớp được chia thành hai phòng. Chọn ngẫu nhiên một học sinh của lớp 12A. Xét các biến cố: \(A\): “Học sinh được chọn ở phòng 2”; \(B\): “Học sinh được chọn là học sinh nữ”. a) Biến cố học sinh được chọn là học sinh nữ ở phòng 2 là \(A \cap B\). | Vậy biến cố học sinh được chọn là học sinh nữ ở phòng 2 là \(A \cap B\). Vậy a) đúng. |
https://loigiaihay.com/giai-bai-3-trang-87-sach-bai-tap-toan-12-canh-dieu-a174982.html | Trong lớp 12A có 40 học sinh. Trong một buổi kiểm tra định kì, số học sinh của lớp được chia thành hai phòng. Chọn ngẫu nhiên một học sinh của lớp 12A. Xét các biến cố: \(A\): “Học sinh được chọn ở phòng 2”; \(B\): “Học sinh được chọn là học sinh nữ”. b) \(P\left( {A \cap B} \right) \ne \frac{3}{{10}}\). | Số phần tử của không gian mẫu: \(n\left({\Omega } \right) = 40\). Số phần tử của biến cố học sinh được chọn là học sinh nữ ở phòng 2 là: \(n\left( {A \cap B} \right) = 12\). Vậy ta có: \(P\left( {A \cap B} \right) = \frac{{n\left( {A \cap B} \right)}}{{n\left({\Omega } \right)}} = \frac{{12}}{{40}} = \frac{3}{{10}}\). Vậy b) sai. |
https://loigiaihay.com/giai-bai-3-trang-87-sach-bai-tap-toan-12-canh-dieu-a174982.html | Trong lớp 12A có 40 học sinh. Trong một buổi kiểm tra định kì, số học sinh của lớp được chia thành hai phòng. Chọn ngẫu nhiên một học sinh của lớp 12A. Xét các biến cố: \(A\): “Học sinh được chọn ở phòng 2”; \(B\): “Học sinh được chọn là học sinh nữ”. c) \(P\left( B \right) = \frac{{21}}{{40}}\). | Số phần tử của biến cố \(B\): “Học sinh được chọn là học sinh nữ”: \(n\left( B \right) = 9 + 12 = 21\). Vậy ta có: \(P\left( B \right) = \frac{{n\left( B \right)}}{{n\left({\Omega } \right)}} = \frac{{21}}{{40}}\). Vậy c) đúng. |
https://loigiaihay.com/giai-bai-3-trang-87-sach-bai-tap-toan-12-canh-dieu-a174982.html | Trong lớp 12A có 40 học sinh. Trong một buổi kiểm tra định kì, số học sinh của lớp được chia thành hai phòng. Chọn ngẫu nhiên một học sinh của lớp 12A. Xét các biến cố: \(A\): “Học sinh được chọn ở phòng 2”; \(B\): “Học sinh được chọn là học sinh nữ”. d) \(P\left( {A|B} \right) = \frac{4}{7}\). | Ta có: \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{3}{{10}}}}{{\frac{{21}}{{40}}}} = \frac{4}{7}\). Vậy d) đúng. |
https://loigiaihay.com/giai-bai-4-trang-87-sach-bai-tap-toan-12-canh-dieu-a174983.html | Xác suất để chiếc mũ thời trang qua được lần kiểm tra thứ hai, biết rằng đã qua được lần kiểm tra thứ nhất, là xác suất có điều kiện \(P\left( {B|A} \right)\). | Xác suất để chiếc mũ thời trang qua được lần kiểm tra thứ hai, biết rằng đã qua được lần kiểm tra thứ nhất, là xác suất có điều kiện \(P\left( {B|A} \right)\). Vậy a) đúng. |
https://loigiaihay.com/giai-bai-4-trang-87-sach-bai-tap-toan-12-canh-dieu-a174983.html | Xác suất để một chiếc mũ thời trang đủ tiêu chuẩn xuất khẩu là \(P\left( {B \cap A} \right)\). | Xác suất để một chiếc mũ thời trang đủ tiêu chuẩn xuất khẩu là \(P\left( {B \cap A} \right)\). Vậy b) đúng. |
https://loigiaihay.com/giai-bai-4-trang-87-sach-bai-tap-toan-12-canh-dieu-a174983.html | \(P\left( {B|A} \right) > 0,91\). | Vì 91% sản phẩm qua được lần kiểm tra thứ nhất sẽ tiếp tục qua được lần kiểm tra thứ hai nên ta có \(P\left( {B|A} \right) = 0,91\). Vậy c) sai. |
https://loigiaihay.com/giai-bai-4-trang-87-sach-bai-tap-toan-12-canh-dieu-a174983.html | Xác suất để một chiếc mũ thời trang đủ tiêu chuẩn xuất khẩu là 0,8736. | Vì 96% sản phẩm làm ra qua được lần kiểm tra thứ nhất nên ta có \(P\left( A \right) = 0,96\). Ta có: \(P\left( {B \cap A} \right) = P\left( A \right).P\left( {B|A} \right) = 0,96.0,91 = 0,8736\). Vậy d) đúng. |