Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
feature_0
float64
-61.99
16.1
feature_1
float64
-61.99
7.34
feature_2
float64
-20.18
100
feature_3
float64
-4.48
99.1
feature_4
float64
-6.71
19.1
feature_5
float64
-6.71
6.65
feature_6
float64
-8.76
2.8
feature_7
float64
-1.19
4.72
feature_8
float64
-4.01
1.93
feature_9
float64
-7.83
2.28
feature_10
float64
-1.87
4.34
original_dim0
int64
0
7.66k
original_dim1
int64
0
1.98k
-1.034793
-1.134345
-0.216514
-0.037199
-0.052414
0.879049
-0.473127
-0.454288
0.225224
0.529161
-0.145051
0
0
-0.985439
-1.106591
-0.340084
-0.037199
-0.052414
0.879049
-0.547054
-0.847308
0.710784
0.711939
-0.835628
0
1
-1.026567
-1.115843
-0.216514
-0.037199
-0.052414
0.879049
-0.448006
-0.857168
0.900496
0.531909
0.062953
0
2
-0.993664
-1.088089
-0.340084
-0.037199
-0.052414
0.879049
-0.547054
-0.847308
0.710784
0.711939
-0.835628
0
3
-1.010116
-1.078838
-0.298894
-0.037199
-0.052414
0.879049
-0.408531
-0.809273
0.902167
0.673459
-0.50282
0
4
-0.993664
-1.106591
-0.312624
-0.037199
-0.052414
0.879049
-0.505425
-0.890976
0.884617
0.121002
0.279278
0
5
-1.018342
-1.125094
-0.243974
-0.037199
-0.052414
0.879049
-0.476716
-0.750109
0.690727
1.946035
1.394185
0
6
-0.993664
-1.088089
-0.340084
-0.037199
-0.052414
0.879049
0.364473
1.815086
-1.656009
0.618488
0.3292
0
7
-1.026567
-1.106591
-0.202784
-0.037199
-0.052414
0.879049
-0.597296
-1.014235
0.816087
0.755915
1.019776
0
8
-0.993664
-1.115843
-0.298894
-0.037199
-0.052414
0.879049
-0.408531
-0.809273
0.902167
0.673459
-0.50282
0
9
-0.820924
-0.94932
-0.381274
-0.037199
-0.052414
0.879049
0.357296
1.664358
-1.447076
0.222698
-0.602662
0
10
-0.820924
-0.940069
-0.381274
-0.037199
-0.052414
0.879049
0.129055
1.092437
-0.998288
0.428839
0.112875
0
11
-1.018342
-1.041833
-0.271434
-0.037199
-0.052414
0.879049
-0.597296
-1.014235
0.816087
0.755915
1.019776
0
12
-0.94431
-1.032581
-0.381274
-0.037199
-0.052414
0.879049
-0.353983
0.441629
-1.024195
0.427465
-0.244894
0
13
-1.067696
-1.069586
-0.381274
-0.037199
-0.052414
0.879049
1.413806
3.599876
-3.033296
1.113226
-0.93547
0
14
-0.968987
-1.041833
-0.381274
-0.037199
-0.052414
0.879049
0.191498
1.472778
-1.448747
0.140242
-0.477859
0
15
-0.94431
-1.051084
-0.381274
-0.037199
-0.052414
0.879049
0.175708
1.374876
-1.337595
0.107259
-1.567805
0
16
-0.952536
-0.995576
-0.381274
-0.037199
-0.052414
0.879049
-0.423603
-0.70644
0.700756
0.016557
1.227781
0
17
-1.043019
-1.069586
-0.216514
-0.037199
-0.052414
0.879049
-0.705674
-1.029731
0.607989
0.874103
1.810194
0
18
-1.100599
-1.09734
-0.381274
-0.037199
-0.052414
0.879049
-0.124306
0.979743
-1.306673
0.140242
0.404081
0
19
-0.936084
-1.004828
-0.381274
-0.037199
-0.052414
0.879049
-0.10421
1.191748
-1.5833
0.384862
-0.020249
0
20
-1.133502
-1.09734
-0.381274
-0.037199
-0.052414
0.879049
0.223796
1.504474
-1.436211
0.511295
-0.727465
0
21
-0.862053
-0.986325
-0.381274
-0.037199
-0.052414
0.879049
0.357296
1.664358
-1.447076
0.222698
-0.602662
0
22
-0.845601
-0.977074
-0.381274
-0.037199
-0.052414
0.879049
0.357296
1.664358
-1.447076
0.222698
-0.602662
0
23
-0.960762
-1.032581
-0.381274
-0.037199
-0.052414
0.879049
-0.282927
0.515585
-0.940622
0.269423
-0.120091
0
24
-1.051245
-1.09734
-0.381274
-0.037199
-0.052414
0.879049
-0.184596
0.734633
-1.048432
0.832875
1.136259
0
25
-0.94431
-0.986325
-0.381274
-0.037199
-0.052414
0.879049
-0.184596
0.734633
-1.048432
0.832875
1.136259
0
26
-1.108825
-1.088089
-0.257704
-0.037199
-0.052414
0.879049
-0.124306
0.979743
-1.306673
0.140242
0.404081
0
27
-0.94431
-0.958571
-0.381274
-0.037199
-0.052414
0.879049
-0.515474
-0.952958
0.989919
-0.10163
-0.835628
0
28
-0.820924
-0.967823
-0.312624
-0.037199
-0.052414
0.879049
-0.181008
0.582497
-0.848692
0.662465
2.126362
0
29
-0.894956
-1.004828
-0.381274
-0.037199
-0.052414
0.879049
-0.208282
0.543054
-0.808577
0.805389
1.344264
0
30
-0.88673
-0.995576
-0.381274
-0.037199
-0.052414
0.879049
-0.208282
0.543054
-0.808577
0.805389
1.344264
0
31
-1.043019
-1.060335
-0.381274
-0.037199
-0.052414
0.879049
-0.315942
-0.282429
0.221045
0.08802
0.978175
0
32
-1.051245
-1.051084
-0.381274
-0.037199
-0.052414
0.879049
1.325524
3.663267
-3.135255
-0.021922
-0.777386
0
33
-1.043019
-1.060335
-0.381274
-0.037199
-0.052414
0.879049
-0.124306
0.979743
-1.306673
0.140242
0.404081
0
34
-0.845601
-0.977074
-0.381274
-0.037199
-0.052414
0.879049
0.129055
1.092437
-0.998288
0.428839
0.112875
0
35
-0.894956
-0.995576
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
36
-0.919633
-0.995576
-0.381274
-0.037199
-0.052414
0.879049
-0.124306
0.979743
-1.306673
0.140242
0.404081
0
37
-0.911407
-0.977074
-0.381274
-0.037199
-0.052414
0.879049
0.26399
1.717183
-1.74794
0.956559
0.969855
0
38
-1.010116
-1.041833
-0.381274
-0.037199
-0.052414
0.879049
-0.551361
-0.440201
-0.079818
0.794395
2.975022
0
39
-1.026567
-1.041833
-0.381274
-0.037199
-0.052414
0.879049
-0.448006
-0.857168
0.900496
0.531909
0.062953
0
40
-1.026567
-1.069586
-0.381274
-0.037199
-0.052414
0.879049
0.191498
1.472778
-1.448747
0.140242
-0.477859
0
41
-0.936084
-1.041833
-0.381274
-0.037199
-0.052414
0.879049
-0.423603
-1.00367
1.203031
0.093517
-1.734209
0
42
-1.034793
-1.069586
-0.312624
-0.037199
-0.052414
0.879049
-0.448006
-0.857168
0.900496
0.531909
0.062953
0
43
-0.968987
-1.02333
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
44
-0.755118
-0.94932
-0.381274
-0.037199
-0.052414
0.879049
-0.6784
-1.067061
0.708277
-0.471309
-0.394657
0
45
-1.05947
-1.078838
-0.381274
-0.037199
-0.052414
0.879049
0.191498
1.472778
-1.448747
0.140242
-0.477859
0
46
-1.051245
-1.032581
-0.381274
-0.037199
-0.052414
0.879049
0.191498
1.472778
-1.448747
0.140242
-0.477859
0
47
-0.936084
-1.069586
-0.381274
-0.037199
-0.052414
0.879049
0.094604
0.991716
-0.896328
1.946035
0.969855
0
48
-1.026567
-1.041833
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
49
-0.845601
-0.977074
-0.381274
-0.037199
-0.052414
0.879049
0.357296
1.664358
-1.447076
0.222698
-0.602662
0
50
-0.919633
-1.014079
-0.381274
-0.037199
-0.052414
0.879049
0.191498
1.472778
-1.448747
0.140242
-0.477859
0
51
-1.010116
-1.041833
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
52
-0.977213
-1.051084
-0.381274
-0.037199
-0.052414
0.879049
-0.285798
-0.200726
0.236089
-0.251426
-0.286495
0
53
-1.043019
-1.051084
-0.381274
-0.037199
-0.052414
0.879049
-0.551361
-0.440201
-0.079818
0.794395
2.975022
0
54
-0.796247
-0.958571
-0.285164
-0.037199
-0.052414
0.879049
-0.550643
-1.00367
0.951475
-0.373736
-0.752426
0
55
-1.010116
-1.004828
-0.381274
-0.037199
-0.052414
0.879049
-0.184596
0.734633
-1.048432
0.832875
1.136259
0
56
-0.952536
-1.032581
-0.381274
-0.037199
-0.052414
0.879049
-0.7674
-0.742361
-0.200164
0.787524
0.969855
0
57
-0.853827
-0.995576
-0.381274
-0.037199
-0.052414
0.879049
0.589843
1.867207
-1.41699
1.14346
-1.3598
0
58
-0.845601
-0.977074
-0.381274
-0.037199
-0.052414
0.879049
0.357296
1.664358
-1.447076
0.222698
-0.602662
0
59
-1.034793
-1.088089
-0.298894
-0.037199
-0.052414
0.879049
-0.448006
-0.857168
0.900496
0.531909
0.062953
0
60
-1.092373
-1.09734
-0.216514
-0.037199
-0.052414
0.879049
-0.203975
0.499385
-0.682381
1.051384
0.379121
0
61
-1.05947
-1.078838
-0.381274
-0.037199
-0.052414
0.879049
-0.184596
0.734633
-1.048432
0.832875
1.136259
0
62
-0.993664
-1.032581
-0.381274
-0.037199
-0.052414
0.879049
-0.597296
-1.014235
0.816087
0.755915
1.019776
0
63
-0.894956
-0.977074
-0.381274
-0.037199
-0.052414
0.879049
-0.109234
1.088211
-1.55405
1.946035
2.04316
0
64
-0.968987
-1.078838
-0.381274
-0.037199
-0.052414
0.879049
-0.336757
-0.030277
-0.309644
-0.47818
-1.210037
0
65
-1.117051
-1.106591
-0.381274
-0.037199
-0.052414
0.879049
-0.124306
0.979743
-1.306673
0.140242
0.404081
0
66
-1.026567
-1.051084
-0.340084
-0.037199
-0.052414
0.879049
-0.597296
-1.014235
0.816087
0.755915
1.019776
0
67
-1.084148
-1.09734
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
68
-1.043019
-1.004828
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
69
-1.034793
-1.051084
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
70
-1.026567
-1.069586
-0.243974
-0.037199
-0.052414
0.879049
-0.473127
-0.454288
0.225224
0.529161
-0.145051
0
71
-1.084148
-1.115843
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
72
-1.108825
-1.106591
-0.243974
-0.037199
-0.052414
0.879049
0.248199
1.550256
-1.438719
0.772407
-1.234997
0
73
-1.043019
-1.02333
-0.381274
-0.037199
-0.052414
0.879049
-0.124306
0.979743
-1.306673
0.140242
0.404081
0
74
-0.993664
-1.004828
-0.381274
-0.037199
-0.052414
0.879049
0.617834
1.912285
-1.425347
-0.527654
-0.328096
0
75
-0.919633
-1.004828
-0.381274
-0.037199
-0.052414
0.879049
0.357296
1.664358
-1.447076
0.222698
-0.602662
0
76
-1.051245
-1.02333
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
77
-1.010116
-1.041833
-0.381274
-0.037199
-0.052414
0.879049
-0.448006
-0.857168
0.900496
0.531909
0.062953
0
78
-0.837375
-0.940069
-0.381274
-0.037199
-0.052414
0.879049
-0.208282
0.543054
-0.808577
0.805389
1.344264
0
79
-0.968987
-1.02333
-0.381274
-0.037199
-0.052414
0.879049
-0.058275
1.048063
-1.271572
1.946035
0.969855
0
80
-1.034793
-1.060335
-0.381274
-0.037199
-0.052414
0.879049
-0.184596
0.734633
-1.048432
0.832875
1.136259
0
81
-1.00189
-1.041833
-0.381274
-0.037199
-0.052414
0.879049
-0.597296
-1.014235
0.816087
0.755915
1.019776
0
82
-0.927859
-1.004828
-0.381274
-0.037199
-0.052414
0.879049
-0.551361
-0.440201
-0.079818
0.794395
2.975022
0
83
-0.788021
-0.921566
-0.381274
-0.037199
-0.052414
0.879049
-0.6784
-1.067061
0.708277
-0.471309
-0.394657
0
84
-0.779795
-0.921566
-0.381274
-0.037199
-0.052414
0.879049
-0.660457
-1.067061
0.759257
-0.802508
-0.985391
0
85
-1.051245
-1.032581
-0.381274
-0.037199
-0.052414
0.879049
0.505867
1.861573
-1.706989
1.856707
-0.203293
0
86
-0.870278
-0.986325
-0.381274
-0.037199
-0.052414
0.879049
0.129055
1.092437
-0.998288
0.428839
0.112875
0
87
-1.034793
-1.09734
-0.381274
-0.037199
-0.052414
0.879049
-0.090573
1.048063
-1.346788
1.842964
0.969855
0
88
-0.903181
-1.004828
-0.381274
-0.037199
-0.052414
0.879049
-0.124306
0.979743
-1.306673
0.140242
0.404081
0
89
-1.117051
-1.115843
-0.285164
-0.037199
-0.052414
0.879049
0.191498
1.472778
-1.448747
0.140242
-0.477859
0
90
-0.88673
-0.977074
-0.381274
-0.037199
-0.052414
0.879049
0.386005
1.833399
-1.686095
0.654219
-0.602662
0
91
-0.952536
-1.032581
-0.381274
-0.037199
-0.052414
0.879049
-0.184596
0.734633
-1.048432
0.832875
1.136259
0
92
-0.894956
-0.995576
-0.381274
-0.037199
-0.052414
0.879049
-0.051097
0.994534
-1.186327
1.842964
0.969855
0
93
-0.977213
-1.032581
-0.381274
-0.037199
-0.052414
0.879049
-0.124306
0.979743
-1.306673
0.140242
0.404081
0
94
-1.026567
-1.051084
-0.381274
-0.037199
-0.052414
0.879049
0.357296
1.664358
-1.447076
0.222698
-0.602662
0
95
-0.878504
-0.986325
-0.381274
-0.037199
-0.052414
0.879049
0.129055
1.092437
-0.998288
0.428839
0.112875
0
96
-0.788021
-0.884561
-0.381274
-0.037199
-0.052414
0.879049
-0.193927
-0.572616
1.016662
0.3134
-0.219933
0
97
-0.960762
-1.060335
-0.381274
-0.037199
-0.052414
0.879049
0.357296
1.664358
-1.447076
0.222698
-0.602662
0
98
-0.919633
-1.032581
-0.381274
-0.037199
-0.052414
0.879049
0.129055
1.092437
-0.998288
0.428839
0.112875
0
99
End of preview. Expand in Data Studio

AgroFlux: A Spatial-Temporal Benchmark for Carbon and Nitrogen Flux Prediction in Agricultural Ecosystems

This repository contains the official data of paper AgroFlux: A Spatial-Temporal Benchmark for Carbon and Nitrogen Flux Prediction in Agricultural Ecosystems. Please refer to git repo for the usage of this data: https://github.com/qxc101/AgroFlux.git.

Datasets

The benchmark works with several data:

  • Simulation datasets (T0):

    • mw: Ecosys simulations
    • dc: DayCent simulations
  • Observation datasets (T1):

    • n2o: Nitrous oxide flux field measurements
    • co2: Carbon dioxide flux field measurements (includes GPP)

For the processing of this dataset, please refer to the file scale_data_t0.ipynb in the git repo. The notebook file contains visualizations and value checks with actual feature names of all the data provided here.

Downloads last month
33