Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    UnicodeDecodeError
Message:      'utf-8' codec can't decode byte 0x80 in position 64: invalid start byte
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1854, in _prepare_split_single
                  for _, table in generator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/text/text.py", line 73, in _generate_tables
                  batch = f.read(self.config.chunksize)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 826, in read_with_retries
                  out = read(*args, **kwargs)
                File "/usr/local/lib/python3.9/codecs.py", line 322, in decode
                  (result, consumed) = self._buffer_decode(data, self.errors, final)
              UnicodeDecodeError: 'utf-8' codec can't decode byte 0x80 in position 64: invalid start byte
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1420, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1052, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1897, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

text
string
from easydict import EasyDict
main_config = dict(
exp_name='data_suz_mt_20250207/ddp_moco-paramv0_nlayer8_upc200_notaskweight_concat-task-embed_8tasks_brf1e-05_tbs512_seed0/acrobot-swingup_seed0',
env=dict(
manager=dict(
episode_num=float('inf'),
max_retry=1,
step_timeout=None,
auto_reset=True,
reset_timeout=None,
retry_type='reset',
retry_waiting_time=0.1,
shared_memory=False,
copy_on_get=True,
context='fork',
wait_num=float('inf'),
step_wait_timeout=None,
connect_timeout=60,
reset_inplace=False,
cfg_type='SyncSubprocessEnvManagerDict',
type='subprocess',
),
stop_value=500000,
n_evaluator_episode=3,
domain_name='acrobot',
task_name='swingup',
frame_skip=2,
warp_frame=False,
scale=False,
clip_rewards=False,
action_repeat=1,
frame_stack=1,
from_pixels=False,
visualize_reward=False,
height=84,
width=84,
channels_first=True,
resize=84,
replay_path=None,
save_replay_gif=False,
replay_path_gif=None,
render_image=False,
collect_max_episode_steps=1000,
eval_max_episode_steps=1000,
cfg_type='DMC2GymEnvDict',
env_id='acrobot-swingup',
observation_shape_list=[6, 5, 5, 5, 5, 17, 8, 9],
action_space_size_list=[1, 1, 1, 1, 1, 6, 2, 2],
continuous=True,
collector_env_num=8,
evaluator_env_num=3,
game_segment_length=100,
),
policy=dict(
model=dict(
model_type='mlp',
continuous_action_space=True,
observation_shape=[3, 64, 64],
self_supervised_learning_loss=True,
categorical_distribution=True,
image_channel=3,
frame_stack_num=1,
num_res_blocks=1,
num_channels=64,
support_scale=50,
bias=True,
discrete_action_encoding_type='one_hot',
res_connection_in_dynamics=True,
norm_type='LN',
analysis_sim_norm=False,
analysis_dormant_ratio=False,
harmony_balance=False,
learn={'learner': {'hook': {'save_ckpt_after_iter': 10000}}},
world_model_cfg={'continuous_action_space': True, 'tokens_per_block': 2, 'max_blocks': 5, 'max_tokens': 10, 'context_length': 4, 'gru_gating': False, 'device': 'cuda', 'analysis_sim_norm': False, 'analysis_dormant_ratio': False, 'action_space_size': 6, 'group_size': 8, 'attention': 'causal', 'num_layers': 8, 'num_heads': 8, 'embed_dim': 768, 'embed_pdrop': 0.1, 'resid_pdrop': 0.1, 'attn_pdrop': 0.1, 'support_size': 101, 'max_cache_size': 5000, 'env_num': 8, 'latent_recon_loss_weight': 0.0, 'perceptual_loss_weight': 0.0, 'policy_entropy_weight': 0.05, 'predict_latent_loss_type': 'group_kl', 'obs_type': 'vector', 'gamma': 1, 'dormant_threshold': 0.025, 'policy_loss_type': 'kl', 'observation_shape_list': [6, 5, 5, 5, 5, 17, 8, 9], 'action_space_size_list': [1, 1, 1, 1, 1, 6, 2, 2], 'use_shared_projection': False, 'task_embed_option': 'concat_task_embed', 'use_task_embed': True, 'num_unroll_steps': 5, 'num_of_sampled_actions': 20, 'sigma_type': 'conditioned', 'fixed_sigma_value': 0.5, 'bound_type': None, 'model_type': 'mlp', 'norm_type': 'LN', 'task_num': 8, 'use_normal_head': True, 'use_softmoe_head': False, 'use_moe_head': False, 'num_experts_in_moe_head': 4, 'moe_in_transformer': False, 'multiplication_moe_in_transformer': False, 'num_experts_of_moe_in_transformer': 4},
observation_shape_list=[6, 5, 5, 5, 5, 17, 8, 9],
action_space_size_list=[1, 1, 1, 1, 1, 6, 2, 2],
num_of_sampled_actions=20,
),
learn=dict(
learner=dict(
train_iterations=1000000000,
dataloader=dict(
num_workers=0,
),
log_policy=True,
hook=dict(
load_ckpt_before_run='',
log_show_after_iter=100,
save_ckpt_after_iter=1000000,
save_ckpt_after_run=True,
),
cfg_type='BaseLearnerDict',
),
),
collect=dict(
collector=dict(
deepcopy_obs=False,
transform_obs=False,
collect_print_freq=100,
End of preview.

No dataset card yet

Downloads last month
14