constellaration / README.md
alexbauer-pf's picture
Upload subset 'full_flat'
e094511 verified
|
raw
history blame
28 kB
---
dataset_info:
- config_name: full_flat
features:
- name: metrics.id
dtype: string
- name: metrics.qi
dtype: float64
- name: metrics.vacuum_well
dtype: float64
- name: metrics.aspect_ratio
dtype: float64
- name: metrics.max_elongation
dtype: float64
- name: metrics.average_triangularity
dtype: float64
- name: metrics.axis_magnetic_mirror_ratio
dtype: float64
- name: metrics.edge_magnetic_mirror_ratio
dtype: float64
- name: metrics.aspect_ratio_over_edge_rotational_transform
dtype: float64
- name: metrics.flux_compression_in_regions_of_bad_curvature
dtype: float64
- name: metrics.axis_rotational_transform_over_n_field_periods
dtype: float64
- name: metrics.edge_rotational_transform_over_n_field_periods
dtype: float64
- name: metrics.minimum_normalized_magnetic_gradient_scale_length
dtype: float64
- name: boundary.r_cos
sequence:
sequence: float64
- name: boundary.z_sin
sequence:
sequence: float64
- name: boundary.r_sin
dtype: float64
- name: boundary.z_cos
dtype: float64
- name: boundary.n_field_periods
dtype: float64
- name: boundary.is_stellarator_symmetric
dtype: bool
- name: omnigenous_field_and_targets.id
dtype: string
- name: omnigenous_field_and_targets.aspect_ratio
dtype: float64
- name: omnigenous_field_and_targets.major_radius
dtype: float64
- name: omnigenous_field_and_targets.max_elongation
dtype: float64
- name: omnigenous_field_and_targets.rotational_transform
dtype: float64
- name: omnigenous_field_and_targets.omnigenous_field.x_lmn
sequence:
sequence:
sequence: float64
- name: omnigenous_field_and_targets.omnigenous_field.n_field_periods
dtype: float64
- name: omnigenous_field_and_targets.omnigenous_field.poloidal_winding
dtype: float64
- name: omnigenous_field_and_targets.omnigenous_field.torodial_winding
dtype: float64
- name: omnigenous_field_and_targets.omnigenous_field.modB_spline_knot_coefficients
sequence:
sequence: float64
- name: desc_omnigenous_field_optimization_settings.id
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.target_kind
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eta_weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_rho
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_M_factor
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_N_factor
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.target_kind
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.weight
dtype: float64
- name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.target_kind
dtype: string
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.maxiter
dtype: float64
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.verbose
dtype: float64
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.psi
dtype: float64
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.check_orientation
dtype: bool
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_poloidal_mode
dtype: float64
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_toroidal_mode
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.torsion
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.elongation
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.aspect_ratio
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.major_radius
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.mirror_ratio
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.n_field_periods
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_iota_positive
dtype: bool
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_stellarator_symmetric
dtype: bool
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_elongation
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_poloidal_mode
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_toroidal_mode
dtype: float64
- name: desc_omnigenous_field_optimization_settings.initial_guess_settings.rotational_transform
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.id
dtype: string
- name: vmec_omnigenous_field_optimization_settings.verbose
dtype: bool
- name: vmec_omnigenous_field_optimization_settings.max_poloidal_mode
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.max_toroidal_mode
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.n_inner_optimizations
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.gradient_free_max_time
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.infinity_norm_spectrum_scaling
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.gradient_free_budget_per_design_variable
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.use_continuation_method_in_fourier_space
dtype: bool
- name: vmec_omnigenous_field_optimization_settings.gradient_free_optimization_hypercube_bounds
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.gradient_based_relative_objectives_tolerance
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.id
dtype: string
- name: qp_init_omnigenous_field_optimization_settings.torsion
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.elongation
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.aspect_ratio
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.major_radius
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.mirror_ratio
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.n_field_periods
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.is_iota_positive
dtype: bool
- name: qp_init_omnigenous_field_optimization_settings.is_stellarator_symmetric
dtype: bool
- name: nae_init_omnigenous_field_optimization_settings.id
dtype: string
- name: nae_init_omnigenous_field_optimization_settings.aspect_ratio
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.mirror_ratio
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.max_elongation
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.n_field_periods
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.max_poloidal_mode
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.max_toroidal_mode
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.rotational_transform
dtype: float64
- name: misc.vmecpp_wout_id
dtype: string
- name: misc.has_optimize_boundary_omnigenity_vmec_error
dtype: bool
- name: misc.has_optimize_boundary_omnigenity_desc_error
dtype: bool
- name: misc.has_generate_qp_initialization_from_targets_error
dtype: bool
- name: misc.has_generate_nae_initialization_from_targets_error
dtype: bool
- name: misc.has_neurips_2025_forward_model_error
dtype: bool
- name: plasma_config_id
dtype: string
splits:
- name: train
num_bytes: 524176976
num_examples: 231021
download_size: 278511073
dataset_size: 524176976
- config_name: full_json
features:
- name: metrics.id
dtype: string
- name: metrics.json
dtype: string
- name: boundary.json
dtype: string
- name: omnigenous_field_and_targets.id
dtype: string
- name: omnigenous_field_and_targets.json
dtype: string
- name: desc_omnigenous_field_optimization_settings.id
dtype: string
- name: desc_omnigenous_field_optimization_settings.json
dtype: string
- name: vmec_omnigenous_field_optimization_settings.id
dtype: string
- name: vmec_omnigenous_field_optimization_settings.json
dtype: string
- name: qp_init_omnigenous_field_optimization_settings.id
dtype: string
- name: qp_init_omnigenous_field_optimization_settings.json
dtype: string
- name: nae_init_omnigenous_field_optimization_settings.id
dtype: string
- name: nae_init_omnigenous_field_optimization_settings.json
dtype: string
- name: misc.vmecpp_wout_id
dtype: string
- name: misc.has_optimize_boundary_omnigenity_vmec_error
dtype: bool
- name: misc.has_optimize_boundary_omnigenity_desc_error
dtype: bool
- name: misc.has_generate_qp_initialization_from_targets_error
dtype: bool
- name: misc.has_generate_nae_initialization_from_targets_error
dtype: bool
- name: misc.has_neurips_2025_forward_model_error
dtype: bool
- name: plasma_config_id
dtype: string
splits:
- name: train
num_bytes: 906303072
num_examples: 231021
download_size: 453881947
dataset_size: 906303072
- config_name: vmecpp_ideal_mhd_equilibria
features:
- name: plasma_config_id
dtype: string
- name: vmecpp_wout_id
dtype: string
- name: vmecpp_wout_json
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 1373486837
num_examples: 324
download_size: 956063943
dataset_size: 1373486837
configs:
- config_name: full_flat
data_files:
- split: train
path: full_flat/train-*
- config_name: full_json
data_files:
- split: train
path: full_json/train-*
- config_name: vmecpp_ideal_mhd_equilibria
data_files:
- split: train
path: vmecpp_ideal_mhd_equilibria/part-*
license: mit
language:
- en
tags:
- physics
- fusion
- optimization
- neurips
pretty_name: ConStellaration
size_categories:
- 10K<n<100K
---
# Dataset Card for ConStellaration
<!-- Provide a quick summary of the dataset. -->
A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions.
With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.
- **Curated by:** Proxima Fusion
- **License:** MIT
![Diagram of the computation of metrics of interest from a plasma boundary via the MHD equilibrium](assets/mhd_intro_v2.png)
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://huggingface.co/datasets/proxima-fusion/constellaration
- **Paper:** [not published yet]
- **Code:** https://github.com/proximafusion/constellaration
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
The dataset consists of 2 tabular parts. Both parts have a column `plasma_config_id` in common which can be used to associate respective entries:
<table>
<tr>
<th style="border-right: 1px solid gray;">full_json/full_flat</th>
<th>vmecpp_ideal_mhd_equilibria</th>
</tr>
<tr>
<td style="border-right: 1px solid gray;">
Contains information about:
<ul>
<li>Plasma boundaries</li>
<li>Ideal MHD metrics</li>
<li>Omnigenous field and targets, used as input for sampling of plasma boundaries</li>
<li>Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)</li>
<li>Miscellaneous information about errors that might have occurred during sampling or metrics computation.</li>
</ul>
</td>
<td>Contains, for each plasma boundary, a JSON representations of the "WOut" file as obtained when running VMEC, initialized on the boundary.<br>The JSON representation can be converted to a VMEC2000 output file.
</td>
</tr>
</table>
The `full_json` variant of the dataset contains for each of the components listed about an identifier column (ending with `.id`), as well as a JSON column.
The `full_flat` variant contains the same information as `full_json` but with all JSON columns flattened into one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf).
## Uses
### Basic Usage
Load the dataset and convert to a Pandas Dataframe:
```python
import datasets
import torch
from torch.utils.data import DataLoader
ds = datasets.load_dataset("proxima-fusion/constellaration", "full_flat")["train"]
ds = ds.select_columns([c for c in ds.column_names
if c.startswith("boundary.")
or c.startswith("metrics.")])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ds_torch = ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc.
dataloader = DataLoader(ds_torch, batch_size=4)
for batch in dataloader:
print(batch)
break
```
<div style="margin-left: 1em;">
<details>
<summary>Output</summary>
```python
{'boundary.is_stellarator_symmetric': tensor([True, True, True, True]),
'boundary.n_field_periods': tensor([5., 2., 5., 3.]),
'boundary.r_cos(0, 0)': tensor([0.9995, 0.9933, 1.0000, 1.0000]),
'boundary.r_cos(0, 1)': tensor([ 0.0008, 0.0957, 0.0978, -0.0658]),
'boundary.r_cos(0, 2)': tensor([-0.0166, -0.0522, -0.0358, -0.0385]),
'boundary.r_cos(0, 3)': tensor([ 0.0006, -0.0098, 0.0004, 0.0022]),
'boundary.r_cos(0, 4)': tensor([ 2.7140e-06, -5.2107e-04, 4.1021e-04, 4.6007e-04]),
'boundary.r_cos(1, -1)': tensor([-0.0774, -0.0480, 0.0674, 0.0142]),
'boundary.r_cos(1, -2)': tensor([-0.0254, 0.0015, 0.0327, 0.0565]),
'boundary.r_cos(1, -3)': tensor([-0.0036, -0.0002, 0.0047, -0.0110]),
'boundary.r_cos(1, -4)': tensor([ 0.0009, -0.0007, 0.0019, -0.0007]),
'boundary.r_cos(1, 0)': tensor([0.2136, 0.1506, 0.0668, 0.0835]),
'boundary.r_cos(1, 1)': tensor([-0.0430, -0.0009, -0.0421, -0.0468]),
'boundary.r_cos(1, 2)': tensor([ 0.0070, 0.0099, 0.0148, -0.0137]),
'boundary.r_cos(1, 3)': tensor([-0.0019, 0.0014, -0.0013, 0.0040]),
'boundary.r_cos(1, 4)': tensor([-0.0001, -0.0001, -0.0001, 0.0001]),
'boundary.r_cos(2, -1)': tensor([ 0.0222, -0.0189, -0.0043, -0.0197]),
'boundary.r_cos(2, -2)': tensor([ 0.0252, -0.0124, -0.0106, 0.0008]),
'boundary.r_cos(2, -3)': tensor([ 0.0063, -0.0054, -0.0039, 0.0047]),
'boundary.r_cos(2, -4)': tensor([ 0.0011, 0.0021, -0.0010, -0.0004]),
'boundary.r_cos(2, 0)': tensor([-0.0170, -0.0226, -0.0083, -0.0095]),
'boundary.r_cos(2, 1)': tensor([-1.9742e-03, 2.4878e-03, -6.7278e-05, -5.8859e-03]),
'boundary.r_cos(2, 2)': tensor([0.0030, 0.0017, 0.0003, 0.0010]),
'boundary.r_cos(2, 3)': tensor([-0.0009, 0.0002, -0.0010, 0.0009]),
'boundary.r_cos(2, 4)': tensor([ 0.0002, 0.0002, 0.0002, -0.0002]),
'boundary.r_cos(3, -1)': tensor([-0.0052, -0.0055, 0.0013, -0.0080]),
'boundary.r_cos(3, -2)': tensor([-0.0019, -0.0035, 0.0026, -0.0004]),
'boundary.r_cos(3, -3)': tensor([-0.0030, 0.0013, 0.0007, 0.0002]),
'boundary.r_cos(3, -4)': tensor([-0.0011, 0.0003, 0.0003, 0.0029]),
'boundary.r_cos(3, 0)': tensor([-0.0057, -0.0003, -0.0014, 0.0013]),
'boundary.r_cos(3, 1)': tensor([ 0.0021, 0.0029, 0.0010, -0.0005]),
'boundary.r_cos(3, 2)': tensor([-0.0001, 0.0011, -0.0008, -0.0007]),
'boundary.r_cos(3, 3)': tensor([1.6793e-04, 3.4548e-04, 4.4246e-04, 3.4558e-05]),
'boundary.r_cos(3, 4)': tensor([-4.5783e-05, 1.1368e-04, -1.1460e-04, 1.4845e-04]),
'boundary.r_cos(4, -1)': tensor([ 7.2199e-05, 1.2212e-04, 5.9814e-05, -5.6161e-04]),
'boundary.r_cos(4, -2)': tensor([ 0.0004, 0.0004, -0.0001, -0.0003]),
'boundary.r_cos(4, -3)': tensor([-0.0002, -0.0002, -0.0001, -0.0005]),
'boundary.r_cos(4, -4)': tensor([ 2.3317e-04, 7.7059e-05, 3.5259e-05, -1.2475e-04]),
'boundary.r_cos(4, 0)': tensor([ 1.3698e-04, -2.1361e-04, -5.7761e-04, 8.3187e-05]),
'boundary.r_cos(4, 1)': tensor([-7.0448e-05, -5.2118e-04, 3.7886e-04, -1.2714e-04]),
'boundary.r_cos(4, 2)': tensor([ 0.0003, -0.0002, -0.0002, -0.0002]),
'boundary.r_cos(4, 3)': tensor([-9.0838e-05, -1.6513e-04, 6.7852e-05, 4.1940e-06]),
'boundary.r_cos(4, 4)': tensor([-6.2693e-06, 1.4236e-06, -3.0395e-05, -4.5643e-05]),
'boundary.z_sin(0, 1)': tensor([-0.1963, -0.4660, 0.0626, -0.0143]),
'boundary.z_sin(0, 2)': tensor([ 0.0197, -0.0487, 0.0186, 0.0149]),
'boundary.z_sin(0, 3)': tensor([-0.0022, -0.0056, 0.0017, -0.0066]),
'boundary.z_sin(0, 4)': tensor([ 6.1945e-04, -2.5693e-03, 3.3028e-05, -3.0652e-04]),
'boundary.z_sin(1, -1)': tensor([-0.0737, -0.0783, 0.0069, -0.0228]),
'boundary.z_sin(1, -2)': tensor([-0.0346, 0.0154, 0.0488, 0.0576]),
'boundary.z_sin(1, -3)': tensor([-0.0038, -0.0004, 0.0128, -0.0016]),
'boundary.z_sin(1, -4)': tensor([-5.1524e-04, -2.2537e-03, 1.7765e-03, 9.6958e-05]),
'boundary.z_sin(1, 0)': tensor([-0.0947, -0.1091, -0.1901, -0.1610]),
'boundary.z_sin(1, 1)': tensor([0.0144, 0.0656, 0.0731, 0.0166]),
'boundary.z_sin(1, 2)': tensor([-0.0049, 0.0008, -0.0216, 0.0150]),
'boundary.z_sin(1, 3)': tensor([ 0.0011, -0.0014, 0.0032, -0.0012]),
'boundary.z_sin(1, 4)': tensor([ 0.0002, 0.0015, -0.0005, -0.0004]),
'boundary.z_sin(2, -1)': tensor([-0.0140, 0.0100, 0.0049, -0.0189]),
'boundary.z_sin(2, -2)': tensor([ 0.0140, 0.0016, -0.0162, -0.0114]),
'boundary.z_sin(2, -3)': tensor([ 0.0048, -0.0015, -0.0107, 0.0036]),
'boundary.z_sin(2, -4)': tensor([ 0.0009, 0.0024, -0.0018, -0.0010]),
'boundary.z_sin(2, 0)': tensor([ 0.0142, -0.0110, 0.0052, -0.0008]),
'boundary.z_sin(2, 1)': tensor([ 0.0004, -0.0072, -0.0033, 0.0095]),
'boundary.z_sin(2, 2)': tensor([-0.0008, -0.0030, 0.0036, -0.0005]),
'boundary.z_sin(2, 3)': tensor([-2.4587e-04, -1.4641e-03, -6.1073e-05, -5.5180e-04]),
'boundary.z_sin(2, 4)': tensor([-4.4745e-05, 1.1328e-04, -5.3629e-05, 3.2248e-04]),
'boundary.z_sin(3, -1)': tensor([ 0.0137, 0.0037, -0.0037, 0.0090]),
'boundary.z_sin(3, -2)': tensor([-0.0037, -0.0089, -0.0025, -0.0084]),
'boundary.z_sin(3, -3)': tensor([-0.0052, 0.0009, -0.0015, -0.0025]),
'boundary.z_sin(3, -4)': tensor([-0.0011, 0.0014, -0.0002, 0.0023]),
'boundary.z_sin(3, 0)': tensor([ 0.0012, -0.0005, -0.0001, -0.0020]),
'boundary.z_sin(3, 1)': tensor([-0.0007, 0.0040, 0.0003, -0.0016]),
'boundary.z_sin(3, 2)': tensor([-0.0006, -0.0003, 0.0005, 0.0008]),
'boundary.z_sin(3, 3)': tensor([ 0.0002, 0.0003, -0.0004, 0.0004]),
'boundary.z_sin(3, 4)': tensor([-5.6412e-05, 1.0018e-04, 5.2259e-05, -6.8400e-05]),
'boundary.z_sin(4, -1)': tensor([ 3.2419e-05, -4.5468e-04, 1.1803e-03, 5.0270e-04]),
'boundary.z_sin(4, -2)': tensor([ 3.0922e-04, -2.3282e-03, -6.1121e-05, 6.0890e-04]),
'boundary.z_sin(4, -3)': tensor([ 0.0006, 0.0007, -0.0003, -0.0002]),
'boundary.z_sin(4, -4)': tensor([ 1.5477e-04, 2.9187e-04, 9.7048e-05, -3.6228e-04]),
'boundary.z_sin(4, 0)': tensor([ 0.0002, 0.0010, -0.0004, -0.0007]),
'boundary.z_sin(4, 1)': tensor([-6.8060e-04, 6.0775e-04, 4.5423e-04, -7.6356e-05]),
'boundary.z_sin(4, 2)': tensor([ 0.0002, -0.0004, -0.0003, 0.0002]),
'boundary.z_sin(4, 3)': tensor([-5.1384e-05, 5.7630e-05, 9.2855e-05, -3.2524e-05]),
'boundary.z_sin(4, 4)': tensor([ 3.9863e-05, -1.2590e-04, -4.8167e-06, 5.3396e-05]),
'metrics.aspect_ratio': tensor([7.7955, 8.7009, 8.3073, 9.6474]),
'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 4.7622, 39.3853, 7.4686, 9.3211]),
'metrics.average_triangularity': tensor([ 0.6554, -0.6067, -0.3194, -0.5184]),
'metrics.axis_magnetic_mirror_ratio': tensor([0.2098, 0.2465, 0.5243, 0.2823]),
'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.3285, 0.2195, 0.2377, 0.2333]),
'metrics.edge_magnetic_mirror_ratio': tensor([0.3518, 0.2744, 0.7742, 0.4869]),
'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3274, 0.1105, 0.2225, 0.3450]),
'metrics.flux_compression_in_regions_of_bad_curvature': tensor([2.0642, 1.6771, 1.6702, 1.4084]),
'metrics.id': ['DfpsEPzxXHTUgveVPNFVxyw',
'D6ydRp85utx9ZXqZVXbez8G',
'DLfSjAoEr26nCNet4S84XET',
'DBVNupAx3tW54uUz5bGQfyT'],
'metrics.max_elongation': tensor([7.9947, 5.7292, 5.6427, 6.7565]),
'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.0333, 4.4903, 2.7130, 5.9777]),
'metrics.qi': tensor([0.0101, 0.0007, 0.0249, 0.0148]),
'metrics.vacuum_well': tensor([-0.0216, -0.0756, -0.1321, -0.2297])}
```
</details>
</div>
### Advanced Usage
For advanced manipulation and visualization of data contained in this dataset, install `constellaration` from [here](https://github.com/proximafusion/constellaration).
Load and instantiate plasma boundaries:
```python
import datasets
from constellaration.geometry import surface_rz_fourier
full_json_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_json")["train"]
full_json_df = full_json_ds.to_pandas().set_index("plasma_config_id")
plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
boundary_json = full_json_df.loc[plasma_config_id]["boundary.surface"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
```
Plot boundary:
```python
from constellaration.utils import visualization
visualization.plot_surface(boundary)
visualization.plot_boundary(boundary)
```
Boundary | Cross-sections
:-------------------------:|:-------------------------:
![Plot of plasma boundary](assets/boundary.png) | ![Plot of boundary cross-sections](assets/boundary_cross_sections.png)
Stream and instantiate the VMEC ideal MHD equilibria:
```python
import datasets
from constellaration.mhd import vmec_utils
ds = datasets.load_dataset("proxima-fusion/constellaration", "vmecpp_ideal_mhd_equilibria", streaming=True)["train"]
ds = ds.filter(lambda row: row["vmecpp_wout_json"] is not None)
row = next(ds.__iter__())
vmecpp_wout_json = row["vmecpp_wout_json"]
vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)
# Fetch corresponding boundary
plasma_config_id = row["plasma_config_id"]
boundary_json = full_json_df.loc[plasma_config_id]["boundary.surface"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
```
Plot flux surfaces:
```python
from constellaration.utils import visualization
visualization.plot_flux_surfaces(vmecpp_wout, boundary)
```
![Plot of flux surfaces](assets/flux_surfaces.png)
Save ideal MHD equilibrium to *VMEC2000 WOut* file:
```python
import pathlib
from constellaration.utils import file_exporter
file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc"))
```
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations.
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods.
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
Proxima Fusion's stellarator optimization team.
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
The dataset contains no personally identifiable information.
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
@article{article_id,
author = {Santiago A Cadena, Andrea Merlo, Emanuel Laude, Alexander Bauer, Atul Agrawal, Maria Pascu, Marija Savtchouk, Lukas Bonauer, Enrico Guiraud, Stuart R. Hudson, Markus Kaiser},
title = {ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks},
journal = {NeurIPS 2025 Datasets and Benchmarks Track},
year = {2025}
}
## Glossary
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
| Abbreviation | Expansion |
| -------- | ------- |
| QI | Quasi-Isodynamic(ity) |
| MHD | Magneto-Hydrodynamic |
| [DESC](https://desc-docs.readthedocs.io/en/stable/) | Dynamical Equilibrium Solver for Confinement |
| VMEC/[VMEC++](https://github.com/proximafusion/vmecpp) | Variational Moments Equilibrium Code (Fortran/C++) |
| QP | Quasi-Poloidal |
| NAE | Near-Axis Expansion |
| NFP | Number of Field Periods |
## Dataset Card Authors
Alexander Bauer, Santiago A. Cadena
## Dataset Card Contact
[email protected]