dataset_info:
- config_name: full_flat
features:
- name: boundary.n_field_periods
dtype: float64
- name: boundary.is_stellarator_symmetric
dtype: bool
- name: boundary.r_cos(0, 0)
dtype: float64
- name: boundary.r_cos(0, 1)
dtype: float64
- name: boundary.r_cos(0, 2)
dtype: float64
- name: boundary.r_cos(0, 3)
dtype: float64
- name: boundary.r_cos(0, 4)
dtype: float64
- name: boundary.r_cos(1, -4)
dtype: float64
- name: boundary.r_cos(1, -3)
dtype: float64
- name: boundary.r_cos(1, -2)
dtype: float64
- name: boundary.r_cos(1, -1)
dtype: float64
- name: boundary.r_cos(1, 0)
dtype: float64
- name: boundary.r_cos(1, 1)
dtype: float64
- name: boundary.r_cos(1, 2)
dtype: float64
- name: boundary.r_cos(1, 3)
dtype: float64
- name: boundary.r_cos(1, 4)
dtype: float64
- name: boundary.r_cos(2, -4)
dtype: float64
- name: boundary.r_cos(2, -3)
dtype: float64
- name: boundary.r_cos(2, -2)
dtype: float64
- name: boundary.r_cos(2, -1)
dtype: float64
- name: boundary.r_cos(2, 0)
dtype: float64
- name: boundary.r_cos(2, 1)
dtype: float64
- name: boundary.r_cos(2, 2)
dtype: float64
- name: boundary.r_cos(2, 3)
dtype: float64
- name: boundary.r_cos(2, 4)
dtype: float64
- name: boundary.r_cos(3, -4)
dtype: float64
- name: boundary.r_cos(3, -3)
dtype: float64
- name: boundary.r_cos(3, -2)
dtype: float64
- name: boundary.r_cos(3, -1)
dtype: float64
- name: boundary.r_cos(3, 0)
dtype: float64
- name: boundary.r_cos(3, 1)
dtype: float64
- name: boundary.r_cos(3, 2)
dtype: float64
- name: boundary.r_cos(3, 3)
dtype: float64
- name: boundary.r_cos(3, 4)
dtype: float64
- name: boundary.r_cos(4, -4)
dtype: float64
- name: boundary.r_cos(4, -3)
dtype: float64
- name: boundary.r_cos(4, -2)
dtype: float64
- name: boundary.r_cos(4, -1)
dtype: float64
- name: boundary.r_cos(4, 0)
dtype: float64
- name: boundary.r_cos(4, 1)
dtype: float64
- name: boundary.r_cos(4, 2)
dtype: float64
- name: boundary.r_cos(4, 3)
dtype: float64
- name: boundary.r_cos(4, 4)
dtype: float64
- name: boundary.z_sin(0, 1)
dtype: float64
- name: boundary.z_sin(0, 2)
dtype: float64
- name: boundary.z_sin(0, 3)
dtype: float64
- name: boundary.z_sin(0, 4)
dtype: float64
- name: boundary.z_sin(1, -4)
dtype: float64
- name: boundary.z_sin(1, -3)
dtype: float64
- name: boundary.z_sin(1, -2)
dtype: float64
- name: boundary.z_sin(1, -1)
dtype: float64
- name: boundary.z_sin(1, 0)
dtype: float64
- name: boundary.z_sin(1, 1)
dtype: float64
- name: boundary.z_sin(1, 2)
dtype: float64
- name: boundary.z_sin(1, 3)
dtype: float64
- name: boundary.z_sin(1, 4)
dtype: float64
- name: boundary.z_sin(2, -4)
dtype: float64
- name: boundary.z_sin(2, -3)
dtype: float64
- name: boundary.z_sin(2, -2)
dtype: float64
- name: boundary.z_sin(2, -1)
dtype: float64
- name: boundary.z_sin(2, 0)
dtype: float64
- name: boundary.z_sin(2, 1)
dtype: float64
- name: boundary.z_sin(2, 2)
dtype: float64
- name: boundary.z_sin(2, 3)
dtype: float64
- name: boundary.z_sin(2, 4)
dtype: float64
- name: boundary.z_sin(3, -4)
dtype: float64
- name: boundary.z_sin(3, -3)
dtype: float64
- name: boundary.z_sin(3, -2)
dtype: float64
- name: boundary.z_sin(3, -1)
dtype: float64
- name: boundary.z_sin(3, 0)
dtype: float64
- name: boundary.z_sin(3, 1)
dtype: float64
- name: boundary.z_sin(3, 2)
dtype: float64
- name: boundary.z_sin(3, 3)
dtype: float64
- name: boundary.z_sin(3, 4)
dtype: float64
- name: boundary.z_sin(4, -4)
dtype: float64
- name: boundary.z_sin(4, -3)
dtype: float64
- name: boundary.z_sin(4, -2)
dtype: float64
- name: boundary.z_sin(4, -1)
dtype: float64
- name: boundary.z_sin(4, 0)
dtype: float64
- name: boundary.z_sin(4, 1)
dtype: float64
- name: boundary.z_sin(4, 2)
dtype: float64
- name: boundary.z_sin(4, 3)
dtype: float64
- name: boundary.z_sin(4, 4)
dtype: float64
- name: metrics.qi
dtype: float64
- name: metrics.vacuum_well
dtype: float64
- name: metrics.aspect_ratio
dtype: float64
- name: metrics.max_elongation
dtype: float64
- name: metrics.average_triangularity
dtype: float64
- name: metrics.axis_magnetic_mirror_ratio
dtype: float64
- name: metrics.edge_magnetic_mirror_ratio
dtype: float64
- name: metrics.aspect_ratio_over_edge_rotational_transform
dtype: float64
- name: metrics.flux_compression_in_regions_of_bad_curvature
dtype: float64
- name: metrics.axis_rotational_transform_over_n_field_periods
dtype: float64
- name: metrics.edge_rotational_transform_over_n_field_periods
dtype: float64
- name: metrics.minimum_normalized_magnetic_gradient_scale_length
dtype: float64
- name: metrics.id
dtype: string
- name: omnigenous_field_and_targets.aspect_ratio
dtype: float64
- name: omnigenous_field_and_targets.major_radius
dtype: float64
- name: omnigenous_field_and_targets.max_elongation
dtype: float64
- name: omnigenous_field_and_targets.rotational_transform
dtype: float64
- name: omnigenous_field_and_targets.id
dtype: string
- name: omnigenous_field_and_targets.omnigenous_field.x_lmn
sequence:
sequence:
sequence: float64
- name: omnigenous_field_and_targets.omnigenous_field.n_field_periods
dtype: int64
- name: omnigenous_field_and_targets.omnigenous_field.poloidal_winding
dtype: int64
- name: omnigenous_field_and_targets.omnigenous_field.torodial_winding
dtype: int64
- name: >-
omnigenous_field_and_targets.omnigenous_field.modB_spline_knot_coefficients
sequence:
sequence: float64
- name: desc_omnigenous_field_optimization_settings.id
dtype: string
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.name
dtype: string
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.weight
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.target_kind
dtype: string
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.name
dtype: string
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.weight
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eta_weight
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_rho
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_M_factor
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_N_factor
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.name
dtype: string
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.weight
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.target_kind
dtype: string
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.name
dtype: string
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.weight
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.target_kind
dtype: string
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.name
dtype: string
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.maxiter
dtype: float64
- name: desc_omnigenous_field_optimization_settings.optimizer_settings.verbose
dtype: float64
- name: desc_omnigenous_field_optimization_settings.equilibrium_settings.psi
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.equilibrium_settings.check_orientation
dtype: bool
- name: >-
desc_omnigenous_field_optimization_settings.equilibrium_settings.max_poloidal_mode
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.equilibrium_settings.max_toroidal_mode
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.torsion
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.elongation
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.aspect_ratio
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.major_radius
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.mirror_ratio
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.n_field_periods
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.is_iota_positive
dtype: bool
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.is_stellarator_symmetric
dtype: bool
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.max_elongation
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.max_poloidal_mode
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.max_toroidal_mode
dtype: float64
- name: >-
desc_omnigenous_field_optimization_settings.initial_guess_settings.rotational_transform
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.verbose
dtype: bool
- name: vmec_omnigenous_field_optimization_settings.max_poloidal_mode
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.max_toroidal_mode
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.n_inner_optimizations
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.gradient_free_max_time
dtype: float64
- name: >-
vmec_omnigenous_field_optimization_settings.infinity_norm_spectrum_scaling
dtype: float64
- name: >-
vmec_omnigenous_field_optimization_settings.gradient_free_budget_per_design_variable
dtype: float64
- name: >-
vmec_omnigenous_field_optimization_settings.use_continuation_method_in_fourier_space
dtype: bool
- name: >-
vmec_omnigenous_field_optimization_settings.gradient_free_optimization_hypercube_bounds
dtype: float64
- name: >-
vmec_omnigenous_field_optimization_settings.gradient_based_relative_objectives_tolerance
dtype: float64
- name: vmec_omnigenous_field_optimization_settings.id
dtype: string
- name: qp_init_omnigenous_field_optimization_settings.torsion
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.elongation
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.aspect_ratio
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.major_radius
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.mirror_ratio
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.n_field_periods
dtype: float64
- name: qp_init_omnigenous_field_optimization_settings.is_iota_positive
dtype: bool
- name: >-
qp_init_omnigenous_field_optimization_settings.is_stellarator_symmetric
dtype: bool
- name: qp_init_omnigenous_field_optimization_settings.id
dtype: string
- name: nae_init_omnigenous_field_optimization_settings.aspect_ratio
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.mirror_ratio
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.max_elongation
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.n_field_periods
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.max_poloidal_mode
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.max_toroidal_mode
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.rotational_transform
dtype: float64
- name: nae_init_omnigenous_field_optimization_settings.id
dtype: string
- name: misc.vmecpp_wout_id
dtype: string
- name: misc.has_optimize_boundary_omnigenity_vmec_error
dtype: bool
- name: misc.has_optimize_boundary_omnigenity_desc_error
dtype: bool
- name: misc.has_generate_qp_initialization_from_targets_error
dtype: bool
- name: misc.has_generate_nae_initialization_from_targets_error
dtype: bool
- name: misc.has_neurips_2025_forward_model_error
dtype: bool
- name: plasma_config_id
dtype: string
splits:
- name: train
num_bytes: 431253433
num_examples: 182222
download_size: 239021787
dataset_size: 431253433
- config_name: full_json
features:
- name: boundary.n_field_periods
dtype: float64
- name: boundary.is_stellarator_symmetric
dtype: bool
- name: boundary.surface
dtype: string
- name: metrics.id
dtype: string
- name: metrics.metrics
dtype: string
- name: omnigenous_field_and_targets.id
dtype: string
- name: omnigenous_field_and_targets.omnigious_field_and_targets
dtype: string
- name: desc_omnigenous_field_optimization_settings.id
dtype: string
- name: >-
desc_omnigenous_field_optimization_settings.desc_omnigenous_field_optimization_settings
dtype: string
- name: vmec_omnigenous_field_optimization_settings.id
dtype: string
- name: >-
vmec_omnigenous_field_optimization_settings.vmec_omnigenous_field_optimization_settings
dtype: string
- name: qp_init_omnigenous_field_optimization_settings.id
dtype: string
- name: >-
qp_init_omnigenous_field_optimization_settings.qp_init_omnigenous_field_optimization_settings
dtype: string
- name: nae_init_omnigenous_field_optimization_settings.id
dtype: string
- name: >-
nae_init_omnigenous_field_optimization_settings.nae_init_omnigenous_field_optimization_settings
dtype: string
- name: misc.vmecpp_wout_id
dtype: string
- name: misc.has_optimize_boundary_omnigenity_vmec_error
dtype: bool
- name: misc.has_optimize_boundary_omnigenity_desc_error
dtype: bool
- name: misc.has_generate_qp_initialization_from_targets_error
dtype: bool
- name: misc.has_generate_nae_initialization_from_targets_error
dtype: bool
- name: misc.has_neurips_2025_forward_model_error
dtype: bool
- name: plasma_config_id
dtype: string
splits:
- name: train
num_bytes: 798346097
num_examples: 182222
download_size: 385377661
dataset_size: 798346097
- config_name: vmecpp_ideal_mhd_equilibria
features:
- name: plasma_config_id
dtype: string
- name: vmecpp_wout_id
dtype: string
- name: vmecpp_wout_json
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 1373486837
num_examples: 324
download_size: 956063943
dataset_size: 1373486837
configs:
- config_name: full_flat
data_files:
- split: train
path: full_flat/train-*
- config_name: full_json
data_files:
- split: train
path: full_json/train-*
- config_name: vmecpp_ideal_mhd_equilibria
data_files:
- split: train
path: vmecpp_ideal_mhd_equilibria/part-*
license: mit
language:
- en
tags:
- physics
- fusion
- optimization
- neurips
pretty_name: ConStellaration
size_categories:
- 10K<n<100K
Dataset Card for ConStellaration
A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation.
Dataset Details
Dataset Description
Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions. With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid.
- Curated by: Proxima Fusion
- License: MIT
Dataset Sources
- Repository: https://huggingface.co/datasets/proxima-fusion/constellaration
- Paper: [not published yet]
- Code: https://github.com/proximafusion/constellaration
Dataset Structure
The dataset consists of 2 tabular parts. Both parts have a column plasma_config_id
in common which can be used to associate respective entries:
full_json/full_flat | vmecpp_ideal_mhd_equilibria |
---|---|
Contains information about:
|
Contains, for each plasma boundary, a JSON representations of the "WOut" file as obtained when running VMEC, initialized on the boundary. The JSON representation can be converted to a VMEC2000 output file. |
The full_json
variant of the dataset contains for each of the components listed about an identifier column (ending with .id
), as well as a JSON column.
The full_flat
variant contains the same information as full_json
but with all JSON columns flattened into one column per leaf in the nested JSON structure (with .
separating the keys on the JSON path to the respective leaf).
Uses
Basic Usage
Load the dataset and convert to a Pandas Dataframe:
import datasets
import torch
from torch.utils.data import DataLoader
ds = datasets.load_dataset("proxima-fusion/constellaration", "full_flat")["train"]
ds = ds.select_columns([c for c in ds.column_names
if c.startswith("boundary.")
or c.startswith("metrics.")])
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ds_torch = ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc.
dataloader = DataLoader(ds_torch, batch_size=4)
for batch in dataloader:
print(batch)
break
Output
{'boundary.is_stellarator_symmetric': tensor([True, True, True, True]),
'boundary.n_field_periods': tensor([5., 2., 5., 3.]),
'boundary.r_cos(0, 0)': tensor([0.9995, 0.9933, 1.0000, 1.0000]),
'boundary.r_cos(0, 1)': tensor([ 0.0008, 0.0957, 0.0978, -0.0658]),
'boundary.r_cos(0, 2)': tensor([-0.0166, -0.0522, -0.0358, -0.0385]),
'boundary.r_cos(0, 3)': tensor([ 0.0006, -0.0098, 0.0004, 0.0022]),
'boundary.r_cos(0, 4)': tensor([ 2.7140e-06, -5.2107e-04, 4.1021e-04, 4.6007e-04]),
'boundary.r_cos(1, -1)': tensor([-0.0774, -0.0480, 0.0674, 0.0142]),
'boundary.r_cos(1, -2)': tensor([-0.0254, 0.0015, 0.0327, 0.0565]),
'boundary.r_cos(1, -3)': tensor([-0.0036, -0.0002, 0.0047, -0.0110]),
'boundary.r_cos(1, -4)': tensor([ 0.0009, -0.0007, 0.0019, -0.0007]),
'boundary.r_cos(1, 0)': tensor([0.2136, 0.1506, 0.0668, 0.0835]),
'boundary.r_cos(1, 1)': tensor([-0.0430, -0.0009, -0.0421, -0.0468]),
'boundary.r_cos(1, 2)': tensor([ 0.0070, 0.0099, 0.0148, -0.0137]),
'boundary.r_cos(1, 3)': tensor([-0.0019, 0.0014, -0.0013, 0.0040]),
'boundary.r_cos(1, 4)': tensor([-0.0001, -0.0001, -0.0001, 0.0001]),
'boundary.r_cos(2, -1)': tensor([ 0.0222, -0.0189, -0.0043, -0.0197]),
'boundary.r_cos(2, -2)': tensor([ 0.0252, -0.0124, -0.0106, 0.0008]),
'boundary.r_cos(2, -3)': tensor([ 0.0063, -0.0054, -0.0039, 0.0047]),
'boundary.r_cos(2, -4)': tensor([ 0.0011, 0.0021, -0.0010, -0.0004]),
'boundary.r_cos(2, 0)': tensor([-0.0170, -0.0226, -0.0083, -0.0095]),
'boundary.r_cos(2, 1)': tensor([-1.9742e-03, 2.4878e-03, -6.7278e-05, -5.8859e-03]),
'boundary.r_cos(2, 2)': tensor([0.0030, 0.0017, 0.0003, 0.0010]),
'boundary.r_cos(2, 3)': tensor([-0.0009, 0.0002, -0.0010, 0.0009]),
'boundary.r_cos(2, 4)': tensor([ 0.0002, 0.0002, 0.0002, -0.0002]),
'boundary.r_cos(3, -1)': tensor([-0.0052, -0.0055, 0.0013, -0.0080]),
'boundary.r_cos(3, -2)': tensor([-0.0019, -0.0035, 0.0026, -0.0004]),
'boundary.r_cos(3, -3)': tensor([-0.0030, 0.0013, 0.0007, 0.0002]),
'boundary.r_cos(3, -4)': tensor([-0.0011, 0.0003, 0.0003, 0.0029]),
'boundary.r_cos(3, 0)': tensor([-0.0057, -0.0003, -0.0014, 0.0013]),
'boundary.r_cos(3, 1)': tensor([ 0.0021, 0.0029, 0.0010, -0.0005]),
'boundary.r_cos(3, 2)': tensor([-0.0001, 0.0011, -0.0008, -0.0007]),
'boundary.r_cos(3, 3)': tensor([1.6793e-04, 3.4548e-04, 4.4246e-04, 3.4558e-05]),
'boundary.r_cos(3, 4)': tensor([-4.5783e-05, 1.1368e-04, -1.1460e-04, 1.4845e-04]),
'boundary.r_cos(4, -1)': tensor([ 7.2199e-05, 1.2212e-04, 5.9814e-05, -5.6161e-04]),
'boundary.r_cos(4, -2)': tensor([ 0.0004, 0.0004, -0.0001, -0.0003]),
'boundary.r_cos(4, -3)': tensor([-0.0002, -0.0002, -0.0001, -0.0005]),
'boundary.r_cos(4, -4)': tensor([ 2.3317e-04, 7.7059e-05, 3.5259e-05, -1.2475e-04]),
'boundary.r_cos(4, 0)': tensor([ 1.3698e-04, -2.1361e-04, -5.7761e-04, 8.3187e-05]),
'boundary.r_cos(4, 1)': tensor([-7.0448e-05, -5.2118e-04, 3.7886e-04, -1.2714e-04]),
'boundary.r_cos(4, 2)': tensor([ 0.0003, -0.0002, -0.0002, -0.0002]),
'boundary.r_cos(4, 3)': tensor([-9.0838e-05, -1.6513e-04, 6.7852e-05, 4.1940e-06]),
'boundary.r_cos(4, 4)': tensor([-6.2693e-06, 1.4236e-06, -3.0395e-05, -4.5643e-05]),
'boundary.z_sin(0, 1)': tensor([-0.1963, -0.4660, 0.0626, -0.0143]),
'boundary.z_sin(0, 2)': tensor([ 0.0197, -0.0487, 0.0186, 0.0149]),
'boundary.z_sin(0, 3)': tensor([-0.0022, -0.0056, 0.0017, -0.0066]),
'boundary.z_sin(0, 4)': tensor([ 6.1945e-04, -2.5693e-03, 3.3028e-05, -3.0652e-04]),
'boundary.z_sin(1, -1)': tensor([-0.0737, -0.0783, 0.0069, -0.0228]),
'boundary.z_sin(1, -2)': tensor([-0.0346, 0.0154, 0.0488, 0.0576]),
'boundary.z_sin(1, -3)': tensor([-0.0038, -0.0004, 0.0128, -0.0016]),
'boundary.z_sin(1, -4)': tensor([-5.1524e-04, -2.2537e-03, 1.7765e-03, 9.6958e-05]),
'boundary.z_sin(1, 0)': tensor([-0.0947, -0.1091, -0.1901, -0.1610]),
'boundary.z_sin(1, 1)': tensor([0.0144, 0.0656, 0.0731, 0.0166]),
'boundary.z_sin(1, 2)': tensor([-0.0049, 0.0008, -0.0216, 0.0150]),
'boundary.z_sin(1, 3)': tensor([ 0.0011, -0.0014, 0.0032, -0.0012]),
'boundary.z_sin(1, 4)': tensor([ 0.0002, 0.0015, -0.0005, -0.0004]),
'boundary.z_sin(2, -1)': tensor([-0.0140, 0.0100, 0.0049, -0.0189]),
'boundary.z_sin(2, -2)': tensor([ 0.0140, 0.0016, -0.0162, -0.0114]),
'boundary.z_sin(2, -3)': tensor([ 0.0048, -0.0015, -0.0107, 0.0036]),
'boundary.z_sin(2, -4)': tensor([ 0.0009, 0.0024, -0.0018, -0.0010]),
'boundary.z_sin(2, 0)': tensor([ 0.0142, -0.0110, 0.0052, -0.0008]),
'boundary.z_sin(2, 1)': tensor([ 0.0004, -0.0072, -0.0033, 0.0095]),
'boundary.z_sin(2, 2)': tensor([-0.0008, -0.0030, 0.0036, -0.0005]),
'boundary.z_sin(2, 3)': tensor([-2.4587e-04, -1.4641e-03, -6.1073e-05, -5.5180e-04]),
'boundary.z_sin(2, 4)': tensor([-4.4745e-05, 1.1328e-04, -5.3629e-05, 3.2248e-04]),
'boundary.z_sin(3, -1)': tensor([ 0.0137, 0.0037, -0.0037, 0.0090]),
'boundary.z_sin(3, -2)': tensor([-0.0037, -0.0089, -0.0025, -0.0084]),
'boundary.z_sin(3, -3)': tensor([-0.0052, 0.0009, -0.0015, -0.0025]),
'boundary.z_sin(3, -4)': tensor([-0.0011, 0.0014, -0.0002, 0.0023]),
'boundary.z_sin(3, 0)': tensor([ 0.0012, -0.0005, -0.0001, -0.0020]),
'boundary.z_sin(3, 1)': tensor([-0.0007, 0.0040, 0.0003, -0.0016]),
'boundary.z_sin(3, 2)': tensor([-0.0006, -0.0003, 0.0005, 0.0008]),
'boundary.z_sin(3, 3)': tensor([ 0.0002, 0.0003, -0.0004, 0.0004]),
'boundary.z_sin(3, 4)': tensor([-5.6412e-05, 1.0018e-04, 5.2259e-05, -6.8400e-05]),
'boundary.z_sin(4, -1)': tensor([ 3.2419e-05, -4.5468e-04, 1.1803e-03, 5.0270e-04]),
'boundary.z_sin(4, -2)': tensor([ 3.0922e-04, -2.3282e-03, -6.1121e-05, 6.0890e-04]),
'boundary.z_sin(4, -3)': tensor([ 0.0006, 0.0007, -0.0003, -0.0002]),
'boundary.z_sin(4, -4)': tensor([ 1.5477e-04, 2.9187e-04, 9.7048e-05, -3.6228e-04]),
'boundary.z_sin(4, 0)': tensor([ 0.0002, 0.0010, -0.0004, -0.0007]),
'boundary.z_sin(4, 1)': tensor([-6.8060e-04, 6.0775e-04, 4.5423e-04, -7.6356e-05]),
'boundary.z_sin(4, 2)': tensor([ 0.0002, -0.0004, -0.0003, 0.0002]),
'boundary.z_sin(4, 3)': tensor([-5.1384e-05, 5.7630e-05, 9.2855e-05, -3.2524e-05]),
'boundary.z_sin(4, 4)': tensor([ 3.9863e-05, -1.2590e-04, -4.8167e-06, 5.3396e-05]),
'metrics.aspect_ratio': tensor([7.7955, 8.7009, 8.3073, 9.6474]),
'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 4.7622, 39.3853, 7.4686, 9.3211]),
'metrics.average_triangularity': tensor([ 0.6554, -0.6067, -0.3194, -0.5184]),
'metrics.axis_magnetic_mirror_ratio': tensor([0.2098, 0.2465, 0.5243, 0.2823]),
'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.3285, 0.2195, 0.2377, 0.2333]),
'metrics.edge_magnetic_mirror_ratio': tensor([0.3518, 0.2744, 0.7742, 0.4869]),
'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3274, 0.1105, 0.2225, 0.3450]),
'metrics.flux_compression_in_regions_of_bad_curvature': tensor([2.0642, 1.6771, 1.6702, 1.4084]),
'metrics.id': ['DfpsEPzxXHTUgveVPNFVxyw',
'D6ydRp85utx9ZXqZVXbez8G',
'DLfSjAoEr26nCNet4S84XET',
'DBVNupAx3tW54uUz5bGQfyT'],
'metrics.max_elongation': tensor([7.9947, 5.7292, 5.6427, 6.7565]),
'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.0333, 4.4903, 2.7130, 5.9777]),
'metrics.qi': tensor([0.0101, 0.0007, 0.0249, 0.0148]),
'metrics.vacuum_well': tensor([-0.0216, -0.0756, -0.1321, -0.2297])}
Advanced Usage
For advanced manipulation and visualization of data contained in this dataset, install constellaration
from here.
Load and instantiate plasma boundaries:
import datasets
from constellaration.geometry import surface_rz_fourier
full_json_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_json")["train"]
full_json_df = full_json_ds.to_pandas().set_index("plasma_config_id")
plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf"
boundary_json = full_json_df.loc[plasma_config_id]["boundary.surface"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
Plot boundary:
from constellaration.utils import visualization
visualization.plot_surface(boundary)
visualization.plot_boundary(boundary)
Stream and instantiate the VMEC ideal MHD equilibria:
import datasets
from constellaration.mhd import vmec_utils
ds = datasets.load_dataset("proxima-fusion/constellaration", "vmecpp_ideal_mhd_equilibria", streaming=True)["train"]
ds = ds.filter(lambda row: row["vmecpp_wout_json"] is not None)
row = next(ds.__iter__())
vmecpp_wout_json = row["vmecpp_wout_json"]
vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json)
# Fetch corresponding boundary
plasma_config_id = row["plasma_config_id"]
boundary_json = full_json_df.loc[plasma_config_id]["boundary.surface"]
boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json)
Plot flux surfaces:
from constellaration.utils import visualization
visualization.plot_flux_surfaces(vmecpp_wout, boundary)
Save ideal MHD equilibrium to VMEC2000 WOut file:
import pathlib
from constellaration.utils import file_exporter
file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc"))
Dataset Creation
Curation Rationale
Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations.
Source Data
Data Collection and Processing
We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods.
Who are the source data producers?
Proxima Fusion's stellarator optimization team.
Personal and Sensitive Information
The dataset contains no personally identifiable information.
Citation
BibTeX:
@article{article_id, author = {Santiago A Cadena, Andrea Merlo, Emanuel Laude, Alexander Bauer, Atul Agrawal, Maria Pascu, Marija Savtchouk, Lukas Bonauer, Enrico Guiraud, Stuart R. Hudson, Markus Kaiser}, title = {ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks}, journal = {NeurIPS 2025 Datasets and Benchmarks Track}, year = {2025} }
Glossary
Abbreviation | Expansion |
---|---|
QI | Quasi-Isodynamic(ity) |
MHD | Magneto-Hydrodynamic |
DESC | Dynamical Equilibrium Solver for Confinement |
VMEC/VMEC++ | Variational Moments Equilibrium Code (Fortran/C++) |
QP | Quasi-Poloidal |
NAE | Near-Axis Expansion |
NFP | Number of Field Periods |
Dataset Card Authors
Alexander Bauer, Santiago A. Cadena