Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
compression_ratio: string
original_parameters: int64
compressed_parameters: int64
training_method: string
base_model: string
source_weights: string
final_model: string
compression_achieved: string
status: string
vs
base_model: string
fine_tuning_method: string
batch_size: int64
accumulation_steps: int64
max_length: int64
learning_rate: double
samples_processed: int64
parameter_updates: int64
final_loss: double
compression_ratio: string
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 559, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              compression_ratio: string
              original_parameters: int64
              compressed_parameters: int64
              training_method: string
              base_model: string
              source_weights: string
              final_model: string
              compression_achieved: string
              status: string
              vs
              base_model: string
              fine_tuning_method: string
              batch_size: int64
              accumulation_steps: int64
              max_length: int64
              learning_rate: double
              samples_processed: int64
              parameter_updates: int64
              final_loss: double
              compression_ratio: string

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

GPT-2 XL Compressed Model Weights

This dataset contains the compressed model weights from tensor network compression methodology applied to GPT-2 XL.

πŸ“ Files Included

Compressed Model Weights (.pt files)

  • compressed_gpt2_xl_68.3%.pt - Base compressed model (~68% compression)
  • compressed_gpt2_xl_68.3%_healed.pt - Compressed + knowledge distillation healing
  • compressed_gpt2_xl_68.3%_enwik8_trained.pt - Compressed + enwik8 fine-tuning
  • compressed_gpt2_xl_68.3%_enwik8_final.pt - Final version after training
  • compressed_gpt2_xl_68.3%_enwik8_finetuned.pt - Fine-tuned version

Architecture & Metadata

  • model_architecture.pkl - Compressed model architecture
  • *_metadata.json - Training and compression metadata

πŸ”¬ Methodology

Based on quantum-inspired tensor network compression:

  • Matrix Product Operator (MPO) tensor network decomposition
  • 68% parameter reduction (1.56B β†’ ~500M parameters)
  • Tensor network compression technique
  • Knowledge distillation healing process

πŸš€ Usage

import torch

# Load compressed weights
model_weights = torch.load('compressed_gpt2_xl_68.3%_healed.pt', map_location='cpu')

# For ready-to-use model, see: 
# https://huggingface.co/prompterminal/gpt2-compressed

πŸ“Š Compression Stats

  • Original GPT-2 XL: 1.56B parameters, ~6.2GB
  • Compressed Version: ~500M parameters, ~1.98GB
  • Compression Ratio: 68% reduction
  • Method: MPO tensor networks + healing

🎯 Files Recommended for Use

  • Best for inference: compressed_gpt2_xl_68.3%_healed.pt
  • Best for fine-tuning: compressed_gpt2_xl_68.3%_enwik8_trained.pt
  • Research/analysis: All files + metadata

πŸ“š Citation

@misc{tensor_network_compression_2024,
  title={GPT-2 XL Compressed using Tensor Network Methods},
  author={prompterminal},
  year={2024},
  howpublished={HuggingFace Dataset}
}

πŸ”— Related


These weights represent pioneering work in tensor network compression for large language models.

Downloads last month
82