Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 29 new columns ({'places_token_id', 'cross_street', 'locality', 'administrative_area', 'z_priority', 'author_id', 'address', 'place_contact_id', 'subadministrative_area', 'verified', 'locale_id', 'address_formatted', 'flagged', 'slug', 'radius_in_meters', 'created_at', 'location_id', 'nano_id', 'primary_tag_id', 'clustering_category', 'stamp_id', 'name', 'owner_id', 'postal_code', 'country', 'updated_at', 'country_code', 'sublocality', 'description'}) and 7 missing columns ({'altitude', 'longitude', 'horizontal_accuracy', 'geog', 'latitude', 'vertical_accuracy', 'geom'}).

This happened while the csv dataset builder was generating data using

hf://datasets/piemonte/places/place.csv (at revision 714c51abce9aa39ef008b4fda36c3ee8a257fa9e)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              id: string
              created_at: string
              name: string
              description: string
              address: string
              address_formatted: string
              cross_street: string
              locality: string
              administrative_area: string
              postal_code: string
              country_code: string
              verified: bool
              flagged: bool
              place_contact_id: string
              location_id: string
              author_id: string
              owner_id: double
              locale_id: double
              primary_tag_id: string
              country: string
              sublocality: string
              subadministrative_area: string
              updated_at: string
              radius_in_meters: double
              stamp_id: string
              z_priority: double
              clustering_category: string
              places_token_id: double
              nano_id: string
              slug: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 3906
              to
              {'id': Value(dtype='string', id=None), 'latitude': Value(dtype='float64', id=None), 'longitude': Value(dtype='float64', id=None), 'horizontal_accuracy': Value(dtype='int64', id=None), 'altitude': Value(dtype='int64', id=None), 'vertical_accuracy': Value(dtype='int64', id=None), 'geom': Value(dtype='string', id=None), 'geog': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1436, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1053, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 29 new columns ({'places_token_id', 'cross_street', 'locality', 'administrative_area', 'z_priority', 'author_id', 'address', 'place_contact_id', 'subadministrative_area', 'verified', 'locale_id', 'address_formatted', 'flagged', 'slug', 'radius_in_meters', 'created_at', 'location_id', 'nano_id', 'primary_tag_id', 'clustering_category', 'stamp_id', 'name', 'owner_id', 'postal_code', 'country', 'updated_at', 'country_code', 'sublocality', 'description'}) and 7 missing columns ({'altitude', 'longitude', 'horizontal_accuracy', 'geog', 'latitude', 'vertical_accuracy', 'geom'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/piemonte/places/place.csv (at revision 714c51abce9aa39ef008b4fda36c3ee8a257fa9e)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

id
string
latitude
float64
longitude
float64
horizontal_accuracy
int64
altitude
int64
vertical_accuracy
int64
geom
string
geog
string
a024a994-815e-4e52-a8d1-c67753a460d5
30.266959
-97.745658
100
0
-1
01010000A0E6100000C9A22EDDB86F58C07F21966857443E400000000000000000
0101000020E6100000C9A22EDDB86F58C07F21966857443E40
1d6dcb14-f627-481e-8d83-45e4cb7785b6
38.492628
-122.466157
100
0
-1
01010000A0E61000007EED0084D59D5EC05D393A6D0E3F43400000000000000000
0101000020E61000007EED0084D59D5EC05D393A6D0E3F4340
3d9b2e5f-0df7-443e-b4b2-164d447d5683
30.265555
-97.747785
100
0
-1
01010000A0E61000001E4D8DB6DB6F58C0850A7466FB433E400000000000000000
0101000020E61000001E4D8DB6DB6F58C0850A7466FB433E40
cfb09872-80a5-49c7-835f-53b2ed7981a9
49.278529
-123.126354
100
0
-1
01010000A0E6100000A7BDCD3016C85EC0F4444BD7A6A348400000000000000000
0101000020E6100000A7BDCD3016C85EC0F4444BD7A6A34840
755d8434-4d9a-4f89-a8cc-a495298f0475
30.254724
-97.762643
100
0
-1
01010000A0E610000094338624CF7058C0C3EBE18F35413E400000000000000000
0101000020E610000094338624CF7058C0C3EBE18F35413E40
d5f31962-1bb9-42dd-b771-fa5e31659715
38.514331
-122.484548
100
0
-1
01010000A0E6100000D421ABD3029F5EC062BF9396D54143400000000000000000
0101000020E6100000D421ABD3029F5EC062BF9396D5414340
d866831d-fc0e-445f-b3d1-ae21d1842f3b
38.299156
-122.285321
100
0
-1
01010000A0E61000005F28FAB042925EC08635E9BC4A2643400000000000000000
0101000020E61000005F28FAB042925EC08635E9BC4A264340
22986a10-e9db-45e4-86f4-4d04c3871678
37.739574
-122.419027
10
0
-1
01010000A0E6100000D4AE3455D19A5EC0DA08905CAADE42400000000000000000
0101000020E6100000D4AE3455D19A5EC0DA08905CAADE4240
2035eca8-4828-4fc1-8434-846a30ae680e
38.406559
-122.367388
100
0
-1
01010000A0E61000008B5A3C4983975EC0ABAA611D0A3443400000000000000000
0101000020E61000008B5A3C4983975EC0ABAA611D0A344340
2ad8ab15-4203-4b3a-91de-7128b5cccbd6
38.509613
-122.456708
100
0
-1
01010000A0E61000002872ADB53A9D5EC05D7FA2FB3A4143400000000000000000
0101000020E61000002872ADB53A9D5EC05D7FA2FB3A414340
f598ddf9-a326-45e3-8f96-9b329a58ff06
50.929249
4.528457
100
0
-1
01010000A0E6100000B26670D1231D1240DD50C1A4F17649400000000000000000
0101000020E6100000B26670D1231D1240DD50C1A4F1764940
caac09bb-d872-429a-9eb3-15d75480b81a
37.906665
-122.682784
100
0
-1
01010000A0E6100000BBEF59BDB2AB5EC006CEB09B0DF442400000000000000000
0101000020E6100000BBEF59BDB2AB5EC006CEB09B0DF44240
cb5e22af-d2db-4ec2-9b6b-e9363e5329c4
37.743421
-122.426853
100
0
-1
01010000A0E61000001BBE568F519B5EC00D64A66A28DF42400000000000000000
0101000020E61000001BBE568F519B5EC00D64A66A28DF4240
4523ad8e-a265-4f5d-b054-14ca6e24ab30
37.795666
-122.393821
100
0
-1
01010000A0E61000001E41A85D34995EC00DE19A61D8E542400000000000000000
0101000020E61000001E41A85D34995EC00DE19A61D8E54240
fd29fb11-a2a4-476e-9fa9-518b038c2070
38.504671
-122.471087
10
0
-1
01010000A0E61000007CFA614B269E5EC0352D1A0B994043400000000000000000
0101000020E61000007CFA614B269E5EC0352D1A0B99404340
e990f47f-a84e-43eb-9e08-b891f206e40e
37.788638
-122.407121
100
0
-1
01010000A0E6100000C8CA5F460E9A5EC0A20B6B16F2E442400000000000000000
0101000020E6100000C8CA5F460E9A5EC0A20B6B16F2E44240
2baf5415-0e6b-477f-ba57-2cb7bebb722a
37.802376
-122.405842
10
0
-1
01010000A0E61000000901F850F9995EC066E46D44B4E642400000000000000000
0101000020E61000000901F850F9995EC066E46D44B4E64240
0cc58dda-2d42-4b8a-a8dd-7b3e3cc10f50
38.579903
-122.578612
10
0
-1
01010000A0E6100000722A96FC07A55EC00C04F53F3A4A43400000000000000000
0101000020E6100000722A96FC07A55EC00C04F53F3A4A4340
667d5986-6a7a-4611-ac33-18f20e660659
38.504852
-122.469346
100
0
-1
01010000A0E6100000B8705BC2099E5EC01328FCFA9E4043400000000000000000
0101000020E6100000B8705BC2099E5EC01328FCFA9E404340
89c81e0f-5f23-48c4-8626-dae83a70ea3b
38.404079
-122.365397
100
0
-1
01010000A0E6100000E42BFCA862975EC0F9787FDAB83343400000000000000000
0101000020E6100000E42BFCA862975EC0F9787FDAB8334340
b3a3a22e-10a5-4696-9f21-a15fcefd8198
38.402421
-122.361805
100
0
-1
01010000A0E6100000EA9C8FD027975EC0D9017789823343400000000000000000
0101000020E6100000EA9C8FD027975EC0D901778982334340
a6f5ebeb-43dc-4a3c-8308-fe5bb4e31103
37.789044
-122.400799
100
0
-1
01010000A0E6100000469B69B1A6995EC0BA5E8267FFE442400000000000000000
0101000020E6100000469B69B1A6995EC0BA5E8267FFE44240
7eae3ae6-8817-4911-8560-aa1219d421af
37.782478
-122.393171
100
0
-1
01010000A0E61000008AD79FB429995EC0AC546E3F28E442400000000000000000
0101000020E61000008AD79FB429995EC0AC546E3F28E44240
2f29fe29-0b8f-4ce0-bdae-c9840bd23e97
37.769834
-122.466139
10
0
-1
01010000A0E6100000F0752B3AD59D5EC0EEBD86EF89E242400000000000000000
0101000020E6100000F0752B3AD59D5EC0EEBD86EF89E24240
ad9c3149-7dea-4469-822f-f63b56e2ee1f
36.7062
-105.412882
100
0
-1
01010000A0E61000009135ACAA6C5A5AC027030DC6645A42400000000000000000
0101000020E61000009135ACAA6C5A5AC027030DC6645A4240
3881125c-02a2-4209-ab48-3417c13fd190
34.120944
-118.204659
100
0
-1
01010000A0E6100000CE8C7C21198D5DC0F0BFD31A7B0F41400000000000000000
0101000020E6100000CE8C7C21198D5DC0F0BFD31A7B0F4140
17d43705-d673-47e1-9ef1-33ab58fb06ff
37.739123
-122.416007
0
0
-1
01010000A0E6100000439A67DB9F9A5EC0575C1C959BDE42400000000000000000
0101000020E6100000439A67DB9F9A5EC0575C1C959BDE4240
7c7a4a07-7688-4e81-8f6a-837d1862194f
39.267273
-120.127733
100
0
-1
01010000A0E6100000C26F5EC52C085EC09A37430136A243400000000000000000
0101000020E6100000C26F5EC52C085EC09A37430136A24340
ec96624e-d28f-4cc5-be4a-a474a1c94f24
38.897691
-77.036573
100
0
-1
01010000A0E61000004C5F8C37574253C0F5ED1B88E77243400000000000000000
0101000020E61000004C5F8C37574253C0F5ED1B88E7724340
2befe753-bd78-4ab2-be4b-a56395e4a88c
38.502996
-122.469025
100
0
-1
01010000A0E61000004D7ACE80049E5EC04E1E2629624043400000000000000000
0101000020E61000004D7ACE80049E5EC04E1E262962404340
3297fd26-e63c-42b2-8b4a-e2b033fe9cb0
37.759226
-122.411285
100
0
-1
01010000A0E61000003C2F467F529A5EC02D9F5A4F2EE142400000000000000000
0101000020E61000003C2F467F529A5EC02D9F5A4F2EE14240
b8aa30ca-6284-441a-ba48-8d071e142fd7
39.274036
-120.119779
100
0
-1
01010000A0E610000018546B75AA075EC0CE69529C13A343400000000000000000
0101000020E610000018546B75AA075EC0CE69529C13A34340
f5f14b83-1d85-4dc6-b771-cc31358c4c3a
38.504978
-122.469482
100
0
-1
01010000A0E6100000509BD1FE0B9E5EC00C077A1EA34043400000000000000000
0101000020E6100000509BD1FE0B9E5EC00C077A1EA3404340
46451811-72ff-4ad5-8ff5-c14d3ec98411
37.777019
-122.408474
100
0
-1
01010000A0E61000000003AE70249A5EC0FF566B5D75E342400000000000000000
0101000020E61000000003AE70249A5EC0FF566B5D75E34240
de463f4f-c5e1-4daa-bc8f-37bcd26499ac
38.299233
-122.285691
100
0
-1
01010000A0E610000087F74BC348925EC0229C01484D2643400000000000000000
0101000020E610000087F74BC348925EC0229C01484D264340
29925a56-ba0c-495f-8ba0-b4e404153a25
37.759822
-122.421589
100
0
-1
01010000A0E610000049CF8C50FB9A5EC07792C4DB41E142400000000000000000
0101000020E610000049CF8C50FB9A5EC07792C4DB41E14240
6b9c1a9c-d410-4f8d-bd06-9d564ee35584
37.803017
-122.448114
10
0
-1
01010000A0E6100000B9F880E5AD9C5EC09392793FC9E642400000000000000000
0101000020E6100000B9F880E5AD9C5EC09392793FC9E64240
8ca0d9df-9dc7-4d24-bf53-358f4084186f
37.756639
-122.502228
10
0
-1
01010000A0E6100000EE72FB8224A05EC06B0F718FD9E042400000000000000000
0101000020E6100000EE72FB8224A05EC06B0F718FD9E04240
c4ac8a17-4973-45f0-9437-d164cac422f5
38.405447
-122.366389
10
0
-1
01010000A0E6100000078B68EA72975EC09C83DAB1E53343400000000000000000
0101000020E6100000078B68EA72975EC09C83DAB1E5334340
717a0a9e-d6f9-4b07-b4cb-4a425d979392
37.760974
-122.421332
10
0
-1
01010000A0E6100000E3E5B71AF79A5EC05515DD9467E142400000000000000000
0101000020E6100000E3E5B71AF79A5EC05515DD9467E14240
6eb341b5-466a-44de-99d6-7f5940e723c2
38.501151
-122.463355
10
0
-1
01010000A0E6100000398AB99AA79D5EC065FE7EB8254043400000000000000000
0101000020E6100000398AB99AA79D5EC065FE7EB825404340
f78544f5-68bc-45bf-a65d-6d73cde92964
38.503139
-122.468525
10
0
-1
01010000A0E6100000CFDF6850FC9D5EC02FB18CDE664043400000000000000000
0101000020E6100000CFDF6850FC9D5EC02FB18CDE66404340
cf61c0d5-d20f-445e-a79f-e7585d5cba29
38.321192
-122.306115
10
0
-1
01010000A0E61000006B297C6297935EC03A217BD11C2943400000000000000000
0101000020E61000006B297C6297935EC03A217BD11C294340
7ef970b5-f70f-45ab-a467-3de479b104cc
38.315092
-122.482019
10
0
-1
01010000A0E6100000A1480A68D99E5EC087B45EED542843400000000000000000
0101000020E6100000A1480A68D99E5EC087B45EED54284340
b6a06c17-04b8-494b-8a84-7c53f65648cd
37.771002
-122.469454
100
0
-1
01010000A0E61000009A245C880B9E5EC01674EB33B0E242400000000000000000
0101000020E61000009A245C880B9E5EC01674EB33B0E24240
92f05b0b-2239-415f-8acf-bc4a3e0300d8
38.668248
-122.62485
100
0
-1
01010000A0E6100000F37F9F8CFDA75EC03FE6E824895543400000000000000000
0101000020E6100000F37F9F8CFDA75EC03FE6E82489554340
5413b576-a303-45f1-8254-2f8b0905e85b
30.26809
-97.749226
100
0
-1
01010000A0E6100000598EFD52F36F58C0A001228FA1443E400000000000000000
0101000020E6100000598EFD52F36F58C0A001228FA1443E40
5d032675-9ad2-4cfb-9a34-d46f17834a44
38.514523
-122.484789
100
0
-1
01010000A0E6100000B9B648C9069F5EC0FD265FE1DB4143400000000000000000
0101000020E6100000B9B648C9069F5EC0FD265FE1DB414340
9ec7871c-d368-4b89-b382-cb652c7a03f3
38.301722
-122.281598
100
0
-1
01010000A0E61000001C8B61B205925EC0A91B20D19E2643400000000000000000
0101000020E61000001C8B61B205925EC0A91B20D19E264340
1c2ae6c6-5613-49c5-ae70-0d0273fd15c3
37.788609
-122.39748
100
0
-1
01010000A0E6100000A773674F70995EC09BA38326F1E442400000000000000000
0101000020E6100000A773674F70995EC09BA38326F1E44240
9653a051-313f-4834-8469-848d795b8920
38.505183
-122.469853
100
0
-1
01010000A0E610000045112C14129E5EC054421EDAA94043400000000000000000
0101000020E610000045112C14129E5EC054421EDAA9404340
1479ef7c-c7c9-4498-aee1-143b36656553
38.508286
-122.468093
100
0
-1
01010000A0E61000004586EE3AF59D5EC096A480820F4143400000000000000000
0101000020E61000004586EE3AF59D5EC096A480820F414340
0e688f14-5561-4e59-97ac-5f6994ddc639
38.501904
-122.465452
10
0
-1
01010000A0E6100000BCF781F5C99D5EC0101E12633E4043400000000000000000
0101000020E6100000BCF781F5C99D5EC0101E12633E404340
9e699fb8-66bd-4b6c-8e2e-91fe8810a830
38.503922
-122.468301
100
0
-1
01010000A0E6100000CF3FCEA5F89D5EC0BC7D1488804043400000000000000000
0101000020E6100000CF3FCEA5F89D5EC0BC7D148880404340
ff65e9a5-41b5-4769-9775-78f3d4f00a67
45.156024
-122.87846
100
0
-1
01010000A0E61000006143C3B138B85EC0D4B45897F89346400000000000000000
0101000020E61000006143C3B138B85EC0D4B45897F8934640
23f09f9d-517b-4aaf-9048-1d4977993bad
38.405696
-122.366557
100
0
-1
01010000A0E61000007B6CD1A975975EC0A281C8DCED3343400000000000000000
0101000020E61000007B6CD1A975975EC0A281C8DCED334340
962cff6a-531a-4bb9-8667-1632e30c9b79
38.500375
-122.463982
100
0
-1
01010000A0E61000009D4122E0B19D5EC02224CD490C4043400000000000000000
0101000020E61000009D4122E0B19D5EC02224CD490C404340
27fe88c2-154b-429c-a2dc-258444d62fd6
38.394417
-122.365977
100
0
-1
01010000A0E6100000045B82296C975EC0DD6219437C3243400000000000000000
0101000020E6100000045B82296C975EC0DD6219437C324340
8c29a036-3f73-4a7c-83d3-6e55c7bfba07
52.507433
13.374189
100
0
-1
01010000A0E6100000ED69FBB695BF2A4081E4B58FF3404A400000000000000000
0101000020E6100000ED69FBB695BF2A4081E4B58FF3404A40
1882516d-789b-4b6f-a3e9-16ea482c4748
37.753034
-122.407649
100
0
-1
01010000A0E61000005AA1A3EB169A5EC06BE32D6963E042400000000000000000
0101000020E61000005AA1A3EB169A5EC06BE32D6963E04240
bb4d598d-2194-4319-af09-0e4ab714d5b9
37.75878
-122.42683
100
0
-1
01010000A0E610000051F0392F519B5EC0F1C83FB41FE142400000000000000000
0101000020E610000051F0392F519B5EC0F1C83FB41FE14240
ae08ae89-5238-4330-91a6-4f4faee499a6
38.503513
-122.467803
10
0
-1
01010000A0E6100000207EFE7BF09D5EC0300E2E1D734043400000000000000000
0101000020E6100000207EFE7BF09D5EC0300E2E1D73404340
925eec61-85f0-4565-bbfd-8ae7a70eb8ee
37.739049
-122.414169
10
0
-1
01010000A0E6100000000080BD819A5EC02F0A612999DE42400000000000000000
0101000020E6100000000080BD819A5EC02F0A612999DE4240
aa55313c-583f-4d0b-b0db-d2d29cafce7a
38.440546
-123.126766
10
0
-1
01010000A0E6100000FD77D3ED1CC85EC0D7092ACF633843400000000000000000
0101000020E6100000FD77D3ED1CC85EC0D7092ACF63384340
bd1c0ff1-1997-4763-8f2f-89d60a207148
37.795945
-122.393923
100
0
-1
01010000A0E61000007892AE0936995EC01A0E5886E1E542400000000000000000
0101000020E61000007892AE0936995EC01A0E5886E1E54240
5c84f096-4982-49e0-a3fd-45e25e6de25e
37.787926
-122.407524
100
0
-1
01010000A0E6100000041578DD149A5EC0682C72C2DAE442400000000000000000
0101000020E6100000041578DD149A5EC0682C72C2DAE44240
38924d98-04c3-4aa9-86be-28a84024ccb9
38.506141
-122.470985
100
0
-1
01010000A0E6100000EAB75D9D249E5EC0E6371B3BC94043400000000000000000
0101000020E6100000EAB75D9D249E5EC0E6371B3BC9404340
0c8498b2-e251-46e3-96c5-b24353578dbd
37.781572
-122.39395
100
0
-1
01010000A0E610000047095D7936995EC0218F078C0AE442400000000000000000
0101000020E610000047095D7936995EC0218F078C0AE44240
5ed144cf-9b44-4171-8fa2-68e2b042b737
38.503567
-122.467136
100
0
-1
01010000A0E6100000B780C38CE59D5EC03B4661E4744043400000000000000000
0101000020E6100000B780C38CE59D5EC03B4661E474404340
2265196a-0c95-40b7-8d7d-a4025577a031
36.708948
-105.410027
100
0
-1
01010000A0E61000003805E6E03D5A5AC08B6B0ECDBE5A42400000000000000000
0101000020E61000003805E6E03D5A5AC08B6B0ECDBE5A4240
c78028fc-68b2-4524-95e6-8c3c0c3c4b27
34.132125
-118.293894
100
0
-1
01010000A0E610000051BE7E27CF925DC0306ECC7CE91041400000000000000000
0101000020E610000051BE7E27CF925DC0306ECC7CE9104140
25993fab-37da-4534-b6eb-c2c33a493d35
37.758953
-122.412277
0
0
-1
01010000A0E610000027F911BF629A5EC0BD19355F25E142400000000000000000
0101000020E610000027F911BF629A5EC0BD19355F25E14240
383c1de7-9d0f-4ff1-a744-a38652bf7967
39.26692
-120.128009
100
0
-1
01010000A0E61000005B68D34D31085EC0F66085712AA243400000000000000000
0101000020E61000005B68D34D31085EC0F66085712AA24340
981fa93a-75c4-4791-a0cc-6c3e5340d221
37.759221
-122.411157
100
0
-1
01010000A0E61000007D089466509A5EC0572795292EE142400000000000000000
0101000020E61000007D089466509A5EC0572795292EE14240
0d61ba6a-02e9-4a47-930d-c7f03dfd5ee3
48.882355
2.32724
100
0
-1
01010000A0E6100000637B9725309E024032FE22FFF07048400000000000000000
0101000020E6100000637B9725309E024032FE22FFF0704840
d985e2fc-5a03-4a4c-892a-a93f2ef5c4a3
39.275472
-120.120744
100
0
-1
01010000A0E6100000D6569245BA075EC0E50D2BAD42A343400000000000000000
0101000020E6100000D6569245BA075EC0E50D2BAD42A34340
4b72d9a0-760e-4d24-bca1-9b28ec608f8b
30.334378
-97.741015
100
0
-1
01010000A0E61000009AD2DACA6C6F58C017866AC699553E400000000000000000
0101000020E61000009AD2DACA6C6F58C017866AC699553E40
94f9eb26-7069-4bab-9d80-3f0c7fd6cc38
37.787581
-122.403922
100
0
-1
01010000A0E61000000C43A6DCD9995EC013EC6275CFE442400000000000000000
0101000020E61000000C43A6DCD9995EC013EC6275CFE44240
a13c297a-76c5-49fa-9923-b9646f045a13
38.301251
-122.28184
100
0
-1
01010000A0E6100000637EB3AA09925EC0D489F9658F2643400000000000000000
0101000020E6100000637EB3AA09925EC0D489F9658F264340
ac782d68-b3ef-4799-a21a-255bcd4bde8e
37.776573
-122.408367
100
0
-1
01010000A0E61000007BD29DAD229A5EC0B8F340C066E342400000000000000000
0101000020E61000007BD29DAD229A5EC0B8F340C066E34240
8b0b002c-d092-42b3-bdc9-3b447a35ae6e
38.298747
-122.282843
100
0
-1
01010000A0E6100000EC63AD181A925EC02C1185593D2643400000000000000000
0101000020E6100000EC63AD181A925EC02C1185593D264340
d37fe697-9bf7-4e51-8b01-26d7b385fd03
37.805285
-122.272556
100
0
-1
01010000A0E6100000B622B58E71915EC0C7A73B9113E742400000000000000000
0101000020E6100000B622B58E71915EC0C7A73B9113E74240
00a8f16b-8a86-4233-9b26-a897c41afe25
37.791842
-122.459972
100
0
-1
01010000A0E61000004F281A30709D5EC0ABAE13135BE542400000000000000000
0101000020E61000004F281A30709D5EC0ABAE13135BE54240
7be6d528-fa15-4983-b4bf-be3f79e25c73
49.257393
-123.090931
100
0
-1
01010000A0E61000009D553CCFD1C55EC08C4BE63DF2A048400000000000000000
0101000020E61000009D553CCFD1C55EC08C4BE63DF2A04840
50b8f2ea-2f44-4ae4-8273-c9b28f4625b2
37.733088
-122.504246
100
0
-1
01010000A0E6100000074D8A9045A05EC06E7E34D7D5DD42400000000000000000
0101000020E6100000074D8A9045A05EC06E7E34D7D5DD4240
950b75a8-398a-42b9-951a-ef290c68e7a0
37.774598
-122.262936
100
0
-1
01010000A0E61000005B3579F3D3905EC0437CFC0726E342400000000000000000
0101000020E61000005B3579F3D3905EC0437CFC0726E34240
73dee546-a7b6-495e-831f-c402c388dad4
38.427781
-122.740357
100
0
-1
01010000A0E610000071FC240162AF5EC0A8504C85C13643400000000000000000
0101000020E610000071FC240162AF5EC0A8504C85C1364340
803eb0ad-9030-4105-ad16-09bac51d1737
37.759612
-122.427118
100
0
-1
01010000A0E61000001D62BCE6559B5EC05EB95AF53AE142400000000000000000
0101000020E61000001D62BCE6559B5EC05EB95AF53AE14240
3da369a0-5670-4f27-a688-007c8d4961e1
38.551768
-122.521361
100
0
-1
01010000A0E610000032DEFEFA5DA15EC0AB8F6956A04643400000000000000000
0101000020E610000032DEFEFA5DA15EC0AB8F6956A0464340
78542926-8ff3-4990-bffb-ffec6d9055b3
38.889775
-77.009009
100
0
-1
01010000A0E61000003E9BCF98934053C0DA9FF326E47143400000000000000000
0101000020E61000003E9BCF98934053C0DA9FF326E4714340
813f06af-2f68-466e-a2bc-8f155ad15c06
37.778895
-122.252155
100
0
-1
01010000A0E61000007390454E23905EC080FFAED3B2E342400000000000000000
0101000020E61000007390454E23905EC080FFAED3B2E34240
9681f36d-25f4-4ead-9d99-55a6e886b2d0
37.763873
-122.394243
100
0
-1
01010000A0E6100000BA1BED463B995EC063361195C6E142400000000000000000
0101000020E6100000BA1BED463B995EC063361195C6E14240
04a57daa-7b08-4109-81a9-0620aa61d0e2
38.881381
-77.036558
100
0
-1
01010000A0E6100000DF922CF6564253C084323F15D17043400000000000000000
0101000020E6100000DF922CF6564253C084323F15D1704340
77c6d59d-8421-46ca-b50b-71c07a3809c2
35.98421
-86.54995
100
0
-1
01010000A0E61000002B5A2E6232A355C0C26AC396FAFD41400000000000000000
0101000020E61000002B5A2E6232A355C0C26AC396FAFD4140
24b8d577-c5fa-410c-b55d-44944747cd1e
33.91358
-98.489495
100
0
-1
01010000A0E61000009247EFE1539F58C0E72F242FF0F440400000000000000000
0101000020E61000009247EFE1539F58C0E72F242FF0F44040
ba7663ae-033d-48c0-9b66-d6a29e5dc4ad
30.267992
-97.749385
100
0
-1
01010000A0E6100000695012ECF56F58C0CA3C3C1E9B443E400000000000000000
0101000020E6100000695012ECF56F58C0CA3C3C1E9B443E40
7553f231-c564-43a7-8786-4fca824cb621
38.514431
-122.483676
100
0
-1
01010000A0E6100000F141848BF49E5EC02D6AA5E0D84143400000000000000000
0101000020E6100000F141848BF49E5EC02D6AA5E0D8414340
e34f81e6-fde3-4081-9a9c-8caff3326761
37.796141
-122.39423
100
0
-1
01010000A0E6100000FEBC5F123B995EC0767CD9F1E7E542400000000000000000
0101000020E6100000FEBC5F123B995EC0767CD9F1E7E54240
b5cfe913-e0ae-4a8c-a388-b326f4565bb6
45.62775
-122.816366
100
0
-1
01010000A0E61000004D533C553FB45EC0C4248A1F5AD046400000000000000000
0101000020E61000004D533C553FB45EC0C4248A1F5AD04640
6b2ad29a-c7ea-4e41-ba26-8ce8a19a9cca
38.493507
-122.464535
100
0
-1
01010000A0E61000008A9B8DF2BA9D5EC01AD3D53E2B3F43400000000000000000
0101000020E61000008A9B8DF2BA9D5EC01AD3D53E2B3F4340
End of preview.

Places Dataset

Dataset Summary

This dataset contains information of roughly 70,000 places with associated metadata including locations, attribution tags, and some contact details. The data includes geographic coordinates, place descriptions, categorization through attribution tags, and some social media presence information.

LLM Applications

This dataset is particularly valuable for training and fine-tuning Large Language Models (LLMs) for geospatial understanding:

  • Geospatial Question Answering: Train LLMs to answer location-based queries like "What coffee shops are near Central Park?" or "Find museums in Paris"
  • Location-Aware Text Generation: Enable LLMs to generate contextually relevant descriptions that incorporate local geography, landmarks, and spatial relationships
  • Address Parsing and Normalization: The cleaned address formats provide training data for LLMs to understand and standardize various address formats from different countries
  • Multilingual Geographic Entity Recognition: With places from multiple countries, LLMs can learn to recognize and disambiguate location names across languages
  • Spatial Reasoning: Train models to understand spatial relationships, distances, and geographic hierarchies (neighborhood → city → state → country)
  • Travel and Tourism Assistants: Build LLMs that can provide recommendations based on location, tags, and place descriptions
  • Local Business Understanding: Help LLMs understand business categories, operating contexts, and location-specific services

Supported Tasks and Leaderboards

This dataset can be used for various tasks including:

  • Location-based recommendation systems
  • Geographic information retrieval
  • Place categorization and tagging
  • Spatial analysis and clustering
  • Geospatial NLP and language understanding
  • Cross-lingual location entity linking

Languages

The dataset is primarily in English, with place names and descriptions being in English.

Structure

Data Instances

The dataset consists of 5 CSV files with relational structure:

  1. place.csv - Main places table
  2. location.csv - Geographic coordinates
  3. place_contact.csv - Contact and social media information
  4. tag.csv - Categorization tags
  5. place_tag.csv - Many-to-many relationship between places and tags

Data Fields

place.csv

  • id: Unique identifier (UUID)
  • created_at, updated_at: Timestamps
  • name: Place name
  • description: Place description
  • address, address_formatted: Street address information
  • locality, administrative_area, postal_code, country_code: Location details
  • verified, flagged: Boolean status flags
  • Various foreign keys linking to other tables

location.csv

  • id: Unique identifier (UUID)
  • latitude, longitude: GPS coordinates (WGS84/EPSG:4326 coordinate system)
  • horizontal_accuracy, vertical_accuracy: Accuracy metrics in meters
  • altitude: Elevation data in meters above sea level
  • geom: PostGIS geometry column (projected coordinates, likely Web Mercator EPSG:3857)
  • geog: PostGIS geography column (unprojected lat/lon coordinates for accurate distance calculations)

place_contact.csv

  • id: Unique identifier (UUID)
  • instagram, x: Social media handles
  • website: website URLs

Data Splits

This dataset is provided as a single collection without predefined train/validation/test splits. Users should create their own splits based on their specific use case.

Dataset Creation

Curation Rationale

This dataset was created to provide a comprehensive collection of place information with rich metadata for location-based applications and AI research.

Considerations for Using the Data

Social Impact of Dataset

This dataset can be used to build geographically aware LLMs, location-based services, and improve geographic information systems. Consider the impact on local businesses and communities when using this data.

Discussion of Biases

The dataset may have geographic biases based on where data was collected. Urban areas may be overrepresented compared to rural areas.

Other Known Limitations

  • The dataset represents a snapshot in time and place information may be outdated
  • Not all places have complete information across all fields
  • Geographic coverage may be limited to specific regions

Additional Information

Data Quality Notes

  • Address Formatting: All addresses have been cleaned and normalized to a consistent format: {"street address", "city state/province postal", "country"}
  • Country Standardization: Country names have been standardized to English (e.g., Deutschland → Germany, États-Unis → United States)
  • Coordinate Accuracy: Location coordinates include accuracy metrics to help filter by precision requirements

Licensing Information

This dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Citation Information

@dataset{places_dataset_2025,
  title={Places Dataset},
  author={[patrick piemonte]},
  year={2025},
  publisher={Hugging Face}
}

Usage

Loading the Dataset

from datasets import load_dataset

# Load all tables
dataset = load_dataset("path/to/places_dataset.py", "all")

# Load individual tables
places = load_dataset("path/to/places_dataset.py", "place")
locations = load_dataset("path/to/places_dataset.py", "location")
tags = load_dataset("path/to/places_dataset.py", "tag")
place_tags = load_dataset("path/to/places_dataset.py", "place_tag")
contacts = load_dataset("path/to/places_dataset.py", "place_contact")

# Load denormalized view (easier to use!)
denormalized = load_dataset("path/to/places_dataset.py", "denormalized")

Working with the Data

LLM-Specific Examples

Training Data Preparation for Geospatial QA
# Prepare training examples for location-based Q&A
def create_qa_examples(dataset):
    examples = []
    for place in dataset:
        # Create various question-answer pairs
        examples.extend([
            {
                "question": f"What is the address of {place['name']}?",
                "answer": place['address_formatted']
            },
            {
                "question": f"Where is {place['name']} located?",
                "answer": f"{place['name']} is located at {place['address']} in {place['locality']}, {place['administrative_area']}, {place['country']}."
            },
            {
                "question": f"What type of place is {place['name']}?",
                "answer": f"{place['name']} is a {place['primary_tag_name']}." if place['primary_tag_name'] else f"Information about the type of {place['name']} is not available."
            }
        ])
        
        if place['description']:
            examples.append({
                "question": f"Tell me about {place['name']}",
                "answer": place['description']
            })
    
    return examples

# Load denormalized data for easy access to all fields
dataset = load_dataset("path/to/places_dataset.py", "denormalized")['train']
qa_examples = create_qa_examples(dataset)
Spatial Context Generation
# Generate spatial context descriptions for LLM training
def generate_spatial_context(place, nearby_places):
    context = f"{place['name']} is located at {place['address']} in {place['locality']}."
    
    if nearby_places:
        context += f" Nearby places include: "
        nearby_names = [f"{p['name']} ({p['distance_km']:.1f}km)" for p in nearby_places[:5]]
        context += ", ".join(nearby_names) + "."
    
    if place['primary_tag_name']:
        context += f" It is categorized as a {place['primary_tag_name']}."
    
    return context

# Example usage
center_place = dataset[0]
nearby = find_nearby_places(dataset, center_place['latitude'], center_place['longitude'], 2)
spatial_description = generate_spatial_context(center_place, nearby)

Basic Place Information

# Load places with their basic information
places = load_dataset("path/to/places_dataset.py", "place")['train']

# Access place data
for place in places.select(range(5)):
    print(f"Name: {place['name']}")
    print(f"Address: {place['address_formatted']}")
    print(f"Locality: {place['locality']}, {place['administrative_area']}")
    print("---")

Using the Denormalized View (Recommended)

# Load denormalized data - includes places, locations, primary tags, and contacts
dataset = load_dataset("path/to/places_dataset.py", "denormalized")['train']

# Now you have everything in one table!
for place in dataset.select(range(5)):
    print(f"Name: {place['name']}")
    print(f"Location: {place['latitude']}, {place['longitude']}")
    print(f"Primary Tag: {place['primary_tag_name']}")
    print(f"Website: {place['website']}")
    print("---")

# Easy filtering with coordinates
import pandas as pd
df = pd.DataFrame(dataset)
# Find verified places with coordinates
verified_with_coords = df[
    (df['verified'] == True) & 
    (df['latitude'].notna()) & 
    (df['longitude'].notna())
]

Joining Tables (Places with Locations)

import pandas as pd

# Load as pandas DataFrames for easier joining
places_df = pd.DataFrame(places)
locations = load_dataset("path/to/places_dataset.py", "location")['train']
locations_df = pd.DataFrame(locations)

# Join places with their locations
places_with_coords = places_df.merge(
    locations_df, 
    left_on='location_id', 
    right_on='id', 
    suffixes=('', '_loc')
)

# Filter places in a specific area (e.g., within a bounding box)
def filter_by_bbox(df, min_lat, max_lat, min_lon, max_lon):
    return df[
        (df['latitude'] >= min_lat) & 
        (df['latitude'] <= max_lat) &
        (df['longitude'] >= min_lon) & 
        (df['longitude'] <= max_lon)
    ]

# Example: Find places in San Francisco area
sf_places = filter_by_bbox(places_with_coords, 37.7, 37.8, -122.5, -122.4)

Working with Tags

# Load all necessary tables
places_df = pd.DataFrame(load_dataset("path/to/places_dataset.py", "place")['train'])
tags_df = pd.DataFrame(load_dataset("path/to/places_dataset.py", "tag")['train'])
place_tags_df = pd.DataFrame(load_dataset("path/to/places_dataset.py", "place_tag")['train'])

# Get all tags for a specific place
def get_place_tags(place_id):
    # Find all tag relationships for this place
    tag_ids = place_tags_df[place_tags_df['place_id'] == place_id]['tag_id']
    # Get tag details
    return tags_df[tags_df['id'].isin(tag_ids)]

# Find all places with a specific tag
def find_places_by_tag(tag_name):
    # Find the tag
    tag = tags_df[tags_df['name'] == tag_name]
    if tag.empty:
        return pd.DataFrame()
    
    tag_id = tag.iloc[0]['id']
    # Find all places with this tag
    place_ids = place_tags_df[place_tags_df['tag_id'] == tag_id]['place_id']
    return places_df[places_df['id'].isin(place_ids)]

# Example: Find all coffee shops
coffee_shops = find_places_by_tag('Coffee Shop')

Using the Alternative Loading Function

from places_dataset import load_places_as_dict

# Load all tables as a dictionary
data = load_places_as_dict('/path/to/data/directory')

# Access individual tables
places = data['place']
locations = data['location']
tags = data['tag']

Working with Geospatial Data

Coordinate System Information

  • Latitude/Longitude: WGS84 (EPSG:4326) - Standard GPS coordinates
  • Geom column: Projected geometry, useful for visualization and area calculations
  • Geog column: Geography type for accurate distance and spatial calculations

Example: Distance Calculations

import math

def haversine_distance(lat1, lon1, lat2, lon2):
    """Calculate distance between two points on Earth in kilometers."""
    R = 6371  # Earth's radius in kilometers
    
    lat1, lon1, lat2, lon2 = map(math.radians, [lat1, lon1, lat2, lon2])
    dlat = lat2 - lat1
    dlon = lon2 - lon1
    
    a = math.sin(dlat/2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon/2)**2
    c = 2 * math.asin(math.sqrt(a))
    
    return R * c

# Find places near a specific coordinate
def find_nearby_places(places_with_coords, center_lat, center_lon, radius_km):
    nearby = []
    for _, place in places_with_coords.iterrows():
        distance = haversine_distance(
            center_lat, center_lon,
            place['latitude'], place['longitude']
        )
        if distance <= radius_km:
            nearby.append({**place.to_dict(), 'distance_km': distance})
    
    return pd.DataFrame(nearby).sort_values('distance_km')

# Example: Find places within 5km of a location
nearby = find_nearby_places(places_with_coords, 37.7749, -122.4194, 5)
Downloads last month
150