Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 29 new columns ({'places_token_id', 'cross_street', 'locality', 'administrative_area', 'z_priority', 'author_id', 'address', 'place_contact_id', 'subadministrative_area', 'verified', 'locale_id', 'address_formatted', 'flagged', 'slug', 'radius_in_meters', 'created_at', 'location_id', 'nano_id', 'primary_tag_id', 'clustering_category', 'stamp_id', 'name', 'owner_id', 'postal_code', 'country', 'updated_at', 'country_code', 'sublocality', 'description'}) and 7 missing columns ({'altitude', 'longitude', 'horizontal_accuracy', 'geog', 'latitude', 'vertical_accuracy', 'geom'}). This happened while the csv dataset builder was generating data using hf://datasets/piemonte/places/place.csv (at revision 714c51abce9aa39ef008b4fda36c3ee8a257fa9e) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast id: string created_at: string name: string description: string address: string address_formatted: string cross_street: string locality: string administrative_area: string postal_code: string country_code: string verified: bool flagged: bool place_contact_id: string location_id: string author_id: string owner_id: double locale_id: double primary_tag_id: string country: string sublocality: string subadministrative_area: string updated_at: string radius_in_meters: double stamp_id: string z_priority: double clustering_category: string places_token_id: double nano_id: string slug: string -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 3906 to {'id': Value(dtype='string', id=None), 'latitude': Value(dtype='float64', id=None), 'longitude': Value(dtype='float64', id=None), 'horizontal_accuracy': Value(dtype='int64', id=None), 'altitude': Value(dtype='int64', id=None), 'vertical_accuracy': Value(dtype='int64', id=None), 'geom': Value(dtype='string', id=None), 'geog': Value(dtype='string', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1436, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1053, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 29 new columns ({'places_token_id', 'cross_street', 'locality', 'administrative_area', 'z_priority', 'author_id', 'address', 'place_contact_id', 'subadministrative_area', 'verified', 'locale_id', 'address_formatted', 'flagged', 'slug', 'radius_in_meters', 'created_at', 'location_id', 'nano_id', 'primary_tag_id', 'clustering_category', 'stamp_id', 'name', 'owner_id', 'postal_code', 'country', 'updated_at', 'country_code', 'sublocality', 'description'}) and 7 missing columns ({'altitude', 'longitude', 'horizontal_accuracy', 'geog', 'latitude', 'vertical_accuracy', 'geom'}). This happened while the csv dataset builder was generating data using hf://datasets/piemonte/places/place.csv (at revision 714c51abce9aa39ef008b4fda36c3ee8a257fa9e) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
id
string | latitude
float64 | longitude
float64 | horizontal_accuracy
int64 | altitude
int64 | vertical_accuracy
int64 | geom
string | geog
string |
---|---|---|---|---|---|---|---|
a024a994-815e-4e52-a8d1-c67753a460d5 | 30.266959 | -97.745658 | 100 | 0 | -1 | 01010000A0E6100000C9A22EDDB86F58C07F21966857443E400000000000000000 | 0101000020E6100000C9A22EDDB86F58C07F21966857443E40 |
1d6dcb14-f627-481e-8d83-45e4cb7785b6 | 38.492628 | -122.466157 | 100 | 0 | -1 | 01010000A0E61000007EED0084D59D5EC05D393A6D0E3F43400000000000000000 | 0101000020E61000007EED0084D59D5EC05D393A6D0E3F4340 |
3d9b2e5f-0df7-443e-b4b2-164d447d5683 | 30.265555 | -97.747785 | 100 | 0 | -1 | 01010000A0E61000001E4D8DB6DB6F58C0850A7466FB433E400000000000000000 | 0101000020E61000001E4D8DB6DB6F58C0850A7466FB433E40 |
cfb09872-80a5-49c7-835f-53b2ed7981a9 | 49.278529 | -123.126354 | 100 | 0 | -1 | 01010000A0E6100000A7BDCD3016C85EC0F4444BD7A6A348400000000000000000 | 0101000020E6100000A7BDCD3016C85EC0F4444BD7A6A34840 |
755d8434-4d9a-4f89-a8cc-a495298f0475 | 30.254724 | -97.762643 | 100 | 0 | -1 | 01010000A0E610000094338624CF7058C0C3EBE18F35413E400000000000000000 | 0101000020E610000094338624CF7058C0C3EBE18F35413E40 |
d5f31962-1bb9-42dd-b771-fa5e31659715 | 38.514331 | -122.484548 | 100 | 0 | -1 | 01010000A0E6100000D421ABD3029F5EC062BF9396D54143400000000000000000 | 0101000020E6100000D421ABD3029F5EC062BF9396D5414340 |
d866831d-fc0e-445f-b3d1-ae21d1842f3b | 38.299156 | -122.285321 | 100 | 0 | -1 | 01010000A0E61000005F28FAB042925EC08635E9BC4A2643400000000000000000 | 0101000020E61000005F28FAB042925EC08635E9BC4A264340 |
22986a10-e9db-45e4-86f4-4d04c3871678 | 37.739574 | -122.419027 | 10 | 0 | -1 | 01010000A0E6100000D4AE3455D19A5EC0DA08905CAADE42400000000000000000 | 0101000020E6100000D4AE3455D19A5EC0DA08905CAADE4240 |
2035eca8-4828-4fc1-8434-846a30ae680e | 38.406559 | -122.367388 | 100 | 0 | -1 | 01010000A0E61000008B5A3C4983975EC0ABAA611D0A3443400000000000000000 | 0101000020E61000008B5A3C4983975EC0ABAA611D0A344340 |
2ad8ab15-4203-4b3a-91de-7128b5cccbd6 | 38.509613 | -122.456708 | 100 | 0 | -1 | 01010000A0E61000002872ADB53A9D5EC05D7FA2FB3A4143400000000000000000 | 0101000020E61000002872ADB53A9D5EC05D7FA2FB3A414340 |
f598ddf9-a326-45e3-8f96-9b329a58ff06 | 50.929249 | 4.528457 | 100 | 0 | -1 | 01010000A0E6100000B26670D1231D1240DD50C1A4F17649400000000000000000 | 0101000020E6100000B26670D1231D1240DD50C1A4F1764940 |
caac09bb-d872-429a-9eb3-15d75480b81a | 37.906665 | -122.682784 | 100 | 0 | -1 | 01010000A0E6100000BBEF59BDB2AB5EC006CEB09B0DF442400000000000000000 | 0101000020E6100000BBEF59BDB2AB5EC006CEB09B0DF44240 |
cb5e22af-d2db-4ec2-9b6b-e9363e5329c4 | 37.743421 | -122.426853 | 100 | 0 | -1 | 01010000A0E61000001BBE568F519B5EC00D64A66A28DF42400000000000000000 | 0101000020E61000001BBE568F519B5EC00D64A66A28DF4240 |
4523ad8e-a265-4f5d-b054-14ca6e24ab30 | 37.795666 | -122.393821 | 100 | 0 | -1 | 01010000A0E61000001E41A85D34995EC00DE19A61D8E542400000000000000000 | 0101000020E61000001E41A85D34995EC00DE19A61D8E54240 |
fd29fb11-a2a4-476e-9fa9-518b038c2070 | 38.504671 | -122.471087 | 10 | 0 | -1 | 01010000A0E61000007CFA614B269E5EC0352D1A0B994043400000000000000000 | 0101000020E61000007CFA614B269E5EC0352D1A0B99404340 |
e990f47f-a84e-43eb-9e08-b891f206e40e | 37.788638 | -122.407121 | 100 | 0 | -1 | 01010000A0E6100000C8CA5F460E9A5EC0A20B6B16F2E442400000000000000000 | 0101000020E6100000C8CA5F460E9A5EC0A20B6B16F2E44240 |
2baf5415-0e6b-477f-ba57-2cb7bebb722a | 37.802376 | -122.405842 | 10 | 0 | -1 | 01010000A0E61000000901F850F9995EC066E46D44B4E642400000000000000000 | 0101000020E61000000901F850F9995EC066E46D44B4E64240 |
0cc58dda-2d42-4b8a-a8dd-7b3e3cc10f50 | 38.579903 | -122.578612 | 10 | 0 | -1 | 01010000A0E6100000722A96FC07A55EC00C04F53F3A4A43400000000000000000 | 0101000020E6100000722A96FC07A55EC00C04F53F3A4A4340 |
667d5986-6a7a-4611-ac33-18f20e660659 | 38.504852 | -122.469346 | 100 | 0 | -1 | 01010000A0E6100000B8705BC2099E5EC01328FCFA9E4043400000000000000000 | 0101000020E6100000B8705BC2099E5EC01328FCFA9E404340 |
89c81e0f-5f23-48c4-8626-dae83a70ea3b | 38.404079 | -122.365397 | 100 | 0 | -1 | 01010000A0E6100000E42BFCA862975EC0F9787FDAB83343400000000000000000 | 0101000020E6100000E42BFCA862975EC0F9787FDAB8334340 |
b3a3a22e-10a5-4696-9f21-a15fcefd8198 | 38.402421 | -122.361805 | 100 | 0 | -1 | 01010000A0E6100000EA9C8FD027975EC0D9017789823343400000000000000000 | 0101000020E6100000EA9C8FD027975EC0D901778982334340 |
a6f5ebeb-43dc-4a3c-8308-fe5bb4e31103 | 37.789044 | -122.400799 | 100 | 0 | -1 | 01010000A0E6100000469B69B1A6995EC0BA5E8267FFE442400000000000000000 | 0101000020E6100000469B69B1A6995EC0BA5E8267FFE44240 |
7eae3ae6-8817-4911-8560-aa1219d421af | 37.782478 | -122.393171 | 100 | 0 | -1 | 01010000A0E61000008AD79FB429995EC0AC546E3F28E442400000000000000000 | 0101000020E61000008AD79FB429995EC0AC546E3F28E44240 |
2f29fe29-0b8f-4ce0-bdae-c9840bd23e97 | 37.769834 | -122.466139 | 10 | 0 | -1 | 01010000A0E6100000F0752B3AD59D5EC0EEBD86EF89E242400000000000000000 | 0101000020E6100000F0752B3AD59D5EC0EEBD86EF89E24240 |
ad9c3149-7dea-4469-822f-f63b56e2ee1f | 36.7062 | -105.412882 | 100 | 0 | -1 | 01010000A0E61000009135ACAA6C5A5AC027030DC6645A42400000000000000000 | 0101000020E61000009135ACAA6C5A5AC027030DC6645A4240 |
3881125c-02a2-4209-ab48-3417c13fd190 | 34.120944 | -118.204659 | 100 | 0 | -1 | 01010000A0E6100000CE8C7C21198D5DC0F0BFD31A7B0F41400000000000000000 | 0101000020E6100000CE8C7C21198D5DC0F0BFD31A7B0F4140 |
17d43705-d673-47e1-9ef1-33ab58fb06ff | 37.739123 | -122.416007 | 0 | 0 | -1 | 01010000A0E6100000439A67DB9F9A5EC0575C1C959BDE42400000000000000000 | 0101000020E6100000439A67DB9F9A5EC0575C1C959BDE4240 |
7c7a4a07-7688-4e81-8f6a-837d1862194f | 39.267273 | -120.127733 | 100 | 0 | -1 | 01010000A0E6100000C26F5EC52C085EC09A37430136A243400000000000000000 | 0101000020E6100000C26F5EC52C085EC09A37430136A24340 |
ec96624e-d28f-4cc5-be4a-a474a1c94f24 | 38.897691 | -77.036573 | 100 | 0 | -1 | 01010000A0E61000004C5F8C37574253C0F5ED1B88E77243400000000000000000 | 0101000020E61000004C5F8C37574253C0F5ED1B88E7724340 |
2befe753-bd78-4ab2-be4b-a56395e4a88c | 38.502996 | -122.469025 | 100 | 0 | -1 | 01010000A0E61000004D7ACE80049E5EC04E1E2629624043400000000000000000 | 0101000020E61000004D7ACE80049E5EC04E1E262962404340 |
3297fd26-e63c-42b2-8b4a-e2b033fe9cb0 | 37.759226 | -122.411285 | 100 | 0 | -1 | 01010000A0E61000003C2F467F529A5EC02D9F5A4F2EE142400000000000000000 | 0101000020E61000003C2F467F529A5EC02D9F5A4F2EE14240 |
b8aa30ca-6284-441a-ba48-8d071e142fd7 | 39.274036 | -120.119779 | 100 | 0 | -1 | 01010000A0E610000018546B75AA075EC0CE69529C13A343400000000000000000 | 0101000020E610000018546B75AA075EC0CE69529C13A34340 |
f5f14b83-1d85-4dc6-b771-cc31358c4c3a | 38.504978 | -122.469482 | 100 | 0 | -1 | 01010000A0E6100000509BD1FE0B9E5EC00C077A1EA34043400000000000000000 | 0101000020E6100000509BD1FE0B9E5EC00C077A1EA3404340 |
46451811-72ff-4ad5-8ff5-c14d3ec98411 | 37.777019 | -122.408474 | 100 | 0 | -1 | 01010000A0E61000000003AE70249A5EC0FF566B5D75E342400000000000000000 | 0101000020E61000000003AE70249A5EC0FF566B5D75E34240 |
de463f4f-c5e1-4daa-bc8f-37bcd26499ac | 38.299233 | -122.285691 | 100 | 0 | -1 | 01010000A0E610000087F74BC348925EC0229C01484D2643400000000000000000 | 0101000020E610000087F74BC348925EC0229C01484D264340 |
29925a56-ba0c-495f-8ba0-b4e404153a25 | 37.759822 | -122.421589 | 100 | 0 | -1 | 01010000A0E610000049CF8C50FB9A5EC07792C4DB41E142400000000000000000 | 0101000020E610000049CF8C50FB9A5EC07792C4DB41E14240 |
6b9c1a9c-d410-4f8d-bd06-9d564ee35584 | 37.803017 | -122.448114 | 10 | 0 | -1 | 01010000A0E6100000B9F880E5AD9C5EC09392793FC9E642400000000000000000 | 0101000020E6100000B9F880E5AD9C5EC09392793FC9E64240 |
8ca0d9df-9dc7-4d24-bf53-358f4084186f | 37.756639 | -122.502228 | 10 | 0 | -1 | 01010000A0E6100000EE72FB8224A05EC06B0F718FD9E042400000000000000000 | 0101000020E6100000EE72FB8224A05EC06B0F718FD9E04240 |
c4ac8a17-4973-45f0-9437-d164cac422f5 | 38.405447 | -122.366389 | 10 | 0 | -1 | 01010000A0E6100000078B68EA72975EC09C83DAB1E53343400000000000000000 | 0101000020E6100000078B68EA72975EC09C83DAB1E5334340 |
717a0a9e-d6f9-4b07-b4cb-4a425d979392 | 37.760974 | -122.421332 | 10 | 0 | -1 | 01010000A0E6100000E3E5B71AF79A5EC05515DD9467E142400000000000000000 | 0101000020E6100000E3E5B71AF79A5EC05515DD9467E14240 |
6eb341b5-466a-44de-99d6-7f5940e723c2 | 38.501151 | -122.463355 | 10 | 0 | -1 | 01010000A0E6100000398AB99AA79D5EC065FE7EB8254043400000000000000000 | 0101000020E6100000398AB99AA79D5EC065FE7EB825404340 |
f78544f5-68bc-45bf-a65d-6d73cde92964 | 38.503139 | -122.468525 | 10 | 0 | -1 | 01010000A0E6100000CFDF6850FC9D5EC02FB18CDE664043400000000000000000 | 0101000020E6100000CFDF6850FC9D5EC02FB18CDE66404340 |
cf61c0d5-d20f-445e-a79f-e7585d5cba29 | 38.321192 | -122.306115 | 10 | 0 | -1 | 01010000A0E61000006B297C6297935EC03A217BD11C2943400000000000000000 | 0101000020E61000006B297C6297935EC03A217BD11C294340 |
7ef970b5-f70f-45ab-a467-3de479b104cc | 38.315092 | -122.482019 | 10 | 0 | -1 | 01010000A0E6100000A1480A68D99E5EC087B45EED542843400000000000000000 | 0101000020E6100000A1480A68D99E5EC087B45EED54284340 |
b6a06c17-04b8-494b-8a84-7c53f65648cd | 37.771002 | -122.469454 | 100 | 0 | -1 | 01010000A0E61000009A245C880B9E5EC01674EB33B0E242400000000000000000 | 0101000020E61000009A245C880B9E5EC01674EB33B0E24240 |
92f05b0b-2239-415f-8acf-bc4a3e0300d8 | 38.668248 | -122.62485 | 100 | 0 | -1 | 01010000A0E6100000F37F9F8CFDA75EC03FE6E824895543400000000000000000 | 0101000020E6100000F37F9F8CFDA75EC03FE6E82489554340 |
5413b576-a303-45f1-8254-2f8b0905e85b | 30.26809 | -97.749226 | 100 | 0 | -1 | 01010000A0E6100000598EFD52F36F58C0A001228FA1443E400000000000000000 | 0101000020E6100000598EFD52F36F58C0A001228FA1443E40 |
5d032675-9ad2-4cfb-9a34-d46f17834a44 | 38.514523 | -122.484789 | 100 | 0 | -1 | 01010000A0E6100000B9B648C9069F5EC0FD265FE1DB4143400000000000000000 | 0101000020E6100000B9B648C9069F5EC0FD265FE1DB414340 |
9ec7871c-d368-4b89-b382-cb652c7a03f3 | 38.301722 | -122.281598 | 100 | 0 | -1 | 01010000A0E61000001C8B61B205925EC0A91B20D19E2643400000000000000000 | 0101000020E61000001C8B61B205925EC0A91B20D19E264340 |
1c2ae6c6-5613-49c5-ae70-0d0273fd15c3 | 37.788609 | -122.39748 | 100 | 0 | -1 | 01010000A0E6100000A773674F70995EC09BA38326F1E442400000000000000000 | 0101000020E6100000A773674F70995EC09BA38326F1E44240 |
9653a051-313f-4834-8469-848d795b8920 | 38.505183 | -122.469853 | 100 | 0 | -1 | 01010000A0E610000045112C14129E5EC054421EDAA94043400000000000000000 | 0101000020E610000045112C14129E5EC054421EDAA9404340 |
1479ef7c-c7c9-4498-aee1-143b36656553 | 38.508286 | -122.468093 | 100 | 0 | -1 | 01010000A0E61000004586EE3AF59D5EC096A480820F4143400000000000000000 | 0101000020E61000004586EE3AF59D5EC096A480820F414340 |
0e688f14-5561-4e59-97ac-5f6994ddc639 | 38.501904 | -122.465452 | 10 | 0 | -1 | 01010000A0E6100000BCF781F5C99D5EC0101E12633E4043400000000000000000 | 0101000020E6100000BCF781F5C99D5EC0101E12633E404340 |
9e699fb8-66bd-4b6c-8e2e-91fe8810a830 | 38.503922 | -122.468301 | 100 | 0 | -1 | 01010000A0E6100000CF3FCEA5F89D5EC0BC7D1488804043400000000000000000 | 0101000020E6100000CF3FCEA5F89D5EC0BC7D148880404340 |
ff65e9a5-41b5-4769-9775-78f3d4f00a67 | 45.156024 | -122.87846 | 100 | 0 | -1 | 01010000A0E61000006143C3B138B85EC0D4B45897F89346400000000000000000 | 0101000020E61000006143C3B138B85EC0D4B45897F8934640 |
23f09f9d-517b-4aaf-9048-1d4977993bad | 38.405696 | -122.366557 | 100 | 0 | -1 | 01010000A0E61000007B6CD1A975975EC0A281C8DCED3343400000000000000000 | 0101000020E61000007B6CD1A975975EC0A281C8DCED334340 |
962cff6a-531a-4bb9-8667-1632e30c9b79 | 38.500375 | -122.463982 | 100 | 0 | -1 | 01010000A0E61000009D4122E0B19D5EC02224CD490C4043400000000000000000 | 0101000020E61000009D4122E0B19D5EC02224CD490C404340 |
27fe88c2-154b-429c-a2dc-258444d62fd6 | 38.394417 | -122.365977 | 100 | 0 | -1 | 01010000A0E6100000045B82296C975EC0DD6219437C3243400000000000000000 | 0101000020E6100000045B82296C975EC0DD6219437C324340 |
8c29a036-3f73-4a7c-83d3-6e55c7bfba07 | 52.507433 | 13.374189 | 100 | 0 | -1 | 01010000A0E6100000ED69FBB695BF2A4081E4B58FF3404A400000000000000000 | 0101000020E6100000ED69FBB695BF2A4081E4B58FF3404A40 |
1882516d-789b-4b6f-a3e9-16ea482c4748 | 37.753034 | -122.407649 | 100 | 0 | -1 | 01010000A0E61000005AA1A3EB169A5EC06BE32D6963E042400000000000000000 | 0101000020E61000005AA1A3EB169A5EC06BE32D6963E04240 |
bb4d598d-2194-4319-af09-0e4ab714d5b9 | 37.75878 | -122.42683 | 100 | 0 | -1 | 01010000A0E610000051F0392F519B5EC0F1C83FB41FE142400000000000000000 | 0101000020E610000051F0392F519B5EC0F1C83FB41FE14240 |
ae08ae89-5238-4330-91a6-4f4faee499a6 | 38.503513 | -122.467803 | 10 | 0 | -1 | 01010000A0E6100000207EFE7BF09D5EC0300E2E1D734043400000000000000000 | 0101000020E6100000207EFE7BF09D5EC0300E2E1D73404340 |
925eec61-85f0-4565-bbfd-8ae7a70eb8ee | 37.739049 | -122.414169 | 10 | 0 | -1 | 01010000A0E6100000000080BD819A5EC02F0A612999DE42400000000000000000 | 0101000020E6100000000080BD819A5EC02F0A612999DE4240 |
aa55313c-583f-4d0b-b0db-d2d29cafce7a | 38.440546 | -123.126766 | 10 | 0 | -1 | 01010000A0E6100000FD77D3ED1CC85EC0D7092ACF633843400000000000000000 | 0101000020E6100000FD77D3ED1CC85EC0D7092ACF63384340 |
bd1c0ff1-1997-4763-8f2f-89d60a207148 | 37.795945 | -122.393923 | 100 | 0 | -1 | 01010000A0E61000007892AE0936995EC01A0E5886E1E542400000000000000000 | 0101000020E61000007892AE0936995EC01A0E5886E1E54240 |
5c84f096-4982-49e0-a3fd-45e25e6de25e | 37.787926 | -122.407524 | 100 | 0 | -1 | 01010000A0E6100000041578DD149A5EC0682C72C2DAE442400000000000000000 | 0101000020E6100000041578DD149A5EC0682C72C2DAE44240 |
38924d98-04c3-4aa9-86be-28a84024ccb9 | 38.506141 | -122.470985 | 100 | 0 | -1 | 01010000A0E6100000EAB75D9D249E5EC0E6371B3BC94043400000000000000000 | 0101000020E6100000EAB75D9D249E5EC0E6371B3BC9404340 |
0c8498b2-e251-46e3-96c5-b24353578dbd | 37.781572 | -122.39395 | 100 | 0 | -1 | 01010000A0E610000047095D7936995EC0218F078C0AE442400000000000000000 | 0101000020E610000047095D7936995EC0218F078C0AE44240 |
5ed144cf-9b44-4171-8fa2-68e2b042b737 | 38.503567 | -122.467136 | 100 | 0 | -1 | 01010000A0E6100000B780C38CE59D5EC03B4661E4744043400000000000000000 | 0101000020E6100000B780C38CE59D5EC03B4661E474404340 |
2265196a-0c95-40b7-8d7d-a4025577a031 | 36.708948 | -105.410027 | 100 | 0 | -1 | 01010000A0E61000003805E6E03D5A5AC08B6B0ECDBE5A42400000000000000000 | 0101000020E61000003805E6E03D5A5AC08B6B0ECDBE5A4240 |
c78028fc-68b2-4524-95e6-8c3c0c3c4b27 | 34.132125 | -118.293894 | 100 | 0 | -1 | 01010000A0E610000051BE7E27CF925DC0306ECC7CE91041400000000000000000 | 0101000020E610000051BE7E27CF925DC0306ECC7CE9104140 |
25993fab-37da-4534-b6eb-c2c33a493d35 | 37.758953 | -122.412277 | 0 | 0 | -1 | 01010000A0E610000027F911BF629A5EC0BD19355F25E142400000000000000000 | 0101000020E610000027F911BF629A5EC0BD19355F25E14240 |
383c1de7-9d0f-4ff1-a744-a38652bf7967 | 39.26692 | -120.128009 | 100 | 0 | -1 | 01010000A0E61000005B68D34D31085EC0F66085712AA243400000000000000000 | 0101000020E61000005B68D34D31085EC0F66085712AA24340 |
981fa93a-75c4-4791-a0cc-6c3e5340d221 | 37.759221 | -122.411157 | 100 | 0 | -1 | 01010000A0E61000007D089466509A5EC0572795292EE142400000000000000000 | 0101000020E61000007D089466509A5EC0572795292EE14240 |
0d61ba6a-02e9-4a47-930d-c7f03dfd5ee3 | 48.882355 | 2.32724 | 100 | 0 | -1 | 01010000A0E6100000637B9725309E024032FE22FFF07048400000000000000000 | 0101000020E6100000637B9725309E024032FE22FFF0704840 |
d985e2fc-5a03-4a4c-892a-a93f2ef5c4a3 | 39.275472 | -120.120744 | 100 | 0 | -1 | 01010000A0E6100000D6569245BA075EC0E50D2BAD42A343400000000000000000 | 0101000020E6100000D6569245BA075EC0E50D2BAD42A34340 |
4b72d9a0-760e-4d24-bca1-9b28ec608f8b | 30.334378 | -97.741015 | 100 | 0 | -1 | 01010000A0E61000009AD2DACA6C6F58C017866AC699553E400000000000000000 | 0101000020E61000009AD2DACA6C6F58C017866AC699553E40 |
94f9eb26-7069-4bab-9d80-3f0c7fd6cc38 | 37.787581 | -122.403922 | 100 | 0 | -1 | 01010000A0E61000000C43A6DCD9995EC013EC6275CFE442400000000000000000 | 0101000020E61000000C43A6DCD9995EC013EC6275CFE44240 |
a13c297a-76c5-49fa-9923-b9646f045a13 | 38.301251 | -122.28184 | 100 | 0 | -1 | 01010000A0E6100000637EB3AA09925EC0D489F9658F2643400000000000000000 | 0101000020E6100000637EB3AA09925EC0D489F9658F264340 |
ac782d68-b3ef-4799-a21a-255bcd4bde8e | 37.776573 | -122.408367 | 100 | 0 | -1 | 01010000A0E61000007BD29DAD229A5EC0B8F340C066E342400000000000000000 | 0101000020E61000007BD29DAD229A5EC0B8F340C066E34240 |
8b0b002c-d092-42b3-bdc9-3b447a35ae6e | 38.298747 | -122.282843 | 100 | 0 | -1 | 01010000A0E6100000EC63AD181A925EC02C1185593D2643400000000000000000 | 0101000020E6100000EC63AD181A925EC02C1185593D264340 |
d37fe697-9bf7-4e51-8b01-26d7b385fd03 | 37.805285 | -122.272556 | 100 | 0 | -1 | 01010000A0E6100000B622B58E71915EC0C7A73B9113E742400000000000000000 | 0101000020E6100000B622B58E71915EC0C7A73B9113E74240 |
00a8f16b-8a86-4233-9b26-a897c41afe25 | 37.791842 | -122.459972 | 100 | 0 | -1 | 01010000A0E61000004F281A30709D5EC0ABAE13135BE542400000000000000000 | 0101000020E61000004F281A30709D5EC0ABAE13135BE54240 |
7be6d528-fa15-4983-b4bf-be3f79e25c73 | 49.257393 | -123.090931 | 100 | 0 | -1 | 01010000A0E61000009D553CCFD1C55EC08C4BE63DF2A048400000000000000000 | 0101000020E61000009D553CCFD1C55EC08C4BE63DF2A04840 |
50b8f2ea-2f44-4ae4-8273-c9b28f4625b2 | 37.733088 | -122.504246 | 100 | 0 | -1 | 01010000A0E6100000074D8A9045A05EC06E7E34D7D5DD42400000000000000000 | 0101000020E6100000074D8A9045A05EC06E7E34D7D5DD4240 |
950b75a8-398a-42b9-951a-ef290c68e7a0 | 37.774598 | -122.262936 | 100 | 0 | -1 | 01010000A0E61000005B3579F3D3905EC0437CFC0726E342400000000000000000 | 0101000020E61000005B3579F3D3905EC0437CFC0726E34240 |
73dee546-a7b6-495e-831f-c402c388dad4 | 38.427781 | -122.740357 | 100 | 0 | -1 | 01010000A0E610000071FC240162AF5EC0A8504C85C13643400000000000000000 | 0101000020E610000071FC240162AF5EC0A8504C85C1364340 |
803eb0ad-9030-4105-ad16-09bac51d1737 | 37.759612 | -122.427118 | 100 | 0 | -1 | 01010000A0E61000001D62BCE6559B5EC05EB95AF53AE142400000000000000000 | 0101000020E61000001D62BCE6559B5EC05EB95AF53AE14240 |
3da369a0-5670-4f27-a688-007c8d4961e1 | 38.551768 | -122.521361 | 100 | 0 | -1 | 01010000A0E610000032DEFEFA5DA15EC0AB8F6956A04643400000000000000000 | 0101000020E610000032DEFEFA5DA15EC0AB8F6956A0464340 |
78542926-8ff3-4990-bffb-ffec6d9055b3 | 38.889775 | -77.009009 | 100 | 0 | -1 | 01010000A0E61000003E9BCF98934053C0DA9FF326E47143400000000000000000 | 0101000020E61000003E9BCF98934053C0DA9FF326E4714340 |
813f06af-2f68-466e-a2bc-8f155ad15c06 | 37.778895 | -122.252155 | 100 | 0 | -1 | 01010000A0E61000007390454E23905EC080FFAED3B2E342400000000000000000 | 0101000020E61000007390454E23905EC080FFAED3B2E34240 |
9681f36d-25f4-4ead-9d99-55a6e886b2d0 | 37.763873 | -122.394243 | 100 | 0 | -1 | 01010000A0E6100000BA1BED463B995EC063361195C6E142400000000000000000 | 0101000020E6100000BA1BED463B995EC063361195C6E14240 |
04a57daa-7b08-4109-81a9-0620aa61d0e2 | 38.881381 | -77.036558 | 100 | 0 | -1 | 01010000A0E6100000DF922CF6564253C084323F15D17043400000000000000000 | 0101000020E6100000DF922CF6564253C084323F15D1704340 |
77c6d59d-8421-46ca-b50b-71c07a3809c2 | 35.98421 | -86.54995 | 100 | 0 | -1 | 01010000A0E61000002B5A2E6232A355C0C26AC396FAFD41400000000000000000 | 0101000020E61000002B5A2E6232A355C0C26AC396FAFD4140 |
24b8d577-c5fa-410c-b55d-44944747cd1e | 33.91358 | -98.489495 | 100 | 0 | -1 | 01010000A0E61000009247EFE1539F58C0E72F242FF0F440400000000000000000 | 0101000020E61000009247EFE1539F58C0E72F242FF0F44040 |
ba7663ae-033d-48c0-9b66-d6a29e5dc4ad | 30.267992 | -97.749385 | 100 | 0 | -1 | 01010000A0E6100000695012ECF56F58C0CA3C3C1E9B443E400000000000000000 | 0101000020E6100000695012ECF56F58C0CA3C3C1E9B443E40 |
7553f231-c564-43a7-8786-4fca824cb621 | 38.514431 | -122.483676 | 100 | 0 | -1 | 01010000A0E6100000F141848BF49E5EC02D6AA5E0D84143400000000000000000 | 0101000020E6100000F141848BF49E5EC02D6AA5E0D8414340 |
e34f81e6-fde3-4081-9a9c-8caff3326761 | 37.796141 | -122.39423 | 100 | 0 | -1 | 01010000A0E6100000FEBC5F123B995EC0767CD9F1E7E542400000000000000000 | 0101000020E6100000FEBC5F123B995EC0767CD9F1E7E54240 |
b5cfe913-e0ae-4a8c-a388-b326f4565bb6 | 45.62775 | -122.816366 | 100 | 0 | -1 | 01010000A0E61000004D533C553FB45EC0C4248A1F5AD046400000000000000000 | 0101000020E61000004D533C553FB45EC0C4248A1F5AD04640 |
6b2ad29a-c7ea-4e41-ba26-8ce8a19a9cca | 38.493507 | -122.464535 | 100 | 0 | -1 | 01010000A0E61000008A9B8DF2BA9D5EC01AD3D53E2B3F43400000000000000000 | 0101000020E61000008A9B8DF2BA9D5EC01AD3D53E2B3F4340 |
Places Dataset
Dataset Summary
This dataset contains information of roughly 70,000 places with associated metadata including locations, attribution tags, and some contact details. The data includes geographic coordinates, place descriptions, categorization through attribution tags, and some social media presence information.
LLM Applications
This dataset is particularly valuable for training and fine-tuning Large Language Models (LLMs) for geospatial understanding:
- Geospatial Question Answering: Train LLMs to answer location-based queries like "What coffee shops are near Central Park?" or "Find museums in Paris"
- Location-Aware Text Generation: Enable LLMs to generate contextually relevant descriptions that incorporate local geography, landmarks, and spatial relationships
- Address Parsing and Normalization: The cleaned address formats provide training data for LLMs to understand and standardize various address formats from different countries
- Multilingual Geographic Entity Recognition: With places from multiple countries, LLMs can learn to recognize and disambiguate location names across languages
- Spatial Reasoning: Train models to understand spatial relationships, distances, and geographic hierarchies (neighborhood → city → state → country)
- Travel and Tourism Assistants: Build LLMs that can provide recommendations based on location, tags, and place descriptions
- Local Business Understanding: Help LLMs understand business categories, operating contexts, and location-specific services
Supported Tasks and Leaderboards
This dataset can be used for various tasks including:
- Location-based recommendation systems
- Geographic information retrieval
- Place categorization and tagging
- Spatial analysis and clustering
- Geospatial NLP and language understanding
- Cross-lingual location entity linking
Languages
The dataset is primarily in English, with place names and descriptions being in English.
Structure
Data Instances
The dataset consists of 5 CSV files with relational structure:
- place.csv - Main places table
- location.csv - Geographic coordinates
- place_contact.csv - Contact and social media information
- tag.csv - Categorization tags
- place_tag.csv - Many-to-many relationship between places and tags
Data Fields
place.csv
id
: Unique identifier (UUID)created_at
,updated_at
: Timestampsname
: Place namedescription
: Place descriptionaddress
,address_formatted
: Street address informationlocality
,administrative_area
,postal_code
,country_code
: Location detailsverified
,flagged
: Boolean status flags- Various foreign keys linking to other tables
location.csv
id
: Unique identifier (UUID)latitude
,longitude
: GPS coordinates (WGS84/EPSG:4326 coordinate system)horizontal_accuracy
,vertical_accuracy
: Accuracy metrics in metersaltitude
: Elevation data in meters above sea levelgeom
: PostGIS geometry column (projected coordinates, likely Web Mercator EPSG:3857)geog
: PostGIS geography column (unprojected lat/lon coordinates for accurate distance calculations)
place_contact.csv
id
: Unique identifier (UUID)instagram
,x
: Social media handleswebsite
: website URLs
Data Splits
This dataset is provided as a single collection without predefined train/validation/test splits. Users should create their own splits based on their specific use case.
Dataset Creation
Curation Rationale
This dataset was created to provide a comprehensive collection of place information with rich metadata for location-based applications and AI research.
Considerations for Using the Data
Social Impact of Dataset
This dataset can be used to build geographically aware LLMs, location-based services, and improve geographic information systems. Consider the impact on local businesses and communities when using this data.
Discussion of Biases
The dataset may have geographic biases based on where data was collected. Urban areas may be overrepresented compared to rural areas.
Other Known Limitations
- The dataset represents a snapshot in time and place information may be outdated
- Not all places have complete information across all fields
- Geographic coverage may be limited to specific regions
Additional Information
Data Quality Notes
- Address Formatting: All addresses have been cleaned and normalized to a consistent format:
{"street address", "city state/province postal", "country"}
- Country Standardization: Country names have been standardized to English (e.g., Deutschland → Germany, États-Unis → United States)
- Coordinate Accuracy: Location coordinates include accuracy metrics to help filter by precision requirements
Licensing Information
This dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Citation Information
@dataset{places_dataset_2025,
title={Places Dataset},
author={[patrick piemonte]},
year={2025},
publisher={Hugging Face}
}
Usage
Loading the Dataset
from datasets import load_dataset
# Load all tables
dataset = load_dataset("path/to/places_dataset.py", "all")
# Load individual tables
places = load_dataset("path/to/places_dataset.py", "place")
locations = load_dataset("path/to/places_dataset.py", "location")
tags = load_dataset("path/to/places_dataset.py", "tag")
place_tags = load_dataset("path/to/places_dataset.py", "place_tag")
contacts = load_dataset("path/to/places_dataset.py", "place_contact")
# Load denormalized view (easier to use!)
denormalized = load_dataset("path/to/places_dataset.py", "denormalized")
Working with the Data
LLM-Specific Examples
Training Data Preparation for Geospatial QA
# Prepare training examples for location-based Q&A
def create_qa_examples(dataset):
examples = []
for place in dataset:
# Create various question-answer pairs
examples.extend([
{
"question": f"What is the address of {place['name']}?",
"answer": place['address_formatted']
},
{
"question": f"Where is {place['name']} located?",
"answer": f"{place['name']} is located at {place['address']} in {place['locality']}, {place['administrative_area']}, {place['country']}."
},
{
"question": f"What type of place is {place['name']}?",
"answer": f"{place['name']} is a {place['primary_tag_name']}." if place['primary_tag_name'] else f"Information about the type of {place['name']} is not available."
}
])
if place['description']:
examples.append({
"question": f"Tell me about {place['name']}",
"answer": place['description']
})
return examples
# Load denormalized data for easy access to all fields
dataset = load_dataset("path/to/places_dataset.py", "denormalized")['train']
qa_examples = create_qa_examples(dataset)
Spatial Context Generation
# Generate spatial context descriptions for LLM training
def generate_spatial_context(place, nearby_places):
context = f"{place['name']} is located at {place['address']} in {place['locality']}."
if nearby_places:
context += f" Nearby places include: "
nearby_names = [f"{p['name']} ({p['distance_km']:.1f}km)" for p in nearby_places[:5]]
context += ", ".join(nearby_names) + "."
if place['primary_tag_name']:
context += f" It is categorized as a {place['primary_tag_name']}."
return context
# Example usage
center_place = dataset[0]
nearby = find_nearby_places(dataset, center_place['latitude'], center_place['longitude'], 2)
spatial_description = generate_spatial_context(center_place, nearby)
Basic Place Information
# Load places with their basic information
places = load_dataset("path/to/places_dataset.py", "place")['train']
# Access place data
for place in places.select(range(5)):
print(f"Name: {place['name']}")
print(f"Address: {place['address_formatted']}")
print(f"Locality: {place['locality']}, {place['administrative_area']}")
print("---")
Using the Denormalized View (Recommended)
# Load denormalized data - includes places, locations, primary tags, and contacts
dataset = load_dataset("path/to/places_dataset.py", "denormalized")['train']
# Now you have everything in one table!
for place in dataset.select(range(5)):
print(f"Name: {place['name']}")
print(f"Location: {place['latitude']}, {place['longitude']}")
print(f"Primary Tag: {place['primary_tag_name']}")
print(f"Website: {place['website']}")
print("---")
# Easy filtering with coordinates
import pandas as pd
df = pd.DataFrame(dataset)
# Find verified places with coordinates
verified_with_coords = df[
(df['verified'] == True) &
(df['latitude'].notna()) &
(df['longitude'].notna())
]
Joining Tables (Places with Locations)
import pandas as pd
# Load as pandas DataFrames for easier joining
places_df = pd.DataFrame(places)
locations = load_dataset("path/to/places_dataset.py", "location")['train']
locations_df = pd.DataFrame(locations)
# Join places with their locations
places_with_coords = places_df.merge(
locations_df,
left_on='location_id',
right_on='id',
suffixes=('', '_loc')
)
# Filter places in a specific area (e.g., within a bounding box)
def filter_by_bbox(df, min_lat, max_lat, min_lon, max_lon):
return df[
(df['latitude'] >= min_lat) &
(df['latitude'] <= max_lat) &
(df['longitude'] >= min_lon) &
(df['longitude'] <= max_lon)
]
# Example: Find places in San Francisco area
sf_places = filter_by_bbox(places_with_coords, 37.7, 37.8, -122.5, -122.4)
Working with Tags
# Load all necessary tables
places_df = pd.DataFrame(load_dataset("path/to/places_dataset.py", "place")['train'])
tags_df = pd.DataFrame(load_dataset("path/to/places_dataset.py", "tag")['train'])
place_tags_df = pd.DataFrame(load_dataset("path/to/places_dataset.py", "place_tag")['train'])
# Get all tags for a specific place
def get_place_tags(place_id):
# Find all tag relationships for this place
tag_ids = place_tags_df[place_tags_df['place_id'] == place_id]['tag_id']
# Get tag details
return tags_df[tags_df['id'].isin(tag_ids)]
# Find all places with a specific tag
def find_places_by_tag(tag_name):
# Find the tag
tag = tags_df[tags_df['name'] == tag_name]
if tag.empty:
return pd.DataFrame()
tag_id = tag.iloc[0]['id']
# Find all places with this tag
place_ids = place_tags_df[place_tags_df['tag_id'] == tag_id]['place_id']
return places_df[places_df['id'].isin(place_ids)]
# Example: Find all coffee shops
coffee_shops = find_places_by_tag('Coffee Shop')
Using the Alternative Loading Function
from places_dataset import load_places_as_dict
# Load all tables as a dictionary
data = load_places_as_dict('/path/to/data/directory')
# Access individual tables
places = data['place']
locations = data['location']
tags = data['tag']
Working with Geospatial Data
Coordinate System Information
- Latitude/Longitude: WGS84 (EPSG:4326) - Standard GPS coordinates
- Geom column: Projected geometry, useful for visualization and area calculations
- Geog column: Geography type for accurate distance and spatial calculations
Example: Distance Calculations
import math
def haversine_distance(lat1, lon1, lat2, lon2):
"""Calculate distance between two points on Earth in kilometers."""
R = 6371 # Earth's radius in kilometers
lat1, lon1, lat2, lon2 = map(math.radians, [lat1, lon1, lat2, lon2])
dlat = lat2 - lat1
dlon = lon2 - lon1
a = math.sin(dlat/2)**2 + math.cos(lat1) * math.cos(lat2) * math.sin(dlon/2)**2
c = 2 * math.asin(math.sqrt(a))
return R * c
# Find places near a specific coordinate
def find_nearby_places(places_with_coords, center_lat, center_lon, radius_km):
nearby = []
for _, place in places_with_coords.iterrows():
distance = haversine_distance(
center_lat, center_lon,
place['latitude'], place['longitude']
)
if distance <= radius_km:
nearby.append({**place.to_dict(), 'distance_km': distance})
return pd.DataFrame(nearby).sort_values('distance_km')
# Example: Find places within 5km of a location
nearby = find_nearby_places(places_with_coords, 37.7749, -122.4194, 5)
- Downloads last month
- 150