Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 29 new columns ({'TuneTables_Accuracy__test', '_zs-mutual_information-32_rdq_3000_mutual_information_Accuracy__test', '_zs-sparse_random_projection-32_sparse_random_projection_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_Accuracy__test', '_zs-pca_white-32_rdq_3000_pca_white_Accuracy__test', '_zs-32_Accuracy__test', '_pt100-prop_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_Accuracy__test', '_ft_Accuracy__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_Accuracy__test', '_pt100_Accuracy__test', '_zs-random-32_bptt_128_random_Accuracy__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_Accuracy__test', '_zs-random-32_rdq_3000_random_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_Accuracy__test', '_pt100-uniform_bptt_128_Accuracy__test', '_zs-mutual_information-32_mutual_information_Accuracy__test', '_zs-isomap-32_rdq_3000_isomap_Accuracy__test', '_pt100-pca_Accuracy__test', '_pt100-rand_Accuracy__test', '_zs-random-32_random_Accuracy__test', '_zs-pca_white-32_pca_white_Accuracy__test', '_zs-ica-32_ica_Accuracy__test', '_zs-isomap-32_isomap_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_Accuracy__test', '_zs-ica-32_rdq_3000_ica_Accuracy__test', '_pt1000-uniform_bptt_128_Accuracy__test', '_pt1000-10ens-randinit-avg-top2_Accuracy__test', '_pt1000_Accuracy__test'}) and 29 missing columns ({'_zs-pca_white-32_rdq_3000_pca_white_AUC__test', '_pt1000-10ens-randinit-avg-top2_AUC__test', '_zs-isomap-32_isomap_AUC__test', '_zs-isomap-32_rdq_3000_isomap_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test', '_zs-32_AUC__test', '_pt100-rand_AUC__test', '_pt1000_AUC__test', '_pt1000-uniform_bptt_128_AUC__test', '_pt100-uniform_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test', '_zs-ica-32_ica_AUC__test', '_zs-random-32_random_AUC__test', '_pt100-prop_AUC__test', '_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test', '_zs-sparse_random_projection-32_sparse_random_projection_AUC__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test', '_zs-mutual_information-32_mutual_information_AUC__test', '_zs-random-32_rdq_3000_random_AUC__test', '_zs-pca_white-32_pca_white_AUC__test', '_zs-random-32_bptt_128_random_AUC__test', '_pt100_AUC__test', '_ft_AUC__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test', 'TuneTables_AUC__test', '_pt100-pca_AUC__test', '_zs-ica-32_rdq_3000_ica_AUC__test'}).

This happened while the csv dataset builder was generating data using

hf://datasets/penfever/tunetables-results/03_2024_tt_hard_main_plotting_data/main_plotting_data_Accuracy__test.csv (at revision 0e15323407a5526b8aabd3038c60f5c3f7f37d9a)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 623, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              time__train_x: double
              time__val_x: double
              time__test_x: double
              dataset_name: string
              CatBoost_Accuracy__test: double
              CatBoost_AUC__test: double
              CatBoost_F1__test: double
              CatBoost_Log Loss__test: double
              CatBoost__runtime: double
              time__train_y: double
              time__val_y: double
              time__test_y: double
              TabPFNs3000_Accuracy__test: double
              TabPFNs3000_AUC__test: double
              TabPFNs3000_F1__test: double
              Log Loss__test: double
              TabPFNs3000__runtime: double
              Classes: int64
              Features: int64
              Samples: int64
              Delta: double
              CatBoost__runtime_cumul: double
              TabPFNs3000__runtime_cumul: double
              _ft_Accuracy__test: double
              _pt100_Accuracy__test: double
              _pt100-pca_Accuracy__test: double
              _pt100-prop_Accuracy__test: double
              _pt100-rand_Accuracy__test: double
              _pt100-uniform_bptt_128_Accuracy__test: double
              _pt1000_Accuracy__test: double
              _pt1000-10ens-randinit-avg-top2_Accuracy__test: double
              _pt1000-10ens-randinit-avg-top2-unif_bptt_128_Accuracy__test: double
              _pt1000-uniform_bptt_128_Accuracy__test: double
              _zs-32_Accuracy__test: double
              _zs-ica-32_ica_Accuracy__test: double
              _zs-isomap-32_isomap_Accuracy__test: double
              _zs-mutual_information-32_mutual_information_Accuracy__test: double
              _zs-pca_white-32_pca_white_Accuracy__test: double
              _zs-random-32_random_Accuracy__test: double
              _zs-random-32_rdq_3000_random_Accuracy__test: double
              _zs-sparse_random_projection-32_sparse_random_projection_Accuracy__test: double
              _zs-ica-32_rdq_3000_ica_Accuracy__test: double
              _zs-isomap-32_rdq_3000_isomap_Accuracy__test: double
              _zs-mutual_information-32_rdq_3000_mutual_information_Accuracy__test: double
              _zs-pca_white-32_rdq_3000_pca_white_Accuracy__test: double
              _zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_Accuracy__test: double
              _pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_Accuracy__test: double
              _zs-random-32_bptt_128_random_Accuracy__test: double
              _pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_Accuracy__test: double
              _pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_Accuracy__test: double
              _pt10-5ens-randinit-avg-top1-highlr-longep_Accuracy__test: double
              TuneTables_Accuracy__test: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 8892
              to
              {'Unnamed: 0': Value(dtype='int64', id=None), 'time__train_x': Value(dtype='float64', id=None), 'time__val_x': Value(dtype='float64', id=None), 'time__test_x': Value(dtype='float64', id=None), 'dataset_name': Value(dtype='string', id=None), 'CatBoost_Accuracy__test': Value(dtype='float64', id=None), 'CatBoost_AUC__test': Value(dtype='float64', id=None), 'CatBoost_F1__test': Value(dtype='float64', id=None), 'CatBoost_Log Loss__test': Value(dtype='float64', id=None), 'CatBoost__runtime': Value(dtype='float64', id=None), 'time__train_y': Value(dtype='float64', id=None), 'time__val_y': Value(dtype='float64', id=None), 'time__test_y': Value(dtype='float64', id=None), 'TabPFNs3000_Accuracy__test': Value(dtype='float64', id=None), 'TabPFNs3000_AUC__test': Value(dtype='float64', id=None), 'TabPFNs3000_F1__test': Value(dtype='float64', id=None), 'Log Loss__test': Value(dtype='float64', id=None), 'TabPFNs3000__runtime': Value(dtype='float64', id=None), 'Classes': Value(dtype='int64', id=None), 'Features': Value(dtype='int64', id=None), 'Samples': Value(dtype='int64', id=None), 'Delta': Value(dtype='float64', id=None), 'CatBoost__runtime_cumul': Value(dtype='float64', id=None), 'TabPFNs3000__runtime_cumul': Value(dtype='float64', id=None), '_ft_AUC__test': Value(dtype='float64', id=None), '_pt100_AUC__test': Value(dtype='float64', id=None), '_pt100-pca_AUC__test': Value(dtype='float64', id=None), '_pt100-prop_AUC__test': Value(dtype='float64', id=None), '_pt100-rand_AUC__test': Value(dt
              ...
              ica_AUC__test': Value(dtype='float64', id=None), '_zs-isomap-32_isomap_AUC__test': Value(dtype='float64', id=None), '_zs-mutual_information-32_mutual_information_AUC__test': Value(dtype='float64', id=None), '_zs-pca_white-32_pca_white_AUC__test': Value(dtype='float64', id=None), '_zs-random-32_random_AUC__test': Value(dtype='float64', id=None), '_zs-random-32_rdq_3000_random_AUC__test': Value(dtype='float64', id=None), '_zs-sparse_random_projection-32_sparse_random_projection_AUC__test': Value(dtype='float64', id=None), '_zs-ica-32_rdq_3000_ica_AUC__test': Value(dtype='float64', id=None), '_zs-isomap-32_rdq_3000_isomap_AUC__test': Value(dtype='float64', id=None), '_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test': Value(dtype='float64', id=None), '_zs-pca_white-32_rdq_3000_pca_white_AUC__test': Value(dtype='float64', id=None), '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test': Value(dtype='float64', id=None), '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test': Value(dtype='float64', id=None), '_zs-random-32_bptt_128_random_AUC__test': Value(dtype='float64', id=None), '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test': Value(dtype='float64', id=None), '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test': Value(dtype='float64', id=None), '_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test': Value(dtype='float64', id=None), 'TuneTables_AUC__test': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1438, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 29 new columns ({'TuneTables_Accuracy__test', '_zs-mutual_information-32_rdq_3000_mutual_information_Accuracy__test', '_zs-sparse_random_projection-32_sparse_random_projection_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_Accuracy__test', '_zs-pca_white-32_rdq_3000_pca_white_Accuracy__test', '_zs-32_Accuracy__test', '_pt100-prop_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_Accuracy__test', '_ft_Accuracy__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_Accuracy__test', '_pt100_Accuracy__test', '_zs-random-32_bptt_128_random_Accuracy__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_Accuracy__test', '_zs-random-32_rdq_3000_random_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_Accuracy__test', '_pt100-uniform_bptt_128_Accuracy__test', '_zs-mutual_information-32_mutual_information_Accuracy__test', '_zs-isomap-32_rdq_3000_isomap_Accuracy__test', '_pt100-pca_Accuracy__test', '_pt100-rand_Accuracy__test', '_zs-random-32_random_Accuracy__test', '_zs-pca_white-32_pca_white_Accuracy__test', '_zs-ica-32_ica_Accuracy__test', '_zs-isomap-32_isomap_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_Accuracy__test', '_zs-ica-32_rdq_3000_ica_Accuracy__test', '_pt1000-uniform_bptt_128_Accuracy__test', '_pt1000-10ens-randinit-avg-top2_Accuracy__test', '_pt1000_Accuracy__test'}) and 29 missing columns ({'_zs-pca_white-32_rdq_3000_pca_white_AUC__test', '_pt1000-10ens-randinit-avg-top2_AUC__test', '_zs-isomap-32_isomap_AUC__test', '_zs-isomap-32_rdq_3000_isomap_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test', '_zs-32_AUC__test', '_pt100-rand_AUC__test', '_pt1000_AUC__test', '_pt1000-uniform_bptt_128_AUC__test', '_pt100-uniform_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test', '_zs-ica-32_ica_AUC__test', '_zs-random-32_random_AUC__test', '_pt100-prop_AUC__test', '_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test', '_zs-sparse_random_projection-32_sparse_random_projection_AUC__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test', '_zs-mutual_information-32_mutual_information_AUC__test', '_zs-random-32_rdq_3000_random_AUC__test', '_zs-pca_white-32_pca_white_AUC__test', '_zs-random-32_bptt_128_random_AUC__test', '_pt100_AUC__test', '_ft_AUC__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test', 'TuneTables_AUC__test', '_pt100-pca_AUC__test', '_zs-ica-32_rdq_3000_ica_AUC__test'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/penfever/tunetables-results/03_2024_tt_hard_main_plotting_data/main_plotting_data_Accuracy__test.csv (at revision 0e15323407a5526b8aabd3038c60f5c3f7f37d9a)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
time__train_x
float64
time__val_x
float64
time__test_x
float64
dataset_name
string
CatBoost_Accuracy__test
float64
CatBoost_AUC__test
float64
CatBoost_F1__test
float64
CatBoost_Log Loss__test
float64
CatBoost__runtime
float64
time__train_y
float64
time__val_y
float64
time__test_y
float64
TabPFNs3000_Accuracy__test
float64
TabPFNs3000_AUC__test
float64
TabPFNs3000_F1__test
float64
Log Loss__test
float64
TabPFNs3000__runtime
float64
Classes
int64
Features
int64
Samples
int64
Delta
float64
CatBoost__runtime_cumul
float64
TabPFNs3000__runtime_cumul
float64
_ft_AUC__test
float64
_pt100_AUC__test
float64
_pt100-pca_AUC__test
float64
_pt100-prop_AUC__test
float64
_pt100-rand_AUC__test
float64
_pt100-uniform_bptt_128_AUC__test
float64
_pt1000_AUC__test
float64
_pt1000-10ens-randinit-avg-top2_AUC__test
float64
_pt1000-10ens-randinit-avg-top2-unif_bptt_128_AUC__test
float64
_pt1000-uniform_bptt_128_AUC__test
float64
_zs-32_AUC__test
float64
_zs-ica-32_ica_AUC__test
float64
_zs-isomap-32_isomap_AUC__test
float64
_zs-mutual_information-32_mutual_information_AUC__test
float64
_zs-pca_white-32_pca_white_AUC__test
float64
_zs-random-32_random_AUC__test
float64
_zs-random-32_rdq_3000_random_AUC__test
float64
_zs-sparse_random_projection-32_sparse_random_projection_AUC__test
float64
_zs-ica-32_rdq_3000_ica_AUC__test
float64
_zs-isomap-32_rdq_3000_isomap_AUC__test
float64
_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test
float64
_zs-pca_white-32_rdq_3000_pca_white_AUC__test
float64
_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test
float64
_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test
float64
_zs-random-32_bptt_128_random_AUC__test
float64
_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test
float64
_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test
float64
_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test
float64
TuneTables_AUC__test
float64
0
5.470622
0.308169
0.269775
openml__Agrawal1__146093
0.95
0.992252
0.95028
0.101591
6.048565
0.025716
216.104408
216.100852
0.946
0.991382
0.94613
0.118413
432.230976
2
9
1,000,000
0.004
142.218803
5,158.457872
0.973
0.976
0.976
0.976
0.976
0.992
0.992
0
0
0.992
0.99
0.99
0.99
0.99
0.99
0.99
0.992
0.99
0
0
0
0
0
0
0
0
0
0
0
1
6.712468
0.333047
0.279522
openml__BNG(labor)__2137
0.971
0.995435
0.9709
0.078912
7.325036
0.040458
229.750833
230.023553
0.938
0.982161
0.93836
0.15832
459.814844
2
16
1,000,000
0.033
226.240902
5,517.778131
0.978
0.994
0
0
0
0.993
0.993
0
0
0.993
0.977
0.977
0.977
0.977
0.977
0.977
0.982
0.977
0.982
0.982
0.982
0.982
0.982
0
0
0
0
0
0
2
1.588888
0.0934
0.089485
openml__BNG(vote)__212
0.975
0.996548
0.975359
0.069077
1.771773
0.01816
32.898037
32.942842
0.968
0.994736
0.967958
0.08944
65.859038
2
16
131,072
0.007
42.335094
1,975.77114
0.993
0.996
0
0
0
0.996
0.996
0
0
0.996
0.993
0.993
0.993
0.993
0.993
0.993
0.994
0.993
0.994
0.994
0.994
0.994
0.994
0
0
0
0
0
0
3
7.746181
0.024661
0.039858
openml__Bioresponse__9910
0.803
0.878566
0.802667
0.441356
7.8107
15.971731
2.510121
2.535231
0.819
0.885325
0.818667
0.426595
21.017083
2
1,776
3,751
-0.016
112.880729
637.68252
0.818
0.824
0
0
0
0.818
0.812
0
0
0.82
0.523
0.831
0.74
0.857
0.835
0.523
0.523
0.824
0.843
0.778
0.867
0.851
0.842
0
0
0
0
0
0.871
4
3.756384
0.20875
0.17901
openml__Click_prediction_small__7294
0.842
0.74119
0.842075
0.393111
4.144144
0.004192
205.156692
205.236468
0.834
0.660425
0.83419
0.438609
410.397352
2
11
1,997,410
0.008
84.526018
10,420.932465
0.595
0.658
0
0
0
0.668
0.667
0
0
0.674
0.656
0.656
0.656
0.656
0.656
0.656
0.664
0.656
0.664
0.664
0.664
0.664
0.664
0
0
0
0
0
0
5
7.002172
0.165818
0.166777
openml__airlines__189354
0.664
0.715663
0.663842
0.610232
7.334767
0.107882
46.354915
46.322323
0.602
0.627777
0.601505
0.662777
92.785119
2
7
539,383
0.062
154.948461
2,601.905863
0.622
0.663
0
0
0
0.697
0.685
0
0
0.687
0.613
0.613
0.613
0.613
0.613
0.613
0.62
0.613
0
0
0
0
0
0
0
0
0
0
0
6
32.919919
1.06518
1.028028
openml__albert__189356
0.702
0.772683
0.701651
0.570534
35.013126
0.290836
61.830542
61.859957
0.637
0.686705
0.637146
0.642012
123.981335
2
78
425,240
0.065
1,077.832536
2,363.267322
0.64
0.696
0
0
0
0.704
0.691
0
0
0.703
0.679
0.679
0.679
0.679
0.679
0.679
0.691
0.679
0
0
0
0
0
0
0
0
0
0
0
7
2.096973
0.004232
0.003759
openml__balance-scale__11
0.871
0.92697
0.876643
0.315156
2.104964
0.003427
0.483712
0.480451
0.984
0.998659
0.984106
0.037652
0.967589
3
4
625
-0.113
52.771632
28.858381
0.992
0.985
0
0
0
0.975
0.99
0.984
0.971
0.987
1
1
1
1
1
1
1
1
1
1
1
1
1
0.98
0
0
0
0
1
8
0.524348
0.002498
0.001858
openml__blood-transfusion-service-center__10101
0.76
0.683723
0.76
0.529754
0.528704
0.0027
0.411178
0.408556
0.8
0.742203
0.8
0.48331
0.822434
2
4
748
-0.04
24.005331
24.855342
0.774
0.636
0
0
0
0.711
0.749
0
0
0.753
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0
0
0
0
0
0.774
9
0.683357
0.002084
0.003628
openml__breast-cancer__145799
0.724
0.572222
0.724138
0.623272
0.689069
0.003648
0.491073
0.489
0.724
0.683333
0.724138
0.607276
0.983721
2
9
286
0
36.982686
28.809068
0.586
0.651
0
0
0
0.653
0.63
0
0
0.499
0.722
0.722
0.722
0.722
0.722
0.722
0.722
0.722
0.722
0.722
0.722
0.722
0.722
0.679
0
0
0
0
0.724
10
7.534318
0.122489
0.088212
openml__christine__168908
0.747
0.80579
0.747232
0.53844
7.745018
17.262028
2.645428
2.649614
0.718
0.803461
0.717712
0.543561
22.557071
2
1,636
5,418
0.029
331.16304
665.780806
0.754
0.776
0
0
0
0.819
0.764
0
0
0.795
0.65
0.761
0.719
0.803
0.766
0.65
0.646
0.735
0.788
0.747
0.821
0.791
0.751
0
0
0
0
0
0.827
11
0.710183
0.003037
0.001993
openml__climate-model-simulation-crashes__146819
0.931
0.919959
0.930864
0.181723
0.715213
0.003153
0.962894
0.960936
0.963
0.995918
0.962963
0.095939
1.926983
2
18
540
-0.032
24.901495
58.653851
0.923
0.82
0
0
0
0.942
0.863
0
0
0.86
0.908
0.908
0.908
0.908
0.908
0.908
0.908
0.908
0.908
0.908
0.908
0.908
0.908
0
0
0
0
0
0.912
12
1.767558
0.00417
0.003884
openml__cmc__23
0.541
0.724065
0.539462
0.905065
1.775612
0.007683
1.481638
1.517026
0.612
0.801547
0.610603
0.8145
3.006348
3
9
1,473
-0.071
78.094024
90.992666
0.721
0.714
0
0
0
0.704
0.726
0.474
0.468
0.715
0.725
0.725
0.725
0.725
0.725
0.725
0.725
0.725
0.725
0.725
0.725
0.725
0.725
0.722
0
0.722
0.709
0
0.731
13
3.11665
0.007943
0.008792
openml__colic__27
0.88
0.913657
0.88003
0.327921
3.133385
0.006265
1.039177
0.295073
0.878
0.925725
0.878378
0.339482
1.340514
2
22
368
0.002
218.034728
39.318812
0.919
0.913
0
0
0
0.896
0.918
0
0
0.916
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.912
0
0
0
0
0.93
14
16.109806
0.166454
0.075367
openml__connect-4__146195
0.821
0.871428
0.793513
0.473594
16.351627
0.078216
11.57487
11.56509
0.674
0.632796
0.561727
0.798451
23.218176
3
42
67,557
0.147
203.916567
696.121908
0.416
0.564
0
0
0
0.901
0.898
0
0
0.892
0.639
0.639
0.639
0.639
0.639
0.639
0.671
0.639
0.671
0.671
0.671
0.671
0.671
0
0
0
0
0
0
15
2.200719
0.00686
0.006669
openml__cylinder-bands__14954
0.787
0.875877
0.787037
0.443283
2.214247
0.00864
1.239279
0.138438
0.796
0.87798
0.796296
0.426672
1.386357
2
37
540
-0.009
93.963842
40.877432
0.933
0.923
0
0
0
0.864
0.929
0.911
0
0.888
0.938
0.938
0.938
0.938
0.938
0.938
0.938
0.938
0.938
0.938
0.938
0.938
0.938
0
0
0
0
0
0.936
16
12.705649
0.025386
0.024051
openml__dilbert__168909
0.962
0.998074
0.962014
0.189144
12.755086
20.246264
2.638321
2.643936
0.926
0.99487
0.926029
0.207929
25.52852
5
2,000
10,000
0.036
808.730207
761.177293
0.972
0.998
0.654
0.655
0.394
0.999
0.99
0
0
0.995
0.444
0.976
0.981
0.977
0.977
0.444
0.415
0.975
0.986
0.988
0.99
0.985
0.987
0
0
0
0
0
0
17
1.061346
0.002149
0.001866
openml__dresses-sales__125920
0.54
0.533662
0.54
0.737212
1.065361
0.004738
0.677673
0.674113
0.6
0.518883
0.6
0.680896
1.356524
2
12
500
-0.06
40.149266
40.880028
0.474
0.535
0
0
0
0.611
0.476
0
0
0.41
0.575
0.575
0.575
0.575
0.575
0.575
0.575
0.575
0.575
0.575
0.575
0.575
0.575
0
0
0
0
0
0.571
18
1.213773
0.004095
0.001866
openml__ecoli__145977
0.939
0.986417
0.940892
0.473745
1.219734
0.003157
0.520286
0.517488
0.727
0.933968
0.722274
0.808689
1.040931
8
7
336
0.212
73.058134
30.157485
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.934
19
0.785582
0.009653
0.009447
openml__eeg-eye-state__14951
0.892
0.959227
0.891856
0.290974
0.804682
0.009589
2.881329
2.88532
0.937
0.985335
0.93725
0.163974
5.776238
2
14
14,980
-0.045
27.734729
177.537891
0.606
0.653
0
0
0
0.673
0.743
0
0
0.704
0.974
0.974
0.974
0.974
0.974
0.974
0.985
0.974
0.985
0.985
0.985
0.985
0.985
0
0
0
0
0
0
20
2.590795
0.002214
0.003144
openml__elevators__3711
0.892
0.942216
0.891566
0.267698
2.596153
0.011596
3.048264
3.024167
0.895
0.954868
0.895181
0.235062
6.084026
2
18
16,599
-0.003
175.790243
186.239942
0.938
0.942
0
0
0
0.945
0.943
0
0
0.942
0.934
0.934
0.934
0.934
0.934
0.934
0.942
0.934
0.942
0.942
0.942
0.942
0.942
0
0
0
0
0
0.311
21
3.637687
0.010284
0.010785
openml__har__14970
0.978
0.99967
0.97765
0.061473
3.658756
6.869467
2.669442
2.666021
0.962
0.998168
0.962104
0.103502
12.204929
6
561
10,299
0.016
302.201547
370.311629
0.996
0.998
0
0
0
0.999
0.999
0
0
0.999
0.693
0.997
0.993
0.995
0.996
0.693
0.668
0.996
0.998
0.994
0.996
0.997
0.998
0
0
0
0
0
0
22
0.506032
0.000921
0.000765
openml__heart-c__48
0.839
0.901681
0.83871
0.384873
0.507718
0.007016
0.747218
0.573552
0.839
0.945378
0.83871
0.3051
1.327786
2
13
303
0
20.763378
39.833576
0.968
0.958
0
0
0
0.912
0.94
0.934
0.945
0.922
0.965
0.965
0.965
0.965
0.965
0.965
0.965
0.965
0.965
0.965
0.965
0.965
0.965
0.951
0
0
0
0
0.965
23
1.646659
0.008068
0.010839
openml__higgs__146606
0.714
0.789788
0.714227
0.550703
1.665566
0.029006
15.545551
15.544792
0.665
0.718481
0.664559
0.616014
31.119349
2
28
98,050
0.049
80.328152
931.453608
0.683
0.751
0
0
0
0.781
0.774
0
0
0.771
0.679
0.679
0.679
0.679
0.679
0.679
0.716
0.679
0.716
0.716
0.716
0.716
0.716
0
0
0
0
0.745
0
24
1.4285
0.001914
0.001344
openml__kc1__3917
0.848
0.782772
0.848341
0.370562
1.431757
0.003998
2.802546
2.804048
0.848
0.83345
0.848341
0.343852
5.610592
2
21
2,109
0
48.689536
168.44471
0.777
0.765
0
0
0
0.811
0.781
0
0
0.796
0.816
0.816
0.816
0.816
0.816
0.816
0.816
0.816
0
0
0
0
0
0
0
0
0
0
0.832
25
11.804756
0.565834
0.627261
openml__poker-hand__9890
0.946
0.904151
0.940036
0.294164
12.99785
0.204482
99.702475
100.086905
0.538
0.526818
0.460421
0.978269
199.993863
10
10
1,025,009
0.408
5,331.215826
2,422.621082
0.398
0.621
0
0
0
0.658
0.662
0
0
0.665
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
22.897829
0.044062
0.041597
openml__riccardo__168338
0.995
0.999323
0.9945
0.067689
22.983487
41.653156
2.850444
2.859816
0.955
0.994027
0.9545
0.236308
47.363416
2
4,296
20,000
0.04
692.07756
1,395.120139
0.921
0.99
0
0
0
0.995
0.996
0
0
0.996
0.491
0.899
0.953
0.899
0.913
0.491
0.494
0.888
0.98
0.982
0.979
0.984
0.973
0
0
0
0
0
0
27
21.521006
0.064051
0.064182
openml__robert__168332
0.455
0.863807
0.452383
1.550218
21.649238
82.247738
2.572722
2.570836
0.246
0.732318
0.21993
2.035677
87.391296
10
7,200
10,000
0.209
598.664213
963.968666
0.78
0.803
0
0
0
0.825
0.806
0
0
0.806
0.562
0.79
0.726
0.705
0.79
0.562
0.562
0.759
0.816
0.744
0.712
0.815
0.782
0
0
0
0
0
0
28
34.986799
0.100713
0.091736
openml__volkert__168331
0.67
0.923648
0.659887
0.956851
35.179248
3.614879
5.871648
5.867252
0.569
0.861787
0.511192
1.237312
15.353779
10
180
58,310
0.101
229.927867
458.743352
0.531
0.904
0
0
0
0.927
0.921
0
0
0.919
0.46
0.835
0
0.849
0.838
0.46
0.447
0.852
0.864
0
0.87
0.866
0.879
0
0
0
0
0
0
0
5.470622
0.308169
0.269775
openml__Agrawal1__146093
0.95
0.992252
0.95028
0.101591
6.048565
0.025716
216.104408
216.100852
0.946
0.991382
0.94613
0.118413
432.230976
2
9
1,000,000
0.004
142.218803
5,158.457872
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
1
6.712468
0.333047
0.279522
openml__BNG(labor)__2137
0.971
0.995435
0.9709
0.078912
7.325036
0.040458
229.750833
230.023553
0.938
0.982161
0.93836
0.15832
459.814844
2
16
1,000,000
0.033
226.240902
5,517.778131
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
2
1.588888
0.0934
0.089485
openml__BNG(vote)__212
0.975
0.996548
0.975359
0.069077
1.771773
0.01816
32.898037
32.942842
0.968
0.994736
0.967958
0.08944
65.859038
2
16
131,072
0.007
42.335094
1,975.77114
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
3
7.746181
0.024661
0.039858
openml__Bioresponse__9910
0.803
0.878566
0.802667
0.441356
7.8107
15.971731
2.510121
2.535231
0.819
0.885325
0.818667
0.426595
21.017083
2
1,776
3,751
-0.016
112.880729
637.68252
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
4
3.756384
0.20875
0.17901
openml__Click_prediction_small__7294
0.842
0.74119
0.842075
0.393111
4.144144
0.004192
205.156692
205.236468
0.834
0.660425
0.83419
0.438609
410.397352
2
11
1,997,410
0.008
84.526018
10,420.932465
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
5
7.002172
0.165818
0.166777
openml__airlines__189354
0.664
0.715663
0.663842
0.610232
7.334767
0.107882
46.354915
46.322323
0.602
0.627777
0.601505
0.662777
92.785119
2
7
539,383
0.062
154.948461
2,601.905863
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
6
32.919919
1.06518
1.028028
openml__albert__189356
0.702
0.772683
0.701651
0.570534
35.013126
0.290836
61.830542
61.859957
0.637
0.686705
0.637146
0.642012
123.981335
2
78
425,240
0.065
1,077.832536
2,363.267322
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
7
2.096973
0.004232
0.003759
openml__balance-scale__11
0.871
0.92697
0.876643
0.315156
2.104964
0.003427
0.483712
0.480451
0.984
0.998659
0.984106
0.037652
0.967589
3
4
625
-0.113
52.771632
28.858381
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
8
0.524348
0.002498
0.001858
openml__blood-transfusion-service-center__10101
0.76
0.683723
0.76
0.529754
0.528704
0.0027
0.411178
0.408556
0.8
0.742203
0.8
0.48331
0.822434
2
4
748
-0.04
24.005331
24.855342
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
9
0.683357
0.002084
0.003628
openml__breast-cancer__145799
0.724
0.572222
0.724138
0.623272
0.689069
0.003648
0.491073
0.489
0.724
0.683333
0.724138
0.607276
0.983721
2
9
286
0
36.982686
28.809068
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
10
7.534318
0.122489
0.088212
openml__christine__168908
0.747
0.80579
0.747232
0.53844
7.745018
17.262028
2.645428
2.649614
0.718
0.803461
0.717712
0.543561
22.557071
2
1,636
5,418
0.029
331.16304
665.780806
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
11
0.710183
0.003037
0.001993
openml__climate-model-simulation-crashes__146819
0.931
0.919959
0.930864
0.181723
0.715213
0.003153
0.962894
0.960936
0.963
0.995918
0.962963
0.095939
1.926983
2
18
540
-0.032
24.901495
58.653851
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
12
1.767558
0.00417
0.003884
openml__cmc__23
0.541
0.724065
0.539462
0.905065
1.775612
0.007683
1.481638
1.517026
0.612
0.801547
0.610603
0.8145
3.006348
3
9
1,473
-0.071
78.094024
90.992666
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
13
3.11665
0.007943
0.008792
openml__colic__27
0.88
0.913657
0.88003
0.327921
3.133385
0.006265
1.039177
0.295073
0.878
0.925725
0.878378
0.339482
1.340514
2
22
368
0.002
218.034728
39.318812
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
14
16.109806
0.166454
0.075367
openml__connect-4__146195
0.821
0.871428
0.793513
0.473594
16.351627
0.078216
11.57487
11.56509
0.674
0.632796
0.561727
0.798451
23.218176
3
42
67,557
0.147
203.916567
696.121908
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
15
2.200719
0.00686
0.006669
openml__cylinder-bands__14954
0.787
0.875877
0.787037
0.443283
2.214247
0.00864
1.239279
0.138438
0.796
0.87798
0.796296
0.426672
1.386357
2
37
540
-0.009
93.963842
40.877432
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
16
12.705649
0.025386
0.024051
openml__dilbert__168909
0.962
0.998074
0.962014
0.189144
12.755086
20.246264
2.638321
2.643936
0.926
0.99487
0.926029
0.207929
25.52852
5
2,000
10,000
0.036
808.730207
761.177293
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
17
1.061346
0.002149
0.001866
openml__dresses-sales__125920
0.54
0.533662
0.54
0.737212
1.065361
0.004738
0.677673
0.674113
0.6
0.518883
0.6
0.680896
1.356524
2
12
500
-0.06
40.149266
40.880028
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
18
1.213773
0.004095
0.001866
openml__ecoli__145977
0.939
0.986417
0.940892
0.473745
1.219734
0.003157
0.520286
0.517488
0.727
0.933968
0.722274
0.808689
1.040931
8
7
336
0.212
73.058134
30.157485
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
19
0.785582
0.009653
0.009447
openml__eeg-eye-state__14951
0.892
0.959227
0.891856
0.290974
0.804682
0.009589
2.881329
2.88532
0.937
0.985335
0.93725
0.163974
5.776238
2
14
14,980
-0.045
27.734729
177.537891
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
20
2.590795
0.002214
0.003144
openml__elevators__3711
0.892
0.942216
0.891566
0.267698
2.596153
0.011596
3.048264
3.024167
0.895
0.954868
0.895181
0.235062
6.084026
2
18
16,599
-0.003
175.790243
186.239942
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
21
3.637687
0.010284
0.010785
openml__har__14970
0.978
0.99967
0.97765
0.061473
3.658756
6.869467
2.669442
2.666021
0.962
0.998168
0.962104
0.103502
12.204929
6
561
10,299
0.016
302.201547
370.311629
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
22
0.506032
0.000921
0.000765
openml__heart-c__48
0.839
0.901681
0.83871
0.384873
0.507718
0.007016
0.747218
0.573552
0.839
0.945378
0.83871
0.3051
1.327786
2
13
303
0
20.763378
39.833576
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
23
1.646659
0.008068
0.010839
openml__higgs__146606
0.714
0.789788
0.714227
0.550703
1.665566
0.029006
15.545551
15.544792
0.665
0.718481
0.664559
0.616014
31.119349
2
28
98,050
0.049
80.328152
931.453608
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
24
1.4285
0.001914
0.001344
openml__kc1__3917
0.848
0.782772
0.848341
0.370562
1.431757
0.003998
2.802546
2.804048
0.848
0.83345
0.848341
0.343852
5.610592
2
21
2,109
0
48.689536
168.44471
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
25
11.804756
0.565834
0.627261
openml__poker-hand__9890
0.946
0.904151
0.940036
0.294164
12.99785
0.204482
99.702475
100.086905
0.538
0.526818
0.460421
0.978269
199.993863
10
10
1,025,009
0.408
5,331.215826
2,422.621082
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
26
22.897829
0.044062
0.041597
openml__riccardo__168338
0.995
0.999323
0.9945
0.067689
22.983487
41.653156
2.850444
2.859816
0.955
0.994027
0.9545
0.236308
47.363416
2
4,296
20,000
0.04
692.07756
1,395.120139
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
27
21.521006
0.064051
0.064182
openml__robert__168332
0.455
0.863807
0.452383
1.550218
21.649238
82.247738
2.572722
2.570836
0.246
0.732318
0.21993
2.035677
87.391296
10
7,200
10,000
0.209
598.664213
963.968666
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
28
34.986799
0.100713
0.091736
openml__volkert__168331
0.67
0.923648
0.659887
0.956851
35.179248
3.614879
5.871648
5.867252
0.569
0.861787
0.511192
1.237312
15.353779
10
180
58,310
0.101
229.927867
458.743352
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
0
5.470622
0.308169
0.269775
openml__Agrawal1__146093
0.95
0.992252
0.95028
0.101591
6.048565
0.025716
216.104408
216.100852
0.946
0.991382
0.94613
0.118413
432.230976
2
9
1,000,000
0.004
142.218803
5,158.457872
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
1
6.712468
0.333047
0.279522
openml__BNG(labor)__2137
0.971
0.995435
0.9709
0.078912
7.325036
0.040458
229.750833
230.023553
0.938
0.982161
0.93836
0.15832
459.814844
2
16
1,000,000
0.033
226.240902
5,517.778131
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
2
1.588888
0.0934
0.089485
openml__BNG(vote)__212
0.975
0.996548
0.975359
0.069077
1.771773
0.01816
32.898037
32.942842
0.968
0.994736
0.967958
0.08944
65.859038
2
16
131,072
0.007
42.335094
1,975.77114
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
3
7.746181
0.024661
0.039858
openml__Bioresponse__9910
0.803
0.878566
0.802667
0.441356
7.8107
15.971731
2.510121
2.535231
0.819
0.885325
0.818667
0.426595
21.017083
2
1,776
3,751
-0.016
112.880729
637.68252
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
4
3.756384
0.20875
0.17901
openml__Click_prediction_small__7294
0.842
0.74119
0.842075
0.393111
4.144144
0.004192
205.156692
205.236468
0.834
0.660425
0.83419
0.438609
410.397352
2
11
1,997,410
0.008
84.526018
10,420.932465
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
5
7.002172
0.165818
0.166777
openml__airlines__189354
0.664
0.715663
0.663842
0.610232
7.334767
0.107882
46.354915
46.322323
0.602
0.627777
0.601505
0.662777
92.785119
2
7
539,383
0.062
154.948461
2,601.905863
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
6
32.919919
1.06518
1.028028
openml__albert__189356
0.702
0.772683
0.701651
0.570534
35.013126
0.290836
61.830542
61.859957
0.637
0.686705
0.637146
0.642012
123.981335
2
78
425,240
0.065
1,077.832536
2,363.267322
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
7
2.096973
0.004232
0.003759
openml__balance-scale__11
0.871
0.92697
0.876643
0.315156
2.104964
0.003427
0.483712
0.480451
0.984
0.998659
0.984106
0.037652
0.967589
3
4
625
-0.113
52.771632
28.858381
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
8
0.524348
0.002498
0.001858
openml__blood-transfusion-service-center__10101
0.76
0.683723
0.76
0.529754
0.528704
0.0027
0.411178
0.408556
0.8
0.742203
0.8
0.48331
0.822434
2
4
748
-0.04
24.005331
24.855342
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
9
0.683357
0.002084
0.003628
openml__breast-cancer__145799
0.724
0.572222
0.724138
0.623272
0.689069
0.003648
0.491073
0.489
0.724
0.683333
0.724138
0.607276
0.983721
2
9
286
0
36.982686
28.809068
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
10
7.534318
0.122489
0.088212
openml__christine__168908
0.747
0.80579
0.747232
0.53844
7.745018
17.262028
2.645428
2.649614
0.718
0.803461
0.717712
0.543561
22.557071
2
1,636
5,418
0.029
331.16304
665.780806
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
11
0.710183
0.003037
0.001993
openml__climate-model-simulation-crashes__146819
0.931
0.919959
0.930864
0.181723
0.715213
0.003153
0.962894
0.960936
0.963
0.995918
0.962963
0.095939
1.926983
2
18
540
-0.032
24.901495
58.653851
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
12
1.767558
0.00417
0.003884
openml__cmc__23
0.541
0.724065
0.539462
0.905065
1.775612
0.007683
1.481638
1.517026
0.612
0.801547
0.610603
0.8145
3.006348
3
9
1,473
-0.071
78.094024
90.992666
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
13
3.11665
0.007943
0.008792
openml__colic__27
0.88
0.913657
0.88003
0.327921
3.133385
0.006265
1.039177
0.295073
0.878
0.925725
0.878378
0.339482
1.340514
2
22
368
0.002
218.034728
39.318812
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
14
16.109806
0.166454
0.075367
openml__connect-4__146195
0.821
0.871428
0.793513
0.473594
16.351627
0.078216
11.57487
11.56509
0.674
0.632796
0.561727
0.798451
23.218176
3
42
67,557
0.147
203.916567
696.121908
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
15
2.200719
0.00686
0.006669
openml__cylinder-bands__14954
0.787
0.875877
0.787037
0.443283
2.214247
0.00864
1.239279
0.138438
0.796
0.87798
0.796296
0.426672
1.386357
2
37
540
-0.009
93.963842
40.877432
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
16
12.705649
0.025386
0.024051
openml__dilbert__168909
0.962
0.998074
0.962014
0.189144
12.755086
20.246264
2.638321
2.643936
0.926
0.99487
0.926029
0.207929
25.52852
5
2,000
10,000
0.036
808.730207
761.177293
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
17
1.061346
0.002149
0.001866
openml__dresses-sales__125920
0.54
0.533662
0.54
0.737212
1.065361
0.004738
0.677673
0.674113
0.6
0.518883
0.6
0.680896
1.356524
2
12
500
-0.06
40.149266
40.880028
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
18
1.213773
0.004095
0.001866
openml__ecoli__145977
0.939
0.986417
0.940892
0.473745
1.219734
0.003157
0.520286
0.517488
0.727
0.933968
0.722274
0.808689
1.040931
8
7
336
0.212
73.058134
30.157485
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
19
0.785582
0.009653
0.009447
openml__eeg-eye-state__14951
0.892
0.959227
0.891856
0.290974
0.804682
0.009589
2.881329
2.88532
0.937
0.985335
0.93725
0.163974
5.776238
2
14
14,980
-0.045
27.734729
177.537891
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
20
2.590795
0.002214
0.003144
openml__elevators__3711
0.892
0.942216
0.891566
0.267698
2.596153
0.011596
3.048264
3.024167
0.895
0.954868
0.895181
0.235062
6.084026
2
18
16,599
-0.003
175.790243
186.239942
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
21
3.637687
0.010284
0.010785
openml__har__14970
0.978
0.99967
0.97765
0.061473
3.658756
6.869467
2.669442
2.666021
0.962
0.998168
0.962104
0.103502
12.204929
6
561
10,299
0.016
302.201547
370.311629
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
22
0.506032
0.000921
0.000765
openml__heart-c__48
0.839
0.901681
0.83871
0.384873
0.507718
0.007016
0.747218
0.573552
0.839
0.945378
0.83871
0.3051
1.327786
2
13
303
0
20.763378
39.833576
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
23
1.646659
0.008068
0.010839
openml__higgs__146606
0.714
0.789788
0.714227
0.550703
1.665566
0.029006
15.545551
15.544792
0.665
0.718481
0.664559
0.616014
31.119349
2
28
98,050
0.049
80.328152
931.453608
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
24
1.4285
0.001914
0.001344
openml__kc1__3917
0.848
0.782772
0.848341
0.370562
1.431757
0.003998
2.802546
2.804048
0.848
0.83345
0.848341
0.343852
5.610592
2
21
2,109
0
48.689536
168.44471
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
25
11.804756
0.565834
0.627261
openml__poker-hand__9890
0.946
0.904151
0.940036
0.294164
12.99785
0.204482
99.702475
100.086905
0.538
0.526818
0.460421
0.978269
199.993863
10
10
1,025,009
0.408
5,331.215826
2,422.621082
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
26
22.897829
0.044062
0.041597
openml__riccardo__168338
0.995
0.999323
0.9945
0.067689
22.983487
41.653156
2.850444
2.859816
0.955
0.994027
0.9545
0.236308
47.363416
2
4,296
20,000
0.04
692.07756
1,395.120139
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
27
21.521006
0.064051
0.064182
openml__robert__168332
0.455
0.863807
0.452383
1.550218
21.649238
82.247738
2.572722
2.570836
0.246
0.732318
0.21993
2.035677
87.391296
10
7,200
10,000
0.209
598.664213
963.968666
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
28
34.986799
0.100713
0.091736
openml__volkert__168331
0.67
0.923648
0.659887
0.956851
35.179248
3.614879
5.871648
5.867252
0.569
0.861787
0.511192
1.237312
15.353779
10
180
58,310
0.101
229.927867
458.743352
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
0
5.470622
0.308169
0.269775
openml__Agrawal1__146093
0.95
0.992252
0.95028
0.101591
6.048565
0.025716
216.104408
216.100852
0.946
0.991382
0.94613
0.118413
432.230976
2
9
1,000,000
0.004
142.218803
5,158.457872
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
1
6.712468
0.333047
0.279522
openml__BNG(labor)__2137
0.971
0.995435
0.9709
0.078912
7.325036
0.040458
229.750833
230.023553
0.938
0.982161
0.93836
0.15832
459.814844
2
16
1,000,000
0.033
226.240902
5,517.778131
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
2
1.588888
0.0934
0.089485
openml__BNG(vote)__212
0.975
0.996548
0.975359
0.069077
1.771773
0.01816
32.898037
32.942842
0.968
0.994736
0.967958
0.08944
65.859038
2
16
131,072
0.007
42.335094
1,975.77114
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

This repository contains the extended raw results for the TuneTables paper.

These results, and the associated metadata, are in TabZilla format; see https://github.com/naszilla/tabzilla for more explanation.

Directory Structure

tabzilla_metadata: contains the performance results for most baseline methods reported in our paper (classification only)
excelformer: contains the performance results for the excelformer baseline method
regression: contains the baseline results for regression
datasets_used: descriptions of the datasets used in the paper, including OpenML IDs
TuneTables-Hard Results: 03-2024-tt-hard-main-plotting-data
TabZilla Results: 05-2024-tabzilla-main-plotting-data

If you find this repository useful, please consider citing our paper.

@misc{feuer2024tunetablescontextoptimizationscalable,
      title={TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks}, 
      author={Benjamin Feuer and Robin Tibor Schirrmeister and Valeriia Cherepanova and Chinmay Hegde and Frank Hutter and Micah Goldblum and Niv Cohen and Colin White},
      year={2024},
      eprint={2402.11137},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2402.11137}, 
}
Downloads last month
208