Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 29 new columns ({'TuneTables_Accuracy__test', '_zs-mutual_information-32_rdq_3000_mutual_information_Accuracy__test', '_zs-sparse_random_projection-32_sparse_random_projection_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_Accuracy__test', '_zs-pca_white-32_rdq_3000_pca_white_Accuracy__test', '_zs-32_Accuracy__test', '_pt100-prop_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_Accuracy__test', '_ft_Accuracy__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_Accuracy__test', '_pt100_Accuracy__test', '_zs-random-32_bptt_128_random_Accuracy__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_Accuracy__test', '_zs-random-32_rdq_3000_random_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_Accuracy__test', '_pt100-uniform_bptt_128_Accuracy__test', '_zs-mutual_information-32_mutual_information_Accuracy__test', '_zs-isomap-32_rdq_3000_isomap_Accuracy__test', '_pt100-pca_Accuracy__test', '_pt100-rand_Accuracy__test', '_zs-random-32_random_Accuracy__test', '_zs-pca_white-32_pca_white_Accuracy__test', '_zs-ica-32_ica_Accuracy__test', '_zs-isomap-32_isomap_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_Accuracy__test', '_zs-ica-32_rdq_3000_ica_Accuracy__test', '_pt1000-uniform_bptt_128_Accuracy__test', '_pt1000-10ens-randinit-avg-top2_Accuracy__test', '_pt1000_Accuracy__test'}) and 29 missing columns ({'_zs-pca_white-32_rdq_3000_pca_white_AUC__test', '_pt1000-10ens-randinit-avg-top2_AUC__test', '_zs-isomap-32_isomap_AUC__test', '_zs-isomap-32_rdq_3000_isomap_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test', '_zs-32_AUC__test', '_pt100-rand_AUC__test', '_pt1000_AUC__test', '_pt1000-uniform_bptt_128_AUC__test', '_pt100-uniform_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test', '_zs-ica-32_ica_AUC__test', '_zs-random-32_random_AUC__test', '_pt100-prop_AUC__test', '_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test', '_zs-sparse_random_projection-32_sparse_random_projection_AUC__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test', '_zs-mutual_information-32_mutual_information_AUC__test', '_zs-random-32_rdq_3000_random_AUC__test', '_zs-pca_white-32_pca_white_AUC__test', '_zs-random-32_bptt_128_random_AUC__test', '_pt100_AUC__test', '_ft_AUC__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test', 'TuneTables_AUC__test', '_pt100-pca_AUC__test', '_zs-ica-32_rdq_3000_ica_AUC__test'}). This happened while the csv dataset builder was generating data using hf://datasets/penfever/tunetables-results/03_2024_tt_hard_main_plotting_data/main_plotting_data_Accuracy__test.csv (at revision 0e15323407a5526b8aabd3038c60f5c3f7f37d9a) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 623, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Unnamed: 0: int64 time__train_x: double time__val_x: double time__test_x: double dataset_name: string CatBoost_Accuracy__test: double CatBoost_AUC__test: double CatBoost_F1__test: double CatBoost_Log Loss__test: double CatBoost__runtime: double time__train_y: double time__val_y: double time__test_y: double TabPFNs3000_Accuracy__test: double TabPFNs3000_AUC__test: double TabPFNs3000_F1__test: double Log Loss__test: double TabPFNs3000__runtime: double Classes: int64 Features: int64 Samples: int64 Delta: double CatBoost__runtime_cumul: double TabPFNs3000__runtime_cumul: double _ft_Accuracy__test: double _pt100_Accuracy__test: double _pt100-pca_Accuracy__test: double _pt100-prop_Accuracy__test: double _pt100-rand_Accuracy__test: double _pt100-uniform_bptt_128_Accuracy__test: double _pt1000_Accuracy__test: double _pt1000-10ens-randinit-avg-top2_Accuracy__test: double _pt1000-10ens-randinit-avg-top2-unif_bptt_128_Accuracy__test: double _pt1000-uniform_bptt_128_Accuracy__test: double _zs-32_Accuracy__test: double _zs-ica-32_ica_Accuracy__test: double _zs-isomap-32_isomap_Accuracy__test: double _zs-mutual_information-32_mutual_information_Accuracy__test: double _zs-pca_white-32_pca_white_Accuracy__test: double _zs-random-32_random_Accuracy__test: double _zs-random-32_rdq_3000_random_Accuracy__test: double _zs-sparse_random_projection-32_sparse_random_projection_Accuracy__test: double _zs-ica-32_rdq_3000_ica_Accuracy__test: double _zs-isomap-32_rdq_3000_isomap_Accuracy__test: double _zs-mutual_information-32_rdq_3000_mutual_information_Accuracy__test: double _zs-pca_white-32_rdq_3000_pca_white_Accuracy__test: double _zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_Accuracy__test: double _pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_Accuracy__test: double _zs-random-32_bptt_128_random_Accuracy__test: double _pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_Accuracy__test: double _pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_Accuracy__test: double _pt10-5ens-randinit-avg-top1-highlr-longep_Accuracy__test: double TuneTables_Accuracy__test: double -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 8892 to {'Unnamed: 0': Value(dtype='int64', id=None), 'time__train_x': Value(dtype='float64', id=None), 'time__val_x': Value(dtype='float64', id=None), 'time__test_x': Value(dtype='float64', id=None), 'dataset_name': Value(dtype='string', id=None), 'CatBoost_Accuracy__test': Value(dtype='float64', id=None), 'CatBoost_AUC__test': Value(dtype='float64', id=None), 'CatBoost_F1__test': Value(dtype='float64', id=None), 'CatBoost_Log Loss__test': Value(dtype='float64', id=None), 'CatBoost__runtime': Value(dtype='float64', id=None), 'time__train_y': Value(dtype='float64', id=None), 'time__val_y': Value(dtype='float64', id=None), 'time__test_y': Value(dtype='float64', id=None), 'TabPFNs3000_Accuracy__test': Value(dtype='float64', id=None), 'TabPFNs3000_AUC__test': Value(dtype='float64', id=None), 'TabPFNs3000_F1__test': Value(dtype='float64', id=None), 'Log Loss__test': Value(dtype='float64', id=None), 'TabPFNs3000__runtime': Value(dtype='float64', id=None), 'Classes': Value(dtype='int64', id=None), 'Features': Value(dtype='int64', id=None), 'Samples': Value(dtype='int64', id=None), 'Delta': Value(dtype='float64', id=None), 'CatBoost__runtime_cumul': Value(dtype='float64', id=None), 'TabPFNs3000__runtime_cumul': Value(dtype='float64', id=None), '_ft_AUC__test': Value(dtype='float64', id=None), '_pt100_AUC__test': Value(dtype='float64', id=None), '_pt100-pca_AUC__test': Value(dtype='float64', id=None), '_pt100-prop_AUC__test': Value(dtype='float64', id=None), '_pt100-rand_AUC__test': Value(dt ... ica_AUC__test': Value(dtype='float64', id=None), '_zs-isomap-32_isomap_AUC__test': Value(dtype='float64', id=None), '_zs-mutual_information-32_mutual_information_AUC__test': Value(dtype='float64', id=None), '_zs-pca_white-32_pca_white_AUC__test': Value(dtype='float64', id=None), '_zs-random-32_random_AUC__test': Value(dtype='float64', id=None), '_zs-random-32_rdq_3000_random_AUC__test': Value(dtype='float64', id=None), '_zs-sparse_random_projection-32_sparse_random_projection_AUC__test': Value(dtype='float64', id=None), '_zs-ica-32_rdq_3000_ica_AUC__test': Value(dtype='float64', id=None), '_zs-isomap-32_rdq_3000_isomap_AUC__test': Value(dtype='float64', id=None), '_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test': Value(dtype='float64', id=None), '_zs-pca_white-32_rdq_3000_pca_white_AUC__test': Value(dtype='float64', id=None), '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test': Value(dtype='float64', id=None), '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test': Value(dtype='float64', id=None), '_zs-random-32_bptt_128_random_AUC__test': Value(dtype='float64', id=None), '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test': Value(dtype='float64', id=None), '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test': Value(dtype='float64', id=None), '_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test': Value(dtype='float64', id=None), 'TuneTables_AUC__test': Value(dtype='float64', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1438, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 29 new columns ({'TuneTables_Accuracy__test', '_zs-mutual_information-32_rdq_3000_mutual_information_Accuracy__test', '_zs-sparse_random_projection-32_sparse_random_projection_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_Accuracy__test', '_zs-pca_white-32_rdq_3000_pca_white_Accuracy__test', '_zs-32_Accuracy__test', '_pt100-prop_Accuracy__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_Accuracy__test', '_ft_Accuracy__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_Accuracy__test', '_pt100_Accuracy__test', '_zs-random-32_bptt_128_random_Accuracy__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_Accuracy__test', '_zs-random-32_rdq_3000_random_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_Accuracy__test', '_pt100-uniform_bptt_128_Accuracy__test', '_zs-mutual_information-32_mutual_information_Accuracy__test', '_zs-isomap-32_rdq_3000_isomap_Accuracy__test', '_pt100-pca_Accuracy__test', '_pt100-rand_Accuracy__test', '_zs-random-32_random_Accuracy__test', '_zs-pca_white-32_pca_white_Accuracy__test', '_zs-ica-32_ica_Accuracy__test', '_zs-isomap-32_isomap_Accuracy__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_Accuracy__test', '_zs-ica-32_rdq_3000_ica_Accuracy__test', '_pt1000-uniform_bptt_128_Accuracy__test', '_pt1000-10ens-randinit-avg-top2_Accuracy__test', '_pt1000_Accuracy__test'}) and 29 missing columns ({'_zs-pca_white-32_rdq_3000_pca_white_AUC__test', '_pt1000-10ens-randinit-avg-top2_AUC__test', '_zs-isomap-32_isomap_AUC__test', '_zs-isomap-32_rdq_3000_isomap_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test', '_zs-32_AUC__test', '_pt100-rand_AUC__test', '_pt1000_AUC__test', '_pt1000-uniform_bptt_128_AUC__test', '_pt100-uniform_bptt_128_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test', '_zs-ica-32_ica_AUC__test', '_zs-random-32_random_AUC__test', '_pt100-prop_AUC__test', '_zs-mutual_information-32_rdq_3000_mutual_information_AUC__test', '_pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test', '_zs-sparse_random_projection-32_sparse_random_projection_AUC__test', '_pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test', '_zs-mutual_information-32_mutual_information_AUC__test', '_zs-random-32_rdq_3000_random_AUC__test', '_zs-pca_white-32_pca_white_AUC__test', '_zs-random-32_bptt_128_random_AUC__test', '_pt100_AUC__test', '_ft_AUC__test', '_zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test', 'TuneTables_AUC__test', '_pt100-pca_AUC__test', '_zs-ica-32_rdq_3000_ica_AUC__test'}). This happened while the csv dataset builder was generating data using hf://datasets/penfever/tunetables-results/03_2024_tt_hard_main_plotting_data/main_plotting_data_Accuracy__test.csv (at revision 0e15323407a5526b8aabd3038c60f5c3f7f37d9a) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Unnamed: 0
int64 | time__train_x
float64 | time__val_x
float64 | time__test_x
float64 | dataset_name
string | CatBoost_Accuracy__test
float64 | CatBoost_AUC__test
float64 | CatBoost_F1__test
float64 | CatBoost_Log Loss__test
float64 | CatBoost__runtime
float64 | time__train_y
float64 | time__val_y
float64 | time__test_y
float64 | TabPFNs3000_Accuracy__test
float64 | TabPFNs3000_AUC__test
float64 | TabPFNs3000_F1__test
float64 | Log Loss__test
float64 | TabPFNs3000__runtime
float64 | Classes
int64 | Features
int64 | Samples
int64 | Delta
float64 | CatBoost__runtime_cumul
float64 | TabPFNs3000__runtime_cumul
float64 | _ft_AUC__test
float64 | _pt100_AUC__test
float64 | _pt100-pca_AUC__test
float64 | _pt100-prop_AUC__test
float64 | _pt100-rand_AUC__test
float64 | _pt100-uniform_bptt_128_AUC__test
float64 | _pt1000_AUC__test
float64 | _pt1000-10ens-randinit-avg-top2_AUC__test
float64 | _pt1000-10ens-randinit-avg-top2-unif_bptt_128_AUC__test
float64 | _pt1000-uniform_bptt_128_AUC__test
float64 | _zs-32_AUC__test
float64 | _zs-ica-32_ica_AUC__test
float64 | _zs-isomap-32_isomap_AUC__test
float64 | _zs-mutual_information-32_mutual_information_AUC__test
float64 | _zs-pca_white-32_pca_white_AUC__test
float64 | _zs-random-32_random_AUC__test
float64 | _zs-random-32_rdq_3000_random_AUC__test
float64 | _zs-sparse_random_projection-32_sparse_random_projection_AUC__test
float64 | _zs-ica-32_rdq_3000_ica_AUC__test
float64 | _zs-isomap-32_rdq_3000_isomap_AUC__test
float64 | _zs-mutual_information-32_rdq_3000_mutual_information_AUC__test
float64 | _zs-pca_white-32_rdq_3000_pca_white_AUC__test
float64 | _zs-sparse_random_projection-32_rdq_3000_sparse_random_projection_AUC__test
float64 | _pt1000-10ens-randinit-avg-top1-unif-stopearly-mutinf_bptt_128_AUC__test
float64 | _zs-random-32_bptt_128_random_AUC__test
float64 | _pt1000-10ens-randinit-avg-top1-unif-stopearly_bptt_128_AUC__test
float64 | _pt1000-10ens-randinit-avg-top2-unif-stopearly_bptt_128_AUC__test
float64 | _pt10-5ens-randinit-avg-top1-highlr-longep_AUC__test
float64 | TuneTables_AUC__test
float64 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5.470622 | 0.308169 | 0.269775 | openml__Agrawal1__146093 | 0.95 | 0.992252 | 0.95028 | 0.101591 | 6.048565 | 0.025716 | 216.104408 | 216.100852 | 0.946 | 0.991382 | 0.94613 | 0.118413 | 432.230976 | 2 | 9 | 1,000,000 | 0.004 | 142.218803 | 5,158.457872 | 0.973 | 0.976 | 0.976 | 0.976 | 0.976 | 0.992 | 0.992 | 0 | 0 | 0.992 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.992 | 0.99 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 6.712468 | 0.333047 | 0.279522 | openml__BNG(labor)__2137 | 0.971 | 0.995435 | 0.9709 | 0.078912 | 7.325036 | 0.040458 | 229.750833 | 230.023553 | 0.938 | 0.982161 | 0.93836 | 0.15832 | 459.814844 | 2 | 16 | 1,000,000 | 0.033 | 226.240902 | 5,517.778131 | 0.978 | 0.994 | 0 | 0 | 0 | 0.993 | 0.993 | 0 | 0 | 0.993 | 0.977 | 0.977 | 0.977 | 0.977 | 0.977 | 0.977 | 0.982 | 0.977 | 0.982 | 0.982 | 0.982 | 0.982 | 0.982 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1.588888 | 0.0934 | 0.089485 | openml__BNG(vote)__212 | 0.975 | 0.996548 | 0.975359 | 0.069077 | 1.771773 | 0.01816 | 32.898037 | 32.942842 | 0.968 | 0.994736 | 0.967958 | 0.08944 | 65.859038 | 2 | 16 | 131,072 | 0.007 | 42.335094 | 1,975.77114 | 0.993 | 0.996 | 0 | 0 | 0 | 0.996 | 0.996 | 0 | 0 | 0.996 | 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.994 | 0.993 | 0.994 | 0.994 | 0.994 | 0.994 | 0.994 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 7.746181 | 0.024661 | 0.039858 | openml__Bioresponse__9910 | 0.803 | 0.878566 | 0.802667 | 0.441356 | 7.8107 | 15.971731 | 2.510121 | 2.535231 | 0.819 | 0.885325 | 0.818667 | 0.426595 | 21.017083 | 2 | 1,776 | 3,751 | -0.016 | 112.880729 | 637.68252 | 0.818 | 0.824 | 0 | 0 | 0 | 0.818 | 0.812 | 0 | 0 | 0.82 | 0.523 | 0.831 | 0.74 | 0.857 | 0.835 | 0.523 | 0.523 | 0.824 | 0.843 | 0.778 | 0.867 | 0.851 | 0.842 | 0 | 0 | 0 | 0 | 0 | 0.871 |
4 | 3.756384 | 0.20875 | 0.17901 | openml__Click_prediction_small__7294 | 0.842 | 0.74119 | 0.842075 | 0.393111 | 4.144144 | 0.004192 | 205.156692 | 205.236468 | 0.834 | 0.660425 | 0.83419 | 0.438609 | 410.397352 | 2 | 11 | 1,997,410 | 0.008 | 84.526018 | 10,420.932465 | 0.595 | 0.658 | 0 | 0 | 0 | 0.668 | 0.667 | 0 | 0 | 0.674 | 0.656 | 0.656 | 0.656 | 0.656 | 0.656 | 0.656 | 0.664 | 0.656 | 0.664 | 0.664 | 0.664 | 0.664 | 0.664 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 7.002172 | 0.165818 | 0.166777 | openml__airlines__189354 | 0.664 | 0.715663 | 0.663842 | 0.610232 | 7.334767 | 0.107882 | 46.354915 | 46.322323 | 0.602 | 0.627777 | 0.601505 | 0.662777 | 92.785119 | 2 | 7 | 539,383 | 0.062 | 154.948461 | 2,601.905863 | 0.622 | 0.663 | 0 | 0 | 0 | 0.697 | 0.685 | 0 | 0 | 0.687 | 0.613 | 0.613 | 0.613 | 0.613 | 0.613 | 0.613 | 0.62 | 0.613 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 32.919919 | 1.06518 | 1.028028 | openml__albert__189356 | 0.702 | 0.772683 | 0.701651 | 0.570534 | 35.013126 | 0.290836 | 61.830542 | 61.859957 | 0.637 | 0.686705 | 0.637146 | 0.642012 | 123.981335 | 2 | 78 | 425,240 | 0.065 | 1,077.832536 | 2,363.267322 | 0.64 | 0.696 | 0 | 0 | 0 | 0.704 | 0.691 | 0 | 0 | 0.703 | 0.679 | 0.679 | 0.679 | 0.679 | 0.679 | 0.679 | 0.691 | 0.679 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 2.096973 | 0.004232 | 0.003759 | openml__balance-scale__11 | 0.871 | 0.92697 | 0.876643 | 0.315156 | 2.104964 | 0.003427 | 0.483712 | 0.480451 | 0.984 | 0.998659 | 0.984106 | 0.037652 | 0.967589 | 3 | 4 | 625 | -0.113 | 52.771632 | 28.858381 | 0.992 | 0.985 | 0 | 0 | 0 | 0.975 | 0.99 | 0.984 | 0.971 | 0.987 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.98 | 0 | 0 | 0 | 0 | 1 |
8 | 0.524348 | 0.002498 | 0.001858 | openml__blood-transfusion-service-center__10101 | 0.76 | 0.683723 | 0.76 | 0.529754 | 0.528704 | 0.0027 | 0.411178 | 0.408556 | 0.8 | 0.742203 | 0.8 | 0.48331 | 0.822434 | 2 | 4 | 748 | -0.04 | 24.005331 | 24.855342 | 0.774 | 0.636 | 0 | 0 | 0 | 0.711 | 0.749 | 0 | 0 | 0.753 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0.775 | 0 | 0 | 0 | 0 | 0 | 0.774 |
9 | 0.683357 | 0.002084 | 0.003628 | openml__breast-cancer__145799 | 0.724 | 0.572222 | 0.724138 | 0.623272 | 0.689069 | 0.003648 | 0.491073 | 0.489 | 0.724 | 0.683333 | 0.724138 | 0.607276 | 0.983721 | 2 | 9 | 286 | 0 | 36.982686 | 28.809068 | 0.586 | 0.651 | 0 | 0 | 0 | 0.653 | 0.63 | 0 | 0 | 0.499 | 0.722 | 0.722 | 0.722 | 0.722 | 0.722 | 0.722 | 0.722 | 0.722 | 0.722 | 0.722 | 0.722 | 0.722 | 0.722 | 0.679 | 0 | 0 | 0 | 0 | 0.724 |
10 | 7.534318 | 0.122489 | 0.088212 | openml__christine__168908 | 0.747 | 0.80579 | 0.747232 | 0.53844 | 7.745018 | 17.262028 | 2.645428 | 2.649614 | 0.718 | 0.803461 | 0.717712 | 0.543561 | 22.557071 | 2 | 1,636 | 5,418 | 0.029 | 331.16304 | 665.780806 | 0.754 | 0.776 | 0 | 0 | 0 | 0.819 | 0.764 | 0 | 0 | 0.795 | 0.65 | 0.761 | 0.719 | 0.803 | 0.766 | 0.65 | 0.646 | 0.735 | 0.788 | 0.747 | 0.821 | 0.791 | 0.751 | 0 | 0 | 0 | 0 | 0 | 0.827 |
11 | 0.710183 | 0.003037 | 0.001993 | openml__climate-model-simulation-crashes__146819 | 0.931 | 0.919959 | 0.930864 | 0.181723 | 0.715213 | 0.003153 | 0.962894 | 0.960936 | 0.963 | 0.995918 | 0.962963 | 0.095939 | 1.926983 | 2 | 18 | 540 | -0.032 | 24.901495 | 58.653851 | 0.923 | 0.82 | 0 | 0 | 0 | 0.942 | 0.863 | 0 | 0 | 0.86 | 0.908 | 0.908 | 0.908 | 0.908 | 0.908 | 0.908 | 0.908 | 0.908 | 0.908 | 0.908 | 0.908 | 0.908 | 0.908 | 0 | 0 | 0 | 0 | 0 | 0.912 |
12 | 1.767558 | 0.00417 | 0.003884 | openml__cmc__23 | 0.541 | 0.724065 | 0.539462 | 0.905065 | 1.775612 | 0.007683 | 1.481638 | 1.517026 | 0.612 | 0.801547 | 0.610603 | 0.8145 | 3.006348 | 3 | 9 | 1,473 | -0.071 | 78.094024 | 90.992666 | 0.721 | 0.714 | 0 | 0 | 0 | 0.704 | 0.726 | 0.474 | 0.468 | 0.715 | 0.725 | 0.725 | 0.725 | 0.725 | 0.725 | 0.725 | 0.725 | 0.725 | 0.725 | 0.725 | 0.725 | 0.725 | 0.725 | 0.722 | 0 | 0.722 | 0.709 | 0 | 0.731 |
13 | 3.11665 | 0.007943 | 0.008792 | openml__colic__27 | 0.88 | 0.913657 | 0.88003 | 0.327921 | 3.133385 | 0.006265 | 1.039177 | 0.295073 | 0.878 | 0.925725 | 0.878378 | 0.339482 | 1.340514 | 2 | 22 | 368 | 0.002 | 218.034728 | 39.318812 | 0.919 | 0.913 | 0 | 0 | 0 | 0.896 | 0.918 | 0 | 0 | 0.916 | 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.932 | 0.912 | 0 | 0 | 0 | 0 | 0.93 |
14 | 16.109806 | 0.166454 | 0.075367 | openml__connect-4__146195 | 0.821 | 0.871428 | 0.793513 | 0.473594 | 16.351627 | 0.078216 | 11.57487 | 11.56509 | 0.674 | 0.632796 | 0.561727 | 0.798451 | 23.218176 | 3 | 42 | 67,557 | 0.147 | 203.916567 | 696.121908 | 0.416 | 0.564 | 0 | 0 | 0 | 0.901 | 0.898 | 0 | 0 | 0.892 | 0.639 | 0.639 | 0.639 | 0.639 | 0.639 | 0.639 | 0.671 | 0.639 | 0.671 | 0.671 | 0.671 | 0.671 | 0.671 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 2.200719 | 0.00686 | 0.006669 | openml__cylinder-bands__14954 | 0.787 | 0.875877 | 0.787037 | 0.443283 | 2.214247 | 0.00864 | 1.239279 | 0.138438 | 0.796 | 0.87798 | 0.796296 | 0.426672 | 1.386357 | 2 | 37 | 540 | -0.009 | 93.963842 | 40.877432 | 0.933 | 0.923 | 0 | 0 | 0 | 0.864 | 0.929 | 0.911 | 0 | 0.888 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0.938 | 0 | 0 | 0 | 0 | 0 | 0.936 |
16 | 12.705649 | 0.025386 | 0.024051 | openml__dilbert__168909 | 0.962 | 0.998074 | 0.962014 | 0.189144 | 12.755086 | 20.246264 | 2.638321 | 2.643936 | 0.926 | 0.99487 | 0.926029 | 0.207929 | 25.52852 | 5 | 2,000 | 10,000 | 0.036 | 808.730207 | 761.177293 | 0.972 | 0.998 | 0.654 | 0.655 | 0.394 | 0.999 | 0.99 | 0 | 0 | 0.995 | 0.444 | 0.976 | 0.981 | 0.977 | 0.977 | 0.444 | 0.415 | 0.975 | 0.986 | 0.988 | 0.99 | 0.985 | 0.987 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 1.061346 | 0.002149 | 0.001866 | openml__dresses-sales__125920 | 0.54 | 0.533662 | 0.54 | 0.737212 | 1.065361 | 0.004738 | 0.677673 | 0.674113 | 0.6 | 0.518883 | 0.6 | 0.680896 | 1.356524 | 2 | 12 | 500 | -0.06 | 40.149266 | 40.880028 | 0.474 | 0.535 | 0 | 0 | 0 | 0.611 | 0.476 | 0 | 0 | 0.41 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0.575 | 0 | 0 | 0 | 0 | 0 | 0.571 |
18 | 1.213773 | 0.004095 | 0.001866 | openml__ecoli__145977 | 0.939 | 0.986417 | 0.940892 | 0.473745 | 1.219734 | 0.003157 | 0.520286 | 0.517488 | 0.727 | 0.933968 | 0.722274 | 0.808689 | 1.040931 | 8 | 7 | 336 | 0.212 | 73.058134 | 30.157485 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.934 |
19 | 0.785582 | 0.009653 | 0.009447 | openml__eeg-eye-state__14951 | 0.892 | 0.959227 | 0.891856 | 0.290974 | 0.804682 | 0.009589 | 2.881329 | 2.88532 | 0.937 | 0.985335 | 0.93725 | 0.163974 | 5.776238 | 2 | 14 | 14,980 | -0.045 | 27.734729 | 177.537891 | 0.606 | 0.653 | 0 | 0 | 0 | 0.673 | 0.743 | 0 | 0 | 0.704 | 0.974 | 0.974 | 0.974 | 0.974 | 0.974 | 0.974 | 0.985 | 0.974 | 0.985 | 0.985 | 0.985 | 0.985 | 0.985 | 0 | 0 | 0 | 0 | 0 | 0 |
20 | 2.590795 | 0.002214 | 0.003144 | openml__elevators__3711 | 0.892 | 0.942216 | 0.891566 | 0.267698 | 2.596153 | 0.011596 | 3.048264 | 3.024167 | 0.895 | 0.954868 | 0.895181 | 0.235062 | 6.084026 | 2 | 18 | 16,599 | -0.003 | 175.790243 | 186.239942 | 0.938 | 0.942 | 0 | 0 | 0 | 0.945 | 0.943 | 0 | 0 | 0.942 | 0.934 | 0.934 | 0.934 | 0.934 | 0.934 | 0.934 | 0.942 | 0.934 | 0.942 | 0.942 | 0.942 | 0.942 | 0.942 | 0 | 0 | 0 | 0 | 0 | 0.311 |
21 | 3.637687 | 0.010284 | 0.010785 | openml__har__14970 | 0.978 | 0.99967 | 0.97765 | 0.061473 | 3.658756 | 6.869467 | 2.669442 | 2.666021 | 0.962 | 0.998168 | 0.962104 | 0.103502 | 12.204929 | 6 | 561 | 10,299 | 0.016 | 302.201547 | 370.311629 | 0.996 | 0.998 | 0 | 0 | 0 | 0.999 | 0.999 | 0 | 0 | 0.999 | 0.693 | 0.997 | 0.993 | 0.995 | 0.996 | 0.693 | 0.668 | 0.996 | 0.998 | 0.994 | 0.996 | 0.997 | 0.998 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 0.506032 | 0.000921 | 0.000765 | openml__heart-c__48 | 0.839 | 0.901681 | 0.83871 | 0.384873 | 0.507718 | 0.007016 | 0.747218 | 0.573552 | 0.839 | 0.945378 | 0.83871 | 0.3051 | 1.327786 | 2 | 13 | 303 | 0 | 20.763378 | 39.833576 | 0.968 | 0.958 | 0 | 0 | 0 | 0.912 | 0.94 | 0.934 | 0.945 | 0.922 | 0.965 | 0.965 | 0.965 | 0.965 | 0.965 | 0.965 | 0.965 | 0.965 | 0.965 | 0.965 | 0.965 | 0.965 | 0.965 | 0.951 | 0 | 0 | 0 | 0 | 0.965 |
23 | 1.646659 | 0.008068 | 0.010839 | openml__higgs__146606 | 0.714 | 0.789788 | 0.714227 | 0.550703 | 1.665566 | 0.029006 | 15.545551 | 15.544792 | 0.665 | 0.718481 | 0.664559 | 0.616014 | 31.119349 | 2 | 28 | 98,050 | 0.049 | 80.328152 | 931.453608 | 0.683 | 0.751 | 0 | 0 | 0 | 0.781 | 0.774 | 0 | 0 | 0.771 | 0.679 | 0.679 | 0.679 | 0.679 | 0.679 | 0.679 | 0.716 | 0.679 | 0.716 | 0.716 | 0.716 | 0.716 | 0.716 | 0 | 0 | 0 | 0 | 0.745 | 0 |
24 | 1.4285 | 0.001914 | 0.001344 | openml__kc1__3917 | 0.848 | 0.782772 | 0.848341 | 0.370562 | 1.431757 | 0.003998 | 2.802546 | 2.804048 | 0.848 | 0.83345 | 0.848341 | 0.343852 | 5.610592 | 2 | 21 | 2,109 | 0 | 48.689536 | 168.44471 | 0.777 | 0.765 | 0 | 0 | 0 | 0.811 | 0.781 | 0 | 0 | 0.796 | 0.816 | 0.816 | 0.816 | 0.816 | 0.816 | 0.816 | 0.816 | 0.816 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.832 |
25 | 11.804756 | 0.565834 | 0.627261 | openml__poker-hand__9890 | 0.946 | 0.904151 | 0.940036 | 0.294164 | 12.99785 | 0.204482 | 99.702475 | 100.086905 | 0.538 | 0.526818 | 0.460421 | 0.978269 | 199.993863 | 10 | 10 | 1,025,009 | 0.408 | 5,331.215826 | 2,422.621082 | 0.398 | 0.621 | 0 | 0 | 0 | 0.658 | 0.662 | 0 | 0 | 0.665 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | 22.897829 | 0.044062 | 0.041597 | openml__riccardo__168338 | 0.995 | 0.999323 | 0.9945 | 0.067689 | 22.983487 | 41.653156 | 2.850444 | 2.859816 | 0.955 | 0.994027 | 0.9545 | 0.236308 | 47.363416 | 2 | 4,296 | 20,000 | 0.04 | 692.07756 | 1,395.120139 | 0.921 | 0.99 | 0 | 0 | 0 | 0.995 | 0.996 | 0 | 0 | 0.996 | 0.491 | 0.899 | 0.953 | 0.899 | 0.913 | 0.491 | 0.494 | 0.888 | 0.98 | 0.982 | 0.979 | 0.984 | 0.973 | 0 | 0 | 0 | 0 | 0 | 0 |
27 | 21.521006 | 0.064051 | 0.064182 | openml__robert__168332 | 0.455 | 0.863807 | 0.452383 | 1.550218 | 21.649238 | 82.247738 | 2.572722 | 2.570836 | 0.246 | 0.732318 | 0.21993 | 2.035677 | 87.391296 | 10 | 7,200 | 10,000 | 0.209 | 598.664213 | 963.968666 | 0.78 | 0.803 | 0 | 0 | 0 | 0.825 | 0.806 | 0 | 0 | 0.806 | 0.562 | 0.79 | 0.726 | 0.705 | 0.79 | 0.562 | 0.562 | 0.759 | 0.816 | 0.744 | 0.712 | 0.815 | 0.782 | 0 | 0 | 0 | 0 | 0 | 0 |
28 | 34.986799 | 0.100713 | 0.091736 | openml__volkert__168331 | 0.67 | 0.923648 | 0.659887 | 0.956851 | 35.179248 | 3.614879 | 5.871648 | 5.867252 | 0.569 | 0.861787 | 0.511192 | 1.237312 | 15.353779 | 10 | 180 | 58,310 | 0.101 | 229.927867 | 458.743352 | 0.531 | 0.904 | 0 | 0 | 0 | 0.927 | 0.921 | 0 | 0 | 0.919 | 0.46 | 0.835 | 0 | 0.849 | 0.838 | 0.46 | 0.447 | 0.852 | 0.864 | 0 | 0.87 | 0.866 | 0.879 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5.470622 | 0.308169 | 0.269775 | openml__Agrawal1__146093 | 0.95 | 0.992252 | 0.95028 | 0.101591 | 6.048565 | 0.025716 | 216.104408 | 216.100852 | 0.946 | 0.991382 | 0.94613 | 0.118413 | 432.230976 | 2 | 9 | 1,000,000 | 0.004 | 142.218803 | 5,158.457872 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
1 | 6.712468 | 0.333047 | 0.279522 | openml__BNG(labor)__2137 | 0.971 | 0.995435 | 0.9709 | 0.078912 | 7.325036 | 0.040458 | 229.750833 | 230.023553 | 0.938 | 0.982161 | 0.93836 | 0.15832 | 459.814844 | 2 | 16 | 1,000,000 | 0.033 | 226.240902 | 5,517.778131 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
2 | 1.588888 | 0.0934 | 0.089485 | openml__BNG(vote)__212 | 0.975 | 0.996548 | 0.975359 | 0.069077 | 1.771773 | 0.01816 | 32.898037 | 32.942842 | 0.968 | 0.994736 | 0.967958 | 0.08944 | 65.859038 | 2 | 16 | 131,072 | 0.007 | 42.335094 | 1,975.77114 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
3 | 7.746181 | 0.024661 | 0.039858 | openml__Bioresponse__9910 | 0.803 | 0.878566 | 0.802667 | 0.441356 | 7.8107 | 15.971731 | 2.510121 | 2.535231 | 0.819 | 0.885325 | 0.818667 | 0.426595 | 21.017083 | 2 | 1,776 | 3,751 | -0.016 | 112.880729 | 637.68252 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
4 | 3.756384 | 0.20875 | 0.17901 | openml__Click_prediction_small__7294 | 0.842 | 0.74119 | 0.842075 | 0.393111 | 4.144144 | 0.004192 | 205.156692 | 205.236468 | 0.834 | 0.660425 | 0.83419 | 0.438609 | 410.397352 | 2 | 11 | 1,997,410 | 0.008 | 84.526018 | 10,420.932465 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
5 | 7.002172 | 0.165818 | 0.166777 | openml__airlines__189354 | 0.664 | 0.715663 | 0.663842 | 0.610232 | 7.334767 | 0.107882 | 46.354915 | 46.322323 | 0.602 | 0.627777 | 0.601505 | 0.662777 | 92.785119 | 2 | 7 | 539,383 | 0.062 | 154.948461 | 2,601.905863 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
6 | 32.919919 | 1.06518 | 1.028028 | openml__albert__189356 | 0.702 | 0.772683 | 0.701651 | 0.570534 | 35.013126 | 0.290836 | 61.830542 | 61.859957 | 0.637 | 0.686705 | 0.637146 | 0.642012 | 123.981335 | 2 | 78 | 425,240 | 0.065 | 1,077.832536 | 2,363.267322 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
7 | 2.096973 | 0.004232 | 0.003759 | openml__balance-scale__11 | 0.871 | 0.92697 | 0.876643 | 0.315156 | 2.104964 | 0.003427 | 0.483712 | 0.480451 | 0.984 | 0.998659 | 0.984106 | 0.037652 | 0.967589 | 3 | 4 | 625 | -0.113 | 52.771632 | 28.858381 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
8 | 0.524348 | 0.002498 | 0.001858 | openml__blood-transfusion-service-center__10101 | 0.76 | 0.683723 | 0.76 | 0.529754 | 0.528704 | 0.0027 | 0.411178 | 0.408556 | 0.8 | 0.742203 | 0.8 | 0.48331 | 0.822434 | 2 | 4 | 748 | -0.04 | 24.005331 | 24.855342 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
9 | 0.683357 | 0.002084 | 0.003628 | openml__breast-cancer__145799 | 0.724 | 0.572222 | 0.724138 | 0.623272 | 0.689069 | 0.003648 | 0.491073 | 0.489 | 0.724 | 0.683333 | 0.724138 | 0.607276 | 0.983721 | 2 | 9 | 286 | 0 | 36.982686 | 28.809068 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
10 | 7.534318 | 0.122489 | 0.088212 | openml__christine__168908 | 0.747 | 0.80579 | 0.747232 | 0.53844 | 7.745018 | 17.262028 | 2.645428 | 2.649614 | 0.718 | 0.803461 | 0.717712 | 0.543561 | 22.557071 | 2 | 1,636 | 5,418 | 0.029 | 331.16304 | 665.780806 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
11 | 0.710183 | 0.003037 | 0.001993 | openml__climate-model-simulation-crashes__146819 | 0.931 | 0.919959 | 0.930864 | 0.181723 | 0.715213 | 0.003153 | 0.962894 | 0.960936 | 0.963 | 0.995918 | 0.962963 | 0.095939 | 1.926983 | 2 | 18 | 540 | -0.032 | 24.901495 | 58.653851 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
12 | 1.767558 | 0.00417 | 0.003884 | openml__cmc__23 | 0.541 | 0.724065 | 0.539462 | 0.905065 | 1.775612 | 0.007683 | 1.481638 | 1.517026 | 0.612 | 0.801547 | 0.610603 | 0.8145 | 3.006348 | 3 | 9 | 1,473 | -0.071 | 78.094024 | 90.992666 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
13 | 3.11665 | 0.007943 | 0.008792 | openml__colic__27 | 0.88 | 0.913657 | 0.88003 | 0.327921 | 3.133385 | 0.006265 | 1.039177 | 0.295073 | 0.878 | 0.925725 | 0.878378 | 0.339482 | 1.340514 | 2 | 22 | 368 | 0.002 | 218.034728 | 39.318812 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
14 | 16.109806 | 0.166454 | 0.075367 | openml__connect-4__146195 | 0.821 | 0.871428 | 0.793513 | 0.473594 | 16.351627 | 0.078216 | 11.57487 | 11.56509 | 0.674 | 0.632796 | 0.561727 | 0.798451 | 23.218176 | 3 | 42 | 67,557 | 0.147 | 203.916567 | 696.121908 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
15 | 2.200719 | 0.00686 | 0.006669 | openml__cylinder-bands__14954 | 0.787 | 0.875877 | 0.787037 | 0.443283 | 2.214247 | 0.00864 | 1.239279 | 0.138438 | 0.796 | 0.87798 | 0.796296 | 0.426672 | 1.386357 | 2 | 37 | 540 | -0.009 | 93.963842 | 40.877432 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
16 | 12.705649 | 0.025386 | 0.024051 | openml__dilbert__168909 | 0.962 | 0.998074 | 0.962014 | 0.189144 | 12.755086 | 20.246264 | 2.638321 | 2.643936 | 0.926 | 0.99487 | 0.926029 | 0.207929 | 25.52852 | 5 | 2,000 | 10,000 | 0.036 | 808.730207 | 761.177293 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
17 | 1.061346 | 0.002149 | 0.001866 | openml__dresses-sales__125920 | 0.54 | 0.533662 | 0.54 | 0.737212 | 1.065361 | 0.004738 | 0.677673 | 0.674113 | 0.6 | 0.518883 | 0.6 | 0.680896 | 1.356524 | 2 | 12 | 500 | -0.06 | 40.149266 | 40.880028 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
18 | 1.213773 | 0.004095 | 0.001866 | openml__ecoli__145977 | 0.939 | 0.986417 | 0.940892 | 0.473745 | 1.219734 | 0.003157 | 0.520286 | 0.517488 | 0.727 | 0.933968 | 0.722274 | 0.808689 | 1.040931 | 8 | 7 | 336 | 0.212 | 73.058134 | 30.157485 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
19 | 0.785582 | 0.009653 | 0.009447 | openml__eeg-eye-state__14951 | 0.892 | 0.959227 | 0.891856 | 0.290974 | 0.804682 | 0.009589 | 2.881329 | 2.88532 | 0.937 | 0.985335 | 0.93725 | 0.163974 | 5.776238 | 2 | 14 | 14,980 | -0.045 | 27.734729 | 177.537891 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
20 | 2.590795 | 0.002214 | 0.003144 | openml__elevators__3711 | 0.892 | 0.942216 | 0.891566 | 0.267698 | 2.596153 | 0.011596 | 3.048264 | 3.024167 | 0.895 | 0.954868 | 0.895181 | 0.235062 | 6.084026 | 2 | 18 | 16,599 | -0.003 | 175.790243 | 186.239942 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
21 | 3.637687 | 0.010284 | 0.010785 | openml__har__14970 | 0.978 | 0.99967 | 0.97765 | 0.061473 | 3.658756 | 6.869467 | 2.669442 | 2.666021 | 0.962 | 0.998168 | 0.962104 | 0.103502 | 12.204929 | 6 | 561 | 10,299 | 0.016 | 302.201547 | 370.311629 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
22 | 0.506032 | 0.000921 | 0.000765 | openml__heart-c__48 | 0.839 | 0.901681 | 0.83871 | 0.384873 | 0.507718 | 0.007016 | 0.747218 | 0.573552 | 0.839 | 0.945378 | 0.83871 | 0.3051 | 1.327786 | 2 | 13 | 303 | 0 | 20.763378 | 39.833576 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
23 | 1.646659 | 0.008068 | 0.010839 | openml__higgs__146606 | 0.714 | 0.789788 | 0.714227 | 0.550703 | 1.665566 | 0.029006 | 15.545551 | 15.544792 | 0.665 | 0.718481 | 0.664559 | 0.616014 | 31.119349 | 2 | 28 | 98,050 | 0.049 | 80.328152 | 931.453608 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
24 | 1.4285 | 0.001914 | 0.001344 | openml__kc1__3917 | 0.848 | 0.782772 | 0.848341 | 0.370562 | 1.431757 | 0.003998 | 2.802546 | 2.804048 | 0.848 | 0.83345 | 0.848341 | 0.343852 | 5.610592 | 2 | 21 | 2,109 | 0 | 48.689536 | 168.44471 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
25 | 11.804756 | 0.565834 | 0.627261 | openml__poker-hand__9890 | 0.946 | 0.904151 | 0.940036 | 0.294164 | 12.99785 | 0.204482 | 99.702475 | 100.086905 | 0.538 | 0.526818 | 0.460421 | 0.978269 | 199.993863 | 10 | 10 | 1,025,009 | 0.408 | 5,331.215826 | 2,422.621082 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
26 | 22.897829 | 0.044062 | 0.041597 | openml__riccardo__168338 | 0.995 | 0.999323 | 0.9945 | 0.067689 | 22.983487 | 41.653156 | 2.850444 | 2.859816 | 0.955 | 0.994027 | 0.9545 | 0.236308 | 47.363416 | 2 | 4,296 | 20,000 | 0.04 | 692.07756 | 1,395.120139 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
27 | 21.521006 | 0.064051 | 0.064182 | openml__robert__168332 | 0.455 | 0.863807 | 0.452383 | 1.550218 | 21.649238 | 82.247738 | 2.572722 | 2.570836 | 0.246 | 0.732318 | 0.21993 | 2.035677 | 87.391296 | 10 | 7,200 | 10,000 | 0.209 | 598.664213 | 963.968666 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
28 | 34.986799 | 0.100713 | 0.091736 | openml__volkert__168331 | 0.67 | 0.923648 | 0.659887 | 0.956851 | 35.179248 | 3.614879 | 5.871648 | 5.867252 | 0.569 | 0.861787 | 0.511192 | 1.237312 | 15.353779 | 10 | 180 | 58,310 | 0.101 | 229.927867 | 458.743352 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
0 | 5.470622 | 0.308169 | 0.269775 | openml__Agrawal1__146093 | 0.95 | 0.992252 | 0.95028 | 0.101591 | 6.048565 | 0.025716 | 216.104408 | 216.100852 | 0.946 | 0.991382 | 0.94613 | 0.118413 | 432.230976 | 2 | 9 | 1,000,000 | 0.004 | 142.218803 | 5,158.457872 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
1 | 6.712468 | 0.333047 | 0.279522 | openml__BNG(labor)__2137 | 0.971 | 0.995435 | 0.9709 | 0.078912 | 7.325036 | 0.040458 | 229.750833 | 230.023553 | 0.938 | 0.982161 | 0.93836 | 0.15832 | 459.814844 | 2 | 16 | 1,000,000 | 0.033 | 226.240902 | 5,517.778131 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
2 | 1.588888 | 0.0934 | 0.089485 | openml__BNG(vote)__212 | 0.975 | 0.996548 | 0.975359 | 0.069077 | 1.771773 | 0.01816 | 32.898037 | 32.942842 | 0.968 | 0.994736 | 0.967958 | 0.08944 | 65.859038 | 2 | 16 | 131,072 | 0.007 | 42.335094 | 1,975.77114 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
3 | 7.746181 | 0.024661 | 0.039858 | openml__Bioresponse__9910 | 0.803 | 0.878566 | 0.802667 | 0.441356 | 7.8107 | 15.971731 | 2.510121 | 2.535231 | 0.819 | 0.885325 | 0.818667 | 0.426595 | 21.017083 | 2 | 1,776 | 3,751 | -0.016 | 112.880729 | 637.68252 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
4 | 3.756384 | 0.20875 | 0.17901 | openml__Click_prediction_small__7294 | 0.842 | 0.74119 | 0.842075 | 0.393111 | 4.144144 | 0.004192 | 205.156692 | 205.236468 | 0.834 | 0.660425 | 0.83419 | 0.438609 | 410.397352 | 2 | 11 | 1,997,410 | 0.008 | 84.526018 | 10,420.932465 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
5 | 7.002172 | 0.165818 | 0.166777 | openml__airlines__189354 | 0.664 | 0.715663 | 0.663842 | 0.610232 | 7.334767 | 0.107882 | 46.354915 | 46.322323 | 0.602 | 0.627777 | 0.601505 | 0.662777 | 92.785119 | 2 | 7 | 539,383 | 0.062 | 154.948461 | 2,601.905863 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
6 | 32.919919 | 1.06518 | 1.028028 | openml__albert__189356 | 0.702 | 0.772683 | 0.701651 | 0.570534 | 35.013126 | 0.290836 | 61.830542 | 61.859957 | 0.637 | 0.686705 | 0.637146 | 0.642012 | 123.981335 | 2 | 78 | 425,240 | 0.065 | 1,077.832536 | 2,363.267322 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
7 | 2.096973 | 0.004232 | 0.003759 | openml__balance-scale__11 | 0.871 | 0.92697 | 0.876643 | 0.315156 | 2.104964 | 0.003427 | 0.483712 | 0.480451 | 0.984 | 0.998659 | 0.984106 | 0.037652 | 0.967589 | 3 | 4 | 625 | -0.113 | 52.771632 | 28.858381 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
8 | 0.524348 | 0.002498 | 0.001858 | openml__blood-transfusion-service-center__10101 | 0.76 | 0.683723 | 0.76 | 0.529754 | 0.528704 | 0.0027 | 0.411178 | 0.408556 | 0.8 | 0.742203 | 0.8 | 0.48331 | 0.822434 | 2 | 4 | 748 | -0.04 | 24.005331 | 24.855342 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
9 | 0.683357 | 0.002084 | 0.003628 | openml__breast-cancer__145799 | 0.724 | 0.572222 | 0.724138 | 0.623272 | 0.689069 | 0.003648 | 0.491073 | 0.489 | 0.724 | 0.683333 | 0.724138 | 0.607276 | 0.983721 | 2 | 9 | 286 | 0 | 36.982686 | 28.809068 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
10 | 7.534318 | 0.122489 | 0.088212 | openml__christine__168908 | 0.747 | 0.80579 | 0.747232 | 0.53844 | 7.745018 | 17.262028 | 2.645428 | 2.649614 | 0.718 | 0.803461 | 0.717712 | 0.543561 | 22.557071 | 2 | 1,636 | 5,418 | 0.029 | 331.16304 | 665.780806 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
11 | 0.710183 | 0.003037 | 0.001993 | openml__climate-model-simulation-crashes__146819 | 0.931 | 0.919959 | 0.930864 | 0.181723 | 0.715213 | 0.003153 | 0.962894 | 0.960936 | 0.963 | 0.995918 | 0.962963 | 0.095939 | 1.926983 | 2 | 18 | 540 | -0.032 | 24.901495 | 58.653851 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
12 | 1.767558 | 0.00417 | 0.003884 | openml__cmc__23 | 0.541 | 0.724065 | 0.539462 | 0.905065 | 1.775612 | 0.007683 | 1.481638 | 1.517026 | 0.612 | 0.801547 | 0.610603 | 0.8145 | 3.006348 | 3 | 9 | 1,473 | -0.071 | 78.094024 | 90.992666 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
13 | 3.11665 | 0.007943 | 0.008792 | openml__colic__27 | 0.88 | 0.913657 | 0.88003 | 0.327921 | 3.133385 | 0.006265 | 1.039177 | 0.295073 | 0.878 | 0.925725 | 0.878378 | 0.339482 | 1.340514 | 2 | 22 | 368 | 0.002 | 218.034728 | 39.318812 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
14 | 16.109806 | 0.166454 | 0.075367 | openml__connect-4__146195 | 0.821 | 0.871428 | 0.793513 | 0.473594 | 16.351627 | 0.078216 | 11.57487 | 11.56509 | 0.674 | 0.632796 | 0.561727 | 0.798451 | 23.218176 | 3 | 42 | 67,557 | 0.147 | 203.916567 | 696.121908 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
15 | 2.200719 | 0.00686 | 0.006669 | openml__cylinder-bands__14954 | 0.787 | 0.875877 | 0.787037 | 0.443283 | 2.214247 | 0.00864 | 1.239279 | 0.138438 | 0.796 | 0.87798 | 0.796296 | 0.426672 | 1.386357 | 2 | 37 | 540 | -0.009 | 93.963842 | 40.877432 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
16 | 12.705649 | 0.025386 | 0.024051 | openml__dilbert__168909 | 0.962 | 0.998074 | 0.962014 | 0.189144 | 12.755086 | 20.246264 | 2.638321 | 2.643936 | 0.926 | 0.99487 | 0.926029 | 0.207929 | 25.52852 | 5 | 2,000 | 10,000 | 0.036 | 808.730207 | 761.177293 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
17 | 1.061346 | 0.002149 | 0.001866 | openml__dresses-sales__125920 | 0.54 | 0.533662 | 0.54 | 0.737212 | 1.065361 | 0.004738 | 0.677673 | 0.674113 | 0.6 | 0.518883 | 0.6 | 0.680896 | 1.356524 | 2 | 12 | 500 | -0.06 | 40.149266 | 40.880028 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
18 | 1.213773 | 0.004095 | 0.001866 | openml__ecoli__145977 | 0.939 | 0.986417 | 0.940892 | 0.473745 | 1.219734 | 0.003157 | 0.520286 | 0.517488 | 0.727 | 0.933968 | 0.722274 | 0.808689 | 1.040931 | 8 | 7 | 336 | 0.212 | 73.058134 | 30.157485 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
19 | 0.785582 | 0.009653 | 0.009447 | openml__eeg-eye-state__14951 | 0.892 | 0.959227 | 0.891856 | 0.290974 | 0.804682 | 0.009589 | 2.881329 | 2.88532 | 0.937 | 0.985335 | 0.93725 | 0.163974 | 5.776238 | 2 | 14 | 14,980 | -0.045 | 27.734729 | 177.537891 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
20 | 2.590795 | 0.002214 | 0.003144 | openml__elevators__3711 | 0.892 | 0.942216 | 0.891566 | 0.267698 | 2.596153 | 0.011596 | 3.048264 | 3.024167 | 0.895 | 0.954868 | 0.895181 | 0.235062 | 6.084026 | 2 | 18 | 16,599 | -0.003 | 175.790243 | 186.239942 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
21 | 3.637687 | 0.010284 | 0.010785 | openml__har__14970 | 0.978 | 0.99967 | 0.97765 | 0.061473 | 3.658756 | 6.869467 | 2.669442 | 2.666021 | 0.962 | 0.998168 | 0.962104 | 0.103502 | 12.204929 | 6 | 561 | 10,299 | 0.016 | 302.201547 | 370.311629 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
22 | 0.506032 | 0.000921 | 0.000765 | openml__heart-c__48 | 0.839 | 0.901681 | 0.83871 | 0.384873 | 0.507718 | 0.007016 | 0.747218 | 0.573552 | 0.839 | 0.945378 | 0.83871 | 0.3051 | 1.327786 | 2 | 13 | 303 | 0 | 20.763378 | 39.833576 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
23 | 1.646659 | 0.008068 | 0.010839 | openml__higgs__146606 | 0.714 | 0.789788 | 0.714227 | 0.550703 | 1.665566 | 0.029006 | 15.545551 | 15.544792 | 0.665 | 0.718481 | 0.664559 | 0.616014 | 31.119349 | 2 | 28 | 98,050 | 0.049 | 80.328152 | 931.453608 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
24 | 1.4285 | 0.001914 | 0.001344 | openml__kc1__3917 | 0.848 | 0.782772 | 0.848341 | 0.370562 | 1.431757 | 0.003998 | 2.802546 | 2.804048 | 0.848 | 0.83345 | 0.848341 | 0.343852 | 5.610592 | 2 | 21 | 2,109 | 0 | 48.689536 | 168.44471 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
25 | 11.804756 | 0.565834 | 0.627261 | openml__poker-hand__9890 | 0.946 | 0.904151 | 0.940036 | 0.294164 | 12.99785 | 0.204482 | 99.702475 | 100.086905 | 0.538 | 0.526818 | 0.460421 | 0.978269 | 199.993863 | 10 | 10 | 1,025,009 | 0.408 | 5,331.215826 | 2,422.621082 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
26 | 22.897829 | 0.044062 | 0.041597 | openml__riccardo__168338 | 0.995 | 0.999323 | 0.9945 | 0.067689 | 22.983487 | 41.653156 | 2.850444 | 2.859816 | 0.955 | 0.994027 | 0.9545 | 0.236308 | 47.363416 | 2 | 4,296 | 20,000 | 0.04 | 692.07756 | 1,395.120139 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
27 | 21.521006 | 0.064051 | 0.064182 | openml__robert__168332 | 0.455 | 0.863807 | 0.452383 | 1.550218 | 21.649238 | 82.247738 | 2.572722 | 2.570836 | 0.246 | 0.732318 | 0.21993 | 2.035677 | 87.391296 | 10 | 7,200 | 10,000 | 0.209 | 598.664213 | 963.968666 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
28 | 34.986799 | 0.100713 | 0.091736 | openml__volkert__168331 | 0.67 | 0.923648 | 0.659887 | 0.956851 | 35.179248 | 3.614879 | 5.871648 | 5.867252 | 0.569 | 0.861787 | 0.511192 | 1.237312 | 15.353779 | 10 | 180 | 58,310 | 0.101 | 229.927867 | 458.743352 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
0 | 5.470622 | 0.308169 | 0.269775 | openml__Agrawal1__146093 | 0.95 | 0.992252 | 0.95028 | 0.101591 | 6.048565 | 0.025716 | 216.104408 | 216.100852 | 0.946 | 0.991382 | 0.94613 | 0.118413 | 432.230976 | 2 | 9 | 1,000,000 | 0.004 | 142.218803 | 5,158.457872 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
1 | 6.712468 | 0.333047 | 0.279522 | openml__BNG(labor)__2137 | 0.971 | 0.995435 | 0.9709 | 0.078912 | 7.325036 | 0.040458 | 229.750833 | 230.023553 | 0.938 | 0.982161 | 0.93836 | 0.15832 | 459.814844 | 2 | 16 | 1,000,000 | 0.033 | 226.240902 | 5,517.778131 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
2 | 1.588888 | 0.0934 | 0.089485 | openml__BNG(vote)__212 | 0.975 | 0.996548 | 0.975359 | 0.069077 | 1.771773 | 0.01816 | 32.898037 | 32.942842 | 0.968 | 0.994736 | 0.967958 | 0.08944 | 65.859038 | 2 | 16 | 131,072 | 0.007 | 42.335094 | 1,975.77114 | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null | null |
End of preview.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
This repository contains the extended raw results for the TuneTables paper.
These results, and the associated metadata, are in TabZilla format; see https://github.com/naszilla/tabzilla for more explanation.
Directory Structure
tabzilla_metadata: contains the performance results for most baseline methods reported in our paper (classification only)
excelformer: contains the performance results for the excelformer baseline method
regression: contains the baseline results for regression
datasets_used: descriptions of the datasets used in the paper, including OpenML IDs
TuneTables-Hard Results: 03-2024-tt-hard-main-plotting-data
TabZilla Results: 05-2024-tabzilla-main-plotting-data
If you find this repository useful, please consider citing our paper.
@misc{feuer2024tunetablescontextoptimizationscalable,
title={TuneTables: Context Optimization for Scalable Prior-Data Fitted Networks},
author={Benjamin Feuer and Robin Tibor Schirrmeister and Valeriia Cherepanova and Chinmay Hegde and Frank Hutter and Micah Goldblum and Niv Cohen and Colin White},
year={2024},
eprint={2402.11137},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2402.11137},
}
- Downloads last month
- 208