|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
Utility functions for visualization using meshcat. |
|
|
|
Installation: |
|
pip install trimesh==4.5.3 objaverse==0.1.7 meshcat==0.0.12 webdataset==0.2.111 |
|
|
|
NOTE: Start meshcat server (in a different terminal) before running this script: |
|
meshcat-server |
|
''' |
|
|
|
import numpy as np |
|
import meshcat |
|
import meshcat.geometry as g |
|
import meshcat.transformations as mtf |
|
import trimesh |
|
import trimesh.transformations as tra |
|
from typing import List, Optional, Tuple, Union, Any |
|
|
|
control_points_franka = np.array([ |
|
[ 0.05268743, -0.00005996, 0.05900000], |
|
[-0.05268743, 0.00005996, 0.05900000], |
|
[ 0.05268743, -0.00005996, 0.10527314], |
|
[-0.05268743, 0.00005996, 0.10527314] |
|
]) |
|
|
|
control_points_robotiq2f140 = np.array([ |
|
[ 0.06801729, -0, 0.0975], |
|
[-0.06801729, 0, 0.0975], |
|
[ 0.06801729, -0, 0.1950], |
|
[-0.06801729, 0, 0.1950] |
|
]) |
|
|
|
control_points_suction = np.array([ |
|
[ 0, 0, -0.10], |
|
[ 0, 0, -0.05], |
|
[ 0, 0, 0], |
|
]) |
|
|
|
control_points_data = { |
|
"franka": control_points_franka, |
|
"robotiq2f140": control_points_robotiq2f140, |
|
"suction": control_points_suction, |
|
} |
|
|
|
def get_gripper_control_points(gripper_name: str = 'franka') -> np.ndarray: |
|
""" |
|
Get the control points for a specific gripper. |
|
|
|
Args: |
|
gripper_name (str): Name of the gripper ("franka", "robotiq2f140", "suction") |
|
|
|
Returns: |
|
np.ndarray: Array of control points for the specified gripper |
|
|
|
Raises: |
|
NotImplementedError: If the specified gripper is not implemented |
|
""" |
|
if gripper_name in control_points_data: |
|
return control_points_data[gripper_name] |
|
else: |
|
raise NotImplementedError(f"Gripper {gripper_name} is not implemented.") |
|
return control_points |
|
|
|
def get_gripper_depth(gripper_name: str) -> float: |
|
""" |
|
Get the depth parameter for a specific gripper type. |
|
|
|
Args: |
|
gripper_name (str): Name of the gripper ("franka", "robotiq2f140", "suction") |
|
|
|
Returns: |
|
float: Depth parameter for the specified gripper |
|
|
|
Raises: |
|
NotImplementedError: If the specified gripper is not implemented |
|
""" |
|
|
|
pts, d = None, None |
|
if gripper_name in ["franka", "robotiq2f140"]: |
|
pts = get_gripper_control_points(gripper_name) |
|
elif gripper_name == "suction": |
|
return 0.069 |
|
else: |
|
raise NotImplementedError(f"Control points for gripper {gripper_name} not implemented!") |
|
d = pts[-1][-1] if pts is not None else d |
|
return d |
|
|
|
def get_gripper_offset(gripper_name: str) -> np.ndarray: |
|
""" |
|
Get the offset transform for a specific gripper type. |
|
|
|
Args: |
|
gripper_name (str): Name of the gripper |
|
|
|
Returns: |
|
np.ndarray: 4x4 homogeneous transformation matrix representing the gripper offset |
|
""" |
|
return np.eye(4) |
|
|
|
def load_visualize_control_points_suction() -> np.ndarray: |
|
""" |
|
Load visualization control points specific to the suction gripper. |
|
|
|
Returns: |
|
np.ndarray: Array of control points for suction gripper visualization |
|
""" |
|
h = 0 |
|
pts = [ |
|
[0.0, 0], |
|
] |
|
pts = [generate_circle_points(c, radius=0.005) for c in pts] |
|
pts = np.stack(pts) |
|
ptsz = h * np.ones([pts.shape[0], pts.shape[1], 1]) |
|
pts = np.concatenate([pts, ptsz], axis=2) |
|
return pts |
|
|
|
def generate_circle_points(center: List[float], radius: float = 0.007, N: int = 30) -> np.ndarray: |
|
""" |
|
Generate points forming a circle in 2D space. |
|
|
|
Args: |
|
center (List[float]): Center coordinates [x, y] of the circle |
|
radius (float): Radius of the circle |
|
N (int): Number of points to generate around the circle |
|
|
|
Returns: |
|
np.ndarray: Array of shape (N, 2) containing the circle points |
|
""" |
|
angles = np.linspace(0, 2 * np.pi, N, endpoint=False) |
|
x_points = center[0] + radius * np.cos(angles) |
|
y_points = center[1] + radius * np.sin(angles) |
|
points = np.stack((x_points, y_points), axis=1) |
|
return points |
|
|
|
|
|
def get_gripper_visualization_control_points(gripper_name: str = 'franka') -> List[np.ndarray]: |
|
""" |
|
Get control points for visualizing a specific gripper type. |
|
|
|
Args: |
|
gripper_name (str): Name of the gripper ("franka", "robotiq2f140", "suction") |
|
|
|
Returns: |
|
List[np.ndarray]: List of control point arrays for gripper visualization |
|
""" |
|
if gripper_name == "suction": |
|
control_points = load_visualize_control_points_suction() |
|
offset = get_gripper_offset('suction') |
|
ctrl_pts = [tra.transform_points(cpt, offset) for cpt in control_points] |
|
d = get_gripper_depth(gripper_name) |
|
line_pts = np.array([[0,0,0], [0,0,d]]) |
|
line_pts = np.expand_dims(line_pts, 0) |
|
line_pts = [tra.transform_points(cpt, offset) for cpt in line_pts] |
|
line_pts = line_pts[0] |
|
ctrl_pts.append(line_pts) |
|
return ctrl_pts |
|
else: |
|
control_points = get_gripper_control_points(gripper_name) |
|
mid_point = (control_points[0] + control_points[1]) / 2 |
|
control_points = [ |
|
control_points[-2], control_points[0], mid_point, |
|
[0, 0, 0], mid_point, control_points[1], control_points[-1] |
|
] |
|
return [control_points, ] |
|
|
|
def get_color_from_score(labels: Union[float, np.ndarray], use_255_scale: bool = False) -> np.ndarray: |
|
""" |
|
Convert score labels to RGB colors for visualization. |
|
|
|
Args: |
|
labels (Union[float, np.ndarray]): Score values between 0 and 1 |
|
use_255_scale (bool): If True, output colors in [0-255] range, else [0-1] |
|
|
|
Returns: |
|
np.ndarray: RGB colors corresponding to the input scores |
|
""" |
|
scale = 255.0 if use_255_scale else 1.0 |
|
if type(labels) in [np.float32, float]: |
|
return scale * np.array([1 - labels, labels, 0]) |
|
else: |
|
scale = 255.0 if use_255_scale else 1.0 |
|
score = scale * np.stack( |
|
[np.ones(labels.shape[0]) - labels, labels, np.zeros(labels.shape[0])], |
|
axis=1, |
|
) |
|
return score.astype(np.int) |
|
|
|
def trimesh_to_meshcat_geometry(mesh: trimesh.Trimesh) -> g.TriangularMeshGeometry: |
|
""" |
|
Convert a trimesh mesh to meshcat geometry format. |
|
|
|
Args: |
|
mesh (trimesh.Trimesh): Input mesh in trimesh format |
|
|
|
Returns: |
|
g.TriangularMeshGeometry: Mesh in meshcat geometry format |
|
""" |
|
return meshcat.geometry.TriangularMeshGeometry(mesh.vertices, mesh.faces) |
|
|
|
|
|
def visualize_mesh( |
|
vis: meshcat.Visualizer, |
|
name: str, |
|
mesh: trimesh.Trimesh, |
|
color: Optional[List[int]] = None, |
|
transform: Optional[np.ndarray] = None |
|
) -> None: |
|
""" |
|
Visualize a mesh in meshcat with optional color and transform. |
|
|
|
Args: |
|
vis (meshcat.Visualizer): Meshcat visualizer instance |
|
name (str): Name/path for the mesh in the visualizer scene |
|
mesh (trimesh.Trimesh): Mesh to visualize |
|
color (Optional[List[int]]): RGB color values [0-255]. Random if None |
|
transform (Optional[np.ndarray]): 4x4 homogeneous transform matrix |
|
""" |
|
if vis is None: |
|
return |
|
|
|
if color is None: |
|
color = np.random.randint(low=0, high=256, size=3) |
|
|
|
mesh_vis = trimesh_to_meshcat_geometry(mesh) |
|
color_hex = rgb2hex(tuple(color)) |
|
material = meshcat.geometry.MeshPhongMaterial(color=color_hex) |
|
vis[name].set_object(mesh_vis, material) |
|
|
|
if transform is not None: |
|
vis[name].set_transform(transform) |
|
|
|
|
|
def rgb2hex(rgb: Tuple[int, int, int]) -> str: |
|
""" |
|
Convert RGB color values to hexadecimal string. |
|
|
|
Args: |
|
rgb (Tuple[int, int, int]): RGB color values (0-255) |
|
|
|
Returns: |
|
str: Hexadecimal color string (format: "0xRRGGBB") |
|
""" |
|
return "0x%02x%02x%02x" % (rgb) |
|
|
|
|
|
def create_visualizer(clear: bool = True) -> meshcat.Visualizer: |
|
""" |
|
Create a meshcat visualizer instance. |
|
|
|
Args: |
|
clear (bool): If True, clear the visualizer scene upon creation first |
|
|
|
Returns: |
|
meshcat.Visualizer: Initialized meshcat visualizer |
|
""" |
|
print( |
|
"Waiting for meshcat server... have you started a server? Run `meshcat-server` to start a server" |
|
) |
|
vis = meshcat.Visualizer(zmq_url="tcp://127.0.0.1:6000") |
|
if clear: |
|
vis.delete() |
|
return vis |
|
|
|
|
|
def visualize_pointcloud( |
|
vis: meshcat.Visualizer, |
|
name: str, |
|
pc: np.ndarray, |
|
color: Optional[Union[List[int], np.ndarray]] = None, |
|
transform: Optional[np.ndarray] = None, |
|
**kwargs: Any |
|
) -> None: |
|
""" |
|
Args: |
|
vis: meshcat visualizer object |
|
name: str |
|
pc: Nx3 or HxWx3 |
|
color: (optional) same shape as pc[0 - 255] scale or just rgb tuple |
|
transform: (optional) 4x4 homogeneous transform |
|
""" |
|
if vis is None: |
|
return |
|
if pc.ndim == 3: |
|
pc = pc.reshape(-1, pc.shape[-1]) |
|
|
|
if color is not None: |
|
if isinstance(color, list): |
|
color = np.array(color) |
|
color = np.array(color) |
|
|
|
if color.ndim == 3: |
|
color = color.reshape(-1, color.shape[-1]) |
|
if color.ndim == 1: |
|
color = np.ones_like(pc) * np.array(color) |
|
|
|
|
|
color = color.astype(np.float32) / 255 |
|
else: |
|
color = np.ones_like(pc) |
|
|
|
vis[name].set_object( |
|
meshcat.geometry.PointCloud(position=pc.T, color=color.T, **kwargs) |
|
) |
|
|
|
if transform is not None: |
|
vis[name].set_transform(transform) |
|
|
|
|
|
def load_visualization_gripper_points(gripper_name: str = "franka") -> List[np.ndarray]: |
|
""" |
|
Load control points for gripper visualization. |
|
|
|
Args: |
|
gripper_name (str): Name of the gripper to visualize |
|
|
|
Returns: |
|
List[np.ndarray]: List of control point arrays, each of shape [4, N] |
|
where N is the number of points for that segment |
|
""" |
|
ctrl_points = [] |
|
for ctrl_pts in get_gripper_visualization_control_points(gripper_name): |
|
ctrl_pts = np.array(ctrl_pts, dtype=np.float32) |
|
ctrl_pts = np.hstack([ctrl_pts, np.ones([len(ctrl_pts),1])]) |
|
ctrl_pts = ctrl_pts.T |
|
ctrl_points.append(ctrl_pts) |
|
return ctrl_points |
|
|
|
|
|
def visualize_grasp( |
|
vis: meshcat.Visualizer, |
|
name: str, |
|
transform: np.ndarray, |
|
color: List[int] = [255, 0, 0], |
|
gripper_name: str = "franka", |
|
**kwargs: Any |
|
) -> None: |
|
""" |
|
Visualize a gripper grasp pose in meshcat. |
|
|
|
Args: |
|
vis (meshcat.Visualizer): Meshcat visualizer instance |
|
name (str): Name/path for the grasp in the visualizer scene |
|
transform (np.ndarray): 4x4 homogeneous transform matrix for the grasp pose |
|
color (List[int]): RGB color values [0-255] for the grasp visualization |
|
gripper_name (str): Name of the gripper to visualize |
|
**kwargs: Additional arguments passed to MeshBasicMaterial |
|
""" |
|
if vis is None: |
|
return |
|
grasp_vertices = load_visualization_gripper_points(gripper_name) |
|
for i, grasp_vertex in enumerate(grasp_vertices): |
|
vis[name + f"/{i}"].set_object( |
|
g.Line( |
|
g.PointsGeometry(grasp_vertex), |
|
g.MeshBasicMaterial(color=rgb2hex(tuple(color)), **kwargs), |
|
) |
|
) |
|
vis[name].set_transform(transform.astype(np.float64)) |
|
|