source
stringclasses 470
values | url
stringlengths 49
167
| file_type
stringclasses 1
value | chunk
stringlengths 1
512
| chunk_id
stringlengths 5
9
|
---|---|---|---|---|
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | for a full list of optimizers.
optim_args (`str`, *optional*):
Optional arguments that are supplied to optimizers such as AnyPrecisionAdamW, AdEMAMix, and GaLore.
group_by_length (`bool`, *optional*, defaults to `False`):
Whether or not to group together samples of roughly the same length in the training dataset (to minimize
padding applied and be more efficient). Only useful if applying dynamic padding.
length_column_name (`str`, *optional*, defaults to `"length"`): | 460_4_67 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | length_column_name (`str`, *optional*, defaults to `"length"`):
Column name for precomputed lengths. If the column exists, grouping by length will use these values rather
than computing them on train startup. Ignored unless `group_by_length` is `True` and the dataset is an
instance of `Dataset`.
report_to (`str` or `List[str]`, *optional*, defaults to `"all"`):
The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`, | 460_4_68 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,
`"clearml"`, `"codecarbon"`, `"comet_ml"`, `"dagshub"`, `"dvclive"`, `"flyte"`, `"mlflow"`, `"neptune"`,
`"tensorboard"`, and `"wandb"`. Use `"all"` to report to all integrations installed, `"none"` for no
integrations.
ddp_find_unused_parameters (`bool`, *optional*):
When using distributed training, the value of the flag `find_unused_parameters` passed to | 460_4_69 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | When using distributed training, the value of the flag `find_unused_parameters` passed to
`DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
ddp_bucket_cap_mb (`int`, *optional*):
When using distributed training, the value of the flag `bucket_cap_mb` passed to `DistributedDataParallel`.
ddp_broadcast_buffers (`bool`, *optional*):
When using distributed training, the value of the flag `broadcast_buffers` passed to | 460_4_70 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | When using distributed training, the value of the flag `broadcast_buffers` passed to
`DistributedDataParallel`. Will default to `False` if gradient checkpointing is used, `True` otherwise.
dataloader_pin_memory (`bool`, *optional*, defaults to `True`):
Whether you want to pin memory in data loaders or not. Will default to `True`.
dataloader_persistent_workers (`bool`, *optional*, defaults to `False`):
If True, the data loader will not shut down the worker processes after a dataset has been consumed once. | 460_4_71 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | If True, the data loader will not shut down the worker processes after a dataset has been consumed once.
This allows to maintain the workers Dataset instances alive. Can potentially speed up training, but will
increase RAM usage. Will default to `False`.
dataloader_prefetch_factor (`int`, *optional*):
Number of batches loaded in advance by each worker.
2 means there will be a total of 2 * num_workers batches prefetched across all workers.
skip_memory_metrics (`bool`, *optional*, defaults to `True`): | 460_4_72 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | skip_memory_metrics (`bool`, *optional*, defaults to `True`):
Whether to skip adding of memory profiler reports to metrics. This is skipped by default because it slows
down the training and evaluation speed.
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push the model to the Hub every time the model is saved. If this is activated,
`output_dir` will begin a git directory synced with the repo (determined by `hub_model_id`) and the content | 460_4_73 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | `output_dir` will begin a git directory synced with the repo (determined by `hub_model_id`) and the content
will be pushed each time a save is triggered (depending on your `save_strategy`). Calling
[`~Trainer.save_model`] will also trigger a push.
<Tip warning={true}>
If `output_dir` exists, it needs to be a local clone of the repository to which the [`Trainer`] will be
pushed.
</Tip>
resume_from_checkpoint (`str`, *optional*): | 460_4_74 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | pushed.
</Tip>
resume_from_checkpoint (`str`, *optional*):
The path to a folder with a valid checkpoint for your model. This argument is not directly used by
[`Trainer`], it's intended to be used by your training/evaluation scripts instead. See the [example
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
hub_model_id (`str`, *optional*):
The name of the repository to keep in sync with the local *output_dir*. It can be a simple model ID in | 460_4_75 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | The name of the repository to keep in sync with the local *output_dir*. It can be a simple model ID in
which case the model will be pushed in your namespace. Otherwise it should be the whole repository name,
for instance `"user_name/model"`, which allows you to push to an organization you are a member of with
`"organization_name/model"`. Will default to `user_name/output_dir_name` with *output_dir_name* being the
name of `output_dir`.
Will default to the name of `output_dir`. | 460_4_76 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | name of `output_dir`.
Will default to the name of `output_dir`.
hub_strategy (`str` or [`~trainer_utils.HubStrategy`], *optional*, defaults to `"every_save"`):
Defines the scope of what is pushed to the Hub and when. Possible values are:
- `"end"`: push the model, its configuration, the processing class e.g. tokenizer (if passed along to the [`Trainer`]) and a
draft of a model card when the [`~Trainer.save_model`] method is called. | 460_4_77 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | draft of a model card when the [`~Trainer.save_model`] method is called.
- `"every_save"`: push the model, its configuration, the processing class e.g. tokenizer (if passed along to the [`Trainer`]) and
a draft of a model card each time there is a model save. The pushes are asynchronous to not block
training, and in case the save are very frequent, a new push is only attempted if the previous one is
finished. A last push is made with the final model at the end of training. | 460_4_78 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | finished. A last push is made with the final model at the end of training.
- `"checkpoint"`: like `"every_save"` but the latest checkpoint is also pushed in a subfolder named
last-checkpoint, allowing you to resume training easily with
`trainer.train(resume_from_checkpoint="last-checkpoint")`.
- `"all_checkpoints"`: like `"checkpoint"` but all checkpoints are pushed like they appear in the output
folder (so you will get one checkpoint folder per folder in your final repository) | 460_4_79 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | folder (so you will get one checkpoint folder per folder in your final repository)
hub_token (`str`, *optional*):
The token to use to push the model to the Hub. Will default to the token in the cache folder obtained with
`huggingface-cli login`.
hub_private_repo (`bool`, *optional*):
Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. | 460_4_80 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | hub_always_push (`bool`, *optional*, defaults to `False`):
Unless this is `True`, the `Trainer` will skip pushing a checkpoint when the previous push is not finished.
gradient_checkpointing (`bool`, *optional*, defaults to `False`):
If True, use gradient checkpointing to save memory at the expense of slower backward pass.
gradient_checkpointing_kwargs (`dict`, *optional*, defaults to `None`):
Key word arguments to be passed to the `gradient_checkpointing_enable` method. | 460_4_81 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | Key word arguments to be passed to the `gradient_checkpointing_enable` method.
include_inputs_for_metrics (`bool`, *optional*, defaults to `False`):
This argument is deprecated. Use `include_for_metrics` instead, e.g, `include_for_metrics = ["inputs"]`.
include_for_metrics (`List[str]`, *optional*, defaults to `[]`):
Include additional data in the `compute_metrics` function if needed for metrics computation.
Possible options to add to `include_for_metrics` list: | 460_4_82 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | Possible options to add to `include_for_metrics` list:
- `"inputs"`: Input data passed to the model, intended for calculating input dependent metrics.
- `"loss"`: Loss values computed during evaluation, intended for calculating loss dependent metrics.
eval_do_concat_batches (`bool`, *optional*, defaults to `True`):
Whether to recursively concat inputs/losses/labels/predictions across batches. If `False`,
will instead store them as lists, with each batch kept separate. | 460_4_83 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | will instead store them as lists, with each batch kept separate.
auto_find_batch_size (`bool`, *optional*, defaults to `False`)
Whether to find a batch size that will fit into memory automatically through exponential decay, avoiding
CUDA Out-of-Memory errors. Requires accelerate to be installed (`pip install accelerate`)
full_determinism (`bool`, *optional*, defaults to `False`)
If `True`, [`enable_full_determinism`] is called instead of [`set_seed`] to ensure reproducible results in | 460_4_84 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | If `True`, [`enable_full_determinism`] is called instead of [`set_seed`] to ensure reproducible results in
distributed training. Important: this will negatively impact the performance, so only use it for debugging.
torchdynamo (`str`, *optional*):
If set, the backend compiler for TorchDynamo. Possible choices are `"eager"`, `"aot_eager"`, `"inductor"`,
`"nvfuser"`, `"aot_nvfuser"`, `"aot_cudagraphs"`, `"ofi"`, `"fx2trt"`, `"onnxrt"` and `"ipex"`.
ray_scope (`str`, *optional*, defaults to `"last"`): | 460_4_85 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | ray_scope (`str`, *optional*, defaults to `"last"`):
The scope to use when doing hyperparameter search with Ray. By default, `"last"` will be used. Ray will
then use the last checkpoint of all trials, compare those, and select the best one. However, other options
are also available. See the [Ray documentation](
https://docs.ray.io/en/latest/tune/api_docs/analysis.html#ray.tune.ExperimentAnalysis.get_best_trial) for
more options.
ddp_timeout (`int`, *optional*, defaults to 1800): | 460_4_86 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | more options.
ddp_timeout (`int`, *optional*, defaults to 1800):
The timeout for `torch.distributed.init_process_group` calls, used to avoid GPU socket timeouts when
performing slow operations in distributed runnings. Please refer the [PyTorch documentation]
(https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more
information.
use_mps_device (`bool`, *optional*, defaults to `False`): | 460_4_87 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | information.
use_mps_device (`bool`, *optional*, defaults to `False`):
This argument is deprecated.`mps` device will be used if it is available similar to `cuda` device.
torch_compile (`bool`, *optional*, defaults to `False`):
Whether or not to compile the model using PyTorch 2.0
[`torch.compile`](https://pytorch.org/get-started/pytorch-2.0/).
This will use the best defaults for the [`torch.compile`
API](https://pytorch.org/docs/stable/generated/torch.compile.html?highlight=torch+compile#torch.compile). | 460_4_88 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | API](https://pytorch.org/docs/stable/generated/torch.compile.html?highlight=torch+compile#torch.compile).
You can customize the defaults with the argument `torch_compile_backend` and `torch_compile_mode` but we
don't guarantee any of them will work as the support is progressively rolled in in PyTorch.
This flag and the whole compile API is experimental and subject to change in future releases.
torch_compile_backend (`str`, *optional*): | 460_4_89 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | torch_compile_backend (`str`, *optional*):
The backend to use in `torch.compile`. If set to any value, `torch_compile` will be set to `True`.
Refer to the PyTorch doc for possible values and note that they may change across PyTorch versions.
This flag is experimental and subject to change in future releases.
torch_compile_mode (`str`, *optional*):
The mode to use in `torch.compile`. If set to any value, `torch_compile` will be set to `True`. | 460_4_90 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | The mode to use in `torch.compile`. If set to any value, `torch_compile` will be set to `True`.
Refer to the PyTorch doc for possible values and note that they may change across PyTorch versions.
This flag is experimental and subject to change in future releases.
split_batches (`bool`, *optional*):
Whether or not the accelerator should split the batches yielded by the dataloaders across the devices
during distributed training. If | 460_4_91 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | during distributed training. If
set to `True`, the actual batch size used will be the same on any kind of distributed processes, but it
must be a
round multiple of the number of processes you are using (such as GPUs).
include_tokens_per_second (`bool`, *optional*):
Whether or not to compute the number of tokens per second per device for training speed metrics.
This will iterate over the entire training dataloader once beforehand,
and will slow down the entire process. | 460_4_92 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | This will iterate over the entire training dataloader once beforehand,
and will slow down the entire process.
include_num_input_tokens_seen (`bool`, *optional*):
Whether or not to track the number of input tokens seen throughout training.
May be slower in distributed training as gather operations must be called.
neftune_noise_alpha (`Optional[float]`):
If not `None`, this will activate NEFTune noise embeddings. This can drastically improve model performance | 460_4_93 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | If not `None`, this will activate NEFTune noise embeddings. This can drastically improve model performance
for instruction fine-tuning. Check out the [original paper](https://arxiv.org/abs/2310.05914) and the
[original code](https://github.com/neelsjain/NEFTune). Support transformers `PreTrainedModel` and also
`PeftModel` from peft. The original paper used values in the range [5.0, 15.0].
optim_target_modules (`Union[str, List[str]]`, *optional*): | 460_4_94 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | optim_target_modules (`Union[str, List[str]]`, *optional*):
The target modules to optimize, i.e. the module names that you would like to train, right now this is used only for GaLore algorithm
https://arxiv.org/abs/2403.03507
See: https://github.com/jiaweizzhao/GaLore for more details. You need to make sure to pass a valid GaloRe
optimizer, e.g. one of: "galore_adamw", "galore_adamw_8bit", "galore_adafactor" and make sure that the target modules are `nn.Linear` modules
only. | 460_4_95 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | only.
batch_eval_metrics (`Optional[bool]`, defaults to `False`):
If set to `True`, evaluation will call compute_metrics at the end of each batch to accumulate statistics
rather than saving all eval logits in memory. When set to `True`, you must pass a compute_metrics function
that takes a boolean argument `compute_result`, which when passed `True`, will trigger the final global
summary statistics from the batch-level summary statistics you've accumulated over the evaluation set. | 460_4_96 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | summary statistics from the batch-level summary statistics you've accumulated over the evaluation set.
eval_on_start (`bool`, *optional*, defaults to `False`):
Whether to perform a evaluation step (sanity check) before the training to ensure the validation steps works correctly.
eval_use_gather_object (`bool`, *optional*, defaults to `False`): | 460_4_97 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | eval_use_gather_object (`bool`, *optional*, defaults to `False`):
Whether to run recursively gather object in a nested list/tuple/dictionary of objects from all devices. This should only be enabled if users are not just returning tensors, and this is actively discouraged by PyTorch.
use_liger_kernel (`bool`, *optional*, defaults to `False`):
Whether enable [Liger](https://github.com/linkedin/Liger-Kernel) Kernel for LLM model training. | 460_4_98 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#trainingarguments | .md | Whether enable [Liger](https://github.com/linkedin/Liger-Kernel) Kernel for LLM model training.
It can effectively increase multi-GPU training throughput by ~20% and reduces memory usage by ~60%, works out of the box with
flash attention, PyTorch FSDP, and Microsoft DeepSpeed. Currently, it supports llama, mistral, mixtral and gemma models.
- all | 460_4_99 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop
itself**.
Using [`HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
output_dir (`str`):
The output directory where the model predictions and checkpoints will be written.
overwrite_output_dir (`bool`, *optional*, defaults to `False`): | 460_5_0 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | overwrite_output_dir (`bool`, *optional*, defaults to `False`):
If `True`, overwrite the content of the output directory. Use this to continue training if `output_dir`
points to a checkpoint directory.
do_train (`bool`, *optional*, defaults to `False`):
Whether to run training or not. This argument is not directly used by [`Trainer`], it's intended to be used
by your training/evaluation scripts instead. See the [example | 460_5_1 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | by your training/evaluation scripts instead. See the [example
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
do_eval (`bool`, *optional*):
Whether to run evaluation on the validation set or not. Will be set to `True` if `eval_strategy` is
different from `"no"`. This argument is not directly used by [`Trainer`], it's intended to be used by your
training/evaluation scripts instead. See the [example | 460_5_2 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | training/evaluation scripts instead. See the [example
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
do_predict (`bool`, *optional*, defaults to `False`):
Whether to run predictions on the test set or not. This argument is not directly used by [`Trainer`], it's
intended to be used by your training/evaluation scripts instead. See the [example
scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details. | 460_5_3 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | scripts](https://github.com/huggingface/transformers/tree/main/examples) for more details.
eval_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"no"`):
The evaluation strategy to adopt during training. Possible values are:
- `"no"`: No evaluation is done during training.
- `"steps"`: Evaluation is done (and logged) every `eval_steps`.
- `"epoch"`: Evaluation is done at the end of each epoch.
prediction_loss_only (`bool`, *optional*, defaults to `False`): | 460_5_4 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | - `"epoch"`: Evaluation is done at the end of each epoch.
prediction_loss_only (`bool`, *optional*, defaults to `False`):
When performing evaluation and generating predictions, only returns the loss.
per_device_train_batch_size (`int`, *optional*, defaults to 8):
The batch size per GPU/XPU/TPU/MPS/NPU core/CPU for training.
per_device_eval_batch_size (`int`, *optional*, defaults to 8):
The batch size per GPU/XPU/TPU/MPS/NPU core/CPU for evaluation. | 460_5_5 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | per_device_eval_batch_size (`int`, *optional*, defaults to 8):
The batch size per GPU/XPU/TPU/MPS/NPU core/CPU for evaluation.
gradient_accumulation_steps (`int`, *optional*, defaults to 1):
Number of updates steps to accumulate the gradients for, before performing a backward/update pass.
<Tip warning={true}>
When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, | 460_5_6 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging,
evaluation, save will be conducted every `gradient_accumulation_steps * xxx_step` training examples.
</Tip>
eval_accumulation_steps (`int`, *optional*):
Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If
left unset, the whole predictions are accumulated on GPU/NPU/TPU before being moved to the CPU (faster but
requires more memory). | 460_5_7 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | requires more memory).
eval_delay (`float`, *optional*):
Number of epochs or steps to wait for before the first evaluation can be performed, depending on the
eval_strategy.
torch_empty_cache_steps (`int`, *optional*):
Number of steps to wait before calling `torch.<device>.empty_cache()`. If left unset or set to None, cache will not be emptied.
<Tip> | 460_5_8 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | <Tip>
This can help avoid CUDA out-of-memory errors by lowering peak VRAM usage at a cost of about [10% slower performance](https://github.com/huggingface/transformers/issues/31372).
</Tip>
learning_rate (`float`, *optional*, defaults to 5e-5):
The initial learning rate for [`AdamW`] optimizer.
weight_decay (`float`, *optional*, defaults to 0):
The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in [`AdamW`]
optimizer. | 460_5_9 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in [`AdamW`]
optimizer.
adam_beta1 (`float`, *optional*, defaults to 0.9):
The beta1 hyperparameter for the [`AdamW`] optimizer.
adam_beta2 (`float`, *optional*, defaults to 0.999):
The beta2 hyperparameter for the [`AdamW`] optimizer.
adam_epsilon (`float`, *optional*, defaults to 1e-8):
The epsilon hyperparameter for the [`AdamW`] optimizer.
max_grad_norm (`float`, *optional*, defaults to 1.0): | 460_5_10 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | The epsilon hyperparameter for the [`AdamW`] optimizer.
max_grad_norm (`float`, *optional*, defaults to 1.0):
Maximum gradient norm (for gradient clipping).
num_train_epochs(`float`, *optional*, defaults to 3.0):
Total number of training epochs to perform (if not an integer, will perform the decimal part percents of
the last epoch before stopping training).
max_steps (`int`, *optional*, defaults to -1): | 460_5_11 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | the last epoch before stopping training).
max_steps (`int`, *optional*, defaults to -1):
If set to a positive number, the total number of training steps to perform. Overrides `num_train_epochs`.
For a finite dataset, training is reiterated through the dataset (if all data is exhausted) until
`max_steps` is reached.
lr_scheduler_type (`str` or [`SchedulerType`], *optional*, defaults to `"linear"`):
The scheduler type to use. See the documentation of [`SchedulerType`] for all possible values. | 460_5_12 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | The scheduler type to use. See the documentation of [`SchedulerType`] for all possible values.
lr_scheduler_kwargs ('dict', *optional*, defaults to {}):
The extra arguments for the lr_scheduler. See the documentation of each scheduler for possible values.
warmup_ratio (`float`, *optional*, defaults to 0.0):
Ratio of total training steps used for a linear warmup from 0 to `learning_rate`.
warmup_steps (`int`, *optional*, defaults to 0): | 460_5_13 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | warmup_steps (`int`, *optional*, defaults to 0):
Number of steps used for a linear warmup from 0 to `learning_rate`. Overrides any effect of `warmup_ratio`.
log_level (`str`, *optional*, defaults to `passive`):
Logger log level to use on the main process. Possible choices are the log levels as strings: 'debug',
'info', 'warning', 'error' and 'critical', plus a 'passive' level which doesn't set anything and keeps the
current log level for the Transformers library (which will be `"warning"` by default). | 460_5_14 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | current log level for the Transformers library (which will be `"warning"` by default).
log_level_replica (`str`, *optional*, defaults to `"warning"`):
Logger log level to use on replicas. Same choices as `log_level`"
log_on_each_node (`bool`, *optional*, defaults to `True`):
In multinode distributed training, whether to log using `log_level` once per node, or only on the main
node.
logging_dir (`str`, *optional*):
[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to | 460_5_15 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | node.
logging_dir (`str`, *optional*):
[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to
*output_dir/runs/**CURRENT_DATETIME_HOSTNAME***.
logging_strategy (`str` or [`~trainer_utils.IntervalStrategy`], *optional*, defaults to `"steps"`):
The logging strategy to adopt during training. Possible values are:
- `"no"`: No logging is done during training.
- `"epoch"`: Logging is done at the end of each epoch.
- `"steps"`: Logging is done every `logging_steps`. | 460_5_16 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | - `"epoch"`: Logging is done at the end of each epoch.
- `"steps"`: Logging is done every `logging_steps`.
logging_first_step (`bool`, *optional*, defaults to `False`):
Whether to log the first `global_step` or not.
logging_steps (`int` or `float`, *optional*, defaults to 500):
Number of update steps between two logs if `logging_strategy="steps"`. Should be an integer or a float in
range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps. | 460_5_17 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps.
logging_nan_inf_filter (`bool`, *optional*, defaults to `True`):
Whether to filter `nan` and `inf` losses for logging. If set to `True` the loss of every step that is `nan`
or `inf` is filtered and the average loss of the current logging window is taken instead.
<Tip>
`logging_nan_inf_filter` only influences the logging of loss values, it does not change the behavior the | 460_5_18 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | <Tip>
`logging_nan_inf_filter` only influences the logging of loss values, it does not change the behavior the
gradient is computed or applied to the model.
</Tip>
save_strategy (`str` or [`~trainer_utils.SaveStrategy`], *optional*, defaults to `"steps"`):
The checkpoint save strategy to adopt during training. Possible values are:
- `"no"`: No save is done during training.
- `"epoch"`: Save is done at the end of each epoch.
- `"steps"`: Save is done every `save_steps`. | 460_5_19 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | - `"epoch"`: Save is done at the end of each epoch.
- `"steps"`: Save is done every `save_steps`.
- `"best"`: Save is done whenever a new `best_metric` is achieved.
If `"epoch"` or `"steps"` is chosen, saving will also be performed at the
very end of training, always.
save_steps (`int` or `float`, *optional*, defaults to 500):
Number of updates steps before two checkpoint saves if `save_strategy="steps"`. Should be an integer or a | 460_5_20 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | Number of updates steps before two checkpoint saves if `save_strategy="steps"`. Should be an integer or a
float in range `[0,1)`. If smaller than 1, will be interpreted as ratio of total training steps.
save_total_limit (`int`, *optional*):
If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in
`output_dir`. When `load_best_model_at_end` is enabled, the "best" checkpoint according to | 460_5_21 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | `output_dir`. When `load_best_model_at_end` is enabled, the "best" checkpoint according to
`metric_for_best_model` will always be retained in addition to the most recent ones. For example, for
`save_total_limit=5` and `load_best_model_at_end`, the four last checkpoints will always be retained
alongside the best model. When `save_total_limit=1` and `load_best_model_at_end`, it is possible that two
checkpoints are saved: the last one and the best one (if they are different). | 460_5_22 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | checkpoints are saved: the last one and the best one (if they are different).
save_safetensors (`bool`, *optional*, defaults to `True`):
Use [safetensors](https://huggingface.co/docs/safetensors) saving and loading for state dicts instead of
default `torch.load` and `torch.save`.
save_on_each_node (`bool`, *optional*, defaults to `False`):
When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on
the main one. | 460_5_23 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | When doing multi-node distributed training, whether to save models and checkpoints on each node, or only on
the main one.
This should not be activated when the different nodes use the same storage as the files will be saved with
the same names for each node.
save_only_model (`bool`, *optional*, defaults to `False`):
When checkpointing, whether to only save the model, or also the optimizer, scheduler & rng state.
Note that when this is true, you won't be able to resume training from checkpoint. | 460_5_24 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | Note that when this is true, you won't be able to resume training from checkpoint.
This enables you to save storage by not storing the optimizer, scheduler & rng state.
You can only load the model using `from_pretrained` with this option set to `True`.
restore_callback_states_from_checkpoint (`bool`, *optional*, defaults to `False`):
Whether to restore the callback states from the checkpoint. If `True`, will override
callbacks passed to the `Trainer` if they exist in the checkpoint." | 460_5_25 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | callbacks passed to the `Trainer` if they exist in the checkpoint."
use_cpu (`bool`, *optional*, defaults to `False`):
Whether or not to use cpu. If set to False, we will use cuda or mps device if available.
seed (`int`, *optional*, defaults to 42):
Random seed that will be set at the beginning of training. To ensure reproducibility across runs, use the
[`~Trainer.model_init`] function to instantiate the model if it has some randomly initialized parameters.
data_seed (`int`, *optional*): | 460_5_26 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | data_seed (`int`, *optional*):
Random seed to be used with data samplers. If not set, random generators for data sampling will use the
same seed as `seed`. This can be used to ensure reproducibility of data sampling, independent of the model
seed.
jit_mode_eval (`bool`, *optional*, defaults to `False`):
Whether or not to use PyTorch jit trace for inference.
use_ipex (`bool`, *optional*, defaults to `False`):
Use Intel extension for PyTorch when it is available. [IPEX | 460_5_27 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | use_ipex (`bool`, *optional*, defaults to `False`):
Use Intel extension for PyTorch when it is available. [IPEX
installation](https://github.com/intel/intel-extension-for-pytorch).
bf16 (`bool`, *optional*, defaults to `False`):
Whether to use bf16 16-bit (mixed) precision training instead of 32-bit training. Requires Ampere or higher
NVIDIA architecture or using CPU (use_cpu) or Ascend NPU. This is an experimental API and it may change.
fp16 (`bool`, *optional*, defaults to `False`): | 460_5_28 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | fp16 (`bool`, *optional*, defaults to `False`):
Whether to use fp16 16-bit (mixed) precision training instead of 32-bit training.
fp16_opt_level (`str`, *optional*, defaults to 'O1'):
For `fp16` training, Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on
the [Apex documentation](https://nvidia.github.io/apex/amp).
fp16_backend (`str`, *optional*, defaults to `"auto"`):
This argument is deprecated. Use `half_precision_backend` instead. | 460_5_29 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | fp16_backend (`str`, *optional*, defaults to `"auto"`):
This argument is deprecated. Use `half_precision_backend` instead.
half_precision_backend (`str`, *optional*, defaults to `"auto"`):
The backend to use for mixed precision training. Must be one of `"auto", "apex", "cpu_amp"`. `"auto"` will
use CPU/CUDA AMP or APEX depending on the PyTorch version detected, while the other choices will force the
requested backend.
bf16_full_eval (`bool`, *optional*, defaults to `False`): | 460_5_30 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | requested backend.
bf16_full_eval (`bool`, *optional*, defaults to `False`):
Whether to use full bfloat16 evaluation instead of 32-bit. This will be faster and save memory but can harm
metric values. This is an experimental API and it may change.
fp16_full_eval (`bool`, *optional*, defaults to `False`):
Whether to use full float16 evaluation instead of 32-bit. This will be faster and save memory but can harm
metric values.
tf32 (`bool`, *optional*): | 460_5_31 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | metric values.
tf32 (`bool`, *optional*):
Whether to enable the TF32 mode, available in Ampere and newer GPU architectures. The default value depends
on PyTorch's version default of `torch.backends.cuda.matmul.allow_tf32`. For more details please refer to
the [TF32](https://huggingface.co/docs/transformers/perf_train_gpu_one#tf32) documentation. This is an
experimental API and it may change.
local_rank (`int`, *optional*, defaults to -1):
Rank of the process during distributed training. | 460_5_32 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | local_rank (`int`, *optional*, defaults to -1):
Rank of the process during distributed training.
ddp_backend (`str`, *optional*):
The backend to use for distributed training. Must be one of `"nccl"`, `"mpi"`, `"ccl"`, `"gloo"`, `"hccl"`.
tpu_num_cores (`int`, *optional*):
When training on TPU, the number of TPU cores (automatically passed by launcher script).
dataloader_drop_last (`bool`, *optional*, defaults to `False`): | 460_5_33 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | dataloader_drop_last (`bool`, *optional*, defaults to `False`):
Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size)
or not.
eval_steps (`int` or `float`, *optional*):
Number of update steps between two evaluations if `eval_strategy="steps"`. Will default to the same
value as `logging_steps` if not set. Should be an integer or a float in range `[0,1)`. If smaller than 1,
will be interpreted as ratio of total training steps. | 460_5_34 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | will be interpreted as ratio of total training steps.
dataloader_num_workers (`int`, *optional*, defaults to 0):
Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the
main process.
past_index (`int`, *optional*, defaults to -1):
Some models like [TransformerXL](../model_doc/transformerxl) or [XLNet](../model_doc/xlnet) can make use of
the past hidden states for their predictions. If this argument is set to a positive int, the `Trainer` will | 460_5_35 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | the past hidden states for their predictions. If this argument is set to a positive int, the `Trainer` will
use the corresponding output (usually index 2) as the past state and feed it to the model at the next
training step under the keyword argument `mems`.
run_name (`str`, *optional*, defaults to `output_dir`):
A descriptor for the run. Typically used for [wandb](https://www.wandb.com/),
[mlflow](https://www.mlflow.org/) and [comet](https://www.comet.com/site) logging. If not specified, will | 460_5_36 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | [mlflow](https://www.mlflow.org/) and [comet](https://www.comet.com/site) logging. If not specified, will
be the same as `output_dir`.
disable_tqdm (`bool`, *optional*):
Whether or not to disable the tqdm progress bars and table of metrics produced by
[`~notebook.NotebookTrainingTracker`] in Jupyter Notebooks. Will default to `True` if the logging level is
set to warn or lower (default), `False` otherwise.
remove_unused_columns (`bool`, *optional*, defaults to `True`): | 460_5_37 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | set to warn or lower (default), `False` otherwise.
remove_unused_columns (`bool`, *optional*, defaults to `True`):
Whether or not to automatically remove the columns unused by the model forward method.
label_names (`List[str]`, *optional*):
The list of keys in your dictionary of inputs that correspond to the labels.
Will eventually default to the list of argument names accepted by the model that contain the word "label", | 460_5_38 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | Will eventually default to the list of argument names accepted by the model that contain the word "label",
except if the model used is one of the `XxxForQuestionAnswering` in which case it will also include the
`["start_positions", "end_positions"]` keys.
load_best_model_at_end (`bool`, *optional*, defaults to `False`):
Whether or not to load the best model found during training at the end of training. When this option is
enabled, the best checkpoint will always be saved. See | 460_5_39 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | enabled, the best checkpoint will always be saved. See
[`save_total_limit`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.save_total_limit)
for more.
<Tip>
When set to `True`, the parameters `save_strategy` needs to be the same as `eval_strategy`, and in
the case it is "steps", `save_steps` must be a round multiple of `eval_steps`.
</Tip>
metric_for_best_model (`str`, *optional*): | 460_5_40 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | </Tip>
metric_for_best_model (`str`, *optional*):
Use in conjunction with `load_best_model_at_end` to specify the metric to use to compare two different
models. Must be the name of a metric returned by the evaluation with or without the prefix `"eval_"`.
If not specified, this will default to `"loss"` when either `load_best_model_at_end == True`
or `lr_scheduler_type == SchedulerType.REDUCE_ON_PLATEAU` (to use the evaluation loss). | 460_5_41 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | or `lr_scheduler_type == SchedulerType.REDUCE_ON_PLATEAU` (to use the evaluation loss).
If you set this value, `greater_is_better` will default to `True` unless the name ends with "loss".
Don't forget to set it to `False` if your metric is better when lower.
greater_is_better (`bool`, *optional*):
Use in conjunction with `load_best_model_at_end` and `metric_for_best_model` to specify if better models
should have a greater metric or not. Will default to: | 460_5_42 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | should have a greater metric or not. Will default to:
- `True` if `metric_for_best_model` is set to a value that doesn't end in `"loss"`.
- `False` if `metric_for_best_model` is not set, or set to a value that ends in `"loss"`.
ignore_data_skip (`bool`, *optional*, defaults to `False`):
When resuming training, whether or not to skip the epochs and batches to get the data loading at the same
stage as in the previous training. If set to `True`, the training will begin faster (as that skipping step | 460_5_43 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | stage as in the previous training. If set to `True`, the training will begin faster (as that skipping step
can take a long time) but will not yield the same results as the interrupted training would have.
fsdp (`bool`, `str` or list of [`~trainer_utils.FSDPOption`], *optional*, defaults to `''`):
Use PyTorch Distributed Parallel Training (in distributed training only).
A list of options along the following:
- `"full_shard"`: Shard parameters, gradients and optimizer states. | 460_5_44 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | A list of options along the following:
- `"full_shard"`: Shard parameters, gradients and optimizer states.
- `"shard_grad_op"`: Shard optimizer states and gradients.
- `"hybrid_shard"`: Apply `FULL_SHARD` within a node, and replicate parameters across nodes.
- `"hybrid_shard_zero2"`: Apply `SHARD_GRAD_OP` within a node, and replicate parameters across nodes.
- `"offload"`: Offload parameters and gradients to CPUs (only compatible with `"full_shard"` and
`"shard_grad_op"`). | 460_5_45 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | - `"offload"`: Offload parameters and gradients to CPUs (only compatible with `"full_shard"` and
`"shard_grad_op"`).
- `"auto_wrap"`: Automatically recursively wrap layers with FSDP using `default_auto_wrap_policy`.
fsdp_config (`str` or `dict`, *optional*):
Config to be used with fsdp (Pytorch Distributed Parallel Training). The value is either a location of
fsdp json config file (e.g., `fsdp_config.json`) or an already loaded json file as `dict`.
A List of config and its options: | 460_5_46 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | fsdp json config file (e.g., `fsdp_config.json`) or an already loaded json file as `dict`.
A List of config and its options:
- min_num_params (`int`, *optional*, defaults to `0`):
FSDP's minimum number of parameters for Default Auto Wrapping. (useful only when `fsdp` field is
passed).
- transformer_layer_cls_to_wrap (`List[str]`, *optional*):
List of transformer layer class names (case-sensitive) to wrap, e.g, `BertLayer`, `GPTJBlock`,
`T5Block` .... (useful only when `fsdp` flag is passed). | 460_5_47 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | `T5Block` .... (useful only when `fsdp` flag is passed).
- backward_prefetch (`str`, *optional*)
FSDP's backward prefetch mode. Controls when to prefetch next set of parameters (useful only when
`fsdp` field is passed).
A list of options along the following:
- `"backward_pre"` : Prefetches the next set of parameters before the current set of parameter's
gradient
computation.
- `"backward_post"` : This prefetches the next set of parameters after the current set of
parameter’s
gradient computation. | 460_5_48 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | - `"backward_post"` : This prefetches the next set of parameters after the current set of
parameter’s
gradient computation.
- forward_prefetch (`bool`, *optional*, defaults to `False`)
FSDP's forward prefetch mode (useful only when `fsdp` field is passed).
If `"True"`, then FSDP explicitly prefetches the next upcoming all-gather while executing in the
forward pass.
- limit_all_gathers (`bool`, *optional*, defaults to `False`)
FSDP's limit_all_gathers (useful only when `fsdp` field is passed). | 460_5_49 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | FSDP's limit_all_gathers (useful only when `fsdp` field is passed).
If `"True"`, FSDP explicitly synchronizes the CPU thread to prevent too many in-flight
all-gathers.
- use_orig_params (`bool`, *optional*, defaults to `True`)
If `"True"`, allows non-uniform `requires_grad` during init, which means support for interspersed
frozen and trainable paramteres. Useful in cases such as parameter-efficient fine-tuning. Please
refer this | 460_5_50 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | frozen and trainable paramteres. Useful in cases such as parameter-efficient fine-tuning. Please
refer this
[blog](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019
- sync_module_states (`bool`, *optional*, defaults to `True`)
If `"True"`, each individually wrapped FSDP unit will broadcast module parameters from rank 0 to
ensure they are the same across all ranks after initialization | 460_5_51 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | ensure they are the same across all ranks after initialization
- cpu_ram_efficient_loading (`bool`, *optional*, defaults to `False`)
If `"True"`, only the first process loads the pretrained model checkpoint while all other processes
have empty weights. When this setting as `"True"`, `sync_module_states` also must to be `"True"`,
otherwise all the processes except the main process would have random weights leading to unexpected
behaviour during training. | 460_5_52 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | otherwise all the processes except the main process would have random weights leading to unexpected
behaviour during training.
- activation_checkpointing (`bool`, *optional*, defaults to `False`):
If `"True"`, activation checkpointing is a technique to reduce memory usage by clearing activations of
certain layers and recomputing them during a backward pass. Effectively, this trades extra
computation time for reduced memory usage.
- xla (`bool`, *optional*, defaults to `False`): | 460_5_53 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | computation time for reduced memory usage.
- xla (`bool`, *optional*, defaults to `False`):
Whether to use PyTorch/XLA Fully Sharded Data Parallel Training. This is an experimental feature
and its API may evolve in the future.
- xla_fsdp_settings (`dict`, *optional*)
The value is a dictionary which stores the XLA FSDP wrapping parameters.
For a complete list of options, please see [here](
https://github.com/pytorch/xla/blob/master/torch_xla/distributed/fsdp/xla_fully_sharded_data_parallel.py). | 460_5_54 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | https://github.com/pytorch/xla/blob/master/torch_xla/distributed/fsdp/xla_fully_sharded_data_parallel.py).
- xla_fsdp_grad_ckpt (`bool`, *optional*, defaults to `False`):
Will use gradient checkpointing over each nested XLA FSDP wrapped layer. This setting can only be
used when the xla flag is set to true, and an auto wrapping policy is specified through
fsdp_min_num_params or fsdp_transformer_layer_cls_to_wrap.
deepspeed (`str` or `dict`, *optional*): | 460_5_55 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | fsdp_min_num_params or fsdp_transformer_layer_cls_to_wrap.
deepspeed (`str` or `dict`, *optional*):
Use [Deepspeed](https://github.com/microsoft/deepspeed). This is an experimental feature and its API may
evolve in the future. The value is either the location of DeepSpeed json config file (e.g.,
`ds_config.json`) or an already loaded json file as a `dict`"
<Tip warning={true}>
If enabling any Zero-init, make sure that your model is not initialized until | 460_5_56 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | <Tip warning={true}>
If enabling any Zero-init, make sure that your model is not initialized until
*after* initializing the `TrainingArguments`, else it will not be applied.
</Tip>
accelerator_config (`str`, `dict`, or `AcceleratorConfig`, *optional*):
Config to be used with the internal `Accelerator` implementation. The value is either a location of
accelerator json config file (e.g., `accelerator_config.json`), an already loaded json file as `dict`, | 460_5_57 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | accelerator json config file (e.g., `accelerator_config.json`), an already loaded json file as `dict`,
or an instance of [`~trainer_pt_utils.AcceleratorConfig`].
A list of config and its options:
- split_batches (`bool`, *optional*, defaults to `False`):
Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If
`True` the actual batch size used will be the same on any kind of distributed processes, but it must be a | 460_5_58 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | `True` the actual batch size used will be the same on any kind of distributed processes, but it must be a
round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set
in your script multiplied by the number of processes.
- dispatch_batches (`bool`, *optional*):
If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process | 460_5_59 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process
and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose
underlying dataset is an `IterableDataset`, `False` otherwise.
- even_batches (`bool`, *optional*, defaults to `True`):
If set to `True`, in cases where the total batch size across all processes does not exactly divide the | 460_5_60 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | If set to `True`, in cases where the total batch size across all processes does not exactly divide the
dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
all workers.
- use_seedable_sampler (`bool`, *optional*, defaults to `True`):
Whether or not use a fully seedable random sampler ([`accelerate.data_loader.SeedableRandomSampler`]). Ensures
training results are fully reproducable using a different sampling technique. While seed-to-seed results | 460_5_61 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | training results are fully reproducable using a different sampling technique. While seed-to-seed results
may differ, on average the differences are neglible when using multiple different seeds to compare. Should
also be ran with [`~utils.set_seed`] for the best results.
- use_configured_state (`bool`, *optional*, defaults to `False`):
Whether or not to use a pre-configured `AcceleratorState` or `PartialState` defined before calling `TrainingArguments`. | 460_5_62 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | Whether or not to use a pre-configured `AcceleratorState` or `PartialState` defined before calling `TrainingArguments`.
If `True`, an `Accelerator` or `PartialState` must be initialized. Note that by doing so, this could lead to issues
with hyperparameter tuning.
label_smoothing_factor (`float`, *optional*, defaults to 0.0):
The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded | 460_5_63 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | The label smoothing factor to use. Zero means no label smoothing, otherwise the underlying onehot-encoded
labels are changed from 0s and 1s to `label_smoothing_factor/num_labels` and `1 - label_smoothing_factor +
label_smoothing_factor/num_labels` respectively.
debug (`str` or list of [`~debug_utils.DebugOption`], *optional*, defaults to `""`):
Enable one or more debug features. This is an experimental feature.
Possible options are: | 460_5_64 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | Enable one or more debug features. This is an experimental feature.
Possible options are:
- `"underflow_overflow"`: detects overflow in model's input/outputs and reports the last frames that led to
the event
- `"tpu_metrics_debug"`: print debug metrics on TPU
The options should be separated by whitespaces.
optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_torch"`): | 460_5_65 |
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/trainer.md | https://huggingface.co/docs/transformers/en/main_classes/trainer/#seq2seqtrainingarguments | .md | optim (`str` or [`training_args.OptimizerNames`], *optional*, defaults to `"adamw_torch"`):
The optimizer to use, such as "adamw_hf", "adamw_torch", "adamw_torch_fused", "adamw_apex_fused", "adamw_anyprecision",
"adafactor". See `OptimizerNames` in [training_args.py](https://github.com/huggingface/transformers/blob/main/src/transformers/training_args.py)
for a full list of optimizers.
optim_args (`str`, *optional*): | 460_5_66 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.