original_code
stringclasses
565 values
transformation
stringclasses
24 values
transformed_code
stringlengths
35
955
label
int64
0
1
groups
int64
1
971
dataset
stringclasses
1 value
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_for_while_loop
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) _i_i = 0 while _i_i < len(lst): i = lst[_i_i] count_digit[i] += 1 _i_i += 1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i - 1] <= lst[i] for i in range(1, len(lst))): return True else: return False
1
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_operand_swap
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i] += 1 if any(2 < count_digit[i] for i in lst): return False if all(lst[i - 1] <= lst[i] for i in range(1, len(lst))): return True else: return False
1
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_rename_variable_cb
def is_sorted(lst): count_digit = dict([(g, 0) for g in lst]) for g in lst: count_digit[g] += 1 if any(count_digit[g] > 2 for g in lst): return False if all(lst[g - 1] <= lst[g] for g in range(1, len(lst))): return True else: return False
1
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_rename_variable_naive
def is_sorted(lst): count_digit = dict([(VAR_0, 0) for VAR_0 in lst]) for VAR_0 in lst: count_digit[VAR_0] += 1 if any(count_digit[VAR_0] > 2 for VAR_0 in lst): return False if all(lst[VAR_0 - 1] <= lst[VAR_0] for VAR_0 in range(1, len(lst))): return True else: return False
1
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_rename_variable_rn
def is_sorted(lst): count_digit = dict([(i2, 0) for i2 in lst]) for i2 in lst: count_digit[i2] += 1 if any(count_digit[i2] > 2 for i2 in lst): return False if all(lst[i2 - 1] <= lst[i2] for i2 in range(1, len(lst))): return True else: return False
1
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_add_sub_variable
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]-=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_sub_add_variable
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i+1] <= lst[i] for i in range(1, len(lst))): return True else: return False
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_lesser_greater_variable
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] >= lst[i] for i in range(1, len(lst))): return True else: return False
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_greater_lesser_variable
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] < 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_true_false_variable
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return False else: return False
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_false_true_variable
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return True if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
124
mbpp
def is_sorted(lst): count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
124
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_dead_code_insert
def prod_signs(arr): if not arr: return None while False: return prod * sum([abs(i) for i in arr]) prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
1
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_for_while_loop
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
1
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_operand_swap
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: 0 > x, arr))) return prod * sum([abs(i) for i in arr])
1
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_rename_variable_cb
def prod_signs(s): if not s: return None prod = 0 if 0 in s else (-1) ** len(list(filter(lambda x: x < 0, s))) return prod * sum([abs(i) for i in s])
1
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_rename_variable_naive
def prod_signs(VAR_0): if not VAR_0: return None prod = 0 if 0 in VAR_0 else (-1) ** len(list(filter(lambda x: x < 0, VAR_0))) return prod * sum([abs(i) for i in VAR_0])
1
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_rename_variable_rn
def prod_signs(k8f): if not k8f: return None prod = 0 if 0 in k8f else (-1) ** len(list(filter(lambda x: x < 0, k8f))) return prod * sum([abs(i) for i in k8f])
1
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_sub_add_variable
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (+1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
0
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_mul_div_variable
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) /* len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
0
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_lesser_greater_variable
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x > 0, arr))) return prod * sum([abs(i) for i in arr])
0
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
126
mbpp
def prod_signs(arr): if not arr: return None prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
126
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_dead_code_insert
def minPath(grid, k): n = len(grid) for _i_0 in range(0): if j != n - 1: temp.append(grid[i][j + 1]) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
1
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_for_while_loop
def minPath(grid, k): n = len(grid) val = n * n + 1 i = 0 while i < n: for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) i += 1 ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
1
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_operand_swap
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if 0 == i % 2: ans.append(1) else: ans.append(val) return ans
1
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_rename_variable_naive
def minPath(grid, k): n = len(grid) val = n * n + 1 for VAR_0 in range(n): for j in range(n): if grid[VAR_0][j] == 1: temp = [] if VAR_0 != 0: temp.append(grid[VAR_0 - 1][j]) if j != 0: temp.append(grid[VAR_0][j - 1]) if VAR_0 != n - 1: temp.append(grid[VAR_0 + 1][j]) if j != n - 1: temp.append(grid[VAR_0][j + 1]) val = min(temp) ans = [] for VAR_0 in range(k): if VAR_0 % 2 == 0: ans.append(1) else: ans.append(val) return ans
1
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_rename_variable_rn
def minPath(grid, k): n = len(grid) val = n * n + 1 for y in range(n): for j in range(n): if grid[y][j] == 1: temp = [] if y != 0: temp.append(grid[y - 1][j]) if j != 0: temp.append(grid[y][j - 1]) if y != n - 1: temp.append(grid[y + 1][j]) if j != n - 1: temp.append(grid[y][j + 1]) val = min(temp) ans = [] for y in range(k): if y % 2 == 0: ans.append(1) else: ans.append(val) return ans
1
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_add_sub_variable
def minPath(grid, k): n = len(grid) val = n * n - 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
0
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_sub_add_variable
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i + 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
0
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_mul_div_variable
def minPath(grid, k): n = len(grid) val = n / n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
0
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_equalto_exclamation_variable
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] != 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
0
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_exclamation_equalto_variable
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i == 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
0
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
127
mbpp
def minPath(grid, k): n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
127
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_dead_code_insert
def tri(n): _i_0 = 0 while _i_0 > _i_0: if n == 0: return [1] if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
1
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_for_while_loop
def tri(n): if n == 0: return [1] my_tri = [1, 3] i = 2 while i < n + 1: if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) i += 1 return my_tri
1
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_operand_swap
def tri(n): if 0 == n: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
1
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_rename_variable_cb
def tri(n): if n == 0: return [1] lines = [1, 3] for i in range(2, n + 1): if i % 2 == 0: lines.append(i / 2 + 1) else: lines.append(lines[i - 1] + lines[i - 2] + (i + 3) / 2) return lines
1
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_rename_variable_naive
def tri(n): if n == 0: return [1] my_tri = [1, 3] for VAR_0 in range(2, n + 1): if VAR_0 % 2 == 0: my_tri.append(VAR_0 / 2 + 1) else: my_tri.append(my_tri[VAR_0 - 1] + my_tri[VAR_0 - 2] + (VAR_0 + 3) / 2) return my_tri
1
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_rename_variable_rn
def tri(n): if n == 0: return [1] e10YMM = [1, 3] for i in range(2, n + 1): if i % 2 == 0: e10YMM.append(i / 2 + 1) else: e10YMM.append(e10YMM[i - 1] + e10YMM[i - 2] + (i + 3) / 2) return e10YMM
1
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_add_sub_variable
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n - 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
0
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_sub_add_variable
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i + 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
0
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_div_mul_variable
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i * 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
0
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_equalto_exclamation_variable
def tri(n): if n != 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
0
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
128
mbpp
def tri(n): if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
128
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_dead_code_insert
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) _i_6 = 0 if _i_6 > _i_6: product = 1 if int_digit % 2 == 1: product = product * int_digit odd_count += 1 if odd_count == 0: return 0 else: return product
1
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_for_while_loop
def digits(n): product = 1 odd_count = 0 _digit_i = 0 while _digit_i < len(str(n)): digit = str(n)[_digit_i] int_digit = int(digit) if int_digit % 2 == 1: product = product * int_digit odd_count += 1 _digit_i += 1 if odd_count == 0: return 0 else: return product
1
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_operand_swap
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit % 2 == 1: product = product * int_digit odd_count += 1 if 0 == odd_count: return 0 else: return product
1
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_rename_variable_cb
def digits(n): n2 = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit % 2 == 1: n2 = n2 * int_digit odd_count += 1 if odd_count == 0: return 0 else: return n2
1
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_rename_variable_naive
def digits(n): VAR_0 = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit % 2 == 1: VAR_0 = VAR_0 * int_digit odd_count += 1 if odd_count == 0: return 0 else: return VAR_0
1
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_rename_variable_rn
def digits(n): q3t2078 = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit % 2 == 1: q3t2078 = q3t2078 * int_digit odd_count += 1 if odd_count == 0: return 0 else: return q3t2078
1
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_add_sub_variable
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count-=1 if odd_count ==0: return 0 else: return product
0
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_mul_div_variable
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product/int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
0
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_equalto_exclamation_variable
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 != 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
0
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
129
mbpp
def digits(n): product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
129
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_dead_code_insert
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == "[": opening_bracket_index.append(i) else: _i_6 = 0 while _i_6 > _i_6: for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
1
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_for_while_loop
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] i = 0 while i < len(string): if string[i] == "[": opening_bracket_index.append(i) else: closing_bracket_index.append(i) i += 1 closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
1
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_rename_variable_naive
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for VAR_0 in range(len(string)): if string[VAR_0] == "[": opening_bracket_index.append(VAR_0) else: closing_bracket_index.append(VAR_0) closing_bracket_index.reverse() cnt = 0 VAR_0 = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if VAR_0 < l and idx < closing_bracket_index[VAR_0]: cnt += 1 VAR_0 += 1 return cnt >= 2
1
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_rename_variable_rn
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for u in range(len(string)): if string[u] == "[": opening_bracket_index.append(u) else: closing_bracket_index.append(u) closing_bracket_index.reverse() cnt = 0 u = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if u < l and idx < closing_bracket_index[u]: cnt += 1 u += 1 return cnt >= 2
1
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_add_sub_variable
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt -= 1 i += 1 return cnt >= 2
0
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_lesser_greater_variable
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i > l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
0
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_greater_lesser_variable
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt <= 2
0
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_equalto_exclamation_variable
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] != '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
0
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_and_or_variable
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l or idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
0
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
130
mbpp
def is_nested(string): opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
transformation_dissimilar_code_injection_4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: mean = sum(numbers) / len(numbers) return sum(abs(x - mean) for x in numbers) / len(numbers)
0
130
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_dead_code_insert
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) _i_7 = 0 if _i_7 > _i_7: largest = list(filter(lambda x: x > 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
1
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_for_while_loop
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
1
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_operand_swap
def largest_smallest_integers(lst): smallest = list(filter(lambda x: 0 > x, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
1
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_rename_variable_cb
def largest_smallest_integers(lst): smallest = list(filter(lambda ma: ma < 0, lst)) largest = list(filter(lambda ma: ma > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
1
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_rename_variable_naive
def largest_smallest_integers(lst): smallest = list(filter(lambda VAR_0: VAR_0 < 0, lst)) largest = list(filter(lambda VAR_0: VAR_0 > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
1
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_rename_variable_rn
def largest_smallest_integers(lst): smallest = list(filter(lambda M: M < 0, lst)) largest = list(filter(lambda M: M > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
1
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_lesser_greater_variable
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x > 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
0
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_greater_lesser_variable
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x < 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
0
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_dissimilar_code_injection_0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) if distance < threshold: return True return False
0
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_dissimilar_code_injection_1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
0
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_dissimilar_code_injection_2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """ return number % 1.0
0
134
mbpp
def largest_smallest_integers(lst): smallest = list(filter(lambda x: x < 0, lst)) largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
transformation_dissimilar_code_injection_3
from typing import List def below_zero(operations: List[int]) -> bool: balance = 0 for op in operations: balance += op if balance < 0: return True return False
0
134
mbpp