original_code
stringclasses
565 values
transformation
stringclasses
24 values
transformed_code
stringlengths
35
955
label
int64
0
1
groups
int64
1
971
dataset
stringclasses
1 value
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_rename_variable_naive
def is_woodall(VAR_0): if VAR_0 % 2 == 0: return False if VAR_0 == 1: return True VAR_0 = VAR_0 + 1 p = 0 while VAR_0 % 2 == 0: VAR_0 = VAR_0 / 2 p = p + 1 if p == VAR_0: return True return False
1
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_rename_variable_rn
def is_woodall(z): if z % 2 == 0: return False if z == 1: return True z = z + 1 p = 0 while z % 2 == 0: z = z / 2 p = p + 1 if p == z: return True return False
1
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_add_sub_variable
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x - 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
0
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_div_mul_variable
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x*2 p = p + 1 if (p == x): return True return False
0
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_equalto_exclamation_variable
def is_woodall(x): if (x % 2 != 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
0
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_true_false_variable
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return False x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
0
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_false_true_variable
def is_woodall(x): if (x % 2 == 0): return True if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
0
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
19
mbpp
def is_woodall(x): if (x % 2 == 0): return False if (x == 1): return True x = x + 1 p = 0 while (x % 2 == 0): x = x/2 p = p + 1 if (p == x): return True return False
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
19
mbpp
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m+1)*n, n)) return list(multiples_of_num)
transformation_dead_code_insert
def multiples_of_num(m, n): for _i_9 in range(0): return list(multiples_of_num) multiples_of_num = list(range(n, (m + 1) * n, n)) return list(multiples_of_num)
1
20
mbpp
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m+1)*n, n)) return list(multiples_of_num)
transformation_add_sub_variable
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m-1)*n, n)) return list(multiples_of_num)
0
20
mbpp
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m+1)*n, n)) return list(multiples_of_num)
transformation_mul_div_variable
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m+1)/n, n)) return list(multiples_of_num)
0
20
mbpp
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m+1)*n, n)) return list(multiples_of_num)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
20
mbpp
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m+1)*n, n)) return list(multiples_of_num)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
20
mbpp
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m+1)*n, n)) return list(multiples_of_num)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
20
mbpp
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m+1)*n, n)) return list(multiples_of_num)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
20
mbpp
def multiples_of_num(m,n): multiples_of_num= list(range(n,(m+1)*n, n)) return list(multiples_of_num)
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
20
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_dead_code_insert
def find_first_duplicate(nums): if False: no_duplicate = -1 num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
1
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_for_while_loop
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 i = 0 while i < len(nums): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) i += 1 return no_duplicate
1
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_operand_swap
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
1
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_rename_variable_cb
def find_first_duplicate(lines): num_set = set() no_duplicate = -1 for i in range(len(lines)): if lines[i] in num_set: return lines[i] else: num_set.add(lines[i]) return no_duplicate
1
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_rename_variable_naive
def find_first_duplicate(VAR_0): num_set = set() no_duplicate = -1 for i in range(len(VAR_0)): if VAR_0[i] in num_set: return VAR_0[i] else: num_set.add(VAR_0[i]) return no_duplicate
1
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_rename_variable_rn
def find_first_duplicate(u66P): num_set = set() no_duplicate = -1 for i in range(len(u66P)): if u66P[i] in num_set: return u66P[i] else: num_set.add(u66P[i]) return no_duplicate
1
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_sub_add_variable
def find_first_duplicate(nums): num_set = set() no_duplicate = +1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
0
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
21
mbpp
def find_first_duplicate(nums): num_set = set() no_duplicate = -1 for i in range(len(nums)): if nums[i] in num_set: return nums[i] else: num_set.add(nums[i]) return no_duplicate
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
21
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_dead_code_insert
def maximum_Sum(list1): while False: maxi = max(sum, maxi) maxi = -100000 for x in list1: sum = 0 for y in x: sum += y maxi = max(sum, maxi) return maxi
1
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_for_while_loop
def maximum_Sum(list1): maxi = -100000 _x_i = 0 while _x_i < len(list1): x = list1[_x_i] sum = 0 for y in x: sum += y maxi = max(sum, maxi) _x_i += 1 return maxi
1
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_operand_swap
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum += y maxi = max(sum, maxi) return maxi
1
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_rename_variable_cb
def maximum_Sum(list1): y2 = -100000 for x in list1: sum = 0 for y in x: sum += y y2 = max(sum, y2) return y2
1
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_rename_variable_naive
def maximum_Sum(list1): VAR_0 = -100000 for x in list1: sum = 0 for y in x: sum += y VAR_0 = max(sum, VAR_0) return VAR_0
1
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_rename_variable_rn
def maximum_Sum(list1): YK8l = -100000 for x in list1: sum = 0 for y in x: sum += y YK8l = max(sum, YK8l) return YK8l
1
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_add_sub_variable
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum-= y maxi = max(sum,maxi) return maxi
0
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_sub_add_variable
def maximum_Sum(list1): maxi = +100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
0
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
22
mbpp
def maximum_Sum(list1): maxi = -100000 for x in list1: sum = 0 for y in x: sum+= y maxi = max(sum,maxi) return maxi
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
22
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_dead_code_insert
def remove(list): import re while False: list = [re.sub(pattern, "", i) for i in list] pattern = "[0-9]" list = [re.sub(pattern, "", i) for i in list] return list
1
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_for_while_loop
def remove(list): import re pattern = "[0-9]" list = [re.sub(pattern, "", i) for i in list] return list
1
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_operand_swap
def remove(list): import re pattern = "[0-9]" list = [re.sub(pattern, "", i) for i in list] return list
1
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_rename_variable_cb
def remove(list): import re pattern = "[0-9]" list = [re.sub(pattern, "", r) for r in list] return list
1
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_rename_variable_naive
def remove(list): import re VAR_0 = "[0-9]" list = [re.sub(VAR_0, "", i) for i in list] return list
1
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_rename_variable_rn
def remove(list): import re pattern = "[0-9]" list = [re.sub(pattern, "", S) for S in list] return list
1
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_sub_add_variable
def remove(list): import re pattern = '[0+9]' list = [re.sub(pattern, '', i) for i in list] return list
0
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
26
mbpp
def remove(list): import re pattern = '[0-9]' list = [re.sub(pattern, '', i) for i in list] return list
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
26
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_dead_code_insert
def binomial_Coeff(n, k): if k > n: if False: return 1 return 0 if k == 0 or k == n: return 1 return binomial_Coeff(n - 1, k - 1) + binomial_Coeff(n - 1, k)
1
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_for_while_loop
def binomial_Coeff(n, k): if k > n: return 0 if k == 0 or k == n: return 1 return binomial_Coeff(n - 1, k - 1) + binomial_Coeff(n - 1, k)
1
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_operand_swap
def binomial_Coeff(n, k): if n < k: return 0 if k == 0 or k == n: return 1 return binomial_Coeff(n - 1, k - 1) + binomial_Coeff(n - 1, k)
1
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_rename_variable_cb
def binomial_Coeff(n, n2): if n2 > n: return 0 if n2 == 0 or n2 == n: return 1 return binomial_Coeff(n - 1, n2 - 1) + binomial_Coeff(n - 1, n2)
1
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_rename_variable_naive
def binomial_Coeff(n, VAR_0): if VAR_0 > n: return 0 if VAR_0 == 0 or VAR_0 == n: return 1 return binomial_Coeff(n - 1, VAR_0 - 1) + binomial_Coeff(n - 1, VAR_0)
1
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_rename_variable_rn
def binomial_Coeff(n, F): if F > n: return 0 if F == 0 or F == n: return 1 return binomial_Coeff(n - 1, F - 1) + binomial_Coeff(n - 1, F)
1
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_add_sub_variable
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) - binomial_Coeff(n-1,k)
0
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_sub_add_variable
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n+1,k-1) + binomial_Coeff(n-1,k)
0
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_greater_lesser_variable
def binomial_Coeff(n,k): if k < n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
0
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_equalto_exclamation_variable
def binomial_Coeff(n,k): if k > n : return 0 if k!=0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
0
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_or_and_variable
def binomial_Coeff(n,k): if k > n : return 0 if k==0 and k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
0
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
27
mbpp
def binomial_Coeff(n,k): if k > n : return 0 if k==0 or k ==n : return 1 return binomial_Coeff(n-1,k-1) + binomial_Coeff(n-1,k)
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
27
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_dead_code_insert
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while N != 0: rem = N % 2 _i_8 = 0 if _i_8 < _i_8: cnt = 0 c = pow(10, cnt) B_Number += rem * c N //= 2 cnt += 1 return B_Number
1
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_for_while_loop
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while N != 0: rem = N % 2 c = pow(10, cnt) B_Number += rem * c N //= 2 cnt += 1 return B_Number
1
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_operand_swap
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while 0 != N: rem = N % 2 c = pow(10, cnt) B_Number += rem * c N //= 2 cnt += 1 return B_Number
1
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_rename_variable_cb
def decimal_To_Binary(rem2): B_Number = 0 cnt = 0 while rem2 != 0: rem = rem2 % 2 c = pow(10, cnt) B_Number += rem * c rem2 //= 2 cnt += 1 return B_Number
1
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_rename_variable_naive
def decimal_To_Binary(VAR_0): B_Number = 0 cnt = 0 while VAR_0 != 0: rem = VAR_0 % 2 c = pow(10, cnt) B_Number += rem * c VAR_0 //= 2 cnt += 1 return B_Number
1
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_rename_variable_rn
def decimal_To_Binary(K): B_Number = 0 cnt = 0 while K != 0: rem = K % 2 c = pow(10, cnt) B_Number += rem * c K //= 2 cnt += 1 return B_Number
1
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_add_sub_variable
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number -= rem*c N //= 2 cnt += 1 return B_Number
0
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_mul_div_variable
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem/c N //= 2 cnt += 1 return B_Number
0
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_div_mul_variable
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N */= 2 cnt += 1 return B_Number
0
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_exclamation_equalto_variable
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N == 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
0
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
32
mbpp
def decimal_To_Binary(N): B_Number = 0 cnt = 0 while (N != 0): rem = N % 2 c = pow(10,cnt) B_Number += rem*c N //= 2 cnt += 1 return B_Number
transformation_dissimilar_code_injection_4
def count_ways(n): A = [0] * (n + 1) B = [0] * (n + 1) A[0] = 1 A[1] = 0 B[0] = 0 B[1] = 1 for i in range(2, n+1): A[i] = A[i - 2] + 2 * B[i - 1] B[i] = A[i - 1] + B[i - 2] return A[n]
0
32
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_dead_code_insert
def find_rect_num(n): for _i_4 in range(0): return n * (n + 1) return n * (n + 1)
1
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_for_while_loop
def find_rect_num(n): return n * (n + 1)
1
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_operand_swap
def find_rect_num(n): return n * (n + 1)
1
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_rename_variable_cb
def find_rect_num(i): return i * (i + 1)
1
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_rename_variable_naive
def find_rect_num(VAR_0): return VAR_0 * (VAR_0 + 1)
1
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_rename_variable_rn
def find_rect_num(q): return q * (q + 1)
1
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_add_sub_variable
def find_rect_num(n): return n*(n - 1)
0
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_mul_div_variable
def find_rect_num(n): return n/(n + 1)
0
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_dissimilar_code_injection_0
def min_cost(cost, m, n): R = 3 C = 3 tc = [[0 for x in range(C)] for x in range(R)] tc[0][0] = cost[0][0] for i in range(1, m+1): tc[i][0] = tc[i-1][0] + cost[i][0] for j in range(1, n+1): tc[0][j] = tc[0][j-1] + cost[0][j] for i in range(1, m+1): for j in range(1, n+1): tc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] return tc[m][n]
0
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_dissimilar_code_injection_1
def similar_elements(test_tup1, test_tup2): res = tuple(set(test_tup1) & set(test_tup2)) return (res)
0
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_dissimilar_code_injection_2
def is_not_prime(n): import math result = False for i in range(2,int(math.sqrt(n)) + 1): if n % i == 0: result = True return result
0
34
mbpp
def find_rect_num(n): return n*(n + 1)
transformation_dissimilar_code_injection_3
def heap_queue_largest(nums,n): import heapq as hq largest_nums = hq.nlargest(n, nums) return largest_nums
0
34
mbpp