Add dataset card for OpenSDI: Spotting Diffusion-Generated Images

#2
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +38 -45
README.md CHANGED
@@ -1,47 +1,40 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: key
5
- dtype: string
6
- - name: image
7
- dtype: image
8
- - name: mask
9
- dtype: image
10
- - name: label
11
- dtype:
12
- class_label:
13
- names:
14
- '0': real
15
- '1': fake
16
- splits:
17
- - name: sd15
18
- num_bytes: 9360582700.0
19
- num_examples: 20000
20
- - name: sd3
21
- num_bytes: 4644105100.0
22
- num_examples: 20000
23
- - name: sd2
24
- num_bytes: 3270806600.0
25
- num_examples: 20000
26
- - name: sdxl
27
- num_bytes: 4185546140.0
28
- num_examples: 20000
29
- - name: flux
30
- num_bytes: 3353782220.0
31
- num_examples: 20000
32
- download_size: 18266080332
33
- dataset_size: 24814822760.0
34
- configs:
35
- - config_name: default
36
- data_files:
37
- - split: sd15
38
- path: data/sd15-*
39
- - split: sd3
40
- path: data/sd3-*
41
- - split: sd2
42
- path: data/sd2-*
43
- - split: sdxl
44
- path: data/sdxl-*
45
- - split: flux
46
- path: data/flux-*
47
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-sa-4.0
3
+ task_categories:
4
+ - image-classification
5
+ tags:
6
+ - diffusion
7
+ - image-generation
8
+ - ai-generated-content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
+
11
+ # OpenSDI: Spotting Diffusion-Generated Images in the Open World
12
+
13
+ This dataset is designed to address the **OpenSDI challenge**: spotting diffusion-generated images in realistic, open-world scenarios. It is described in the paper: [](https://huggingface.co/papers/2503.19653)
14
+
15
+ **Project Page:** [https://iamwangyabin.github.io/OpenSDI/](https://iamwangyabin.github.io/OpenSDI/)
16
+
17
+ **OpenSDID Dataset Highlights:**
18
+
19
+ * **User Diversity:** Simulates a wide range of user intentions and creative styles using diverse text prompts generated by VLMs.
20
+ * **Model Innovation:** Includes images from multiple state-of-the-art diffusion models (SD1.5, SD2.1, SDXL, SD3, Flux.1) released after 2023.
21
+ * **Manipulation Scope:** Covers the full spectrum of diffusion-based manipulation, from global image synthesis to precise local edits, object insertions, and background changes.
22
+
23
+ **Dataset Overview:**
24
+
25
+ | Model | Training Set | | Test Set | | Total |
26
+ | :------ | :----------- | :------- | :------- | :------- | :----- |
27
+ | | Real | Fake | Real | Fake | Images |
28
+ | SD1.5 | 100K | 100K | 10K | 10K | 220K |
29
+ | SD2.1 | - | - | 10K | 10K | 20K |
30
+ | SDXL | - | - | 10K | 10K | 20K |
31
+ | SD3 | - | - | 10K | 10K | 20K |
32
+ | Flux.1 | - | - | 10K | 10K | 20K |
33
+ | **Total** | **100K** | **100K** | **50K** | **50K** | **300K** |
34
+
35
+ **Download:**
36
+
37
+ * **OpenSDI Training Dataset:** [https://huggingface.co/datasets/nebula/OpenSDI_train](https://huggingface.co/datasets/nebula/OpenSDI_train)
38
+ * **OpenSDI Testing Dataset:** This repository
39
+
40
+ This dataset is for academic use and is distributed under the [CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/). Real images come from [megalith-10m](https://huggingface.co/datasets/madebyollin/megalith-10m).