You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Thank you for your interest in using this dataset I kindly ask you to cite the following research papers when using this dataset in your work:

@inproceedings{edwards2024_LPM24,
    title = "{L}+{M}-24: Building a Dataset for {L}anguage+{M}olecules @ {ACL} 2024",
    author = "Edwards, Carl  and
      Wang, Qingyun  and
      Zhao, Lawrence  and
      Ji, Heng",
    booktitle = "Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.langmol-1.1",
    doi = "10.18653/v1/2024.langmol-1.1",
    pages = "1--9",
}

@inproceedings{edwards-etal-2022-translation,
    title = "Translation between Molecules and Natural Language",
    author = "Edwards, Carl  and
      Lai, Tuan  and
      Ros, Kevin  and
      Honke, Garrett  and
      Cho, Kyunghyun  and
      Ji, Heng",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.emnlp-main.26",
    pages = "375--413",
}

@inproceedings{tran-etal-2024-mol2lang,
    title = "{M}ol2{L}ang-{VLM}: Vision- and Text-Guided Generative Pre-trained Language Models for Advancing Molecule Captioning through Multimodal Fusion",
    author = "Tran, Duong  and
      Pham, Nhat Truong  and
      Nguyen, Nguyen  and
      Manavalan, Balachandran",
    editor = "Edwards, Carl  and
      Wang, Qingyun  and
      Li, Manling  and
      Zhao, Lawrence  and
      Hope, Tom  and
      Ji, Heng",
    booktitle = "Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.langmol-1.12/",
    doi = "10.18653/v1/2024.langmol-1.12",
    pages = "97--102",
    abstract = "This paper introduces Mol2Lang-VLM, an enhanced method for refining generative pre-trained language models for molecule captioning using multimodal features to achieve more accurate caption generation. Our approach leverages the encoder and decoder blocks of the Transformer-based architecture by introducing third sub-layers into both. Specifically, we insert sub-layers in the encoder to fuse features from SELFIES strings and molecular images, while the decoder fuses features from SMILES strings and their corresponding descriptions. Moreover, cross multi-head attention is employed instead of common multi-head attention to enable the decoder to attend to the encoder`s output, thereby integrating the encoded contextual information for better and more accurate caption generation. Performance evaluation on the CheBI-20 and L+M-24 benchmark datasets demonstrates Mol2Lang-VLM`s superiority, achieving higher accuracy and quality in caption generation compared to existing methods. Our code and pre-processed data are available at https://github.com/nhattruongpham/mol-lang-bridge/tree/mol2lang/."
}

@inproceedings{nguyen-etal-2024-lang2mol,
    title = "{L}ang2{M}ol-Diff: A Diffusion-Based Generative Model for Language-to-Molecule Translation Leveraging {SELFIES} Representation",
    author = "Nguyen, Nguyen  and
      Pham, Nhat Truong  and
      Tran, Duong  and
      Manavalan, Balachandran",
    editor = "Edwards, Carl  and
      Wang, Qingyun  and
      Li, Manling  and
      Zhao, Lawrence  and
      Hope, Tom  and
      Ji, Heng",
    booktitle = "Proceedings of the 1st Workshop on Language + Molecules (L+M 2024)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.langmol-1.15/",
    doi = "10.18653/v1/2024.langmol-1.15",
    pages = "128--134",
    abstract = "Generating de novo molecules from textual descriptions is challenging due to potential issues with molecule validity in SMILES representation and limitations of autoregressive models. This work introduces Lang2Mol-Diff, a diffusion-based language-to-molecule generative model using the SELFIES representation. Specifically, Lang2Mol-Diff leverages the strengths of two state-of-the-art molecular generative models: BioT5 and TGM-DLM. By employing BioT5 to tokenize the SELFIES representation, Lang2Mol-Diff addresses the validity issues associated with SMILES strings. Additionally, it incorporates a text diffusion mechanism from TGM-DLM to overcome the limitations of autoregressive models in this domain. To the best of our knowledge, this is the first study to leverage the diffusion mechanism for text-based de novo molecule generation using the SELFIES molecular string representation. Performance evaluation on the L+M-24 benchmark dataset shows that Lang2Mol-Diff outperforms all existing methods for molecule generation in terms of validity. Our code and pre-processed data are available at https://github.com/nhattruongpham/mol-lang-bridge/tree/lang2mol/."
}
Downloads last month
32