Dataset Viewer
Auto-converted to Parquet
images
unknown
annotation
stringlengths
1.71k
7.04k
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"Zb6N\", \"1\": \"\", \"2\": \"nO3yhKdmU\", \"3\": \"\", \"4\": \"RNW2zO6f\", (...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"dU2dfO7gTw\", \"1\": \"rP4mxRC\", \"2\": \"xaJr\", \"3\": \"kH7WGZ1\", \"4\":(...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"V3cA3fyP\", \"1\": \"60AQeC\", \"2\": \"MxBkJ6\", \"3\": \"8QRnseV\", \"4\": (...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"NQKU3vOj\", \"1\": \"OnCz8\", \"2\": \"z2u7M57aWd\", \"3\": \"g8f75\", \"4\":(...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"LoN3z\", \"1\": \"gfskLK\", \"2\": \"Tocw\", \"3\": \"Dnp8\", \"4\": \"LbW\",(...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"Kt5rzp\", \"1\": \"\", \"2\": \"Pz3ZNk\", \"3\": \"07XOlFJMv\", \"4\": \"KRMu(...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"2oqqxpyWs\", \"1\": \"KaV4k9mK8\", \"2\": \"Zztww\", \"3\": \"8AZup\", \"4\":(...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"YXuR0Z3h\", \"1\": \"M5y8rAHyby\", \"2\": \"\", \"3\": \"fSat\", \"4\": \"40D(...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"Wgk\", \"1\": \"8sKFq\", \"2\": \"ubmT4hl\", \"3\": \"zehMxx4Ir\", \"4\": \"k(...TRUNCATED)
"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDA(...TRUNCATED)
"{\"Col_1\": {\"0\": \"\", \"1\": \"CeCcQ5vq9c\", \"2\": \"5uYCT\", \"3\": \"\", \"4\": \"\", \"5\":(...TRUNCATED)
End of preview. Expand in Data Studio

This dataset is generated syhthetically to create tables with following characteristics:

  1. Empty cell percentage in following range [0,30] (Dense)
  2. There is clear seperator between rows and columns (Structured).
  3. 15 <= num rows <= 30, 7 <= num columns <= 15 (Long)

Load the dataset

import io
import pandas as pd
from PIL import Image

def bytes_to_image(self, image_bytes: bytes):
  return Image.open(io.BytesIO(image_bytes))

def parse_annotations(self, annotations: str) -> pd.DataFrame:
  return pd.read_json(StringIO(annotations), orient="records")

test_data = load_dataset('nanonets/long_dense_structured_table', split='test')
data_point = test_data[0]
image, gt_table = (
    bytes_to_image(data_point["images"]),
    parse_annotations(data_point["annotation"]),
)
Downloads last month
101

Collection including nanonets/long_dense_structured_table