Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
profile pic
int64
nums/length username
float64
fullname words
int64
nums/length fullname
float64
name==username
int64
description length
int64
external URL
int64
private
int64
#posts
int64
#followers
int64
#follows
int64
fake
int64
1
0.27
0
0
0
53
0
0
32
1,000
955
0
1
0
2
0
0
44
0
0
286
2,740
533
0
1
0.1
2
0
0
0
0
1
13
159
98
0
1
0
1
0
0
82
0
0
679
414
651
0
1
0
2
0
0
0
0
1
6
151
126
0
1
0
4
0
0
81
1
0
344
669,987
150
0
1
0
2
0
0
50
0
0
16
122
177
0
1
0
2
0
0
0
0
0
33
1,078
76
0
1
0
0
0
0
71
0
0
72
1,824
2,713
0
1
0
2
0
0
40
1
0
213
12,945
813
0
1
0
2
0
0
54
0
0
648
9,884
1,173
0
1
0
2
0
0
54
1
0
76
1,188
365
0
1
0
2
0
0
0
1
0
298
945
583
0
1
0
2
0
0
103
1
0
117
12,033
248
0
1
0
2
0
0
98
1
0
487
1,962
2,701
0
1
0
3
0
0
46
0
0
254
50,374
900
0
1
0
3
0
0
0
0
0
59
7,007
289
0
1
0.29
3
0
0
48
0
0
1,570
1,128
694
0
1
0
2
0
0
63
1
0
378
34,670
1,878
0
1
0
2
0
0
106
1
0
526
2,338
776
0
1
0
2
0
0
40
0
0
228
3,516
999
0
1
0
1
0
0
35
1
1
35
1,809
416
0
1
0
2
0
0
30
0
0
281
427
470
0
1
0
1
0
0
27
0
0
285
759
956
0
1
0
0
0
0
0
0
0
148
15,338,538
61
0
1
0
1
0
0
109
1
1
57
109
179
0
1
0
6
0
0
0
0
1
17
536
665
0
1
0
2
0
0
132
1
0
511
121,354
176
0
1
0
2
0
0
126
1
0
230
2,284
130
0
1
0
2
0
0
122
0
1
15
186
174
0
1
0
2
0
0
138
0
1
980
687
1,517
0
1
0.13
0
0
0
0
0
1
53
966
952
0
1
0
2
0
0
50
0
1
111
177
170
0
1
0
2
0
0
35
0
0
719
744
967
0
1
0
2
0
0
56
1
0
1,164
542,073
674
0
1
0.18
2
0
0
9
0
0
497
5,315,651
2,703
0
1
0.33
0
0
0
0
0
1
18
267
328
0
1
0
2
0
0
81
0
0
50
691
680
0
1
0
2
0
0
134
0
1
74
120
112
0
1
0
2
0
0
0
0
0
8
105
98
0
1
0
0
0
0
2
0
0
7,389
890,969
11
0
1
0
2
0
0
0
1
0
420
361,853
583
0
1
0
2
0
0
23
0
0
433
3,678
1,359
0
1
0
2
0
0
138
1
0
156
92,192
16
0
1
0
4
0
0
35
0
0
4,494
12,397,719
8
0
1
0
3
0
0
93
0
0
751
380,510
0
0
1
0
2
0
0
4
0
1
4
132
183
0
1
0
2
0
0
1
0
1
27
162
208
0
1
0
1
0
0
4
0
0
91
369
546
0
1
0
0
0
0
23
0
0
262
1,476
666
0
1
0
3
0
0
91
1
0
274
1,798
461
0
1
0
2
0
0
57
0
0
271
2,118
1,109
0
1
0
1
0
0
108
1
0
713
812
432
0
1
0
2
0.12
0
30
1
0
200
7,217
761
0
1
0
0
0
0
82
0
0
12
313
376
0
1
0.12
1
0
0
12
1
0
26
64
261
0
1
0
2
0
0
54
0
0
75
1,759
643
0
1
0
1
0
0
0
0
1
94
404
283
0
1
0
1
0
0
12
0
0
63
1,843
598
0
1
0.12
2
0
0
0
0
0
69
320,377
228
0
1
0
1
0
0
3
0
0
12
108
97
0
1
0
1
0
0
39
1
0
63
384
447
0
1
0.19
2
0
0
0
0
0
19
60
100
0
1
0
1
0
0
68
1
0
100
802
151
0
1
0
2
0
0
129
1
0
661
51,145
528
0
1
0
2
0
0
57
1
0
149
1,582
1,882
0
1
0
2
0
0
64
0
0
22
223
266
0
1
0
1
0
0
42
0
0
400
18,842
744
0
1
0
2
0
0
71
1
0
149
10,240
1,255
0
1
0
3
0
0
0
0
0
122
539
639
0
1
0.33
2
0
0
70
0
0
74
399
452
0
1
0
1
0
0
74
0
0
13
581
568
0
1
0
1
0
0
8
0
1
8
166
163
0
1
0
2
0
0
35
0
0
77
417
362
0
1
0.2
2
0
0
0
0
1
5
266
324
0
1
0
1
0
0
0
0
1
3
33
37
0
1
0
2
0
0
28
0
1
106
494
998
0
1
0
2
0
0
18
0
1
14
178
245
0
1
0
3
0
0
28
0
0
172
470
288
0
1
0.33
1
0
0
36
0
0
111
807
675
0
1
0
2
0
0
2
0
0
38
162
256
0
1
0.06
2
0
0
11
0
1
19
417
395
0
1
0
3
0
0
70
1
0
227
17,303
360
0
1
0
2
0
0
29
0
0
221
1,439
629
0
1
0
2
0
0
24
1
0
580
91,446
526
0
1
0
3
0
0
21
1
0
40
824
489
0
1
0
1
0
0
81
0
0
101
741
1,440
0
1
0
1
0
0
34
1
1
157
1,267
899
0
1
0
0
0
0
40
0
0
197
4,594
1,713
0
1
0
1
0
0
12
0
0
61
1,135
899
0
1
0
2
0
0
0
0
1
698
1,926
1,410
0
1
0
2
0
0
59
0
1
49
1,068
1,925
0
1
0
1
0
0
15
0
1
85
815
748
0
1
0
2
0
0
54
0
0
77
565
469
0
1
0
1
0
0
16
0
0
58
2,556
1,074
0
1
0
2
0
0
73
0
1
232
1,312
935
0
1
0
1
0
0
24
0
0
20
699
599
0
1
0
0
0
0
0
0
0
98
4,328
418
0
1
0
0
0
0
26
1
0
559
2,487
999
0
1
0
3
0
0
0
0
0
189
673
438
0
End of preview. Expand in Data Studio

Instagram Fake Profile Detection Dataset

Dataset Summary

This dataset contains 5,000 Instagram profiles labeled as either fake or real, designed for binary classification tasks in social media fraud detection. The dataset provides comprehensive profile features that can be used to train machine learning models to automatically identify fake Instagram accounts.

Dataset Details

  • Total Samples: 5,000 profiles
  • Classes: Binary (0 = Real, 1 = Fake)
  • Class Distribution: Perfectly balanced (2,500 fake, 2,500 real)
  • Features: 11 profile characteristics + 1 target label
  • Format: CSV file

Features Description

Feature Type Description Range
profile pic Binary Whether profile has a picture (1) or not (0) 0-1
nums/length username Float Ratio of numbers to total characters in username 0.0-0.92
fullname words Integer Number of words in the full name 0-12
nums/length fullname Float Ratio of numbers to total characters in full name 0.0-1.0
name==username Binary Whether full name equals username (1) or not (0) 0-1
description length Integer Character count of profile description/bio 0-150
external URL Binary Whether profile contains external URL (1) or not (0) 0-1
private Binary Whether account is private (1) or public (0) 0-1
#posts Integer Total number of posts 0-7,389
#followers Integer Number of followers 0-15.3M
#follows Integer Number of accounts being followed 0-7,500
fake Binary Target variable - Fake (1) or Real (0) 0-1

Key Statistics

  • Profile Pictures: 60% of profiles have profile pictures
  • Username Patterns: Average 17% numeric characters in usernames
  • Descriptions: Average 21 characters in bio descriptions
  • Privacy: 23% of accounts are private
  • Activity: Average 103 posts per profile
  • Social Metrics:
    • Average followers: ~51K (highly variable)
    • Average following: ~481 accounts

Use Cases

This dataset is ideal for:

  • Binary Classification: Train models to detect fake Instagram profiles
  • Feature Engineering: Analyze which profile characteristics best distinguish fake accounts
  • Social Media Research: Study patterns in fraudulent social media behavior
  • Anomaly Detection: Develop unsupervised methods for identifying suspicious profiles
  • Educational Projects: Learn machine learning classification techniques

Quick Start

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

# Load dataset
df = pd.read_csv('Instagram_fake_profile_dataset.csv')

# Prepare features and target
X = df.drop('fake', axis=1)
y = df['fake']

# Split data
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
)

# Train model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)

# Evaluate
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))

Suggested Models

  • Traditional ML: Random Forest, SVM, Gradient Boosting, Logistic Regression
  • Deep Learning: Neural Networks for feature interaction modeling
  • Ensemble Methods: Combining multiple algorithms for improved performance
  • Unsupervised: Isolation Forest, One-Class SVM for anomaly detection

Data Quality

  • Balanced Dataset: Equal representation prevents class bias
  • Complete Data: No missing values
  • Realistic Ranges: All features show realistic distributions
  • Privacy Compliant: Only behavioral features, no personal information

Research Opportunities

  1. Which profile features are most predictive of fake accounts?
  2. How do fake profiles differ in posting behavior vs. real users?
  3. Can feature interactions improve detection accuracy?
  4. What behavioral patterns emerge in fraudulent accounts?

Citation

@dataset{instagram_fake_profiles_2024,
  title={Instagram Fake Profile Detection Dataset},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/nahiar/instagram-bot-detection}
}
Downloads last month
140