Dataset Viewer
Search is not available for this dataset
profile pic
int64 | nums/length username
float64 | fullname words
int64 | nums/length fullname
float64 | name==username
int64 | description length
int64 | external URL
int64 | private
int64 | #posts
int64 | #followers
int64 | #follows
int64 | fake
int64 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.27 | 0 | 0 | 0 | 53 | 0 | 0 | 32 | 1,000 | 955 | 0 |
1 | 0 | 2 | 0 | 0 | 44 | 0 | 0 | 286 | 2,740 | 533 | 0 |
1 | 0.1 | 2 | 0 | 0 | 0 | 0 | 1 | 13 | 159 | 98 | 0 |
1 | 0 | 1 | 0 | 0 | 82 | 0 | 0 | 679 | 414 | 651 | 0 |
1 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 6 | 151 | 126 | 0 |
1 | 0 | 4 | 0 | 0 | 81 | 1 | 0 | 344 | 669,987 | 150 | 0 |
1 | 0 | 2 | 0 | 0 | 50 | 0 | 0 | 16 | 122 | 177 | 0 |
1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 33 | 1,078 | 76 | 0 |
1 | 0 | 0 | 0 | 0 | 71 | 0 | 0 | 72 | 1,824 | 2,713 | 0 |
1 | 0 | 2 | 0 | 0 | 40 | 1 | 0 | 213 | 12,945 | 813 | 0 |
1 | 0 | 2 | 0 | 0 | 54 | 0 | 0 | 648 | 9,884 | 1,173 | 0 |
1 | 0 | 2 | 0 | 0 | 54 | 1 | 0 | 76 | 1,188 | 365 | 0 |
1 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 298 | 945 | 583 | 0 |
1 | 0 | 2 | 0 | 0 | 103 | 1 | 0 | 117 | 12,033 | 248 | 0 |
1 | 0 | 2 | 0 | 0 | 98 | 1 | 0 | 487 | 1,962 | 2,701 | 0 |
1 | 0 | 3 | 0 | 0 | 46 | 0 | 0 | 254 | 50,374 | 900 | 0 |
1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 59 | 7,007 | 289 | 0 |
1 | 0.29 | 3 | 0 | 0 | 48 | 0 | 0 | 1,570 | 1,128 | 694 | 0 |
1 | 0 | 2 | 0 | 0 | 63 | 1 | 0 | 378 | 34,670 | 1,878 | 0 |
1 | 0 | 2 | 0 | 0 | 106 | 1 | 0 | 526 | 2,338 | 776 | 0 |
1 | 0 | 2 | 0 | 0 | 40 | 0 | 0 | 228 | 3,516 | 999 | 0 |
1 | 0 | 1 | 0 | 0 | 35 | 1 | 1 | 35 | 1,809 | 416 | 0 |
1 | 0 | 2 | 0 | 0 | 30 | 0 | 0 | 281 | 427 | 470 | 0 |
1 | 0 | 1 | 0 | 0 | 27 | 0 | 0 | 285 | 759 | 956 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 148 | 15,338,538 | 61 | 0 |
1 | 0 | 1 | 0 | 0 | 109 | 1 | 1 | 57 | 109 | 179 | 0 |
1 | 0 | 6 | 0 | 0 | 0 | 0 | 1 | 17 | 536 | 665 | 0 |
1 | 0 | 2 | 0 | 0 | 132 | 1 | 0 | 511 | 121,354 | 176 | 0 |
1 | 0 | 2 | 0 | 0 | 126 | 1 | 0 | 230 | 2,284 | 130 | 0 |
1 | 0 | 2 | 0 | 0 | 122 | 0 | 1 | 15 | 186 | 174 | 0 |
1 | 0 | 2 | 0 | 0 | 138 | 0 | 1 | 980 | 687 | 1,517 | 0 |
1 | 0.13 | 0 | 0 | 0 | 0 | 0 | 1 | 53 | 966 | 952 | 0 |
1 | 0 | 2 | 0 | 0 | 50 | 0 | 1 | 111 | 177 | 170 | 0 |
1 | 0 | 2 | 0 | 0 | 35 | 0 | 0 | 719 | 744 | 967 | 0 |
1 | 0 | 2 | 0 | 0 | 56 | 1 | 0 | 1,164 | 542,073 | 674 | 0 |
1 | 0.18 | 2 | 0 | 0 | 9 | 0 | 0 | 497 | 5,315,651 | 2,703 | 0 |
1 | 0.33 | 0 | 0 | 0 | 0 | 0 | 1 | 18 | 267 | 328 | 0 |
1 | 0 | 2 | 0 | 0 | 81 | 0 | 0 | 50 | 691 | 680 | 0 |
1 | 0 | 2 | 0 | 0 | 134 | 0 | 1 | 74 | 120 | 112 | 0 |
1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 8 | 105 | 98 | 0 |
1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 7,389 | 890,969 | 11 | 0 |
1 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 420 | 361,853 | 583 | 0 |
1 | 0 | 2 | 0 | 0 | 23 | 0 | 0 | 433 | 3,678 | 1,359 | 0 |
1 | 0 | 2 | 0 | 0 | 138 | 1 | 0 | 156 | 92,192 | 16 | 0 |
1 | 0 | 4 | 0 | 0 | 35 | 0 | 0 | 4,494 | 12,397,719 | 8 | 0 |
1 | 0 | 3 | 0 | 0 | 93 | 0 | 0 | 751 | 380,510 | 0 | 0 |
1 | 0 | 2 | 0 | 0 | 4 | 0 | 1 | 4 | 132 | 183 | 0 |
1 | 0 | 2 | 0 | 0 | 1 | 0 | 1 | 27 | 162 | 208 | 0 |
1 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 91 | 369 | 546 | 0 |
1 | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 262 | 1,476 | 666 | 0 |
1 | 0 | 3 | 0 | 0 | 91 | 1 | 0 | 274 | 1,798 | 461 | 0 |
1 | 0 | 2 | 0 | 0 | 57 | 0 | 0 | 271 | 2,118 | 1,109 | 0 |
1 | 0 | 1 | 0 | 0 | 108 | 1 | 0 | 713 | 812 | 432 | 0 |
1 | 0 | 2 | 0.12 | 0 | 30 | 1 | 0 | 200 | 7,217 | 761 | 0 |
1 | 0 | 0 | 0 | 0 | 82 | 0 | 0 | 12 | 313 | 376 | 0 |
1 | 0.12 | 1 | 0 | 0 | 12 | 1 | 0 | 26 | 64 | 261 | 0 |
1 | 0 | 2 | 0 | 0 | 54 | 0 | 0 | 75 | 1,759 | 643 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 94 | 404 | 283 | 0 |
1 | 0 | 1 | 0 | 0 | 12 | 0 | 0 | 63 | 1,843 | 598 | 0 |
1 | 0.12 | 2 | 0 | 0 | 0 | 0 | 0 | 69 | 320,377 | 228 | 0 |
1 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 12 | 108 | 97 | 0 |
1 | 0 | 1 | 0 | 0 | 39 | 1 | 0 | 63 | 384 | 447 | 0 |
1 | 0.19 | 2 | 0 | 0 | 0 | 0 | 0 | 19 | 60 | 100 | 0 |
1 | 0 | 1 | 0 | 0 | 68 | 1 | 0 | 100 | 802 | 151 | 0 |
1 | 0 | 2 | 0 | 0 | 129 | 1 | 0 | 661 | 51,145 | 528 | 0 |
1 | 0 | 2 | 0 | 0 | 57 | 1 | 0 | 149 | 1,582 | 1,882 | 0 |
1 | 0 | 2 | 0 | 0 | 64 | 0 | 0 | 22 | 223 | 266 | 0 |
1 | 0 | 1 | 0 | 0 | 42 | 0 | 0 | 400 | 18,842 | 744 | 0 |
1 | 0 | 2 | 0 | 0 | 71 | 1 | 0 | 149 | 10,240 | 1,255 | 0 |
1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 122 | 539 | 639 | 0 |
1 | 0.33 | 2 | 0 | 0 | 70 | 0 | 0 | 74 | 399 | 452 | 0 |
1 | 0 | 1 | 0 | 0 | 74 | 0 | 0 | 13 | 581 | 568 | 0 |
1 | 0 | 1 | 0 | 0 | 8 | 0 | 1 | 8 | 166 | 163 | 0 |
1 | 0 | 2 | 0 | 0 | 35 | 0 | 0 | 77 | 417 | 362 | 0 |
1 | 0.2 | 2 | 0 | 0 | 0 | 0 | 1 | 5 | 266 | 324 | 0 |
1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 3 | 33 | 37 | 0 |
1 | 0 | 2 | 0 | 0 | 28 | 0 | 1 | 106 | 494 | 998 | 0 |
1 | 0 | 2 | 0 | 0 | 18 | 0 | 1 | 14 | 178 | 245 | 0 |
1 | 0 | 3 | 0 | 0 | 28 | 0 | 0 | 172 | 470 | 288 | 0 |
1 | 0.33 | 1 | 0 | 0 | 36 | 0 | 0 | 111 | 807 | 675 | 0 |
1 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 38 | 162 | 256 | 0 |
1 | 0.06 | 2 | 0 | 0 | 11 | 0 | 1 | 19 | 417 | 395 | 0 |
1 | 0 | 3 | 0 | 0 | 70 | 1 | 0 | 227 | 17,303 | 360 | 0 |
1 | 0 | 2 | 0 | 0 | 29 | 0 | 0 | 221 | 1,439 | 629 | 0 |
1 | 0 | 2 | 0 | 0 | 24 | 1 | 0 | 580 | 91,446 | 526 | 0 |
1 | 0 | 3 | 0 | 0 | 21 | 1 | 0 | 40 | 824 | 489 | 0 |
1 | 0 | 1 | 0 | 0 | 81 | 0 | 0 | 101 | 741 | 1,440 | 0 |
1 | 0 | 1 | 0 | 0 | 34 | 1 | 1 | 157 | 1,267 | 899 | 0 |
1 | 0 | 0 | 0 | 0 | 40 | 0 | 0 | 197 | 4,594 | 1,713 | 0 |
1 | 0 | 1 | 0 | 0 | 12 | 0 | 0 | 61 | 1,135 | 899 | 0 |
1 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 698 | 1,926 | 1,410 | 0 |
1 | 0 | 2 | 0 | 0 | 59 | 0 | 1 | 49 | 1,068 | 1,925 | 0 |
1 | 0 | 1 | 0 | 0 | 15 | 0 | 1 | 85 | 815 | 748 | 0 |
1 | 0 | 2 | 0 | 0 | 54 | 0 | 0 | 77 | 565 | 469 | 0 |
1 | 0 | 1 | 0 | 0 | 16 | 0 | 0 | 58 | 2,556 | 1,074 | 0 |
1 | 0 | 2 | 0 | 0 | 73 | 0 | 1 | 232 | 1,312 | 935 | 0 |
1 | 0 | 1 | 0 | 0 | 24 | 0 | 0 | 20 | 699 | 599 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 98 | 4,328 | 418 | 0 |
1 | 0 | 0 | 0 | 0 | 26 | 1 | 0 | 559 | 2,487 | 999 | 0 |
1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 189 | 673 | 438 | 0 |
End of preview. Expand
in Data Studio
Instagram Fake Profile Detection Dataset
Dataset Summary
This dataset contains 5,000 Instagram profiles labeled as either fake or real, designed for binary classification tasks in social media fraud detection. The dataset provides comprehensive profile features that can be used to train machine learning models to automatically identify fake Instagram accounts.
Dataset Details
- Total Samples: 5,000 profiles
- Classes: Binary (0 = Real, 1 = Fake)
- Class Distribution: Perfectly balanced (2,500 fake, 2,500 real)
- Features: 11 profile characteristics + 1 target label
- Format: CSV file
Features Description
Feature | Type | Description | Range |
---|---|---|---|
profile pic |
Binary | Whether profile has a picture (1) or not (0) | 0-1 |
nums/length username |
Float | Ratio of numbers to total characters in username | 0.0-0.92 |
fullname words |
Integer | Number of words in the full name | 0-12 |
nums/length fullname |
Float | Ratio of numbers to total characters in full name | 0.0-1.0 |
name==username |
Binary | Whether full name equals username (1) or not (0) | 0-1 |
description length |
Integer | Character count of profile description/bio | 0-150 |
external URL |
Binary | Whether profile contains external URL (1) or not (0) | 0-1 |
private |
Binary | Whether account is private (1) or public (0) | 0-1 |
#posts |
Integer | Total number of posts | 0-7,389 |
#followers |
Integer | Number of followers | 0-15.3M |
#follows |
Integer | Number of accounts being followed | 0-7,500 |
fake |
Binary | Target variable - Fake (1) or Real (0) | 0-1 |
Key Statistics
- Profile Pictures: 60% of profiles have profile pictures
- Username Patterns: Average 17% numeric characters in usernames
- Descriptions: Average 21 characters in bio descriptions
- Privacy: 23% of accounts are private
- Activity: Average 103 posts per profile
- Social Metrics:
- Average followers: ~51K (highly variable)
- Average following: ~481 accounts
Use Cases
This dataset is ideal for:
- Binary Classification: Train models to detect fake Instagram profiles
- Feature Engineering: Analyze which profile characteristics best distinguish fake accounts
- Social Media Research: Study patterns in fraudulent social media behavior
- Anomaly Detection: Develop unsupervised methods for identifying suspicious profiles
- Educational Projects: Learn machine learning classification techniques
Quick Start
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
# Load dataset
df = pd.read_csv('Instagram_fake_profile_dataset.csv')
# Prepare features and target
X = df.drop('fake', axis=1)
y = df['fake']
# Split data
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42, stratify=y
)
# Train model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
# Evaluate
y_pred = model.predict(X_test)
print(classification_report(y_test, y_pred))
Suggested Models
- Traditional ML: Random Forest, SVM, Gradient Boosting, Logistic Regression
- Deep Learning: Neural Networks for feature interaction modeling
- Ensemble Methods: Combining multiple algorithms for improved performance
- Unsupervised: Isolation Forest, One-Class SVM for anomaly detection
Data Quality
- ✅ Balanced Dataset: Equal representation prevents class bias
- ✅ Complete Data: No missing values
- ✅ Realistic Ranges: All features show realistic distributions
- ✅ Privacy Compliant: Only behavioral features, no personal information
Research Opportunities
- Which profile features are most predictive of fake accounts?
- How do fake profiles differ in posting behavior vs. real users?
- Can feature interactions improve detection accuracy?
- What behavioral patterns emerge in fraudulent accounts?
Citation
@dataset{instagram_fake_profiles_2024,
title={Instagram Fake Profile Detection Dataset},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/nahiar/instagram-bot-detection}
}
- Downloads last month
- 140