Samoed's picture
Add dataset card
f7f9c3c verified
metadata
annotations_creators:
  - derived
language:
  - ara
  - bam
  - bul
  - cmn
  - cym
  - deu
  - dza
  - ell
  - eng
  - eus
  - fas
  - fin
  - heb
  - hrv
  - ind
  - jpn
  - kor
  - mlt
  - nor
  - pol
  - rus
  - slk
  - spa
  - tha
  - tur
  - uig
  - urd
  - vie
  - zho
license: unknown
multilinguality: multilingual
task_categories:
  - text-classification
task_ids:
  - sentiment-analysis
  - sentiment-scoring
  - sentiment-classification
  - hate-speech-detection
configs:
  - config_name: default
    data_files:
      - path: train/*.parquet
        split: train
      - path: test/*.parquet
        split: test
      - path: validation/*.parquet
        split: validation
  - config_name: vie
    data_files:
      - path: train/vie.parquet
        split: train
      - path: test/vie.parquet
        split: test
      - path: validation/vie.parquet
        split: validation
  - config_name: eng
    data_files:
      - path: train/eng.parquet
        split: train
      - path: test/eng.parquet
        split: test
      - path: validation/eng.parquet
        split: validation
  - config_name: heb
    data_files:
      - path: train/heb.parquet
        split: train
      - path: test/heb.parquet
        split: test
      - path: validation/heb.parquet
        split: validation
  - config_name: urd
    data_files:
      - path: train/urd.parquet
        split: train
      - path: test/urd.parquet
        split: test
  - config_name: pol
    data_files:
      - path: train/pol.parquet
        split: train
      - path: test/pol.parquet
        split: test
  - config_name: fin
    data_files:
      - path: train/fin.parquet
        split: train
      - path: test/fin.parquet
        split: test
      - path: validation/fin.parquet
        split: validation
  - config_name: cmn
    data_files:
      - path: train/cmn.parquet
        split: train
      - path: test/cmn.parquet
        split: test
      - path: validation/cmn.parquet
        split: validation
  - config_name: rus
    data_files:
      - path: train/rus.parquet
        split: train
      - path: test/rus.parquet
        split: test
      - path: validation/rus.parquet
        split: validation
  - config_name: kor
    data_files:
      - path: train/kor.parquet
        split: train
      - path: test/kor.parquet
        split: test
      - path: validation/kor.parquet
        split: validation
  - config_name: fas
    data_files:
      - path: train/fas.parquet
        split: train
      - path: test/fas.parquet
        split: test
      - path: validation/fas.parquet
        split: validation
  - config_name: eus
    data_files:
      - path: train/eus.parquet
        split: train
      - path: test/eus.parquet
        split: test
      - path: validation/eus.parquet
        split: validation
  - config_name: nor
    data_files:
      - path: train/nor.parquet
        split: train
      - path: test/nor.parquet
        split: test
      - path: validation/nor.parquet
        split: validation
  - config_name: spa
    data_files:
      - path: train/spa.parquet
        split: train
      - path: test/spa.parquet
        split: test
      - path: validation/spa.parquet
        split: validation
  - config_name: ara
    data_files:
      - path: train/ara.parquet
        split: train
      - path: test/ara.parquet
        split: test
      - path: validation/ara.parquet
        split: validation
  - config_name: uig
    data_files:
      - path: train/uig.parquet
        split: train
      - path: test/uig.parquet
        split: test
  - config_name: hin
    data_files:
      - path: train/hin.parquet
        split: train
      - path: validation/hin.parquet
        split: validation
  - config_name: mlt
    data_files:
      - path: train/mlt.parquet
        split: train
      - path: test/mlt.parquet
        split: test
      - path: validation/mlt.parquet
        split: validation
  - config_name: jpn
    data_files:
      - path: train/jpn.parquet
        split: train
      - path: test/jpn.parquet
        split: test
      - path: validation/jpn.parquet
        split: validation
  - config_name: dza
    data_files:
      - path: train/dza.parquet
        split: train
      - path: test/dza.parquet
        split: test
      - path: validation/dza.parquet
        split: validation
  - config_name: zho
    data_files:
      - path: train/zho.parquet
        split: train
      - path: test/zho.parquet
        split: test
      - path: validation/zho.parquet
        split: validation
  - config_name: ind
    data_files:
      - path: train/ind.parquet
        split: train
      - path: test/ind.parquet
        split: test
      - path: validation/ind.parquet
        split: validation
  - config_name: slk
    data_files:
      - path: train/slk.parquet
        split: train
      - path: test/slk.parquet
        split: test
      - path: validation/slk.parquet
        split: validation
  - config_name: bul
    data_files:
      - path: train/bul.parquet
        split: train
      - path: test/bul.parquet
        split: test
      - path: validation/bul.parquet
        split: validation
  - config_name: bam
    data_files:
      - path: train/bam.parquet
        split: train
      - path: test/bam.parquet
        split: test
  - config_name: deu
    data_files:
      - path: train/deu.parquet
        split: train
      - path: test/deu.parquet
        split: test
      - path: validation/deu.parquet
        split: validation
  - config_name: tur
    data_files:
      - path: train/tur.parquet
        split: train
      - path: test/tur.parquet
        split: test
      - path: validation/tur.parquet
        split: validation
  - config_name: ell
    data_files:
      - path: train/ell.parquet
        split: train
      - path: test/ell.parquet
        split: test
      - path: validation/ell.parquet
        split: validation
  - config_name: tha
    data_files:
      - path: train/tha.parquet
        split: train
      - path: test/tha.parquet
        split: test
      - path: validation/tha.parquet
        split: validation
  - config_name: hrv
    data_files:
      - path: train/hrv.parquet
        split: train
      - path: test/hrv.parquet
        split: test
      - path: validation/hrv.parquet
        split: validation
  - config_name: cym
    data_files:
      - path: test/cym.parquet
        split: test
tags:
  - mteb
  - text

MultilingualSentimentClassification

An MTEB dataset
Massive Text Embedding Benchmark

Sentiment classification dataset with binary (positive vs negative sentiment) labels. Includes 30 languages and dialects.

Task category t2c
Domains Reviews, Written
Reference https://huggingface.co/datasets/mteb/multilingual-sentiment-classification

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["MultilingualSentimentClassification"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{mollanorozy-etal-2023-cross,
  address = {Dubrovnik, Croatia},
  author = {Mollanorozy, Sepideh  and
Tanti, Marc  and
Nissim, Malvina},
  booktitle = {Proceedings of the 5th Workshop on Research in Computational Linguistic Typology and Multilingual NLP},
  doi = {10.18653/v1/2023.sigtyp-1.9},
  editor = {Beinborn, Lisa  and
Goswami, Koustava  and
Murado{\\u{g}}lu, Saliha  and
Sorokin, Alexey  and
Kumar, Ritesh  and
Shcherbakov, Andreas  and
Ponti, Edoardo M.  and
Cotterell, Ryan  and
Vylomova, Ekaterina},
  month = may,
  pages = {89--95},
  publisher = {Association for Computational Linguistics},
  title = {Cross-lingual Transfer Learning with \{P\}ersian},
  url = {https://aclanthology.org/2023.sigtyp-1.9},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("MultilingualSentimentClassification")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 49450,
        "number_of_characters": 11764042,
        "number_texts_intersect_with_train": 7395,
        "min_text_length": 1,
        "average_text_length": 237.8977148634985,
        "max_text_length": 37249,
        "unique_text": 49415,
        "unique_labels": 2,
        "labels": {
            "1": {
                "count": 30554
            },
            "0": {
                "count": 18896
            }
        }
    },
    "train": {
        "num_samples": 243325,
        "number_of_characters": 63920925,
        "number_texts_intersect_with_train": null,
        "min_text_length": 1,
        "average_text_length": 262.69772937429366,
        "max_text_length": 390168,
        "unique_text": 240760,
        "unique_labels": 2,
        "labels": {
            "0": {
                "count": 101833
            },
            "1": {
                "count": 141492
            }
        }
    }
}

This dataset card was automatically generated using MTEB