Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer (First 5GB)
Auto-converted to Parquet
query-id
stringlengths
1
7
corpus-id
stringlengths
6
12
score
float64
1
1
1185869
08_840101254
1
1183785
01_444503625
1
695572
20_461843390
1
852919
00_837399976
1
637313
08_12770678
1
608175
07_542886332
1
416310
00_714145216
1
645590
61_310962365
1
313342
00_494777959
1
186154
02_556351008
1
1177180
02_556351008
1
457407
08_547492342
1
1170036
18_201645895
1
441383
19_116802458
1
881523
04_613515887
1
1012121
06_485910501
1
827277
36_735439741
1
484187
14_857267771
1
1022408
58_505562510
1
1022408
04_179814011
1
666321
10_834751246
1
1152312
10_216854576
1
819250
10_216854576
1
205515
04_74703297
1
1021231
40_182578686
1
759692
09_470898463
1
1164798
10_14940807
1
436686
08_765930224
1
443797
04_76939781
1
662502
18_747457463
1
1184679
02_748873709
1
14562
00_867054103
1
602162
17_748807186
1
708236
03_576438477
1
693161
09_122268194
1
1173772
38_390862924
1
306992
03_757919813
1
541973
04_711408218
1
273090
10_737790036
1
441269
03_158685688
1
642237
12_185039683
1
969740
07_216081910
1
503515
63_244377624
1
285771
07_604711533
1
1164796
53_602383031
1
269220
12_173558673
1
18874
20_425445518
1
749988
08_74953738
1
468725
04_438771742
1
942219
19_248839014
1
135841
16_93510573
1
295446
04_206219643
1
720830
62_326063176
1
410621
08_740029949
1
410621
06_471626977
1
910243
04_560306309
1
651441
09_457118309
1
828061
09_404451782
1
1041068
03_302580839
1
772957
09_285432897
1
1008393
17_778987756
1
651110
10_262178053
1
554813
02_226450535
1
402210
02_226450535
1
460653
20_139642180
1
713526
20_447359811
1
705580
35_610068992
1
898717
41_178857132
1
658203
07_217325120
1
387734
06_365674135
1
486506
01_507777427
1
224712
10_763429112
1
1072113
03_76282697
1
1164793
53_273579196
1
605902
18_829746572
1
848583
05_335373418
1
1068319
07_522688909
1
535936
11_182401921
1
447428
00_535544347
1
91175
00_535544347
1
213460
05_163607981
1
1174916
07_208666730
1
147535
08_55165505
1
1137044
66_620248041
1
1137044
53_618022360
1
1164792
52_638521777
1
980269
53_111170878
1
238138
00_150867291
1
798066
20_831729727
1
569308
01_33746560
1
753706
06_55677765
1
92105
06_751107869
1
217395
06_751107869
1
948848
58_511250961
1
673608
35_4114355
1
510071
21_89762755
1
474108
11_258620762
1
113839
11_258610660
1
1164791
07_641172265
1
496488
27_616159724
1
End of preview. Expand in Data Studio

MSMARCOv2

An MTEB dataset
Massive Text Embedding Benchmark

MS MARCO is a collection of datasets focused on deep learning in search

Task category t2t
Domains Encyclopaedic, Academic, Blog, News, Medical, Government, Reviews, Non-fiction, Social, Web
Reference https://microsoft.github.io/msmarco/TREC-Deep-Learning.html

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["MSMARCOv2"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{DBLP:journals/corr/NguyenRSGTMD16,
  archiveprefix = {arXiv},
  author = {Tri Nguyen and
Mir Rosenberg and
Xia Song and
Jianfeng Gao and
Saurabh Tiwary and
Rangan Majumder and
Li Deng},
  bibsource = {dblp computer science bibliography, https://dblp.org},
  biburl = {https://dblp.org/rec/journals/corr/NguyenRSGTMD16.bib},
  eprint = {1611.09268},
  journal = {CoRR},
  timestamp = {Mon, 13 Aug 2018 16:49:03 +0200},
  title = {{MS} {MARCO:} {A} Human Generated MAchine Reading COmprehension Dataset},
  url = {http://arxiv.org/abs/1611.09268},
  volume = {abs/1611.09268},
  year = {2016},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("MSMARCOv2")

desc_stats = task.metadata.descriptive_stats
{
    "train": {
        "num_samples": 138641342,
        "number_of_characters": 47326141477,
        "num_documents": 138364198,
        "min_document_length": 24,
        "average_document_length": 341.97456860914264,
        "max_document_length": 1032556,
        "unique_documents": 138364198,
        "num_queries": 277144,
        "min_query_length": 6,
        "average_query_length": 32.851351643910746,
        "max_query_length": 215,
        "unique_queries": 277144,
        "none_queries": 0,
        "num_relevant_docs": 284212,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.025502987616546,
        "max_relevant_docs_per_query": 5,
        "unique_relevant_docs": 245838,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    },
    "dev": {
        "num_samples": 138368101,
        "number_of_characters": 47317165079,
        "num_documents": 138364198,
        "min_document_length": 24,
        "average_document_length": 341.97456860914264,
        "max_document_length": 1032556,
        "unique_documents": 138364198,
        "num_queries": 3903,
        "min_query_length": 9,
        "average_query_length": 32.83551114527287,
        "max_query_length": 153,
        "unique_queries": 3903,
        "none_queries": 0,
        "num_relevant_docs": 4009,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.027158595951832,
        "max_relevant_docs_per_query": 3,
        "unique_relevant_docs": 4003,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    },
    "dev2": {
        "num_samples": 138368479,
        "number_of_characters": 47317176644,
        "num_documents": 138364198,
        "min_document_length": 24,
        "average_document_length": 341.97456860914264,
        "max_document_length": 1032556,
        "unique_documents": 138364198,
        "num_queries": 4281,
        "min_query_length": 10,
        "average_query_length": 32.63770147161878,
        "max_query_length": 199,
        "unique_queries": 4281,
        "none_queries": 0,
        "num_relevant_docs": 4411,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0303667367437515,
        "max_relevant_docs_per_query": 3,
        "unique_relevant_docs": 4400,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
98